
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2010-06-30

Practical Improvements in Applied Spectral Learning Practical Improvements in Applied Spectral Learning

Adam C. Drake
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Drake, Adam C., "Practical Improvements in Applied Spectral Learning" (2010). Theses and Dissertations.
2546.
https://scholarsarchive.byu.edu/etd/2546

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2546?utm_source=scholarsarchive.byu.edu%2Fetd%2F2546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Practical Improvements in Applied Spectral Learning

Adam Drake

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Dan Ventura, Chair
Tony Martinez

Christophe Giraud-Carrier
Scott Woodfield
Jay McCarthy

Department of Computer Science

Brigham Young University

August 2010

Copyright c© 2010 Adam Drake

All Rights Reserved

ABSTRACT

Practical Improvements in Applied Spectral Learning

Adam Drake

Department of Computer Science

Doctor of Philosophy

Spectral learning algorithms, which learn an unknown function by learning a spectral
representation of the function, have been widely used in computational learning theory to
prove many interesting learnability results. These algorithms have also been successfully
used in real-world applications. However, previous work has left open many questions about
how to best use these methods in real-world learning scenarios.

This dissertation presents several significant advances in real-world spectral learning.
It presents new algorithms for finding large spectral coefficients (a key sub-problem in spec-
tral learning) that allow spectral learning methods to be applied to much larger problems
and to a wider range of problems than was possible with previous approaches. It presents an
empirical comparison of new and existing spectral learning methods, showing among other
things that the most common approach seems to be the least effective in typical real-world
settings. It also presents a multi-spectrum learning approach in which a learner makes use
of multiple representations when training. Empirical results show that a multi-spectrum
learner can usually match or exceed the performance of the best single-spectrum learner.
Finally, this dissertation shows how a particular application, sentiment analysis, can benefit
from a spectral approach, as the standard approach to the problem is significantly improved
by incorporating spectral features into the learning process.

Keywords: spectral learning, Fourier-based learning, Fourier transform, machine learning,
search algorithms, sentiment analysis

Contents

1 Introduction 1

2 Search Techniques for Spectral Learning 5

2.1 Introduction . 6

2.2 Background . 7

2.2.1 Spectral Representations . 7

2.2.2 Spectral Learning . 11

2.2.3 The MSE Spectrum . 14

2.2.4 Finding Large Spectral Coefficients 15

2.3 Finding Large Coefficients is Hard . 16

2.4 Bounding Coefficient Size . 25

2.4.1 Definitions & Notations . 25

2.4.2 Bounding Coefficient Size via β-Reductions 26

2.4.3 Obtaining β-Reduced Data Sets . 29

2.5 Coefficient Search Algorithms . 37

2.5.1 Branch-and-Bound Search Algorithm 38

2.5.2 Beam Search . 40

2.6 Variable-Ordering Heuristic . 41

2.7 Empirical Results . 43

2.8 Analysis . 46

2.8.1 Example Distribution . 47

2.8.2 Coefficient Size & Distribution . 54

iii

2.9 Conclusion . 57

2.10 Appendix: Additional Theorems . 58

3 An Empirical Comparison of Spectral Learning Methods for Classification 60

3.1 Introduction . 61

3.2 Background . 61

3.3 Spectral Learning Methods . 63

3.3.1 Selecting Basis Functions . 63

3.3.2 Assigning Coefficients . 66

3.4 Empirical Results . 69

3.4.1 Assigning Coefficients . 69

3.4.2 Selecting Basis Functions . 72

3.5 Conclusion . 75

4 Improving Spectral Learning by Using Multiple Representations 77

4.1 Introduction . 78

4.2 Background . 78

4.2.1 Spectral Representations . 78

4.2.2 Spectral Learning . 80

4.3 Motivation . 82

4.4 Multi-Spectrum Learning Methods . 83

4.4.1 Best-Basis . 83

4.4.2 Ensemble . 84

4.4.3 Bag-Of-Features . 85

4.5 Results . 85

4.5.1 Single-Spectrum vs. Best-Basis . 86

4.5.2 Single-Spectrum vs. Ensemble . 88

4.5.3 Single-Spectrum vs. Bag-Of-Features 89

iv

4.5.4 Multi-Spectrum Comparison . 92

4.6 Conclusion . 92

5 Sentiment Regression: Using Real-Valued Scores to Summarize Overall

Document Sentiment 95

5.1 Introduction . 96

5.2 Related Work . 97

5.3 Real-Valued Sentiment Analysis . 97

5.4 Feature Selection . 98

5.5 Learning Algorithms . 100

5.5.1 Naive Bayes . 101

5.5.2 Linear Regression . 101

5.5.3 SVM . 102

5.6 Results . 102

5.6.1 Real-Valued Sentiment Prediction . 103

5.6.2 Classification vs. Regression . 105

5.7 Conclusion . 106

6 Using Spectral Features to Improve Sentiment Analysis 108

6.1 Introduction . 109

6.2 Background . 110

6.2.1 Spectral (Fourier) Analysis . 111

6.2.2 Spectral Learning . 112

6.3 A New Spectral Learning Algorithm . 113

6.4 Spectral Learning Results . 116

6.5 Spectral Features . 119

6.6 Using Spectral Features to Improve Learning 121

6.7 Identifying Relative Differences in Sentiment 122

v

6.8 Conclusion . 123

7 The Maximum Satisfiability and Largest Coefficient Problems 125

7.1 Introduction . 126

7.2 Background and Definitions . 126

7.3 Using Coefficient Search Techniques to Solve Satisfiability Problems 129

7.3.1 Algorithm . 129

7.3.2 Empirical Results . 131

7.4 Using MAX-SAT Techniques to Find Large Spectral Coefficients 133

7.4.1 MAX-SAT Techniques and Finding Coefficients 133

7.4.2 Empirical Results . 135

7.5 Conclusion . 137

8 Conclusion 139

References 143

vi

Chapter 1

Introduction

One of the most significant advances in computational learning theory has been the

development of algorithms that learn an unknown function by learning a Fourier representa-

tion of the function. These spectral learning algorithms have led to many significant theoret-

ical advances, as they have made it possible for researchers to prove many new learnability

results about the classes of functions that can be learned (efficiently) in various scenarios.

These spectral learning algorithms have also led to successful real-world applications.

However, many open questions and issues in spectral learning are left unresolved by

previous work. For example, many of the algorithms presented in computational learning

theory cannot be applied in real-world domains because they rely on assumptions that signif-

icantly limit their applicability. In addition, several different approaches to learning spectral

representations have been presented, but it is not clear which are most effective in typical

real-world learning scenarios. And, although previous work has focused on the Fourier rep-

resentation, this is just one of many possible representations that a spectral learner might

use, and it seems natural to consider how a learner might take advantage of multiple rep-

resentations. This dissertation explores and addresses these and other open questions and

issues.

Chapter 2 is devoted to a central sub-problem of spectral learning: finding the largest

coefficients of a function’s spectral representation. Spectral learning algorithms typically

learn a function by identifying and approximating the largest spectral coefficients. However,

the number of coefficients is exponential in the number of inputs to a function, making brute-

1

force approaches to computing and finding large coefficients impractical for large learning

problems. Some previous approaches have avoided this difficulty by relying on assumptions

about which coefficients will be large. However, by not considering all coefficients, the

representational power of these approaches is limited. Algorithms have been developed that

do explore the entire space of coefficients, but they are not widely applicable since they

rely on assumptions that are not typical of real-world scenarios (e.g., assuming that specific

examples can be requested while training). This chapter focuses on the problem of finding

large coefficients in the common scenario in which a learner must learn an unknown function

from a fixed set of examples. It first presents a theoretical analysis of the hardness (i.e.,

NP-completeness) of the problem. Then, it introduces a practical method for bounding the

size of the largest possible coefficient in any region of a spectral representation, and shows

how the method can be incorporated into search algorithms that can find large spectral

coefficients without computing the entire spectrum.

Chapter 3 addresses the question of what is the best way to learn spectral represen-

tations. Several different approaches to spectral learning have been presented, but it is not

clear from previous work which of these methods are best for real-world learning scenarios.

This chapter breaks down the spectral learning process into two sub-problems: (1) deter-

mining which basis functions to use, and (2) determining how to set the coefficients of the

selected basis functions. It compares different combinations of the most significant previ-

ous approaches to these sub-problems, and shows which approaches work best in real-world

settings.

Chapter 4 proposes a multi-spectrum approach to spectral learning. In previous

work, spectral learning algorithms have used a single representation. However, there are

many possible representations that a learner could use, and it is easy to show that no one

representation can be best for all learning problems. This chapter suggests three fundamental

ways that a spectral learner might use multiple representations when learning, and it shows

which of these approaches perform best in real-world settings.

2

In Chapter 5, the dissertation departs briefly from its spectral learning theme to

introduce a specific application to which spectral learning is applied in Chapter 6. The

application introduced in Chapter 5 is the problem of learning to assign real-valued scores

to documents that indicate the overall positive or negative sentiment being expressed. This

“sentiment regression” problem can be viewed as a fine-grained variant of the typical sen-

timent classification problem of assigning a document to one of a few sentiment categories

(e.g., positive, negative, or neutral). This chapter compares the performance of a few ma-

chine learning algorithms at this task, and it analyzes the appropriateness of a regression

approach (relative to the commonly-used classification approach), as it compares the per-

formance of classification and regression approaches as the number of sentiment categories

increases.

Building on the spectral learning results of previous chapters, Chapter 6 presents a

spectral approach to the sentiment regression problem introduced in Chapter 5. A common

approach to this type of problem is to identify a set of “sentiment” words, and then to apply

a machine learning algorithm to learn to classify sentiment based on the presence/absence of

those words. The spectral representations used in this dissertation, which are applicable to

real functions of Boolean inputs, are a natural fit to this application. The spectral features

(i.e., basis functions) extend the commonly used word presence model by allowing the learner

to recognize how logical ANDs, ORs, and XORs of the word presence features affect overall

sentiment. Building on the results of Chapters 3 and 4, Chapter 6 presents a new spectral

learning algorithm for sentiment analysis and compares its performance to that of other

learning algorithms. Chapter 6 also shows how the spectral learning algorithm can be used

as a feature selector, and how other algorithms can improve their performance by using the

spectral features as inputs.

Finally, based on the observation in Chapter 2 that MAX-2-SAT (the maximum

satisfiability problem, with the constraint that there are two literals per clause) can be

reduced to the problem of finding the largest coefficient in a spectral representation, Chapter

3

7 explores the potential benefit of applying algorithms and methods for solving MAX-SAT

problems to the problem of finding large coefficients, and vice versa. It presents results

of MAX-SAT-inspired coefficient search algorithms, and also presents results of applying a

coefficient search algorithm to satisfiability problems.

(Portions of Chapter 2 appeared previously in the proceedings of the 2008 AAAI

Workshop on Search in Artificial Intelligence and Robotics [Drake and Ventura, 2008] and in

the proceedings of the 2009 International Joint Conference on Artificial Intelligence [Drake

and Ventura, 2009]. Chapter 5 appeared previously in the proceedings of the 2008 IEEE

International Conference on Semantic Computing [Drake et al., 2008].)

4

Chapter 2

Search Techniques for Spectral Learning

Abstract

Spectral learning algorithms learn an unknown function by learning a spectral representa-

tion of the function. Typically, the algorithm will attempt to do this by identifying the large

coefficients of the function’s spectral representation. Unfortunately, the number of spectral

coefficients is exponential in the number of input features, making standard approaches to

spectral computation impractical for large learning problems. In this paper, we analyze

the problem of finding large spectral coefficients and introduce practical search algorithms,

both complete and incomplete, for finding large coefficients in real-world settings. Although

we show that the coefficient search problem is NP-Complete for the class of spectral repre-

sentations under consideration, the search algorithms we present perform well in practice.

5

2.1 Introduction

Spectral learning algorithms learn an unknown function by learning a spectral representation

of the function. Spectral learning methods have been studied extensively in learning theory,

where algorithms that learn Fourier representations have been used to prove many interesting

learnability results [Blum et al., 1994, Bshouty and Tamon, 1996, Jackson, 1997, Jackson

et al., 2002, Kushilevitz and Mansour, 1993, Klivans et al., 2004, Linial et al., 1993, Mansour,

1995]. More recently, variations of these algorithms have been effectively applied in real-world

settings [Drake and Ventura, 2005, Kargupta and Park, 2001, 2004, Kargupta et al., 2000,

2002, Mansour and Sahar, 2000, Park et al., 2001].

In order to learn effectively, a spectral learning algorithm must be able to identify

the large coefficients of a function’s spectral representation. This can be problematic if a

learning problem has many input features, as the number of spectral coefficients is exponen-

tial in the number of inputs, and computing the entire spectrum is feasible only for small

problems. In some cases, knowledge of the class of functions being learned may allow the

algorithm to restrict its attention to a small subset of the coefficients (e.g., to low-order

coefficients) [Bshouty and Tamon, 1996, Jackson et al., 2002, Klivans et al., 2004, Kargupta

and Park, 2001, 2004, Kargupta et al., 2000, 2002, Linial et al., 1993, Park et al., 2001]. In

general, however, the large coefficients can be anywhere in the spectrum. Algorithms have

been developed for this more general case [Blum et al., 1994, Jackson, 1997, Kushilevitz and

Mansour, 1993, Mansour, 1995, Mansour and Sahar, 2000], but they either rely on assump-

tions that are not typical of real-world scenarios (e.g., assuming a uniform distribution over

examples) or can only be applied in limited domains (e.g., where an oracle is present to

provide examples at training time).

This paper considers the problem of finding large coefficients in the common real-

world scenario in which a learner is asked to learn an unknown function from an arbitrary,

fixed set of labeled examples (i.e., in an agnostic learning setting). In particular, it discusses

6

the hardness of the coefficient search problem and presents a practical approach to finding

large spectral coefficients in real-world settings.

The remainder of this paper is organized as follows: Section 2.2 provides background

information on spectral representations and spectral learning. Section 2.3 discusses the

hardness of the coefficient search problem, showing that the problem of finding a large

coefficient is NP-Complete for a class of spectral representations that includes the Fourier and

other representations. Section 2.4 introduces a method for obtaining bounds on coefficient

size in regions of a spectral representation, and Sections 2.5 and 2.6 show how this technique

can be incorporated into practical algorithms for finding large coefficients. Section 2.7 shows

that these algorithms perform well in practice, as they usually only need to explore a small

fraction of the coefficient search space to find the largest coefficients. Finally, Section 2.8

analyzes some of the characteristics of learning problems that affect the performance of the

algorithms.

2.2 Background

Before describing the spectral learning approach and the problem of finding large coefficients,

some background on the spectral representations being considered here is required.

2.2.1 Spectral Representations

The space of functions considered in this paper is the set F of functions of the form f :

{0, 1}n → R. A basis B for F is a linearly-independent subset of F that is capable of

expressing any f ∈ F through some linear combination. There will be 2n functions φα :

{0, 1}n → R in such a basis, and we assume that each can be uniquely identified by its

n-digit binary label α. Then, any f can be expressed as

f(x) =
∑

α∈{0,1}n
f̂(α)φα(x) (2.1)

7

where f̂ gives the unique linear combination of the basis functions that is equivalent to f .

Each f̂(α) is a spectral coefficient that corresponds to basis function φα.

The coefficients of a spectral representation in basis B can be obtained by the follow-

ing:

f̂(α) =
∑

x∈{0,1}n
f(x)φ−1x (α) (2.2)

where φ−1x : {0, 1}n → R is the xth basis function in B−1, the inverse of basis B. For any

basis B, B−1 is the unique basis for which the following holds:

∀α, β

 ∑
x∈{0,1}n

φx(α)φ−1β (x) =
∑

x∈{0,1}n
φ−1x (β)φα(x) =

 1 : if α = β

0 : if α 6= β

(This is analogous to the fact that the inverse of a square matrix A is the matrix A−1 such

that AA−1 = A−1A = I, where I is the identity matrix. Note that φ−1α does not denote the

function that is the inverse of φα; that is, φ−1α is not a function of the form φ−1α : R→ {0, 1}n

such that ∀x φ−1α (φα(x)) = x. Rather, for any basis function φα in a basis B, φ−1α denotes

the basis function in B−1 that has the same label α.)

One well-known basis is the Fourier basis. The Fourier basis functions are defined by

the following:

χα(x) = (−1)
∑
i αixi =

 +1 : if
∑

i αixi is even

−1 : if
∑

i αixi is odd
(2.3)

where α, x ∈ {0, 1}n. Each χα is an XOR function, returning −1 iff the XOR of a particular

subset of the inputs is true. The subset is implicitly defined by α. Since αixi = 0 when

αi = 0, and since αixi = xi when αi = 1, the output of χα depends only on those xi for

which αi = 1. The basis functions of the inverse Fourier basis are defined as follows:

χ−1x (α) =
1

2n
(−1)

∑
i αixi =

 + 1
2n

: if
∑

i αixi is even

− 1
2n

: if
∑

i αixi is odd
(2.4)

8

Note that the Fourier basis is identical to its inverse, modulo a constant factor. (The

Fourier basis functions can be defined to output ±1/
√

2n, in which case the inverse basis

functions also output ±1/
√

2n, and the Fourier basis is identical to its inverse.) This is

due to the fact that the Fourier basis is symmetric (i.e., χα(x) = χx(α)) and orthogonal

(i.e., α 6= β ⇒
∑

x χα(x)χβ(x) = 0). Because of the symmetry and orthogonality, Fourier

coefficients can be computed in any of the following ways:

f̂(α) =
∑

x∈{0,1}n
f(x)χ−1x (α) =

1

2n

∑
x∈{0,1}n

f(x)χx(α)

=
∑

x∈{0,1}n
f(x)χ−1α (x) =

1

2n

∑
x∈{0,1}n

f(x)χα(x) (2.5)

However, this does not hold in general.

For example, consider the OR basis, which is patterned after the Fourier basis but

uses OR functions instead of XOR functions. The OR basis functions are defined as follows:

ζα(x) = 1− 2I

(∑
i

αixi > 0

)
=

 +1 : if
∑

i αixi = 0

−1 : if
∑

i αixi > 0
(2.6)

(I() is an indicator function that outputs 1 if the enclosed expression is true and outputs 0

otherwise.) These functions compute the OR of those inputs for which αi = 1. The basis

functions of the inverse OR basis are defined by the following:

ζ−1x (α) =

1
2

: if (x = 0n ∧ α = 0n)

1
2
(−1)n+

∑
i αi+xi : if (x 6= 0n ∨ α 6= 0n) ∧ ∀i(xi = 1 ∨ αi = 1)

0 : if (x 6= 0n ∨ α 6= 0n) ∧ ∃i(xi = 0 ∧ αi = 0)

(2.7)

9

The OR basis is not orthogonal, so it is not equivalent to its inverse. It is symmetric, however,

so either of the following can be used to compute the coefficients of an OR representation:

f̂(α) =
∑

x∈{0,1}n
f(x)ζ−1x (α) =

∑
x∈{0,1}n

f(x)ζ−1α (x) (2.8)

Finally, consider the AND basis, which is neither symmetric nor orthogonal. It is also

patterned after the Fourier basis, and its basis functions compute the AND of those inputs

for which αi = 1:

ξα(x) = 1− 2I

(∑
i

αixi <
∑
i

αi

)
=

 +1 : if
∑

i αixi =
∑

i αi

−1 : if
∑

i αixi <
∑

i αi

(2.9)

(Note that the AND functions output −1 when the AND is false, while the OR and XOR

functions output −1 when the OR or XOR is true. Defining the functions this way will be

convenient for the algorithms presented later.) The basis functions of the inverse AND basis

are defined as follows:

ξ−1x (α) =

1
2

: if (x = 1n ∧ α = 0n)

1
2
(−1)

∑
i αi+xi : if (x 6= 1n ∨ α 6= 0n) ∧ ∀i(xi = 0 ∨ αi = 1)

0 : if (x 6= 1n ∨ α 6= 0n) ∧ ∃i(xi = 1 ∧ αi = 0)

(2.10)

Since the AND basis is neither symmetric nor orthogonal, the coefficients of an AND repre-

sentation can only be computed by the following:

f̂(α) =
∑

x∈{0,1}n
f(x)ξ−1x (α) (2.11)

For any basis B = {φα : α ∈ {0, 1}n}, the transpose of B is defined to be the basis

BT = {φTα : α ∈ {0, 1}n} such that ∀α, x(φα(x) = φTx (α)). (This is analogous to the transpose

of a matrix A being the matrix AT where ∀i, j(Aij = ATji).) We will use the notation B−T

10

to denote the basis that is the inverse of the transpose of B (or, equivalently, the transpose

of the inverse of B). Therefore, B−T = (BT)−1 = (B−1)T .

Note that if B is symmetric then B = BT . Therefore, the following relationships

exist between the OR and XOR bases and their transposes:

χTα(x) = χα(x) = χx(α) = χTx (α)

χ−Tα (x) = χ−1α (x) = χ−1x (α) = χ−Tx (α)

ζTα (x) = ζα(x) = ζx(α) = ζTx (α)

ζ−Tα (x) = ζ−1α (x) = ζ−1x (α) = ζ−Tx (α)

For the AND basis and its transpose, on the other hand, only the following hold:

ξTα (x) = ξx(α)

ξ−Tα (x) = ξ−1x (α)

2.2.2 Spectral Learning

For the task of learning an unknown function f from a set X of 〈x, f(x)〉 examples, spectral

learning algorithms typically attempt to learn f by approximating its spectral representa-

tion, f̂ , from X. For example, the coefficients of the AND, OR, and XOR bases can be

approximated by the following:

f̂X(α) =
2n

|X|
∑

〈x,f(x)〉∈X

f(x)φ−1x (α) (2.12)

where f̂X is the spectral representation of X, or the approximation of f̂ from X. Equation

2.12 provides an increasingly accurate approximation as |X| increases.

Since there are 2n basis functions for an n-input function, it is impractical to use all

basis functions unless n is small. Therefore, spectral learning algorithms will typically use

11

only those basis functions whose estimated coefficients are largest, as these basis functions

contribute the most to the linear combination. If m basis functions are used, then the set A

of the labels of those basis functions is given by:

A = argmax
α1,...,αm

∑
α∈{α1,...,αm}

∣∣∣f̂X(α)
∣∣∣ (2.13)

and a spectral learner’s approximation of f is given by:

f(x) ≈
∑
α∈A

f̂X(α)φα(x) (2.14)

Although this approach to spectral learning is the most common, it is not always

the most effective. Instead of trying to approximate f̂ , some spectral learning approaches

attempt to learn a spectral representation ĝ such that g ≈ f :

f(x) ≈ g(x) =
∑
α

ĝ(α)φα(x) (2.15)

Often, this is a more effective approach, meaning that g is a better approximation of f , even

though there may have been no explicit attempt to make ĝ resemble f̂ .

For example, one alternative is to view spectral learning as a feature selection problem,

where the basis functions are features and spectral learning is the process of selecting and

combining the best features. With this perspective, one might try to select basis functions

that are similar to f . Squared error is a computationally convenient similarity metric that

leads to the following:

A = argmin
α1,...,αm

∑
α∈{α1,...,αm}

min
ĝX(α)

∑
〈x,f(x)〉∈X

(f(x)− ĝX(α)φα(x))2

 (2.16)

12

For each φα, the value of ĝX(α) that minimizes squared error over X is given by:

ĝX(α) =
1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x) (2.17)

where ‖φα‖2X =
∑
〈x,f(x)〉∈X(φα(x))2. (See Theorem 8 in the appendix for details.) If

∀α, x(φα(x) = ±k) for some k ∈ R, then Equation 2.17 simplifies to:

ĝX(α) =
1

k2|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (2.18)

If k = 1, as is the case for the AND, OR, and XOR bases, then Equation 2.17 simplifies

further to:

ĝX(α) =
1

|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (2.19)

For any k, if ∀α, x(φα(x) = ±k), then |ĝX(α)| is inversely proportional to
∑

X(f(x) −

ĝX(α)φα(x))2, and Equation 2.16 is equivalent to the following:

A = argmax
α1,...,αm

∑
α∈{α1,...,αm}

|ĝX(α)| (2.20)

Thus, for bases like the AND, OR, and XOR bases, selecting the basis functions with smallest

squared error over X is equivalent to selecting the basis functions with the largest coefficients

in ĝX . After the basis functions are selected, the coefficients can be set to optimize any metric,

such as minimum squared error of the entire model over the training data:

argmin
ĝX(α1),...,ĝX(αm)

∑
〈x,f(x)〉∈X

f(x)−
∑

α∈{α1,...,αm}

ĝX(α)φα(x)

2

(2.21)

Selecting basis functions that are good approximations of f is also the strategy used in

boosting approaches to spectral learning [Jackson, 1997, Jackson et al., 2002].

13

For the Fourier/XOR basis, the basis function selection methods implied by Equations

2.13 and 2.20 are equivalent. That is, the basis functions whose coefficients are largest in

the XOR representation of f are also the XOR functions that best approximate f (in terms

of squared error). In general, however, this is not true, and one must typically choose which

approach to follow. The remainder of this paper will focus on the minimum-squared-error

approach, as it has been shown to perform better in practice [Drake and Ventura, 2011a].

For any spectral learning approach, the algorithms can be naturally applied to

Boolean classification problems by encoding the outputs of positive and negative examples as

−1.0 and 1.0, respectively, and using the sign of the model’s output to make classifications:

f(x) ≈

 false : if
∑

α∈A f̂X(α)φα(x) ≥ 0

true : if
∑

α∈A f̂X(α)φα(x) < 0
(2.22)

2.2.3 The MSE Spectrum

In Equations 2.17-2.19, ĝX approximates a spectrum ĝ in which each ĝ(α) minimizes the

squared difference between φα and f . This spectrum will be referred to as the Minimum

Squared Error (MSE) spectrum. Stated precisely, the MSE spectrum of a function f with

respect to basis B = {φα : α ∈ {0, 1}n} is denoted by f̌ and is defined by:

f̌(α) =
1

‖φα‖2
∑

x∈{0,1}n
f(x)φα(x) (2.23)

where ‖φα‖2 =
∑

x∈{0,1}n(φα(x))2. The approximation of f̌ from a set X of examples, or the

MSE spectrum of X, is denoted by f̌X and given by:

f̌X(α) =
1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x) (2.24)

14

where ‖φα‖2X =
∑
〈x,f(x)〉∈X(φα(x))2. Again, these definitions simplify for the AND, OR, and

XOR bases:

f̌(α) =
1

2n

∑
x∈{0,1}n

f(x)φα(x) (2.25)

f̌X(α) =
1

|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (2.26)

Remember that f̌ does not provide a representation of f in basis B (unless f̌ = f̂).

In general, f̌ provides a representation of f in basis B−1:

f(x) =
∑

α∈{0,1}n
‖φα‖2 f̌(α)φ−1x (α)

(See Theorem 9 in the appendix for details.) However, being able to represent f in B−1 is

not the motivation for the MSE spectrum. Rather, it is interesting because for some bases

(including the AND, OR, and XOR bases) large coefficients in the MSE spectrum correspond

to basis functions in B that are good approximations of f .

2.2.4 Finding Large Spectral Coefficients

Whether a spectral learning approach is based on approximating a function’s representation

in a particular basis or on identifying and combining useful features, the core of a spectral

learning algorithm is usually the process of finding large coefficients in some spectrum.

However, since there are an exponential number of coefficients, brute-force approaches to

computing and identifying large coefficients (such as the Fast Fourier Transform algorithm)

are infeasible for large learning problems. Consequently, more sophisticated algorithms are

needed.

15

2.3 Finding Large Coefficients is Hard

As algorithms are developed for finding large spectral coefficients, it will be useful to know

when polynomial-time algorithms may or may not exist. This section shows that for the

spectra considered in this paper, no polynomial-time algorithms exist in the general case

(i.e., for an arbitrary data set), unless P = NP.

Definitions and Notation

The proof of the hardness of the coefficient search problem is based on reduction from

MAX-2-SAT. MAX-2-SAT is a restricted version of MAX-SAT, the maximum satisfiability

problem, which is the problem of determining the maximum number of clauses in a con-

junctive normal form (CNF) expression that can be simultaneously satisfied by any truth

assignment. In MAX-2-SAT, each clause may contain only two literals. Both MAX-SAT and

MAX-2-SAT are known to be NP-complete problems. The following definition formalizes

the MAX-2-SAT problem, casting it as a set membership problem.

Definition 1 (MAX-2-SAT). Given a set U of binary variables, a set C of CNF clauses over

U such that each clause c ∈ C contains 2 literals, and a scalar m, MAX-2-SAT = {〈U,C,m〉 :

there exists a truth assignment for the variables in U that simultaneously satisfies at least m

clauses in C}.

Definition 2 formalizes the problem of finding large coefficients in f̌ in a similar way.

Definition 2 (LARGE-f̌ -COEF). For a given basis B = {φα : α ∈ {0, 1}n}, if X is a set

of 〈x, f(x)〉 examples with x ∈ {0, 1}n and f(x) ∈ R, then LARGE-f̌ -COEF = {〈n,X, θ〉 :

there exists α ∈ {0, 1}n such that |f̌X(α)| ≥ |θ|}.

The following definitions describe “satisfiability” functions that will be useful for

demonstrating the hardness of LARGE-f̌ -COEF.

16

Definition 3 (fc). If c = (li ∨ lj) is a clause of two literals where li ∈ {ui,¬ui} and

lj ∈ {uj,¬uj} for some variables ui, uj ∈ {u1, u2, ..., un}, then fc : {0, 1}n → {0, 1} is the

function defined by

fc(x) =

 1 : if c is satisfied when ui = xi and uj = xj

0 : otherwise

Definition 4 (fC). If C is a set of clauses such that each c ∈ C is of the form c = (li ∨ lj)

with li ∈ {ui,¬ui} and lj ∈ {uj,¬uj} for some variables ui, uj ∈ {u1, u2, ..., un}, then

fC : {0, 1}n → N is the function defined by

fC(x) =
∑
c∈C

fc(x)

Thus, fc returns 1 or 0 depending on whether or not clause c is satisfied by truth

assignment x, and fC gives the number of clauses in a set C that are satisfied by truth

assignment x.

The following lemma shows that the spectral representation of any fC is related to

the spectral representations of its constituent fc functions.

Lemma 1. For any fC and basis B = {φα : α ∈ {0, 1}n},

f̂C(α) =
∑
c∈C

f̂c(α)

17

Proof.

f̂C(α) =
∑

x∈{0,1}n
fC(x)φ−1x (α)

=
∑

x∈{0,1}n

(∑
c∈C

fc(x)

)
φ−1x (α)

=
∑
c∈C

∑
x∈{0,1}n

fc(x)φ−1x (α)

=
∑
c∈C

f̂c(α)

NP-Completeness Theorem for Coefficient Search

The following theorem implicitly defines a class of spectral representations for which finding

large MSE coefficients is an NP-complete problem.

