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ABSTRACT 
 

A New Eulerian-Based Double Continuity Model for Predicting the 

Evolution of Pair Correlation Statistics under  

Large Plastic Deformations 

 
 

Sadegh Ahmadi 

Department of Mechanical Engineering 

Doctor of Philosophy 

 
A new model using a double-continuity relation for predicting the evolution of pair-correlation 
functions (PCFs) is presented. The proposed model was developed using statistical continuum 
theory and is employed to predict the viscoplastic behavior of polycrystalline materials. This 
model was built based upon the continuity relations and a double divergence law that guarantees 
the conservation of both orientation and mass; and also satisfies the field equations (equilibrium, 
constitutive, and compatibility) at every point of the polycrystalline material throughout the 
deformation process. In the presented model, motion of particles in the real space and rotation of 
crystallographic orientations in the Euler angle space is monitored using an iterative process 
assuming that all the amount of deformation is applied uniformly without taking into account the 
localization effects.  To study the accuracy of the proposed model, a commercially pure nickel 
material was rolled to different amounts of cold work. Texture and statistical analyses of the 
experimental and simulated microstructures were carried out.  For the texture analysis, pole 
figures, ODF sections, and volume fractions of some ideal orientations of cold-rolling were 
studied.  For the statistical analysis, pair correlation functions (PCFs) were employed and the 
correlations (auto- and anti-correlations) between ideal orientations and also the coherence 
length were studied. Simulated results captured from the implementation of the new model are in 
good agreement with the experimental ones at low and medium rolling deformations (0 to 50% 
rolling reductions); however, at large levels of deformations (above 70% reductions), because of 
the formation of cell blocks and relevant inhomogeneity, the occurrence of ideal orientations and 
their correlation properties in the experimental microstructure is affected by grain subdivision 
phenomena. This causes distortions in the shape of crystallographic grains at large rolling 
reductions, and accordingly we observe larger errors in comparison of simulated and 
experimental microstructures.  
 
Keywords:  Sadegh Ahmadi, microstructure, crystal plasticity, continuum mechanics, 
viscoplastic material, simulation 
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1 INTRODUCTION 

Polycrystalline materials are aggregates of numerous crystallites or grains of various 

sizes and shapes. In order to study mechanical and metallurgical properties of polycrystalline 

materials one needs to know detailed information about the sizes, shapes and placement of these 

crystallites or grains. A grain in a polycrystalline material, by definition, is an aggregate of 

neighboring particles having similar crystallographic orientation with respect to the sample 

coordinate system.  Study of the behavior of grains during deformation processes has been a 

pervasive subject of mechanical and materials sciences. Applying a plastic deformation causes 

particles of individual grains inside an examined polycrystalline material to move from their 

preliminary location to a new position in the space of material particles that is called the real 

space or the mass space. The deformation process, on the other hand, causes grains of the 

polycrystalline material to rotate around a specific rotation axis, to change their original 

orientation, and to take new configurations relative to the sample coordinate system. These 

changes are not random and involve rotations that are directly related to the crystallography of 

the deformation. As a consequence, the grains acquire a distinguishing pattern, or texture, which 

becomes stronger as deformation proceeds. These rotations take place in the orientation space, 

the space that includes all possible rotations of lattice orientation. There are many ways to show 

the continuous motion (or rotation) of orientations, among which the Euler angle space (EAS) 

(BUNGE 1993) and the Rodrigues vector representations (MORAWIEC and FIELD 1996) are more 
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common in microstructure simulations. In this research, the Bunge definition of Euler angles is 

selected as the working space for orientation rotations.  

From the discussion above, it can be concluded that for any material point in the material, 

there are two spaces that should be considered during the evolution process: the real space and 

the orientation space. Conservation principles can be used to study the motion of material 

particles in the real space and lattice orientations in the orientation space. To study the movement 

of material particles and crystallographic orientations a proper reference system should be 

selected and these movements are compared based upon the original coordinates. There are two 

common types of coordinate systems that are used in the literature: the Lagrangian and the 

Eulerian. The definition of both systems can be found in continuum mechanics textbooks 

(IRGENS 2008; LAI et al. 2009; NAIR 2009; REDDY 2008).  Basically, based upon the Lagrangian 

description of motion, material particles are studied with regard to the coordinate system at the 

reference configuration (at time zero). In this case, the coordinates are moving with the motion 

and the body of material can be reshaped (rotated and/or stretched) as the deformation proceeds. 

On the other hand, based on the Eulerian description, a fixed control volume is considered and 

the rate of change of any material property, e.g. the mass density or the orientation distribution 

function (ODF), is studied  in a permanent coordinate system. The Lagrangian and Eulerian 

descriptions can also be applied for studying rotations in the orientation space. 

In the literature one can find many FEM models that take the Lagrangian coordinates as 

the working frame (KALIDINDI and ANAND 1992; KALIDINDI and ANAND 1994; KALIDINDI et al. 

1992; KUMAR and DAWSON 1998; KUMAR and DAWSON 2009). In most of these models, only 

the evolution of crystallographic texture has been important and not much care has been devoted 

to simulate the evolution of shape and structure of deformed grains. In these models the initial 
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ODF is measured experimentally from the original microstructure, some plasticity-related 

models are exploited, and the final ODF is predicted by applying the plastic strain gradually. 

Lagrangian frame models have some benefits and limitations. The most serious limitation of 

using the  Lagrangian system is that the shape and the size of the material volume element may 

change throughout the  deformation process leading to a severely distorted mesh at the end of the 

process.  Our preference here is to use an Eulerian framework to simulate the shape and 

orientation changes of grains in the microstructure. 

The first approach to predict the evolution of the ODF in the Eulerian basis was proposed 

by Clement and Coulomb (CLEMENT 1982; COULOMB 1979). Their model predicts the texture 

evolution considering a continuity relation that is valid in the EAS and guarantees the 

conservation of orientation principle during the microstructure evolution. This continuity relation 

has been formulated from concepts commonly used in continuum mechanics to observe the rate 

of change of mass flowing in a continuous medium.   Based on Clement’s formalism and the 

continuity equation in the orientation space, many studies have investigated the evolution of 

crystallographic texture for various deformation processes, such as uniaxial tension (SAVOIE et 

al. 1996), plane strain compression (BUNGE et al. 1986), rolling (GILORMINI et al. 1990; 

MORAWIEC et al. 1991; WIERZBANOWSKI et al. 1986; ZHOU et al. 1992), simple shear or torsion 

(ARZAGHI et al. 2009; BEAUSIR et al. 2007; JONAS and BACZMANSKI 1996), and deep drawing 

(CHOI et al. 2000; ZHOU et al. 1996). A rate-dependent viscoplastic relation has been employed 

in most of these models to generate the rotation rate field in the EAS. The rotation rate field and 

the orientation-based continuity equation have then been used to study the orientation stability of 

specific texture components of various (mostly FCC and BCC) materials. In this body of work, 

the orientation-based continuity equation has been used only to predict the ODF of stable texture 
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components at the end of the process. Although the continuity equation has been used in the 

literature to study the stability of ideal orientations, it has not been employed to statistically study 

the microstructure of materials. Therefore, formulation of a new orientation-based continuity 

model in the Eulerian framework is selected to be the subject of this study. A discrete 

representation of mass- and orientation-based continuity equations in the basis of Eulerian 

coordinate system is introduced in this research. This is a new hypothesis that has not been 

studied in the past which can be exploited to study microstructure evolution of polycrystalline 

materials.  

To build the Eulerian model, instead of the ODF, a statistical function, called the 

microstructure function M(x,g), is used. The microstructure function (MF) is a function of 

position x (in the mass-space) and orientation g (in the EAS). The MF represents the ODF 

(volume fraction of orientation g) at position x in the microstructure. In this way one can 

consider a local ODF for any material point in the microstructure; and instead of texture 

evolution, the evolution of the MF can be studied locally. The MF is used in formulations of 

mass- and orientation-based continuity equations. In fact, the MF, by definition, links the two 

spaces and it tells us how the material particles are moving in the mass space and at the same 

time how the orientations of those specific material particles are changing during the evolution 

process. The MF, in addition with the 2-point correlation function, which is used in statistical 

continuum theory to study the local effects of one material point on the properties of the 

neighboring point, is introduced in Chapter 2.   

To measure the rotation of a particular grain in the microstructure, an overall velocity 

gradient tensor is applied, local stress and strain fields are defined (using a crystal plasticity 

model), and the lattice rotation tensor is obtained. The velocity components in the EAS are also 
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obtained from the lattice rotation tensor. Chapter 3 provides some of the most widely used 

crystal plasticity models along with their advantages and disadvantages. In addition, a rate 

dependent Taylor-like model that is used in this research is also provided. In this model, a 

calibrated power-law viscoplastic relation with a specific rate-sensitivity parameter is used such 

that it can be applied to model the microstructure evolution of FCC materials. Our proposed 

crystal plasticity model can be used to simulate stress-strain relations of any FCC materials under 

any type of deformation processes. In this research, only cold rolling process is considered.  

Basics of texture analysis of rolled FCC materials are described in Chapter 4. As the 

deformation continues, some particular orientations (ideal orientations) are developed in the 

rolling microtexture of FCC materials. The stability of these ideal orientations is an important 

concept. Some stability criteria are discussed in this chapter. Moreover, the textural properties of 

pure nickel and formations of cell blocks, deformation inhomogeneities, and grain subdivisions, 

which are produced under very large levels of rolling deformations, are also provided in  

Chapter 4. 

In the second part of this thesis (Chapters 5, 6 and 7), development of the Eulerian-based 

double continuity (DC) model is discussed in detail. In Chapter 5, first, the conservation of mass 

principle is provided, a two-dimensional plane-compression test (e.g. simple rolling) is modeled, 

and the evolution of an idealized two-phase microstructure under this process is investigated. To 

model the rolling deformation in this research, all environmental effects such as friction forces, 

temperature variations, and the complicated boundary conditions that are observed in an 

empirical rolling process are neglected. Derivation of the mass-based continuity (MC) model in 

the Eulerian coordinate system is provided in detail in Appendix A.  In Chapter 6,   the 

conservation of orientation principle and the orientation-based continuity (OC) model are 
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provided. Additional information about the derivation of the OC model has also been provided in 

Appendix C. After designation of the OC model in Eulerian formulations, this model was 

validated by examining a randomly-textured microstructure with 1000 random orientations. This 

model was compared against a regular Lagrangian model to investigate the accuracy of this 

model on the prediction of final microstructure at very large amounts of cold rolling.  After 

verifications of MC and OC models, the double continuity model which is the combination of the 

two models is explained in Chapter 7.  

To corroborate the DC model, a polycrystalline nickel material with an initially random 

texture is selected. Because the DC model has been designed for 3D implementation, a 3D 

microstructure (developed by Prof. A.D. Rollett’s group at Carnegie Mellon University) is 

chosen, and crystallographic orientations are assigned into grains of this microstructure such that 

it statistically represents the microstructure of the original nickel sample. A genetic-algorithm 

scheme is employed, and a statistical error function of the original 2D and 3D microstructures is 

minimized to obtain the best combination of grain-orientation assignment. The 3D 

microstructure is then placed under a variety of rolling reductions and its final microstructure is 

captured and compared to the experimental microstructures. Results from these simulations are 

provided in Chapter 7. Additionally, to make comparisons between experimental and simulated 

microstructures, textural and statistical analyses of the results are carried out. These results are 

also provided in Chapter 7.  More detailed formulation of the orientation-based continuity 

equation can be found in Appendix C. 
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2 MICROSTRUCTURE DESIGN AND STATISTICAL ANALYSIS 

2.1 Microstructure Sensitive Design 

During the past ten years a methodology has emerged for systematic design of material 

microstructures – called Microstructure Sensitive Design (MSD). MSD has recently been 

developed by Adams, Kalidindi and their collaborators (ADAMS et al. 2005a; ADAMS et al. 2001; 

ADAMS et al. 2004; KALIDINDI et al. 2004; LYONS and ADAMS 2004). In this type of design, we 

start with a statistical description of a material microstructure using orientation distribution 

functions. These distributions are then used to establish quantitative linkages between the 

microstructure and the estimates or bounds on effective properties using available 

homogenization theories. A special feature of MSD is that these linkages are transformed into 

Fourier space, and discrete methods can be used to compute and manipulate the Fourier 

coefficients.  

The most important tools of the statistical theory are the probability density functions and 

correlation functions. These functions are used to provide the information needed to derive the 

quantities of interest. The definitions and relationship between the probability density and 

correlation functions have been defined in the literature (ADAMS et al. 1989; GARMESTANI et al. 

2001; KRONER 1967). Basically, the correlation functions are the means through which the 

statistical concepts are incorporated into the model. The simplest form of the statistical functions 

used to quantify the microstructure are the one-point distributions, which essentially reflect the 
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probability density associated with realizing a specified orientation in the neighborhood of a 

point thrown randomly into the microstructure. Higher order correlation functions, also referred 

to as n-point spatial correlation functions, have been defined in a variety of ways. The focus in 

this chapter is to introduce the first and the second-order statistical functions. Higher order n-

point statistics are neglected in this research (for more information about 3- and higher n-point 

correlation functions the reader is referred to (GARMESTANI et al. 2001; LIN et al. 2000). 

2.2 Homogenization Relations 

In microstructure design, a methodology to link properties to microstructure is necessary 

to develop a framework for material design. The link between structure of materials in any length 

scale and their properties (most importantly mechanical and metallurgical properties) is critical 

in every engineering discipline. For this purpose, this research is focused on the homogenization 

relationships based on two-point statistical information to correlate the microstructure of the 

materials to their mechanical properties. Statistical distribution functions are commonly used for 

the representation of microstructures and also for homogenization of materials properties. The 

use of statistical functions allows the materials designer to include the morphology and 

distribution in addition to the properties of the individual phases and components. We start with 

an example where the statistical correlation functions are exploited to find the effective elastic 

stiffness tensor, *C , (ADAMS et al. 2005b; GARMESTANI et al. 2001): 

 

(2-1)

where C is the elastic stiffness,   includes the Green’s functions, and p  denotes the 

macroscopic average of the property, p. 'C  is the polarized stiffness tensor relative to a reference 

...'C'C'C'C'CCC*  

1-point 2-point 3-point statistics 
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tensor and is obtained by rCC'C  , rC  is the reference stiffness tensor. In this example, the 1-

, 2-, 3-, and higher order n-point correlation functions are used to find an exact value of the 

effective elastic stiffness tensor; however, in most of the investigations reported in the literature, 

only the 1-point statistics haves been used to find an approximation of the effective property. The 

reason is that 2-point and higher order statistics are costly and many calculations must be carried 

out to increase the accuracy of the results. In this case, the relation between calculation time and 

the accuracy is not linear, and calculations for manipulating 3-point and higher order correlation 

functions are not yet accessible for regular computers.   A similar formulation can be derived for 

plasticity: 

 

(2-2)

where N  is the plastic secant modulus. Of course the Green’s function solution for plasticity 

differs from the elastic solution since the statement of problem is different. But, it is evident how 

the 1-, 2-, and higher-point statistics are employed for both elasticity and plasticity problems. In 

this research, only 1- and 2-point correlation functions are considered and higher order terms are 

neglected.  

2.2.1 One-Point Distribution Function 

The 1-point distribution function, which is used to calculate the first term on the right-

hand-side of Eq. (2-1) or Eq. (2-2), is also called orientation distribution function (ODF). This 

function describes the crystallographic texture in a given microstructure. The ODF, f(g), is 

defined as (BUNGE and ESLING 1984; FULLWOOD et al. 2009c; GARMESTANI et al. 2001): 

...'N'N'N'N'NNN*  

1-point 2-point 3-point statistics 
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where f(g) is the probability density around orientation g, and 21
281  dddsin)/(dg   is 

the invariant volume element in the hyper-spherical coordinate system defined with the help of 

Euler angles, ),,(g 21  . V(g) denotes the volume of the material associated with the 

orientations in the range 21  ddd .  Note that since calculations of f(g) do not depend on the 

coordinate system, the normalization condition remains true for any particular choice of 

orthonormal coordinate axes associated with the Euler Angle Space (EAS) or Fundamental-Zone 

(FZ). The fundamental-zone, by definition, is the space of orientations describing the complete 

set of physically distinct orientations relevant to a selected crystallographic phase, with 

distinctive lattice symmetry subgroup.  To find the ODF, these steps should be followed: (i) 

orientations of crystallographic grains in the microstructure are obtained; (ii) the FZ is tessellated 

into desired bins (with equivalent volumes of dg); (iii) after applying the crystal and sample 

symmetries, orientations are mapped into the FZ; (iv) for every bin in the FZ, all orientations 

belonging to the selected bin are counted, and the fraction of these orientations with respect to 

the total number of orientations is reported as the value of the ODF for this specific bin; (v) a 

similar scheme is proceeded for the rest of the bins and the final ODF is measured. As it can be 

noted from Eq. (2-3), sum of the ODFs for the entire FZ must be equivalent to one.  

2.2.2 Two-Point Correlation Function 

Pair correlation functions (PCFs) or two-point correlation functions are employed in 

calculation of the second term on the right-hand side of Eq. (2-1) or Eq. (2-2). For example the 

second term in equation (2-1) can be rewritten as (ADAMS et al. 2005b): 

   
1 2

1)(;
)(

)(
  

dggf
V

gV
dggf

 

(2-3)
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where )r|g,g(f 2   denotes the 2-point correlation function that describes the conditional 

probability density of finding orientations g  and 'g  in the immediate neighborhood of an 

ordered pair of points )rx'x,x(  . FZ denotes the space of all orientations, and )r(R  denotes 

the space of all vectors r that can be accommodated in the domain of interest,   in the real 

space.  Higher order correlation functions can be introduced in the same manner, but only the 1- 

and 2-point correlation functions will be integrated in this research. 

2.2.3 Microstructure Function 

Microstructure functions, as a tool, will be used to explore the evolution of correlation 

functions in this study. As it will be seen later, the 1- and 2-point correlation functions can be 

easily recovered from the microstructure functions.  Formally, a microstructure function, 

)g,x(M , defines the probability density associated with finding orientation g in the 

neighborhood of a spatial location of interest x; it is expressed as (ADAMS et al. 2005b; 

FULLWOOD et al. 2009c): 

In this definition, the orientation g  is an element of the continuous space of orientations, FZ, 

with an associated invariant measure dg . gdV  is the aggregated volume of the parts of V  (the 

volume of the neighborhood) that is associated with orientations that lie within an infinitesimal 

invariant measure dg  of g . The microstructure function is defined to satisfy the following 

normalization relations: 

rd'dgdg)r|'g,g(f)x()'g('C)g('C'C'C
)r(R FZ FZ

2mnopopklijmnijkl       (2-4)

V

dV
dg)g,x(M g  (2-5)
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One convenient approach to representing the microstructure is to tessellate (discretize) 

the physical volume of interest, , and the FZ into individual bins. The microstructure function 

)g,x(M  can then be expressed in the primitive basis (also called indicator functions) as: 

where snD  are the Fourier coefficients of the microstructure function. )x(s  is the indicator 

function for the spatial cell enumerated by the index s , which takes the value 1 for all points x 

lying in the cell, and 0 for points lying outside of it; and  )g(n  is the indicator function for the 

orientations in the FZ, which takes the value 1 if the orientation in the cell n is g, and 0 if it is 

not.  

Obviously there exist many other spectral representations that might be better suited for a 

given problem. The reason that the tessellation technique involving the primitive basis will be 

used is that later on a spectral method of fast numerical calculations, Fast Fourier Transforms 

(FFTs), can be used to efficiently compute the 1- and 2- point correlation functions. If the 

primitive basis and FFTs are used, it can be seen, for example, that the 2-point correlation 

function introduced in the previous section can be represented as: 


  

 
S

1s

N

1n

N

1n

nn
ts

nn
tt2 )h()h()r(F)r|h,h(f 

 
(2-8)

where 'nn
tF are the coefficients of the 2-point correlation functions. The same approach 

can be applied for higher order correlation functions. For more information regarding the 

1dg;1dg)g,x(M
FZFZ

   (2-6)
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implementation of FFTs in manipulating the 1- and 2-point functions, the reader is referred to the 

work of Fullwood (FULLWOOD et al. 2008).   
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3 CRYSTAL PLASTICITY THEORIES 

The formulation of the macroscopic mechanical response of polycrystalline medium has 

been the subject of many studies and approaches. Due to the great practical interest in a large 

deformation polycrystalline theory, a lot of effort has been devoted to different approximate 

theories.  In this chapter, a comprehensive review of crystal plasticity models that have been 

used in the past to predict deformation textures is given. These models are generally classified 

into Sachs-type, Taylor-type, Self-consistent, and FEM models. Advantages and/or disadvantages 

of these models in texture predictions are also discussed in this chapter. 

