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Abstract

A Multi-Frequency Inverse Source Problem for the Helmholtz Equation

Sebastian Acosta

Department of Mathematics

Master of Science

The inverse source problem for the Helmholtz equation is studied. An unknown source
is to be identified from the knowledge of its radiated wave. The focus is placed on the effect
that multi-frequency data has on establishing uniqueness. In particular, we prove that data
obtained from finitely many frequencies is not sufficient. On the other hand, if the frequency
varies within an open interval of the positive real line, then the source is determined uniquely.
An algorithm for the reconstruction of the source using multi-frequency data is proposed.
The algorithm is based on an incomplete Fourier transform of the measured data and we
establish an error estimate under certain regularity assumptions on the source function.
We conclude that multi-frequency data not only leads to uniqueness for the inverse source
problem, but in fact it contributes with a stability result for the reconstruction of an unknown
source.
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Chapter 1. Introduction

I am not able to learn any mathematics unless I can see some problem I am going
to solve with mathematics ...

Steven Weinberg

The greatest mathematicians, such as Archimedes, Newton, and Gauss, always
united theory and application in equal measure.

Felix Klein

Over the last 25 years, the study of inverse problems has experienced tremendous progress

from the mathematical point of view. This growth is reflected in the appearance of the fol-

lowing four academic journals: Inverse Problems (1985), Journal of Inverse and Ill-Posed

Problems (1993), Inverse Problems in Science and Engineering (2004), and Inverse Problems

and Imaging (2007), as well as in the publication of several applied mathematics monographs

such as [2, 3, 4, 5, 6, 7, 8, 9], and some topical reviews on inverse problems for differential

equations [10, 11, 12, 13, 14, 15, 16, 17, 18]. This mathematical activity has been motivated

by the fundamental role that inverse problems for partial differential equations play in many

technological areas such as radar, sonar and satellite imaging [19, 20], geological prospection

[13, 21, 22, 23, 24, 25], astronomical exploration [26], medical imaging [21, 23, 25, 27, 28, 29],

systems biology [29, 30, 31], and nondestructive testing [13, 21, 25]. In the present work,

we study the inverse source problem for the Helmholtz equation which has particular appli-

cations in medical imaging techniques such as electroencephalography [32, 33], magnetoen-

cephalography [34, 35, 36, 37], photoacoustic tomography [38], and optical tomography [28].

In addition, this inverse source problem is of great interest in theoretical physics. It has been
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a subject of study concerning the physics of invisibility, radiation reaction, and the quantum

mechanical stability of elementary particles. For a good review see [39].

The relationship between a direct problem and its inverse is described by Keller [40, p.

107] as follows,

We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of the
two problems has been studied extensively for some time, while the other is newer
and not so well understood. In such cases, the former is called the direct problem,
while the latter is called the inverse problem.

The direct source problem for the Helmholtz equation is, given the forcing function F ,

to find the radiated wave field. On the other hand, the inverse source problem starts with

the knowledge of the radiated wave U on some surface Γ enclosing the support of the source

F and asks for the nature of this source.

The direct source problem has been thoroughly investigated over the past centuries and a

huge amount of information is available in the literature. We review the main mathematical

results in Chapter 2 and provide plenty of references therein. In contrast, the inverse source

problem has received much less attention especially in connection with a solid mathematical

foundation. The reason for this is that this inverse problem is inherently ill-posed in terms of

uniqueness. More specifically, due to the existence of non-radiating sources and the linearity

of the inverse source problem, an infinity of solutions can be obtained by adding any of the

non-radiating sources to a given solution. Hence, it is impossible for the true source to be

uniquely reconstructed from a single set of measurements on the surface Γ. This phenomenon,

to be reviewed in Chapter 3, holds true for problems governed by the Helmholtz (acoustics),

Maxwell (electrodynamics) and Laplace (gravimetry) equations [2, 3, 41, 37, 42, 43, 44]. For

comprehensive studies of such ill-posed problems and regularization methods, we refer the

reader to [5, 45, 46, 47, 48].