Theorem 1. Suppose B = {φα : α ∈ {0, 1}n} is a basis for functions of the form f :

{0, 1}n → R such that ∀α, x(φα(x) = ±k) for some k ∈ R, and suppose (1) that every fc

function has at most a polynomial (in n) number of non-zero coefficients in its representation

in basis BT , and (2) that given c these non-zero coefficients can be identified and computed

in time polynomial in n. Then for basis B, LARGE-f̌ -COEF is NP-complete.

Proof. For any basis, LARGE-f̌ -COEF is in NP because given α ∈ {0, 1}n it is verifiable

in polynomial time whether
∣∣f̌X(α)

∣∣ ≥ |θ|. The remainder of the proof will show that

MAX-2-SAT reduces to LARGE-f̌ -COEF for basis B.

Let 〈U,C,m〉 be an instance of MAX-2-SAT, and let fC be the satisfiability function

for C. Since fC : {0, 1}n → N (and since N ⊂ R), fC can be expressed in basis BT as

fC(x) =
∑

α∈{0,1}n
f̂C(α)φTα(x)

18

where f̂C(α) =
∑

x f(x)φ−Tx (α) (Equation 2.2). Since f̂C(α) =
∑

c∈C f̂c(α) (Lemma 1), and

since each f̂c has a polynomial number of non-zero coefficients that can be identified and

computed in time polynomial in n, f̂C has a polynomial number of non-zero coefficients that

can be identified in time polynomial in n and |C|.

Therefore, we can construct an instance of LARGE-f̌ -COEF, 〈n,X, θ〉, from 〈U,C,m〉

in time polynomial in |U |, |C|, and m as follows: let n = |U |, let θ = m, and build X from C

by adding 〈x, k2|X|f̂C(x)〉 to X for each x such that f̂C(x) 6= 0. (The |X| in 〈x, k2|X|f̂C(x)〉

refers to the eventual size of X, which is |{x : f̂C(x) 6= 0}|. k is the value such that

∀α, x(φα(x) = ±k).)

All that remains is to show that 〈U,C,m〉 ∈ MAX-2-SAT if and only if 〈n,X, θ〉 ∈

LARGE-f̌ -COEF. Since f(x) = k2|X|f̂C(x) by construction,

f̌X(α) =
1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

=
1

‖φα‖2X

∑
〈x,f(x)〉∈X

(
k2|X|f̂C(x)

)
φα(x)

And, because ∀α, x(φα(x) = ±k), ∀α(‖φα‖2X =
∑

X φα(x)2 =
∑

X k
2 = k2|X|). Therefore,

f̌X(α) =
1

k2|X|
∑

〈x,f(x)〉∈X

k2|X|f̂C(x)φα(x)

=
∑

〈x,f(x)〉∈X

f̂C(x)φα(x)

Finally, because 〈x, f(x)〉 /∈ X ⇐⇒ f̂C(x) = 0,

∑
〈x,f(x)〉∈X

f̂C(x)φα(x) =
∑

x∈{0,1}n
f̂C(x)φα(x)

=
∑

x∈{0,1}n
f̂C(x)φTx (α) = fC(α)

19

Thus, f̌X(α) = fC(α), so f̌X(α) gives the number of clauses in C that are satisfied by

truth assignment α. Therefore, 〈U,C,m〉 ∈ MAX-2-SAT if and only if f̌X(α) ≥ m for some

α ∈ {0, 1}n, which, since m = θ, is true if and only if 〈n,X, θ〉 ∈ LARGE-f̌ -COEF.

A consequence of Theorem 1 is that you can show that finding a large MSE coefficient

is an NP-complete problem for any basis B for which ∀α, x(φα(x) = ±k) by showing that

every fc function has a polynomial-size representation f̂c in BT , and that the non-zero

coefficients of f̂c can be identified and computed in polynomial time. The following corollaries

show this for each of the representations considered in this paper. (Note that both the f̂

(Equation 2.2) and f̌ (Equation 2.23) spectra are being used here. Specifically, the sparseness

of every f̂c, where f̂c is the representation of fc in basis BT , is used to show the hardness of

finding large coefficients in f̌ , the MSE spectrum of an arbitrary f with respect to basis B.)

Corollary 1. For the Fourier/XOR basis, LARGE-f̌ -COEF is NP-complete.

Proof. The output of each fc depends on only two inputs. Let i and j be these inputs, and let

k be any other input. Imagine a partitioning of the input space into subsets S1, S2, ..., S2n−1 ,

each of size 2, such that each subset pairs an input x with the input x′ that differs from x

only on input k. Then the XORT representation of fc can be written as

f̂c(α) =
∑

〈x,x′〉∈{S1,S2,...S2n−1}

fc(x)χ−Tx (α) + fc(x
′)χ−Tx′ (α)

20

For each 〈x, x′〉 pair, fc(x) = fc(x
′) because xi = x′i and xj = x′j. But, for any α such that

αk = 1, χ−Tx (α) = −χ−Tx′ (α):

χ−Tx (α) = (−1)
∑
m xmαm

= (−1)xkαk+
∑
m 6=k xmαm

= −(−1)x
′
kαk+

∑
m 6=k xmαm

= −(−1)
∑
m x′mαm

= −χ−Tx′ (α)

Thus, if αk = 1 then fc(x)χ−Tx (α) + fc(x
′)χ−Tx′ (α) = fc(x)χ−Tx (α) + fc(x)(−χ−Tx (α)) = 0.

Since this is true for each 〈x, x′〉 pair, (αk = 1) ⇒ (f̂c(α) = 0). And, since this is true

for any k /∈ {i, j}, f̂c(α) = 0 unless αk = 0 for all k /∈ {i, j}. There are four coefficients

satisfying αk = 0 for all k /∈ {i, j} (one for each possible assignment of 0 and 1 to αi and

αj). Therefore, each fc has at most four non-zero coefficients in its XORT representation,

and they are the coefficients for which (k /∈ {i, j})⇒ (αk = 0).

Now consider the computation of those coefficients. Suppose the input space is par-

titioned into four subsets, each of size 2n−2, based on the values of xi and xj. Then,

f̂c(α) =
∑

{x:xi=0∧xj=0}

fc(x)χ−Tx (α) +
∑

{x:xi=0∧xj=1}

fc(x)χ−Tx (α)

+
∑

{x:xi=1∧xj=0}

fc(x)χ−Tx (α) +
∑

{x:xi=1∧xj=1}

fc(x)χ−Tx (α)

Since fc depends only on xi and xj, fc is constant in each partition. And, for α such

that αk = 0 for all k /∈ {i, j}, χ−Tx is also constant in each partition because χ−Tx (α) =

(−1)
∑
m αmxm = (−1)αixi+αjxj . Let fc(xi, xj) and χ−Txi,xj(α) denote the values of fc(x) and

χ−Tx (α), respectively, in each partition. Then for any α such that αk = 0 for all k /∈ {i, j},

21

f̂c(α) can be computed in polynomial time by

f̂c(α) = (2n−2)fc(0, 0)χ−T0,0 (α) + (2n−2)fc(0, 1)χ−T0,1 (α)

+ (2n−2)fc(1, 0)χ−T1,0 (α) + (2n−2)fc(1, 1)χ−T1,1 (α)

Corollary 2. For the OR basis, LARGE-f̌ -COEF is NP-complete.

Proof. The output of each fc depends on only two inputs. Let i and j be these inputs, and let

k be any other input. Imagine a partitioning of the input space into subsets S1, S2, ..., S2n−1 ,

each of size 2, such that each subset pairs an input x with the input x′ that differs from x

only on input k. Then the ORT representation of fc can be written as

f̂c(α) =
∑

〈x,x′〉∈{S1,S2,...S2n−1}

fc(x)ζ−Tx (α) + fc(x
′)ζ−Tx′ (α)

For each 〈x, x′〉 pair, fc(x) = fc(x
′) because xi = x′i and xj = x′j. But, for any α such that

αk = 1, ζ−Tx (α) = −ζ−Tx′ (α):

ζ−Tx (α) =

1
2
(−1)n+

∑
m αm+xm : if ∀m(αm = 1 ∨ xm = 1)

0 : if ∃m(αm = 0 ∧ xm = 0)

=

1
2
(−1)n+αk+xk+

∑
m6=k αm+xm : if ∀m(αm = 1 ∨ xm = 1)

0 : if ∃m(αm = 0 ∧ xm = 0)

=

 −
1
2
(−1)n+αk+x

′
k+

∑
m 6=k αm+xm : if ∀m(αm = 1 ∨ xm = 1)

0 : if ∃m(αm = 0 ∧ xm = 0)

=

 −
1
2
(−1)n+

∑
m αm+x′m : if ∀m(αm = 1 ∨ xm = 1)

0 : if ∃m(αm = 0 ∧ xm = 0)

= −ζ−Tx′ (α)

22

Thus, if αk = 1 then fc(x)ζ−Tx (α)+fc(x
′)ζ−Tx′ (α) = fc(x)ζ−Tx (α)+fc(x)(−ζ−Tx (α)) = 0. Since

this is true for each 〈x, x′〉 pair, (αk = 1) ⇒ (f̂c(α) = 0). And, since this is true for any

k /∈ {i, j}, f̂c(α) = 0 unless αk = 0 for all k /∈ {i, j}. There are four coefficients satisfying

αk = 0 for all k /∈ {i, j} (one for each possible assignment of 0 and 1 to αi and αj). Therefore,

each fc has at most four non-zero coefficients in its ORT representation, and they are the

coefficients for which (k /∈ {i, j})⇒ (αk = 0).

Now consider the computation of those coefficients. For any α, ζ−Tx (α) = 0 unless

either x = 0n or ∀m(xm = 1 ∨ αm = 1). Therefore,

f̂c(α) =
∑

{x:(x=0n)∨∀m(xm=1∨αm=1)}

fc(x)ζ−Tx (α)

For any α such that (m /∈ {i, j}) ⇒ (αm = 0), the expression ∀m(xm = 1 ∨ αm = 1) is

true only if (m /∈ {i, j}) ⇒ (xm = 1). Therefore, every non-zero f̂c(α) can be computed in

polynomial time by

f̂c(α) =
∑

{x:(x=0n)∨∀m((m/∈{i,j})⇒(xm=1))}

fc(x)ζ−Tx (α)

which sums fc(x)ζ−Tx (α) over five x values (x = 0n plus each x satisfying (m /∈ {i, j}) ⇒

(xm = 1)).

Corollary 3. For the AND basis, LARGE-f̌ -COEF is NP-complete.

Proof. The output of each fc depends on only two inputs. Let i and j be these inputs, and let

k be any other input. Imagine a partitioning of the input space into subsets S1, S2, ..., S2n−1 ,

each of size 2, such that each subset pairs an input x with the input x′ that differs from x

only on input k. Then the ANDT representation of fc can be written as

f̂c(α) =
∑

〈x,x′〉∈{S1,S2,...S2n−1}

fc(x)ξ−Tx (α) + fc(x
′)ξ−Tx′ (α)

23

For each 〈x, x′〉 pair, fc(x) = fc(x
′) because xi = x′i and xj = x′j. But, for any α such that

αk = 0, ξ−Tx (α) = −ξ−Tx′ (α):

ξ−Tx (α) =

1
2
(−1)

∑
m αm+xm : if ∀m(αm = 0 ∨ xm = 1)

0 : if ∃m(αm = 1 ∧ xm = 0)

=

1
2
(−1)αk+xk+

∑
m 6=k αm+xm : if ∀m(αm = 0 ∨ xm = 1)

0 : if ∃m(αm = 1 ∧ xm = 0)

=

 −
1
2
(−1)αk+x

′
k+

∑
m 6=k αm+xm : if ∀m(αm = 0 ∨ xm = 1)

0 : if ∃m(αm = 1 ∧ xm = 0)

=

 −
1
2
(−1)

∑
m αm+x′m : if ∀m(αm = 0 ∨ xm = 1)

0 : if ∃m(αm = 1 ∧ xm = 0)

= −ξ−Tx′ (α)

Thus, if αk = 0, then fc(x)ξ−Tx (α) + fc(x
′)ξ−Tx′ (α) = fc(x)ξ−Tx (α) + fc(x)(−ξ−Tx (α)) = 0.

Since this is true for each 〈x, x′〉 pair, (αk = 0) ⇒ (f̂c(α) = 0). And, since this is true

for any k /∈ {i, j}, f̂c(α) = 0 unless αk = 1 for all k /∈ {i, j}. There are four coefficients

satisfying αk = 1 for all k /∈ {i, j} (one for each possible assignment of 0 and 1 to αi and

αj). Therefore, each fc has at most four non-zero coefficients in its ANDT representation,

and they are the coefficients for which (k /∈ {i, j})⇒ (αk = 1).

Now consider the computation of those coefficients. For any α, ξ−Tx (α) = 0 unless

either x = 0n or ∀m(αm = 0 ∨ xm = 1). Therefore,

f̂c(α) =
∑

{x:(x=0n)∨∀m(αm=0∨xm=1)}

fc(x)ξ−Tx (α)

For any α such that (m /∈ {i, j}) ⇒ (αm = 1), the expression ∀m(αm = 0 ∨ xm = 1) is

true only if (m /∈ {i, j}) ⇒ (xm = 1). Therefore, every non-zero f̂c(α) can be computed in

24

polynomial time by

f̂c(α) =
∑

{x:(x=0n)∨∀m((m/∈{i,j})⇒(xm=1))}

fc(x)ξ−Tx (α)

which sums fc(x)ξ−Tx (α) over five x values (x = 0n plus each x satisfying (m /∈ {i, j}) ⇒

(xm = 1)).

2.4 Bounding Coefficient Size

Although the previous section suggests that polynomial-time algorithms for finding large

coefficients do not exist in the general case, the following sections present search algorithms

that perform well in practice. At the heart of the algorithms is a technique for bounding

the size of the largest possible coefficient in a region of a spectral representation. With this

technique, search algorithms can focus their efforts on promising areas of the search space.

2.4.1 Definitions & Notations

Before describing the coefficient bounding technique, some definitions and notation are

needed.

Definition 5 (Spectral Regions (β)). A partially-defined coefficient label β ∈ {0, 1, ∗}n

represents a region of a spectral representation. In particular, β represents the following set:

{α : α ∈ {0, 1}n ∧ ∀i((αi = βi) ∨ (βi = ∗))}.

Each β represents the set of all coefficients labels that match β on its defined digits.

For example, β = ∗n denotes the entire spectrum, while β = 0 ∗ 1∗ denotes the spectral

region corresponding to the following set of coefficient labels: {0010, 0011, 0110, 0111}. The

notation α ∈ β will be used to indicate an α in region β.

Definition 6 (β-Reduced Vectors (rβ(·))). If x ∈ {0, 1}n and β ∈ {0, 1, ∗}n, then rβ(x) = x′

where x′ ∈ {0, 1}n−|{i:βi 6=∗}| and (βi = ∗)⇒ (x′i−∑i
j=1 I(βj 6=∗)

= xi).

25

Informally, rβ(x) reduces an n-dimensional vector x to an (n− k)-dimensional vector

that is the result of removing each of k dimensions for which βi 6= ∗. For example, if

x = 0010 and β = 1 ∗ ∗0, then rβ(x) = r1∗∗0(0010) = 01. If x = 0010 and β = ∗ ∗ 1∗, then

rβ(x) = r∗∗1∗(0010) = 000.

Definition 7 (β-Reduced Data Sets (Xβ)). If X is a set of 〈x, f(x)〉 examples with x ∈

{0, 1}n and f(x) ∈ R, and β ∈ {0, 1, ∗}n, then a β-reduction of X is a set Xβ of 〈x, f(x)〉

examples with x ∈ {0, 1}n−|{i:βi 6=∗}| and f(x) ∈ R for which the following holds:

(α ∈ β)⇒
(
‖φα‖2X f̌X(α) =

∥∥φrβ(α)∥∥2Xβ f̌Xβ(rβ(α)
)

Note that

(
‖φα‖2X f̌X(α) =

∥∥φrβ(α)∥∥2Xβ f̌Xβ(rβ(α)
)

⇐⇒

‖φα‖2X
 1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

=
∥∥φrβ(α)∥∥2Xβ

 1∥∥φrβ(α)∥∥2Xβ
∑

〈x′,f(x′)〉∈Xβ

f(x′)φrβ(α)(x
′)

⇐⇒

 ∑
〈x,f(x)〉∈X

f(x)φα(x) =
∑

〈x′,f(x′)〉∈Xβ

f(x′)φrβ(α)(x
′)

Therefore, Xβ is an (n − |{i : βi 6= ∗}|)-dimensional data set whose un-normalized spectral

representation is identical to the un-normalized spectrum of an n-dimensional data set X in

region β.

2.4.2 Bounding Coefficient Size via β-Reductions

The coefficient bounding method uses β-reduced data sets to bound coefficient size in regions

of a spectral representation. The technique is based on the following theorems and their

corollaries.

26

Theorem 2. Let X be a set of 〈x, f(x)〉 examples with x ∈ {0, 1}n and f(x) ∈ R. Then for

any basis B = {φα : α ∈ {0, 1}n},

max
α

∣∣f̌X(α)
∣∣ ≤ maxα,x∈X |φα(x)|

minα,x∈X |φα(x)|2 |X|

∑
〈x,f(x)〉∈X

|f(x)| (2.27)

Proof.

max
α

∣∣f̌X(α)
∣∣ = max

α

∣∣∣∣∣∣ 1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

∣∣∣∣∣∣
≤ max

α

1

‖φα‖2X

∑
〈x,f(x)〉∈X

|f(x)| |φα(x)|

≤

(
max
α

1

‖φα‖2X

)max
α

∑
〈x,f(x)〉∈X

|f(x)| |φα(x)|

≤

(
1

minα,x∈X |φα(x)|2 |X|

)max
α

∑
〈x,f(x)〉∈X

|f(x)| |φα(x)|

≤

(
1

minα,x∈X |φα(x)|2 |X|

)(
max
α,x∈X

|φα(x)|
) ∑
〈x,f(x)〉∈X

|f(x)|

≤ maxα,x∈X |φα(x)|
minα,x∈X |φα(x)|2 |X|

∑
〈x,f(x)〉∈X

|f(x)|

Theorem 2 gives a bound on the size of the largest possible coefficient for a data set.

For bases like the AND, OR, and XOR bases, for which maxα,x |φα(x)| = minα,x |φα(x)| = 1,

this bound simplifies.

Corollary 4. Let X be a set of 〈x, f(x)〉 examples with x ∈ {0, 1}n and f(x) ∈ R and let f̌X

denote the MSE spectrum of X with respect to either the AND, OR, or XOR basis. Then

max
α

∣∣f̌X(α)
∣∣ ≤ 1

|X|
∑

〈x,f(x)〉∈X

|f(x)| (2.28)

27

Theorem 2 applies to β-reduced data sets as well, and because of the relationship

between the spectrum of Xβ and the spectrum of a higher-dimensional data set X (see

Definition 7), we get Theorem 3.

Theorem 3. Let X be a set of 〈x, f(x)〉 examples with x ∈ {0, 1}n and f(x) ∈ R, let

f̌X denote the MSE spectrum of X with respect to basis B = {φα : α ∈ {0, 1}n}, and let

β ∈ {0, 1, ∗} denote a region of f̌X . Then

max
α∈β

∣∣f̌X(α)
∣∣ ≤ maxα∈β,x∈Xβ

∣∣φrβ(α)(x)
∣∣

minα∈β,x∈X |φα(x)|2 |X|

∑
〈x,f(x)〉∈Xβ

|f(x)| (2.29)

Proof. By Definition 7, for α ∈ β, ‖φα‖2X f̌X(α) =
∥∥φrβ(α)∥∥2Xβ f̌Xβ(rβ(α). Therefore,

max
α∈β

∣∣f̌X(α)
∣∣ = max

α∈β

∣∣∣∣∣∣
∥∥φrβ(α)∥∥2Xβ
‖φα‖2X

f̌Xβ(rβ(α))

∣∣∣∣∣∣
= max

α∈β

∣∣∣∣∣∣
∥∥φrβ(α)∥∥2Xβ
‖φα‖2X

 1∥∥φrβ(α)∥∥2Xβ
∑

〈x,f(x)〉∈Xβ

f(x)φrβ(α)(x)

∣∣∣∣∣∣
= max

α∈β

∣∣∣∣∣∣ 1

‖φα‖2X

∑
〈x,f(x)〉∈Xβ

f(x)φrβ(α)(x)

∣∣∣∣∣∣
≤ max

α∈β

1

‖φα‖2X

∑
〈x,f(x)〉∈Xβ

|f(x)|
∣∣φrβ(α)(x)

∣∣
≤

(
max
α∈β

1

‖φα‖2X

)max
α∈β

∑
〈x,f(x)〉∈Xβ

|f(x)|
∣∣φrβ(α)(x)

∣∣
≤

(
1

minα∈β,x∈X |φα(x)|2 |X|

)max
α∈β

∑
〈x,f(x)〉∈Xβ

|f(x)|
∣∣φrβ(α)(x)

∣∣
≤

(
1

minα∈β,x∈X |φα(x)|2 |X|

)(
max

α∈β,x∈Xβ

∣∣φrβ(α)(x)
∣∣) ∑
〈x,f(x)〉∈Xβ

|f(x)|

≤
maxα∈β,x∈Xβ

∣∣φrβ(α)(x)
∣∣

minα∈β,x∈X |φα(x)|2 |X|

∑
〈x,f(x)〉∈Xβ

|f(x)|

28

Again, the bound given by Theorem 3 simplifies for the AND, OR, and XOR bases,

because ∀α, x(|φα(x)| = 1).

Corollary 5. Let X be a set of 〈x, f(x)〉 examples with x ∈ {0, 1}n and f(x) ∈ R, let f̌X

denote the MSE spectrum of X with respect to either the AND, OR, or XOR basis, and let

β ∈ {0, 1, ∗} denote a region of f̌X . Then

max
α∈β

∣∣f̌X(α)
∣∣ ≤ 1

|X|
∑

〈x,f(x)〉∈Xβ

|f(x)| (2.30)

Theorem 3 and Corollary 5 suggest a method for obtaining coefficient bounds for any

spectral region: reduce X to Xβ and then compute the bound given by Equation 2.29 or

2.30. The following section shows how to efficiently obtain β-reduced data sets for the AND,

OR, and XOR spectra.

2.4.3 Obtaining β-Reduced Data Sets

The derivation of β-reduction methods is based on the following lemma.

Lemma 2. Let β ∈ {0, 1, ∗}n denote a spectral region, let X be a set of 〈x, f(x)〉 ex-

amples with x ∈ {0, 1}n and f(x) ∈ R, let X ′ be a set of 〈x′, f(x′)〉 examples with

x′ ∈ {0, 1}n−|{i:βi 6=∗}| and f(x′) ∈ R, and suppose there is a one-to-one mapping from X

onto X ′ such that for each 〈x, f(x)〉 ∈ X there is a corresponding example 〈x′, f(x′)〉 ∈ X ′

such that (α ∈ β)⇒ (f(x)φα(x) = f(x′)φrβ(α)(x
′)). Then X ′ is a β-reduction of X.

Proof. By definition,

‖φα‖2X f̌X(α) = ‖φα‖2X

 1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

=

∑
〈x,f(x)〉∈X

f(x)φα(x)

29

Because of the one-to-one mapping from X onto X ′ such that (α ∈ β) ⇒ (f(x)φα(x) =

f(x′)φrβ(α)(x
′)), if α ∈ β then the sum over X can be replaced by the corresponding sum

over X ′. Therefore, for α ∈ β,

‖φα‖2X f̌X(α) =
∑

〈x′,f(x′)〉∈X′
f(x′)φrβ(α)(x

′)

=

(∥∥φrβ(α)∥∥2X′∥∥φrβ(α)∥∥2X′
) ∑
〈x′,f(x′)〉∈X′

f(x′)φrβ(α)(x
′)

=
∥∥φrβ(α)∥∥2X′ f̌X′(rβ(α))

Thus, X ′ is a β-reduction of X (by Definition 7).

Lemma 2 implies that a method for β-reducing a data set can be derived on an

example-by-example basis. In other words, if you can show that for every 〈x, f(x)〉 and β

there is an 〈x′, f(x′)〉 such that (α ∈ β) ⇒ (f(x)φα(x) = f(x′)φrβ(α)(x
′)), then you have

shown how any X can be β-reduced. Theorems 4-6 use this approach to implicitly define

β-reduction methods for the AND, OR, and XOR bases.

The search algorithms presented later explore the space of coefficient labels in an

iterative manner, setting the digits of β one-at-a-time. For computational efficiency, they

also derive each β-reduced data set from a “parent” data set that has already had all but

one of the dimensions for which βi 6= ∗ removed by previous reductions. Consequently,

Theorems 4-6 are presented with this one-dimension-at-a-time approach in mind, so they

assume that β has a single defined digit (i.e., |{i : βi 6= ∗}| = 1), or, equivalently, that all

but one of the dimensions for which βi 6= ∗ have previously been removed. This restriction

does not affect generality, as any β-reduction involving k dimensions can be obtained by a

sequence of k single-dimension reductions. (To see why, note that if Xβ′ is a β′-reduction of

Xβ, which is a β-reduction of X, then (α ∈ β) ⇒ (‖φα‖2X f̌X(α) = ‖φrβ(α)‖2Xβ f̌Xβ(rβ(α)) =

‖φrβ′ (α)‖
2
Xβ′
f̌Xβ′ (rβ′(α))), so Xβ′ is a β′-reduction of X.)

30

Theorem 4. Let 〈x, f(x)〉 be an example with x ∈ {0, 1}n and f(x) ∈ R and let β ∈

{0, 1, ∗}n be a region of the MSE spectrum of the XOR basis such that βk ∈ {0, 1} for some

k ∈ {1, . . . , n}, and (i ∈ ({1, . . . , n} \ k))⇒ (βi = ∗). Then for all α ∈ β:

• (βk = 1 ∧ xk = 1)⇒ (f(x)χα(x) = (−f(x))χrβ(α)(rβ(x)))

• (βk = 0 ∨ xk = 0)⇒ (f(x)χα(x) = f(x)χrβ(α)(rβ(x)))

Proof. Suppose βk = 1 ∧ xk = 1. Then αkxk = 1 for all α ∈ β. Therefore, for α ∈ β,

f(x)χα(x) = f(x)(−1)
∑
i αixi

= f(x)(−1)1+
∑
i:i 6=k αixi

= f(x)(−1)(−1)
∑
i:i 6=k αixi

= (−f(x))(−1)
∑
i:i 6=k αixi

= (−f(x))χrβ(α)(rβ(x))

Now suppose βk = 0 ∨ xk = 0. Then for all α ∈ β, αkxk = 0. Therefore, for α ∈ β,

f(x)χα(x) = f(x)(−1)
∑
i αixi

= f(x)(−1)
∑
i:i6=k αixi

= f(x)χrβ(α)(rβ(x))

Theorem 5. Let 〈x, f(x)〉 be an example with x ∈ {0, 1}n and f(x) ∈ R and let β ∈

{0, 1, ∗}n be a region of the MSE spectrum of the OR basis such that βk ∈ {0, 1} for some

k ∈ {1, . . . , n}, and (i ∈ ({1, . . . , n} \ k))⇒ (βi = ∗). Then for all α ∈ β:

• (βk = 1 ∧ xk = 1)⇒ (f(x)ζα(x) = (−f(x))ζrβ(α)(0
n−1))

• (βk = 0 ∨ xk = 0)⇒ (f(x)ζα(x) = f(x)ζrβ(α)(rβ(x)))

31

Proof. Suppose βk = 1 ∧ xk = 1. Then αkxk = 1 for all α ∈ β, so
∑

i αixi > 0 for all α ∈ β.

Therefore, for α ∈ β,

f(x)ζα(x) = f(x)

(
1− 2I

(∑
i

αixi > 0

))
= f(x) (1− 2(1))

= −f(x)

And, since ∀α(ξrk(α)(0
n−1) = 1),

f(x)ζα(x) = (−f(x))ζrβ(α)(0
n−1)

Now suppose βk = 0 ∨ xk = 0. Then for all α ∈ β, αkxk = 0. Therefore, for α ∈ β,

f(x)ζα(x) = f(x)

(
1− 2I

(∑
i

αixi > 0

))

= f(x)

(
1− 2I

(∑
i:i 6=k

αixi > 0

))
= f(x)ζrβ(α)(rβ(x))

Theorem 6. Let 〈x, f(x)〉 be an example with x ∈ {0, 1}n and f(x) ∈ R and let β ∈

{0, 1, ∗}n be a region of the MSE spectrum of the AND basis such that βk ∈ {0, 1} for some

k ∈ {1, . . . , n}, and (i ∈ ({1, . . . , n} \ k))⇒ (βi = ∗). Then for all α ∈ β:

• (βk = 1 ∧ xk = 0)⇒ (f(x)ξα(x) = (−f(x))ξrβ(α)(1
n−1))

• (βk = 0 ∨ xk = 1)⇒ (f(x)ξα(x) = f(x)ξrβ(α)(rβ(x)))

32

Proof. Suppose βk = 1∧xk = 0. Then αk = 1 but αkxk = 0 for all α ∈ β, so
∑

i αixi <
∑

i αi

for all α ∈ β. Therefore, for α ∈ β,

f(x)ξα(x) = f(x)

(
1− 2I

(∑
i

αixi <
∑
i

αi

))
= f(x) (1− 2(1))

= −f(x)

And, since ∀α(ξrβ(α)(1
n−1) = 1),

f(x)ξα(x) = (−f(x))ξrβ(α)(1
n−1)

Now suppose βk = 0 ∨ xk = 1. Then for all α ∈ β, αkxk = αk. Therefore, for α ∈ β,

f(x)ξα(x) = f(x)

(
1− 2I

(∑
i

αixi <
∑
i

αi

))

= f(x)

(
1− 2I

(∑
i:i 6=k

αixi <
∑
i:i 6=k

αi

))
= f(x)ξrβ(α)(rβ(x))

Theorems 4, 5, and 6 imply that for each 〈x, f(x)〉 ∈ X an appropriate 〈x′, f(x′)〉

for Xβ can be determined from the values of βk and xk, where k is the dimension being

removed. For example, for the AND basis, if βk = 1 and xk = 0, then the appropriate

example is 〈1n−1,−f(x)〉; otherwise, it is 〈rβ(x), f(x)〉.