3.1 Crystal Plasticity Models 

3.1.1 Sachs-Type Models 

The classical simulation of the deformation textures of polycrystals may be mainly 

classified into Sachs and Taylor type models. The Sachs model (SACHS 1928) is the first ever 

used crystal plasticity model. According to this model, it is assumed that the resolved shear stress 

on the principal slip system is the same for all crystallographic grains, and is identical to the 

critical resolved shear stress. This hypothesis implies that the stress tensor in each grain is 

proportional to the macroscopic stress tensor. It is also assumed that grains deform by single slip 

and there is no kinematical constraint due to grain interactions. Under these assumptions, grains 
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having distinct crystallographic orientations are deformed by different activated slip systems 

leading to unlikely overlaps and gaps at grain boundaries. The Sachs model has been used in the 

literature as a lower bound in texture analysis (as a reference see the work of (GAMBIN and 

BARLAT 1997)). In addition to the original Sachs’ model, there are also some modified Sachs-

type models that overcome the deficiencies of the original Sachs model –i.e. (GAMBIN and 

BARLAT 1997; PEDERSEN and LEFFERS 1987). In the literature, the modified Sachs-type models 

have been mainly employed into modeling of brass-type textures –i.e. (HIRSCH and LUCKE 

1988a; LEFFERS 2006; LEFFERS and RAY 2009). 

There are at least two objections to the Sachs’ approach. Firstly, it is not possible to 

maintain compatibility among the grains when all the grains are assumed to deform by single 

slip. Secondly, it is assumed that the equilibrium of stresses is valid inside grains; however, it 

cannot be established across grain boundaries. To overcome the compatibility problem, Taylor 

(TAYLOR 1938) proposed a model that strictly enforces the compatibility by imposing an overall 

applied strain which will be identical for all grains in the microstructure.  

3.1.2 Taylor-Type Models 

The Taylor model, proposed by Taylor (TAYLOR 1938) and developed by Bishop and Hill 

(BISHOP and HILL 1951), is the most applicable model of crystal plasticity. In this model, it is 

assumed that the microscopic plastic strain is equal to the macroscopic plastic strain, while 

elastic strains are neglected. One of the advantages of this model is that the compatibility 

equations are satisfied since it deals with a uniform strain field in the entire microstructure; as a 

result, all grains plastically deform in the same manner in accordance with the macroscopic 

strain.  Taylor-type models are commonly classified into the following groups in the literature: 
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3.1.2.1 Full Constraints (FC) Model 

The first edition of the Taylor model (TAYLOR 1938) is called the full-constraints model 

(FC model) or the classical Taylor model in the literature. As it was mentioned, based on the 

Taylor assumption, the compatibility equations are satisfied, homogeneity of plastic strain 

throughout the polycrystal is guaranteed, but stress equilibrium at grain boundaries is neglected. 

It is found that using the FC-Taylor model for texture prediction of high stacking-fault energy 

(SFE) FCC metals gives satisfying results; however, it does not perform well for low SFE metals 

(HIRSCH and LUCKE 1988a; LEFFERS and RAY 2009).  

The general framework of the Taylor model was later modified by Bishop and Hill 

(BISHOP and HILL 1951) to resolve the main problem of Taylor’s theory for FCC polycrystals, 

stating that there must be a state of stress that can activate at least five slip systems at the same 

time. They modified the Taylor theory for polycrystals based upon the principle of maximum 

work. The primary aim of the Bishop and Hill theory was the computation of single and 

polycrystal yield surfaces. In this model, it is assumed that the unspecified elastic deformations 

will satisfy the equilibrium conditions. The Taylor-Bishop-Hill theories have been used 

extensively and successfully for texture predictions of FCC metals (BISHOP and HILL 1951).   

The modified model still has an ambiguity with respect to the choice of active systems. 

For example, there are twelve slip systems for FCC materials that under the Taylor assumption, 

more than five slip systems must be activated at the same time, and an ambiguity with selection 

of appropriate slip systems must be anticipated. To overcome this ambiguity, different 

approaches have been reported in the literature. Honneff and Mecking (HONNEFF and MECKING 

1978), for example, took an average value of all possible activated slip systems. Later on, Asaro 

and Needleman (ASARO and NEEDLEMAN 1985) proposed a rate-dependent model within which 
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slip systems are activated when they reach to a critical shear stress. Slip system ambiguity is 

resolved within the Asaro-Needleman rate-dependent models. 

3.1.2.2 Relaxed Constraints (RC) Model 

In the literature, the Sachs model is used as a lower bound, and the FC-Taylor model is 

used as an upper bound. Both models have some deficiencies and benefits. They can be 

improved by using intermediate conditions, i.e. by relaxing the strict constraints imposed by each 

model. A modification of the Taylor model, the method of relaxed-constraints, was firstly 

suggested by Honneff and Mecking (HONNEFF and MECKING 1978) and developed by Canova et 

al. (CANOVA et al. 1984). The idea here is to assume that when grains reorient and change their 

shapes, it is possible to partially relax the strict compatibility requirements imposed in the Taylor 

model. Non-uniform deformations that may appear at grain boundaries are excluded in the 

method. Two examples of the RC model are the lath and the pancake model, which are designed 

for materials with flat and elongated grains (e.g. in rolling). In these models, one or two of the 

shear terms are relaxed: for the RC-lath model, the 13L  shear term (where L  is the velocity 

gradient tensor) is relaxed and 013  , while for the RC-pancake model 13L  and 23L  are 

relaxed and 02313  . The methodology of relaxed constraints has been used by many 

authors to analyze deformation texture following several strain histories, e.g. axisymmetric 

tension and compression along with large simple shears in FCC polycrystals (DELANNAY et al. 

2002; VAN HOUTTE et al. 2002; ZHOU et al. 1992). A comparison of FC and RC models for 

predicting the development of rolling texture in FCC metals (HIRSCH and LUCKE 1988a) show 

that the best approximation is given by the FC model at low degrees, by the lath model at 

intermediate degrees, and by the pancake model at high degrees of rolling.  
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Another RC-type model is the LAMEL model that has been developed by Van Houtte 

(VAN HOUTTE et al. 1999; VAN HOUTTE et al. 2005). According to this model, the average shape 

change of a set of two stacked grains is taken to be equivalent to the average shape change of the 

polycrystal, but in each of the two grains, relaxation is allowed to take place. Compared to the 

FC model, it has been reported that RC models can give a better prediction of rolling textures 

under large plastic deformations; however, one of the drawbacks of allowing for these relaxation 

strains is that the deformations of adjacent grains are not necessarily compatible to each other, as 

they are according to the FC-Taylor model. The deformations of the two adjacent grains (one 

placed on top of the other) considered in the LAMEL model are compatible without guaranteeing 

for compatibility with other neighboring grains.  Grain Interaction (GIA) and Advanced LAMEL 

(ALAMEL) (VANHOUTTE et al. 2006) models are two other RC models that include the 

interaction of neighboring grains in calculations.  

3.1.3 Self-Consistent Model 

All theories based upon strain uniformity (Taylor-type models) fulfill compatibility 

conditions but not equilibrium at grain boundaries. In 1987, Molinari et al. (MOLINARI et al. 

1987) proposed a self-consistent approach for the large deformation of polycrystals. Their 

approach was based on a scheme developed by Dederichs and Zeller (DEDERICHS and ZELLER 

1973) in heterogeneous elasticity. In this approach, equilibrium and incompressibility equations 

are used to arrive at an integral equation for the local velocity gradient. This integral equation 

can then be solved via different approximate schemes. The principle of the self-consistent 

scheme is that the interactions between a particular grain and all others are simulated by those 

between the grain considered and a homogeneous equivalent medium (HEM). In the self-

consistent model of Molinari (MOLINARI et al. 1987), the equilibrium and the incompressibility 
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conditions were solved using the traditional Green’s function method. An important advantage of 

Molinari’s Green’s function approach is that it fits naturally with correlation functions. 

The self-consistent model can be incorporated with a rate-dependent viscoplastic relation 

such that the viscoplastic compliance tensor of the polycrystal is determined in each strain 

increment in a self-consistent manner. The viscoplastic self-consistent (VPSC) model is well 

suited to model large strain behavior of polycrystals. It accounts for the plastic anisotropy of 

each grain, as well as that of the polycrystal. It neglects elasticity at large strains. Each grain is 

modeled as an ellipsoidal inclusion that is embedded into the HEM with the average properties 

of the whole polycrystal. In this model, with the help of the viscoplastic compliance tensor and 

by solution of the Eshelby inclusion problem, the stress and strain state of each individual crystal 

is determined. For self consistency, the macroscopic stress and strain rate of the HEM can be set 

equal to the average of the stresses and strain rates of all the individual grains. Unlike the FC-

Taylor model, the stress and strain rate of each grain can deviate from the corresponding 

macroscopic quantities, as well as deviate from each other. One consequence is that each grain 

changes its form according to its local velocity gradient and deformation history. Another 

important consequence of the self-consistent formulation is that a grain no longer needs to have 

five independent slip systems to deform. This feature is especially important for non-cubic 

crystal structures (e.g. HCP materials), where the number of available slip systems could be less 

than five on the basal or prismatic slip planes.  Most of modifications, developments, and 

implementation of self-consistent models can be found in the work of Molinari (MOLINARI 1999; 

MOLINARI et al. 1997; MOLINARI et al. 1987), Lebensohn (LEBENSOHN 1999; LEBENSOHN and 

LEFFERS 1999; LEBENSOHN et al. 2007; LEBENSOHN et al. 1998), and others (TOME 1999; WANG 

et al. 2010).  



23 

3.1.4 Statistical Models 

A comprehensive work on the statistical theory has been developed primarily by Beran 

(BERAN 1968), Beran and Molyneux (BERAN and MOLYNEUX 1966), and Kroner (KRONER 1967; 

KRONER 1977; KRONER 1986). Their contribution produced a basis to apply the theory to 

heterogeneous materials. Later on, Adams (ADAMS et al. 1989) presented a statistical 

formulation of the viscoplastic behavior in heterogeneous polycrystals by taking an approach 

which incorporates the statistical formulation of Molinari (MOLINARI et al. 1987)) and the 2-

point correlation function of lattice orientations. The statistical theory of Adams (ADAMS et al. 

1989) was first applied to the prediction of initial texture evolution in FCC polycrystals under 

uniaxial creep (ADAMS and FIELD 1991). Evolution of the correlation functions was not 

considered in this initial work. Afterwards, Adams et al. (ADAMS et al. 2005a)  showed how the 

problem of r-interdependence of the 2-point correlation functions can be overcome, by 

introducing the texture function as an intermediate tool. This work also elaborated on how to 

expand the solution in terms of generalized Fourier series.  Garmestani and Li (GARMESTANI et 

al. 2001; LI et al. 2003) also used an approach based upon the statistical continuum theory using 

polycrystalline texture representation to describe texture evolution. This approach established a 

linear relationship between the rate of change of the texture coefficients and the texture 

coefficients. Further progress was made in other studies by Li and Garmestani (LI and 

GARMESTANI 2004; LI et al. 2005; LI et al. 2003) to find a direct relationship between texture 

coefficients and deformation parameters. They proposed a processing path function to describe 

the evolution of correlation functions in an inelastically-deforming two phase medium. They 

used the 2- and 3-point correlation functions and predicted the evolution of these correlation 

functions for a two-phase model. 
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Further work on the development of Adams’ statistical modeling approach (ADAMS et al. 

1989) was done by Fullwood et al. (FULLWOOD et al. 2009b). In this research, localization 

effects that are observed in the microstructure (because of the variation of elastic stiffness) were 

studied by incorporating statistical modeling and homogenization relations. In addition, previous 

issues with the Green’s function integrals were resolved, and the method was validated against 

finite element analysis. This model was formulated to only consider the elastic localization 

effects without taking into account the plasticity relations. Another recent work (FULLWOOD et 

al. 2009a), however, was done to express the localization relations of a rigidly-plastic material. 

Results from these investigations show that the new methodology of integrating statistical 

modeling and homogenization relations can be reasonably used to predict the evolution of the 

microstructure of materials under any mode of deformation. A rate-dependent viscoplastic model 

that has been introduced by  Adams (ADAMS et al. 1989) and has been developed by Fullwood  

(FULLWOOD et al. 2009a) is expressed in Section 3.2. 

3.1.5 FEM Models 

In this type of models, the interaction of grains can be accounted for and can be 

implemented into polycrystal plasticity constitutive equations in a finite element code. Some of 

the FEM models that have been developed to predict the texture evolution are presented here. 

One of the first works that included the effects of hardening phenomena was carried out by 

Kalidindi et al. (KALIDINDI and ANAND 1992; KALIDINDI et al. 1992).  They developed a Taylor-

type anisotropic polycrystalline plasticity model, together with a fully-implicit time-integration 

scheme. This model was implemented in a finite element program to simulate the evolution of 

crystallographic texture during bulk deformation processing of FCC metals –especially OFHC 

copper. Their Taylor-type constitutive model was in reasonable first-order agreement with 
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experiments for the evolution of the texture. The first edition of this model was only used for 

texture prediction of initially-isotropic FCC materials. Afterwards, they employed their Taylor-

type model to predict the evolution of crystallographic texture in initially-anisotropic, pre-

textured FCC materials (KALIDINDI and ANAND 1994). They used a pre-textured OFHC copper 

material and included work hardening of the material. The numerical and experimental results of 

their work were in excellent agreement. Kalidindi and his co-workers also improved and used 

their Taylor-type model in many other investigations, e.g. (ANAND and KALIDINDI 1994; 

KALIDINDI 2001; KNEZEVIC et al. 2008).  Other usages of FEM models have also been reported 

in the literature. For example, most of advanced models that include grain interactions are 

developed in FEM format –e.g. (KUMAR and DAWSON 1998; KUMAR and DAWSON 2009; RITZ 

and DAWSON 2009; SARMA and DAWSON 1996; VAN HOUTTE et al. 2002).   

3.2 Rate-Dependent Viscoplastic Model 

In this section, a model that includes the rate-dependency of polycrystalline materials is 

introduced. This model is expressed by incorporating crystal plasticity and statistical continuum 

theories. We start with the basics of crystal plasticity for FCC materials. Since in many 

applications of polycrystal plasticity, elastic strains are much smaller than their plastic ones, and 

for the sake of simplicity, elastic strains are neglected, and, accordingly, it is assume that the 

plastic deformation is dominant. At room temperature, pure FCC metals deform predominantly 

by dislocation slip along specific crystallographic planes and directions. Slip follows densely-

packed {111} planes in close-packed <110> directions, defining 12 potential slip systems 

(GODFREY et al.). In FCC metals with low SFEs, twinning is a second important deformation 

mechanism. Such materials are, however, not considered in the present work. 
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We start with the Schmidt law in crystal plasticity. When a single crystal with an arbitrary 

lattice orientation is deformed in tension, dislocations move along only one slip system. It is the 

slip system with the largest resolved shear stress, )(s , that starts motion of dislocations by shear:  
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system s, respectively.   is the deviatoric Cauchy stress tensor. 

Now when the deformation starts, by applying a particular velocity gradient tensor L , 

some of the slip systems are activated and multi-slip occurs. A slip shear rate )(s  on the sth slip 

system contributes to the local velocity gradient L  with a simple shear rate equal to 
s

ss
ijM )()(  . 

However, the velocity gradient L  cannot be achieved by slip alone. When L  is decomposed into 

its symmetrical D  and rotational W  parts, it can be seen that an extra term, LW , appears. This 

term is called the lattice spin tensor and is responsible for texture development in polycrystals. 

3.2.1 Lattice Spin Tensor 

As discussed in the previous section, to find the evolution of orientations, the lattice spin 

tensor, 
LW  , is required. The overall applied velocity gradient tensor L , the plastic component of 

the strain-rate PD , the spin due to plastic flow PW , and the lattice spin LW are inter-related by 

the following relations: 

L
ij

P
ij

P
ijij WWDL   (3-2)
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If one knows the applied velocity gradient tensor L , to recover the lattice spin tensor, pL  must 

be obtained. This is achieved by recovering pD , and hence )s(  from Eqs. (3-3) and (3-4). 

Then, using Eq. (3-5), pL  is obtained. Finally, LW  is calculated from Eq. (3-2). 

In order to specify the material behavior, the slip shear rate )(s  must be given. There are 

many ways of choosing the slip shear rate in polycrystal plasticity. For instance, one can use the 

FC-Taylor assumption and take a selection of five dominant slip systems that minimizes the 

internal plastic work required, or maximizes the external plastic work, for plastic deformation –

here one needs to deal with the Taylor ambiguity with respect to the choice of active systems. 

Another example is using the classical rate-independent Bishop and Hill model (BISHOP and 

HILL 1951), where the five active slip system are chosen among a set of active stress corners that 

maximizes the external work. The choice of selection of active slip systems is still difficult.  

Another approach for selecting the active systems is the widely accepted power-law viscoplastic 

relation. The viscoplastic model is rate-dependent and all slip systems are activated 

simultaneously based on their Schmidt tensor and their critical resolved shear stress. We use the 

power-law relation in this work.  
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3.2.2 Power-Law Viscoplastic Relation 

The viscoplastic relation introduced here is identical to that defined by Hutchinson 

(HUTCHINSON 1976) for power-law steady creep by slip. For a resolved shear stress, )(s , acting 

on the sth slip system, the slip shear rate, )(s , is connected by the equation: 

 msss
0

)()()( *    (3-6)

where m is the rate sensitivity parameter, )(* s is called either the critical resolved shear stress or 

the slip resistance, and 0  is an arbitrary reference slip rate. The reference shear stress can be 

obtained from ordinary tension or compression testing. To use the viscoplastic relation, it is 

necessary to calibrate the model with experiments (FROMM 2008; KALIDINDI et al. 2006; 

KNEZEVIC et al. 2008). 

To link the power-law viscoplastic relation into the calculation of lattice spin tensor, the 

creep compliance tensor, ijklM  is introduced here (ADAMS et al. 1989). Therefore, the total 

plastic strain-rate tensor, Eq. (3-3), can be rewritten as: 

 
s

klijkl
ss

ij
P
ij MD  )()(   (3-7)

Since we have used M for both the compliance tensor and the Schmidt tensor, to avoid 

confusion, symmetric part of the Schmidt tensor is introduced and used here as: 

 )()()()()( ˆˆˆˆ
2

1 s
i

s
j

s
j

s
i

s
ij bnnb   (3-8)

Inserting the slip shear rate from the viscoplastic model into Eq. (3-8), and noting that 


i j

ij
s

ij
s  )()(  the components of the fourth rank tensor of creep compliances, ijklM , can be 

written as: 
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M is positive definite, and thus the inverse relationship to Eq. (3-9) exists, and is given as: 

klijklij DN  
(3-10)

where 1 MN  is the secant modulus tensor and presents the following symmetry properties: 

klijijlkjiklijkl NNNN    
(3-11)

The secant modulus is the inverse of the compliance tensor, and since the compliance tensor is 

non-linear in the deviatoric Cauchy stress, calculation of stress is complicated. A Newton-

Raphson scheme can be employed to solve this problem, as used in (FROMM 2008). Once the 

deviatoric Cauchy stress is obtained, the slip shear rate can be calculated for all slip systems 

using Eqs. (3-1) and (3-6). The slip shear rate, then, can be implemented into equations in 

Section 3.2.1 to obtain the lattice spin tensor for further orientation evolution studies. 

3.2.3 Slip Hardening 

In Eq. (3-6) the slip resistance can differ from one slip system to another. Since we are 

working on a pure FCC material, it can be assumed that the slip resistances of all slip systems at 

any given location in the polycrystalline material exhibit similar slip resistance. Then, a 

saturation-type hardening model (as it can be found in (BRONKHORST et al. 1992; KALIDINDI and 

ANAND 1992)) can be used to update the slip resistance: 











)(

)(
0

*
1*

s

s

a

ss
h    (3-12)

where * is the rate of change of slip resistance at time dt of the evolution process. To update the 

slip resistance simply at the end of the current iteration the slip resistance is renewed such that: 
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  toldnew  *|*|*   . 0h , ss , and a  are the slip hardening parameters and their values can be 

obtained by carrying out an experimental tensile test. 

