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ABSTRACT 

 
 

A GIS-Based Data Model and Tools for Analysis and Visualization  
of Levee Breaching Using the GSSHA Model 

 
Hoang Luu Tran 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
 

Levee breaching is the most frequent and dangerous form of levee failure. A levee breach 
occurs when floodwater breaks through part of the levee creating an opening for water to flood 
the protected area. According to National Committee on Levee Safety (NCLS), a reasonable 
upper limit for damage resulting from levee breaching is around $10 billion per year during 1998 
and 2007. This number excludes hurricanes Katrina and Rita in 2005 which resulted in economic 
damages estimated to be more than $200 billion dollar and a loss of more than 1800 lives. 
  

In response to these catastrophic failures, the U.S. Army Corps of Engineers (USACE) 
started to develop the National Levee Database (NLD) on May 2006. The NLD has a critical role 
in evaluating the safety of the national levee system. It contains information regarding the 
attributes of the national levee system.  
 

The Levee Analyst Data Model was developed by Dr Norm Jones, Jeff Handy and 
Thomas Griffiths to supplement the NLD. Levee Analyst is a data model and suite of tools for 
managing levee information in ArcGIS and exporting the information to Google Earth for 
enhanced visualization. The current Levee Analyst has a concise and expandable structure for 
managing, archiving and analyzing large amounts of levee seepage and slope stability data. 
(Thomas 2009).  
 

The new set of tools developed in this research extends the ability of the Levee Analyst 
Data Model to analyze and mange levee breach simulations and store them in the NLD 
geodatabase. The capabilities and compatibilities with the NLD of the new geoprocessing tools 
are demonstrated in the case study. The feasibility of using GSSHA model to simulate flooding 
is also demonstrated in this research. 
 
 
 
 
 
 
 
 

Keywords: GSSHA, levee breach, flood, inundation, National Levee Database, NLD, levee 
analyst, WMS, Google Earth. 
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1 INTRODUCTION 

Levees are earth embankments constructed along rivers or coastlines to protect the 

adjacent area from flooding. Figure 1-1 shows a typical cross section of a levee. During the early 

days of levee building in the United States, construction was irregular and simplistic. The 

construction typically did not take advantage of any engineering principles of safe and 

sustainable design. The great floods on the Mississippi and Ohio Rivers, which led to significant 

loss of life, resulted in national attention on Levee safety. The Flood Control Acts of 1928 and 

1936 were established in response. Thousands of miles of levees were constructed during this 

time to provide protection against events ranging from the standard flood to the largest 

reasonable flood. Many of the constructed levees can protect against 500-year floods and in 

some cases even the 1000-year flood (Safety, 2009). 

The National Flood Insurance Program (NFIP) was established by the National Flood 

Insurance Act of 1968. NFIP requires regulation of floodplain activity and mandatory purchase 

of flood insurance for those who live behind levees that cannot withstand the 100-year flood. 

This became the new target design level for many areas because it would provide relief for the 

resident from the mandatory flood insurance. Not many people are aware that a 100-year flood 

corresponds to a 26% probability of flooding during a 30-year span. This is a very high 



probability. For comparison, the chance of a 500-year flood during a 30-year span is 

approximately 5.8% (Safety, 2009).  

Hurricanes Katrina and Rita caused more than $200 billion dollars in damage and killed 

more than 1800 people. This catastrophe was the wakeup call for National Levee Safety 

Program. One of the recommendations from The National Committee on Levee Safety to 

Congress was to extend the National Levee Database so that “the critical safety issue, true costs 

of good levee stewardship, and the state of individual levees can inform priorities and provide 

data for needed risk-informed assessments and decision-making” (Safety, 2009).   

 

 

Figure 1-1: Typical cross section of a Levee (Miller, 2006). 
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1.1 National Levee Database  

Many levees have been built across the country. The Department of Homeland Security’s 

Federal Emergency Management Agency (FEMA) estimates that levees are built in 

approximately 22 percent of 3147 counties in the United States. The National Levee Database 

was established as a central location for storing levee information on May 2006 by the United 

States Army Corps of Engineers. Understanding the impact of flooding has a critical role in 

emergency evacuation planning because of time constraints. Total evacuation time in rural and 

urban areas is 135 and 80 minutes, respectively (Cheng, Qian, Zhang, Wang, & Sheng, 2010). 

Flood analysis provides an estimation of the flood arrival time and flood path on the floodplain, 

shown in Figures 6-12 and 6-13. This information can assist the people living in the flooded area 

to evacuate to a safe area.  

1.2 Levee Analyst  

Although the NLD contains features and tables storing most types of data typically 

associated with levees, it does not have a structure for storing information on seepage, slope 

analysis, and flood analysis information. The Levee Analyst is a Geographic Information System 

(GIS) data model and set of geoprocessing tools. The Levee Analysis Data Model (LADM) 

provides a structure for storing levee centerlines, levee cross section lines, and model data 

associated with seepage and slope stability analyses. The data model schema includes feature 

classes, relationship classes, coded value domains, and tables. This schema established a 

standard methodology for storing large amounts of levee simulation data and created a standard 

set of field names necessary for using the geoprocessing tools in the Levee Analyst. The data 
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model was created in a manner to allow future expansion (Jones, Handy, & Wallace, 2008). The 

LADM is an extension of and is fully compatible with the NLD.  

The first iteration of Levee Analyst involved developing a suite of tools for archiving and 

managing seepage (SEEP2D) and slope stability analyses (UTEXAS) in a spatial database.  In 

the second iteration, support was added for SEEP/W and SLOPE/W simulations and a set of 

tools was developed for exporting the Levee Analyst data to Google Earth. This research 

represents a third iteration of tools and our main objective was to prototype a system for doing 

automated levee breach analysis using the GSSHA model. 