Rules for determining which 〈x′, f(x′)〉 examples to add to Xβ can be derived from

knowledge of the class of functions that compose the basis and the generalizations that can

be made about region β given xk. For example, for the AND basis, if βk = 1 and xk = 0,

then ξα(x) = −1 for all α ∈ β because those basis functions compute an AND of inputs

that includes xk (since βk = 1) and must be false (since xk = 0). Therefore, for α ∈ β,

33

f(x)ξα(x) = −f(x), and 〈x′, f(x′)〉 must satisfy f(x′)ξrβ(α)(x
′) = −f(x) for all α ∈ β. The

example 〈1n−1,−f(x)〉 satisfies this condition, since the AND of any subset of 1n−1 will

always be true, making f(x′)ξrβ(α)(x
′) = (−f(x))(1) = −f(x) for all α.

Figure 2.1 presents a procedure for creating β-reduced data sets based on Theorems

4-6. Lines 2-7, 8-13, and 14-19 build β-reduced data sets for the XOR, OR, and AND bases,

respectively.

Notice that the outputs of the examples added to Xβ have the same magnitude as

the original examples in X. Since the bound given by Equation 2.30 is based on the sum

of the absolute values of the examples’ outputs, these β-reduced sets are not immediately

helpful for bounding coefficient size, as the absolute values of the outputs have not changed.

However, they do become useful after applying an additional step based on the following

theorem.

Theorem 7. Suppose X contains a pair of examples 〈x, f(x)〉 and 〈y, f(y)〉 such that

x = y, and suppose X ′ = (X \ {〈x, f(x)〉, 〈y, f(y)〉}) ∪ 〈x, f(x) + f(y)〉. Then for all α,

‖φα‖2X f̌X(α) = ‖φα‖2X′ f̌X′(α).

Proof. By definition,

‖φα‖2X f̌X(α) = ‖φα‖2X

 1

‖φα‖2X

∑
〈v,f(v)〉∈X

φα(v)f(v)

= φα(x)f(x) + φα(y)f(y) +

∑
〈v,f(v)〉∈X\{〈x,f(x)〉,〈y,f(y)〉}

φα(v)f(v)

Since x = y, φα(x) = φα(y), so

‖φα‖2X f̌X(α) = φα(x)(f(x) + f(y)) +
∑

〈v,f(v)〉∈X\{〈x,f(x)〉,〈y,f(y)〉}

φα(v)f(v)

34

β-Reduce(X, k, βk, basis)
(1) Xβ ← ∅

(2) if basis = XOR
(3) for each 〈x, f(x)〉 ∈ X
(4) if βk = 1 ∧ xk = 1
(5) Xβ ← Xβ ∪ 〈rβ(x),−f(x)〉
(6) else
(7) Xβ ← Xβ ∪ 〈rβ(x), f(x)〉

(8) if basis = OR
(9) for each 〈x, f(x)〉 ∈ X
(10) if βk = 1 ∧ xk = 1
(11) Xβ ← Xβ ∪ 〈0n−1,−f(x)〉
(12) else
(13) Xβ ← Xβ ∪ 〈rβ(x), f(x)〉

(14) if basis = AND
(15) for each 〈x, f(x)〉 ∈ X
(16) if βk = 1 ∧ xk = 0
(17) Xβ ← Xβ ∪ 〈1n−1,−f(x)〉
(18) else
(19) Xβ ← Xβ ∪ 〈rβ(x), f(x)〉

(20) for each 〈x, f(x)〉, 〈x′, f(x′)〉 ∈ Xβ s.t. x = x′

(21) Xβ ← Xβ \ {〈x, f(x)〉, 〈x′, f(x′)〉}
(22) Xβ ← Xβ ∪ 〈x, f(x) + f(x′)〉

(23) return Xβ

Figure 2.1: Algorithm for β-reducing a data set X with respect to the MSE spectrum of the
specified AND, OR, or XOR basis. By assumption, βk ∈ {0, 1} and (i 6= k)⇒ (βi = ∗).

And, since X ′ = (X \ {〈x, f(x)〉, 〈y, f(y)〉}) ∪ 〈x, f(x) + f(y)〉,

‖φα‖2X f̌X(α) =
∑

〈v,f(v)〉∈X′
φα(v)f(v)

=
‖φα‖2X′
‖φα‖2X′

∑
〈v,f(v)〉∈X′

φα(v)f(v)

= ‖φα‖2X′ f̌X′(α)

35

Informally, Theorem 7 says that any two examples with identical inputs can be

“merged” (i.e., be replaced by a single example with the same input and an output that

is the sum of original examples’ outputs) without changing the un-normalized spectrum.

Applying this result to β-reduced data sets leads to the following corollary.

Corollary 6. If Xβ is a β-reduction of X, and if X ′β is derived from Xβ by replacing any

〈x, f(x)〉 and 〈y, f(y)〉 such that x = y with 〈x, f(x) + f(y)〉, then X ′β is a β-reduction of X.

Proof. If Xβ is a β-reduction of X, then

(α ∈ β)⇒
(
‖φα‖2X f̌X(α) =

∥∥φrβ(α)∥∥2Xβ f̌Xβ(rβ(α)
)

And, by Theorem 7,
∥∥φrβ(α)∥∥2Xβ f̌Xβ(rβ(α)) =

∥∥φrβ(α)∥∥2X′β f̌X′β(rβ(α)) for all α. Therefore,

(α ∈ β)⇒
(
‖φα‖2X f̌X(α) =

∥∥φrβ(α)∥∥2X′β f̌X′β(rβ(α)
)

so X ′β is a β-reduction of X.

The fact that examples can be merged in β-reduced sets is the key to the tightening

of bounds on coefficient size. When a set X is reduced to Xβ, several examples will typically

end up with identical inputs. Often this will be because two examples differed only along

dimensions that were removed. For the AND and OR bases, this will also frequently occur

when examples’ inputs are set to 1n−1 or 0n−1. Whenever examples are merged, the coefficient

bound for that region may shrink. Specifically, it will shrink whenever the signs of examples’

outputs, f(x) and f(y), are different, because then |f(x) + f(y)| < |f(x)| + |f(y)|. During

the β-reduction procedure, the signs of the examples’ outputs tend to be flipped such that

the outputs of examples that are merged have opposite signs when β represents a region

containing only small coefficients and have matching signs when β contains a large coefficient.

36

In Figure 2.1, Lines 20-22 represent the example merging step. Note that in addition

to providing the means to bound coefficient size, the merging of examples also speeds up

computation, as the β-reduced data sets contain fewer examples as β becomes increasingly

well-defined. This speedup is beneficial to the search algorithms presented in the following

section.

Note also that the β-reduction procedure can be used to compute exact coefficient

values. When applied to a 1-dimensional data set (i.e., when a data set has had all dimensions

but one removed and the last undefined digit of β is being set), the procedure produces a

0-dimensional data set containing a single example, 〈−, f(x)〉, whose output is the value of

the coefficient. No change is needed to the algorithm, except that there must be some way

to represent a 0-dimensional input vector, which will be the same for each example. Like

any β-reduced data set, the absolute value of the example provides a bound on coefficient

size. In this case, however, the region consists of a single coefficient, and the bound is the

exact size of the coefficient.

2.5 Coefficient Search Algorithms

Given the method for bounding coefficient size presented in the previous section, it is possible

to design search algorithms that can find large coefficients without needing to compute the

entire spectrum. This section describes two algorithms for finding large coefficients. The first

is a complete branch-and-bound search algorithm that always finds the k largest coefficients,

and the second is an incomplete beam search algorithm that is fast but may not find all of

the largest coefficients.

The search space that both algorithms consider is the space of all fully- and partially-

defined coefficient labels. This space can be viewed as a binary tree of labeled nodes in

which the root node’s label is ∗n, the labels of children of internal nodes are the two labels

that result from setting an undefined digit βi of the parent’s label to 0 or 1, respectively,

and the leaf nodes’ labels are completely defined. Thus, the root node represents the entire

37

FindLargeCoefs-BranchAndBound(X, k)
(1) A← ∅
(2) stack.push(CreateNode(∗n, X))
(3) while stack is not empty
(4) node← stack.pop()

(5) if (|A| < k) ∨ (maxα∈node.β |f̌X(α)| > minα∈A |f̌X(α)|)
(6) if (node.β ∈ {0, 1}n)
(7) if (|A| = k)

(8) A← A \ {argminα∈A |f̌X(α)|}
(9) A← A ∪ node.β
(10) else
(11) i← GetUndefinedDigit(node.β)
(12) stack.push(CreateChildNode(node, i, 1)}
(13) stack.push(CreateChildNode(node, i, 0)}
(14) return A

Figure 2.2: The branch-and-bound search algorithm. It returns the labels of the k largest
coefficients in the MSE spectrum of X.

spectrum, child nodes represent two halves of their parent’s spectral region, and leaf nodes

represent specific coefficients.

2.5.1 Branch-and-Bound Search Algorithm

The branch-and-bound search algorithm is shown in Figure 2.2. The algorithm uses a depth-

first search to find the k large coefficients, and it uses the coefficient bounding method of the

previous section to prune branches that cannot possibly lead to coefficients that are larger

than the k largest coefficients found so far.

In Figure 2.2, a stack is used to implement the depth-first search, although recursion

could be used as well. The algorithm builds and returns the set A of the labels of the k

largest coefficients. At line 2, the root node is pushed onto the stack. Each node contains

a label, β, and a corresponding β-reduced data set, Xβ. For the root node, β = ∗n and

Xβ = X. At line 3, the algorithm enters a loop that continues until the stack is empty. In

each iteration of the loop, the node on top of the stack is popped off (line 4). Then, Equation

2.30 is used to bound maxα∈node.β |f̌X(α)| and determine whether any coefficients in region β

could be larger than the kth-largest coefficient found so far (line 5). If none could be larger,

38

then that node is ignored, pruning that branch of the search tree. (Note that no pruning

can be done until k labels have been added to A.)

If there could be a coefficient in region β that is larger than the kth-largest coefficient

found so far, and if the node’s label is completely defined (line 6), then the coefficient

corresponding to that node’s label is larger than the kth-largest coefficient found so far, so

that label is added to the solution (line 9). Before that, however, if A already contains k

coefficients then the label of the smallest coefficient is removed from A (lines 7-8).

If, on the other hand, the node’s label is not completely defined, then an undefined

digit of the node’s label is selected (line 11) and the child nodes that result from setting that

digit to 0 or 1 are created and pushed on the stack (lines 12-13). CreateChildNode(node, i,

v) returns the child of node in which βi is set to v, with the child’s Xβ obtained from node’s

data set by the procedure in Figure 2.1.

The algorithm in Figure 2.2 assumes coefficients of equal size are of equal value, and

ties between coefficients are broken arbitrarily. However, when there are coefficients of equal

size, one may wish to break ties in favor of low-order basis functions, where the order of a

basis function is defined by: order(φα) =
∑

i αi. For the AND, OR, and XOR functions, the

order of a function is the number of inputs to which the function applies its Boolean operator.

For these functions, low-order functions are simpler, so favoring low-order functions biases

a spectral learner towards simpler basis functions, which can improve performance [Drake

and Ventura, 2011a]. This change can be implemented by modifying line 5 so that a branch

is not pruned if a node’s region may contain a coefficient of equal size but lower order than

a coefficient whose label is in A, and by modifying line 8 so that higher-order functions are

removed when there is a tie for smallest coefficient size.

Because the branch-and-bound algorithm only prunes a branch when it cannot possi-

bly lead to a coefficient that is larger than the k largest coefficients found so far, the algorithm

is complete, and it will always find the k largest coefficients. However, it may require O(2n)

time to do so in the worst case, as there are O(2n) nodes in the search space. Consequently,

39

FindLargeCoefs-BeamSearch(X, k, w)
(1) currentNodes← {CreateNode(∗n, X)}
(2) for j ← 1 to n
(3) newNodes← ∅
(4) for each node ∈ currentNodes
(5) i← GetUndefinedDigit(node.β)
(6) newNodes← newNodes ∪ {CreateChildNode(node, i, 1)}
(7) newNodes← newNodes ∪ {CreateChildNode(node, i, 0)}
(8) currentNodes← ∅
(9) while (|currentNodes| ≤ w ∧ |newNodes| > 0)
(10) currentNodes← currentNodes ∪ newNodes.removeBest()
(11) A← ∅
(12) while (|A| ≤ k)
(13) A← A ∪ currentNodes.removeBest()
(14) return A

Figure 2.3: The beam search algorithm. It returns the labels of the k largest coefficients in
the MSE spectrum of X that are found by a beam search of width w.

the usefulness of the algorithm is based on the assumption that in practice large portions

of the search space will be pruned. Results presented later suggest that this is a reasonable

assumption.

(An alternative to the branch-and-bound algorithm that is also complete is a previ-

ously introduced best-first algorithm that explores the search space in an efficient, best-first

manner [Drake and Ventura, 2005]. However, the best-first algorithm’s worst-case memory

complexity is O(2n|X|), so it can exhaust memory resources if the search gets too big. In

contrast, the branch-and-bound algorithm’s worst-case memory complexity is O(n|X|), and

its run time is comparable to that of the best-first algorithm. See [Drake and Ventura, 2009]

for details.)

2.5.2 Beam Search

The beam search algorithm, shown in Figure 2.3, provides a greedy alternative to the com-

plete branch-and-bound algorithm. It explores the search tree in a breadth-first manner,

but at each level of the tree it prunes all but the best k nodes, ensuring that the number of

nodes under consideration stays tractable.

40

As shown in Figure 2.3, the beam search algorithm maintains a set of current

nodes that initially contains only the root node of the search tree (line 1). The algo-

rithm iterates over each level of the tree (lines 2-10), and in each iteration, the children

of every current node are generated (lines 3-7) and the set of current nodes becomes the

best w children of the previous set of current nodes (lines 8-10). As in the branch-and-

bound algorithm, GetUndefinedDigit(β) returns the index of an undefined digit in β, and

CreateChildNode(node, i, v) returns the child of node in which βi is set to v, with the child’s

β-reduced data set obtained from node’s data set by the procedure in Figure 2.1. For the

currentNodes and newNodes sets, removeBest() removes and returns the node with the

largest coefficient bound (computed by Equation 2.30). (As suggested previously, however,

ties can be broken in favor of lower-order functions.) After n iterations, the current nodes

will be leaf nodes, and the labels of the best k nodes are returned (lines 11-14).

The beam search algorithm may need to prune branches from the search tree before

it is possible to know which regions contain the k largest coefficients. Consequently, the

algorithm is incomplete, and it may not find all of the k largest coefficients. However,

the algorithm will never visit more than O(nw) nodes, where n is the number of input

features and w is the beam width. In contrast, the branch-and-bound algorithm visits an

indeterminate number of nodes in general, and it could visit O(2n) nodes in the worst case.

This makes the beam search algorithm’s run time much more predictable, and it allows it

to be applied to larger problems, since the beam width can be reduced until the run time is

acceptable. Of course, reducing beam size can affect the quality of the solution. Fortunately,

results presented later suggest that it is possible to find good solutions even when the beam

width is quite narrow.

2.6 Variable-Ordering Heuristic

In both the branch-and-bound and beam search algorithms, when a node is to be replaced

by its children, an input i for which βi = ∗ is selected to be set to 0 and 1 in the child nodes.

41

In Figures 2.2 and 2.3 this step is represented by the GetUndefinedDigit(β) function. The

choice of i does not affect the correctness of either algorithm, so inputs could be processed

in an arbitrary order. However, both algorithms perform better when an effective variable

ordering heuristic is used.

For the branch-and-bound algorithm, a good variable ordering can dramatically re-

duce the number of nodes that are visited, as some variable orderings allow much more of

the search space to be pruned. For the beam search algorithm, on the other hand, the vari-

able ordering does not affect the number of nodes visited, but a good ordering can greatly

improve the quality of the solution, as a good ordering will lead the beam search to regions

of the spectrum that contain large coefficients.

In the experiments presented in the following section, both search algorithms choose

an undefined digit by applying the following heuristic, in which βi←0 and βi←1 denote the

labels that result from setting βi to 0 and 1, respectively:

i← argmin
i

(
max
α∈βi←0

∣∣f̌X(α)
∣∣+ max

α∈βi←1

∣∣f̌X(α)
∣∣) (2.31)

This heuristic chooses the input that results in the tightest/smallest coefficient bounds

(Equation 2.30) in the child regions. For the branch-and-bound search algorithm, obtain-

ing tighter bounds more quickly makes it possible to prune branches higher up in the tree.

For the beam search algorithm, obtaining tighter bounds more quickly makes it easier to

determine which regions contain large coefficients. In contrast, consider an ordering that

tightens the bounds as little as possible at each step. If bounds do not tighten quickly, then

the branch-and-bound algorithm will have to expand more nodes before it can determine

that a given branch can be pruned. An ordering that does not tighten bounds quickly also

increases the chance that the beam search algorithm will prune regions containing good co-

efficients, since pruning decisions will have to be made when there is little information about

the maximum coefficient size in each region.

42

2.7 Empirical Results

This section analyzes the performance of the search algorithms on several real-world data

sets [Newman et al., 1998], which are summarized in Table 2.1. Each data set represents a

Boolean classification problem. Where necessary, non-Boolean input features were converted

into Boolean features. Each nominal input feature was converted into a group of m Boolean

features (one for each possible value of the feature), where only the Boolean feature corre-

sponding to the correct nominal value was true in an example. Each numeric input feature

was converted into a single Boolean feature that indicated whether the value was above or

below a threshold t. The set T of candidate thresholds for an input i was obtained by first

sorting the set V = {v : 〈x, f(x)〉 ∈ X ∧ xi = v} of observed xi values into an ordered list

v1, v2, . . . , v|V | where (i < j)⇒ (vi < vj), and then using the midpoints between adjacent val-

ues in the list as candidate thresholds; in other words, T = {(vi + vi+1)/2 : 1 ≤ i < |V |}.The

chosen threshold was the value that minimized the number of unavoidable misclassifications

(assuming that classifications would be made based on that input alone). Stated precisely,

t was chosen by

argmin
t∈T

(
min

(∣∣X1
>t

∣∣ , ∣∣X−1>t ∣∣)+ min
(∣∣X1

≤t
∣∣ , ∣∣X−1≤t ∣∣))

where X
f(x)
>t and X

f(x)
≤t are the examples with output f(x) for which xi > t and xi ≤ t,

respectively. The number of inputs listed in Table 2.1 is the number of inputs after converting

non-Boolean inputs to Boolean.

Tables 2.2 shows the average number of nodes expanded by the branch-and-bound

algorithm, both when using the variable-ordering heuristic (B&B+H) and when using a

random ordering (B&B), when finding the single largest coefficient and the 1,000 largest

coefficients of the XOR spectrum. (A node expansion is when a node is replaced by its

child nodes.) The total number of nodes that could have been expanded is also shown. The

results suggest that in practice the branch-and-bound algorithm will only need to expand a

small fraction of the exponentially-large search space. The benefit of the variable-ordering

43

Table 2.1: Data set summary.

Data Set Inputs Examples

Pima 8 768
WBC1 9 699
Voting 16 435
Heart 20 270

SPECT 22 267
German 24 1,000
WBC3 30 569
WBC2 32 198
Chess 38 3,196

Table 2.2: Average number of nodes expanded while searching for the largest coefficient and
the largest 1,000 coefficients of the XOR spectrum, and the maximum number of nodes that
could have been expanded. The branch-and-bound algorithm usually expands only a small
fraction of the search space, especially when using the variable ordering heuristic (B&B+H).

Data Set Max Nodes
1,000 Coefficients 1 Coefficient
B&B B&B+H B&B B&B+H

Pima 255 n/a n/a 21 25
WBC1 511 n/a n/a 17 10
Voting 65,535 10,483 3,696 35 16
Heart 1,048,575 45,142 7,208 2,648 138

SPECT 4,194,303 278,474 161,529 6,093 878
German 16,777,215 42,403 3,129 2,762 108
WBC3 1,073,741,823 95,466 4,448 4,781 66
WBC2 4,294,967,295 388,768 3,307 214,774 347
Chess 274,877,906,943 901,647 35,268 319,666 1,334

heuristic can also be seen, as the number of expanded nodes often decreases dramatically

when using the heuristic, especially on the larger problems.

Table 2.3 shows the average run time of the branch-and-bound algorithm, again both

with and without the variable-ordering heuristic. For comparison, the time required to

compute the spectrum with the Fast Walsh Transform algorithm (FWT) is also shown. (The

FWT is a Boolean-input version of the general discrete Fast Fourier Transform algorithm.)

The FWT is fast when the number of input dimensions is small, but it becomes impractical

as the dimensionality increases. (Note that the run times marked with * are estimates, as the

44

Table 2.3: Average time required by the Fast Walsh Transform algorithm (FWT) and the
branch-and-bound algorithm, both with (B&B+H) and without (B&B) the variable-ordering
heuristic, to find the largest coefficient and the largest 1,000 coefficients of the XOR spec-
trum. The FWT is impractical for large problems, while the B&B algorithm’s run time is
significantly reduced by using the variable-ordering heuristic.

Data Set
1,000 Coefficients 1 Coefficient

FWT B&B B&B+H FWT B&B B&B+H

Pima n/a n/a n/a 0.0 s 0.0 s 0.0 s
WBC1 n/a n/a n/a 0.0 s 0.0 s 0.0 s
Voting 0.1 s 0.1 s 0.0 s 0.0 s 0.0 s 0.0 s
Heart 0.9 s 0.7 s 0.1 s 0.7 s 0.2 s 0.0 s

SPECT 4.1 s 5.6 s 4.6 s 4.0 s 0.5 s 0.1 s
German 18.6 s 3.0 s 0.1 s 14.8 s 0.5 s 0.0 s
WBC3 19.8 m* 8.1 s 0.1 s 15.8 m* 0.8 s 0.0 s
WBC2 1.3 h* 16.8 s 0.0 s 1.1 h* 10.5 s 0.0 s
Chess 84.7 h* 4.8 m 0.9 s 67.4 h* 2.1 m 0.4 s

standard FWT requires too much memory to be applied to those problems. The estimates

were obtained by extrapolating from observed run times under the conservative assumption

that run time would double each time n increased by 1.) The branch-and-bound algorithm,

on the other hand, can find the largest coefficient quickly even when applied to the larger

problems. The results also show that the variable-ordering heuristic results in smaller run

times, suggesting that the benefit of expanding fewer nodes offsets the extra computation

required to compute the heuristic at each node.

Since the beam search can be made very fast simply by narrowing the beam width,

the quality of the solutions returned by the beam search algorithm must be evaluated. Table

2.4 shows the result of using the beam search algorithm to find one large coefficient and then

using the corresponding basis function to make classifications on test data. The accuracies

shown are the average test accuracies (over 100 trials) when training and testing on random

90%/10% training/test splits of the data. A bold highlight indicates a result that is not

significantly worse than the result obtained with a complete search, as measured by a paired

random permutation test (p = 0.05). As the table shows, the beam does not usually need to

45

Table 2.4: Learning accuracy when using a single basis function obtained by a beam search
of the given width. A bold highlight indicates a result that is not significantly worse (statis-
tically) than the infinite-beam result. In most cases, a relatively small beam is sufficient to
match the accuracy obtained with an infinitely large beam.

Beam Width
Data Set 1 2 4 8 ∞

Pima 67.2% 73.1% 73.6% 73.8% 73.7%
WBC1 83.7% 89.7% 91.7% 91.2% 91.3%
Voting 82.8% 96.0% 96.0% 96.0% 96.0%
Heart 53.3% 59.8% 73.7% 74.7% 72.9%

SPECT 59.5% 61.8% 75.0% 77.6% 77.6%
German 58.5% 68.8% 71.1% 71.9% 72.7%
WBC3 80.8% 88.9% 88.9% 89.0% 87.6%
WBC2 55.4% 54.4% 60.2% 61.0% 72.2%
Chess 62.8% 73.7% 74.7% 75.0% 75.1%

be very wide before the learning accuracy is about as good as the accuracy obtained when

using a complete search.

In fact, sometimes the classification accuracy is higher when using the beam search.

Although we expect that basis functions with larger coefficients will usually be better models

of the unknown function f , a larger coefficient only implies greater correlation with X, and

not necessarily with f . This uncertainty in the true sizes of coefficients is advantageous to

the beam search, as its solutions, which may be sub-optimal with respect to X, may often

be as good for the learning task as the solutions returned by a complete search.

2.8 Analysis

There are many factors that influence the performance of the branch-and-bound and beam

search algorithms. This section highlights some of these factors, focusing on how they affect

the number of nodes expanded by the branch-and-bound search algorithm.

46

2.8.1 Example Distribution

For every learning problem there is a probability distribution, usually unknown, that governs

the likelihood that each example will be encountered. In this section, we assume that this

distribution D is represented by a probability mass function pD : {0, 1}n → [0, 1] over the

input space, where pD(x) is the probability that x would be the input of a randomly selected

example. We also assume that the examples in a data set are i.i.d. (i.e., that they are

selected independently at random according to pD).

The distribution over the example space is one important factor in the performance

of the search algorithms. In particular, the extent to which an example distribution deviates

from a uniform distribution is important. We shall refer to this deviation as skew and define

the skew of an example distribution D to be the average absolute difference between pD and

a uniform distribution:

skew(D) =
1

2n

∑
x∈{0,1}n

∣∣∣∣pD(x)− 1

2n

∣∣∣∣ (2.32)

In a uniform distribution U , ∀x(pU(x) = 1
2n

). In addition, ∀i(PrU(xi = 1) = 1
2
). Based

on this fact, we shall define the skew of an input xi to be the absolute difference between

PrD(xi = 1) and 1
2
:

skewD(xi) =

∣∣∣∣PrD(xi = 1)− 1

2

∣∣∣∣ (2.33)

And, we define the average input skew of a distribution to be the average skew of each input:

ave input skew(D) =
1

n

n∑
i=1

skewD(xi) (2.34)

Figure 2.4 demonstrates how input skew can affect the number of nodes that are

expanded during a search for the largest coefficient of a randomly selected 10-input function.

In the figure, the average number of node expansions is plotted as a function of the skew

of a single input, x1, when the skew of all other inputs is 0. (Also shown are dashed

47

Figure 2.4: The average number of nodes expanded to find the largest XOR coefficient of a
10-dimensional learning problem as a function of the skew of a single input (with other inputs
having 0 skew). As skewD(x1) increases, the average number of expanded nodes approaches
the average for a 9-dimensional problem.

lines indicating the average node expansions for 10- and 9-dimensional uniform distribution

problems.) For each skew tested, the reported number of node expansions is an average

over 1,000 data sets that were generated by randomly selecting a 10-input Boolean function

f : {0, 1}10 ⇒ {1,−1}, and then selecting 256 examples of the function at random according

to the probability distribution pD(x) =
∏

i PrD(xi) = PrD(x1)(
1
2
)9, where PrD(x1 = 1) =

1
2

+ skewD(x1). (Note that pD(x) =
∏

i PrD(xi) implies independence between input feature

values. Note also that since these are Boolean input features, ∀i(PrD(xi = 0) = 1−PrD(xi =

1).) As the graph shows, the algorithm performs worst when the distribution is uniform,

and the average number of expanded nodes decreases as skewD(x1) increases from 0 to 0.5

(or, equivalently, as PrD(xi = 1) increases from 1
2

to 1).

The reduction in nodes expanded is related to the coefficient bounding method and

variable ordering heuristic of the search algorithm. As described previously, the coefficient

bounding method is based on merging examples whose input values are identical on inputs

for which β is undefined. As PrD(x1 = 1) becomes increasingly skewed towards 0 or 1, more

examples tend to have the same value for x1. Consequently, examples are more likely to

merge earlier in the search, which means that coefficient bounds are more likely to tighten

sooner as well. On the other hand, since more examples have the same value for x1, splitting

48

the search space along dimension 1 does less in terms of tightening coefficient bounds, as

removing input 1 is less likely to increase the number of examples that can merge. In the

extreme case, where PrD(x1 = 1) is 0 or 1, splitting along input 1 does not cause any examples

to merge that would not already have been merged, and the coefficient bounds for the child

regions of β are the same as for β. The search algorithm’s variable ordering heuristic splits

the search space along dimensions that tighten coefficient bounds the most, which implicitly

causes the algorithm to avoid splitting the space along highly skewed dimensions. By saving

skewed dimensions until the end, the algorithm is able to obtain tight coefficient bounds

earlier in the search, allowing more of the search space to be pruned.

Note that node count decreases from the average number of node expansions for a

10-input uniform distribution problem to (almost) the number of expansions for a 9-input

uniform distribution problem. When PrD(xi = 1) = 1, input i is completely irrelevant.

Expanding a node along that dimension never results in reduced coefficient bounds, and the

search algorithm’s variable ordering heuristic causes input i to be the last input considered.

The node count is only higher than the average for a 9-input problem because the algorithm

must pass through the level of the tree that corresponds to splitting along dimension i before

reaching the leaf nodes.

Figure 2.5 plots average node expansions as a function of average input skew (Equa-

tion 2.34). Here, as before, there is assumed to be independence between input feature

values, so pD(x) =
∏

i PrD(xi). And, as before, results are averaged over 1,000 data sets

that were generated by randomly selecting a function and then selecting 256 examples of

the function at random according to pD(x). This time, however, all inputs could be skewed,

and the plot shows results in terms of average skew over all inputs. As the plot shows, aver-

age node count initially decreases dramatically as average skew increases, until the average

skew is around 0.25, after which node count increases slightly until the skew approaches the

extreme case of total skew, where all examples have the same value for each input.

49

Figure 2.5: The average number of nodes expanded to find the largest XOR coefficient of
a 10-dimensional learning problem as a function of the average input skew of the example
distribution D, where pD(x) =

∏
i PrD(xi). On average, problems with skewed example

distributions require fewer node expansions than problems with near-uniform distributions.

The fact that the search algorithm tends to perform better with skewed distributions

is good news, as there are reasons to believe that the example distributions of real-world

problems will tend to be skewed. One reason is simply that it is often the case that some

values for a feature are more likely than others, so that examples are more likely to be

drawn from the corresponding region of the example space. Even if the possible values of a

particular input are equally likely, however, there may be combinations of values for a set

of input features that are not possible, such that there would be some regions from which

examples would never be drawn. More generally, there are likely to be many correlations

between input features that will make some examples much more likely to be seen than

others.