3.2.4 Adjustments of the Viscoplastic Model 

The rate-dependent viscoplastic model can be adapted to include the statistical functions 

that were introduced in Section 2.2. For any domain of polycrystalline material, and at any time, 

the field equations (constitutive, equilibrium, and the compatibility equations) must be satisfied. 

Field equations and the formulations for obtaining the velocity gradient tensor can be found in 

the work of Adams (ADAMS et al. 1989). After satisfying all the field equations and applying the 

interaction laws at each position x of the domain of interest, the local velocity gradient tensor, 

L(x), can be expressed as: 

        
3

rs

R( )

( ) , dkl kl klmn mnrsL x L x N x g x L x x


      L
 

(3-13)

where ( x )  is the Green’s function term and N
~  is the polarized secant modulus tensor. Note 

that ( ( '), ( '))N L x g x  at each point 'x  depends upon the velocity gradient L and orientation g at 

that position. The integration is over )(R   which represents the set of all possible vectors x  in 

the region  . Note that x x x    where  and x  represent points in the infinite space. 

The above equation, in fact, explains how the statistical theory can be used to find an 

exact solution for the velocity gradient tensor at specific position x. It includes the localization 

effects from neighboring orientations that are at distance x~ from the original point x. Pair 

correlation functions that have been introduced in Section 2.2 can be hired to statistically 

compute the local value of L. For example, the first term in the right-hand side (RHS) of Eq. 

(3-13) can be computed using the 1-point distribution function. Also, 2-point and higher order 

x
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correlation functions can be employed to compute the integral in the RHS of the equation. To 

make this more clear, Eq. (3-13) is rewritten in reduced form (with ignoring the 3- and higher 

order statistics) using the convolution properties (FULLWOOD et al. 2009a):  

  mnijmnklijklkl L)x(g),x(LN
~

)x~(L)x(L    (3-14)

In this equation, the first and second terms on the RHS can be computed by 1- and 2-point 

correlation functions, respectively. A suitable Green’s function solution that accounts the 

viscoplasticity must be supplied.  

The velocity gradients can be computed using a brute-force technique by modifying the 

size and direction of vector x  in )(R  and measuring the localization terms. However, a rapid 

method of calculation, Fast Fourier Transforms (FFTs), is available (FULLWOOD et al. 2009b). 

Compared to the brute force method, using FFTs are computationally much faster; however, as 

we will see in Part II, because this viscoplastic model must be formulated in the Eulerian basis, if 

we include the localization effects (from the second term in Eq. (3-14)), we then need to update 

L at every increment of deformation and recalculate the velocity fields in the real and orientation 

spaces. As we will see, updating the velocity fields will take an enormous amount of calculation 

time and it was decided to neglect the localization effects in this work. Further investigations, 

perhaps, can be conducted in the future –with fast massively parallel computer systems- to study 

the localization effects by polycrystal plasticity.  

By ignoring the localization effects, Eq. (3-14) is reduced to the final form of L)x(L  , 

that is in definition identical to the classical Taylor model (Section 3.1.2). Taking the Taylor 

assumption simplifies the viscoplastic model and we can take the FC-Taylor model except that 

we use the viscoplastic model to resolve the Taylor ambiguity. We name this model as Taylor-

like viscoplastic (TLVP) model.  
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Now by taking the TLVP model, it is only necessary to calculate the Eulerian-based 

velocity fields in both mass and orientation spaces once, without any need to update the fields as 

plastic deformation proceeds. For the case of cold rolling, which is the only studied deformation 

mode in this work, it can be found that when the width to thickness ratio is over 10, the rolling 

process will be empirically similar to plane strain compression test (LENARD 2007); and the 

macroscopic velocity gradient tensor can be expressed as: 












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




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100

000

001

0LLapp  (3-15)

where 0L  for the case of rolling is called the deformation strain (the true strain in the rolling 

direction). 0L  is taken to be 0.001 sec-1 in our calculations. Here 1-, 2-, and 3- directions are 

considered to be rolling, transverse, and normal directions. Also, the material is assumed to 

experience no strain in the transverse direction. 

To simulate the rolling process based on the TLVP model, the applied velocity gradient 

tensor is given, and as a result, the local velocity gradients are defined appL)x(L  . The applied 

velocity gradient tensor has the following influences: (i) in the real space, which is studied in 

Chapter 5, the mass velocity field resulting from such velocity gradient is steady and the 

movement of material particles can be monitored under an isochoric-motion process. (ii) in the 

orientation space, which is studied in Chapter 6, the applied velocity gradient is implemented 

into the TLVP model, the lattice spin tensor is calculated from Eq. (3-2), and the orientation 

velocity field (or lattice rotation rate field) is obtained –see Section 4.3. Additional information 

regarding to the evolution process and updating position and orientation of grains under such 

velocity fields is supplied in Part II of this thesis. 
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4 BASICS OF TEXTURE ANALYSIS 

In this chapter, the main mathematical and textural concepts that are used to describe an 

orientation are defined and explained briefly. In addition, deformation texture and stability of 

some ideal orientations of FCC metals (and more specifically nickel) is explained. Depending on 

their mechanical and metallurgical properties, FCC metals react differently under cold rolling. 

For example, high and medium SFE metals (i.e. nickel) exhibit copper texture in their final rolled 

microstructure, while low SFE metals develop a brass-type texture. High/medium SFE metals 

also show cell-structure, cell blocks, and subdivision of grains at very large levels of cold works 

which makes it very difficult to predict the final texture of the material. All relevant theories of 

grain fragmentation of FCC metals are also discussed in this chapter.  

4.1 Orientations and Rotations 

In order to specify an orientation, it is necessary to set up two Cartesian reference 

coordinate systems: one relating to the specimen and the other relating to the crystal. The axes of 

the sample or specimen coordinate system S={s1,s2,s3) are chosen according to important 

surfaces or directions associated with the external shape of the specimen, i.e. rolling (RD), 

transverse (TD) and normal (ND) directions in rolling. The crystal coordinate system 

C={c1,c2,c3)  is specified by directions in the crystal. The choice of directions is arbitrary, 
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although it is convenient to adapt it to the crystal symmetry, i.e. for orthogonal symmetry (cubic, 

tetragonal, orthorhombic) the axes [l00], [010], [001] are taken as the crystal coordinate system.  

Having specified the specimen and crystal coordinate systems, an orientation is then 

defined as the position of the crystal coordinate system with respect to the specimen coordinate 

system, i.e. Cc=g.Cs; where Cc and Cs are the crystal and specimen coordinate systems 

respectively, and g is an orthonormal matrix called the orientation matrix. The orientation matrix 

can be expressed in several different ways, among which the Bunge convention (BUNGE 1993) of 

Euler angles is more common in the literature. The elements of the orientation matrix in terms of 

the Euler angles are given by: 

where ),,( 21    are the three Euler angles used to rotate the sample coordinate system into the 

crystal coordinate system. Any orientation expressed in terms of its Euler angles can be 

represented as a point in the three-dimensional Euler angle space (EAS). In the most general case 

of triclinic crystal symmetry and no sample symmetry, the Euler angles are defined in the range 

o
21

o 360,0    and oo 1800  , which in turn defines the maximum size of the Euler 

space, the so-called asymmetric unit, )3(SO . Symmetries of the crystal and/or the sample, 

however, result in different (but equivalent) descriptions of a given orientation. Such symmetries 

lead to a reduction in the size of the Euler space –see Table 4-1. 
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Table 4-1: Size of the Euler space necessary to represent unequivocally orientations for 
different sample and crystal symmetries 

Crystal Structure 
Crystal Symmetry

Sample Symmetry 

Orthotropic Monoclinic Triclinic 

  2  1  1  1  

Cubic 90o 90o 

90o 180o 360o 

Tetragonal 90o 90o 

Orthorhombic 90o 180o 

Hexagonal 90o 60o 

Trigonal 90o 120o 

Monoclinic 90o 360o 

Triclinic 1800o 360o 

 
 

As it can be seen from the table, different sample symmetries affect the range of the angle 

1 . In samples deformed by rolling, it is usually assumed that there is a two-fold symmetry axis 

parallel to each of the three sample axes. This is the case of orthotropic or orthorhombic sample 

symmetry, and the range of the Euler angle 1  is reduced to o
1

o 900   .  

Crystal symmetry further reduces the size of the Euler space by affecting the range of the 

angles   and 2 . For cubic crystal symmetry (FCC or BCC materials) there are 24 possibilities 

to describe one and the same orientation of a cube in any reference frame; therefore, the Euler 

space can be subdivided into 24 equivalent subspaces. This space is called the cubic fundamental 

zone (FZC.) and has a curvature at its boundaries along the   direction. This will cause problems 

in using FFTs (Section 3.2.4) because the FFT domain is required to be cubical or rectangular in 

shape.  To overcome this problem, only the three 4-fold axes and the six 2-fold axes rotations of 

crystal symmetry are considered, and the FZC is reduced to the range o
1

o 3600    and 

o
2

o 90,0   , which is called FZ3C. If both sample and crystal symmetries are applied, this 
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space is reduced in 1  direction, represented in Fig. 4-1, that can be used to study the orientation 

of rolled FCC materials.  

 

Fig. 4-1: Symmetry elements in the Euler space for cubic crystal symmetry and orthotropic 
sample symmetry 

The orientation space that is shown in Fig. 4-1 include Euler angles of the range 

o
21

o 90,,0   . Because this space includes the orthorhombic sample symmetry and is four 

times smaller than the normal FZ3C, we label it as FZ3C/4 throughout this thesis. As we will see 

later, this space can be tessellated into small equivalent cubical bins and evolution of orientations 

in this space can be studied using the orientation-based continuity model to update the 

microstructure function and capture the final microstructure (Chapter 6). 

4.2 Deformation Texture in FCC Materials 

Pure FCC metals and alloys are known to exhibit two types of rolling textures, namely 

brass or alloy-type in materials of low SFE; and copper or pure metal-type in materials of 

medium or high SFE. A large number of investigations have been carried out to characterize the 

rolling texture of pure metals and a number of their alloys. In FCC metals, where slip and 
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twinning are the two major systems of deformation, SFE is the most significant material 

parameter that determines the mode of deformation. SFE, by definition, determines the extent to 

which unit dislocations dissociate into partial dislocations. Such dissociation, which happens in 

low SFE materials, hinders the climb and cross slip of dislocations; as a result, the ability of the 

material to change its shape during plastic deformation by slip alone is reduced, and therefore 

deformation twinning may occur.  Examples of medium and high SFE metals are copper, nickel, 

and aluminum, while two examples of metals with low SFE are silver and gold. A reasonable 

value of the SFE of nickel as estimated from its coherent twin energy, is reported as 128 mJ/m2 

(HUMPHREYS and HATHERLY 2004). This places nickel in the medium SFE class between that of 

pure aluminum and pure copper. 

Various observations have been reported on the formation of the brass and copper 

textures. As it has been reported in a review paper by Leffers and Ray (LEFFERS and RAY 2009) 

studies have shown different conclusions on the formation of these two types of textures. For 

example, early in 60s, Wassermann (WASSERMANN 1963) suggested that the brass-type texture is 

formed by a volume effect of deformation twins while the copper-type texture is generally 

formed by slip without twinning. Afterwards, Dillamore and Roberts (DILLAMORE and ROBERTS 

1964) suggested that the copper-type texture is formed when there is extensive cross slip while 

the brass-type texture is formed when the cross-slip frequency is low (or zero). Later on, Hu and 

Cline (HU and CLINE 1966) suggested that the brass-type texture is produced by slip of partial 

dislocations combined with slip by perfect dislocations while the copper-type texture is produced 

by slip by perfect dislocations only. Concluding from most of the reviewed papers, it is obvious 

that copper type texture forms when slip (or cross-slip) is dominant, and brass texture forms 

when deformation twins (even with a small fraction) appear. Deformation twins, however, have 
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not been reported for commercially pure nickel (HORTON et al. 1995; PARK and PARKER 1989; 

RAY 1995), and it is expected to have a copper-type texture.  

Prediction of brass- and copper-type textures by typical crystal plasticity models has also 

been reported in the literature. There are convincing evidences that the development of the 

copper-type texture can be explained by Taylor-type models with straight-forward {111}<110> 

slip. For example, Leffers (LEFFERS 1968) showed that the Taylor model and RC-Taylor models, 

leads to a copper-type texture.  It is also found that the combination of the Taylor model with the 

formation of a large volume fraction of deformation twins provides reasonable simulations of the 

brass-type texture, but the volume fraction of twins implied is far greater than that observed 

experimentally.  Additionally, works of Hirsch and Lucke (HIRSCH and LUCKE 1988c), Kallend 

and Davies (KALLEND and DAVIES 1972), Van Houtte (VAN HOUTTE 1978), and Kalidindi 

(BACHU and KALIDINDI 1998; KALIDINDI and ANAND 1992; KALIDINDI et al. 1992) show that 

Taylor-type models can predict a reasonable copper-type textures for FCC rolled metals. Sachs-

type models, however, are used to predict the brass-type texture without overestimating the 

volume fraction of deformation twins. For instance, the modified Sachs model (LEFFERS 1979) 

gave simulated textures which approach quantitative agreement with the experimental brass-type 

texture at 50%  and higher reductions. 

To study the rolling texture of FCC materials, ideal components of the texture (see Table 

4-2) can be used for further analysis. The copper-type texture is characterized by Copper, S, and 

Brass components, while the brass- or alloy-type texture has only the Brass component. As 

discussed earlier, copper-type texture is found in medium and high SFE metals; however, the 

texture that is seen in aluminum (high SFE) is taken as the aluminum-type texture distinguished 

from copper-type texture by having stronger S component (LEFFERS and RAY 2009). 
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Development of rolling texture in pure nickel, nickel-iron and nickel-cobalt alloys have been 

studied by Ray (RAY 1995). It has been reported that the rolling texture of pure nickel and the 

nickel-iron alloys are quite similar lying somewhere in between the deformation textures of pure 

copper and pure aluminum (more likely closer to the copper texture). However, in nickel-cobalt 

alloys, brass texture is dominantly observed by increasing the amount of cobalt.   

The representation of rolling textures is by the system {hkl}uvw>, where {hkl} is the 

crystallographic plane parallel to the rolling plane, and {uvw} is the crystallographic direction 

parallel to the rolling direction. Ideal rolling texture components of FCC materials are presented 

in Table 4-2. 

Table 4-2: Ideal texture components in rolled FCC metals 

Texture Component 
Miller indices Euler angles 

{hkl} <uvw> 1    2  

Cube )001(  ]010[  0 0 0 

Goss (G) )101(  ]010[  0 45 90 

Copper (C) )211(  ]111[  90 35 45 

Brass (Bs) )101(  ]121[  35 45 90 

Taylor (T) / Dillamore (D) )1144(  ]81111[  90 27 45 

S )312(  ]463[  59 37 63 

 
 

In addition to the texture components, texture fibres are also studied during texture 

analysis. There are three dominant texture fibres appearing in the rolling texture of FCC 

materials: - and -and -fibres. The α-fibre, which is parallel to the rolling direction  
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( ooo
2

o
1 900,45,0   ), connects brass and Goss components; the β-fibre runs from 

the Copper position through the S position and meets the -fibre at the Brass position; and, the γ 

fibre has {111} parallel to the normal direction  and runs in the 1  direction  

( oo
1

o
2

o 900,45,55   ). - and -fibres are observed in pure FCC metals while the -

fibre is produced in the development of texture in FCC alloys (BUNGE and SCHWARZER). A 

schematic representation of the - and -fibres is given in Fig. 4-2, where one of the two 

branches has been omitted for the sake of clarity (HIRSCH and LUCKE 1988b; HUMPHREYS and 

HATHERLY 2004). The omitted branch is that observed in the section where oo
2 9045  . 

 

Fig. 4-2: A schematic representation of rolling fibres for FCC materials with orthorhombic 
sample symmetry.  

The density of orientations along the fibres changes as the rolling process continues. One 

way to study the development of fibres is to find the density of orientations around each fibre 
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and depict the fibre-plots. In this research, in addition to pole figures and ODF section plots, 

plots that show the ODF intensities along the - and -fibres are also provided, Section 7.3.  

An extensive work on the texture development of rolled FCC metals has been 

summarized by Hirsch and Lucke (HIRSCH and LUCKE 1988b). They rolled aluminum, copper 

and a series of copper-zinc alloys to different degrees of rolling reductions. The results of their 

investigations reveal that, at very low degrees of rolling, the orientation densities for these alloys 

are distributed homogeneously along the entire length of the -and -fibres. At intermediate 

degrees of rolling, they observed that the homogeneity of the tubes deteriorates, i.e. the density 

of Goss decreases in contrast to the continuous increases at the Brass orientation and along the 

entire -fibre. For example, for aluminum and copper (high SFE), the -fibre almost disappears 

(except for Brass) at 96% reduction, while the -fibre is still quite pronounced. At very high 

degrees of rolling, the intensity of Copper and Brass components increases with deformation. At 

this stage, the intensity of the S component, however, increases dramatically and it becomes the 

strongest maximum. 

4.3 Lattice Rotation Rate Field 

The lattice spin causes the orientation changes in the microstructure. These changes are 

finite and can be obtained once LW  is available for every point in the orientation space. 

Basically, to obtain the lattice rotation rate field, the cubic-orthorhombic fundamental zone 

(FZ3C/4) that was expressed in Section 3.2.4 is selected, and these steps are followed: (i) FZ3C/4 is 

tessellated into small cubes (bins) with equivalent volumes; (ii) using the Taylor-like viscoplastic 

(TLVP) model, local values of LW  for the center point of bins in the FZ3C/4 are obtained; (iii) for 

every bin in the space, the infinitesimal lattice rotation vector which is defined as 
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L
jkijki W 2/1  is computed; (iv) finally, the increments of Euler angles or the velocity 

components of orientation changes in the Euler space ),,(g 21     is obtained by: 
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Note that LW is an anti-symmetric tensor and has this property L
ji

L
ij WW  ; thus, the lattice 

rotation vector can be expressed as ),,( 211332
LLL

i WWW . The vectors   and g physically have 

similar meaning, but they show the orientation changes in different spaces.   represents the 

orientation changes in a Cartesian coordinates, while g  shows these changes in the (curved) 

Euler space.  The vector g  can, therefore, be treated here as an orientation velocity vector that 

indicates how orientation g, which has been located at a specific position in the Euler space 

(FZ3C/4), is moved in the orientation field. After obtaining all velocity vectors, g , for the entire 

FZ3C/4, the velocity rotation field (orientation flow field) can be constructed.  It is difficult to 

illustrate a 3D plot of the orientation field; therefore, a simple 2D section of the orientation field 

is shown in Fig. 4-3.  

As it can be seen in Fig. 4-3, there are some regions where the flow is accumulating 

toward certain points. These points correspond to crystallographic grains that deform without 

orientation change. In other words, if, in the vicinity of g*, the flow field is oriented towards g*, 

then it is considered to be a stable end-orientation of the deformation process and we will have 

0*)g(g i  ; if the flow is oriented away from g* then it will be an unstable orientation; and 

finally meta-stability may occur when there are partly stable and partly unstable orientations 

around g*. To study the flow field and find the places of stable end-orientations, there are several 

stability tests that will be introduced in the next section.  
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Fig. 4-3:  A 2D section plot of the conventional cubic FZ3C indicating the lattice rotation rate 

field of orientations in the o452  section. 

4.4 Stable Orientations and Stability Criteria 

There are several ways to examine the stability of orientations based on their lattice 

rotations. According to Clement (CLEMENT 1982), an orientation g is considered to be a stable-

end orientation when the three components of g  are equal to zero and their first-order partial 

derivatives are negative: 
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When the velocity terms are zero, it represents that the location of those particular grains are not 

changing throughout the deformation process; furthermore, the negativity of partial derivatives 

of velocity terms indicates that in the vicinity of the orientation there are more grains rotating 

towards it than rotating away from it. 