1.3 GSSHA 

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physically-based, 

distributed-parameter, structured grid, hydrologic model that simulates 2D overland flow, 1D 

stream flow, 1D infiltration, 2D groundwater, and full coupling between groundwater and 

surface water (Downer, 2010). The GSSHA model is derived from the CASC2D model with 

significant reformulation and enhancement. CASC2D is a two-dimensional, physically-based 

model. This model only works when Hortonian flow is dominant. This assumption is not 

appropriate for most of the cases because it neglects the contribution from the infiltration to the 

stream system, shown in Figure 1-2. 

On the other hand, GSSHA is capable of calculating flows, stream depths, and soil 

moistures in variety of hydrologic regimes and conditions including non-Hortonian watersheds. 

Compared with more sophisticated implicit finite difference and finite element schemes, the 

algorithm used in GSSHA is simple. The friction slope between one grid cell and its neighbors is 

calculated as the difference in water-surface elevations divided by the grid size. Compared with 



the kinematic wave approach, this diffusive wave approach allows GSSHA to route water 

through pits or depressions, and regions of adverse slope. The Manning formula is used to relate 

flow depth to discharge. Use of the Manning formula implies that the flow is both turbulent and 

that the roughness is not dependent on flow depth. Neither of these assumptions may be valid on 

the overland flow plane. While being simple, the method is powerful because it allows 

calculations to proceed when only portions of the stream network or watershed are flowing 

(Ogden, 2006). 

 

 

Figure 1-2: Infiltration contributes to the stream system (Ogden, 2006). 
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 The input hydrograph can be integrated into the GSSHA model in two ways. The first 

way is to assign the input hydrograph at an appropriate grid cell. The second way is to assign the 

input hydrograph at a stream node. These two ways lead to two different approaches to simulate 

levee breach in GSSHA model. The first approach is to assign the variable stage (water surface 

elevation) at grid cells where the levee breach occurs. The second approach is to assign the input 

hydrograph upstream and lower the grid cells associated with the levee breach. The second 

approach is not only a better way but also a more efficient way to simulate flooding for several 

reasons. First, the estimated hydrograph upstream can be estimated using WMS from 

dimensionless hydrograph derived from the National Streamflow Statistics (NSS) program, as 

shown in Figure 1-3. The NSS program replacing the National Flood Frequency (NFF) program 

is a computer program used to estimate the stream flow statistics for different flood frequencies 

for sites in urbanized area (USGS). 

Second, instead of having to manually calculate the hydrodynamics to estimate the 

appropriate hydrograph at each grid cell as in the first method, the GSSHA model will calculate 

the hydrodynamics of the flood at the levee breach in the second method. However, the user 

needs to turn on the overbank flow option because GSSHA model doesn’t allow water to leave 

streams unless the overbank option is used. 



 

Figure 1-3: NSS program interface in WMS (WMSwikipage, 2007). 

1.3.1 Overbank Flow in GSSHA 

The overbank flow option in GSSHA allows the water to flow from the stream to the 

overland region if the water level in the stream is greater than the flood plain elevation and vice 

versa. The top of the bank, shown in Figure 1-4, is defined by the thalweg elevation of the stream 

and the depth of the channel. If the top of the bank is higher than the water elevation at the land 
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surface/cell elevation, the flow is computed as weir flow. Otherwise, the flow is computed as 

overland flow. 

The reliability of the overbank flow option was tested as part of this research. The 

procedure and results are described in Chapter 4 of this research. 

 

 

Figure 1-4: Top of bank defined in GSSHA. 

1.4 Watershed Modeling System 

The watershed modeling system (WMS) developed by Aquaveo is a comprehensive 

graphical environment for all phases of watershed hydrology and hydraulics. WMS is fully 

capable of dealing with all types of GIS data for hydrologic and hydraulic modeling. WMS 

provides a powerful set of tools which allow the users to import, create, and manipulate GIS 
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vector and raster data. Many hydrologic parameters such as area, slope, mean elevation, 

maximum flow distance and many more can be auto-computed using WMS. WMS also provides 

the ability to export the working model into Google Earth to enhance the visualization 

experience. Moreover, using WMS is the most efficient way to build a GSSHA model.  GSSHA 

developers have strongly recommended users to use WMS for pre and post processing (GSSHA 

Wiki, 2010). 

1.5 Research Objectives 

The objective of this research is to develop a data model and a set of tools that allow 

users to generate and archive flood simulation in a GIS-based environment to the NLD 

geodatabase. The flood simulation is generated using the Gridded Surface/Subsurface 

Hydrologic Analysis (GSSHA) numeric model and includes custom scripts involving ArcGIS 

and WMS. Information related to the simulation is archived to the NLD geodatabase. This 

information is helpful for risk management. They are breach depth, breach location, inundation 

area, maximum depth, hydrograph upstream, and file path to the flood animation. The flood 

animation can be viewed in Google Earth to see how fast the flood is moving and what area is 

inundated. 
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2 LITERATURE REVIEW 

Besides GSSHA, many more existing numerical models are available for simulating 

flood events. This section will describe some of the most popular model and review how this 

research differs from previous efforts. 

2.1 HAZUS – MH Flood Model 

HAZUS-MH is a GIS-based software developed by the Federal Emergency Management 

Agency (FEMA). HAZUS is used to estimate the potential losses from hurricane winds, 

earthquake and floods. The Flood Model in HAZUS is a popular model for comprehensive loss 

estimation due to flood. The Flood model provides three levels of analysis depending on the skill 

of the user. Level one requires minimum user interaction. Level two requires more data for more 

detailed analyses using the Flood Information Tool. Level three is for expert users. 