Although the true example distributions behind the data sets used in this paper are

unknown, input skew can be estimated from the data. Table 2.5 shows the estimated average

input skew (Equation 2.34) of each data set, as well as the maximum and minimum input

skew (maxi skewD(xi) and mini skewD(xi), respectively). For all but the Voting data set, the

average input skew is near the 0.2-0.35 range, which Figure 2.5 suggests is a good amount

of skew (on average) for the search algorithm. Note also that the maximum input skew is

50

Table 2.5: The average, maximum, and minimum input skew. For all but the Voting data
set, the average skew is near the 0.2-0.35 range, which Figure 2.5 suggests is a good amount
of skew for the search algorithm.

Data Set Ave Skew Max Skew Min Skew

Pima 0.368 0.497 0.271
WBC1 0.198 0.328 0.118
Voting 0.099 0.357 0.013
Heart 0.191 0.493 0.007

SPECT 0.188 0.369 0.006
German 0.326 0.494 0.087
WBC3 0.213 0.496 0.010
WBC2 0.313 0.495 0.020
Chess 0.317 0.499 0.039

usually very high, showing that most of the data sets have at least one input that is very

skewed.

The results with real-world data in Table 2.2 suggest that the branch-and-bound

search algorithm will often perform better in practice than the expected performance over

randomly selected data sets having a similar average input skew and number of dimensions.

(For example, notice the low 9.5 average number of nodes expanded for the similarly-sized

WBC1 problem, and the 16.3 average for the larger Voting problem.) One reason for this is

that there are factors unrelated to the example distribution that also affect performance (e.g.,

properties of the spectrum of the function). However, there are also example distribution

factors that are not captured by the input skew analysis, such as correlation between inputs.

For example, in the Voting data set, although the average input skew is low, many input

features are significantly correlated. Therefore, although the probability of an input being

0 or 1 is usually close to 0.5, the probability becomes very skewed when conditioned on the

other feature values. Consequently, most examples’ inputs are very similar to those of other

examples, meaning that they were drawn from similar regions of the input space.

Figure 2.6 demonstrates how correlations can affect performance. There are three

plots in Figure 2.6, each showing average node expansions as a function of a skew parameter

51

Figure 2.6: The average number of nodes expanded to find the largest XOR coefficient of
a 10-dimensional learning problem as a function of an example distribution skew parameter
s. For input-skew, the distributions are of the form pD(x) = PrD(x1)(

1
2
)9, with PrD(xi =

1) = 1
2

+ s. For corr-skew, the distributions are of the form pD(x) = PrD(x2|x1)(12)9, with
PrD(x2 = 1|x1 = 1) = 0.5 + s and PrD(x2 = 1|x1 = 0) = 0.5 − s. For combined, the
distributions are of the form pD(x) = PrD(x2|x1)PrD(x1)(

1
2
)8, where PrD(x1 = 1) = 0.5 + s,

PrD(x2 = 1|x1 = 1) = 0.5 + s, and PrD(x2 = 1|x1 = 0) = 0.5 − s. The number of node
expansions decreases as input and correlation skew increases, and the reduction is even
greater when the two types of skew are combined.

s. One plot, input-skew, is a replication of the plot in Figure 2.4, and s = skewD(x1)

in that case. Another plot, corr-skew, shows how performance varies as one input be-

comes increasingly correlated with another. Here, the distributions are of the form pD(x) =

PrD(x2|x1)
∏

i:i 6=2 PrD(xi) = PrD(x2|x1)(12)9, and PrD(x2|x1) is a function of s. Specifically,

PrD(x2 = 1|x1 = 1) = 0.5 + s and PrD(x2 = 1|x1 = 0) = 0.5 − s. Thus, the values of all

inputs but x2 are assumed to be independent (with no input skew), and the value of x2 is

increasingly likely to match the value of x1 as s increases. As Figure 2.6 shows, the average

node count decreases as x2 becomes increasingly correlated with x1. In fact, the reduction

in nodes expanded is very similar to the reduction observed when the skew of a single input

increases (input-skew).

Note that although the distributions that produced the corr-skew plot are increasingly

skewed as s increases (because examples in which x1 = x2 become more likely than those in

which x1 6= x2), the input skew is always 0, even for x2. (PrD(x2 = 1) = PrD(x2 = 1|x1 =

52

1)PrD(x1 = 1) + PrD(x2 = 1|x1 = 0)PrD(x1 = 0) = (0.5 + s)(0.5) + (0.5 − s)(0.5) = 0.5.)

Thus, these distributions demonstrate how correlation skew can be unrelated to input skew.

The third plot in Figure 2.6 shows how the average number of nodes expanded de-

creases when the two types of distribution skew are combined. Specifically, it is a plot of node

expansions as a function of distributions of the form pD(x) = PrD(x2|x1)
∏

i:i 6=2 PrD(xi) =

PrD(x2|x1)PrD(x1)(
1
2
)8, where PrD(x1 = 1) = 0.5 + s, PrD(x2 = 1|x1 = 1) = 0.5 + s, and

PrD(x2 = 1|x1 = 0) = 0.5− s. As s increases, the combined effect of the two types of skew

is a greater reduction in nodes expanded.

One final important note is that the method for converting non-Boolean inputs to

Boolean inputs can affect the skew of an example distribution. Several of the data sets

used in this paper contain nominal and/or real-valued input features that were converted to

Boolean by the methods described at the beginning of Section 2.7. Nominal input features

were replaced by m Boolean features, one for each value of the feature, such that each

Boolean input indicated whether the corresponding nominal value was the correct value for

that example. Real-valued input features were replaced by a single Boolean value indicating

whether the real value was above or below a threshold. Using these methods, the skew of

a Boolean input that is derived from a nominal feature depends on the frequency of the

corresponding nominal input value. The skew of a Boolean input that is derived from a real-

valued feature depends on which threshold is chosen. In spite of the potential differences

in skew between features that are originally Boolean and those that are derived Boolean

features, an analysis of the data sets used in this paper suggests that the average skews may

not differ much in practice. For these data sets, the average skew of input features that were

originally Boolean is 0.242, while the average skews for Boolean inputs that were derived

from nominal and real-valued features are 0.248 and 0.270, respectively.

53

2.8.2 Coefficient Size & Distribution

Properties of the spectral representation of the function being learned also affect perfor-

mance. One of the spectral properties that affects performance is the deviation of the

spectrum from a uniform spectrum in which all coefficients have the same magnitude. Using

metrics similar to those in the previous section, we will define the skew of a spectral repre-

sentation f̌ to be the average absolute difference between each squared coefficient and 1
2n

:

skew(f̌) =
1

2n

∑
α∈{0,1}n

∣∣∣∣f̌(α)2 − 1

2n

∣∣∣∣ (2.35)

Note that 1
2n

is the squared coefficient size in a uniform spectrum in which
∑

α f̌(α)2 = 1.

(This choice for
∑

α f̌(α)2 is due to the fact that
∑

α f̌(α)2 = 1 when f̌ is the Fourier

spectrum of a Boolean function. Squared coefficient size is used instead of absolute coefficient

size for computational convenience.) The skew of a single coefficient is the difference between

the square of that coefficient and 1
2n

:

skew(f̌(α)) =

∣∣∣∣f̌(α)2 − 1

2n

∣∣∣∣ (2.36)

Figure 2.7 demonstrates how skew in a spectrum can affect search performance. In the

figure, the average number of nodes expanded is plotted as a function of s = skew(f̌)/(2(1−
1
2n

)), which expresses the skew of the spectrum as a fraction of the largest possible skew.

(The largest possible skew occurs when one coefficient is 1 and the others are 0, in which case

the total skew is (1− 1
2n

) + (2n− 1)(1
2n

) = (1− 1
2n

) + (1− 1
2n

) = 2(1− 1
2n

).) As before, results

are averaged over 1,000 data sets, but this time a 10-dimensional spectral representation f̌

with the specified skew is randomly generated (subject to the constraint that
∑

α f̌(α)2 = 1),

and then f̌ is transformed (by Equation 2.1) into a function f from which 256 examples are

randomly chosen according to a uniform distribution over the example space. As the figure

shows, a uniform spectrum is the most difficult case, on average, while the number of nodes

54

Figure 2.7: The average number of nodes expanded to find the largest XOR coefficient of a
10-dimensional learning problem as a function of s = skew(f̌)/(2(1 − 1

2n
)), with a uniform

example distribution. On average, fewer node expansions are required for functions with
skewed spectral representations.

expanded tends to decrease as the spectrum becomes increasingly skewed. The best result

is when s = 1, which occurs when there is a single large coefficient and all other coefficients

are 0.

Figure 2.8 shows that the node count decreases more rapidly when there is a clearer

separation between the largest coefficient and the others. In this figure, average nodes

expanded is again plotted as a function of s = skew(f̌)/(2(1 − 1
2n

)), but this time there is

a single coefficient that is skewed towards 1 while the remaining coefficients have the same

magnitude and are shrunk towards 0. The plot in the figure shows that average node count

decreases to best-case levels more rapidly. Of course, for the task of finding the single largest

coefficient this is a favorable scenario.

Although the spectra of the real-world functions of the data sets used in this paper are

unknown, the approximated spectra (Equation 2.26) of the data sets show some significant

skews. For the smaller data sets, for which computing the entire spectrum is feasible, the

following table shows the skew of the approximated spectrum as a fraction of the maximum

possible skew for a data set with the same sum of squared coefficients:

55

Figure 2.8: The average number of nodes expanded to find the largest XOR coefficient
of a 10-dimensional learning problem for which the spectrum has one large coefficient and
2n − 1 smaller coefficients of equal size, as a function of s = skew(f̌)/(2(1 − 1

2n
)), with a

uniform example distribution. The average number of node expansions decreases rapidly as
the separation between the large and small coefficients increases.

Data Set skew(f̌X)/MaxPossibleSkew

Pima 0.137

Wisc1 0.135

Voting 0.593

Heart 0.503

SPECT 0.462

The skew in the Voting, Heart, and SPECT data sets is considerably large relative to the

maximum possible skew. Even for these data sets, however, a graph like Figure 2.7 for

functions of the same dimensionality would likely overestimate the actual node counts. This

is in large part due to the fact that these experiments assumed a uniform distribution over

the input space. In fact, empirical results suggest that skew in the example distribution has

a more significant impact than skew in f̌ . Plotting average node expansions as a function of

both example distribution skew and spectrum skew shows that the result is nearly identical

to the plot of node expansions vs. example distribution skew when the function is randomly

selected (Figure 2.5). In other words, the choice of function/spectrum matters less than the

skew in the example distribution.

56

2.9 Conclusion

Identifying the large coefficients of a spectral representation is a critical problem for spec-

tral learning algorithms. As shown in this paper, for a class of spectral representations

that includes the Fourier representation, the general problem of finding large coefficients

is NP-Complete. However, this paper presents a method for bounding coefficient size in

arbitrary regions of a spectral representation that allows search algorithms to explore the

space of coefficients efficiently. Empirical results show that a complete branch-and-bound

search algorithm based on this technique can find the largest coefficients quickly, while ig-

noring most of the exponentially-large search space. In addition, empirical results show that

an incomplete beam search algorithm can usually find solutions that are as good as those

returned by a complete algorithm, even when the beam is very narrow. Finally, the paper

demonstrates how the performance of the branch-and-bound algorithm improves when there

is significant non-uniformity in the distribution over examples and/or in the spectrum of the

target function.

One interesting direction for future work is to more thoroughly analyze the tradeoffs

and benefits of complete and incomplete approaches to finding large coefficients. For exam-

ple, Figure 2.4 shows that the beam search algorithm can use a very narrow beam and still

find a basis function that is comparable, in terms of test accuracy, to the basis function with

largest coefficient. However, how do learning accuracies compare after several basis functions

are added? This comparison may be particularly interesting in the context of boosting, as

incomplete algorithms may be able to be very greedy in that scenario and still match the

performance obtained by a complete search.

Also, although Section 2.8 discusses some properties of learning problems that affect

the performance of the search algorithms, the results on randomly generated problems hav-

ing similar characteristics (based on these properties) tend to be harder on average than

similarly-sized real-world problems. Therefore, one area of future work is to further identify

57

properties of learning problems that affect performance, so there can be a better understand-

ing of when it will or will not be easy to find large coefficients in real-world settings.

2.10 Appendix: Additional Theorems

Theorem 8. Let X be a set of 〈x, f(x)〉 examples, with x ∈ {0, 1}n and f(x) ∈ R, and let

φα be a function of the form φα : {0, 1}n → R. Then

min
ĝX(α)

∑
〈x,f(x)〉∈X

(f(x)− ĝX(α)φα(x))2 =
1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

Proof. Assume there is an ordering over X such that each example can be identifed by

in index i, where 0 ≤ i < |X|, and let ~x and ~y be vectors of length |X| such that

∀i((〈x, f(x)〉i ∈ X) ⇒ (~xi = φα(x) ∧ ~yi = f(x))). Then the coefficient ĝX(α) that mini-

mizes
∑
〈x,f(x)〉∈X (f(x)− ĝX(α)φα(x))2 is the coefficient c that minimizes

∑
i(~yi − c~xi)2. c

is given by the least squares formula c = (~xT~x)−1~xT~y, so ĝX(α) is given by:

ĝX(α) = c = (~xT~x)−1~xT~y

=

 ∑
〈x,f(x)〉∈X

φα(x) · φα(x)

−1 ~xT~y
=
(
‖φα‖2X

)−1
~xT~y

=
1

‖φα‖2X

(
~xT~y

)
=

1

‖φα‖2X

∑
〈x,f(x)〉∈X

f(x)φα(x)

58

Theorem 9. If f is of the form f : {0, 1}n → R and B = {φα : α ∈ {0, 1}n} is a basis for

f , then f can be expressed in B−1 as

f(x) =
∑

α∈{0,1}n
‖φα‖2 f̌(α)φ−1x (α)

Proof. From the definition of f̌ (Equation 2.23),

∑
α∈{0,1}n

‖φα‖2 f̌(α)φ−1x (α) =
∑

α∈{0,1}n
‖φα‖2

 1

‖φα‖2
∑

x′∈{0,1}n
f(x′)φα(x′)

φ−1x (α)

=
∑

α∈{0,1}n

 ∑
x′∈{0,1}n

f(x′)φα(x′)

φ−1x (α)

=
∑

α∈{0,1}n

∑
x′∈{0,1}n

f(x′)φα(x′)φ−1x (α)

=
∑

x′∈{0,1}n

∑
α∈{0,1}n

f(x′)φα(x′)φ−1x (α)

=
∑

x′∈{0,1}n
f(x′)

∑
α∈{0,1}n

φα(x′)φ−1x (α)

And, from the definition of an inverse basis,
∑

α∈{0,1}n φα(x′)φ−1x (α) = 1 if x′ = x, and∑
α∈{0,1}n φα(x′)φ−1x (α) = 0 otherwise. Therefore,

∑
x′∈{0,1}n

f(x′)
∑

α∈{0,1}n
φα(x′)φ−1x (α) = f(x)

59

Chapter 3

An Empirical Comparison of Spectral Learning Methods for Classification

Abstract

In this paper, we explore the problem of how to learn spectral (e.g., Fourier) models for

classification problems. Specifically, we consider two sub-problems of spectral learning: (1)

how to select the basis functions that will be included in the model and (2) how to assign

coefficients to the selected basis functions. Empirical results show that a method for assign-

ing coefficients based on finding an optimal linear combination of selected basis functions

usually outperforms the traditional approach (estimating coefficients from data), while a low-

order approach to basis function selection usually outperforms other basis function selection

methods.

60

3.1 Introduction

Spectral learning methods based on Fourier, wavelet, and other transforms have been suc-

cessfully applied in both applied and theoretical domains [Donoho and Johnstone, 1994,

1995, Drake and Ventura, 2005, 2009, Jackson, 1997, Kargupta et al., 1999, Kushilevitz and

Mansour, 1993, Linial et al., 1993, Mansour and Sahar, 2000]. The common theme of these

approaches is the end goal of representing the target function in a particular spectral repre-

sentation. However, several different approaches to spectral learning have been used, and it

is not clear which are most effective in typical machine learning scenarios.

In this paper, we explore the problem of how to best learn spectral representations

for classification problems. In doing so, we compare and analyze new and old approaches to

the two main phases of the spectral learning process: determining which basis functions to

include in the model and determining the coefficients to assign to each basis function.

3.2 Background

Spectral representations provide an alternative representation of a function. For example,

consider the Fourier spectrum. Suppose f is a real-valued function of n Boolean inputs (i.e.,

f : {0, 1}n −→ R). Then the Fourier spectrum of f , denoted f̂ , is given by

f̂(α) =
1

2n

∑
x∈{0,1}n

f(x)χα(x) (3.1)

where α ∈ {0, 1}n is the label of basis function χα, which is defined by

χα(x) =

 +1 : if
∑

i αixi is even

−1 : if
∑

i αixi is odd
(3.2)

in which αi and xi denote the ith binary digits of α and x. Each Fourier coefficient f̂(α)

corresponds to a particular basis function, χα, and the sign and magnitude of f̂(α) indicate

61

the correlation between f and χα. Large positive and negative coefficients indicate significant

positive and negative correlations, respectively, while small coefficients indicate little or no

correlation.

Any f can be recovered from its Fourier representation by applying the inverse trans-

form:

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x) (3.3)

Equation 3.3 also reveals that the Fourier spectrum provides a representation of f as a linear

combination of the Fourier basis functions.

In the case of an n-dimensional Boolean-input function, the Fourier basis functions

are XOR functions, each returning −1 iff the XOR of a particular subset of the inputs is

true. The subset is implicitly defined by α in Equation 3.2. Since αixi = 0 when αi = 0 and

αixi = xi when αi = 1, the output of χα depends only those inputs for which αi = 1. The

order of any χα is given by
∑

i αi, which is the number of inputs that are relevant to χα.

By changing the basis function definition so that logical ANDs and ORs are computed

instead of XORs, we obtain new bases. Below are definitions of AND (ξ) and OR (ζ) basis

functions:

ξα(x) =

 +1 : if
∑

i αixi <
∑

i αi

−1 : if
∑

i αixi =
∑

i αi

(3.4)

ζα(x) =

 +1 : if
∑

i αixi = 0

−1 : if
∑

i αixi > 0
(3.5)

By replacing the Fourier basis functions in Equation 3.1 with either of these sets of basis

functions, we obtain new “correlation spectra.” That is, the coefficients will reveal the

correlation between f and either the AND or OR functions, just as the Fourier coefficients do

for the XOR functions. Note, however, that unlike in the XOR case, the coefficients obtained

from Equation 3.1 will not generally give the linear combination of AND or OR functions

62

that equals f . There is another transform equation that gives the linear combination (but

not the correlation); however, only the correlation spectrum will be of interest here.

3.3 Spectral Learning Methods

Given a set X of 〈x, f(x)〉 examples, a spectral learning algorithm attempts to learn a

spectral representation of f that approximates it well. Since the number of basis functions is

exponential in the number of inputs to a function, a spectral learning algorithm will typically

select a subset of basis functions to use in its model, implicitly assigning coefficients of 0

to the remaining basis functions. If A is the set of labels of basis functions included in the

model, then a spectral learner’s approximation of f is given by the following:

f̃(x) =
∑
α∈A

f̂(α)φα(x) (3.6)

where φα is a general basis function reference that could be replaced by any of the basis

functions defined in the previous section.

Spectral learning algorithms can be applied to Boolean classification problems by

encoding the outputs of positive and negative examples as −1.0 and 1.0, respectively, and

using the sign of the model’s output to make classifications:

f̃(x) =

 false : if
∑

α∈A f̂(α)φα(x) ≥ 0

true : if
∑

α∈A f̂(α)φα(x) < 0
(3.7)

The task of a spectral learner is to determine which basis functions to include in the

model and what coefficient values to assign to each basis function.

3.3.1 Selecting Basis Functions

Three approaches to basis function selection are considered in this paper: Most-Correlated,

Low-Order, and AdaBoost.

63

Most-Correlated

The most common approach to basis function selection is to select the basis functions that are

most correlated with f , or, equivalently, that have the largest coefficients in the correlation

spectrum of f (Equation 3.1) [Blum et al., 1994, Donoho and Johnstone, 1994, 1995, Drake

and Ventura, 2005, Kushilevitz and Mansour, 1993, Mansour and Sahar, 2000]. Although

the true coefficients are unknown, they can be estimated from X:

˜̂
f(α) =

1

|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (3.8)

Stated precisely, the Most-Correlated selection method used in this paper selects basis func-

tions according to the following rule:

φα is preferred to φβ iff:

(|f̂(α)| > |f̂(β)|) ∨

(|f̂(α)| = |f̂(β)| ∧
∑

i αi <
∑

i βi)

Note that ties in coefficient size are broken in favor of lower-order basis functions. (If there

is still a tie, it is broken randomly.)

For any basis, the Most-Correlated approach makes sense from a feature selection

perspective, as basis functions that are correlated with f should tend to be better features.

For a basis in which the correlation spectrum gives the representation of a function in that

basis, such as the Fourier spectrum, this approach can also be motivated by the goal of

trying to approximate the true representation of f in that basis, because then the sensible

strategy would be to select the basis functions with large coefficients, as they carry the most

“weight” in the linear combination.

Low-Order

Another reasonable approach to basis function selection is to use the low-order basis functions

(e.g., to select all basis functions for which
∑

i αi ≤ k) [Bshouty and Tamon, 1996, Linial

64

et al., 1993]. The Low-Order approach used in this paper selects basis functions according

to the following rule:

φα is preferred to φβ iff:

(
∑

i αi <
∑

i βi) ∨

(
∑

i αi =
∑

i βi ∧ |f̂(α)| > |f̂(β)|)

Note that basis functions of the same order are selected in order of highest correlation with

the training data. (If there is still a tie, it is broken randomly.) Thus, the Low-Order and

Most-Correlated methods both favor low-order functions and high correlations, and they

differ only in which criterion is considered more important.

One motivation for preferring low-order functions is that it seems reasonable to expect

that in practice f is more likely to be correlated with lower-order functions. (In fact, a low-

order approach can be viewed as a most-correlated approach with the prior assumption

that lower-order functions will be more correlated with f .) Low-order functions may be

more correlated with f because they are defined over fewer inputs and therefore represent

a simpler interaction between inputs. It also seems reasonable to expect that lower-order

functions will be more likely to generalize well.

AdaBoost

An alternative approach to basis function selection is to select basis functions in conjunction

with a boosting algorithm [Jackson, 1997]. A boosting algorithm generates an ensemble

of learners that makes classifications by weighted vote. The learners are trained iteratively,

typically with the first learner trained on the original data set and subsequent learners trained

on weighted data sets in which examples that were misclassified by previously-trained learners

receive more weight. If the learners are spectral learners whose models consist of a single

basis function, then the result is just a spectral representation in which the basis functions

(and possibly coefficients) were selected in conjunction with a boosting algorithm.

65

SelectBasisFunctions–AdaBoost(X, T)
(1) A← ∅
(2) for each 〈x, f(x)〉 ∈ X
(3) w〈x,f(x)〉 ← 1

|X|
(4) for t = 1 to T
(5) Xt ← {〈x,w〈x,f(x)〉f(x)〉 : 〈x, f(x)〉 ∈ X}
(6) φαt ← SelectCorrelatedFunction(Xt)
(7) A← A ∪ φα
(8) εt ←

∑
{〈x,f(x)〉:φαt (x)6=f(x)}

w〈x,f(x)〉
(9) for each 〈x, f(x)〉 ∈ X s.t. φαt(x) = f(x)
(10) w〈x,f(x)〉 ← w〈x,f(x)〉(

εt
1−εt)

(11) z ←
∑
〈x,f(x)〉∈X w〈x,f(x)〉

(12) for each 〈x, f(x)〉 ∈ X
(13) w〈x,f(x)〉 ← w〈x,f(x)〉/z

(14) return A

Figure 3.1: The AdaBoost basis function selection procedure.

The AdaBoost basis function selection approach used in this paper is based on the

AdaBoost.M1 algorithm [Freund and Schapire, 1996], and is illustrated in Figure 3.1. In

each boosting iteration t, the weights for each example are used to create a weighted data

set, Xt (line 5), in which the weights are implicitly represented by converting the f(x) values

from ±1 to ±w〈x,f(x)〉. Then, a basis function that is highly correlated with Xt is selected

(line 6) and added to the solution (line 7). The distribution of weight over the examples is

initially uniform (line 3), but it is updated each iteration (lines 8-13) so that examples that

would be classified correctly by the most recently added basis function receive less weight

(lines 9-10). (Note: For simplicity, the algorithm in Figure 3.1 is presented as if each φαt

is positively correlated with Xt. However, if φαt is negatively correlated, each occurrence of

φαt(x) in lines 8 and 9 should be replaced with (−φαt(x)).)

3.3.2 Assigning Coefficients

Three methods of assigning coefficients to selected basis functions are considered in this

paper: Data-Estimate, Min-Squared-Error, and AdaBoost.

66

Data-Estimate

The Data-Estimate approach, or some variation of it, is by far the most common method

for assigning coefficients to basis functions [Blum et al., 1994, Bshouty and Tamon, 1996,

Donoho and Johnstone, 1994, 1995, Kushilevitz and Mansour, 1993, Linial et al., 1993,

Mansour and Sahar, 2000]. In its basic form, each basis function is assigned the coefficient

that is estimated from training data. Typically, this is done by Equation 3.8, which is also

the method used here.

If the goal is to approximate the true spectral representation of f , then setting each

coefficient to the value estimated from the training data would seem to be a natural choice,

especially if the basis function selection approach is motivated by the same goal. Regardless

of how basis functions are selected, however, the Data-Estimate method can be reasonably

motivated as an ensemble-building approach that weights each basis function in proportion

to its classification accuracy over X.

Min-Squared-Error

The Min-Squared-Error coefficient assignment method can be motivated by viewing spectral

learning from a feature selection perspective. From this perspective, basis function selection

can be thought of as the task of identifying a good set of features, while coefficient assignment

can be thought of as the task of learning an “optimal” linear combination of the features,

without regard to whether the resulting combination resembles the true spectral represen-

tation of the function. In the Min-Squared-Error approach, the optimal linear combination

of the set A of selected basis functions is the one that minimizes the squared error over the

training data:

argmin
˜̂
f(α1),...,

˜̂
f(α|A|)

 ∑
〈x,f(x)〉∈X

(
f(x)−

∑
α∈A

˜̂
f(α)φα(x)

)2

Motivations for using squared error as the metric for optimality in the linear combination

include the fact that it generalizes naturally to regression problems and that it is easily

67

computed. Other metrics, such as the number of misclassifications or the distance from the

decision surface to the nearest training examples of each class, could also be used, but are

not considered here.

Note that there may not be a unique solution to the least-squares problem, indicating

that with respect to the data there is redundancy in the set of selected basis functions. To

resolve this issue, basis functions are considered for inclusion in the model iteratively (either

in the order defined by the preference function or the order in which they were added to the

model by AdaBoost), and any basis functions whose inclusion would introduce redundancy

are not added to the model.

AdaBoost

The AdaBoost coefficient assignment method makes sense only in the context of the Ad-

aBoost basis function selection method. In the AdaBoost.M1 algorithm, each learner is as-

signed a coefficient whose magnitude is proportional to the learner’s accuracy on its weighted

set of training data. In terms of the AdaBoost basis function selection method described in

Figure 3.1, each coefficient is given by the following:

f̂(αt) = ± log

(
1− εt
εt

)
(3.9)

where εt is the (weighted) misclassification rate of φαt and the sign of f̂(αt) is negative iff∑
〈x,f(x)〉∈Xt f(x)φαt(x) < 0 (i.e., if φαt is negatively correlated with Xt).

When using AdaBoost to select basis functions, it seems natural to use AdaBoost to

assign coefficients. However, we will consider the possibility that there may be a superior

method of assigning coefficients, even if basis functions were selected by AdaBoost.

68

3.4 Empirical Results

In this section, the basis function selection and coefficient assignment methods are compared

on nine learning problems [Newman et al., 1998] with each of the previously defined spectral

representations (i.e., the AND, OR, and XOR bases). For each learning problem, the data

was partitioned 100 times into training and test sets (with 10% used for testing), and the

average classification accuracy on the test set when training on the corresponding training

set was recorded. Each method used the same 100 splits of data, and results were averaged

over those 100 trials. Statistically significant differences were measured pair-wise by a paired

permutation test, with significant differences defined as those for which p ≤ 0.01.

For each spectral learning approach there is a single free parameter: T , the number

of basis functions to include in the model. This parameter was set automatically as part of

the learning process. Specifically, each learner would split its training data into training and

validation sets (with 10% held out for validation), and would then estimate its generalization

performance with each number of basis functions from 1 to Tmax. After repeating this on

10 random partitions of the training data and averaging results, T was set to the number of

basis functions that maximized classification accuracy on the validation set (with ties broken

in favor of fewer basis functions). Then, the learner would train on the entire training set

with the selected T value.

3.4.1 Assigning Coefficients

Tables 3.1 and 3.2 show the average test accuracy when using the Data-Estimate and Min-

Squared-Error coefficient assignment methods with the Low-Order and Most-Correlated basis

function selection approaches. Of the 27 possible combinations of data set and basis, the

tables show only those cases for which a statistically significant difference between methods

was observed. In each case, the higher accuracy is highlighted in bold. Where there were

significant differences, the Min-Squared-Error approach is usually superior to the Data-

Estimate approach.

69

Table 3.1: Comparison of coefficient assignment methods for the Low-Order basis function
selection approach. Where significant differences were observed (shown below), the Min-
Squared-Error approach is usually superior.

Data Set Basis DataEst MinSqErr

Chess AND 87.2% 95.2%
Chess OR 86.8% 96.6%
Chess XOR 87.0% 94.9%

German AND 69.9% 73.1%
German OR 70.8% 73.7%
German XOR 70.4% 73.2%

Pima XOR 72.6% 73.5%
SPECT AND 79.3% 81.9%
SPECT OR 79.0% 81.9%
SPECT XOR 77.3% 81.6%
Voting AND 95.4% 95.8%
Voting XOR 95.3% 95.9%
Wisc1 AND 95.5% 96.0%
Wisc1 OR 96.3% 95.8%
Wisc1 XOR 95.6% 96.2%
Wisc2 AND 75.5% 71.5%
Wisc2 OR 75.6% 72.4%
Wisc2 XOR 76.3% 72.6%
Wisc3 AND 91.3% 94.3%

One advantage of the Min-Squared-Error approach is that it has more flexibility in

modeling functions. In the Data-Estimate approach, the coefficients are assigned indepen-

dently, without regard to what other basis functions may be in the model. In the Min-

Squared-Error approach, meanwhile, the coefficients are set as a group to be “optimal” with

respect to the selected set of basis functions. Of course, the minimum squared error linear

combination is not certain to be better, and increased flexibility can increase the likelihood of

overfitting, which may explain why the Min-Squared-Error approach occasionally performed

worse. However, it seems to be a better approach in general.