For most of plastic deformation processes, the above criterion is not valid for the entire 

Euler space; additionally, it is often of interest to evaluate the relative stability of orientations. 
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Therefore, Toth (TOTH et al. 1988) proposed an alternative stability criterion in which the 

amount of stability is expressed by a stability parameter P: 













 g
ln




P

 

(4-4)

where   is the von Mises equivalent strain rate, and g  is the length of the lattice rotation 

vector. Based upon this criterion, the highest stability of an orientation is obtained when the 

norm of the velocity vector is very small, and when P is relatively large. The only difficulty with 

this parameter is that it becomes infinity when 0g , which can happen more specifically for 

deformation modes such as rolling (TOTH et al. 1990). g  in this stability criterion is defined as: 

 cos2 21
2

2
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1  g  
(4-5)

Lately, Arzaghi (ARZAGHI et al. 2009) proposed a new stability parameter that can be used for 

any deformation mode: 
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where maxG  is the maximum value of g , and P varies between 0 and 1. 

Another stability criterion that can be used to assess the relative orientation stability is the 

divergence of the rotation velocity field, gdiv  . The divergence of the orientation flow density is 

derived in Appendix C as: 
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(4-7)

While Eq. (4-3) requires the flow field to be convergent along all the three axes, 0gdiv 

signifies an overall convergent orientation flow.  All stability criteria mentioned in this section, 
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Eqs. (4-3), (4-6), and (4-7), are used in this research to examine the stability of ideal rolling 

orientations.  

4.5 Grain Fragmentation and Formation of Microbands in Cold-Rolled Nickel 

Metals of high or moderate SFE typically deform by slip. At low degrees of deformation, 

the deformation is homogeneous; but, for large levels of deformation, by increasing the density 

of dislocations, regions of dislocation pileup develop within the original grains. It is found that at 

large levels of deformation, an individual grain, particularly in coarse-grained materials, 

subdivides (on a large scale) into different regions with various orientations. Grain subdivision is 

caused by either inhomogeneous stresses transmitted by neighboring grains, or by the intrinsic 

instability of the grain during plastic deformation. Resulting fragmentation of grains can be 

studied macroscopically or microscopically.  

On the macroscopic scale, the developed regions of inhomogeneity are called 

deformation bands. These bands deform on different slip systems and may develop separate 

regions with clearly different orientations. Between the deformation bands there are narrower 

regions termed transition bands. Another type of larger-scale bands is termed shear bands, 

which are non-crystallographic in nature and may pass through several grains. Deformation, 

transition and shear bands can be developed in large plastic deformations of most common 

metals. 

On the microscopic scale, subdivision of grains may result into creation of cells and cell-

blocks. Many studies (HANSEN and JENSEN 1999; HANSEN et al. 1987; HIRSCH et al. 1988; 

HUGHES and HANSEN 1993; HUGHES and HANSEN 1995; HUGHES and HANSEN 2000) have 

shown that for medium and high SFE metals:  (i) at low and medium degrees of rolling, highly 

inclined boundaries are arranged and form dense dislocation walls (DDWs) and microbands 
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(MBs); (ii) as the level of deformation is increased, cell boundaries become nearly parallel to the 

rolling direction and lamellar boundaries (LBs) are developed; (iii) at larger levels of strain, 

most of the boundaries become lamellar boundaries.  

To study the development of microscopic cell-blocks (DDs, MBs, and LBs) we need to 

classify the dislocation boundaries based on their formation and their structural properties. 

Basically, dislocation boundaries are divided into geometrically necessary boundaries (GNBs) 

and incidental dislocation boundaries (IDBs). The extended cell-block boundaries (DDWs/MBs 

and LBs) are GNBs which separate regions that deform by different slip system combinations, 

strain amplitudes, and strain. On the other hand, the ordinary cell boundaries are IDBs that form 

by trapping of glide dislocations. To visualize the formation of cell-blocks and cells in the 

microstructure of FCC metals, a 3D schematic of a heavily-rolled microstructure (extracted from 

(HUGHES and HANSEN 2000)) is illustrated in Fig. 4-4.  

In this figure, LBs are shown as nearly horizontal sheets in the rolling plane. The narrow 

channels between the LBs are bridged by cell boundaries, forming a bamboo structure. For most 

medium and high SFE metals, the majority of the DDWs/MBs, LBs and subgrains are medium 

(3-15o) and high angle boundaries (>15o), whereas the cell boundaries are predominately low 

angle boundaries (<3o). 

Subdivision of grains in the microstructure of heavily-deformed nickel has been studied 

by Hughes and Hansen (HUGHES and HANSEN 1993; HUGHES and HANSEN 2000) and lately by 

Chen et al. (CHEN et al. 2008).  Fig. 4-5 demonstrates TEM micrographs of a pure nickel 

(99.99%) rolled to reductions of 70, 90, and 98%. This figure is extracted from the work of 

Hughes and Hansen (HUGHES and HANSEN 2000). 
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Fig. 4-4:  Schematic representation of a large strain dislocation structure demonstrating sheets 
of extended LBs with IDBs bridging between them. High LBs are represented by heavy line 
weight. (extracted from HUGHES and HANSEN 2000) 

Comparison of all three micrographs in Fig. 4-5 shows a structural transition that occurs in the 

microstructure of most heavily-deformed high SFE metals. In this transition, extended 

boundaries that are inclined to the rolling plane rotate and develop a structure dominated by 

boundaries almost parallel to the rolling plane.   For example, Fig. 4-5 (a) shows this transition 

clearly. The more highly inclined boundaries are DDWs and MBs, whereas the boundaries 

nearly parallel to the rolling direction are LBs. The transition from DDWs and MBs into LBs is 

facilitated by the intense coarse slip of S-bands marked as S in micrographs. As the level of 

strain is  increased, Fig. 4-5 (b,c), most  of the boundaries rotate and  become  LBs.  Both the  
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Fig. 4-5:  TEM micrographs of the dislocation microstructure developed during cold rolling of 
nickel after (a) 70%, (b) 90% , and (c) 98% cold roll. Studied plane is the TD section (extracted 
from HUGHES and HANSEN 2000). 
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DDWs/MBs and LBs delineate cell-blocks which are subdivided by cell boundaries. 

Accordingly, by increasing the number of LBs, grain subdivision occurs and layers with similar 

orientations are developed in the microstructure.   

Modeling fragmentation of grains and development of cell-blocks has been the subject of 

many studies –e.g. (BEAUDOIN et al. 1996; BECKER and PANCHANADEESWARAN 1995; LEFFERS 

2001; MIKA and DAWSON 1998; MIKA and DAWSON 1999). In most of these studies, FEM 

models were developed and used to examine the interactions of a few grains, and predict the 

place where fragmentation is occurred.  

The aim of this section was to provide a brief literature review on the theory of the 

formation of inhomogeneous regions in the microstructure of nickel, and explore problems that 

may affect the outcome of the proposed continuity model. Subdivision of grains is the most 

serious concern as it occurs in the experimental microstructure, because the proposed continuity 

model does not include this phenomenon in simulations. It is possible to develop an Eulerian 

continuity model that incorporates the grain fragmentation, but, as it was found in most of FEM 

models, this requires major computational resources, and it was decided for this work to exclude 

the effects of inhomogeneity and grain subdivisions in the continuity model. In comparing 

simulations with experimental characterizations, as will be presented in Chapter 7, it is found 

that above ~50% rolling reduction there are clear indications of the influence of fragmentation on 

microstructure development.  
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PART II:  

DEVELOPMENT OF THE EULERIAN-BASED DOUBLE CONTINUITY MODEL 

Formulations of a new model, which can be used to study the microstructure evolution of 

any type of polycrystalline material under any deformation mode, are developed and results are 

discussed. Since at every point in the microstructure, two important features of the 

microstructure (position and orientation of grains) must be considered in any simulation method, 

evolution of the MF, which represents the distribution of the examined orientation within a small 

neighborhood of the examined particle, is generally studied in this research.  Although most 

other models have used the Lagrangian system, it was decided to use the Eulerian coordinate 

system. The reason for choosing the Eulerian system is that for the validation of the new model, 

the 2- point statistics of the microstructure must be manipulated using FFTs. To use FFTs a 

rectangular grid must be selected, and, as discussed earlier, the shape of the Lagrangian mesh 

becomes distorted by deformation. Another reason is that, as we will see, calculations by the 

Eulerian continuity model are computationally faster as compared to the Lagrangian model. In 

this part of the thesis, concepts of mass- and orientation- conservation are expressed and 

validated in Chapters 5 and 6, respectively. Thereafter, the linkage of mass- and orientation- 

based continuity equations (the double continuity relation) is introduced and corroborated against 

experimental results in Chapter 7.  
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5 KINEMATICS AND THE MASS EVOLUTION 

In Continuum Mechanics, Dynamics, which is the science of motion of bodies, is often 

subdivided into Kinematics and Kinetics. Kinematics deals with the motion of material particles 

in a continuous body with velocity and acceleration as the most important concepts. In the 

material (or real) space, the motion of material particles is monitored by the mass-based 

continuity equation, which is derived based upon the conservation of mass principle. The main 

application of this continuity equation is in finding the solution to Navier-Stokes equations in 

fluid mechanics (KREISS and LORENZ 2004). In the derivation of Navier-Stokes equation, the 

continuity equation can be expressed in either material (Lagrangian) or spatial (Eulerian) 

framework; and it can be used to monitor the motion of particles for a compressible or an 

incompressible fluid. The continuity equation has been applied mostly for linearly viscous fluids 

in the literature (IRGENS 2008; KREISS and LORENZ 2004; LAI et al. 1993); and its application for 

solid materials is not common. In this chapter, we will introduce the mass-based continuity 

equation and will show how it can be employed to model changes in the microstructure that 

occur with large deformations.  

5.1 Conservation of Mass Principle 

The principle of conservation of mass states that the total mass of any part of a body does 

not change with any motion. The mathematical form of this principle is different in material and 
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spatial descriptions of motion. One benefit of using the Eulerian coordinate system for 

computations is that one can discretize the volume of interest using square-shaped, evenly-

spaced grids, facilitating the use of FFTs for economical calculations (FULLWOOD et al. 2008). 

Another benefit is that we can use the finite difference method (FDM) to approximate first-order 

partial derivatives that appear in the continuity equation. 

The derivation of the mass-based continuity (MC) equation for the spatial description is 

shown in Appendix A. Using the definition of the material time derivative D/Dt, and taking a 

control volume in the Eulerian coordinates, the MC equation is expressed as (Eq. (A-5) in 

Appendix A): 

where )(x is the mass density and )(xv is the velocity of the material point x  in the mass flow 

field. Using the divergence law the continuity equation becomes: 

In fluid mechanics, the fluid comprises material particles that can be compressible or 

incompressible.  However, in solid materials, to a very good approximation, the polycrystalline 

material can be considered to be an incompressible material, and hence the term iiii dxdvv /  

approaches zero; thus we have: 

This equation is the final form of the MC equation for an incompressible material, and is 

employed to the mass evolution process for further microstructure analysis.  
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5.2 Application to a Two-Phase Material 

The continuity equation formulated in the previous section can be used to predict the 

evolution of the MF for a two-isotropic-phase (TIP) material. Results of application of the mass-

based continuity equation into modeling the microstructure of the TIP material can be found in 

one of the author’s papers (AHMADI et al. 2009). As it has been mentioned in this paper, to build 

a model based upon the continuity equation for the TIP material, the following assumptions must 

be made: (i) the material under deformation acts like an incompressible media; (ii) the phases do 

not change from one to the other during the deformation process; (iii) the phases have isotropic 

properties; and (iv) the motion of phase particles is a continuous process. Following these 

assumptions, the continuity equation is readily extended from Eq. (5-3) to apply to the MF: 

where *g  shows that we have derived the equation for a particular orientation (or phase here). If 

phase change does not occur during deformation, the MC equation can be expressed for each 

phase individually. It is assumed that the microstructure is composed of two regions each 

representing a phase. We will hereafter focus on the continuity equation for the second phase 

expressed in Cartesian coordinates.  

The TIP model is constructed for a plane-strain compression test (similar to rolling). A 

plane-strain compression test has two planes of symmetry and four distinct regions wherein 

material particles are symmetrically moving. In this study, the upper right corner of a plane-

strain test is sampled. Accordingly, since the plane-strain condition is applied, plastic strain in 

the 2-direction is assumed to be zero ( 02  ) and based upon the incompressibility condition we 

will have 31   .  Assuming that the macroscopic motion conditions also apply locally 
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(following the familiar Taylor hypothesis), the equations of motion throughout the material are 

then simplified to )exp(11 tXx  , 22 Xx  , and )exp(33 tXx  .  Here   is the applied strain 

rate, x  represents the position of a material particle with respect to a pre-defined Eulerian 

coordinate system at time t , and X  shows the position of that particular material particle at the 

reference configuration ( 0t ).  Additional information regarding selection of desired boundary 

conditions is also discussed in (AHMADI et al. 2009).  

To build the TIP model, (i) the real space is tessellated into small bins (Eulerian system); 

(ii) the velocity vector is calculated for each Eulerian point for a strain rate of 1001.0  s ; (iii) 

an iteration scheme is designed to monitor the evolution process and obtain the final 

microstructure.  If the plastic deformation is applied in small steps of time we can rewrite the 

continuity equation as: 

where the index |2 indicates that we are modeling the evolution of the MF for the second phase. 

This choice is arbitrary. 

In the above equation the only unknown terms are the partial derivatives. To compute 

these derivatives a finite difference method (FDM) is used. It was found that among all the finite 

difference schemes, forward and backward differences were the best choices. Distinguishing 

between the usages of forward or backward methods depends upon the sign of the velocity 

component: if the velocity is positive, the backward difference is preferred; and if it is negative, 

the forward difference method should be used. An example that can clarify the reasons of 

choosing this finite difference scheme is provided in Appendix B.   When all terms are 

calculated, the change of the microstructure function at one time step can be calculated from Eq. 
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(5-5), and the microstructure function at the end of the iteration is calculated by MMM if   

where M is calculated from Eq. (5-5), assuming that 1t  . For simplicity, it was assumed that 

the deformation is a steady process with a uniform velocity field that does not change as 

deformation proceeds. Then, to obtain an exact amount of strain this process is iterated until the 

total strain is reached. For instance, if we assume that the strain rate is 001.0 s-1, to apply a 

total plastic strain of 10%, the number of iterations will be 100. The final microstructure function 

is eventually captured from the last iteration. 

Results for the MF evolution of the TIP model are demonstrated in Fig. 5-1.  Micrograph 

(a) shows an area (15×15 m2) taken from the original microstructure. The microstructure is 

tessellated into equally-spaced bins with 0.3 m grid size.  The MF at every bin is set to 0 if 

occupied by phase 1, and 1 if phase 2 fills the bin (if the bin contains a fraction of phase 1 and 2, 

its MF takes a value based on the fraction of phase 2). MF evolution is progressed using Eq. 

(5-5) and the iteration scheme just described. The evolution of microstructure for different 

amounts of total strain is shown in subplots (c-e). It can be seen that as the deformation proceeds, 

the MF becomes more diffuse near interfaces. 

To validate our model for predicting MF evolution, another model can be established that 

will provide the final microstructure without applying any iteration technique. For this model, 

which has a Lagrangian basis, about 100 points were thrown randomly into every bin in the 

initial microstructure. These points are labeled as phase 1 or 2 based on their original location. If 

the final amount of applied strain is known, the number of total iterations is also determined; 

then, the final location of points can be determined using the equations of motion. For example, 

if we take a point at position )2,0,2(  and if it is desired to apply 10% strain at the rate of

1001.0  s , 100 iterations are required. Based upon the equations of motion,  this  point at the 
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Fig. 5-1:  MF evolution under plane strain conditions for the two phase model (white: phase 1; 
black: phase 2). (a) initial MF; (b) velocity field for the plane strain condition; (c, d, and e) MF 
evolution after 10%, 30%, and 50% total strain. 
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end of process is located at )81.1,0,21.2( , because e.g. 21.2)100001.0exp(21 x . The 

labeled points were forced to move directly using the equations of motion. The final MF then 

was calculated for each Eulerian bin by finding the fraction of the number of points belonging to 

phase 2 relative to the number of all points occupying that bin. A comparison of final 

microstructure predicted by the continuity relations and the second (direct) model, is illustrated 

in Fig. 5-2 (a and b).  

The 2-point correlation function between phase 1 and 2, )r|2,1(f 2

  was also computed 

using FFTs; for more information regarding the implementation of FFTs in manipulating the 2-

point functions the reader is referred to the work of Fullwood et al. (FULLWOOD et al. 2008). The 

2f  plots for both models are shown in Fig. 5-2 (c and d). For better visualization, the 2f  plots 

are centered throughout this thesis. The origin of the vector r
  is, therefore, placed at the center 

of 2f  plots.  As an example, in Fig. 5-2 (c and d), the value of )r|2,1(f 2

  when r
  is small is 

very small, this means that the correlation between the two phases at distance and direction of 

0r


  is very low. Or, in another word, the probability of finding the two phases at 0r


  from 

each other is very low. This is true because at very small r
 , most of the vectors land in the same 

phase and the correlation of phase 1 and phase 2 is very low, or as 0r


  , 0)r|2,1(f 2 
 . 

In the microstructure predicted by the continuity relations, some spreading of the second 

phase (similar to a diffusion phenomenon) can be seen on the boundaries. The smearing happens 

during the iteration scheme. It initiates from the use of finite difference methods. This is because 

there is not an explicit way to calculate partial derivatives in Eq. (5-5), and using first-order finite 

differences gives an error of the order of the bin size at every step of deformation. This error 

accumulates with the number of calculation steps, and results in a thicker smeared boundary 

layer  as a  function  of the number of  iterations.   The extent of  these  errors depends  upon  the 
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Fig. 5-2:  MF evolution for 30% total plastic strain predicted by (a) continuity relations; (b) the 
direct (Taylor) model. 2-point correlation function plots for (a) continuity relations (b) the 
direct model. 

number of iterations and the bin size. This smearing effect is quite obvious in Fig. 5-1(c-e) where 

different amounts of strain are applied. 

The effect of binning size on the accuracy of the continuity model was also studied, Fig. 

5-3. A variety of grid sizes were chosen from 0.3 to 0.0375 microns, and the original 

microstructure was placed under total strain of 30% in 300 iterations. One can see that choosing 

smaller grids will help to enhance the resolution and reduce the effect of boundary spreading.  
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Fig. 5-3:  MF after 30% total plastic strain with different grid sizes: (a) 0.3; (b) 0.15; (c) 0.075; 
(d) 0.0375 microns. 

Fig. 5-4 shows error plots (for two different mesh sizes) representing the absolute error 

between the 2f  obtained from the continuity-based and the direct models. From Fig. 5-4 (a), 

which illustrates the error plot for operating the continuity model with 0.3 micron bin size, it can 

be observed that the maximum absolute error for 30% total strain is about 9.4 %. This maximum 

error occurs for small vectors r  which samples the area between the two phases, or the 

boundaries. If we neglect the smearing effect on the boundaries, the mean absolute errors is 

about 0.8% which is reasonably acceptable.   The second micrograph in Fig. 5-4 demonstrates 

the error plot for when the continuity model operates with grid sizes of 0.075 microns. Evidently, 

smaller grid size minimizes the spreading effect, obtaining a maximum absolute error of  ~5.6% 
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which is smaller by a factor of two as compared to subplot (a).  Therefore, it is concluded that if 

the effect of boundary spreading somehow is resolved, the continuity model can provide precise 

predictions of MF evolution under large deformations. Control of boundary layer thickness can 

be addressed by either choosing a smaller grid size or applying fewer iterations (with larger 

strain applied in each step). On the other hand, there is a limit on the maximum amount of strain 

that can be applied in one time step. It can be shown that the maximum strain needs to be 

consistent with the limit that dtVi   where d  is the bin size. The velocity field in this study is 

steady; hence it can be shown that as the time step increases, the binning size has to increase as 

well. Therefore, only one parameter remains that can control the process, which is the bin size. 

 

Fig. 5-4:  Error plot showing the absolute error of the 2-point correlation functions. The 
continuity model with (a) 0.3 and (b) 0.075 micron grid size is compared against the direct 
model. 

Table 5-1 also shows the binning effect on the resolution and the time of process. 

Calculations were conducted on a standard PC. Taking smaller grid size increases processing 

time dramatically, but produces less error. The times shown in here are for a 2-D model; it is 
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anticipated that a 3D model would demonstrate a significant amplification of the trend in 

calculation times.  

Table 5-1:  Effect of binning size on the accuracy of the proposed model. 