2.1.1 Flood Model – Level 1 

With limited information on the area, the Hazus flood model uses a rating curve to 

estimate the area of inundation. For example, the water stage for a triangular cross section is 

estimated using the following equation (FEMA, 2010): 
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where: di = the critical depth 

SL = approximate side slope on the left side of the reference point based on 100-

year flood plain, shown in Figure 2-1 

SR = approximate side slope on the right side of the reference point based on 100-

year flood plain, shown in Figure 2-1 

  Qi = discharge 

 

 

Figure 2-1: Floodplain geometry using to estimate the rating curve (FEMA, 2010). 
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2.1.2 Flood Model – Level 2 

The flood model level 2 uses the Flood Information Tool (FIT) to estimate the flood 

depth. The FIT requires more flood hazard data. The FIT contains algorithms that interpolate 

flood elevations and perform flood analysis by calculating grids of flood depth on the study area 

(FEMA, 2010). 

2.1.3 Flood Model – Level 3 

The flood model level 3 is integrated with the Advanced Engineering Building Module 

and Portable Water System Analysis Model (FEMA, 2010). The Advanced Engineering Building 

Module is an extension of the more general method of loss estimation methodology used in 

HAZUS for specific building damage. The Portable Water System Analysis Model module is 

used to analyze the damage to the water networks. Level 3 requires a high degree of expertise. 

2.1.4 Levees 

The Flood model has an option to integrate a levee into the area protected by the levee. 

The flood depths are zero if the levee can withstand the flood recurrence interval. Otherwise, the 

model will compute the flood depths as if there is no levee (Scawthorn, et al., 2006). This 

approach isn’t designed to handle flooding due to levee breach for two reasons. First, flooding 

due to levee breach occurs mostly when failure happens to part of the levee. When the levee 

can’t withstand the flood in this approach, the model will ignore the existence of the whole levee 

when calculating the flood depths.  Second, by ignoring the existence of the levee, the model 

isn’t capable of computing the hydrodynamics at the breach.    
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2.2 Hydrologic Engineering Center - River Analysis System 

The Hydrologic Engineering Center's River Analysis System (HEC-RAS) is developed 

by the U.S. Army Corps of Engineers.  HEC-RAS can simulate one-dimensional unsteady flow 

including levee breaching analysis. HEC-RAS is compatible with GIS using HEC-GeoRAS. 

HEC-GeoRAS is a set of geoprocessing tools that assist the interaction between HEC-RAS and 

ArcGIS.  HEC-GeoRAS allows the user to import the geometric data from GIS into HEC-RAS 

and to export the results such as the water surface profile data and velocity data from HEC-RAS 

into ArcGIS. 

One-dimensional unsteady flow models such as HEC-RAS have some advantages 

compared to two-dimensional models such as faster computation time and less data preparation. 

However, they are not practical for use in many cases. First, one-dimensional unsteady flow 

models may face numerical difficulties when there are sudden changes in the cross section area 

of the channel. Second, one-dimensional models assume that the calculated water surface 

elevation for the channel would be extended to when the overland elevation is greater than or 

equal to the water elevation. This assumption can exaggerate the amount of flooding due to 

overtopping, as shown in Figure 2-2. Third, the inundated area computed by a one-dimensional 

model needs to be converted into 2D maps by interpolating between the one-dimensional results 

and the DEM data (Altinakar, Matheu, & McGrath, NEW GENERATION MODELING AND 

DECISION SUPPORT TOOLS, 2009). Interpolating the results with the DEM data does not 

account for the land use or soil type of the protected area.  This approach has a negative effect 

not only on estimating the inundation area but also the arrival time of the flood. 



 

Figure 2-2: Exaggerated water level in one-dimensional model due to overtopping. 

2.3 MIKE FLOOD 

Developed by DHI in Denmark, MIKE FLOOD is a commercial flood model simulating 

two-dimensional overland flow (MIKE 21) coupling with one-dimensional stream flow (MIKE 

11). MIKE FLOOD has a sub-grid feature that allows the user to use smaller grid size to 

represent the channels, culvert, etc. MIKE FLOOD also supports a flexible mesh system. 

However, momentum is not allowed with lateral flows in a one-dimensional model 

(Environment, 2007). Without the momentum, the flood model can’t fully simulate the 

hydrodynamics of the flood at the breach because the impact of flood velocities and mass are 

completely ignored. 

2.4 CCHE FLOOD 

Developed by the University of Mississippi’s National Center for Computational 

Hydroscience and Engineering (NCCHE), CCHE FLOOD is a two-dimensional numerical model 

solving full dynamic unsteady flow equations. CHHE FLOOD also use coupled one-dimensional 

and two-dimensional modeling to simulate the interaction between river and the overland. 

15 
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Similarly MIKE FLOOD, only mass exchange is calculated when the model calculates the 

interaction between river and the overland. There is no momentum exchange involved 

(Altinakar, Matheu, & McGrath, 2009). 

2.5 FLO-2D 

Developed by FLO-2D Software, Inc., FLO-2D is a two-dimensional flood routing 

model. FLO-2D uses square grid-based system and full dynamic wave equations to simulate the 

progression of the flood in eight directions. FLO-2D breach mechanism is capable of simulate 

levee breach caused by overtopping or piping/seepage (O’Brien, 2010). The breach mechanism 

allows users to specify breach failure conditions. The breach starts to initiate when these 

conditions are met. For example, users can specify the elevation of prescribed failure. If the 

water elevation exceeds the specified elevation, the levee will start to breach.  Integrating this 

mechanism into the automated levee breach system is beyond the scope of this research. 

2.6 TUFLOW 

Originally developed by WBM Ply Ltd and The University of Queensland, TUFLOW is 

one-dimensional and two-dimensional tidal flow simulation software solving full dynamic 

equations of unsteady flow. TUFLOW is widely used in the United Kingdom and Australia. 

TUFLOW allows the user to generate the stream using a two-dimensional approach. Thus, the 

momentum between the stream and the overland is accounted for in the model. However, this 

approach requires having sufficient cell resolution to represent the stream. Figure 2-3 shows an 

example of a narrow stream is poorly represented in the two-dimensional model (WBM, 2007). 



TUFLOW is probably the most suitable model for simulate levee breach because the 

momentum is conserved. However, this approach requires a lot of stream data which is very hard 

to obtain for this research. The simpler approach, described in chapter 1.3, is used. 