We assume the presence of a source function F with its support in a bounded open set
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Ω ⊂ R
3 with smooth boundary Γ. The radiated field U satisfies the following problem

∆U(x, k) + k2U(x, k) = −F (x, k) in R
3, (1.1)

lim
r→∞

r

(

∂U(x, k)

∂r
− ikU(x, k)

)

= 0, (1.2)

where r = |x|. The limit in (1.2) is known as the Sommerfeld radiation condition. Here k > 0

is the wavenumber, although, we will refer to it as the frequency. Notice that U = U(x, k)

depends on the frequency since k appears in the left-hand side of the Helmholtz equation

and F = F (x, k) depends on k as well. In the present work, we only consider separable

sources of the form

F (x, k) = g(k)f(x), (1.3)

where g(k) 6= 0 is a known function. Hence we can define u(x, k) = U(x, k)/g(k) which will

satisfy a new problem with a frequency-independent source f given by

∆u(x, k) + k2u(x, k) = −f(x) in R
3, (1.4)

lim
r→∞

r

(

∂u(x, k)

∂r
− iku(x, k)

)

= 0. (1.5)

The multi-frequency inverse problem consists of identifying f from measurements of the

radiated field u on Γ for all frequencies k ∈ K where K ⊂ R+ is the set of admissible

frequencies. This research topic is motivated by applications in acoustic, elastic and electro-

magnetic remote sensing where the wave frequency is a user controlled parameter and the

spatial profile of the source function is frequency-independent.

The focus of this work is placed on the effect that multi-frequency data has on establishing

uniqueness, i.e., whether the unknown source can be identified from the knowledge of multi-

frequency measurements of the radiated waves. One of the major contributions of our work,

found in Chapter 3, is a proof that multi-frequency data does indeed determine the unknown
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source uniquely. It is proper to mention here that, in the course of the present work, we found

that Eller and Valdivia [49], and Bao et al. [50] have recently investigated the same problem.

In terms of uniqueness, Eller and Valdivia proved that the knowledge of u(x, k) for all x ∈ Γ

and all k ∈ K is sufficient to recover f uniquely if K = R+. In fact, their proof requires data

obtained at frequencies coinciding with the Dirichlet eigenvalues of the negative Laplacian

in the region Ω. Bao et al. improved the uniqueness result by showing that measured

data from a set of frequencies with an accumulation point is enough the identify the source

uniquely. We complement their results in two directions. First, we prove that if K is any

open interval of the positive real line, then the source is determined uniquely. On the other

hand, we prove that data obtained from finitely many frequencies is not sufficient to recover

f uniquely, that is, we show the existence of sources that do not radiate at a finite number

of distinct frequencies. We also mention that the unique determination of the location and

intensity of point sources has been shown in [33] for data obtained at a single frequency.

We also characterize the set of non-radiating and purely-radiating sources, and discuss

the idea of minimum-norm solutions for the inverse problem at a fixed single frequency. As a

consequence, rigorous results are obtained concerning the unique decomposition of any source

f ∈ L2(Ω) as the superposition of a non-radiating component fN and a purely-radiating part

fP which happens to be the minimum-L2-norm solution to the inverse problem. Results in

this direction were initiated by Marengo, Devaney and Ziolkowski [44, 51, 52] among others,

and rigorously established by Albanese and Monk for Maxwell equations [37].

An algorithm for the reconstruction of the source using multi-frequency data is proposed.

This is done in Chapter 4. We assume that the input data is available for a range of

frequencies belonging to an interval K = (0, K). The algorithm is based on an incomplete

Fourier transform of the measured data and we establish an error estimate under certain

regularity assumptions on the source function f . We conclude that multi-frequency data

not only leads to uniqueness for the inverse source problem, but in fact it contributes with

a stability result for the reconstruction of an unknown source.
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Chapter 2. Direct Source Problem

I am convinced that it will be possible to get these existence proofs by a general ba-
sic idea ... Perhaps it will then also be possible to answer the question of whether
or not every regular variational problem possesses a solution if, with regard to
boundary conditions, certain assumptions are fulfilled and if, when necessary,
one sensibly generalizes the concept of solution.