Table 3.3 shows a comparison of the AdaBoost, Data-Estimate, and Min-Squared-

Error coefficient assignment methods when AdaBoost is used to select basis functions. In

general, the AdaBoost coefficient assignment method gives the best results.

70

Table 3.2: Comparison of coefficient assignment methods for the Most-Correlated basis
function selection approach. Where significant differences were observed (shown below), the
Min-Squared-Error approach is usually superior.

Data Set Basis DataEst MinSqErr

Chess AND 80.7% 81.0%
Chess OR 77.6% 89.0%
Chess XOR 75.5% 83.2%

German AND 69.6% 70.9%
Heart AND 79.2% 81.5%
Pima AND 74.1% 73.3%
Pima OR 72.5% 73.6%

SPECT OR 83.7% 82.6%
Voting AND 95.5% 95.8%
Wisc1 AND 93.2% 96.0%
Wisc3 AND 90.8% 92.8%

Since both the Data-Estimate and AdaBoost methods assign coefficients that are

proportional to classification accuracy, with the primary difference being whether accuracy

is measured with respect to the original data or a weighted version of the data, it may

be surprising that AdaBoost gave a significantly better result so often. However, an im-

portant difference is that while the Data-Estimate coefficients are assigned independently,

the iteratively-assigned AdaBoost coefficients are each dependent on previously-added basis

functions. In AdaBoost, the weighted data sets implicitly carry information about previously

added basis functions, which allows the assigned coefficients to be “optimized” in a sense

with respect to previously added basis functions. As with the Min-Squared-Error approach,

however, this extra flexibility may lead to overfitting in some cases.

There were few significant differences between the Min-Squared-Error and AdaBoost

coefficient assignment methods. Interestingly, however, in those cases where there was a

difference, the AdaBoost method is always superior.

71

Table 3.3: Comparison of coefficient assignment methods for the AdaBoost basis function
selection approach. Where significant differences were observed (shown below), the AdaBoost
coefficient assignment method is usually superior to the other approaches.

Data Set Basis AdaBoost DataEst

Chess AND 97.6% 94.0%
Chess OR 96.1% 93.9%
Chess XOR 97.7% 94.8%

German AND 72.7% 71.7%
German OR 72.6% 71.4%
Heart AND 81.3% 79.1%
Heart OR 81.5% 78.2%

SPECT AND 83.5% 78.7%
SPECT OR 82.3% 83.9%
Wisc1 AND 95.9% 92.8%
Wisc3 AND 93.9% 92.7%
Wisc3 OR 94.8% 92.8%
Wisc3 XOR 91.6% 92.8%

Data Set Basis AdaBoost MinSqErr

Chess AND 97.6% 95.8%
Chess OR 96.1% 95.4%
Chess XOR 97.7% 96.4%
Heart AND 81.3% 79.4%
Wisc1 OR 96.0% 95.5%

3.4.2 Selecting Basis Functions

Tables 3.4, 3.5, and 3.6 provide pair-wise comparisons of the AdaBoost, Low-Order, and

Most-Correlated basis function selection methods when each is combined with its preferred

coefficient assignment method (i.e., Min-Squared-Error coefficient assignment for the Low-

Order and Most-Correlated selection methods, and AdaBoost coefficient assignment for the

AdaBoost selection method). Again, only cases for which there was a statistically significant

difference between methods are shown, and the higher accuracy in each case is highlighted

in bold.

Table 3.4 reveals a clear superiority of the Low-Order approach over the Most-

Correlated approach. This result is interesting, as the Most-Correlated approach would seem

to have an advantage: it can select correlated basis functions from any part of the spectrum,

72

Table 3.4: Comparison of the Low-Order and Most-Correlated basis function selection meth-
ods. Where significant differences were observed (shown below), the Low-Order approach is
consistently superior.

Data Set Basis Low-Order Most-Corr

Chess AND 95.2% 81.0%
Chess OR 96.6% 89.0%
Chess XOR 94.9% 83.2%

German AND 73.1% 70.9%
German OR 73.7% 70.1%
German XOR 73.2% 71.6%
Heart OR 83.2% 78.4%

SPECT AND 81.9% 77.9%
SPECT XOR 81.6% 78.0%
Voting XOR 95.9% 95.4%
Wisc1 OR 95.8% 94.9%
Wisc2 AND 71.5% 73.8%
Wisc3 AND 94.3% 92.8%
Wisc3 OR 94.4% 92.8%
Wisc3 XOR 94.0% 91.8%

while the Low-Order method is restricted to low-order functions. As mentioned previously,

it seems reasonable to expect that low-order functions will typically exhibit higher correla-

tion. Thus, we might expect that the two approaches would perform similarly, as both would

tend to select low-order functions. However, the results indicate that the Most-Correlated

approach often selects high-order functions that are individually more correlated with X

than many lower-order functions, but the end result is a set of functions that is collectively

less correlated with f . Two possible reasons for this are (1) that the higher-order functions

do not generalize as well or (2) that the most correlated basis functions are less effective as

a set of features than other sets of basis functions.

Further analysis points to the second reason. Empirical results show that although

low-order basis functions tend to be more correlated with X (and f) on average, the error in

training-data estimates of correlation do not seem to be worse for high-order basis functions

than low-order basis functions. Thus, the highly correlated high-order basis functions may

not necessarily be bad features. However, the results in Table 3.7 suggest one problem with

73

Table 3.5: Comparison of the AdaBoost and Most-Correlated basis function selection meth-
ods. Where significant differences were observed (shown below), the AdaBoost approach is
usually superior.

Data Set Basis AdaBoost Most-Corr

Chess AND 97.6% 81.0%
Chess OR 96.1% 89.0%
Chess XOR 97.7% 83.2%

German AND 72.7% 70.9%
German OR 72.6% 70.1%
Heart OR 81.5% 78.4%
Heart XOR 79.3% 82.7%
Pima AND 74.0% 73.3%
Pima OR 72.3% 73.6%

SPECT AND 83.5% 77.9%
Wisc1 OR 96.0% 94.9%
Wisc1 XOR 94.8% 95.9%
Wisc3 AND 93.9% 92.8%
Wisc3 OR 94.8% 92.8%

the Most-Correlated approach. For each data set and basis combination shown in Table 3.4,

Table 3.7 shows the average correlation, measured over the training data, between the first

10 basis functions selected by each method. The results indicate that the most correlated

basis functions tend to also be very correlated with each other. Consequently, it is likely

that although the Most-Correlated approach picks basis functions that are highly correlated

with X (and probably f), they may tend to be so correlated with each other that there is

little gained by combining them.

The performance advantage of the AdaBoost approach over the Most-Correlated ap-

proach (Table 3.5) is also interesting, and may also be explained in part by Table 3.7. Both

methods are based on the idea of choosing correlated basis functions. However, the AdaBoost

approach selects basis functions that are correlated with weighted data sets that focus on

misclassified examples. This naturally de-correlates the selected functions and results in a

set of basis functions that are correlated with different regions of f , rather than all being

globally correlated with f .

74

Table 3.6: Comparison of the AdaBoost and Low-Order basis function selection methods.
Where significant differences were observed (shown below), the Low-Order approach is usu-
ally superior.

Data Set Basis AdaBoost Low-Order

Chess AND 97.6% 95.2%
Chess OR 96.1% 96.6%
Chess XOR 97.7% 94.9%

German OR 72.6% 73.7%
German XOR 71.8% 73.2%
Heart OR 81.5% 83.2%
Heart XOR 79.3% 83.3%
Pima OR 72.3% 73.4%

SPECT AND 83.5% 81.9%
SPECT XOR 78.7% 81.6%
Voting XOR 95.3% 95.9%
Wisc1 XOR 94.8% 96.2%
Wisc3 XOR 91.6% 94.0%

Finally, Table 3.6 shows that the Low-Order approach usually outperforms the Ad-

aBoost approach when there is a significant difference. Thus, the Low-Order approach seems

to be the best approach overall. However, the AdaBoost approach gave the best result on

two of the nine data sets (Chess and SPECT), and may therefore be worth considering. The

Most-Correlated approach, on the other hand, would seem to be less useful to consider, as it

is often worse than the others and it was never significantly better than both of the others.

3.5 Conclusion

Spectral approaches to machine learning have been successfully applied in several domains,

and different methods for learning spectral representations have been proposed. In this pa-

per, we have compared the fundamental approaches to selecting basis functions and assigning

coefficients. Interestingly, empirical results suggest that the spectral learning approach that

is most common, selecting the most correlated basis functions and estimating their coef-

ficients from data, which is motivated by a desire to estimate the function’s true spectral

representation, may be the worst approach for typical machine learning problems. On the

75

Table 3.7: Average correlation (over the training data) between the first 10 basis functions
selected by each selection method. The Most-Correlated approach tends to select basis
functions that are highly correlated with each other, which can hamper learning.

Data Set Basis AdaBoost Low-Ord Most-Corr

Chess AND 0.232 0.242 0.996
Chess OR 0.356 0.242 0.484
Chess XOR 0.156 0.240 0.992

German AND 0.332 0.358 0.794
German OR 0.292 0.364 0.892
German XOR 0.106 0.322 0.818
Heart OR 0.256 0.270 0.720

SPECT AND 0.382 0.292 0.566
SPECT XOR 0.104 0.286 0.290
Voting XOR 0.184 0.498 0.622
Wisc1 OR 0.644 0.614 0.914
Wisc2 AND 0.408 0.404 0.942
Wisc3 AND 0.488 0.710 0.862
Wisc3 OR 0.472 0.704 0.994
Wisc3 XOR 0.268 0.688 0.916

other hand, attempting to learn an optimal linear combination of low-order basis functions

appears to be a more effective approach.

Although the results presented in this paper suggest that a spectral learner will per-

form better if it limits itself to low-order basis functions (even if there are higher-order basis

functions that appear to be more highly correlated), not all functions can be approximated

well by only low-order basis functions, and it seems reasonable to expect that in some cases

a spectral learner would perform better if it could use some useful higher-order basis func-

tions. An important direction for future work will be to determine how to recognize and

take advantage of useful higher-order basis without increasing the likelihood of overfitting

to training data and losing the good generalization performance of a low-order approach.

76

Chapter 4

Improving Spectral Learning by Using Multiple Representations

Abstract

Spectral learning algorithms learn an unknown function by learning a spectral (e.g., Fourier)

representation of the function. However, there are many possible spectral representations,

none of which will be best in all situations. This paper presents and compares methods for

learning from multiple spectral representations. Empirical results suggest that an ensemble

approach to multi-spectrum learning, in which spectral models are learned independently in

each of a set of candidate representations and then combined in a majority-vote ensemble,

works best in practice.

77

4.1 Introduction

Spectral learning algorithms, such as those based on Fourier or wavelet transforms, learn an

unknown function f by learning a spectral representation of f from a set of examples. They

have been successfully applied in both learning theory and real-world applications [Donoho

and Johnstone, 1994, 1995, Drake and Ventura, 2005, 2009, Kushilevitz and Mansour, 1993,

Kargupta et al., 2000, Linial et al., 1993, Mansour and Sahar, 2000].

Typically, a particular representation, such as the Fourier or wavelet representation,

is chosen for a spectral learner prior to training. However, it is easy to show that any

given spectral representation will be effective for some functions and ineffective for others.

Consequently, it seems natural to consider spectral learning methods that allow a learner to

choose from or combine multiple spectral representations. This paper proposes and compares

methods for learning from multiple spectral representations.

4.2 Background

In the following sections, spectral learning is analyzed in the context of Boolean classification

problems with Boolean input features. Specifically, the functions being learned are of the

form f : {0, 1}n −→ {+1,−1}. (In many cases the problems have non-Boolean input features

that are converted to Boolean features, as described later.)

4.2.1 Spectral Representations

In a spectral representation, a function is expressed in terms of a set of basis functions.

In this paper, three spectral representations are considered, each based on a different set

of basis functions. One is the Fourier representation, which in the case of Boolean input

features is based on XOR basis functions. Specifically, the basis functions of the Fourier/XOR

78

representation are given by

χα(x) =

 +1 : if
∑

i αixi is even

−1 : if
∑

i αixi is odd
(4.1)

where α ∈ {0, 1}n is the n-digit label of basis function χα, and αi and xi denote the ith binary

digits or inputs of α and x, respectively. Each χα returns −1 iff the XOR of a particular

subset of the inputs is true. The subset is implicitly defined by α. Since αixi = 0 when

αi = 0, and since αixi = xi when αi = 1, the output of χα depends only on those inputs for

which αi = 1.

The Fourier spectrum of f , denoted f̂ , is given by

f̂(α) =
1

2n

∑
x∈{0,1}n

f(x)χα(x) (4.2)

Each Fourier coefficient f̂(α) corresponds to a particular basis function, χα, and the sign

and magnitude of the coefficient indicate the correlation between f and χα. Large positive

and negative coefficients indicate significant positive and negative correlations, respectively,

while small coefficients indicate little or no correlation.

The Fourier spectrum also shows how f would be expressed as a linear combination

of the basis functions:

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x) (4.3)

Equation 4.3 is the inverse transform, and it shows how any f can be recovered from its

Fourier representation.

The other representations used in this paper are obtained by changing the Fourier

basis function definition so that logical ANDs and ORs are computed instead of XORs.

79

Below are definitions of AND (ξ) and OR (ζ) basis functions:

ξα(x) =

 +1 : if
∑

i αixi <
∑

i αi

−1 : if
∑

i αixi =
∑

i αi

(4.4)

ζα(x) =

 +1 : if
∑

i αixi = 0

−1 : if
∑

i αixi > 0
(4.5)

By replacing the Fourier basis functions in Equation 4.2 with either of these sets of basis

functions, we obtain “correlation spectra” for the AND and OR bases. That is, the coeffi-

cients reveal the correlation between f and the AND or OR functions, just as the Fourier

coefficients do for the XOR functions. However, unlike in the XOR case, the coefficients

obtained from Equation 4.2 do not generally give the linear combination of AND or OR

functions that represents f . There is another transform equation that gives the linear com-

bination (but not the correlation); however, only the correlation spectrum will be of interest

here.

4.2.2 Spectral Learning

Given a set X of 〈x, f(x)〉 examples, a spectral learning algorithm attempts to learn a

spectral representation of f that approximates it well. Since the number of basis functions is

exponential in the number of inputs to a function, a spectral learning algorithm will typically

select a subset of basis functions to use in its model, implicitly assigning coefficients of 0

to the remaining basis functions. If A is the set of labels of basis functions included in the

model, then a spectral learner’s approximation of f is given by the following:

f̃(x) =

 +1 : if
∑

α∈A f̂(α)φα(x) ≥ 0

−1 : if
∑

α∈A f̂(α)φα(x) < 0
(4.6)

80

where φα is a general basis function reference that could be replaced by any of the basis

functions defined in the previous section.

In most applications of spectral learning, the basis functions included in the model

are those whose coefficients appear to be largest, based on the training data, with coefficients

estimated from the training data by the following:

˜̂
f(α) =

1

|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (4.7)

Since this approach selects the basis functions that are most correlated with X, it will be

referred to as the N-Most-Correlated approach. In this paper, after basis functions are

selected, the coefficients are adjusted from the values given by Equation 4.7 to values that

minimize squared error over the training data. This deviation from the standard approach

usually gives better results [Drake and Ventura, 2011a].

A less common approach to spectral learning is to use a boosting algorithm to se-

lect basis functions [Jackson, 1997]. Figure 4.1 describes a spectral learning method based

on the AdaBoost.M1 algorithm [Freund and Schapire, 1996]. In this approach, basis func-

tions are selected iteratively based on correlation with a weighted data set, Xt (lines 5-6).

Initially, each example is given equal weight (lines 2-3). However, after each basis func-

tion is selected, examples that are classified correctly are given less weight (lines 9-10). This

causes subsequently selected basis functions to be increasingly well correlated with previously

misclassified examples. (Note: For simplicity, Figure 4.1 assumes each φαt is positively cor-

related with Xt. However, if φαt is negatively correlated (i.e., if
∑
〈x,f(x)〉∈Xt f(x)φαt(x) < 0),

then each occurrence of φαt(x) in lines 8 and 9 should be replaced with (−φαt(x)).) The

coefficients of selected basis functions are set by the boosting algorithm to the following:

f̂(αt) = ± log

(
1− εt
εt

)
(4.8)

81

BoostingBasisFunctionSelection(X, T)
(1) A← ∅
(2) for each 〈x, f(x)〉 ∈ X
(3) w〈x,f(x)〉 ← 1

|X|
(4) for t = 1 to T
(5) Xt ← {〈x,w〈x,f(x)〉f(x)〉 : 〈x, f(x)〉 ∈ X}
(6) φαt ← SelectCorrelatedFunction(Xt)
(7) A← A ∪ φαt
(8) εt ←

∑
{〈x,f(x)〉:φαt (x)6=f(x)}

w〈x,f(x)〉
(9) for each 〈x, f(x)〉 ∈ X s.t. φαt(x) = f(x)
(10) w〈x,f(x)〉 ← w〈x,f(x)〉(

εt
1−εt)

(11) z ←
∑
〈x,f(x)〉∈X w〈x,f(x)〉

(12) for each 〈x, f(x)〉 ∈ X
(13) w〈x,f(x)〉 ← w〈x,f(x)〉/z

(14) return A

Figure 4.1: The Boosting basis function selection procedure.

in which εt is the (weighted) misclassification rate of φαt (as defined in Figure 4.1) and the

sign of f̂(αt) is negative iff φαt is negatively correlated with Xt. In the following sections,

this spectral learning method is referred to as the Boosting approach.

4.3 Motivation

There are at least two reasons why a spectral learner might benefit from a multi-spectrum

approach. One is that no representation will be best for all problems. This can be seen in

Table 4.1, which compares the classification accuracy of single-spectrum learners using the

AND, OR, and XOR bases with the N-Most-Correlated learning approach. In the table, the

numbers in parentheses indicate the rank of each learner in highest accuracy order. Ties

indicate no statistically significant difference between two results. (More precise details of

the experiment are given later.) For each problem, one basis was significantly better than

both of the others. In addition, each basis was significantly worse than both of the others

at least once. Ideally, a spectral learner could choose an appropriate representation for each

problem.

82

Table 4.1: Comparison of single-spectrum learners. (The number in parentheses is the rank
of each learner in highest-accuracy order, with ties indicating no significant difference.) No
representation is always best, and each is sometimes worst.

AND OR XOR

Chess 81.1% (2) 89.1% (1) 75.4% (3)
German 71.0% (2) 70.6% (2) 72.0% (1)
Heart 81.9% (2) 80.1% (3) 83.8% (1)
Pima 73.9% (1) 73.1% (2) 73.1% (2)

SPECT 77.0% (3) 85.3% (1) 79.9% (2)
Voting 95.7% (1) 94.9% (2) 94.9% (2)
Wisc1 96.3% (1) 95.5% (2) 95.9% (2)
Wisc2 74.5% (1) 73.2% (2) 71.2% (3)
Wisc3 92.8% (2) 93.5% (1) 92.6% (2)

Another motivation is that a learner may be able to build a multi-spectrum model

that is more accurate than any single-spectrum model it could construct. A single-spectrum

learner is limited to the information and representational power of a single spectrum, while

a multi-spectrum learner can combine spectra.

4.4 Multi-Spectrum Learning Methods

The following sections describe three learners: a Best-Basis learner, an Ensemble learner,

and a Bag-Of-Features learner. Each uses multiple spectra in a different way.

4.4.1 Best-Basis

The Best-Basis learner attempts to determine which basis is best for a problem and then

learns a model in that basis. In this paper, the bases considered by the learner are the AND,

OR, and XOR bases, and the “best” basis is the one that maximizes estimated classification

accuracy. Classification accuracy is estimated by randomly splitting the training data into

training and validation sets (with 10% held out for validation) and computing the classifi-

cation accuracy on the validation data when training on the training data. This process is

repeated for 10 random splits of the data, and accuracies are averaged over those splits. The

83

basis that gives the highest average accuracy is then selected and a model is built in that

basis using all of the training data.

While a single-spectrum learner’s performance will sometimes be better than other

single-spectrum learners and sometimes be worse (depending on the effectiveness of its basis

for each problem), the Best-Basis learner can potentially do as well as the best single-

spectrum learner on each problem. However, since the Best-Basis learner can only guess at

which basis is best (by estimating test performance), it will sometimes choose a sub-optimal

basis.

4.4.2 Ensemble

Although the Best-Basis learner has access to multiple bases, it uses a single basis in its final

model. The Ensemble and Bag-Of-Features learners, on the other hand, combine spectra in

their models.

The Ensemble learner uses multiple spectra by building an ensemble of single-

spectrum models. Specifically, it builds a model in each of a set of bases (independently

from one another) and then makes classifications by a majority vote of the single-spectrum

models. The Ensemble learner’s “meta”-model is defined by the following, in which f̃b is the

model built in basis b (see Equation 4.6) and B is the set of bases used by the learner:

f̃ens(x) =

 +1 : if
∑

b∈B f̃b(x) ≥ 0

−1 : if
∑

b∈B f̃b(x) < 0

In this paper, B contains the AND, OR, and XOR bases, so the Ensemble learner’s classifi-

cations are the majority vote of models built in those three bases.

Intuitively, as long as each spectral model makes correct classifications most of the

time, and as long as the individual models are not excessively redundant, it seems reasonable

to expect that majority vote of the ensemble will be at least as accurate as any constituent

model, if not more accurate. In spite of this, the Ensemble learner’s model is not certain

84

to be more accurate than the best single-spectrum model. Specifically, it is possible for

less accurate models in the ensemble to out-vote more accurate models, especially if the

less-accurate models have highly correlated error.

4.4.3 Bag-Of-Features

The Bag-Of-Features learner is inspired by a feature selection perspective on spectral learning

in which the basis functions are viewed as features and each basis is viewed as a bag of

features. In principle, the Bag-Of-Features learner attempts to select the best features from

each basis.

The Bag-Of-Features learner is like a single-spectrum learner except that it considers

basis functions in all bases when selecting basis functions. Specifically, when selecting basis

functions, whether using the N-Most-Correlated or Boosting approach, the learner searches

through each of its candidate bases and selects the most correlated basis function(s) found.

The Bag-Of-Features learner can be thought of as doing spectral learning with a hybrid

“basis” made up of functions from each of the individual bases.

The Bag-Of-Features learner is the most powerful of the multi-spectrum learners,

especially when using boosting, as it can directly combine basis functions from each basis

to fit the data. (The Ensemble learner on the other hand selects basis functions in each

basis separately and gives equal weight to each basis.) When using N-Most-Correlated

learning, the Bag-Of-Features learner is somewhat more constrained, as it must select all

basis functions based on correlation with the original unweighted data.

4.5 Results

The following sections analyze the performance of the multi-spectrum learners. The algo-

rithms are compared on nine Boolean classification problems [Newman et al., 1998]. Some

of the problems have one or more non-Boolean inputs, which were converted into Boolean

inputs. Real-valued inputs were converted to Boolean inputs by applying a threshold (i.e.,

85

values greater than t were set to true). Each nominal input was converted into k Boolean

inputs (one for each possible nominal value), with only the input corresponding to the correct

value set to true.

The performance of each learner was tested by estimating classification accuracy on

held-out data. The learners were tested on 100 random splits of the data with 10% held-

out for testing each time. The results presented below are averages over those 100 trials.

Statistical significance was measured pair-wise by a paired permutation test, with significant

differences defined as those for which p ≤ 0.05.

The number of basis functions used by each learner was set during training by es-

timating test accuracy for each number of basis functions from 1 to 128. Test accuracy

was estimated by holding out 10% of the training data for validation and training on the

remaining 90%. This process was repeated for ten random splits of the data, and then the

learner was re-trained on all of the data with the number of basis functions that gave the

highest average validation accuracy.

4.5.1 Single-Spectrum vs. Best-Basis

Table 4.2 compares the performance of the Best-Basis multi-spectrum learner to the single-

spectrum learners. For each problem, the test accuracy of each learner is presented when

using the Most-Correlated and Boosting spectral learning approaches. The number in paren-

theses is the rank of the learner in highest-accuracy order, relative to the others. A tie in

rank indicates that there is not a significant difference between two results. A ∗ indicates

that there is not a well-defined ranking in terms of significant differences (e.g., A > B > C,

and there is a significant difference between A and C, but B is not significantly different

from either).

While the Best-Basis learner does not always select the best basis, its overall per-

formance is statistically indistinguishable from the best single-spectrum learner in 10 of 18

cases (4 of 9 cases for the N-Most-Correlated learning approach, and 6 of 9 cases for the

86

Table 4.2: Comparison of the Best-Basis learner and the AND, OR, and XOR single-
spectrum learners. (The number in parentheses is the rank of each learner in highest-accuracy
order, with ties indicating no significant difference, and * indicating an undefined ranking.)
Although the Best-Basis learner does not always select the best basis, it often performs as
well as the best single-spectrum learner.

N-Most-Correlated
AND OR XOR Best-Basis

Chess 81.1% (3) 89.1% (1) 75.4% (4) 89.0% (1)
German 71.0% (2) 70.6% (2) 72.0% (1) 71.2% (2)
Heart 81.9% (2) 80.1% (4) 83.8% (1) 81.7% (2)
Pima 73.9% (1) 73.1% (3) 73.1% (3) 73.8% (1)

SPECT 77.0% (4) 85.3% (1) 79.9% (3) 84.6% (1)
Voting 95.7% (1) 94.9% (2) 94.9% (2) 95.2% (2)
Wisc1 96.3% (*) 95.5% (*) 95.9% (*) 96.0% (*)
Wisc2 74.5% (1) 73.2% (2) 71.2% (4) 73.0% (2)
Wisc3 92.8% (2) 93.5% (1) 92.6% (2) 93.0% (2)

Boosting
AND OR XOR Best-Basis

Chess 99.3% (1) 97.2% (3) 98.8% (2) 97.2% (3)
German 72.4% (1) 72.4% (1) 68.1% (4) 72.6% (1)
Heart 81.4% (1) 78.1% (3) 75.1% (4) 80.9% (1)
Pima 73.7% (*) 73.1% (*) 72.8% (*) 73.3% (*)

SPECT 84.3% (1) 84.9% (1) 71.5% (4) 84.7% (1)
Voting 95.3% (*) 94.9% (*) 94.7% (*) 95.1% (*)
Wisc1 96.4% (1) 96.2% (1) 95.2% (4) 95.9% (3)
Wisc2 71.2% (1) 69.7% (1) 64.4% (3) 69.7% (1)
Wisc3 93.9% (2) 94.5% (1) 92.6% (4) 93.7% (2)

Boosting approach, including the cases where the full ranking is undefined). In addition, the

Best-Basis learner’s performance ranks no worse than second in 16 of 18 cases (9 of 9 cases

for N-Most-Correlated, and 7 of 9 for Boosting).

Table 4.3 shows how often the Best-Basis learner selects each basis. The basis (or

bases, if there is a statistical tie) of the best single-spectrum learner is highlighted in bold.

In most cases, the learner tends to select the best basis, and in several cases it does so

consistently. Other times, however, the learner is less consistent. In these cases, a small

performance difference between bases and/or a relatively small amount of training data

makes consistently choosing the best basis difficult. Interestingly, in a few cases the learner

87

Table 4.3: Percentage of trials in which the Best-Basis learner selected each basis. (The
basis of the best single-spectrum learner is highlighted in bold.) On many problems, the
Best-Basis learner consistently selects the best basis. In some cases, however, it consistently
selects a sub-optimal basis.

N-Most-Correlated Boosting
AND OR XOR AND OR XOR

Chess 0% 100% 0% 0% 100% 0%
German 14% 13% 73% 80% 20% 0%
Heart 60% 7% 33% 94% 6% 0%
Pima 63% 35% 2% 56% 0% 44%

SPECT 0% 92% 8% 4% 96% 0%
Voting 75% 17% 8% 85% 7% 8%
Wisc1 64% 12% 24% 53% 0% 47%
Wisc2 36% 13% 51% 50% 35% 15%
Wisc3 74% 11% 15% 89% 0% 11%

consistently selects a sub-optimal basis, as the validation method consistently leads the

learner to choose a basis that does not generalize as well.

4.5.2 Single-Spectrum vs. Ensemble

The Ensemble learner does a better job than the Best-Basis learner of matching the per-

formance of the best single-spectrum learner. In Table 4.4, the Ensemble learner matches

or exceeds the performance of the best single-spectrum learner in 15 of 18 cases (6 of 9

cases when using the N-Most-Correlated approach, and 9 of 9 cases when using the Boosting

approach). (The Ensemble learner’s performance is indistinguishable from the best single-

spectrum learner’s performance in those cases where a full ranking is undefined.) In addition,

the Ensemble learner’s performance is never worse than second-best.

Unfortunately, however, although the Ensemble learner is effective at matching the

performance of the best single-spectrum learner, consistently outperforming the best single-

spectrum learner seems difficult. In Table 4.4, only once (when using Boosting on the Voting

data set) is the Ensemble learner’s performance significantly better than the best single-

spectrum learner.

88

Table 4.4: Comparison of the Ensemble learner and the AND, OR, and XOR single-spectrum
learners. (The number in parentheses is the rank of each learner in highest-accuracy order,
with ties indicating no significant difference, and * indicating an undefined ranking.) The
Ensemble learner usually matches or exceeds the performance of the best single-spectrum
learner.