 

2D model  
representation Natural surface 

 

Figure 2-3: Poor representation of a narrow stream in 2D model (WBM, 2007). 

2.7 Summary 

A one-dimensional model can estimate very quickly the impact of flooding caused by 

levee breach to the associated area. However, it can’t provide the accuracy as in two-dimensional 

model such as MIKE FLOOD, CCHE, FLO-2D and TUFLOW. The biggest disadvantage of 

two-dimensional models is that they are time consuming. This disadvantage will be much less 

significant with time because of the increasing in computer speed. GSSHA is programmed in 

C++ for Windows and Linux will support parallel computing in the near future. The parallel 

computing allows the user to run a single flood simulation using different machines or cores 

simultaneously. This approach in GSSHA can significantly decrease the running time of the 

model. 

17 
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None of the flood model above has been integrated with a GIS such that a user could 

quickly modify boundary conditions, run and archive a flood simulation for different levee 

breach scenarios into a geodatabase. The purpose of this research is to develop such a system. 
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3 LEVEE BREACH ANALYSIS METHODOLOGY 

The purpose of this section is to describe the overall approach of prototyping a system for 

doing automated levee breach analysis. Figure 3-1 shows the flow chart of the levee breach 

analysis system in GIS environment. The gray rectangles represent the data provided in the NLD. 

The olive green ovals represent the required input from the user. The yellow rounded rectangles 

represent the geoprocessing tool in Levee Analyst toolbox. Finally, the blue rectangles represent 

the results after running the geoprocessing tool. The flow chart can be divided into three main 

parts. The first part is data preparation. The second part is data processing. The last part is data 

post-processing. 

3.1 Data Preparation 

The NLD contains many protected area polygons organized in the Protected_Area 

feature class. Each of these protected areas has one or many corresponding Levee_Centerline 

features. The Levee_Centerline feature has information related to the levee such as height, 

length, etc. 

The user needs to prepare a GSSHA model for each protected area of interest and at one 

or more possible breach location. First, the GSSHA model is created using WMS. The details on 

how to create this model can be found in Chapter 6. When the model is done, the user uses the 

Archive GSSHA Simulation geoprocessing tool to archive this model into the NLD. Second, the 
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breach location can be quickly created using the Create Breach geoprocessing tool. The Create 

Breach geoprocessing tool is described more in Chapter 5. 

3.2 Data Processing 

Each flood scenarios has its own characteristics such as magnitude and breach details. 

The magnitude of the flood is represented by the upstream hydrograph specified by the user. The 

breach details are represented by the breach location created in the previous step, and the breach 

depth, specified by the user. The user also has options to control simulation time, time step, etc. 

The objective of the Simulate Flood and Archive geoprocessing tool is to assist the user 

in quickly performing many flood scenarios and archiving these results into the NLD for further 

assessment. The results contain helpful information such as inundation area or maximum depth. 

3.3 Data Post-Processing 

The inundation area only tells how large the flood has spread. It does not tell the exact 

location. The purpose of this step is to translate the raw data, such as number of flooded grid 

cells, into images or animation which can be visualized using Google Earth. The last two 

geoprocessing tools, Export Simulation to KML and Export Breach Location to KML, are 

designed to provide this capability.   
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4 OVERBANK FLOW OPTION IN GSSHA 

The objective of this research is to use GSSHA and Levee Analyst to simulate flooding 

resulting from a levee breach. GSSHA is used to simulate the flooding of the protected zone and 

it requires a boundary condition to represent the levee breach. One approach is to use a constant 

head boundary condition to represent the flood. However, the problem with this method is that it 

can generate an unrealistic amount of water because the head at the grid cells, where the levee is 

breached, is set to a constant value. This method only works if there is an infinite supply to the 

breach. In reality, the flow will stop when the head reaches an elevation that no flow occurs.  

Figure 4-1 shows one of the simulations we did in St Louis using the constant head boundary 

condition at the breach.  The unrealistic inundation area is caused by the infinite water supply 

from the constant head boundary condition. 

Another approach for the boundary condition is to supply a hydrograph upstream and use 

the overbank flow option in GSSHA to simulate water spilling onto the flooded area. In order to 

do this, we need to understand the best way to conceptualize this within GSSHA and we need to 

test the method to ensure that is reasonably simulates both the filling and draining of the 

protected area. Therefore, we have done a sensitivity analysis with respect to the node spacing on 

the stream and with respect to the number of cells lowered to represent the levee breach. 
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Figure 4-1: Flood simulation using a constant head boundary condition at the breach. 

4.1 Description of the Sample Model 

 To test the boundary condition, we created a 10x10 GSSHA 2D grid sloping from West 

to East. One stream channel was created on the West side running from North to South. The 

roughness of 0.01 was assigned uniformly. We simulated the breach by lowering the elevation of 

the grid cells coincident with the stream channel. The water is generated by using a hydrograph 

input upstream. Figure 4-2 corresponds with one of the case studies.  
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Figure 4-2: Sample model in WMS with one stream cell lowered. 

 

Figure 4-3: River elevation (blue) vs. grid cell (levee) elevation (brown). 

The following case studies were performed: 

1. Lower one cell at the middle of the stream 

a. 3 nodes per stream cell 

b. 4 nodes per stream cell 

c. 5 nodes per stream cell 
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d. 6 nodes per stream cell 

e. 7 nodes per stream cell 

2. Lower one cell downstream, as shown in Figure 4-4. 

a. 3 nodes per stream cell 

b. 4 nodes per stream cell 

c. 5 nodes per stream cell 

d. 6 nodes per stream cell 

e. 7 nodes per stream cell 

Similarly, we lowered 2, 3, and 5 cells at the middle of the stream and downstream.  

Again, the nodes were increased from 3 nodes to 7 nodes per stream cell, inclusively. All the 

nodes are distributed uniformly across the stream. The purpose of lowering cells downstream is 

that we want to test how the location of the breach might affect the results. 