David Hilbert

In this chapter we start by introducing the classical formulation of the direct source

problem for the Helmholtz equation in R
3. In view of the inverse source problem to be

discussed in the next chapter, we consider a source with compact support. Hence, the

boundary value problem can be equivalently posed in a bounded domain by employing

the Dirichlet-to-Neumann (DtN) map as an artificial boundary condition imposed on the

boundary of the truncated domain. The well-posedness of the classical formulation is briefly

discussed in this chapter.

Then, we define and prove the well-posedness of the variational formulation of the di-

rect source problem for the Helmholtz equation. We will base our study of the variational

problem on the excellent books by Gilbarg and Trudinger [53] and McLean [54]. The basic

tools necessary to prove existence and uniqueness of the sought solutions are based on some

functional analytical tools stated in Appendix A. These essential tools are the Sobolev em-

bedding theorems, the Lax-Milgram theorem, and the Riesz-Fredholm theory for compact

perturbations of the identity operator. In Appendix B, we also review the application of

Green’s identities to functions in the appropriate Sobolev spaces which are employed in the

proof of uniqueness.

5



2.1 Classical Formulation

Here we consider the boundary value problem (BVP) for the Helmholtz equation in all of

R
3. We assume the presence of a source function f with its support in a bounded open

set Ω ⊂ R
3. The domain Ω is assumed to have a smooth boundary Γ and a connected

complement. The classical BVP is formulated as follows.

Problem 2.1. Given a source function f with support in Ω, find a function u ∈ C2(R3)

satisfying

∆u+ k2u = −f in R
3, (2.1)

lim
r→∞

r

(

∂u

∂r
− iku

)

= 0, (2.2)

where r = |x|. The limit in (2.2), known as the Sommerfeld radiation condition, is assumed

to hold uniformly in all directions x/|x|.

This problem has been shown to have a unique classical solution if the source function

f is sufficiently smooth. In fact, if f ∈ C0,α(R3) then the unique solution u ∈ C2,α(R3) is

explicitly given by,

u(x) =

∫

Ω

G(x, y)f(y)dy, x ∈ R
3, (2.3)

where G(x, y) is the well-known fundamental solution (or free-space Green’s function) for

the Helmholtz equation,

G(x, y) =
1

4π

eik|x−y|

|x− y|
, x 6= y. (2.4)

For the proof on the regularity of the solution (2.3) see [4, Theorem 8.1] or [53, Lemmas

4.1-4.2]. Uniqueness is proven by combining [55, Theorem 3.1] and [55, Theorem 3.3].

It is possible to formulate an equivalent BVP in the bounded domain Ω by replacing the
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Sommerfeld radiation condition at infinity by an artificial boundary condition on Γ. This

boundary condition is known as the Dirichlet-to-Neumann (DtN) condition. Surprisingly, it

renders a BVP in Ω whose solution coincides exactly with the restriction to Ω of the solution

of the Problem 2.1 originally defined in all of R
3. We will rigorously establish this result in

Corollary 2.13 in the framework of variational problems.

The DtN map has become a powerful tool to numerically handle BVPs defined in un-

bounded domains. For excellent references concerning the DtN map see [56, 57, 58, 59, 60,

61]. However, the DtN map not only has a great value in numerical settings. It is also em-

ployed as a theoretical tool for various direct and inverse problems. For instance, it is used in

the study of surface potentials for acoustic scattering [4, Section 3.2], and the mathematical

analysis of electrical impedance tomography [62, Chapter 8], [63, 64]. We will also take ad-

vantage of the DtN map to set up the weak counterpart of the Problem 2.1. It will yield the

possibility to define the variational problem in a bounded domain where the compactness of

the Sobolev embeddings is valid. For completeness, we state the classical formulation of the

source problem based on the DtN boundary condition imposed on the surface Γ.

Problem 2.2. Given a source function f , find a function u ∈ C1(Ω) ∩ C2(Ω) satisfying

∆u+ k2u = −f in Ω, (2.5)

∂u

∂ν
−Mu = 0 on Γ, (2.6)

where ν denotes the outward unit normal vector on Γ, and M : C(Γ) → C(Γ) denotes the

Dirichlet-to-Neumann map which transfers the boundary values of a radiating solution of the

Helmholtz equation in R
3 \ Ω into its normal derivative at the boundary Γ.