N-Most-Correlated
AND OR XOR Ensemble

Chess 81.1% (3) 89.1% (1) 75.4% (4) 88.3% (2)
German 71.0% (3) 70.6% (3) 72.0% (1) 71.6% (1)
Heart 81.9% (3) 80.1% (4) 83.8% (1) 83.9% (1)
Pima 73.9% (1) 73.1% (3) 73.1% (3) 73.9% (1)

SPECT 77.0% (4) 85.3% (1) 79.9% (3) 83.3% (2)
Voting 95.7% (1) 94.9% (2) 94.9% (2) 95.5% (1)
Wisc1 96.3% (1) 95.5% (3) 95.9% (3) 96.3% (1)
Wisc2 74.5% (1) 73.2% (2) 71.2% (4) 73.0% (2)
Wisc3 92.8% (3) 93.5% (1) 92.6% (3) 93.6% (1)

Boosting
AND OR XOR Ensemble

Chess 99.3% (1) 97.2% (4) 98.8% (3) 99.3% (1)
German 72.4% (1) 72.4% (1) 68.1% (4) 73.1% (1)
Heart 81.4% (1) 78.1% (3) 75.1% (4) 81.1% (1)
Pima 73.7% (*) 73.1% (*) 72.8% (*) 73.5% (*)

SPECT 84.3% (1) 84.9% (1) 71.5% (4) 84.9% (1)
Voting 95.3% (2) 94.9% (3) 94.7% (3) 95.5% (1)
Wisc1 96.4% (1) 96.2% (1) 95.2% (4) 96.4% (1)
Wisc2 71.2% (*) 69.7% (*) 64.4% (*) 72.3% (*)
Wisc3 93.9% (3) 94.5% (1) 92.6% (4) 94.8% (1)

4.5.3 Single-Spectrum vs. Bag-Of-Features

Although the Bag-Of-Features learner is the most powerful of the multi-spectrum learners

(especially when using boosting), its overall performance is the worst. In Table 4.5, the Bag-

Of-Features learner matches the performance of the best single-spectrum learner in only 5

of 18 cases (4 of 9 cases when using the N-Most-Correlated approach, and 1 of 9 cases when

using the Boosting approach), and it is outperformed by two single-spectrum learners four

times. (When doing N-Most-Correlated learning, the Bag-Of-Features learner’s performance

is indistinguishable from the performance of the best single-spectrum learner on the Pima

problem, but not on the Wisc2 problem.)

89

Table 4.5: Comparison of the Bag-Of-Features learner and the AND, OR, and XOR single-
spectrum learners. (The number in parentheses is the rank of each learner in highest-accuracy
order, with ties indicating no significant difference, and * indicating an undefined ranking.)
The Bag-Of-Features learner is usually outperformed by one or more single-spectrum learn-
ers.

N-Most-Correlated
AND OR XOR Bag

Chess 81.1% (2) 89.1% (1) 75.4% (4) 81.1% (2)
German 71.0% (2) 70.6% (2) 72.0% (1) 71.0% (2)
Heart 81.9% (2) 80.1% (3) 83.8% (1) 79.9% (3)
Pima 73.9% (*) 73.1% (*) 73.1% (*) 73.5% (*)

SPECT 77.0% (4) 85.3% (1) 79.9% (3) 84.9% (1)
Voting 95.7% (1) 94.9% (2) 94.9% (2) 95.7% (1)
Wisc1 96.3% (1) 95.5% (2) 95.9% (2) 95.6% (2)
Wisc2 74.5% (1) 73.2% (*) 71.2% (*) 72.2% (*)
Wisc3 92.8% (3) 93.5% (1) 92.6% (3) 93.4% (1)

Boosting
AND OR XOR Bag

Chess 99.3% (1) 97.2% (4) 98.8% (2) 98.8% (2)
German 72.4% (1) 72.4% (1) 68.1% (3) 68.8% (3)
Heart 81.4% (1) 78.1% (2) 75.1% (4) 77.1% (2)
Pima 73.7% (1) 73.1% (2) 72.8% (2) 73.0% (2)

SPECT 84.3% (1) 84.9% (1) 71.5% (4) 81.4% (3)
Voting 95.3% (1) 94.9% (2) 94.7% (2) 94.6% (2)
Wisc1 96.4% (1) 96.2% (1) 95.2% (4) 96.1% (1)
Wisc2 71.2% (1) 69.7% (1) 64.4% (4) 67.0% (3)
Wisc3 93.9% (2) 94.5% (1) 92.6% (4) 93.8% (2)

When using the N-Most-Correlated learning approach, one problem with the Bag-Of-

Features learner is that it often selects all basis functions from a single basis. (This occurs

whenever the N most correlated basis functions are all in one basis.) Table 4.6 shows how

often this occurred over the 100 random splits of the data into training and test sets. It also

shows the average percentage of basis functions selected from each basis (not counting the

0th- and 1st-order basis functions, which are the same in each basis). The Bag-Of-Features

learner frequently learns a single-spectrum model on the Chess, SPECT, Wisc1, Wisc2, and

Wisc3 problems, and to a lesser extent on the German problem. In the case of the SPECT

and Wisc3 problems, the basis functions were selected from the best basis for the problem,

90

Table 4.6: Average percentage of functions from each basis in the models learned by the Bag-
Of-Features learner when doing N-Most-Correlated learning, and the percentage of trials in
which functions were selected from one basis only. The learner often ends up with a model
that uses only a single basis, and for some problems (Chess, German, Wisc1, Wisc2) the
basis it favors is not the best choice.

Model Composition Single-Basis
AND OR XOR Model %

Chess 100.0% 0.0% 0.0% 100%
German 0.3% 84.2% 15.5% 22%
Heart 16.8% 77.1% 6.1% 1%
Pima 1.4% 74.0% 24.6% 4%

SPECT 0.0% 100.0% 0.0% 100%
Voting 53.4% 44.3% 2.3% 0%
Wisc1 1.7% 98.3% 0% 79%
Wisc2 10.3% 0% 89.7% 77%
Wisc3 1.0% 98.6% 0.3% 93%

allowing the Bag-Of-Features learner to match the performance of the best single-spectrum

learner, even if it could not exceed it. For the Chess, German, Wisc1, and Wisc2 problems,

however, it selected basis functions from a sub-optimal basis.

It is interesting to compare the Bag-Of-Features learner’s single-spectrum models with

those of the Best-Basis learner. In those cases where the Bag-Of-Features learner ends up

with a single-spectrum model, it implicitly selects the basis that has the N basis functions

that are most correlated (individually) with the training data. This will typically be the

basis that best fits the training data. The Best-Basis learner, on the other hand, attempts

to select the basis that will perform best on unseen data by choosing the basis that maximizes

accuracy on held-out data. On problems for which the Bag-Of-Features learner often learns

a single-spectrum model, the Best-Basis approach seems slightly better. The learners tend

to choose different bases on four of those problems (Chess, German, Wisc1, Wisc3), and the

Best-Basis learner favors the better basis on all but one of those (Wisc3).

When using Boosting, the Bag-Of-Features learner rarely selects all functions from a

single basis. However, it does tend to select most functions (approx. 79% on average) from

the XOR basis. A likely reason for this is that the XOR basis functions are all orthogonal

91

to one another. Since AND and OR functions are somewhat correlated with each other, it

is probably easier to repeatedly find XOR basis functions that provide “new information.”

Unfortunately, this information is with respect to the training sample only. Table 4.5 shows

that models built when using boosting in the XOR basis did not generalize as well, but this

is not considered in the Bag-Of-Features/Boosting approach. In contrast, the Best-Basis

learner can recognize this and usually avoided the XOR basis when using boosting (see

Table 4.3).

4.5.4 Multi-Spectrum Comparison

In a direct comparison of multi-spectrum learners (Table 4.7), the Ensemble learner out-

performs the other multi-spectrum learners. It matches or exceeds the performance of the

other learners in 16 of 18 cases. (The other cases are Chess and SPECT with N-Most-

Correlated learning. For SPECT, the full ranking is not defined, but the Ensemble learner

did significantly worse than the Bag-Of-Features learner.)

By combining the models built in each basis, the Ensemble learner has access to more

information than the Best-Basis learner when making classifications. However, since the

models in each basis are learned independently, and since classifications are “averaged” over

these models, the Ensemble learner is less susceptible to overfitting than the Bag-Of-Features

learner.

4.6 Conclusion

Spectral learning algorithms learn an unknown function by learning a spectral representa-

tion of the function; however, no representation will be best for all problems. This paper

has presented and compared methods for learning from multiple spectra. The best multi-

spectrum approach appears to be an ensemble approach in which classifications are made

by a majority vote over a set of models built independently in each of a set of candidate

representations. The ensemble approach is better at matching the performance of the best

92

Table 4.7: Comparison of multi-spectrum learners. (The number in parentheses is the rank
of each learner in highest-accuracy order, with ties indicating no significant difference, and
* indicating an undefined ranking.) The Ensemble learner usually matches or exceeds the
performance of the other multi-spectrum learners.

N-Most-Correlated
Best-Basis Ensemble Bag

Chess 89.0% (1) 88.3% (2) 81.1% (3)
German 71.2% (1) 71.6% (1) 71.0% (1)
Heart 81.7% (2) 83.9% (1) 79.9% (3)
Pima 73.8% (1) 73.9% (1) 73.5% (1)

SPECT 84.6% (*) 83.3% (*) 84.9% (*)
Voting 95.2% (*) 95.5% (*) 95.7% (*)
Wisc1 96.0% (1) 96.3% (1) 95.6% (3)
Wisc2 73.0% (1) 73.0% (1) 72.2% (1)
Wisc3 93.0% (*) 93.6% (*) 93.4% (*)

Boosting
Best-Basis Ensemble Bag

Chess 97.2% (3) 99.3% (1) 98.8% (2)
German 72.6% (1) 73.1% (1) 68.8% (3)
Heart 80.9% (1) 81.1% (1) 77.1% (3)
Pima 73.3% (1) 73.5% (1) 73.0% (1)

SPECT 84.7% (1) 84.9% (1) 81.4% (3)
Voting 95.1% (2) 95.5% (1) 94.6% (2)
Wisc1 95.9% (*) 96.4% (*) 96.1% (*)
Wisc2 69.7% (2) 72.3% (1) 67.0% (3)
Wisc3 93.7% (2) 94.8% (1) 93.8% (2)

single representation than an approach that attempts to select the best single representation,

and it is less prone to overfitting than an approach that attempts to combine the best basis

functions of each representation into a single model.

One interesting question for future work is the question of which spectral represen-

tations a multi-spectrum learner should consider. For multi-spectrum learning approaches

that combine representations, there is the additional question of which representations are

useful in combination. For example, is it bad to have representations that are too “similar”

to each other? How “different” should the representations be, and how many should be

93

considered? Finally, a potentially interesting direction for future work is to determine if a

learner can effectively generate bases on-the-fly to adapt to specific learning problems.

94

Chapter 5

Sentiment Regression: Using Real-Valued Scores to Summarize Overall

Document Sentiment

Abstract

In this paper, we consider a sentiment regression problem: summarizing the overall sentiment

of a review with a real-valued score. Empirical results on a set of labeled reviews show

that real-valued sentiment modeling is feasible, as several algorithms improve upon baseline

performance. We also analyze performance as the granularity of the classification problem

moves from two-class (positive vs. negative) towards infinite-class (real-valued).

95

5.1 Introduction

Sentiment classification is the problem of classifying the opinion or feeling of written text. It

has many potential applications including systems for automatic product recommendation,

“flame” detection in online forums, assigning ratings to written reviews, organizing written

surveys by satisfaction level, email filtering, and organizing/summarizing reviews of products

by feature.

Previous work in sentiment analysis has considered classification scenarios involving

just a few sentiment categories. In some applications, this coarse-grained view of sentiment

may be sufficient. In other situations, however, such a coarse-grained analysis may be un-

acceptable. Furthermore, even in cases where a coarse-grained analysis is acceptable, more

fine-grained sentiment distinctions, if possible, would generally be preferred.

In this paper, we examine the ability of learning algorithms to make precise, fine-

grained assessments of overall sentiment. Specifically, we consider the problem of summariz-

ing the overall sentiment of a review by labeling it with a real-valued score. In doing so, we

introduce a real-world data set of reviews labeled with scores on a 91 point scale (1.0 to 10.0

in increments of 0.1) and compare the performance of several machine learning algorithms

on the task of predicting the score given by the author.

In addition, we compare the performance of the algorithms as the granularity of the

sentiment categorization moves from two-class (positive vs. negative) towards infinite-class

(real-valued). As the granularity becomes increasingly fine, it seems reasonable to expect

that a regression approach to sentiment analysis will eventually be more appropriate than a

classification approach. Consequently, we compare the performance of both regression- and

classification-based algorithms as the number of sentiment categories increases.

96

5.2 Related Work

Early work in classifying the overall sentiment of reviews as positive or negative includes the

work of Turney [Turney, 2002] and Pang, Lee, and Vaithyanathan [Pang et al., 2002]. Turney

used the mutual information between phrases and specific semantic words to find positive

and negative clauses, which were used in turn to determine overall document sentiment,

while Pang, Lee, and Vaithyanathan applied machine learning algorithms to the task. Pang

and Lee [Pang and Lee, 2005] later extended their work to more fine-grained 3-class (positive,

negative, or neutral) and 4-class (x out of 4 stars) scenarios, and they introduced a method for

allowing standard classification algorithms to make use of the natural ordering of sentiment

classes. Bikel and Sorensen [Bikel and Sorensen, 2007] presented results of applying an

averaged perceptron with a word subsequence kernel to user reviews from Amazon.com (on

a 5 point scale), finding that it can accurately distinguish between reviews that are above

and below a chosen score.

In other related work, Yu and Hatzivassiloglou [Yu and Hatzivassiloglou, 2003] have

presented work on distinguishing between opinions and facts at both the sentence and doc-

ument level. Dave, Lawrence, and Pennock [Dave et al., 2003] and Hu and Liu [Hu and Liu,

2004] have presented results of work on extracting feature-specific sentiments from reviews

of a single product and presenting summaries (by feature) of the results. Meanwhile, Wilson,

Wiebe, and Hwa [Wilson et al., 2004] presented experimental results on a problem related

to sentiment classification: determining the strength of an opinion.

5.3 Real-Valued Sentiment Analysis

Performing sentiment analysis on a real-valued scale can be viewed as a generalization of the

typical sentiment classification scenario. Many of the issues in sentiment classification, such

as differences in word usage and meaning between authors, become even more pronounced

as the desired precision increases. For example, consider the difficulty of accurately inferring

97

a real-valued score from a review when one author might describe a product given a score

of 80 out of 100 as “excellent” while a more demanding author may reserve that term for

products with scores above 95.

To test the ability of learning algorithms to make fine-grained sentiment distinctions,

a set of video game reviews was collected from GameSpot.com. Each game review is labeled

with a score between 1.0 and 10.0, rounded to one decimal point. (Since scores are rounded

to one decimal point there is a finite set of 91 possible scores; nevertheless, a real-valued

perspective seems appropriate.)

All reviews from the months of June 2005 through December 2006 were collected,

resulting in a total of 1,822 reviews (roughly 96 per month). The average review length

is approximately 1,300 words, but the length varies significantly, with the smallest review

containing only 93 words and the largest containing 4,638. There are 31 different authors

represented in the data, although some contributed more reviews than others (several authors

contributed only a few reviews, while just over half of the reviews came from the seven most

common authors).

5.4 Feature Selection

In the experiments described in the following sections, there were typically around 30,000

unique words in the training data. However, the learning algorithms generally performed

better when the vocabulary was reduced to a smaller subset, V , of those words.

In order to determine which words should be considered, we used a word-score cor-

relation metric. The correlation of a word w with the scores of a set of reviews R, denoted

c(w,R), was defined by the following:

c(w,R) =
1

|R|
∑
r∈R

{
I(w, r) ·

(
S(r)− 1

|R|
∑
r′∈R

S(r′)

)}

98

where S(r) is the real-valued score associated with review r and I(w, r) is a function that

outputs 1 if r contains word w and outputs −1 otherwise.

Note that the 1
|R|
∑

r′∈R S(r′) term is the average review score. Intuitively, if a word

is positively correlated with review scores then it would tend to appear in documents with

above average scores and be absent from reviews with below average scores. Similarly, if a

word is negatively correlated with review scores then it would tend to appear in documents

with below average scores and be absent from reviews with above average scores.

To see how this applies in the correlation metric defined above, notice that if a word

w appears in a review r and r’s score is above average, then both I(w, r) and (S(r) −
1
|R|
∑

r′∈R S(r′)) are positive, and the correlation goes up. If w does not appear in review r

and r’s score is below average, then both terms are negative, and again the correlation goes

up. Meanwhile, in the other two cases (when w is not in r and r’s score is above average

and when w is in r and r’s score is below average), the terms have different signs and the

correlation drops.

This metric reveals how much a word’s presence/absence tends to cause a review’s

score to deviate from the mean on average. A large positive value indicates that the word

tends to occur in reviews with above average scores and be absent from reviews with below

average scores, while a large negative value indicates the opposite. A value near 0 indicates

that the word’s presence does not tend to influence the score significantly in either a positive

or negative direction. This metric implicitly tends to remove words that occur too rarely or

too frequently to be useful for learning.

Table 5.1 shows the top 10 positively and negatively correlated words over the entire

set of reviews from June 2005 through December 2006.

It is interesting to note in Table 5.1 that some of the most correlated features, partic-

ularly on the positive side, do not carry obviously positive sentiment. However, they appear

to be used so much more often in phrases of positive sentiment that there is a significant

positive correlation between their usage and the score of the review.

99

Table 5.1: The top 10 positively and negatively correlated words, according to the word-score
correlation metric.

Positive Negative
0.514 great -0.251 dull
0.369 quite -0.236 generic
0.353 excellent -0.199 decent
0.309 new -0.196 repetitive
0.301 experience -0.195 ugly
0.300 definitely -0.187 boring
0.291 best -0.183 bland
0.290 expect -0.170 poor
0.290 year -0.168 terrible
0.285 unique -0.166 poorly

Since both positive and negative correlations are useful for learning, the words added

to the vocabulary were those that maximized the absolute value of c(w,R). This has the

effect of selecting the words whose presence/absence causes the score to deviate from the

mean the most on average.

The number of vocabulary words used by each learning algorithm is a parameter that

is tuned by validation along with any other algorithm-specific parameters. (The validation

process is described later in the Results section.) Using the set V of vocabulary words, each

review r is converted into a Boolean vector ~x = {x1, x2, ..., x|V |} in which xi is true if and

only if the ith vocabulary word appears in r. All of the learning algorithms presented in the

following section used these Boolean vectors as input features. Thus, the algorithms learn

to predict the score of a review based solely on presence/absence of words in the review.

5.5 Learning Algorithms

Four learning methods, two classification-based and two regression-based, were used in the

sentiment experiments: a Naive Bayes classification algorithm, a linear regression algorithm,

and classification and regression support vector machine (SVM) algorithms.

100

5.5.1 Naive Bayes

The Naive Bayes algorithm treats each possible score as a different class. Given a review to

classify, it will predict the class c that is most likely given the feature vector ~x, under the

assumption that the input features are conditionally independent of each other given c:

argmax
c

P (c|~x) = argmax
c

P (c)P (~x|c)
P (~x)

= argmax
c

P (c)P (~x|c)

= argmax
c

P (c)
∏
i

P (xi|c)

The probabilities P (c) and P (xi|c) are estimated from counts in the training data. In order to

smooth the probability distribution, the counts used to estimate P (xi|c) in our experiments

were incremented by a small value δ, which was set to the value that gave the best result in

the validation process described in the next section.

5.5.2 Linear Regression

The linear regression algorithm attempts to learn a function f that maps input vectors to

scores. It represents f by a linear combination of the input features:

f(~x) = w0 +
∑
i

wixi

We used a forward step-wise approach to set the weights and perform feature selection.

Initially, w0 was set to the mean review score. Then, until the desired number of input

features had been added, input features were added incrementally. At each step, the feature

that would reduce squared error most if added was selected. When added, its weight was set

such that squared error would be minimized, given the features and weights already added.

The number of input features to include was determined by validation. (Note that since the

101

linear regression algorithm performed its own feature selection, it did not use the word-score

correlation metric to choose vocabulary words.)

5.5.3 SVM

The two SVM algorithms are based on the classification and regression variants of Joachim’s

SVMlight [Joachims, 1999]. In the experiments reported below, the default settings of SVMlight

were used.

The regression SVM, like linear regression, learned a function that mapped the

Boolean feature vectors to scores. The classification SVM, on the other hand, like Naive

Bayes, treated each possible score as a unique class. In order to use the SVM in a multi-class

scenario, n binary classifiers were created, each used to distinguish one of the n classes from

the others. Test instances were classified by choosing the classifier that reported the largest

positive distance from its decision surface.

5.6 Results

The experiments on the GameSpot data were conducted as follows. The reviews of the six

months from July 2006 through December 2006 were used as test data, with each month

tested separately. When testing on a particular month, the algorithms were given the pre-

vious 12 months of reviews as training data. This resulted in training sets of roughly 1,000

labeled reviews.

The parameters of the algorithms, including the number of vocabulary words to use,

were set by using the previous month as a validation set. Specifically, the parameter settings

that gave the best results in month i (with months i − 12 through i − 1 used as training

data) were used as the parameter settings when testing on month i+ 1.

Classification accuracy, the percentage of correctly classified examples, is an effective

performance metric in a 2-class sentiment classification scenario. However, as the sentiment

spectrum is subdivided into more categories, classification accuracy becomes less meaningful

102

Table 5.2: Average squared error on the real-valued sentiment prediction task. All algorithms
outperform the baseline on average, while the SVM Regression algorithm has the lowest error
overall.

Test Set # Reviews Baseline Linear Regr Naive Bayes SVM-Class SVM-Regr
Jul 2006 53 3.07 1.49 3.19 3.31 1.33
Aug 2006 50 2.60 1.10 1.69 1.83 0.87
Sept 2006 89 1.63 0.89 1.49 2.18 0.84
Oct 2006 118 2.29 1.45 1.75 1.66 1.45
Nov 2006 157 2.50 1.11 1.80 1.81 0.99
Dec 2006 124 2.32 1.40 1.93 1.75 0.92
Average 2.35 1.24 1.89 1.96 1.06

(and less realistic). It becomes more important to predict a sentiment that is “close” to the

true sentiment. Thus, the performance metric we use to compare the algorithms is mean

squared error, or the average squared distance between the score given by an author and the

score predicted by a learning algorithm:

1

R

∑
r∈R

(score(r)− prediction(r))2

This metric requires that the sentiment categories be mapped to real numbers. In our

case, the reviews are already labeled with scores, although one could imagine any senti-

ment categorization being mapped to reasonable real values. Note that when there are two

classes/values, there is a direct relationship between squared error and classification accuracy,

as lower squared error always implies higher classification accuracy, and vice versa.

To provide a point of reference on the effectiveness of the algorithms, a simple baseline

algorithm was also tested. The baseline algorithm uses the mean score of the training data

as its prediction on future data.

5.6.1 Real-Valued Sentiment Prediction

Table 5.2 shows the average squared error of each of the algorithms on the six months of test

data. The average error is a weighted average, with each month weighted by the number of

103

examples that month (i.e., it is the per-example average over the six month time period.) The

classification algorithms (Naive Bayes and SVM Classification) treat each possible score as a

unique class. Since the review scores are rounded to one decimal point in the 1.0-10.0 range,

there are potentially 91 classes; however, the algorithms only consider classes observed during

training, and many of the possible scores do not occur in every training set. (On average,

there were 75 unique scores per training set.) The regression algorithms (Linear Regression

and SVM Regression) treat the scores as real-valued outputs of an unknown function. When

testing, the real-valued predictions of the regression algorithms are rounded to the nearest

valid score.

Table 5.2 reveals that each of the algorithms outperformed the simple baseline. The

best performing algorithm was the regression-based SVM, which had an average squared

error of 1.06, compared to the baseline squared error of 2.35. In terms of the absolute error,

or the average distance between the true and predicted score, the SVM Regression and base-

line algorithms erred by 0.76 and 1.21 points, respectively, on average. (If the distribution

of scores were uniformly spread across the 1.0 to 10.0 range, we would expect the baseline

algorithm to be off by about 2.25 on average. However, the distribution of scores for these

reviews is somewhat concentrated around a mean value of about 7, so baseline performance

is better.) Thus, while non-uniformity in the distribution allows the baseline algorithm’s pre-

dictions to be off by only 1.21 points on the 10 point scale, the SVM algorithm’s predictions

were nearly half a point closer on average.

Given that the algorithms are making predictions on the basis of word presence alone,

this result is encouraging, and it suggests that learning to make accurate predictions on a

fine-grained sentiment scale is feasible. We suspect that there is still room for improvement

on this sentiment analysis task, and we expect that the application and development of more

sophisticated techniques will lead to improved results.

104

5.6.2 Classification vs. Regression

Of the four algorithms tested on the GameSpot reviews, the classification algorithms per-

formed the worst. This is not surprising, given that the regression algorithms naturally

incorporate the concept that nearby sentiment values are close, while to the classification

algorithms there is no similar concept of closeness between classes (although a method for

explicitly incorporating a measure of closeness between sentiment classes was successfully

applied by Pang & Lee [Pang and Lee, 2005] in 3- and 4-class scenarios). Furthermore, the

ability of classification algorithms to make precise sentiment distinctions is limited by the

fact that their precision is limited to the number of classes they consider, and as the number

of classes increases the number of examples of each class becomes small.

Figure 5.1 demonstrates the effectiveness of the algorithms as the granularity of the

sentiment spectrum moves from two classes towards the full [1.0...10.0] range. In this exper-

iment, the 10 point scale was subdivided into regions of equal size, and review scores were

set to the midpoint of their region. Thus, for example, in the two class case, the [1.0...10.0]

range was divided into the regions [1.0...5.5] and (5.5...10.0], with scores in each region set to

3.25 and 7.75, respectively. (Reviews with scores on the boundary between two regions were

arbitrarily assigned to the lower region.) The figure shows algorithm performance relative to

the baseline algorithm. Specifically, the figure plots each algorithm’s squared error divided

by the baseline squared error. The actual squared errors of the algorithms are shown in

Table 5.3.

Interestingly, in the two-class case, the two best results came from the classification

algorithms. In the three- and four-class scenarios, results were mixed. Beyond four classes,

the regression algorithms were always superior. Also noteworthy is the fact that the SVM

regression algorithm was the top performer in all experiments with more than two classes

(although in the 6-class scenario it was matched by linear regression). These results suggest

that unless the number of sentiment categories will be quite small, a regression approach

will likely be best.

105

Figure 5.1: Average squared error, relative to the baseline, as the number of sentiment classes
increases. Although the classification algorithms (Naive Bayes and SVM Classification)
initially perform better than the regression algorithms (Linear and SVM Regression), the
regression algorithms perform better as the number of sentiment classes grows.

5.7 Conclusion

In this paper, we have considered a real-valued approach to sentiment analysis, and compared

the performance of several learning algorithms at the task of assigning a real-valued score to

a review. Empirical results suggest that learning to accurately evaluate sentiment on such

a fine-grained scale is possible. Using a simple approach based on the presence and absence

of words, the SVM regression algorithm reduced the squared error of the baseline algorithm

by more than half. In absolute terms, its predictions were off by an average of 0.76 points

(compared to a baseline of 1.21 points) on the 1.0-10.0 scale.

We expect that this result can be improved as more sophisticated sentiment analysis

techniques are applied. Possible areas for improvement include accounting for contextual

changes in the sentiment of a word (e.g., “not good” vs. “good”) [Wilson et al., 2005], iden-

tifying subjective portions of the reviews and applying the algorithm on just those portions

106

Table 5.3: Average squared error for increasingly fine-grained sentiment categorization. Al-
though the classification algorithms (Naive Bayes and SVM Classification) initially perform
better than the regression algorithms (Linear and SVM Regression), the regression algo-
rithms perform better as the number of sentiment classes grows.

Classes Baseline Linear Regr Naive Bayes SVM-Class SVM-Regr
2 4.87 3.80 3.22 3.53 4.69
3 4.77 2.88 2.97 2.59 2.48
4 2.85 2.24 1.96 2.13 1.93
5 3.31 1.89 2.32 2.48 1.73
6 2.56 1.55 2.12 2.00 1.55
7 2.48 1.68 1.88 1.82 1.56
8 2.63 1.62 1.91 1.78 1.20
9 2.44 1.56 1.92 1.94 1.26
∞ 2.35 1.24 1.89 1.96 1.06

[Pang and Lee, 2004], or identifying the reviewer’s sentiment with respect to specific aspects

of the product [Popescu and Etzioni, 2005].

As expected, the results also suggest that regression approaches will outperform clas-

sification approaches as the number of sentiment classes approaches a real-valued scale. In

fact, our experiments showed that the regression and classification algorithms performed

similarly when there were three or four classes, while beyond four classes the regression

algorithms always performed better.

107

Chapter 6

Using Spectral Features to Improve Sentiment Analysis

Abstract

A common approach to sentiment classification is to identify a set of sentiment-carrying

words and then to use machine learning to build a classifier that can classify sentiment

based on the presence/absence of those words. In this paper, we propose a Fourier-based

extension of this approach. Specifically, we introduce a spectral learning algorithm that

implicitly identifies sentiment-carrying words and higher-order functions of those words as it

learns to assign real-valued sentiment scores to documents. The spectral learner extends the

word presence model by applying Boolean logic operators (AND, OR, and XOR) to the word

presence features to identify useful higher-order features. These spectral features can be used

in other learning algorithms, and we show how the performance of other learning algorithms

can be improved by these features. Finally, we consider the problem of determining which

of a pair of reviews expresses more positive overall sentiment, and we show that the spectral

learner can identify very small distinctions in sentiment with better-than-random accuracy,

while larger distinctions can be correctly identified with high accuracy.

108

6.1 Introduction

An important problem in sentiment analysis and opinion mining is sentiment classification:

the problem of determining whether an opinion is expressing positive or negative sentiment.

There are many practical uses for sentiment classification, including the automatic classifi-

cation of written reviews [Pang et al., 2002], the automatic aggregation of opinions about

product features [Dave et al., 2003, Liu et al., 2005, Nasukawa and Yi, 2003], the summariza-

tion of product reviews [Hu and Liu, 2004], the identification of important product features

[Popescu and Etzioni, 2005], and the identification of strong opinions (e.g., angry, ranting

forum posts) [Wilson et al., 2004].

Sentiment classification is generally used to make classifications on a fairly coarse

scale. In previous work, the sentiment task has usually been to classify documents or sen-

tences as either positive or negative [Pang et al., 2002], or as belonging to one of a few

sentiment classes (e.g., x out of 4 stars [Pang and Lee, 2005]). In this paper, however, sen-

timent classification is viewed as a regression problem, and the sentiment task is to assign a

real-valued score (on a 1.0-10.0 scale) to a product based on a written review.

In this paper, we introduce a feature selection method for sentiment analysis that

is inspired by the Fourier-based learning algorithms developed in computational learning

theory. These algorithms attempt to learn a function by learning a spectral representation

of the function. Fourier-based algorithms have been successfully used to prove interesting

learnability results about various classes of functions [Jackson et al., 2002, Kushilevitz and

Mansour, 1993, Klivans et al., 2004]. Fourier-based algorithms have also been successfully

applied in real-world domains [Kargupta and Park, 2004, Mansour and Sahar, 2000].