 

 

Figure 4-4: Lower one cell downstream in the sample model. 
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4.2 Results 

Here are some of our observations from the results from the above case studies. 

1. The mass conservation error and lateral flow increased significantly if the number 

of nodes on the stream cell is greater than 5 nodes, shown in Figure 4-5 and 

Figure 4-6. 

2. The results are very consistent if we have 5 or less nodes per stream cell. The 

location of the lowered cells doesn’t seem to have effect on the result. 

3. The system will eventually gain water if the stream is assigned too many nodes, 

such as 4 nodes per stream cell in the 5-cell-lowered case. For these cases, the 

water actually flows from the overland to the river. 

 

 

Figure 4-5: Mass conservation error vs. number of stream node. 
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Figure 4-6: Lateral flow vs. number of stream nodes. 

4.3 Conclusions 

The results from the running the overbank option in GSSHA are very consistent if the 

numbers of stream nodes are limited. Even with some limitations, GSSHA model can simulate 

flooding due to levee breach with limited stream nodes for several reasons. First, the stream can 

be well-represented with only a few stream nodes, as shown in the case study in chapter 6. 

Second, fewer stream nodes can significantly improve the computation time and the stability for 

the flood simulation. 
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5 EXPANDED LEVEE ANALYST TOOL 

The current Levee Analyst Data Model allows the user to archive and manage seepage 

(SEEP2D, SEEP/W) and slope stability analyses (UTEXAS, SLOPE/W) into the National Levee 

Database.  The expanded Levee Analyst will provide the capability of running pre- and post- 

processing of GSSHA simulations in the ArcGIS environment for levee breach analysis. This 

chapter contains a description of each of the geo-processing tools developed by this research to 

perform this task.  

5.1 Archive GSSHA Simulation 

The first requirement to use the Levee Analyst tool is to prepare a GSSHA model for 

each protected area. The protected area is the adjacent area of the constructed levees. It 

represents the area of inundation if flooding due to levee breach occurs. Figure 5-1 shows the 

input requirements for the Archive GSSHA Simulation geoprocessing tool. 

The Archive GSSHA Simulation geoprocessing tool allows the user to archive the base 

model into the NLD geodatabase. The tool archives the Base Model file path associated with the 

Protect_ID to the Protected_Area feature class. Figure 5-2 shows the workflow of the Archive 

GSSHA Simulation geoprocessing tool. The top image in Figure 5-2 is the Archive GSSHA 

Simulation geoprocessing tool. The bottom image is the Protected_Area feature class in the NLD 

showing the new record in the feature class resulting from running the Archive GSSHA 

Simulation tool. 
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Figure 5-1: Archive GSSHA Simulation geoprocessing tool. 

 

Figure 5-2: Workflow for Archive GSSHA Simulation geoprocessing tool. 

5.2 Create Breach 

A breach location line feature is created from a segment of an associated levee centerline. 

This process can be done using the linear referencing tools in ArcGIS as shown in Figure 5-3. 

However, the procedure to generate a segment from a line is quite complex. First, the user needs 
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to run the Create Routes tool. Second, the user needs create a temporary table listing the levee 

centerline ID (Levee_ID), the starting station, and the ending station. Finally, the user runs the 

Make Route Event Layer geoprocessing tool to create a segment from the Levee Centerline 

feature class. The Create Breach Location geoprocessing tool is designed to simplify all of these 

steps into a single tool. It creates a segment from a levee centerline where the user thinks a levee 

breach may occur, and archives this feature into Breach Location feature class for future 

analysis.  

 

Figure 5-3: Starting and ending station concept. 
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The Create Breach geoprocessing tool is shown in Figure 5-4. Besides creating a new 

levee breach line feature, the tool also archives all the important information related to the newly 

created breach in the Breach Location feature class. They are associated levee ID, protect ID, 

Levee names, starting station (From-Measure Value) and ending station (To-Measure Value), as 

shown in Figure 5-6. 

 

 

Figure 5-4: Create breach geoprocessing tool. 
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 The Protect_ID can be traced down from the Levee_ID in the NLD geodatabase. Each 

levee ID has an associated FC_Segment value stored in the Levee_Centerline feature class. This 

FC_Segment value has a corresponding FC_System value stored in the FC_Segment Table. Each 

FC_System has a unique Protect_ID value stored in the Protected_Area feature class. This 

relationship is demonstrated in Figure 5-6.  

 

 

Figure 5-5: Breach Location feature class. 

 

Figure 5-6: Levee_ID and Protect_ID relationship in NLD geodatabase. 
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5.3 Archive Breach Discretization 

A discretization file contains the position of the GSSHA grid cells associated with the 

breach location feature created using the Create Breach geoprocessing tool. Figure 5-7 shows an 

example of the discretization file. 

 

.  

Figure 5-7: Sample discretization file.  

The first two columns are the row and column indices of each of the cells associated with 

the breach. The third column is the length of the breach arc in the cell. The purpose of the 

discretization file is to locate the breach in the GSSHA grid. This method allows the Simulate 

Flood and Archive geoprocessing tool to locate the “breached” cell grid and modify its elevation 

based on the breach depth specified by the user. The discretization file is then archived to the 

Breach Location feature class inside of the NLD geodatabase using the Archive Breach 

Discretization geoprocessing tool shown in Figure 5-8. This tool works in a similar way with the 

Archive GSSHA Simulation geoprocessing tool. 
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Figure 5-8: Archive Breach Discretization geoprocessing tool.  

 WMS 8.4 has a feature called “Raise grid to elevation” which allows the user to create 

the discretization file very easily. This will be described in the case study on the next section. 

5.4 Simulate Flood and Archive 

 The Simulate Flood and Archive geoprocessing tool is the most complex tool in the suite. 