2.2 Variational Formulation

For the direct source problem governed by Helmholtz equation in a bounded domain Ω with

smooth boundary Γ, the natural choice of trial and test spaces is the Sobolev space H1(Ω).
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The variational counterpart of the Classical Problem 2.2 is defined as follows.

Problem 2.3 (Direct Problem). Given a source function f ∈ L2(Ω), find a function u ∈

H1(Ω) satisfying

B(u, v) = 〈f, v〉L2(Ω), for all v ∈ H1(Ω) (2.7)

where the sesquilinear form B : H1(Ω) ×H1(Ω) → C is defined as follows,

B(u, v) = 〈∇u,∇v〉L2(Ω) − k2〈u, v〉L2(Ω) − 〈MTu, Tv〉L2(Γ). (2.8)

Here T is the trace operator from Theorem B.1 in the Appendix, and M : H1/2(Γ) →

H−1/2(Γ) denotes the Dirichlet-to-Neumann map which transfers the boundary values of a

radiating solution of the Helmholtz equation in R
3 \ Ω into its normal derivative at the

boundary Γ.

In order to study the well-posedness of this variational problem, we need to analyze the

properties of the sesquilinear form B. We start by stating the properties of the Dirichlet-

to-Neumann operator [59, 61]. The Dirichlet-to-Neumann operator is also known in the

literature as the Steklov-Poincaré operator [54, Chapter 4].

Lemma 2.4. The Dirichlet-to-Neumann operator M : H1/2(Γ) → H−1/2(Γ) is a well-defined

bounded linear operator. Furthermore, it satisfies the following property: Given w ∈ H1/2(Γ),

if Im〈Mw,w〉L2(Γ) = 0 then w = 0. The adjoint operator M∗ : H1/2(Γ) → H−1/2(Γ) enjoys

the same property.

Proof. This follows from the well-posedness of the exterior scattering problem in H1
loc(R

3\Ω)

for Dirichlet boundary data in H1/2(Γ). See [4, Chapter 3], [54, Chapters 4,9] or [65, Chapter

2]. The boundedness of M follows from the stability of the exterior Dirichlet problem for

the Helmholtz equation. See [4, Chapter 3] or [65, Chapter 2], or a good study of the

Steklov-Poincaré operator found in [54, Chapter 4].
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Now let u be the solution to the exterior scattering problem with Dirichlet boundary

data w ∈ H1/2(Γ) and assume that Im〈Mw,w〉L2(Γ) = 0. By definition of the DtN operator

we have that Dνu = Mw. Then Im〈Dνu, Tu〉L2(Γ) = 0 and by [4, Theorem 2.12] or [54,

Lemma 9.9] we conclude that u = 0. This implies that w = Tu = 0.

Regarding the adjoint operator M∗, notice that if Im〈M∗w,w〉L2(Γ) = 0 then we have

Im〈Mw,w〉L2(Γ) = 0 and from the previous part of this lemma, it follows that w = 0.

Now we prove that the sesquilinear form B defined in (2.8) is bounded.

Lemma 2.5. The sesquilinear form B : H1(Ω) × H1(Ω) → C defined in (2.8) is bounded,

i.e., there exists a constant C such that |B(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1(Ω).

Proof. Let u, v ∈ H1(Ω). Then

|B(u, v)| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + k2‖u‖L2(Ω)‖v‖L2(Ω) + ‖M‖‖T‖‖u‖H1(Ω)‖T‖‖v‖H1(Ω)

≤ (1 + k2 + ‖M‖‖T‖2)‖u‖H1(Ω)‖v‖H1(Ω),

where we have used the boundedness of the operators M and T as stated by Lemma 2.4 and

the Trace Theorem B.1 in the Appendix. This concludes the proof.