The spectral learning approach we present in this paper is a novel method designed

specifically for high-dimensional natural language problems. It combines ideas from the low-

order [Linial et al., 1993] and boosting [Jackson, 1997] Fourier-based algorithms of learning

theory with the generalized Fourier-based learning [Drake and Ventura, 2005] and multi-

109

spectrum [Drake and Ventura, 2011b] approaches that have been effective in real-world set-

tings.

In sentiment analysis applications, a standard approach is to identify a set of words

that are predictive of sentiment and then to apply a machine learning algorithm to learn

to classify sentiment based on the presence/absence of those words. Our spectral learn-

ing algorithm implicitly identifies useful sentiment words, and it enhances the standard

word presence approach by identifying useful higher-order functions of the sentiment words.

Specifically, the spectral approach applies Boolean operators (AND, OR, and XOR) to the

word presence features to identify higher-order features that provide useful information that

was not captured in the first-order word presence features.

Perhaps the most interesting observation of this paper is that these spectral features

can be used in other learning algorithms to improve their performance. We show how the

performance of linear regression and support vector machine (SVM) learners is significantly

improved when the spectral method is used to provide sentiment features for these algo-

rithms. This result provides an interesting contrast to previous unsuccessful extensions of

the word presence model, such as word frequency and bi-grams, that have been shown not

to result in better performance [Pang et al., 2002].

We conclude the paper by considering a related sentiment classification problem:

determining which of two products should be assigned a higher overall rating based on the

written reviews, and we show that even when the ratings differ by only 0.1 points on the

1.0-10.0 scale, the spectral learner can do better than random guessing, and its accuracy

improves steadily as the distance between scores increases.

6.2 Background

Before describing the spectral learning approach, some background in Fourier analysis and

Fourier-based learning are needed.

110

6.2.1 Spectral (Fourier) Analysis

Suppose f is a real function of n Boolean inputs (i.e., f : {0, 1}n → R). Then the Fourier

representation of f , denoted f̂ , is given by

f̂(α) =
1

2n

∑
x∈{0,1}n

f(x)χα(x) (6.1)

where α ∈ {0, 1}n and χα is a Fourier basis function defined by the following:

χα(x) = (−1)
∑
i αixi =

 +1 : if
∑

i αixi is even

−1 : if
∑

i αixi is odd
(6.2)

Each f̂(α) is a Fourier coefficient whose magnitude is proportional to the correlation between

f and χα. Any f can be expressed in terms of the Fourier basis functions by the following,

which shows how a function can recovered from its Fourier representation:

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x) (6.3)

The Fourier basis functions are XOR functions, each returning −1 if and only if the

XOR of a particular subset of the inputs is true. The subset is implicitly defined by the

binary digits of α, and it is the set S = {i : αi = 1}. (Note that (αi = 0)⇒ (αixi = 0) and

(αi = 1)⇒ (αixi = xi), so the output of each χα can be determined from those inputs from

which αi = 1.) The basis functions can be defined in terms of S, leading to the following:

χS(x) = (−1)
∑
i∈S xi =

 +1 : if
∑

i∈S xi is even

−1 : if
∑

i∈S xi is odd
(6.4)

The order of a basis function χα or χS is given by |{i : αi = 1}| or |S|, respectively,

and it is the number of inputs over which the basis function applies its Boolean operator.

111

The Fourier basis provides just one possible representation for a function. For exam-

ple, f could be represented in terms of basis functions that compute ANDs or ORs of the

inputs. Patterned after the Fourier basis functions, AND (ξ) and OR (ζ) basis functions can

be defined as follows:

ξS(x) =

 +1 : if
∑

i∈S xi < |S|

−1 : if
∑

i∈S xi = |S|
(6.5)

ζS(x) =

 +1 : if
∑

i∈S xi = 0

−1 : if
∑

i∈S xi > 0
(6.6)

These basis functions can be substituted into Equation 6.2 to obtain coefficients that indicate

the correlation between f and the ANDs or ORs of the inputs. Note however, that these

coefficients do not generally give the linear combination of AND or OR functions that is

equivalent to f . (There is a different transformation to obtain those coefficients, but it will

not be of interest here.)

6.2.2 Spectral Learning

Spectral learning algorithms attempt to learn f by learning a spectral representation, f̂ , of

f . The most common approach is to attempt to approximate f̂ from a set X of 〈x, f(x)〉

examples. Typically, the spectral coefficients are approximated as follows:

˜̂
f(α) =

1

|X|
∑

〈x,f(x)〉∈X

f(x)φα(x) (6.7)

(Here and in the following we will use φα and φS as generic basis function references that

could refer to any of the previously introduced basis functions.) For a function of n inputs,

there are 2n spectral coefficients and basis functions. Consequently, it is not possible to use

all basis functions unless n is small. Therefore, spectral learning algorithms that attempt

to estimate f̂ will generally use only the basis functions whose coefficients are largest (in

magnitude). If A is the set of labels of those basis functions, then a spectral learner’s

112

representation of f is given by

f̃(x) =
∑
α∈A

˜̂
f(α)φα(x) (6.8)

Since there are an exponential number of coefficients, it is impractical to do a brute-

force search for large coefficients. Furthermore, certain classes of functions can be approx-

imated well by representations that include only low-order basis functions. Consequently,

some spectral learning algorithms limit their attention to low-order basis functions and im-

plicitly assume that the coefficients of higher-order basis functions can be ignored [Klivans

et al., 2004, Kargupta and Park, 2004, Linial et al., 1993]. Empirical results have shown that

low-order spectral models often outperform models that attempt to include higher-order ba-

sis functions with large coefficients [Drake and Ventura, 2011a].

One alternative approach to spectral learning is based on boosting [Jackson, 1997,

Jackson et al., 2002]. In the classification setting in which this approach was introduced, the

basis functions are thought of as weak hypotheses (i.e., approximations of f that may do

only slightly better than random guessing) that are combined to form a strong hypothesis.

Basis functions are selected iteratively based on correlation with a weighted version of the

training data. Initially, all examples are given equal weight, and the first basis function

is selected based on correlation with the original data. After each basis function is added,

however, examples that were misclassified are given more weight, such that over time the

algorithm focuses more on examples that the current model (i.e., the current set of basis

functions and coefficients) misclassifies.

6.3 A New Spectral Learning Algorithm

The core spectral learning algorithm used in this paper is a new spectral algorithm, specif-

ically designed for natural language problems, that combines the low-order and boosting

approaches to spectral learning. The algorithm is essentially a boosting algorithm, but the

113

LearnSpectralModel(X, k)

(1) M ←
{〈
φ∅,

1
|X|
∑

X f(x)φ∅(x)
〉}

(2) C ← {φS : |S| = 1}
(3) for i = 1 to k
(4) Xi ← {〈x, e(x)〉 : 〈x, f(x)〉 ∈ X ∧ e(x) =

f(x)−
∑
〈φS ,

˜̂
f(S)〉∈M

˜̂
f(S)φS(x)

}
(5) φT ← argmaxφS∈C

1
|Xi|

∑
Xi
e(x)φS(x)

(6) M ←M ∪
{〈
φT ,

1
|Xi|

∑
Xi
e(x)φT (x)

〉}
(7) C ← C \ {φT }
(8) if |T | = 1

(9) for each 〈φS , ˜̂
f(S)〉 ∈M s.t. |S| = 1

(10) C ← C ∪ {φS∪T }
(11) return M

Figure 6.1: The core spectral learning/feature selection algorithm. Given a set X of examples
of a target function f , the algorithm returns a spectral model (consisting of k + 1 basis
functions and their corresponding coefficients) that approximates f . The algorithm can also
be used as a feature selector, as the selected basis functions can be used as input features to
another learning algorithm.

set of basis functions that can be added to the model each iteration is restricted in a way

that forces the learner to use low-order basis functions before high-order functions. This core

algorithm is used by a multi-spectrum meta-algorithm that builds a spectral model in each

of the AND, OR, and XOR representations and then combines them into a single model.

The core algorithm, shown in Figure 6.1, always begins by adding the 0th-order basis

function and the corresponding coefficient (computed via Equation 6.2) to the model M (line

1). (The empty set symbol, ∅, is used as the label for this basis function since its set S is

empty.) After adding the 0th-order basis function to the model, the algorithm initializes a

set C of candidate basis functions with all of the 1st-order basis functions (line 2).

Then, the algorithm enters a loop (line 3) that continues until k additional basis

functions have been added to the model. In each iteration of the loop, the set of training

examples, X, is converted into a modified training set, Xi, in which the examples’ outputs

are set to the residual error of the model (i.e., to the difference between f and the current

output of the model) (line 4). Then, the basis function φT in C that is most correlated

114

with this residual error is selected (line 5) and added to the model (line 6). (Note that the

coefficient for φT is computed with respect to Xi, not X, so that it is weighted optimally

with respect to reducing the remaining error.) Basis function φT is then removed from C

(line 7).

The final step in each iteration of the main loop is to add additional candidate basis

functions to C, if necessary (lines 8-10). The algorithm does not allow a basis function φS to

be added to C until the basis functions representing all subsets of S have been added. Thus,

for example, the 2nd-order function ξ{3,10}, that computes the AND of inputs 3 and 10, will

not be added to C until the 1st-order basis functions ξ{3} and ξ{10} have been added. The

algorithm presented in Figure 6.1 is simplified slightly from this general case, as it assumes

that only 2nd- or lower-order basis functions should be considered for the model. (This

restriction was used to obtain the results that follow as well.) Therefore, if φT is a 1st-order

basis function (line 8), then M is searched for previously added 1st-order basis functions (line

9), and the 2nd-order basis functions that represent the union of the 1st-order basis functions’

subsets are added to C (line 11). If φT is a 2nd-order basis function, then no additional basis

functions are added to C.

This algorithm combines the benefits of a low-order approach (such as good gener-

alization) with the additional representational power of higher-order features. Since a basis

function is considered for inclusion only after the lower-order basis functions for its subset

of inputs have been added, and since the iterative boosting approach selects basis functions

based on correlation with the residual error in the model, the algorithm tends to add a

higher-order basis function only when there is useful information in the higher-order feature

that was not captured by the lower-order features.

As mentioned previously, the core spectral learning algorithm described in Figure 6.1

is the main component of a meta-algorithm for spectral learning. Specifically, the meta-

algorithm executes the core spectral learning algorithm three times, once for each of the

AND, OR, and XOR bases, and the final model averages the individual spectral models. If

115

Aξ, Aζ , and Aχ represent the sets of labels of the basis functions selected while learning the

AND, OR, and XOR representations, respectively, then the final model can be expressed by

the following:

f̃(x) =
1

3

∑
α∈Aξ

˜̂
f(α)ξα(x) +

∑
α∈Aζ

˜̂
f(α)ζα(x) +

∑
α∈Aχ

˜̂
f(α)χα(x)

 (6.9)

By combining models built in each representation, the spectral learner is able to take advan-

tage of useful AND, OR, and XOR features. (Note that it is possible to directly combine

the three types of higher-order features by considering all three types while building a sin-

gle model. However, previous work with multi-spectrum models suggests that building the

models separately improves generalization and decreases the likelihood of overfitting [Drake

and Ventura, 2011b].)

6.4 Spectral Learning Results

As stated in the introduction, our goal is to build a system for assigning sentiment scores

to products based on a written evaluation (e.g., a product review). Our current application

domain is video games, and the task is to assign a score on a 1.0-10.0 scale that captures the

overall sentiment of the author of a review with respect to a particular game. The data that

we use in the following is a collection of 4,972 reviews from GameSpot.com, each of which

has an associated rating on a 1.0-10.0 scale with 0.1-point increments. This set of reviews

represents all reviews posted on the site from January 2002 through December 2006. These

reviews were contributed by 70 different authors, although some authors contributed many

more reviews than others. The average length of the reviews (in terms of the number of

words) is 1,347, although the length varies considerably. For example, the smallest review

contains only 98 words, while the largest contains 5,194 words.

We use a word-presence document model in which each review is reduced to a binary

vector x of length n such that xi = 1 if word i occurs in the review and xi = 0 otherwise.

116

The n words that correspond to the n indices of x are selected from the training data. Since

the spectral learning algorithm performs implicit feature selection, all words observed in the

training data could be used in the word presence vectors, even though most words would

occur so infrequently (or so frequently) that the corresponding 1st-order basis functions would

be unlikely to ever be added to the model. However, to improve computational efficiency,

the set of all observed words (about 45,000) was reduced to the 2,000 words that had the

highest 1st-order correlation with the training data after subtracting the mean value (i.e.,

average rating) from the function. (Subtracting the average value of the function ensures

that coefficients that are large in magnitude indicate words that are predictive of above-

average or below-average ratings; otherwise, coefficient size is not necessarily indicative of

predictive power.) This word-selection method can be expressed formally by the following:

argmax
{w1,...wn}∈W

∑
w∈{w1,...wn}

∣∣∣∣∣ 1

|R|
∑
r∈R

f̄(r)Iw(r)

∣∣∣∣∣ (6.10)

in which R is the set of training reviews, W is the set of words in those reviews, Iw(r) is

an indicator function that outputs 1 if review r contains word w and outputs −1 otherwise,

and f̄(r) is the rating associated with training review r (after subtracting the average rating

from all reviews).

To test the performance of the learning methods, we used a leave-one-year-out cross-

validation approach. That is, one year of data was held out, the learner was training on the

remaining data (approx. 4,000 reviews), and then the learner was tested on the held out

portion. This process was repeated five times, once for each possible test year, and results

were averaged over those five trials.

Table 6.1 shows the average absolute difference between the spectral learner’s senti-

ment scores and the actual ratings associated with the test reviews. For comparison, results

obtained by applying linear regression and linear support vector machine [Joachims, 1999]

models are also shown, as is a baseline performance measure that indicates the performance

117

Table 6.1: Average prediction error of the spectral, SVM, and linear regression learners, as
well as the prediction error of a baseline learner. The spectral learner’s sentiment scores
differed from the actual ratings by less than 0.75 points on average (a 36.6% reduction in
baseline error).

Algorithm Ave Prediction Error

Spectral Learner 0.746
SVM 0.764

Linear Regr 0.819
Baseline 1.176

obtained when using the mean score observed in the training data as the prediction for each

test review. (The baseline error is included primarily to emphasize the non-uniformity in the

distribution of ratings. If the ratings were uniformly distributed, this baseline error would

be approximately 2.25; however, the distribution is not uniform and it is skewed positively

around an average of about 6.9.)

The sentiment scores assigned by the spectral learner differed by only 0.746 points

on average from the actual scores associated with the reviews. This corresponds to a 36.6%

reduction in error relative to the baseline. The spectral learner also performed significantly

better (statistically) than the linear regression model. (Statistical significance was measured

by a paired permutation test, and significant differences were identified as those for which

p ≤ 0.05.) In addition, the spectral learner outperformed the SVM learner on average,

although this difference was not statistically significant.

Table 6.2 demonstrates the benefits of the “ensemble” spectral learning approach,

as it compares the performance of a spectral learner that combines the AND, OR, and

XOR bases with spectral learners that use just one those bases. The spectral learner that

combines the three bases and can take advantage of each higher-order feature type performs

significantly better (statistically) than any of the single-basis spectral learners.

118

Table 6.2: Average prediction error of a spectral learner that uses an ensemble of AND,
OR, and XOR representations, compared to the error of spectral learners that use just one
of those representations. The multi-spectrum approach significantly improves (statistically)
the accuracy of the spectral learner.

Algorithm Ave Prediction Error

Spectral Learner 0.746
Spectral Learner (AND only) 0.776
Spectral Learner (OR only) 0.783

Spectral Learner (XOR only) 0.811

6.5 Spectral Features

The 0th- and 1st-order basis functions of the AND, OR, and XOR bases are all identical.

The 0th-order basis function is a constant function, so it functions like an intercept in linear

regression or like a “bias” input in neural networks. In the spectral learning method presented

previously, it is always the first basis function added to the model. The coefficient assigned

to it is always the mean value of the function being learned, so it causes the next spectral

feature to be selected based on how well it models deviations from the mean.

There are n 1st-order basis functions in each basis, and each indicates whether a

specific input’s value is true or false. Specifically, basis function φ{i} outputs −1 if xi is

true and outputs +1 if it is false; thus, the 1st-order basis functions simply map the original

Boolean input features from {0, 1} to {1,−1}.

Since the spectral coefficients (computed by Equation 6.2) are proportional to the

correlation between f and each basis function, the 1st-order spectral coefficients provide a

natural way of determining which words are predictive of above average or below average

sentiment. In addition, unlike other word selection methods that are based on frequency

(e.g., tf-idf) of classes (e.g., mutual information), the spectral coefficients can be applied

naturally to and take advantage of documents labeled by numeric scores.

The sentiment word selection method implied by Equation 6.10 is equivalent to se-

lecting the n words that have the largest corresponding 1st-order spectral coefficients (after

119

Table 6.3: The ten largest positive and negative 1st-order spectral coefficients and the cor-
responding words. The 1st-order spectral coefficients provide a natural and effective method
for identifying sentiment words.

Positive Negative
0.537 great -0.201 bad
0.365 excellent -0.196 decent
0.359 new -0.185 dull
0.338 quite -0.182 poor
0.322 addition -0.178 poorly
0.305 best -0.176 bland
0.300 keep -0.157 worse
0.296 nice -0.151 repetitive
0.292 previous -0.150 terrible
0.292 features -0.150 generic

subtracting the average score from the function). For the data used in this paper, the ten

words with the largest positive and negative spectral coefficients are shown in Table 6.3.

The AND, OR, and XOR bases differ in their 2nd- and higher-order basis functions,

and it is these spectral features that represent an extension of the word presence model.

As the following section will show, these features allow other learning algorithms to achieve

better performance. Since the spectral algorithm presented in this paper does not allow a

2nd-order basis function φ{i,j} to be added to the model unless the 1st-order basis functions

φ{i} and φ{j} have been added, and since the basis functions are selected iteratively based on

correlation with the residual error of previously added basis functions, the 2nd-order basis

functions that are added to the model can be thought of as providing additional information

about f that could not be captured by the 1st-order features alone.

For example, the 2nd-order AND basis functions allow the model to account for the

fact that when both of two sentiment-carrying words are present, the combined effect may

be different than the sum of the individual contributions of those words. For example, in

all but one of the trials of the cross-validation experiments that involved the AND basis,

the word “great” was the first feature selected by the algorithm, the word “new” was the

120

third selected, and the 2nd-order AND feature (“great” ∧ “new”) was about the thirteenth

feature selected. The words “great” and “new” were both positively correlated with ratings,

and their coefficients of about 0.5 and 0.3 indicated that the model’s predicted score should

increase by 0.5 and 0.3, respectively, when those words are present. However, the (“great”

∧ “new”) feature was negatively correlated with the function when it was added, and the

coefficient was about−0.1, indicating that when both words are present the prediction should

increase by only 0.7 (0.5 + 0.3− 0.1), and not by 0.8.

The 2nd-order OR and XOR basis functions allow for slightly different types of addi-

tional information to be factored into the model. The OR features allow a learner to model

the effect of observing “either one or both” of two sentiment-carrying words, while the XOR

features allow a learning algorithm to model the effect of observing “either one but not both”

of two sentiment-carrying words. The AND, OR, and XOR features are similar, but they

each provide unique information, and they extend the word presence model in ways that

allow for more accurate sentiment analysis.

6.6 Using Spectral Features to Improve Learning

Although the spectral algorithm presented in Figure 6.1 produces a model that can be used

directly for assigning sentiment scores to documents, the algorithm can also be used as a

feature selection method, as the selected spectral features can be used as input features to

other learning algorithms.

Table 6.4 shows how the performance of the linear regression and SVM learners im-

proves when they use spectral features selected by the algorithm in Figure 6.1. Specifically,

the “w/ Spectral Features” results were obtained by building three linear regression or SVM

models (one with the spectral features obtained from the AND basis, one with the features

obtained from the OR basis, and one with the features obtained from the XOR basis), and

then averaging the predictions of the models as was done previously for the spectral learner.

The average prediction error of both algorithms decreases when using this spectral approach,

121

Table 6.4: Average prediction error of linear regression and SVM models that are trained
with the original input features and of linear regression and SVM models that are “averaged”
over models trained with the AND, OR, and XOR spectral features. Both algorithms perform
significantly better (statistically) when using the spectral feature approach.

Algorithm Average Prediction Error

SVM 0.764
SVM w/ Spectral Features 0.731

Linear Regr 0.819
Linear Regr w/ Spectral Features 0.749

and the differences are statistically significant in both cases. When using the spectral ap-

proach, the SVM algorithm outperforms the spectral learner’s average performance (0.746,

in Table 6.1), although that difference is not statistically significant.

6.7 Identifying Relative Differences in Sentiment

Figure 6.2 presents results on a related sentiment task: identifying which of two products

is better (overall) based on written reviews for the products. The graph shows how often

the SVM learner (when using the spectral feature approach) was able to correctly determine

from two reviews which game had the higher rating, as a function of the difference in rating

between the two games. Even at the smallest possible difference in ratings (0.1 points), the

learner is able to do better than randomly guessing. It correctly identified the game with

the higher rating 53.1% of the time, which is a statistically significant improvement over a

learner that randomly guesses. And, as the difference in rating increases, the performance of

the learner steadily improves. When the ratings differ by just 1.0 points on the 1.0-10.0 scale,

the learner’s accuracy is 75.3%; when the difference is 2.0 points, the accuracy increases to

90.1%.

122

Figure 6.2: The accuracy of an SVM learner (when using the spectral feature approach)
at identifying which of two products had a higher rating, as a function of the difference
between the ratings. Even when the products’ ratings differ by only 0.1 points on the 1.0-
10.0 scale, the learner does significantly better (statistically) than randomly guessing, and
its performance improves steadily as the difference between ratings increases.

6.8 Conclusion

Determining the sentiment that is expressed in written text is an important sentiment anal-

ysis task. In this paper, we have considered the problem of assigning an overall sentiment

score to a document. A common approach to this type of problem is to identify a set of senti-

ment words and then to use machine learning to learn to classify document sentiment based

on the presence/absence of those words. In this paper, we have presented an extension of

this word presence approach that is based on spectral representations. We have introduced

a new spectral learning algorithm that implicitly identifies words, as well as higher-order

functions of those words, that are useful for predicting overall sentiment. The higher-order

functions extend the word presence model by giving the learner access to information about

how ANDs, ORs, and XORs of the word presence features affect overall document sentiment.

The spectral features can be used directly in a spectral sentiment model, but they can also

be used as input features to any learning algorithm. In contrast to previous unsuccessful at-

123

tempts to improve the word presence model, these features are shown to provide statistically

significant improvements in performance.

There are several directions for future work that could potentially lead to improved

performance. For example, no attempt has been made here to distinguish between objective

and subjective statements, or between opinions that refer directly to the product being

reviewed and those that refer to something else (e.g., another product), and it may be

possible to improve performance by recognizing these differences. Another interesting area

for future work will be to determine if this spectral learning approach is equally beneficial in

related domains, such as topic classification. Finally, the results in Figure 6.2 show that it is

possible to identify very small differences in sentiment with better-than-random accuracy. An

interesting direction for further study will be to address the question of how finely sentiment

can be modeled.

124

Chapter 7

The Maximum Satisfiability and Largest Coefficient Problems

Abstract

Recently, an interesting link between spectral learning and the maximum satisfiability prob-

lem (MAX-SAT) was established. Specifically, it was shown that MAX-2-SAT can be reduced

to the problem of finding the largest coefficient in a spectral representation, which is a cen-

tral problem in spectral learning. In this paper, we explore this connection, as we apply

coefficient finding methods to MAX-SAT problems, and apply MAX-SAT techniques to the

problem of finding large spectral coefficients.

125

7.1 Introduction

Fourier analysis has become a powerful tool in theoretical machine learning, particularly for

proving learnability results. These results usually focus on the spectral characteristics of

a class of functions, and positive results require a demonstration that these characteristics

admit efficient computation. Since the full Fourier spectrum is exponential in the size of

the input, one requirement for efficiency is that a small subset of the spectral coefficients

be “large” (in other words, the function class must be closely approximated with a small

number of basis functions). Also, since computing the full spectrum is O(n2n), some efficient

algorithm for determining which of the coefficients are large is required. This can be difficult,

and historically two approaches have been taken: 1) choose a class of functions that admits

a simple (often brute force) search of a small subset of the coefficients, or 2) admit the use

of an oracle.

Recently, it was shown that the problem of finding a large Fourier coefficient is NP-

complete by reduction from MAX-2-SAT (see Chapter 2). This hardness result is not specific

to the Fourier basis, as similar results were shown for bases of AND and OR functions.

The reduction from MAX-2-SAT reveals the similarity between satisfiability problems

and the problem of finding large coefficients in a spectral representation. Based on this

observation, we apply a search algorithm developed for finding large spectral coefficients to

MAX-SAT problems, and we apply techniques used in state-of-the-art MAX-SAT solvers to

the problem of finding the largest Fourier coefficient.

7.2 Background and Definitions

Let f be any function of the form f : {0, 1}n −→ R. Then the Fourier spectrum of f ,

denoted f̂ , is given by

f̂(α) =
1

2n

∑
x∈{0,1}n

f(x)χα(x) (7.1)

126

where α ∈ {0, 1}n and f̂(α) is the spectral coefficient corresponding to basis function

χα : {0, 1}n → {−1, 1}, which is defined as follows:

χα(x) =

 1 : if
∑

i αixi is even

−1 : if
∑

i αixi is odd

When weighted by their coefficients, a linear combination of the basis functions gives the

original function:

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x) (7.2)

The Fourier transform described above applies to functions of Boolean inputs and represents

a special case of the discrete Fourier transform that is commonly referred to as a Walsh

transform.

In typical learning scenarios, f is unknown, and f̂ must be approximated from a set

X of 〈x, f(x)〉 pairs. The approximate Fourier spectrum of f , obtained from X, which we

will denote f̂X , is given by the following:

f̂X(α) =
1

|X|
∑

〈x,f(x)〉∈X

f(x)χα(x) (7.3)

We will also refer to f̂X as the Fourier spectrum of X. To be useful in a learning

(function approximation) context, the approximate spectrum must not differ too much from

the exact spectrum; that is, we require f̂X(α) ≈ f̂(α) for |X| of reasonable size. Fortunately,

a well-known result [Mansour, 1994] guarantees that this is the case.

The basis functions of the Fourier transform are XOR functions, each computing the

XOR of a different subset of the inputs. (The subset is determined by α, as any input

for which αi = 0 is ignored.) Logical AND and OR relationships have been shown to

be useful in many learning settings, and spectral representations based on AND and OR

functions can be derived using similarly defined basis functions, ξα : {0, 1}n → {−1, 1} and

127

ζα : {0, 1}n → {−1, 1}:

ξα(x) =

 1 : if
∑

i αixi <
∑

i αi

−1 : if
∑

i αixi =
∑

i αi

ζα(x) =

 1 : if
∑

i αixi = 0

−1 : if
∑

i αixi > 0

Equation 7.3 can be used to compute approximate spectral coefficients for these representa-

tions by replacing the Fourier basis functions with either AND or OR functions. We will refer

to these spectra as the AND and OR spectra of X. Note that Equation 7.2 does not provide

an inverse transform for these representations (i.e., these coefficients do not generally give

a linear combination for representing f); however, as in the Fourier case, these coefficients

measure the correlation between each basis function and f .

We now give definitions for several decision problems (cast as set membership prob-

lems). The first is a well-known NP-complete problem [Garey and Johnson, 1979].

Definition 8 (MAX-SAT). Given a set U of binary variables, a set C of CNF clauses over

U , and a scalar m, 0 < m ≤ |C|, MAX-SAT = {〈U,C,m〉| there exists a truth assignment

for the variables in U that simultaneously satisfies at least m clauses in C}.

The next is a problem of interest in the theoretical machine learning community

[Linial et al., 1989, Kushilevitz and Mansour, 1993, Jackson, 1997] that has more recently

become important in applied settings as well [Mansour and Sahar, 2000, Drake and Ventura,

2005].

Definition 9 (LARGE-FOURIER-COEF). Given a scalar n ∈ Z, a set X of 〈x, f(x)〉

pairs where x ∈ {0, 1}n and f(x) ∈ R, and a scalar p ∈ R, LARGE-FOURIER-COEF =

{〈n,X, p〉| there exists α ∈ {0, 1}n such that
∣∣∣f̂X(α)

∣∣∣ ≥ p, where f̂X is the Fourier spectrum

of X (Equation 7.3)}.

128

Simple variations on the LARGE-FOURIER-COEF problem can be constructed by

considering other bases. Here, we define variations for the OR and AND bases.

Definition 10 (LARGE-OR-COEF). Given a scalar n ∈ Z, a set X of 〈x, f(x)〉 pairs where

x ∈ {0, 1}n and f(x) ∈ R, and a scalar p ∈ R, LARGE-OR-COEF = {〈n,X, p〉| there

exists α ∈ {0, 1}n such that
∣∣∣f̂X(α)

∣∣∣ ≥ p, where f̂X is the OR spectrum of X}.

Definition 11 (LARGE-AND-COEF). Given a scalar n ∈ Z, a set X of 〈x, f(x)〉 pairs

where x ∈ {0, 1}n and f(x) ∈ R, and a scalar p ∈ R, LARGE-AND-COEF = {〈n,X, p〉|

there exists α ∈ {0, 1}n such that
∣∣∣f̂X(α)

∣∣∣ ≥ p, where f̂X is the AND spectrum of X}.

7.3 Using Coefficient Search Techniques to Solve Satisfiability Problems

The NP-Completeness result in Chapter 2 regarding the hardness of finding large spectral

coefficients shows that an instance of the MAX-2-SAT problem can be converted easily

into an instance of the problem of finding the largest spectral coefficient. Based on this

connection between the satisfiability and large coefficient problems, we now show how a

simple modification to an existing algorithm for finding large spectral coefficients allows it

to solve SAT and MAX-SAT problems.

7.3.1 Algorithm

We derive a SAT solver from the spectral coefficient algorithm presented in [Drake and

Ventura, 2005]. The algorithm, which we will refer to as the BFS algorithm, uses a best-first

search with backtracking to explore the set of possible basis function labels and find the

α ∈ {0, 1}n corresponding to the largest spectral coefficient.1

The algorithm begins with an undefined label α = ∗n (∗ denotes undefined) and then

expands its search frontier by assigning values to the digits of α. The order in which digits

are assigned is determined dynamically so as to reduce the total required search size. For

1The algorithm can continue beyond the largest coefficient to find the k largest coefficients; however,
finding the single largest coefficient will be sufficient for our SAT solver.

129

each partially-defined label, a bound on f̂(α) is computed that applies to all α that could

result from future digit assignments. Using this bound, exploration continues in best-first

order until a fully defined label is found. At that point the algorithm has found the largest

coefficient.