This tool does several things. First, the tool modifies the GSSHA base model boundary 

conditions based on the input provided by the user. It takes the starting and ending elevation of 

the levee breach and applies these changes to the elevation file which contains the elevation of 

each cell in the GSSHA model. The tool then assigns the new hydrograph defined by the user to 

the upstream hydrograph in the GSSHA input. Second, the Simulate Flood and Archive 

geoprocessing tool runs GSSHA to simulate the flood corresponding to the modified model. 

Finally, the tool archives the result into the NLD geodatabase. The Simulate Flood and Archive 

tool is shown in the Figure 5-9. 
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Figure 5-9: Simulate Flood and Archive geoprocessing tool. 

 The simulation table, Figure 5-12, contains all important information for each flood 

simulation.  For each simulation, the Simulate Flood and Archive geoprocessing tool will 
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generate a new simulation ID. Each simulation ID has its unique characteristic defined by breach 

depth, breach length and the upstream hydrograph. The tool first takes the breach ID specified by 

the user and find the ID of the protected area (Protect_ID) archived in the Breach Location 

feature class. With the protected ID, it then looks up the base model file path archived in the 

Protected Area feature class. The tool then creates a new subfolder inside of the folder identified 

with the base model path and names it after the simulation ID (ex 00001). The tool also copies 

the following files into the subfolder: elevation file (.ele), project file (.prj) and hydrograph files 

(.ihg and .ihw). The elevation file contains all the elevation of each grid cells. The hydrograph 

files contain the hydrograph for the upstream node. Finally, the project file contains the path of 

all the input/output files used by GSSHA. Figure 5-10 shows an example of a project file. 

 

 

Figure 5-10: Sample of a GSSHA project file (.prj) 
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Each simulation is unique by breach length/location and upstream hydrograph. Therefore, 

the tool only copies the elevation files and the upstream hydrograph into the subfolder. This 

approach also requires the tool to modify the path to these files in the project file. Figure 5-11 

shows a sample of a modified GSSHA project file. This approach can save a lot of storage space 

because it avoids duplicating the unnecessary files. 

 

 

Figure 5-11: Sample of a modified GSSHA project file. 

 The path of the solution (.file) file is also edited so that each subfolder, which is 

associated with one unique simulation value, has its own unique solution. With everything in 

place, the Simulate Flood and Archive geoprocessing tool modifies the elevation file in the 

subfolder using the discretization file and the starting/ending breach elevation specified from the 
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input. The tool also gets the new hydrograph from the input table and modifies the hydrograph 

files inside of the subfolder to match the new one. 

 The Simulate Flood and Archive tool asks the user to specify the projection of the 

GSHSA base model. This input is necessary for calculating the inundation area because the 

model boundary is always bigger than the protected area boundary. The GSSHA solution 

contains all the water elevation at all the grid cells bounded by the model boundary. This method 

makes sure that we only calculate the cells in the protected area. The tool uses this information to 

line up the base model polygon with the associated protected area. Once these two polygons are 

lined up, the tool will look for all the cells in the base model that belong to the protected area. 

The maximum depth in meters and inundation area in square meters is calculated based on the 

water depth at these cells only.  

 The tool also allows the user to specify the simulation duration, simulation time step, and 

simulation write frequency. Finally, the tool runs GSSHA inside of ArcGIS and archives the 

results into the simulation summary table, shown in Figure 5-12.  

 

 

Figure 5-12: Simulation Summary Table. 
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5.5 Export GSSHA Simulation to KML 

 The Levee Analyst is designed to enhance the visualization of flooding simulations. The 

Export GSSHA Simulation to KML geoprocessing tool, shown in Figure 5-13, allows the user to 

export the simulation into a KML file that contains images of the flood simulation at each time 

step, specified by write frequency parameter when running GSSHA. This KML can be loaded 

into Google Earth to create an animation for the flood simulation. From the animation, the user 

can see how fast the flood goes and what the inundation area is. 

 

 

Figure 5-13: Export GSSHA simulation to KML geoprocessing tool. 

The export GSSHA simulation geoprocessing tool takes the Simulation ID input and 

looks for the associated protect_ID. With the protect_ID, the tool determines the base model file 
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path. From the base model file path and the simulation ID, the tool locates the path to the 

GSSHA solution file (.dep) in the subfolder. The tool then will launch WMS and use the existing 

tool in WMS to generate a KMZ1 file. Finally, the file path of this KMZ file is archived into the 

simulation summary table. Figure 5-14 shows WMS generating the KML file with the provided 

GSSHA solution. 

 

 

Figure 5-14: WMS generating KML file from a GSSHA solution.   

                                                 
1 KMZ is the compressed form of KML. 
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5.6 Export Breach Location to KML 

 The final tool added to the Levee Analyst tools is called Export Breach Location to KML. 

The purpose of this tool is to export data for needed risk-informed assessments and decision-

making into Google Earth. The Export Breach Location to KML geoprocessing tool is shown in 

Figure 5-15. 

  

 

Figure 5-15: Export Breach Location to KML geoprocessing tool. 

First, the Export Breach Location to KML geoprocessing tool will find the ID of the 

breach associated with the specified simulation ID (Sim_ID). Second, the tool uses a query to 

find the IDs ofall the simulations generated using this breach. Third, the tool exports the breach 

line feature to Google Earth and puts all critical information associated with that breach into the 

breach line feature in the KML file. The user is then able to see two tables for each breach line 

42 



feature selected in Google Earth. The first table lists all the information for the breach obtained 

from the Breach Location feature class. The second table lists all the fields and values in the 

simulation summary table of this breach. These two tables can be seen in Figure 5-16. 

 

 

Figure 5-16: Exported breach into Google Earth. 