Mesh size (m)  0.3  0.15  0.075  0.0375 

Maximum Absolute Error (%) 9.39 7.49  5.64  4.01  

Mean Absolute Error (%)  0.79  0.48  0.27  0.13  

Calculation Time (s)  3 8 19  52  

 
 

A desired case of selection of bin size should be taken to achieve good resolution with a 

reasonable error and an acceptable processing time. From Table 5-1, it can be observed that 

selecting a grid size of about 0.075 microns results in an appropriate simulation time with 

~0.27% mean error.  

The MC model that was formulated and verified in this chapter will be used later in 

Chapter 7 to model the microstructure changes of a nickel polycrystal. Results from this chapter 

suggest that to use the Eulerian format of the MC model, special care should be dedicated to 

selecting a preferred Eulerian mesh size whereby less computational error and shorter calculation 

time are achieved. A reasonably suitable mesh size was determined to be 0.075 microns. 
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6 ROTATIONS AND THE ORIENTATION EVOLUTION 

In the orientation space, we deal with rotations and lattice orientations. There have been 

many investigations on the evolution of grain orientations or the texture evolution of 

polycrystalline materials. The main tool that has been used in the literature to quantify the 

crystallographic texture of material points in the microstructure, as discussed in Section 2.2, is 

the ODF. In this chapter, first, the principles of the conservation of orientations and the 

orientation-based continuity (OC) equation is provided, and secondly, an example of employing 

the OC equation, that has been formulated in the Eulerian framework, into texture predictions of 

a randomly textured FCC material is given.  

6.1 Conservation of Orientation Principle 

Similar to the conservation of mass principle in the real space, the conservation of 

orientation is also suitable in the orientation space. The continuity equation for orientations was 

first proposed by Clement and Coulomb (CLEMENT 1982; COULOMB 1979): 

0)( 



fwdiv
t

f
 (6-1)

where f is the ODF and w  is the velocity vector in the orientation space. This equation is similar 

to the continuity equation in the mass space (Eq. (5-1)), and it guarantees the principle of 

conservation of orientations, meaning that crystallite orientations are neither created nor 
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destroyed during plastic deformation of polycrystals. An Eulerian representation of the OC 

equation is presented in Appendix C assuming that the working space is the EAS. This derivation 

is proposed based on presuming the EAS to be a Riemannian Manifold (In fact, the EAS can be 

expressed in either a Euclidean space or a Riemannian Manifold. A Riemannian manifold is a 

differential manifold on which a smooth field of symmetric and positive definite metric tensor is 

specified (HICKS 1965; MORAWIEC 2004)). The divergence in the continuity equation can be 

formulated using the covariant derivative and Christoffel symbols. The final form of the 

continuity equation can be expressed for the EAS as (Eq. (C-9) in Appendix C): 

The first term on the right hand side represents the rate of change of the velocity vector in the 

EAS. Although we have an incompressible material in the real space and this term in the 

formulation of MC equation was zero, the flow of orientations in the EAS is compressible and 

we should treat rotations of orientations as a compressible fluid process. Similar to the continuity 

equation in the mass space, finite difference methods can be used to compute the partial 

derivatives in Eq. (6-2). To find the velocity vector, w  , and the rotation rate field in the EAS, 

various plasticity models can be used. The binning process is similar to the discertization scheme 

applied to the mass space. The EAS is tessellated into a small size Eulerian grid. The center point 

of each bin is then taken as the Eulerian point and the velocity vector is calculated for all bins in 

the Euler angle domain.  

The OC equation, Eq. (6-2), has been used to find the evolution of the ODF, f(g).  

Following a process similar to our formulation in the mass space, Eq. (6-2) can be rearranged to 

describe the evolution of the MF for a specific material point x : 

)(cot)(
)(

)(
)(

)(
)(

2 gwgf
g

gf
gw

g

gw
gf

t

gf

i
i

i

i 










  (6-2)



67 

This equation can be used to find the evolution of the MF at every material point x .  

6.2 Application to a Randomly Textured Material 

The Eulerian formulation of the continuity equation in the EAS was presented in the 

previous section. In this section, an example of obtaining the lattice rotation field (see Section 

4.3) and rotation of orientations under this field is explained. To find the velocity terms 

presented in Eq. (6-3), the TLVP crystal plasticity model (explained in Section 3.2.4) was used 

to find the lattice spin tensor. The parameters appearing in the TLVP model are taken as: 

1
0 sec001.0  , 012.0m , and MPa35* . For simplicity, it is further assumed (i) that the 

critical resolved shear stress is identical for all slip systems; and (ii) that the material is deformed 

under a rigid-perfectly-plastic condition without taking into account any slip hardening effects 

(slip hardening parameters are specified from mechanical testing and the effects of slip 

hardening on the orientation changes are studied in the next chapter).  

Simplified rolling process (e.g. taking a plane-strain compression condition) was modeled 

to find the evolution of orientations in a randomly textured microstructure. Two different models 

were studied:  (1) A Lagrangian model with an iteration scheme was constructed such that 

orientations at the end of each iteration were updated simply by summing up the amount of 

rotation caused by the lattice spins (Section 3.2.1). In this way if we take the original orientation 

as ig  then the final orientation at the end of current iteration is obtained by twgg if  . ;  (2) 

An Eulerian formulation that was expressed in the previous section, along with the iteration 

scheme that was introduced for the mass-based continuity equation was also examined. In this 
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case, to obtain the velocity field the cubic-orthorhombic fundamental zone, FZ3C/4, which was 

described in Section 4.1 was tessellated into small cubic bins. Lattice rotations were calculated 

for centers of bins. After obtaining the velocity field, every orientation of the microstructure was 

placed into this field and the movement of the orientation was monitored by an iteration scheme 

(similar to the mass-based iteration scheme). 

To validate the Eulerian model, a comparison against a Lagrangian model was 

performed.  The comparison model selected is that used in most crystal-plastic FEM analyses –

e.g. (KALIDINDI and ANAND 1992; KALIDINDI and ANAND 1994; KALIDINDI et al. 1992). 

Evolution of the texture of a randomly textured microstructure with 1000 random orientations is 

studied with both models. These orientations are randomly taken from FZ3C/4. The chosen 

microstructure was assumed to be rolled to a final reduction of 70%.   Using the Lagrangian 

model, as it was explained, is straight forward.  To employ the Eulerian model these steps were 

followed:  

1- One orientation is studied at a time. The selected orientation is located in the 

conventional FZ3C/4 and a cubical region of 20×20×20 degrees is taken around the chosen 

orientation. The MF for this cube is set at 1 for the bin that contains the orientation and 0 

everywhere else. 

2-  In addition to the velocity field, partial derivatives and all the terms presented in Eq. 

(6-3) are determined for the surrounding cube.  A finite difference scheme similar to the 

one introduced for the mass space is also employed here to find the evolution of the 

microstructure function.  

3- To have an efficient model, the deformation process is subdivided into small increments 

in which 5% strain is applied in 500 time steps. At every time step, 0.1% true strain is 
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applied; then, the rate change of the MF is calculated and added up to the current value of 

the MF. This iterative process continues until it reaches the limit of 5%. This gives one 

increment of the deformation equivalent to a true strain of 5%. Because we use FDM in 

the iterative scheme, similar to the mass problem, smearing of the MF will occur; 

therefore, a cleaning process was designed such that the bin having the maximum value 

of MF is taken as the final rotated orientation after 5% strain. 

4- To apply further amounts of rolling deformation a new cube is taken around the updated 

orientation and previous steps (step 1-3) are repeated until the desired amount of 

deformation is reached. The final strain for applying 70% rolling reduction is ~120%; this 

amount of deformation is applied in 24 deformation increments.  During this iterative 

process it must be anticipated that some of the orientations fall out of FZ3C/4, for such 

cases the related crystal- and sample-symmetry operators are used to map the orientation 

back into FZ3C/4 after which the process continues on. 

To statistically analyze results from Lagrangian and Eulerian models (200) and (111) 

pole figures were constructed. A Gaussian distribution with a half-scatter width of 5°, and 

orthorhombic sample symmetry was used in calculations of pole plots. All pole figures presented 

here are equal area projections of the specified crystallographic poles. Fig. 6-1 shows the pole 

figures calculated for the randomly textured microstructure. Weak intensities in the pole plots 

verify that the microstructure is randomly textured.  
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Fig. 6-1:  (200) and (111) pole plots calculated for the randomly textured microstructure 

The Lagrangian and Eulerian models were later used to predict the evolution of the 

texture of this microstructure. The pole figures predicted by the Lagrangian model are illustrated 

in Fig. 6-2 (a). To study the effect of binning size, the Eulerian continuity model with three 

different grid sizes was used. Fig. 6-2 (subplots b-d) is showing the binning effects for bin sizes 

of 1, 0.5, and 0.25 degrees, respectively. 

From Fig. 6-2, it obviously can be seen that the Eulerian model can quantitatively give 

reasonable predictions of texture evolution (it can predict the locations of the high intensity 

peaks); however, because the pole plots predicted by larger mesh sizes show lower intensities 

compared to the ones predicted by the Lagrangian model, we suspect that the application of the 

Eulerian continuity model with too large mesh sizes may not adequately predict the quantitative 

details of texture evolution. Conversely, by decreasing the mesh size and taking smaller bins in 

FZ3C/4, the resolution of the continuity model is increased.  

In addition to the resolution effect, the computation time is also an important 

consideration. It can be shown that the algorithms of the Eulerian continuity model are more 

time-efficient. The total time spent for employing the Lagrangian model to simulate the 70% 

rolled  macrostructure was ~7.5  hours on  a  standard  PC.   This  time  is mostly  spent to find  a 
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Fig. 6-2:  (200) and (111) pole plots predicted by: (a) Lagrangian model; Eulerian model with 
binning sizes of (b) 1 degree; (c) 0.5 degrees, and (d) 0.25 degrees. 

solution for the nonlinear power-law equation (Eq. (3-9)) using a Newton-Raphson scheme (e.g. 

(FROMM et al. 2009)) and to calculate the lattice spins. At each iteration, 0.1% strain is applied; 
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therefore, there are 1000 orientations and 1.2/0.001=1200 iterations, which means that this 

nonlinear equation must be solved 1,200,000 times for this particular microstructure (if another 

microstructure is modeled all these calculations must be retaken).  However, in using the 

Eulerian continuity model to build the rotation rate field, FZ3C/4 is tessellated into 2 degree bins 

and the nonlinear equation is generally calculated 45×45×45=91,125 times. If taking a smaller 

mesh size is desired, due to the fact that the rotation rate field is a continuous field and velocity 

terms are gradually changing from one bin to the other, we can take the midpoint of two adjacent 

grid points as the new point and the average velocities of the adjacent points can be assigned as 

its velocity. Total calculation time to construct the velocity field with 2 degree mesh size is ~36 

minutes. This calculation is carried out only once and the velocity field is valid for simulating 

cold rolling of all types of FCC materials. In addition to this calculation time we should also 

include the time that is needed to update the MF by the iteration scheme, as explained earlier. 

Table 6-1, shows this calculation time and the amount of error that appeared from using the 

Eulerian continuity model compared to the Lagrangian model.  

Table 6-1:  Effects of binning size on the accuracy and calculation time of the OC model  

Mesh size (degree)  1  0.5  0.25  

Maximum Absolute Error (degree)  11.31 6.43  4.79  

Mean Absolute Error (degree)  1.78  0.97  0.83  

Calculation Time (min)  8 46 115  

 
 

From Fig. 6-2 and Table 6-1, it can be concluded that a mesh size of 0.5 degrees is 

acceptable since the average absolute error is less than 1 degree and the overall time (including 

the time required to compute the rotation rate field) is reasonable: ~82 minutes. This 
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computational time is a factor of ~5.5 less than the time spent in calculations by the Lagrangian 

model.  

Now that the Eulerian format of the OC equation has been modeled and also corroborated 

against the familiar Lagrangian models, and reasonable results were obtained, we can go one step 

further and by linking the MC and OC models; then, the evolution of the microstructure of 

polycrystalline nickel can be examined. The accuracy of the coupled model can be confirmed 

when this model is compared against experimental testing, as it will be the aim in the next 

chapter.  
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7 EULERIAN-BASED DOUBLE CONTINUITY MODEL AND ITS APPLICATIONS 

To model the evolution of the MF throughout a plastic deformation process, the evolution 

of position and orientation of crystallographic grains is considered. As discussed in Chapters 5 

and 6, the movement of mass particles of grains is monitored by the MC model in the mass 

space, and the orientation change of grains is monitored by the OC model in the EAS. The aim of 

this chapter is to link the MC and OC models and develop a coupled model that can be used to 

examine the microstructure evolution of real polycrystalline materials. A fully annealed 

polycrystalline nickel sample is, additionally, used to validate the numerical results from the 

simulation of the rolling process by the coupled model. Moreover, textural and statistical 

comparisons of experimental and simulated microstructures are considered. For the textural 

analyses, ideal orientations of rolling for both empirical and numerical microstructures are 

studied with pole figures, ODF sections, and fibre plots. On the statistical analyses, correlations 

of ideal orientations are examined using the 2-point correlation functions. In addition, coherence 

and anti-coherence lengths are measured, and their relationship to the amount of cold work is 

examined. 

7.1 Experimental Procedures and Results 

In order to validate the numerical approach, some experimental tests were performed. A 

commercial purity nickel (99.9 %wt) was used in this investigation. Reasons for selecting nickel 
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as the working material are: (i) nickel is an FCC material having a sufficient number of 

potentially active slip systems (12 possible slip systems) to readily accommodate an arbitrary 

state of local plastic strain; (ii) nickel has a medium SFE, 128 mJm-2, and as it can be found in 

the literature, deformation twinning does not occur in FCC materials with medium or high SFE, 

making the texture prediction of these materials much simpler. (iii) Taylor-type models can 

qualitatively predict the texture of medium and high SFE materials.  

7.1.1 Tensile Testing 

In the development of our new Eulerian model in Section 3.2, it was mentioned that the 

TLVP model is chosen to obtain the lattice rotation rate field. To calibrate the TLVP model and 

also to obtain the slip hardening parameters tensile tests with different conditions were 

conducted.  

First, to calculate the mechanical properties of the material three medium-size tensile 

samples were cut and prepared based on the ASTM E8/E8M standard (ASTM 2003). Samples 

were then pulled using a MTS-661 machine at a strain rate of 0.001 sec-1. Stress-strain curves 

were depicted and mechanical properties of the material were obtained by conventional analysis 

(Table 7-1). 

Table 7-1: Mechanical properties measured from tensile testing of commercially pure Nickel 

Young’s Modulus Yield Strength Ultimate Tensile Strength Total Elongation 

201 GPa 245 MPa 414 MPa 62.3 % 

 

Furthermore, to obtain the rate sensitivity parameter, m, which is used in the power-law 

viscoplasticity relation, Eq. (3-6), three additional samples were pulled at the faster 0.01 sec-1 
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strain rate. Thus, a total of six samples were strained under two different strain rates. Averaged 

engineering stress-strain curves for each set of samples were measured and plotted in Fig. 7-1. 

 

Fig. 7-1:  (a) two sets of stress-strain curves with different strain rates; (b) magnified area 
selected to find the rate sensitivity parameter.   

The rate sensitivity parameter was calculated from the difference of the curves by fitting 

the best curve for each set of samples, finding the stress differences in the entire selected area, 

and using the following equation (HOSFORD and CADDELL 2007):  
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The rate sensitivity parameter, m, was calculated for a range of strain, 0.15-0.35, with a strain 

increment of 0.02. An example of calculating m is shown in Fig. 7-1 (b) for a strain value of 

0.29. If Eq. (7-1) is used at this point, the rate sensitivity parameter is measured as 0.0121. By 

averaging the calculated m for the entire range, the average m is measured as 0.012. 

Slip hardening parameters can be calculated from the stress-strain data as well. If we take 

the original microstructure of the material and use the TLVP model, the stress-strain curve can 

be predicted by updating the slip resistance in Eq. (3-9) using the saturation-type slip hardening 

model discussed in Section 3.2.3, Eq. (3-12). The four slip hardening parameters that are used in 

Eq. (3-12), can be chosen such that the predicted stress-strain curve is well fitted to the 

experimentally measured one. The measured slip hardening parameters are: MPa83*0  , 

445h0  , 134ss  , 08.1a  . Fig. 7-2 also shows the predicted curve that has been calculated 

to the maximum strain of 0.4 for the original microstructure including 746 grains. A Lagrangian 

model was used to update the slip resistance at every level of strain.  

7.1.2 Rolling Process 

To validate the numerical model that we have developed in this research a specific 

mechanical process should be chosen such that it enables us to study large levels of plastic 

deformations. Among all deformation processes, rolling is a process by which a wide range of 

strain can be applied incrementally (mathematically strain can even approach infinity when the 

final thickness of the sheet approaches zero). Also, modeling the rolling process is very 

straightforward, since it is well-approximated to be simple plane-strain compression. In this 

research,  sample  sheets  of  pure  nickel  with  initial  thickness of  9.9mm,  were rolled down to 

)/ln()/ln( 1212  m  (7-1)
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Fig. 7-2:  Experimental and simulated stress-strain curves for pure nickel 

several different thicknesses. Table 7-2 shows the property of these samples labeled based on the 

amount of their rolling reductions. The rolling reduction, R, can be calculated from the initial, t0, 

and the final, t, thicknesses: 0/1 ttR  . This table also provides the amount of the rolling 

deformation, )/ln( 00 tt , and the equivalent von Mises strain, 03
2  vM . 

Table 7-2: Rolled samples labeled based on the amount of cold work (%) 

Label 0% 30% 50% 70% 85% 92% 

Rolling reduction (%) 

As received 

30.3 50.4 70.0 84.8 92.3 

Rolling deformation 0.36 0.70 1.20 1.88 2.53 

von Mises strain 0.42 0.81 1.39 2.18 2.92 

 

After the samples were cold rolled and sized to proper reductions, an oblique sectioning 

technique was used to sample the microstructures in a statistically-unbiased way. From each set 
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of labeled material, three samples with different sample plane-normals (sections with plane-

normals parallel to the ND, TD, and RD directions) were cut and prepared for the microscopy 

examination.  

Orientation image microscopy (OIM) was used to scan the samples and recover the 

microstructure. To scan the samples, a Philips XL30 S-FEG scanning electron microscope 

(SEM) equipped with a fully automated electron backscatter diffraction (EBSD) analysis system, 

was used. Orientation maps were obtained for areas 700×700 m2 using a step size of 2 microns. 

Inverse pole figure maps of samples with different amounts of cold-rolling are illustrated in Fig. 

7-3. These micrographs are taken from sections that have their normal vectors parallel to the ND 

of the rolled sample.  

7.1.3 Reconstruction Process 

The inverse pole figure maps that were illustrated in the previous section are two-

dimensional OIM maps. In order to get a statistically reasonable microstructure that can be used 

to sample the entire microstructure we need a 3D microstructure that shows the statistics and 

complete shape of grains in the microstructure. A 3D simulated microstructure that has been 

developed using the Potts model, provided by Prof. A.D. Rollett’s group at Carnegie Mellon 

University, is used in this research. Grains in this microstructure are identified by their ID 

number. To use the 3D microstructure in the simulations, for every grain in the microstructure a 

desired orientation must be assigned such that the 3D microstructure becomes statistically 

equivalent to the original microstructure of as-received material. The orientation distribution 

function and the 2-point correlation function that were introduced in Section 2.2 can be used to 

capture the statistics of both microstructures.  
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Fig. 7-3:  Inverse pole figure maps for (a) as-received sample; and (b-f) samples cold-rolled to 
reductions of 30, 50, 70, 85, and 92 %, respectively. Samples are cut from the ND plane. 
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To assign orientations into grains in the simulated 3D microstructure two possible 

methods can be selected: (i) Randomly assign orientations into grains, obtain the 1- and 2 point 

statistics of the microstructure, and find out how close the current configuration predicts the 

statistics of the empirical microstructure (an error function, which can be considerably 

minimized, is used to obtain more accurate results). Since we are dealing with a large number of 

grains (1712 grains in the 3D microstructure) there are many possible permutations (1712!) and 

the probability of finding a reasonable solution is very low for this method; (ii) A second process 

of finding statistical functions is similar to method (i) except that a preferred minimization 

technique (e.g. simulated annealing or genetic algorithm) is used to minimize the error function.  