An algorithm for solving SAT problems can be easily created from this spectral co-

efficient algorithm. The overall search structure remains the same: search over {0, 1}n in

a best-first manner until an optimal solution is found. For SAT or MAX-SAT, the n-bit

binary labels can represent truth assignments to the n variables. All that must change is

the method for computing upper bounds on the utility of partially defined labels.

We accomplish this as follows: for any label α ∈ {0, 1, ∗}n, we define the utility of

α, U(α), to be |C| −m, where C is the set of clauses and m is the number of clauses that

cannot be satisfied by any truth assignment that could be derived from α by future digit

assignments. Given α, a clause c can be labeled as unsatisfiable if it is not satisfied by the

partial assignment and no literal in c corresponds to a variable whose assignment has not

been defined. Notice that if this algorithm is used as a SAT solver instead of a MAX-SAT

solver, any α for which U(α) ≤ |C| can immediately be pruned from the search.

Like the spectral coefficient algorithm from which this MAX-SAT solver is derived,

it is an exact algorithm, always returning the correct solution; however, it comes with no

guarantee of termination within a feasible amount of time (or memory). A crucial variable in

its performance is the number of partially and fully defined labels considered before arriving

at a solution. At best, the algorithm will consider n labels. This will occur only when the

initial assignments made to the variables lead to an optimal solution and no backtracking is

required. The worst-case result can be exponential, however, as there are 2n potential labels

to consider.

130

7.3.2 Empirical Results

We now present results of applying this algorithm to several SATLIB benchmarks [Hoos

and Stützle, 2000, Cheeseman et al., 1991]. Table 7.1 summarizes algorithm performance on

these benchmarks, and for each set of benchmarks shows the smallest, average, and largest

search sizes (number of considered labels) required to either determine satisfiability or find

the maximum number of satisfiable clauses. Test cases labeled (sat) and (unsat) represent

satisfiable and unsatisfiable test cases, respectively, and the corresponding results show the

search sizes required to determine satisfiability. For unsatisfiable test cases, the search size

required to find the exact MAX-SAT solution is also shown. Those test cases are labeled

(maxsat).

As expected, the size of the search tends to grow as the number of variables increases.

Also as expected, the required search size tends to be larger for unsatisfiable instances than

for satisfiable instances, while for unsatisfiable instances, the search size is larger when

finding the exact MAX-SAT solution than when only determining whether there exists a

truth assignment that satisfies all clauses. Even in the largest searches, however, the number

of considered labels remains very small relative to the size of the search space. For example,

for the worst-case result of any 50-input problem, the fraction of possible (partial) truth

assignments considered is 169, 488/250 ≈ 1.5× 10−10, while the same fraction for the worst-

case 75-input problem is 2, 818, 265/275 ≈ 7.5× 10−17.

Results marked with * in Table 7.1 indicate cases for which some instances could

not be included in the results due to memory constraints on our test machine. That is,

the search frontier became too large to hold entirely in memory while finding an exact

solution. Thus, had all cases been considered, the average and worst search sizes would be

larger. This represents the primary weakness of the algorithm, as its ability to find an exact

solution quickly requires that a large search frontier be stored in memory, limiting the size

of problems it can solve. The memory efficiency of the algorithm could likely be improved

131

Table 7.1: Results of using a SAT/MAX-SAT solver derived from an algorithm for finding
large spectral coefficients. For each set of benchmarks, the smallest (best), average, and
largest (worst) search sizes required to either determine satisfiability or find the maximum
number of satisfiable clauses is shown. Satisfiable test cases (sat) are separated from un-
satisfiable cases (unsat). For unsatisifiable cases, the search sizes required to find exact
MAX-SAT solutions are also reported (maxsat).

Benchmark Variables Clauses Instances Best Average Worst
uf20-91 (sat) 20 91 1,000 20 87 505
uf50-218 (sat) 50 218 1,000 50 2,654 35,248
uuf50-218 (unsat) 50 218 1,000 1,051 7,139 55,001
uuf50-218 (maxsat) 50 218 1,000 1,132 13,107 169,488
uf75-325 (sat) 75 325 100 121 36,619 188,688
uuf75-325 (unsat) 75 325 100 14,566 91,921 317,912
uuf75-325 (maxsat) 75 325 100 14,912 237,982 2,818,265
uf100-430 (sat) 100 430 992 111 414,343* 3,816,257*
uuf100-430 (unsat) 100 430 945 66,746 1,168,251* 3,852,729*
uuf100-430 (maxsat) 100 430 389 140,176 1,226,704* 3,852,736*
jnh1-20 (sat) 100 850 4 218 3,125 7,493
jnh1-20 (unsat) 100 850 16 4,989 95,258 1,019,358
jnh1-20 (maxsat) 100 850 16 20,622 749,368 3,249,544
jnh201-220 (sat) 100 800 11 100 123,794 913,153
jnh201-220 (unsat) 100 800 9 3,048 69,133 264,311
jnh201-220 (maxsat) 100 800 9 41,883 120,111 264,321
jnh301-310 (sat) 100 900 1 768,653 768,653 768,653
jnh301-310 (unsat) 100 900 9 112 33,520 216,588
jnh301-310 (maxsat) 100 900 5 199,738 1,403,510* 3,119,589*

132

through additional implementation tricks, while pruning methods could be introduced to

drastically improve memory efficiency in exchange for correctness guarantees.

7.4 Using MAX-SAT Techniques to Find Large Spectral Coefficients

In the previous section, a coefficient search algorithm was used to solve SAT and MAX-SAT

problems. However, the similarity between the large coefficient and satisfiability problems

also suggests that algorithms and theoretical results developed for SAT problems may have

relevant application in spectral learning. We now provide an example of such an application,

as we apply MAX-SAT techniques to the problem of finding large Fourier coefficients.

7.4.1 MAX-SAT Techniques and Finding Coefficients

Many popular algorithms for solving satisfiability problems are based on the Davis-Putnam-

Loveland-Logemann procedure [Davis and Putnam, 1960, Davis et al., 1962]. In its basic

form, this method performs a recursive branch-and-bound search through the space of pos-

sible truth assignments, pruning branches that cannot possibly lead to better solutions than

the best found so far. A coefficient finding algorithm could explore the space of basis function

labels in a similar fashion. This approach has been used before [Kushilevitz and Mansour,

1993, Mansour and Sahar, 2000], although an oracle was used by those algorithms to guide

the search efficiently.

The BFS algorithm used in the previous section performs a best-first search through

the space of basis function labels and does not require an oracle. The algorithm can po-

tentially find the largest Fourier coefficients very quickly. However, because it must store

the entire search frontier in memory, its space complexity is exponential in the worst case

(O(2n)). Consequently, memory limitations will prevent its use in some domains.

133

Here, we compare the performance of the BFS algorithm to a similar algorithm that

is based on the recursive branch-and-bound search often used in SAT algorithms. We shall

refer to the branch-and-bound approach as the B&B algorithm.2

In addition to applying a recursive branch-and-bound search, we investigate two tech-

niques that have improved the performance of SAT algorithms [Borchers and Furman, 1998,

Alsinet et al., 2003]. One of these techniques is the separation of the problem into two phases.

In the first phase, a greedy algorithm, such as WalkSAT [Jiang et al., 1995], is used to find a

“good” solution to the problem. Then, in the second phase, the branch-and-bound procedure

described previously is run, using the “good” solution as an initial bound for pruning. We

use a simple variation on WalkSAT, which we call WalkCoef, that walks through the same

{0, 1}n space, but in search of large coefficients rather than truth assignments.

The second technique is the use of a heuristic for determining the order in which

variables should be considered during search. One heuristic that has been effective for MAX-

SAT problems is the MOMS heuristic, which selects the variable that has the Maximum

Occurances in clauses of Minimum Size.

The MOMS variable selection heuristic does not have an obvious translation into

the coefficient finding domain, but there is a fairly analogous notion. The MOMS heuristic

chooses variables appearing often in small clauses because small clauses can have their satisfi-

ability determined by examining just a few variables. Considering those variables first allows

bounds on partial truth assignments to be refined quickly, potentially allowing pruning to

occur sooner.

For coefficient search, this is similar to choosing a variable which, if removed, causes

many examples to be identical on remaining inputs. It can be shown that if two examples

differ in only one of the remaining inputs, then selecting that variable next will cause a

reduction in the coefficient bound of one of the branches of the search. Selecting the variable

that causes the most pairs to be identical on remaining inputs will generally result in a large

2This B&B algorithm was a precursor to the branch-and-bound algorithm presented in Chapter 2.

134

Table 7.2: A comparison of the average number of nodes visited during search to find the
largest coefficient of the Fourier spectrum by several algorithms/techniques.

Data Set B&B B&B+Walk B&B+MIE BFS

Adult (34-48842) 2,225 1,819 186 35
Chess (37-3196) 139,986 272,396 1,794 212
German (24-1000) 8,457 8,232 414 209
Heart (16-270) 547 530 192 79
Pima (8-768) 22 22 27 9
Voting (16-435) 67 68 36 17
SPECT (22-267) 12,069 11,972 1,996 1,150
WBC1 (36-699) 1,939,855 2,185,064 1,615 556
WBC2 (33-198) 1,636,720 2,029,683 855 441
WBC3 (30-569) 7,555 7,562 158 57

change in bound. In the following, we shall refer to this heuristic as the Maximum Identical

Examples (MIE) heuristic.

7.4.2 Empirical Results

To test the coefficient finding techniques, each was used to find the largest coefficient of the

Fourier spectrum of several data sets [Newman et al., 1998]. Where necessary, non-Boolean

input features were encoded into binary. The methods tested are the BFS algorithm, the

generic B&B algorithm with random variable ordering, and variations on the B&B algorithm

that use WalkCoef to find an initial bound (B&B+Walk) and use the MIE variable selection

heuristic (B&B+MIE).

The results of the experiments are summarized in Tables 7.2 and 7.3, which show

the average number of visited nodes and average run time, respectively, required to find the

largest coefficient. The numbers in parentheses next to each data set name are the number

of inputs and examples.

For the branch-and-bound approach, the results reveal that using the MIE variable

selection heuristic greatly reduces search size and time, while using WalkCoef to find an initial

135

Table 7.3: A comparison of the average time (in seconds) required to find the largest coeffi-
cient of the Fourier spectrum by several algorithms/techniques.

Data Set B&B B&B+Walk B&B+MIE BFS

Adult (34-48842) 8.63 484.54 0.82 0.48
Chess (37-3196) 19.60 113.98 0.31 1.08
German (24-1000) 0.95 3.32 0.10 0.11
Heart (16-270) 0.02 0.15 0.01 0.01
Pima (8-768) 0.00 0.02 0.00 0.00
Voting (16-435) 0.00 0.21 0.00 0.00
SPECT (22-267) 0.59 1.07 0.18 0.21
WBC1 (36-699) 237.64 271.67 0.29 0.20
WBC2 (33-198) 38.39 48.14 0.06 0.06
WBC3 (30-569) 0.79 4.31 0.02 0.02

bound for pruning did not.3 An analysis of the solutions returned by WalkCoef suggests that

they are not good enough to be useful. It has been observed elsewhere that WalkSAT-like

approaches are not effective at solving certain types of problems, such as those in which

incremental steps towards a local optimum do not imply progress towards a globally optimal

solution [Ginsberg and McAllester, 1994]. Coefficient search through the Fourier domain

may be such a problem.

Comparing the results of the B&B+MIE and BFS approaches in Table 7.2 reveals that

the best-first approach visits fewer nodes before finding a solution. This is not surprising,

given its more sophisticated search technique. However, Table 7.3 reveals that this reduction

in the number of visited nodes does not necessarily imply better performance, as the two

methods perform nearly identically in terms of run time. Consequently, it seems that the

additional computational overhead of the best-first approach offsets the benefit of visiting

fewer nodes.

Although the BFS and B&B+MIE approaches are roughly equivalent in terms of run

time, the B&B approach is superior in terms of memory efficiency. For the BFS algorithm,

3In a few cases, the average number of nodes visited increased when WalkCoef was used. This is only
because the experiments were run independently, averaged over 100 different random variable orderings. If
the same variable orderings were used, the number of visited nodes could not increase as a result of WalkCoef.
The fact that there was an observed increase after 100 trials shows how much more search size is affected by
variable ordering than by the initial bound produced by WalkCoef.

136

memory usage is proportional to the size of the search frontier, which in the worst case is

O(2n). For the B&B algorithm, on the other hand, memory usage is proportional to the

maximum depth of the search, which is O(n). In these experiments, the BFS algorithm

used roughly 10 times more memory on average than the B&B approaches. (In the tables,

memory usage is reflected in the number of inputs for the B&B approach and in the number

of visited nodes for the BFS approach.) Furthermore, although these experiments were small

enough for the BFS algorithm to keep the search frontier in memory, the BFS algorithm will

reach practical limits long before the B&B algorithm.

7.5 Conclusion

In this paper, a previously observed connection between satisfiability and spectral learning

has been explored. A previous coefficient search algorithm was easily modified so that it

could be applied to SAT and MAX-SAT problems, and it performs well, generally needing

to explore only a small fraction of the space of possible truth assignments before arriving

at a solution. Techniques for solving SAT problems have also been applied to coefficient

search problems, resulting in both positive and negative results. A SAT-inspired search

algorithm was presented that can find large coefficients in about the same amount of time

as an existing coefficient search algorithm, while requiring much less memory. On the other

hand, a SAT-inspired two-phase search approach was not effective.

In terms of the practical benefits of applying SAT algorithms to spectral learning, al-

though we have obtained positive results, it will be interesting to see if other SAT techniques,

including those not based on a recursive branch-and-bound search, may yield better results.

Furthermore, we have limited consideration to exact algorithms. In some cases, finding a co-

efficient that is “almost large” might be sufficient for acceptable learning performance. With

regards to the failure of the two-phase approach, future work will analyze the deficiencies

of WalkCoef more closely and determine whether an alternative to WalkCoef would make a

two-phase approach as effective in coefficient search as it has been in satisfiability.

137

Finally, although we have focused on applying practical techniques, it may be inter-

esting to consider transfer of theoretical results. For example, significant work has been done

in determining which classes of functions are easy/hard to learn via spectral methods and

which satisfiability problems are easy/hard to solve. It would be interesting to see if there

is a relationship between these results.

138

Chapter 8

Conclusion

Although spectral learning algorithms based on the Fourier transform have been very

successful in computational learning theory and have been successfully applied in several

real-world applications, previous work has left many questions and issues in spectral learning

unanswered and unresolved. This dissertation addresses many of these questions and issues,

making significant advances in the practical application of spectral learning methods.

Chapter 2 introduces a method for efficiently bounding the size of the largest possible

coefficient in any region of a spectral representation. This method can be incorporated into

a variety of search algorithms, both complete and incomplete, to allow spectral learners to

find large coefficients without computing the entire exponentially-large spectrum. Chapter 2

showed that the coefficient search problem is NP-complete for a class of spectral represen-

tations that includes each of the representations considered in this dissertation. In spite of

this negative result, however, empirical results with real problems show that the algorithms

developed in this chapter can find the largest coefficients quickly, as they typically need to

explore only a small fraction of the search space. These algorithms allow spectral learning

methods to be applied to much larger problems than was possible with previous methods.

Chapter 3 analyzes the two main components of the spectral learning process (select-

ing the basis functions that will be used and assigning coefficients to those basis functions)

and provides an empirical comparison of the most common approaches. Interestingly, empir-

ical results suggest that the most commonly used approach, attempting to approximate the

unknown function’s spectral representation by selecting the basis functions whose coefficients

139

are largest and setting the coefficients to the values estimated from the data, is actually the

least effective approach. In contrast, a boosting approach in which basis functions are se-

lected and coefficients are computed in conjunction with a boosting algorithm is consistently

more effective, while a low-order/least-squares approach that favors low-order basis functions

and sets the coefficients to minimum-squared-error values is usually even better.

Chapter 4 shows how a spectral learner’s performance can be improved by allowing

it to use multiple spectral representations. Of three different approaches to multi-spectrum

learning that are introduced and compared, an ensemble approach, in which k spectral

models are learned independently (each using one of k different representations) and then

combined to make classifications by majority vote, performs best. Empirical results show

that a spectral learner that uses the ensemble approach can usually perform as well as

or better than a single-spectrum learner that uses the best individual representation for a

problem. In contrast, a single-spectrum learner that attempts to identify and use the best

individual representation often fails and falls short of the best single-spectrum result.

Chapters 5 introduces the “sentiment regression” problem of learning to assign a real-

valued score to a document that indicates the overall positive or negative sentiment of the

author, and Chapters 6 shows how a spectral learning approach to the problem results in

significant improvements over previous approaches. The common approach to solving these

types of sentiment problems is to identify a set of sentiment words and then to use machine

learning to build a model for classifying sentiment based on the presence/absence of those

words. Chapter 6 shows how this word presence model can be extended and improved by

spectral learning. It introduces a new spectral learning algorithm that combines the low-

order, boosting, and multi-spectrum learning approaches. This spectral algorithm can be

used to build an effective spectral model for sentiment analysis, but it can also be used as a

feature selector to provide features to other algorithms. In contrast to previous failures to

enhance the word presence model, the spectral feature extension of the word presence model

is shown to provide significant improvements in performance.

140

Finally, based on the observed connection between the maximum satisfiability (MAX-

SAT) problem and the problem of finding large coefficients, Chapter 7 shows how algorithms

and heuristics for solving MAX-SAT problems can be adapted into effective algorithms for

finding large coefficients, and vice versa. More importantly, the ease with which the algo-

rithms from each area can be applied to the other suggests that there may be other useful

practical methods and theoretical results from each area that may benefit the other.

Although the research presented in this dissertation has resulted in significant ad-

vances in spectral learning, there are still many areas for future work. For example, the

analysis in Chapter 2 discusses some properties of learning problems that affect the per-

formance of the search algorithms. However, the results on randomly generated problems

having similar characteristics (based on these properties) tend to be harder on average than

similarly-sized real-world problems. Therefore, one area of future work is to further identify

properties of learning problems that affect performance, so there can be a better understand-

ing of when it will or will not be easy to find large coefficients in real-world settings.

Another interesting direction for future work is to more thoroughly analyze the trade-

offs and benefits of complete and incomplete approaches to finding large coefficients. For

example, Chapter 2 shows that the beam search algorithm can use a very narrow beam

and still find a basis function that is comparable, in terms of test accuracy, to the basis

function with largest coefficient. However, how do learning accuracies compare after several

basis functions are added? This comparison may be particularly interesting in the context

of boosting, as incomplete algorithms may be able to be very greedy in that scenario and

still match the performance obtained by a complete search.

In terms of learning spectral representations, an interesting area for future work is to

identify other representations that a learner should consider. The representations used in this

dissertation are effective both individually and when combined, but there are probably other

representations that would also be useful. In terms of learning from multiple representations,

the question of which representations work well in combination also remains open. And, a

141

potentially interesting direction for future work is to determine if a learner can effectively

generate bases on-the-fly to adapt to specific learning problems.

Finally, the sentiment analysis research demonstrates a useful application area for

spectral learning. Another important direction for future research is to identify other do-

mains where spectral learning, and even specific spectral representations, may be useful.

142

References

T. Alsinet, F. Manyà, and J. Planes. Improved Branch and Bound Algorithms for MAX-

SAT. In Proceedings of the 6th International Conference on the Theory and Applications

of Satisfiability Testing, 2003.

D. Bikel and J. Sorensen. If We Want Your Opinion. In Proceedings of the International

Conference on Semantic Computing, pages 493–500, 2007.

A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly Learning

DNF and Characterizing Statistical Query Learning Using Fourier Analysis. In Proceedings

of the ACM Symposium on Theory of Computing, 1994.

B. Borchers and J. Furman. A Two-Phase Exact Algorithm for MAX-SAT and Weighted

MAX-SAT Problems. Journal of Combinatorial Optimization, 2:299–306, 1998.

N. Bshouty and C. Tamon. On the Fourier Spectrum of Monotone Functions. Journal of

the ACM, 1996.

P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the Really Hard Problems Are.

In Proceedings of the International Joint Conference on Artificial Intelligence-91, pages

331–337, 1991.

K. Dave, S. Lawrence, and D. Pennock. Mining the Peanut Gallery: Opinion Extraction

and Semantic Classification of Product Reviews. In Proceedings of the 12th International

World Wide Web Conference, pages 519–528, 2003.

M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving. Com-

munications of the ACM, 1962.

M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. Journal of

the ACM, 1960.

D. Donoho and I. Johnstone. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika,

1994.

143

D. Donoho and I. Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage.

Journal of the American Statistical Association, 1995.

A. Drake, E. Ringger, and D. Ventura. Sentiment Regression: Using Real-Valued Scores

to Summarize Overall Document Sentiment. In Proceedings of the IEEE International

Conference on Semantic Computing, 2008.

A. Drake and D. Ventura. A Practical Generalization of Fourier-Based Learning. In Pro-

ceedings of the International Conference on Machine Learning, 2005.

A. Drake and D. Ventura. Search Techniques for Fourier-Based Learning. In Proceedings of

the AAAI Workshop on Search in Artificial Intelligence and Robotics, 2008.

A. Drake and D. Ventura. Search Techniques for Fourier-Based Learning. In Proceedings of

the International Joint Conference on Artificial Intelligence, pages 1040–1045, 2009.

A. Drake and D. Ventura. An Empirical Comparison of Spectral Learning Methods for

Classification. 2011a. (In submission).

A. Drake and D. Ventura. Improving Spectral Learning by Using Multiple Representations.

2011b. (In submission).

Y. Freund and R. Schapire. Experiments with a New Boosting Algorithm. In Proceedings of

the 13th International Conference on Machine Learning, volume 55, pages 148–156, 1996.

M. Garey and D. Johnson. Computers and Intractability: A guide to the theory of NP-

completeness. W.H. Freeman and Co., 1979.

M. Ginsberg and D. McAllester. GSAT and Dynamic Backtracking. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning, pages

226–237, 1994.

H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on SAT. In Proceed-

ings of the International Conference on Theory and Applications of Satisfiability Testing

(SAT2000), pages 283–292, 2000.

M. Hu and B. Liu. Mining and Summarizing Customer Reviews. In Proceedings of the tenth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

168–177, 2004.

J. Jackson. An Efficient Membership-Query Algorithm for Learning DNF with Respect to

the Uniform Distribution. Journal of Computer and System Sciences, 1997.

144

J. Jackson, A. Klivans, and R. Servedio. Learnability Beyond AC0. In Proceedings on 34th

Annual ACM Symposium on Theory of Computing, pages 776–784, 2002.

Y. Jiang, H. Kautz, and B. Selman. Solving Problems with Hard and Soft Constraints

Using a Stochastic Algorithm for MAX-SAT. In Proceedings of the 1st International Joint

Workshop on Artificial Intelligence and Operations Research, 1995.

T. Joachims. Making Large-Scale SVM Learning Practical. In Advances in Kernel Methods

- Support Vector Learning, pages 168–177. MIT-Press, 1999.

H. Kargupta and B. Park. Mining Decision Trees from Data Streams in a Mobile Environ-

ment. In Proceedings of the IEEE International Conference on Data Mining. 2001.

H. Kargupta and B. Park. A Fourier Spectrum-Based Approach to Represent Decision Trees

for Mining Data Streams in Mobile Environments. IEEE Transactions on Knowledge and

Data Engineering, 2004.

H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Collective data mining: A New

Perspective Toward Distributed Data Mining. In Advances in Distributed Data Mining.

AAAI/MIT Press, 1999.

H. Kargupta, B. Park, D Hershberger, and E. Johnson. Collective Data Mining: A New

Perspective Toward Distributed Data Mining. In Advances in Distributed and Parallel

Knowledge Discovery. AAAI/MIT Press, 2000.

H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar. MobiMine: Monitoring

the Stock Market from a PDA. In ACM SIGKDD Explorations Newsletter, 2002.

A. Klivans, R. O’Donnell, and R. Servedio. Learning Intersections and Thresholds of Halfs-

paces. Journal of Computer and System Sciences, 68:808–840, 2004.

E. Kushilevitz and Y. Mansour. Learning Decision Trees using the Fourier Spectrum. SIAM

Journal on Computing, 1993.

N. Linial, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Transform, and

Learnability. In Proceedings of the 30th Annual Symposium on Foundations of Computer

Science, pages 574–579, 1989.

N. Linial, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Transform, and

Learnability. Journal of the ACM, 1993.

145

B. Liu, M. Hu, and J. Cheng. Opinion Observer: Analyzing and Comparing Opinions on

the Web. In International World Wide Web Conference, 2005.

Y. Mansour. Learning Boolean Functions via the Fourier Transform. In V.P. Roychod-

hury, K-Y. Siu, and A. Orlitsky, editors, Theoretical Advances in Neural Computation and

Learning, pages 391–424. Kluwer Academic Publishing, 1994.

Y. Mansour. An O(nlog logn) Learning Algorithm for DNF under the Uniform Distribution.

Journal of Computer and System Sciences, 1995.

Y. Mansour and S. Sahar. Implementation Issues in the Fourier Transform Algorithm.

Machine Learning, 2000.

T. Nasukawa and J. Yi. Sentiment Analysis: Capturing Favorability using Natural Language

Processing. In Proceedings of the International Conference On Knowledge Capture, 2003.

D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI Repository of Machine Learning

Databases, 1998. URL http://www.ics.uci.edu/\simmlearn/MLRepository.html.

B. Pang and L. Lee. A Sentimental Education: Sentiment Analysis using Subjectivity

Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting of

the Association for Computational Linguistics (ACL), pages 271–278, 2004.

B. Pang and L. Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Catego-

rization with Respect to Rating Scales. In Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics (ACL), pages 115–124, 2005.

B. Pang, L. Lee, and S. Vaithyanathan. Thumbs Up? Sentiment Classification using Machine

Learning Techniques. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 79–86, 2002.

B. Park, R. Aggayari, and H. Kargupta. A Fourier Analysis Based Approach to Learning

Decision Trees in a Distributed Environment. In Proceedings of the SIAM International

Conference on Data Mining, 2001.

A. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews. In Pro-

ceedings of the Human Language Technology Conference and the Conference on Empirical

Methods in Natural Language Processing, pages 339–346, 2005.

P. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised

Classification of Reviews. In Proceedings of the 40th Annual Meeting of the Association

for Computational Linguistics (ACL), pages 417–424, 2002.

146

http://www.ics.uci.edu/$\sim $mlearn/MLRepository.html

T. Wilson, J. Wiebe, and P. Hoffmann. Just How Mad Are You? Finding Strong and

Weak Opinion Clauses. In Proceedings of the Nineteenth National Conference on Artificial

Intelligence (AAAI ’04), pages 761–769, 2004.

T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing Contextual Polarity in Phrase-Level

Sentiment Analysis. In Proceedings of the Human Language Technology Conference and

the Conference on Empirical Methods in Natural Language Processing, pages 347–354,

2005.

H. Yu and V. Hatzivassiloglou. Towards Answering Opinion Questions: Separating Facts

from Opinions and Identifying the Polarity of Opinion Sentences. In Proceedings of the

2003 Conference on Empirical Methods in Natural Language Processing, pages 129–136,

2003.

147

	Practical Improvements in Applied Spectral Learning
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	1 Introduction
	2 Search Techniques for Spectral Learning
	2.1 Introduction
	2.2 Background
	2.2.1 Spectral Representations
	2.2.2 Spectral Learning
	2.2.3 The MSE Spectrum
	2.2.4 Finding Large Spectral Coefficients

	2.3 Finding Large Coefficients is Hard
	2.4 Bounding Coefficient Size
	2.4.1 Definitions & Notations
	2.4.2 Bounding Coefficient Size via -Reductions
	2.4.3 Obtaining -Reduced Data Sets

	2.5 Coefficient Search Algorithms
	2.5.1 Branch-and-Bound Search Algorithm
	2.5.2 Beam Search

	2.6 Variable-Ordering Heuristic
	2.7 Empirical Results
	2.8 Analysis
	2.8.1 Example Distribution
	2.8.2 Coefficient Size & Distribution

	2.9 Conclusion
	2.10 Appendix: Additional Theorems

	3 An Empirical Comparison of Spectral Learning Methods for Classification
	3.1 Introduction
	3.2 Background
	3.3 Spectral Learning Methods
	3.3.1 Selecting Basis Functions
	3.3.2 Assigning Coefficients

	3.4 Empirical Results
	3.4.1 Assigning Coefficients
	3.4.2 Selecting Basis Functions

	3.5 Conclusion

	4 Improving Spectral Learning by Using Multiple Representations
	4.1 Introduction
	4.2 Background
	4.2.1 Spectral Representations
	4.2.2 Spectral Learning

	4.3 Motivation
	4.4 Multi-Spectrum Learning Methods
	4.4.1 Best-Basis
	4.4.2 Ensemble
	4.4.3 Bag-Of-Features

	4.5 Results
	4.5.1 Single-Spectrum vs. Best-Basis
	4.5.2 Single-Spectrum vs. Ensemble
	4.5.3 Single-Spectrum vs. Bag-Of-Features
	4.5.4 Multi-Spectrum Comparison

	4.6 Conclusion

	5 Sentiment Regression: Using Real-Valued Scores to Summarize Overall Document Sentiment
	5.1 Introduction
	5.2 Related Work
	5.3 Real-Valued Sentiment Analysis
	5.4 Feature Selection
	5.5 Learning Algorithms
	5.5.1 Naive Bayes
	5.5.2 Linear Regression
	5.5.3 SVM

	5.6 Results
	5.6.1 Real-Valued Sentiment Prediction
	5.6.2 Classification vs. Regression

	5.7 Conclusion

	6 Using Spectral Features to Improve Sentiment Analysis
	6.1 Introduction
	6.2 Background
	6.2.1 Spectral (Fourier) Analysis
	6.2.2 Spectral Learning

	6.3 A New Spectral Learning Algorithm
	6.4 Spectral Learning Results
	6.5 Spectral Features
	6.6 Using Spectral Features to Improve Learning
	6.7 Identifying Relative Differences in Sentiment
	6.8 Conclusion

	7 The Maximum Satisfiability and Largest Coefficient Problems
	7.1 Introduction
	7.2 Background and Definitions
	7.3 Using Coefficient Search Techniques to Solve Satisfiability Problems
	7.3.1 Algorithm
	7.3.2 Empirical Results

	7.4 Using MAX-SAT Techniques to Find Large Spectral Coefficients
	7.4.1 MAX-SAT Techniques and Finding Coefficients
	7.4.2 Empirical Results

	7.5 Conclusion

	8 Conclusion
	References