 In the second table, the tool not only exports all of the information from the simulation 

summary table but it also creates a hyperlink to the input hydrograph and the KMZ file. The 
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hyperlink of input hydrograph leads to the file path of the hydrograph file (.ihg) stored in the 

subfolder which is created when running GSSHA. When the user clicks on the hyperlink for the 

input hydrograph, the default program, such as notepad, will open this hydrograph file. However, 

the user needs to turn on the placemark balloons option in Google Earth to get this to work 

because Google Earth can’t access to local files and personal data by default.  If the user wants to 

see the impact of the flood simulation, he/she can simply click on the Path to KMZ hyperlink. 

Google Earth then generates an animation of the flood. Some screenshots for this type of 

animation will be demonstrated in the case study. 
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6 CASE STUDY: ST. LOUIS NATIONAL LEVEE DATABASE 

In this chapter, we demonstrate the compatibility of the new suite of tools in Levee 

Analyst Data Model and NLD using a case study from St. Louis. The St Louis National Levee 

Database was provided by the United States Army Corps of Engineers (USACE) and is 

populated with the data along the Mississippi, Missouri and Illinois rivers. 

The NLD geodatabase is not structured to store river elevations and cross section data. In 

order to test the new suite of tools, fictitious river elevations and cross sections were used for the 

GSSHA base model.  

6.1 Create GSSHA Base Model 

 Each protected area (Protect_ID) must have its own GSSSHA base model. The GSSHA 

base model in this example was built for the Granite City region using Watershed Modeling 

System (WMS) developed by Aquaveo. 

6.1.1 Import Protected Area Polygon to WMS 

 The protected area polygon was exported as a shape file using the Export Data 

geoprocessing tool in ArcGIS. This shape file was imported into WMS and converted into a 

polygon feature. We then imported an aerial image to assist us in creating the model boundary. 

The aerial image can be imported into WMS quickly and easily using the Get Data tool . 

Using the image background as a guide, we modified the protected area polygon to extend the 
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model boundary to the west in order to incorporate the river in addition to the protected area. 

Figure 6-1 shows the protected area polygon in aqua, the aerial photo, and the model boundary in 

red. 

6.1.2 Create Stream Arcs and Define Hydrograph Upstream. 

Next, we used the conceptual approach in WMS to create stream arcs. Using the Create 

Arc tool, we simply drew the stream arcs on top of the aerial photo. The conceptual approach 

allows us to define the properties of the stream directly on the stream arc. In this case, we 

specified the stream as a trapezoidal channel with the following properties: 

  Manning’s n: 0.01 

  Depth: 11 meters 

 Bottom width: 400 m 

  Side slope: 1 

The width of the river was measured from the aerial photo using the Measure Tool in 

WMS. These values above are fictitious because they are not provided in the NLD. The 

hydrograph was assigned at the top of the stream. Figure 6-2 shows the stream arc in blue. 
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Figure 6-1: Protected area and model boundary. 
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Figure 6-2: Basic model conceptual model with the river in blue. 
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6.1.3 Build GSSHA Grids 

The GSSHA grids can be generated in WMS using the Create Grid tool. This tool allows 

the user to specify the number of cells in the x and y direction or the base cell size. The base cell 

size option allows the user to specify the uniform cell size for the area. For example, if the base 

cell size is 90 meters, WMS will generate a uniform cell size of 90 meters for the area. WMS 

automatically downloads the DEM data from a server and maps the elevations from the DEM 

data to the GSSHA grids. WMS also interpolates the elevation to the stream and lowers the grid 

elevation to the specified stream depth defined in the previous step. 

In this case, we created a 90-meter cell size for the GSSHA model. It would make more 

sense to have more cells at the levee location and the river. However, GSSHA only support 

uniformly-distributed cell sizes. If there is a concern about grid resolution on solution accuracy, 

the user can increase number of cells in the model until the difference in results is insignificant.  

6.1.4 Raise Grids to Levee Elevation 

Since the levee width is very small compared with the resolution of the DEM. The DEM 

data can’t accurately represent the ground surface elevation at the location of the levee. 

Fortunately, WMS has a tool that can help us overcome this problem called Raise Grids to 

Elevation. The Levee_Centerline line feature in the NLD has the centerline elevation stored with 

the line. We use the Export Data geoprocessing tool in ArcGIS to export the Levee_Centerline 

feature as a shape file containing the elevation of the levee. The shape file is then imported to 

WMS and it is converted to a feature object and integrated into GSSHA model. We then right-

click on the newly-imported feature object and select the Raise Grid to Elevation command. This 

tool then raises all the grid cells that intersect the levee center line to the levee elevation.  
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6.1.5 Import Land Use and Soil Type Data into the GSSHA Model 

Land use data can be imported to WMS using the Get Data tool. Figure 6-4 shows the 

land use data mapped into the GSSHA base model. Soil type data can be obtained through the 

Natural Resources Conservation Services (NRCS) website as a shape file. The user can bring this 

shape file into WMS and map these data into GSSHA base model. Figure 6-5 shows the soil type 

data mapped into the GSSHA base model. 

The land use and soil type data are used to define roughness and infiltration of the soil 

respectively. The land use data contains curve numbers. Each curve number has a specified 

roughness value. The soil type contains soil ID. Each soil ID has its own characteristic on 

hydraulic conductivity, suction head, effective porosity, and porosity. 

6.1.6 Define Precipitation 

 GSSHA always requires the user to specify precipitation in order to run the model. In this 

case study, we focus only on the flood generated by the upstream hydrograph. Therefore, we set 

the precipitation value to be very small (0.01 mm/day). 

6.2 Import the Base Model File Path to Geodatabase 

When the GSSHA base model was ready, we ran the Archive GSSHA Simulation 

geoprocessing tool. The tool archives the GSSHA base model file path into the Protected_Area 

feature class, seen Figure 6-3.  

 

 

Figure 6-3: Modified Protected_Area feature class. 
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Figure 6-4: Mapped land use in GSSHA model. 
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Figure 6-5: Mapped soil type in GSSHA model. 
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6.3 Create Breach Location from Levee Centerline  

The next step is to create levee breach from the levee centerline. The breach was created 

using the Create Breach geoprocessing tool, using the inputs shown in Figure 6-6. 