To technically reconstruct the 3D microstructure, a genetic algorithm (GA) scheme was used in 

this research. Therefore, to reconstruct the microstructure, based on the GA method, the 

following steps were taken: 

- Three sections (RD, TD, and ND planes) of the original material were scanned. 

Orientation maps and grains information were obtained using the OIM software. 

Orientation maps were placed in the proper global coordinate system (see Section 4.1), 

and orientations were recalculated based on the current system. Additionally, using the 

mean linear intercept method, the average grain size in different sections was measured 

as: 18.42, 17.86, and 20.30 microns for RD, TD, and ND sections, respectively. Also, the 

overall average grain size, which is the mean value of grain sizes in all three sections, 

was measured as of Avgd1=18.86 m. This value was used later to scale the 3D 

microstructure.  
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- It was found that the as-received material has a texture exhibiting orthorhombic sample 

symmetry. Thus, orientations were mapped into the reduced FZ3C/4.  The reduced FZ3C/4 

was tessellated (5 degree resolution) and the ODF was then calculated.   

- Five orientations that have the highest intensities in the ODF were chosen and the 2-point 

correlation function between each pair of these orientations (i.e. f12, f13, …, f23, …) was 

calculated. Note that f11 is the ODF of orientation 1. 

- Average grain size for the 3D microstructure was measured in ten slices of three different 

sections. The average grain size in RD, TD, and ND sections were measured as 14.96, 

15.12, and 14.91, respectively. The overall average grain size was also measured as 

Avgd2=15 m, and compared with the one obtained for the original microstructure. A 

scaling factor was defined as Avgd1/Avgd2=1.257 to scale the 3D microstructure. The 3D 

reconstructed microstructure was then scaled to have similar average grain size for both 

empirical and reconstructed microstructures. 

- The ODF and 2-point correlation functions calculated from both microstructures should 

then be compared, and an error function should be provided to find the accuracy of the 

reconstruction process. This error function was defined to be: 

- To start the reconstruction process using the GA method, a random permutation of the 

microstructure was initially selected, and afterwards, the GA method was used to find a 

solution by which the error function is minimized considerably. The process was stopped 

when the mean error was less than 1% or when the number of generations exceeded 

 
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200,000 iterations. Fig. 7-4 is a flowchart demonstrating how the GA algorithm can be 

used in the reconstruction process.  

 
 

Fig. 7-4:  Outline of the Basic Genetic Algorithm 

As illustrated above, the fitness function in the GA algorithm is the error function that we 

are trying to minimize here. Other parameters that were used in the GA method are as follows: 

(1) Search space, which was selected to be a vector of ID numbers of all grains in the 3D 

microstructure in this research; (2) Crossover probability, which quantifies how often crossover 

(switching of a portion of two parent chromosomes to generate new offspring) will be 

performed. In this optimization process, this parameter was selected to be 70%. If there is no 

crossover, the offspring are an exact copy of the parents. If the crossover probability is 100%, 

then all offspring are altered by crossover; (3) Mutation probability, which represents how often 
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the chromosome is mutated. If there is no mutation (0%), the offspring are taken after crossover 

(or copy) without any change. If mutation is performed, part of the chromosome is changed. In 

our minimization scheme, a mutation probability of 3% was chosen; (4) Population size, which 

tells us the number of chromosomes in the population (in one generation). This parameter was 

selected to be 50 chromosomes for an optimum instance. It is reported that if there are too few 

chromosomes in the population, GA has a few possibilities to perform crossover and only a small 

part of search space is explored. On the other hand, if there are too many chromosomes, the GA 

slows down. Additional information regarding the usage of GA can be found in (MITCHELL 

1996). 

The GA minimization method was run to 200,000 iterations and the minimized error 

function is shown in Fig. 7-5. Based on this figure, the mean absolute error at the starting point is 

~78%, while as the reconstruction process continues the mean absolute error decreases to ~58% 

after 1000 generations and to ~6% after 100,000 iterations. However, from 100,000 to 200,000 

iterations, the mean absolute error changes by only ~1.5%; thus, the reconstruction process can 

be stopped at any point in this range. 

As it was mentioned in the reconstruction process, the ODF and the 2-point statistics of 

both empirical and simulated microstructures are quantitatively compared using an error function 

(Eq. (7-2)).  The differences between the ODFs of both microstructures are represented in Fig. 

7-6. The solid line in these plots indicates the ODF (volume fraction of grains having similar 

orientations within a 5-degree bin in the FZ3C/4) of the experimental microstructure, and the 

markers deviating around the solid line represents the ODF fraction of the simulated 

microstructure with different grain-orientation assignments.  
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Fig. 7-5:  An Error plot indicating the mean absolute error between the empirical and the 
reconstructed microstructures. 

Subplot (a) in Fig. 7-6 illustrates the relatively large variations of the ODF (volume 

fraction) of the reconstructed microstructure. This subplot was depicted after 1000 generations of 

the GA scheme. Subplots (b) and (c) demonstrate similar ODF information but for different 

amounts of GA generations (100,000 and 200,000 generations, respectively). As expected, the 

deviation of the ODF of the reconstructed microstructure from the ODF of the empirical 

microstructure decreases as the GA minimization process continues (i.e. larger number of 

generations). The 2-point statistics measured for the top five highest ODFs are also showing 

similar trend meaning that by increasing the number of GA iterations, the 2-point statistics 

manipulated from both empirical and reconstructed microstructures become more analogous 

(Fig. 7-7). 

The GA minimization process that was used in this research to find an optimum 

reconstructed microstructure took ~43 hours on a standard PC, and was terminated after 200,000 

generations, leaving a final mean absolute error of ~4.5% between the 3D reconstructed and the  
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 Fig. 7-6:  The ODF (volume fraction) plots indicating the amounts of error using the GA 
method after: (a) 1000; (b) 100,000; and (c) 200,000 generations. The solid line indicates the 
ODF calculated from the empirical microstructure, while the markers indicate the variation of 
the ODF calculated from the reconstructed microstructure.  
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Fig. 7-7:  A comparison of 2-point statistics of (a) the original microstructure, and the 
reconstructed microstructure (b) after 1000 and (c) 200,000 generations of GA   
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2D original microstructures. The 3D reconstructed microstructure can later be used in validation 

of the new Eulerian-based double continuity model.  Schematic representations of the 3D 

reconstructed microstructure and an original 2D OIM section are shown in Fig. 7-8. To facilitate 

a comparison between the ODFs of the two microstructures, the same grayscale color map was 

selected.  

7.2 Development and Application of the Double Continuity (DC) Model 

In this section, a methodology to couple the mass- and orientation- continuity (MC and 

OC) models, which were formulated and validated in Chapters 5 and 6, is developed. This model 

is later applied to the 3D microstructure, and development of texture and statistical features in its 

microstructure is studied.  

The MC and OC models were rearranged in previous chapters to take into account the 

evolution of the MF. According to the definition of the MF, Section 2.2.3, it can be seen that the 

MF can be expressed in many different spectral representations, among which the primitive basis 

was selected in this research. To express the MF based on the primitive representation, the 

spaces of interest in the mass and orientation space are tessellated, and bins in these spaces are 

enumerated. Then, indicator functions are used to specify which particular bin, here x* in the 

mass and g* in the orientation space, is being processed and how the MF changes for this bin.   

Previously, in the MC model, a TIP material was studied without taking into account the phase 

(or orientation) changes, and also in the OC model, orientations of a random texture was studied 

without taking into account the shape change of grains. In the double continuity (DC) model, 

however, changes in the shape of grains (in the mass space) and changes in the orientation of 

grains (in the orientation space) must be studied simultaneously. More clearly, the MC and OC 

equations are, respectively, rewritten here: 
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Fig. 7-8:  Schematic representations of (a) the 3D reconstructed microstructure; (b) sample cut 
from the ND plane of the original microstructure; (c) an ND slice  of the 3D reconstructed 
microstructure. All micrographs have similar color maps relative to the volume fractions of 
orientations in the tessellated FZ3c/4. 
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In the MC equation, orientation changes are neglected and the evolution of M is studied 

for a specific orientation g*, while in the OC equation, evolution of orientations at a specific 

position x* is studied. Now the question may be raised to how actually the evolution of a specific 

orientation g* at a specific position x* is studied, or in another word, how the evolution of 

*)g*,x(M  is to be examined. To answer this question, a very small time step is considered. At 

this period of time, as discussed in the MC model, some of the mass particles that have 

orientation g* come in/out of the bin located at position x* in the mass space; additionally, some 

of the grains that have orientations similar to g* may rotate and get in/out of the bin g* in the 

orientation space. As a result, to monitor these changes, these steps should be followed in the DC 

model: (i) a very small time step is selected; (ii) to have a better accuracy, the OC equation is 

firstly considered, orientations are updated in this time step and final orientation of all grains are 

obtained; (iii) grains that have orientations similar to g* and locate inside bin g* are selected in 

the microstructure; (iv) evolution of these grains in the mass space is monitored and final 

configuration of grains is defined at the end of the time step; (v) the volume fraction of mass 

particles in bin x* that have orientation g* is finally reported as  the updated *)g*,x(M .  

Afterwards, to obtain the overall microstructure evolution for all grains in the microstructure, 

same procedure (steps i-v) must be carried out for the rest of bins in both spaces. 

The DC model can be employed to investigate the evolution of the 3D reconstructed 

microstructure. Selection of bin sizes for the mass and orientation spaces is very important. As 

discussed in Chapters 5 and 6, to avoid smearing problems and to minimize calculation errors, 
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the acceptable tessellation sizes for the mass and the orientation spaces were 0.075 microns and 

0.5 degrees, respectively.  By taking these tessellation sizes, there will be ~33 billion bins in the 

3D mass space and ~5.8 million bins in the FZ3C/4, although most of these bins are empty 

throughout the entire deformation process. Therefore, to avoid extensive and un-necessary 

calculations, an optimized DC model was considered. In this DC model, grains are deformed 

individually. In another words, instead of selecting grains with nearly the same orientation as a 

batch, we work on one grain at a time and separately monitor where it goes in the mass space and 

how its orientation changes in the orientation space. In this way, grains are studied in a small 

region in the mass space (depending on the volume of the grain) and it is not required to update 

the MF in the entire mass space.  

The optimized DC model for the 3D microstructure has theses steps: (i) information 

about location and orientation of all grains are specified; (ii) for every grain, location of the grain 

in the mass space is found and depending on the velocity field, a box with an appropriate size is 

taken around the grain, as it has been shown in Fig. 7-9. Evolution of the MF for this grain in this 

box is monitored (similar in the MC model) and after some amount of strain (5%) the location of 

the grain is updated and a new appropriate box is selected around the grain. This process is 

continued until desired amount of strain is achieved; (iii) for every grain, position of its 

orientation in the FZ3C/4 is obtained, and similar to Section 6.2, a cube with the size of 20×20×20 

degrees is taken around the orientations. This evolution process is quite similar to that described 

in Section 6.2, where the OC model is employed and position of the orientation is updated after 

every 5% strain; (iv) the final configuration of all grains in the mass space is obtained.  Because 

the MC model is developed for an incompressible material, no overlaps of grains should be 

detected. However, a small clean up effect occurs because of the smearing effect. To make a 
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comparison of simulated grains with their experimentally deformed ones, ND sections of the 

experimental an simulated microstructure are illustrated in Fig. 7-10; (v) final positions of grain 

orientations in FZ3C/4  are also measured and stored to be used in obtaining the ODF and other 

textural and statistical analyses.  

 
 

Fig. 7-9:  A schematic of the evolution of an arbitrary grain in the microstructure under plane-
strain compression (a) before applying any deformation, (b) compressed after 0.5 true strain, (c) 
compressed after true strain of 1.  
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Fig. 7-10:  Schematic micrographs of (left column) experimental ND-plane microstructures and 
(right column) the simulated microstructure predicted by the DCE model. Micrographs from 
top to bottom indicate rolling reductions of 0, 30, and 50%, respectively.  
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Fig. 7-11:  Schematic micrographs of (left column) experimental ND-plane microstructures and 
(right column) the simulated microstructure predicted by the DCE model. Micrographs from 
top to bottom indicate rolling reductions of 70, 85, and 92%, respectively.  
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7.3 Texture Analysis Results 

To analyze the experimental and numerical textures, three detailed methods of texture 

analysis were used in this research.  Firstly, stability of ideal orientations developed in the rolling 

texture of FCC metals with medium/high SFEs is studied. Secondly, using pole figures a 

quantitative decomposition of the ODF into components with Gaussian scattering is developed.  

A Gaussian distribution with a half-scatter width of 5°, and orthorhombic sample symmetry is 

used, in connection with (200) and (111)  planes are constructed.. All pole figures presented here 

are equal area projections of the specified crystallographic poles. And thirdly, to quantify the 

intensity of texture components, ODF sections and plots of - and - fibres are provided. OIM 

software (OIM-TSL 2007) was used to clean up the data, and plot the inverse pole figure (IPF) 

maps, ODF sections, and texture fibers; while, MTex software (HIELSCHER and SCHAEBEN 2008) 

was used to calculate and plot the pole figures.  

7.3.1 Stability of Ideal Orientations 

The stability of the ideal orientations of rolling textures for FCC metals (cube, Goss, 

brass, copper, Taylor and S) and their influence on texture formation are investigated in this 

section. The characteristics of the three-dimensional lattice rotation fields at and in the vicinity of 

these orientations, as well as the development of preferred orientations during deformation, are 

simulated numerically using the TLVP crystal plasticity model. The selected boundary condition 

is plane-strain compression (i.e. rolling process). 

To explore the neighborhood of a particular ideal orientation, a mesh grid with the size of 

2 degrees was selected in the range 20°×20°×20° around the orientation. The lattice rotation rates 

were then calculated (see Section 4.3), and the local orientation velocity fields around ideal 

orientations were demonstrated in Fig. 7-12. In this figure, the divergence of the lattice rotation 
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vector, gdiv  , is also shown as a grayscale map. According to this map, orientations are 

accumulated toward a point if the divergence is negative and they diverge if the divergence is 

positive.  

From subplot (a) in Fig. 7-12, which represents the rotation fields around the Cube 

orientation, it can be seen that the field is symmetrical with respect to all three axes. During 

rolling, orientations rotate toward the Cube along the direction of the 1  axis, but move away 

along the   axis. This implies that orientations cannot reach the  axis (through cube) during 

rolling. The further an orientation is away from Cube, the faster it rotates. The change in 2  is 

rather small compared to the other directions.  Similarly, rotation fields around Goss and Brass 

can also be examined. From the divergence maps in subplots (a-c), it is seen that the divergence 

of all three components (Cube, Goss, and Brass) is theoretically either zero or negative, and they 

are expected to be stable orientations. However, they are not stable in all three Euler directions. 

For example, Cube is not stable in the   axis, Goss diverges in the 1  and 2  axes, and Brass is 

roughly unstable along the 2  axis. Comparison of the Copper and Taylor orientations in subplot 

(d) also suggest that since the divergence around these two orientations is negative, they are also 

expected to mathematically be stable. The rotation field around these orientations, however, 

suggest that both orientations are almost unstable along the 1  and 2  directions (divergence rate 

is very small and negligible), and also, along the   axis for the Copper component. Therefore, 

these results (obtained by the TLVP model) suggest that Taylor is more stable that Copper and 

we must observe a larger fraction of grains to rotate to the Taylor end position. By way of 

contrast, it has been reported in the literature that Copper is the most stable component of rolling 

texture of FCC materials (HIRSCH and LUCKE 1988b; HUMPHREYS and HATHERLY 2004; 

LEFFERS and RAY 2009).   Two types of S components are also studied, subplot (e). The S3 is the 
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Fig. 7-12:  Schematic representations of (a) the original microstructure (sample cut from the ND 
plane); (b) the 3D reconstructed microstructure. 

component that is more distinguishable in the experimental texture maps; but, depending on the 

material and mechanical conditions, S1 may become more stable (ZHOU et al. 1992).  According 

to the TLVP model, the S1 component is more stable (because orientations are converging 

toward S1 in subplot (e)); however, since in the experimental texture plots, as we will see, the S3 
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component has higher intensity, to be consistent with experiments, S3 is considered for further 

analysis. To avoid confusion, S3, from this point, is labeled and used as the S component. 

After obtaining the orientation velocity field, the stability criteria (Section 4.4) were 

applied to examine the persistency of ideal orientations during the evolution process.  Results are 

provided in Table 7-3. 

Table 7-3: Rates of change ( g ), gradients ( gg   ), and stability parameters for some ideal 

orientations appearing in rolling textures. 

 Cube Goss Copper Brass Taylor S 

1  0.00 0.00 0.00 0.00 0.00 -0.19 

  0.00 0.00 -0.47 0.00 0.00 -0.37 

2  0.00 0.00 0.00 0.00 0.00 0.45 

11 /     -1.00 1.00 1.00 -1.01 1.00 0.57 

  /  1.00 -1.00 -3.30 -0.67 -3.47 -2.70 

22 /     0.00 -6.00 -3.65 -2.43 -4.46 -3.71 

)/( iisum     0.00 -6.00 -5.97 -4.11 -6.93 -5.84 

 cot  0.00 0.00 -0.67 0.00 0.00 -0.50 

gdiv  0.00 -6.00 -6.64 -4.11 -6.93 -6.34 

Stability (Eq. 4-6) 1.00 1.00 0.37 1.00 1.00 0.43 

 
 

The results show that the values of ),,( 21   g  are zero at the Cube, Goss, Brass, and 

Taylor orientations. Based on the stability criterion expressed in Eq. (4-3), an orientation is 

stable when generally 0g   and gg   . According to this criterion, Brass is the only orientation 

that is fully stable and other orientations are partially stable. If negativity of gdiv  is selected as 

the stability criterion, it is found that all the ideal orientations (except Cube) will become stable 
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end-orientations. Based on this criterion, Taylor has the most negative value gdiv   and therefore 

it is the most stable orientation of simulated rolling textures predicted by the TLVP model. 

Additionally, results from the stability equation (Eq. (4-6)) reveal that all studied orientations are 

fully stable except S and Copper. The stability value, however, is not low, and based on this 

equation, it is expected to see an increase in the amount of S and Copper in the simulated rolled 

microstructure. 

7.3.2 Pole Figures 

For FCC metals it is common to calculate and plot (200) and (111) poles. As the level of 

deformation strain is increased, volume fraction of orientations (and the ODF) is changed. One 

way to monitor these changes is tracking the evolution of pole figures. Pole figures of 

experimental and simulated microstructures are illustrated in Fig. 7-13. It is seen that as the 

amount of cold roll is increased, a specific texture starts to form. This form of texture is the 

copper texture that is the dominant texture of medium and high SFE metals. Comparisons of 

experimental and simulated pole figures reveal that: (i) the undeformed pole figures are similar - 

which confirms that the GA model has predicted a good final reconstructed microstructure; (ii) 

as the amount of deformation is increased, the difference between the maximum intensity of 

experimental and numerical pole figures are increased. For example, for the 92% reduction, 

maximum intensity for experimental and simulated (111) pole figures are 7.2 and 14 times 

random. Thus, it is concluded that the DC model overestimates texture strength – which is a 

common weakness of Taylor-like models. This can perhaps be addressed with greater precision 

by the stability examination of ideal orientations. Fig. 7-14 shows the (200) and (111) pole 

figures of experimental and simulated microstructures,  overlapped to  find the location of the  



102 

 

Fig. 7-13:  {200} and {111} pole figures (a) measured from experimentally rolled samples; and 
(b) predicted by the Eulerian model. Pole plots have been sorted for different amounts of cold 
work –top to bottom: 0, 30, 50, 70, 85, and 90% cold reductions. 
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Fig. 7-14:  {100} and {111} pole figures measured from experimental and simulated data for the 
92% cold rolled material. Skeletons indicate the experimental texture, while the grayscale 
contour shows the simulated texture. 

highest intensities. The skeleton lines demonstrate the experimental texture, and grayscale 

contours indicate the simulated texture. 

 From Fig. 7-14, it is seen that the intensity of Taylor component (circle 1 in the figure) is 

exaggerated in the simulated pole figure. Also, it can be seen that the intensity of Copper and S 

components may be underestimated. However, this may not be clear in the pole figure and it can 

be studied precisely by the ODF section plots.  

7.3.3 ODF Analysis 

As discussed in Section 4.2, - and -fibres are two dominant texture fibres found in the 

microstructure of FCC rolled materials. Fig. 7-15 demonstrates the - and -fibre plots for the 

experimental and simulated microstructures. Goss and Brass components are the two ideal 
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orientations that are placed in the -fibre. Comparisons of orientation densities along the -fibre 

show (i) that the density of Goss does not change during the deformation and the TLVP model 

can provide a reasonable prediction for this orientation, (ii) that by increasing the level of 

deformation, the density of Brass is generally increased and the accuracy of the TLVP model is 

decreased.   Along the -fibre, densities of Copper and S are studied. Results from comparing -

fibres show that the TLVP model cannot give a good prediction for both Copper and S 

components. For example, the density of Copper in the experimental microstructure is about 30 

times random, but this value in the simulated microstructure is 60 times random. Also, the 

density of S in the experimental and the simulated microstructures are about 46 and 74 times 

random, respectively.  The density of Cube and Taylor, however, cannot be obtained from the 

fibre analysis. To examine the development of these two orientations, the ODF was sliced at 

certain places (where o65,45,02  ) and ODF section plots were illustrated in  Fig. 7-16.  

From the comparison of ODF section plots in Fig. 7-16, it is observed that as the 

deformation process continues, the density of Brass, Copper, Taylor and S in both experimental 

and simulated microstructures is increased. The development of the Taylor component is more 

obvious in the simulated microstructure because the level of the intensity peak in the o452   

section is shifted up as it compared with the similar section in the experimental microstructure. 

The location of Taylor (90o,27o,45o)  is shown in the key plot provided at the top of Fig. 7-16. 

Another comparison show that the maximum density observed in the experimental and simulated 

microstructures is 10 and 38 times random, respectively. This implies that the TLVP model 

employed to examine the texture of polycrystalline nickel overestimates the density of some (not 

all) of the orientations. The rate of this overestimation is 3.8.  
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Concluding from comparisons of pole figures, fibre-plots, and ODF section plots, it was 

generally found that the TLVP model overestimates the density of Brass, Copper, Taylor and S  

 
 

Fig. 7-15:  Orientation density of orientations along (a) -fibre and (b) -fibre for the 
experimental microstructure; (c) -fibre and (d) -fibre for the simulated microstructure. Some 
of the ideal orientations are labeled on the fibre plots. 
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Fig. 7-16:  ODF section plots demonstrate the development of texture components in the 
experimental (left column) and the simulated (right column) microstructures  



107 

orientations.  Stability analysis of these orientations suggests that in the TLVP model the 

moststable end-orientation is the Taylor orientation. The divergence of Brass, Copper, and S are 

also largely negative, which causes a faster convergence of orientations around these locations, 

and consequently, the larger increase in the density of these orientations.  

7.4 Statistical Analysis Results 

Much recent work has shown that many deformed metals develop rather similar types of 

microstructures, and that these change in a similar way with increasing strain. If the relationships 

between some of these microstructural features were to obey simple laws, it would be easier to 

model microstructural development, and because of this, there has been significant interest in 

examining similitude and scaling of deformation microstructure. Some of the examples of 

scaling and similitude that can be identified in the microstructure of metals of the same type are 

addressed here. An inverse relationship between cell size and amount of applied strain is an 

example of scaling that is valid for most metals. Another example of scaling is the inverse 

relationship between the cell size and the square root of dislocation density inside the cells, 

which is often found during high temperature deformations of FCC metals.  

The scaling and similitude that are used in the literature to compare properties of similar 

metals are basically linear relationships, used to approximate an unknown microstructure of a 

material by knowing the scaling factor and amount of similarity existing between the 

microstructures of the same materials. To examine the properties of a microstructure more 

comprehensively, in addition to texture analysis tools (utilized in the previous section), the 2-

point correlation function is employed. Using the 2-point correlation function enables us to find 

the correlation relationships between the orientation and location of grains in the studied 

microstructure, and to find the statistical features that existed or developed by deformation in the 
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material.  In this section, firstly, to confirm the data obtained from the texture analysis, volume 

fractions of ideal orientations are studied; and secondly, the 2-point correlation functions are 

employed to obtain the autocorrelation length and the maximum pair-correlation length of some 

ideal orientations, and also to recover the length of coherency in the experimental and the 

simulated microstructures.  

7.4.1 Volume Fraction of Ideal Orientations 

Volume fractions (VFs) of some ideal orientations are measured from experimental and 

simulated ODFs. To find the volume fraction of a particular ideal orientation, location of the 

orientation in the FZ3C/4 is specified, neighboring orientations within 10 degrees of the ideal 

orientation are selected, and all grains having these orientations are chosen in the microstructure; 

then the volume fraction of these grains is determined. As it is obvious, for every orientation in 

the FZ3C, there are three symmetrically-equivalent orientations (variants). Therefore, in finding 

the volume fraction of ideal orientations, variants of ideal orientations must be included – Table 

7-4. Note that for Copper and Taylor components there are only two identical variants in the 

FZ3C/4 as the third one is located at the position of either of the two invariants.  Volume fractions 

of ideal orientations measured from experimental and simulated microstructures are illustrated as 

bar-graphs in Fig. 7-17. 

One specific observation from VF-plots is that the amounts of Cube and Goss 

components are negligibly small as compared to other texture components, and their amount 

stays constant as the rolling deformation continues. This implies that Cube and Goss components 

are stable orientations and all orientations around them (within a range of 10 degrees) do not 

converge/diverge much from these points. VF of the Brass component, however, increases by  
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  Table 7-4: Ideal orientations of rolled FCC texture and their symmetrically-equivalent 
variants in the FZ3C/4 

 Variant I Variant II Variant III 

 1    2  1    2  1    2  

Cube 0 0 0 0 90 0 0 90 90 

Goss (G) 0 45 90 0 45 0 90 90 45 

Copper (C) 90 35 45 39 66 27    

Brass (Bs) 35 45 90 35 45 0 55 90 45 

Taylor 90 27 45 41 71 20    

S 59 37 63 27 58 18 52 74 34 

 
 

increasing the amount of cold rolling, but with a very low convergence rate. On the other hand, 

orientations around Copper, Taylor and S components converge faster, in both experimental and 

simulated microstructures, and VFs of these orientations are increased consistently for higher 

amounts of cold work. The rate of convergence of orientations in the simulated microstructure is 

much higher as compared to the experimental microstructure. This can be explained by grain 

interaction phenomena that occur in plastic deformation, as discussed in Section 4.5. In fact, 

when grains want to rotate, in reality, interaction forces from neighboring grains do not allow the 

studied grain to move freely.  These interactions are ignored in the TLVP model, with the 

consequence that the orientation evolution simulated by this model is overestimated.  

Absolute errors between VFs of experimental and simulated microstructures are also 

shown in Fig. 7-17 (c). It is seen that the largest contradiction between experimental and 

simulated texture results happens for the Taylor components. This is one of the obstacles of all 

Taylor-type models.  In fact, the reason  that, in  the literature, this  texture component is termed 



110 

 

Fig. 7-17:  Volume fractions of ideal orientations vs. different amounts of rolling reductions for 
(a) experimental microstructure, (b) simulated microstructure, and (c) absolute error between 
volume fractions measured from (a) and (b).    
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Taylor is that Taylor-type models overestimate the VF of this orientation.  Copper and S 

components are also overestimated by the TLVP model. The results from pole figures, fibre 

plots, and ODF sections from previous sections also verified that the TLVP model that has been 

used in simulation of orientation changes in the DC model cannot give acceptable predictions of 

texture evolution of Copper and Taylor components. Thus, Cube, Goss, Brass and S components, 

that exhibit smaller simulation errors, are taken for further analysis with the 2-point statistics in 

the next section.   

7.4.2 Two-Point Statistics 

In this section, statistical functions are incorporated to examine the accuracy of the DC 

model. The 2-point correlation functions or pair correlation functions (PCFs) are used to obtain 

some of the statistical features of the microstructure –such as (i) autocorrelation and anti-

correlation of ideal orientations, (ii) grain shape changes, and (iii) the coherence length.  

7.4.2.1 Autocorrelation Relations 

Pair correlation functions can be used to find the correlation relationships between two 

material points at distance r from each other. If autocorrelation is considered, these two points 

can be from the same grain or from two separate grains but having the same orientation. 

Correlations and anti-correlations may also happen for two separate grains with different 

orientations. For example, if grains that have Cube orientations and grains that have Goss 

orientations are selected in the microstructure, and PCFs are used to find the correlation relations 

of these grains, it can be seen that, for a specific length and direction of r, three types of 

relationship can be found (i) grains of Cube and Goss may like each other and a positive 

correlation may be found for these grains, (ii) they may have no tendency to appear together at 
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distance r; for this case, no correlation is observed between these two sets of grains (iii) they may 

like to repel each other at this distance and show an anti-correlation relation.  

To study the autocorrelation relations, PCFs are used to examine the occurrence of grains 

with a similar crystallographic orientation. In another words, )r|g,g(f 2 , which is identical to 

the 1-point correlation function or the ODF when r tends to zero, is used to study the 

autocorrelation relations.    Fig. 7-18 shows a standard PCF plot that has been obtained by 

selecting grains with the S component (and its neighboring orientations within 5 degrees away). 

FFTs were used to manipulate PCFs. A similar method, explained in Section 5.2, was used to 

obtain and illustrate the PCF plot. Additionally, the PCF plot was centered so that the origin of 

the r-space )r( , is located in the middle of the plot.   

 

Fig. 7-18:  A standard PCF plot representing the autocorrelation of grains having S orientation 

As it was expected, the center of the plot has the highest intensity. This is because the 

probability of auto-correlating and landing small vectors r in the same grain is high; but, as the 

length of r is increased the chance to find points with similar S orientation is decreased. The 
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maximum intensity occurs when r approaches zero and shows the VF of S orientation in the 

microstructure.   

The intensity in the PCF plot, Fig. 7-18, is very low, and sometimes (especially when 

studying the correlation of two different pairs of orientations is important) it is useful to 

renormalize the PCF. A method of renormalization is suggested by Gao (GAO et al. 2006).  In 

this method, the original PCF is normalized by VFs of the paired material points as: 

)g(f)g(f

)g(f)g(f)r|g,g(f
)r|g,g(f

~ 2
2 


  (7-4)

The advantage of this renormalization is that it emphasizes the magnitude of )r|g,g(f 2   

relative to )g(f)g(f  , which is the un-correlated probability for the occurrence of orientation g 

and g   at large distances in microstructures. When )g(f and )g(f  are both small, )r|g,g(f 2   

may be negligibly small; on the contrary, if )g(f)g(f   is large, )r|g,g(f 2   will also tend to 

be large at certain r. Thus, the influence of the orientation distribution on the PCF can be 

eliminated by performing this renormalization. Fig. 7-19 shows the renormalized PCF plot.  

 

Fig. 7-19:  A normalized PCF plot demonstrating autocorrelation of grains with S orientation 
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By comparing the original and the renormalized plots, it is seen that the maximum 

amount of autocorrelation in the normalized plot, 75, is roughly equivalent to the inverse of the 

maximum autocorrelation in the original plot, 0.0132. To explain this, based on the 

renormalization equation, when r is very small (for the case of maximum autocorrelation) 

)r|g,g(f 2  converges to )g(f , and the renormalized PCF is calculated as 

1)g(f/1)r|g,g(f
~

2  . Similarly, as r increases, the chance of autocorrelation is decreased,

)r|g,g(f 2  approaches zero, and the renormalized PCF consequently approaches -1, which is 

the lowest possible value of the normalized PCF.  

Autocorrelation can be used to find the grain size distribution and the shape of grains in 

the microstructure. An example is shown in Fig. 7-20. Grains with S orientations in the ND 

section of experimental and simulated microstructures (with 50% rolling reduction) are selected 

for this study. Fig. 7-20 (a) shows the geometry of grains in both experimental and simulated 

microstructures. Appropriate PCF plots that show the autocorrelation of S orientations (including 

orientations within a 5 degree range) are demonstrated in subplot (b). Another renormalization is 

required to scale the range of r based on the average grain size of the undeformed sample. The 

range of correlation in subplots (b) is, therefore, shown as r/d, where d is the average grain size 

of 18.86 microns. It is expected that grains in a sample with 50% rolling reductions elongate 

along the RD and remain unchanged along the TD; thus, the length-to-width ratio for an ideal 

50%-rolled material should be about 2.  Autocorrelation curves were measured along the RD and 

TD directions, Fig. 7-20 (a). Additionally, the autocorrelation length, rac, was measured along 

each direction, where the normalized PCF becomes zero. The autocorrelation lengths for the 

experimental and simulated microstructures along the RD are 3.21 and 4.17, and along the TD 

are 1.81 and 2.05, respectively. Therefore, the length-to-width ratio measured from the two 
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microstructures is 1.77 and 2.03, respectively. This implies that the shape of grains in the 

simulated microstructure differs a little from the experiments, which can be explained by the 

grain subdivision phenomenon observed in experiments.   

The autocorrelation length along preferred directions (i.e. RD or TD) may be important, 

but sometimes an averaged autocorrelation length might be of more interest. To obtain the 

distribution of PCFs in all directions in the r-space, a radial distribution function (RDF) was 

used. In this way, the r-space (in the 2D plane) is tessellated into equally-spaced discs with the 

same thickness. Therefore, to measure the radial autocorrelation length, a thickness of 5 microns 

was selected. Afterwards, all points inside every bin (disk) were selected, and the average value 

of autocorrelation (for every bin) was calculated. Because the area of the disc is increased as r 

increases, the averaged value of autocorrelation is finally normalized by dividing its value by the 

area of the disk. The resulting normalized RDF measured for the microstructure in Fig. 7-20, is 

shown in Fig. 7-21.  The radial autocorrelation length is measured as 2.58 and 3.68 respectively 

for the experimental and simulated microstructures.   

The radial autocorrelation length for the S orientation (including orientations within a 5 

degree range) in all samples with different amounts of cold rolling was measured similarly. For 

every level of deformation, three sections of the material (RD, TD, and ND sections) were 

examined, and the average value of the radial autocorrelation length was obtained and plotted in 

Fig. 7-22.  In addition, the average value of autocorrelation length along the RD and TD was also 

obtained.  
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Fig. 7-20:  (a) a 2-D schematic of the experimental and the simulated microstructures; (b) 
relevant autocorrelation plots for the S orientation in the 50% rolled ND sample; (c) related 
RD, TD, and radial autocorrelation curves 
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Fig. 7-21:  The radial autocorrelation curves for the experimental and simulated 
microstructures. The autocorrelation of the S orientation was obtained in the 50% rolled ND 
sample. 

Results depicted in Fig. 7-22 show that the RD autocorrelation length is increased by applying 

more deformation in both microstructures, while it stays nearly constant along the TD. The 

length of autocorrelation along the RD of the simulated microstructure, however, is increased 

with a larger rate as it is compared with the experimental one. This is explained by the fact that 

grains in the simulated microstructure are elongated along the RD by the rolling deformation. 

The autocorrelation length along the ND was not obtained because it can be predicted by the 

volume constancy principle. The comparison of the radial autocorrelations also show  that  the  

average  size  of  elongated  grains  is  consistently  increased  in  the  simulated microstructure, 

whereas in the experimental microstructure the size changes are not observed, presumably 

because of grain fragmentation.  However, it is worth noting that the autocorrelation length is 

directly related to the maximum size of grains, but it does not give the exact value of the 

maximum grain size. For example, suppose that there are two grains with similar orientation that 

are placed in a very small distance. Then, if the autocorrelation of this microstructure is studied, 

because the distance between the two grains is small, the autocorrelation of these two grains 
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assumes that these two grains are, in fact, one big grain and the reported autocorrelation length 

will be the largest distance of the outer boundaries of these two grains.  

 

Fig. 7-22:  The maximum autocorrelation length for the S orientation along RD, TD, and radial 
distribution for the experimental and simulated microstructures 

RD, TD, and radial autocorrelation lengths for Cube and Brass were similarly measured 

and demonstrated in Fig. 7-23. Subplot (a) shows the autocorrelation lengths for the Cube 

orientation. It is seen that the RD autocorrelation length does not change with deformation in the 

experimental microstructure. Again, this can be perhaps answered by considering the grain 

fragmentation phenomenon. Another observation is that although the influence of the VF on 

PCFs was resolved by using the normalized PCFs, the VF shows an important influence on the 

autocorrelation length. For example the VF of S is relatively larger than those for the Cube and 

Brass orientations. Basically, when the VF is increased by increasing the level of deformation, 



119 

the chance of finding two grains with similar orientation at close distance is increased, and 

consequently the length of autocorrelation may be increased.  

 
 

Fig. 7-23:  The maximum autocorrelation length for (a) Cube and (b) Brass orientations along 
RD, TD, and radial distribution for simulated and experimental microstructures 
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General conclusions from comparisons of autocorrelation lengths of Cube, Brass, and S 

are that (i) grains with Cube orientation like to auto-correlate at shorter distances which implies 

that the Cube grains are generally smaller in size; (ii) the auto-correlation length of Cube in the 

experimental microstructure does not vary in different directions which means that Cube grains 

are equi-axed, and their shape does not change with deformation; (iii) RD autocorrelation length 

of the simulated microstructure is always larger than the one in the experimental microstructure. 

This implies that grains in the simulated microstructure can freely deform, but in experiments 

they are not allowed to; (iv) grains with the S orientation are expected to be more elongated in 

shape as their RD autocorrelation length is larger than those for Cube and Brass.  

7.4.2.2 Pair-Correlation Relations 

The correlation relations of grains with two different sets of orientations were also 

studied.  Different pairs of ideal orientations with different ranges of neighboring orientations 

can be studied. If a range of 5 degrees from ideal orientations is selected, it was found that lesser 

correlation of pairs is obtained. Thus, a 10 degree range around studied orientations was selected. 

FFTs were used and the normalized PCFs obtained for pair-correlation analysis.  To show how 

the pair correlation plots were obtained, a pair of Cube and S orientations was selected in the 

50% reduced ND section of both experimental and simulated microstructures. Results are shown 

in Fig. 7-24.  The pair correlation plots for both microstructures are presented in subplot (a). 

Some correlations are seen at particular locations. To examine the correlations along specific 

directions, the RD and TD pair-correlation curves are demonstrated in subplot (b). It is seen that 

the pair-correlation plot is not symmetrical, and there may be some correlations in one direction 

but not in the opposite side of that direction. Therefore, in this study, it was decided to only 

consider radial pair-correlation functions that show the distance at which a specific correlation is  
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Fig. 7-24:  An example of pair-correlation plots for the Cube-S pair in the 50% rolled ND 
section (a) pair correlation plots; (b) RD and TD pair-correlation curves; (c) radial pair-
correlation curve 
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observed in the microstructure. Subplot (c) shows the radial pair-correlation curve calculated for 

both microstructures.  

Similar to the autocorrelation length introduced in the previous section, a correlation 

length can be determined. This is the distance in which the maximum correlation of studied pair 

is observed. The maximum correlation length for the experimental and simulated microstructures 

is 8.29 and 5.61, respectively. In addition to the maximum correlation length, the amount of 

correlation is also important. For example, in subplot (c), correlation of the selected pair in both 

microstructures is positive which implies that the two sets of orientations “attract” each other and 

the chance of exploring these two orientations at the maximum correlation distance is high. On 

the other hand, if the correlation density is negative, anti-correlation is occurred and the two sets 

of orientations want to “repel” each other.  

The radial pair-correlation plots for a Cube-S pair in three sections (ND, TD, and RD) 

and different levels of deformation are demonstrated in Figs. 7-25, 7-26, and 7-27.  In these 

figures, because there is not enough material in the ND direction of the most heavily deformed 

simulated microstructure (as it is seen in the TD and RD section plots), only a short range 

correlation relation of up to 10 times d was studied.   Short range correlations are seen in the TD 

and RD plots. Also, as the level of deformation is increased, the amount of correlation is 

decreased and, generally, negative values of correlation are found for heavily deformed 

microstructures. It is also seen that for the 50% rolled ND section, the experimental 

microstructure shows a correlation after 10 d, but correlations larger than half of the thickness of 

the 3D microstructure are not accurate and should not be considered in the analysis.   
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Fig. 7-25:  Pair-correlation plots for the Cube-S pair along the ND section 
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Fig. 7-26:  Pair correlation plots for the Cube-S pair along the TD section 
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Fig. 7-27:  Pair correlation plots for the Cube-S pair along the RD section 
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The maximum correlation distance for the Cube-S pair was measured in RD, TD, and ND 

sections, and the average value of the radial pair-correlation distance was obtained for different 

levels of deformation, Fig. 7-28.  