 

 

Figure 6-6: Inputs for create breach geoprocessing tool. 

The current NLD geodatabase uses a geographic coordinate system. All the shape lengths 

calculated in ArcGIS are calculated in decimal degrees units. The values in the from_ and to_ 

fields imply that the breach will have a distance of 0.0745 to 0.086 decimal degrees from the 

origin point of the levee. The location of the origin point can be specified using the coordinate 

priority input. The default value for the coordinate priority is upper left corner. This implies the 

origin point is the point closest to the minimum bounding rectangle’s upper left corner. Figure 
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 demonstrates how the location of the origin point is defined. The minimum bounding 

rectangle is in blue color. For example, if the coordinate priority is set to lower left corner, point 

B is the origin point because it’s closest to the lower left corner. If the coordinate priority is set to 

the upper left corner which is by default, point A is the origin point.  

 

 

Figure 6-7: Methodology to determine the origin point in GIS. 

After we executed this tool, the new breach was generated (Figure 6-8) and archived (

 Figure 6-9) into the Breach_Location feature class. 
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Figure 6-8: Breach generated using Create Breach geoprocessing tool. 

 

 Figure 6-9: Archiving breach into Breach Location feature class. 

55 



6.4 Generate Discretization File and Archive It into the Geodatabase 

The final step before running the GSSHA model was to create a discretization file 

corresponding to the breach.  First, we exported the breach into WMS and converted it from GIS 

data into a WMS feature object. Second, we selected the arc and select the Raise Grid to 

Elevation command from WMS. WMS generated the discretization file for the breach. Finally, 

we ran the Archive Breach Discretization geoprocessing tool to archive the discretization file 

into the Breach Location feature class, as seen in Figure 6-10. 

 

 

Figure 6-10: Breach discretization file archived into Breach Location feature class. 

6.5 Run GSSHA and Archive 

With everything in place, we executed the Simulate Flood and Archive geoprocessing 

tool. As seen in Figure 6-10, we ran the flood simulation at breach_ID equal to14, with a starting 

breach elevation of 126 meters and an ending elevation of 125 meters. The upstream hydrograph 

was estimated based on the peak discharge of 1,080,000 cubic feet per second or roughly 31,000 

cubic meter per second measured in St Louis on the Mississippi river on August 1993. 
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When the simulation was complete GSSHA wrote out the solution file (.dep). The 

solution contains the water level of each cell at each time period. The tool analyzed the solution 

file and calculated the maximum depth and inundation area. Finally, it exported the results into 

the simulation summary table, seen in Figure 5-12. 

6.6 Export Simulation to KML 

Once the GSSHA simulation was finished, it was exported to a KMZ file using the 

Export Simulation to KML geoprocessing tool. The tool automatically traced down the file path 

to the solution and the project files and then ran WMS to generate the KMZ file. Finally the 

KMZ file was archived to the simulation summary table, seen in Figure 5-12. 

6.7 Export to Google Earth 

The final step was to export all the information into Google Earth using the Export 

Breach Location to KML geoprocessing tool, seen in Figure 5-15. In this case study, we only 

export the flood simulation associated with breach ID 14, seen in Figure 5-12. 

To illustrate the capabilities of flood simulation using GSSHA, we include a series of 

flood simulation shown in Figure 6-11 and Figure 6-12. The simulation shows both flooding and 

draining of the protected area.
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Figure 6-11: Flood simulation in Google Earth using GSSHA model- part 1. 
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Figure 6-12: Flood simulation in Google Earth using GSSHA model - part 2. 

The flood started at the first image as the water began to come out of the river. In the top 

right corner, we see the time and day of this even which is at 6:54 am on August 2, 2010. On the 

third image, we can see the first two cites had been flooded are Pontoon Beach and Venice 

around 8:38 am on the same day. It means the people living in Pontoon Beach and Venice have 
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approximately 70 minutes to evacuate when the flood occurs. The sequence of images also 

shows the inundation area of Granite City. The flood had never reached the central and the close 

by area of the city. The flood did not reach Fairmont City and other southern cities. 

 These images can also be used for recovery planning. We can estimate the water would 

drain out of Granite City around 5:00 pm on the same day. This isn’t the case for other cities. 

The water was still there after one and half days. Other solutions such as pumping might be 

considered. 
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7 CONCLUSIONS 

The original Levee Analyst Data Model was designed to provide a central location, fully 

compatible with the NLD geodatabase, for storing large amount of levee seepage and slope 

stability. (Thomas 2009) This research sought to expand the capability of Levee Analyst Data 

Model for storing flood simulation to assist the National Levee Safety Program on critical 

decision-making. 

7.1 Research Accomplishments  

This research successfully implements the prototype system for doing automated levee 

breach analysis using GSSHA model. This research not only shows the capability and potential 

of using GSSHA for flood simulation but also the possibility of using other flood models beside 

GSSHA.  

7.2 Future Developments and Research 

The automated levee breach analysis requires the user to specify the breach location. The 

extended Levee Analyst toolbox might combine the levee seepage, slope analysis from the 

existing Levee Analysis data model and the river stage generated by GSSHA to decide where the 

breach might occur. 

The first limitation of the current prototype system is that the system only allows one 

base model for each protected area. This means the flood can only effect on one side of the river. 
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This will not likely happen for a catastrophic flood. The second limitation of the current 

prototype system is that GSSHA model only is only capable of simulating levee breach with 

fixed length for each simulation. This doesn’t represent how the breach occurs in real life. 

Research shows that the breach typically starts with a triangular shape until it reaches the 

embankment base. (O’Brien, 2010)  

Even though, the GSSHA simulation shows great potential for flood analysis. The 

reliable and accuracy of GSSHA model needs to be tested more.  Further research can also 

decide on which flood model, described in Chapter 2, is most suited for the automated levee 

breach analysis system. 
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