 

Fig. 7-28:  The averaged maximum correlation distance for the Cube-S pair 

According to Fig. 7-28, as the level of deformation is increased, the correlation length of 

grains with Cube and S orientations is decreased. This can be explained by the effects of the VF. 

Usually, by increasing the VF of S during deformation, as discussed before, the chance of 

finding S in the microstructure is increased, and therefore, the pair of Cube-S may correlate at 

shorter distances. It is also seen that the simulated microstructure underestimated the location of 

maximum correlation. This can also be addressed by the influences of the VF. In the texture 

analysis section, it was concluded that the VF of S predicted by the TLVP model is larger than 

that found in the experimental macrostructure. If the VF of the simulated macrostructure is 

larger, then the chance of finding S in the macrostructure is higher, and it correlates at shorter 

distance with Cube.  
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In addition to the Cube-S pair, other pairs of orientations were also studied. Results from 

the comparison of Cube-Goss, Cube-Brass, and Brass-S pairs are demonstrated in Fig. 7-29. 

Subplot (a) in this figure shows the averaged maximum correlation distance for the Cube-Goss 

pair. It is seen that the DC model could not accurately predict the correlation distance for this 

pair. One reason for this is that the VF of both Cube and Goss orientations are rather small, and 

consequently the possibility of finding a good correlation at a smaller range is low; thus, they 

will tend to positively correlate at larger distances. The correlation results of Cube-Brass and 

Brass-S are also shown in subplots (b) and (c). Because the VFs of both Brass and S are very 

large, it is seen in subplot (c) that the Brass-S pair correlates at a very small distance. 

Comparisons of the experimental and simulated microstructures also reveal that the correlation 

length for studied pairs in the simulated macrostructure is generally shorter as compared to the 

experiments. Additionally, it was found that the correlation length is decreased by increasing the 

levels of rolling deformation.  Correlation relationships of other pairs of orientations (i.e. Cube-

Copper, Cube-Taylor, etc.) can also be studied, but because these calculations are expensive and 

because the VF of Copper and Taylor varies a lot by the amount of deformation, these pairs were 

not considered.  

The amount of correlation for different pairs was also studied. The mean absolute error of 

correlation intensities is shown in Fig. 7-30. To plot the mean absolute error, the correlation 

densities for the experimental and simulated microstructures were measured, and the differences 

between the absolute values of the experimental and simulated correlation densities were attained 

and reported. 
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Fig. 7-29:  Maximum correlation length for the following pairs: (a) Cube-Goss, (b) Cube-Brass, 
and (c) Brass-S 
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Fig. 7-30:  Comparison of the mean absolute error of correlation densities by the amount of cold 
rolling for the following pairs: (a) Cube-Goss, (b) Cube-Brass, and (c) Brass-S 

In general, it was found (i) that the difference between experimental and simulated 

correlation densities for the Cube-Goss pair is large; (ii) and that by increasing the amounts of 

deformation, the absolute error is also increased in most of the studied cases.   

7.4.2.3 Recovery of the Coherence Length  

The 2-point correlation functions, )r|g,g(f   can be used to find the statistical effects of 

a point located at position x (with orientation g  ) upon the properties of the point x  (with 

orientation g ), when they are separated by xxr  . For spherical representative volumes, the 

r-space )r( , can be expressed as a sphere with radius cr , where cr  is called the coherence 

length. If randomly placed vectors of magnitude crr   are used to sample the microstructure, 

there will exist certain coherence or anti-coherence relationships between pairs of orientations. 

For vectors of magnitude crr  , however, these patterns of coherence or anti-coherence are no 
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longer observed, and the joint probability density is given by the product of probability densities 

for orientations g  and g  .  This lack of coherence, or decoupling, defines the coherence length: 

crrgfgfrggf  )()()|,(2  (7-5)

To study the coherence limit, it is useful to form the average of the absolute value of the 

normalized PCF statistics, by holding the vector length in all directions constant: rrk  . This 

leads to the magnitude of orientation coherence (either coherence or anti-coherence) at r (GAO et 

al. 2006): 
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where iN  or jN  indicates the working bin in the tessellated FZ3C/4, N is the number of bins in 

FZ3C/4, and  p is the number of two-point statistics where 0)|,(2 kji rNNf . The coherence 

length in the RD or TD can also be obtained by considering RDk rr    or TDk rr   in the above 

equations. 

The selection of bin size to tessellate the FZ3C/4 is very important in the calculation time. 

In this research, a 10 degree bin size was used and a total of 729 bins were included in 

calculations. A pair of orientations is considered by selecting two orientations at a time. Thus, 

the normalized PCFs for the simulated and experimental microstructures were calculated 

441,531729729   times. The total calculation time for every section (RD, TD, or ND) and for 

every level of strain was ~16 hours on a standard PC.  

As an example of the RD, TD, and radial coherence plots for the 50% experimentally 

rolled macrostructure (ND plane) is illustrated in Fig. 7-31.  
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Fig. 7-31:  The RD, TD and radial coherence length for the 50% rolled sample cut from the ND 
section of the experimental microstructure 

Different coherence lengths were observed along the RD and TD. The maximum 

coherence length was defined where the steady region (with no coherence existence) 

commences. Along the RD the coherence length was 3.42 where as for the TD this was 2.24. 

Also, the radial coherence length was reported as 2.62 for this case.  

The RD, TD, and radial coherence lengths for other sections of the material and at 

different amounts of strain were measured similarly. The averaged coherence length along RD, 

TD and radial distributions are shown in Fig. 7-32.  

Results from comparison of coherence lengths show that (i) the RD coherence lengths are 

typically larger; (ii) the DC model can predict the location of the coherence length for smaller 

amounts of strain, but for reductions above 70% it cannot accurately predict the length of 

coherence. 
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Fig. 7-32:  The averaged coherence length along (a) RD, (b) TD, and (c) radial distributions of 
experimental and simulated microstructures  
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8 SUMMARY AND CONCLUSIONS 

Study the texture analysis of polycrystalline materials (particularly FCC materials) has 

been the subject of many researches during the past sixty years. In texture analysis, only the 

orientation of crystallographic grains inside the microstructure is studied. As explained in 

Sections 2.2.1 and 4.2, orientation distribution function (ODF) is the statistical tool that has been 

used in the literature to examine the crystallographic texture of materials. Generally, in the 

process of texture evolution, the ODF is employed to monitor the evolution of orientations based 

upon the conservation of orientation principle –mostly in FEM models. In such FEM models, a 

preferred crystal plasticity model is used to incrementally update the location of orientations in 

the orientation space. Taylor-type models are the most well-used crystal plasticity models 

developed and utilized in FEM models. There are a few concerns, however, on using FEM 

models. The most serious problem is that in these models a Lagrangian description of motion is 

used, and consequently the shape and/or the size of the material volume element changes during 

the  deformation process which leads to a severely distorted mesh at the end of the process.  

Therefore, at large levels of deformation a remeshing process must be adapted in FEM models. 

Additionally, the iterative process in FEM models is very expensive in calculation time –

especially when a rate-dependent crystal plasticity model is considered.   Results from statistical 

modeling, show that in addition to the texture evolution the evolution of mass particles of grains 

in the real space should also be considered in any microstructure analysis. Therefore, the 
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microstructure function, which is a function of position and orientation of grain, can be 

alternatively used in the examination of the microstructure. To resolve the problems with FEM 

models, an Eulerian formulation of the problem can be designated. In this way, the evolution of 

mass particles and orientation of crystallographic grains is studied in an Eulerian coordinate 

system. This is a unique methodology of examining the microstructure and no such model has 

been reported in the literature; thus, a new formulation of the problem in the Eulerian format was 

considered in this research.   

The major purpose of this research was to establishing a new Eulerian model that predicts 

the microstructure evolution of materials under large plastic deformations. To examine the 

movement, distortion, and rotation of a crystallographic grain in a polycrystalline material, the 

location of its material particles in the mass space and the amount of rotation of its 

crystallographic orientation in the orientation space must be considered. Therefore, the 

microstructure function was used to monitor these changes in both mass and orientation spaces. 

Mass- and orientation-based continuity models that examine these changes of the grain were 

derived and validated throughout this research.  In the following, the development process of 

these continuity models is discussed: 

- Based upon the conservation of mass principle, the mass-based continuity (MC) 

model was developed in Eulerian framework. 

- This MC model was used to simulate the evolution process of material particles of a 

two isotropic phase (TIP) material placed under a 2D plane-strain compression test.  

- The framework of the MC model was additionally validated against a Lagrangian 

model with a direct calculation of particle motions. Results show that the accuracy of 

the MC model is enhanced by choosing a mesh of small size, i.e. 0.075 microns. 
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- The orientation-based continuity (OC) model was developed based upon the 

conservation of orientation principle in Eulerian format. To construct the space of 

orientations for this model, a Taylor-like viscoplastic (TLVP) crystal plasticity model 

was used to obtain the lattice velocity vectors in the cubic-orthorhombic orientation 

space, FZ3C/4.   

- To validate the Eulerian OC model, rolling deformation of a randomly textured 

aggregate including 1000 random orientations was simulated.  

- A Lagrangian model was used for further examination of the OC model. Predicted 

pole figures and results obtained from the comparison of Lagrangian and Eulerian 

models confirmed that the bin size has an important effect on the accuracy of the OC 

model. As the size of the bins decreases, the accuracy of the model and the overall 

processing time were increased. Results suggested that a reasonable compromise 

condition is achieved when a 0.5 degree mesh size is chosen for tessellating the 

FZ3C/4. 

- Based on the definition of the MF, the MC and OC models were coupled to form the 

Eulerian double continuity (DC) model.  

- It was found that for the case of ordinary DC model, most of bins in the mass and 

orientation spaces are empty throughout the entire deformation process; therefore, to 

avoid extensive and un-necessary calculations, an optimized DC model was 

developed. In the optimized DC model, instead of studying the evolution of the MF in 

both spaces, grains were studied individually. Further discussion of this method is 

found in Section 7.2.  
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- A genetic algorithm (GA) method was later employed to reconstruct a 3D 

macrostructure such that it becomes statistically equivalent to the experimental 

macrostructure. An error function that included errors from comparing the ODF and 

2-point statistics of experimental and simulated microstructures was considered, and 

the GA process was terminated with a final error of ~4%, see Section 7.1.3. 

- On the experimental part of the work, a polycrystalline high-purity nickel material 

was used to corroborate results from simulated the rolling process using the optimized 

DC model.  Appropriate rolling testing was conducted, and the macrostructure of the 

cold rolled material with levels of 0, 30, 50, 70, 85, and 92% reductions were 

obtained.  

- Lastly, the optimized DC model was used to simulate the rolling process and predict a 

final 3D microstructure for different levels of deformation.  

 

In comparison of experimental and simulated results, textural and statistical analyses 

were carried out to obtain the accuracy of the DC model in the prediction of the final 

texture/microstructure. On the texture analysis, stability of ideal orientations was examined. 

Additionally, pole figures, fibre plots, and ODF section plots were provided. As a general 

conclusion from the texture analysis of experimental and simulated microstructures, it was found 

that, in overall, by increasing the amounts of cold rolling: (i) the densities of Cube and Goss do 

not change and good predictions were obtained by the proposed model, (ii) densities of Brass, 

Copper, Taylor, and S are increased and the precision of the TLVP model is decreased. The 

largest differences were found for Copper, Taylor, and S orientations. The TLVP model 

overestimates the densities of these orientations. Reasons for the deficiencies of the TLVP model 
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are explained by the stability analysis of these orientations. Basically, it was found that in the 

TLVP model the most stable end-orientation is the Taylor orientation. The divergence of Brass, 

Copper, and S are also largely negative, which causes a faster convergence of orientations 

towards these orientations and a faster accumulation of density of these orientations. 

On the statistical analysis of the microstructures, volume fractions of ideal orientations 

were obtained. Analysis of the volume fraction of these orientations confirmed the texture 

results. Moreover, the autocorrelation length of Cube, Brass and S were studied. General 

conclusions from comparisons of autocorrelation lengths of Cube, Brass, and S are that (i) grains 

with Cube orientation cohere only at shorter distances, which implies that the Cube grains are 

generally smaller in size; (iii) RD autocorrelation length of the simulated microstructure is 

always larger than the one found in the experimental microstructure. This suggests that grains in 

the simulated microstructure can freely deform, but in the physical conditions of actual 

deformation they are not allowed to; (iv) grains with the S orientation are expected to be more 

elongated in shape as their RD autocorrelation length is larger than those for Cube and Brass.   

Pair-correlation relations of Cube-Goss, Cube-Brass, Cube-S, and Brass-S were also studied. In 

general, from the studied pair-correlation relations it was found (i) that the difference between 

experimental and simulated correlation lengths for the Cube-Goss pair is quite large, while the 

correlation length of the Brass-S pair is relatively small. This can be understood by the amount 

of VFs of orientations in each pair. VFs of Cube and Goss are very small as compared to the 

larger VFs of Brass and S. Having larger amounts of VF increases the possibility of finding that 

specific orientation in the macrostructure, and increases the chance of occurrence of large VF 

orientations at a shorter correlation range; and (ii) by increasing the amounts of deformation, the 

pair-correlation distance is decreased.   Lastly, the relationship of correlation length and the 
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amount of cold rolling was studied. It was found that the length of coherency varies with the 

selected bin size of the orientation space, and that the DC model can predict the location of the 

coherence length for smaller amounts of strain, but for reductions above ~70% it cannot 

accurately predict the length of coherence. This may be answered by considering the effects from 

the nature of experimental testing. The main issue with the experimental rolling results was that 

at large levels of deformation, cell-blocks and dislocation bands are developed. As a result, 

subdivision of grains will occur in the experimental macrostructure and change the orientation of 

subgrains. The grain fragmentation phenomenon was not considered in this research and 

obviously most of the calculation errors can be explained by physical phenomena not considered 

in the DC model.  Perhaps, in the feature and by further improvements in FEM models, the DC 

model can be incorporated with these FEM models to give a better prediction of microstructure 

evolution. 

As a final conclusion, after comparisons of textural and statistical results from the 

experimental and simulated microstructures, it is necessary to again mention that although many 

factors (e.g. interactions of grains, subdivision of grains, frictional and additional forces in 

rolling, and etc.) were not considered in the DC model, this model was not only able to 

satisfactorily predict the location of coherency and correlation of studied orientations in the 

simulated microstructure, but also perform the calculations in a shorter time as compared to 

Lagrangian models. The main advantage of the Eulerian DC model over Lagrangian models was 

that, based on the TLVP model, it was required to calculate the orientation velocity field only 

once. The obtained velocity field can be used for examination of all types of FCC materials by 

considering a scaling factor to adjust the slip hardening parameters as explained in Section 3.2.3. 
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Another benefit of using the DC model was that FFTs can be employed for faster computation 

the 2-point statistics required for the statistical analysis.  

Finally, for the future work, it is recommended: (i) that other types of crystal plasticity 

models, more specifically the statistical modeling with including the localization effects, are 

employed and the advantages and limitations of these models on the microstructure predictions 

are studied; (ii) that other types of materials (e.g. FCC, BCC, or HCP materials) or other types of 

deformation processes are considered to examine the accuracy of the MC model on the 

prediction of more complicated deformed microstructures; (iii) that improve the Eulerian-based 

MC model with coupling this model with other models to include physical phenomena and other 

statistical futures of the microstructure that in reality exist in the microstructure of 

polycrystalline materials.   
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APPENDIX A CONTINUITY EQUATION IN THE MASS SPACE 

Based upon the conservation of mass principle, a continuity equation in the real space is 

presented here.  We are interested to formulate the continuity equation in the Eulerian coordinate 

system, thus a spatial description of the material time derivative of a function, /DtD , can be 

shown as (LAI et al. 1993): 

where x  represents the position of a material point at time t  with regard to a spatial (or Eulerian) 

coordinate system, and X denotes the position of that material point at the beginning of the 

process ( 0t ). The velocity of material point moving in the microstructure is shown as v .  

Now if we take an arbitrary volume denoted by , and assume that the bounding closed surface 

of this region be continuous and denoted by  , using the spatial description of the material time 

derivative, it can be shown that the time derivative of the volume integral over the mass density 

),( tx  is given by: 

The principle of conservation of mass for a material region requires that the amount of mass over 

the entire region does not change with the passage of time; therefore the material derivative of 

mass density over this region must be zero and we have: 
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This equation is known as the control-volume formulation of the conservation of mass principle. 

Converting the surface integral to a volume integral by means of the divergence theorem, we 

obtain: 

Since this equation must be valid for any arbitrary volume in the mass space, the integral is 

vanished, and the local form of the conservation of mass principle can be formulated as: 

This equation, called the continuity equation, expresses local conservation of mass at any point 

in a continuous medium. 





 dsnvdx

dt

d
ˆ.  (A-3)

0)( 



 






dxvdiv
t

  (A-4)

0)( 



vdiv
t


 (A-5)



151 

APPENDIX B FORWARD-BACKWARD FINITE DIFFERENCE SCHEME 

The finite difference method that is used in computation of partial derivatives presented 

in continuity equations is explained by a simple example here. Suppose that we have a one-

dimensional MF, as in Table B-1. The MF is taken to be 0 for phase 1 and 1 for phase 2. 

Furthermore, we suppose that a positive velocity is applied and it deforms the MF such that it 

moves the MF one bin to the right. Then, for instance for the mass-based continuity equation, Eq. 

(5-5) is simplified to   tdxxdMxvM  /)()( . By assuming that 1t and that 1 x , for a 

positive velocity everywhere in the domain we have 1v ; Thus the only undetermined term is 

the partial derivatives for which a forward or backward FDM can be used. As we know the 

forward FDM adopted for the MF has the form   xMMM iii   /' 1 , and the backward 

difference has this form:   xMMM iii   /' 1 . Therefore, to find the final MF based upon this 

simplified iteration scheme we will have: tvMMM if  ' . Table B-1 shows the final MF 

calculated by the forward and backward differences for a positive velocity. The final MF 

calculated by the forward difference gives improper values for the MF and it cannot be used for 

positive velocities; however, the MF predicted by the forward FDM shows that phase 2 is 

moving to the right under positive velocities.  
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Table B-1:  An example of applying forward/backward differences for positive velocities 

Mi 0 0 1 1 1 0 0 

dM/dx (forward)  0 1 0 0 -1 0  

Mf (forward)  0 -1 1 1 2 0  

dM/dx (backward)   0 1 0 0 -1 0 

Mf (backward)   0 0 1 1 1 0 

 
 

Similarly it can be shown that the forward difference method can be used for negative velocities. 
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APPENDIX C CONTINUITY EQUATION IN THE ORIENTATION SPACE  

In this section, the continuity equation for orientations is formulated. The continuity 

equation for orientations is expressed as: 

where f is the ODF and w  is the velocity vector in the orientation space. The idea here is to find 

the divergence term in the Euler angle workspace. The EAS is taken as a Riemannian manifold 

and the divergence is obtained. In a Riemannian manifold, the covariant derivative can be used 

to find the differentiation of a vector field, with it components, on the manifold (HICKS 1965; 

SCHUTZ 1985): 

where i
jk  are the Christoffel symbols having a unique canonical connection, called the Levi-

Civita connection, with the coordinate systems on the manifold (MORAWIEC 2004): 
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In this equation, ijg  is the covariant form of the metric tensor, ijg , and its components are 

defined by k
i

jk
ij gg   where k

i  is the Kronecker delta taking 1 if i=k, and 0 otherwise. 

For Euler angles the components of the metric tensor and its covariant tensor, gij, are: 

where 3/4c  and  jlikklijlkji  
2

1
)( . Similarly  jlikklijlkji  

2

1)( . The 

Christoffel symbols are: 

Representing the orientation flow field as fwJ  , one can find the divergence term in Eq. (C-1) 

based upon the definition of the covariant derivative: i
iJJdiv ;)(  . Using Eq. (C-2) the 

divergence can be shown in the form of Christoffel symbols in the EAS: 

where ),,( 21   ggi  denotes the correspondence Euler angles in the EAS and should not be 

confused by the metric tensor. It is found that among all Christoffel symbols of the form  ij
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We can now place the divergence operator into the continuity equation:  

The final form of the continuity equation in the Euler Angle space can then be obtained by 

replacing the orientation flow field i
i fwJ  : 

which represents the conservation of orientation principle in Eulerian framework. 
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