This estimate is significant from the point of view of the existence theory for the Problem

2.3. By virtue of the Lax-Milgram Theorem A.1 in the Appendix, we can re-express the

Direct Problem 2.3 as an operator equation. Notice that

B(u, v) = 〈u, v〉H1(Ω) − (1 + k2)〈u, v〉L2(Ω) − 〈MTu, Tv〉L2(Γ),

and that both 〈u, v〉L2(Ω) and 〈MTu, Tv〉L2(Γ) define bounded sesquilinear forms on H1(Ω)×

H1(Ω) as shown in Lemma 2.5. Hence by the first part of the Lax-Milgram Theorem A.1

(which is a direct consequence of the Riesz representation theorem), there exist bounded

9



linear operators A,C : H1(Ω) → H1(Ω) and a unique element F ∈ H1(Ω) such that

〈Au, v〉H1(Ω) = 〈u, v〉L2(Ω) for all u, v ∈ H1(Ω), (2.9)

〈Cu, v〉H1(Ω) = 〈MTu, Tv〉L2(Γ) for all u, v ∈ H1(Ω), (2.10)

〈F, v〉H1(Ω) = 〈f, v〉L2(Ω) for all v ∈ H1(Ω). (2.11)

Hence, we can re-write (2.7) as follows,

〈(I − (1 + k2)A− C)u, v〉H1(Ω) = 〈F, v〉H1(Ω) for all v ∈ H1(Ω).

As is commonly done in the study of the well-posedness of variational problems, we have

proven that the Direct Problem 2.3 is equivalent to the following one.

Problem 2.6 (Operator Problem). Find u ∈ H1(Ω) satisfying

(I − (1 + k2)A− C)u = F, (2.12)

where A, C and F are define by (2.9)-(2.11).

2.3 Well-Posedness

In this section we proceed to prove the solvability of the Direct Problem 2.3. The proof of

the existence of a solution will be based on the Riesz-Fredholm Theorem A.5 for operator

equations of the second kind. See Appendix A. Hence, we shall prove uniqueness first and

then show that the hypothesis of the Riesz-Fredholm theorem is indeed satisfied. Hence, the

Direct Problem 2.3 will be shown to enjoy the existence and uniqueness of a solution, as

well as, its stability on the forcing data. First, however, we need the following fundamental

result concerning the regularity of the variational solution to the Problem 2.3. A proof can

be found in [54, Chapters 4,7]. See also [53, Chapter 8], [66, Chapter 9], [67, Section 6.2]

10



and [68, Chapter 8].

Theorem 2.7 (Regularity). Let u ∈ H1(Ω) be a variational solution of the problem

∆u+ k2u = −f in Ω, and
∂u

∂ν
= g on Γ,

for f ∈ L2(Ω) and g ∈ H1/2(Γ). Assume also that Γ is of class C2. Then u ∈ H2(Ω) and

in fact ∆u + k2u = −f a.e. in Ω (u is a strong solution). In general, if f ∈ Hk(Ω) and

g ∈ Hk+1/2(Γ) for k ≥ 0 and Γ is Ck+2 then u ∈ Hk+2(Ω). Furthermore, if f = 0 and

g ∈ C(Γ) then u is analytic and it is a classical solution to the Helmholtz equation in Ω.

Theorem 2.8 (Uniqueness). The Direct Problem 2.3 has at most one solution.

Proof. We have to show that all solutions to the homogeneous problem (f = 0) vanish.

Suppose u ∈ H1(Ω) is a solution to the homogeneous Direct Problem 2.3. Then

− Im B(u, u) = Im 〈MTu, Tu〉L2(Γ) = 0.

By Lemma 2.4 then Tu = 0 which implies that MTu = 0.

Now from the regularity result summarized in Theorem 2.7, we have that u ∈ H2(Ω) and

we are in position to employ Green’s first identity as follows,

〈∆u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω) = 〈Dνu, Tv〉L2(Γ), for all v ∈ H1(Ω).

Combining the above equation with (2.7) we obtain

〈∆u+ k2u, v〉L2(Ω) = 〈Dνu−MTu, Tv〉L2(Γ), for all v ∈ H1(Ω).

This last equation being particularly true for all v ∈ H1
0 (Ω) which implies that ∆u+k2u = 0

in the L2-sense since H1
0 (Ω) is dense in L2(Ω). Then from the same equation we conclude

11



that

〈Dνu−MTu, Tv〉L2(Γ) = 0, for all v ∈ H1(Ω).

Now, from Theorem B.1 in the Appendix, we learned that the trace operator T : H1(Ω) →

H1/2(Γ) is surjective. Since H1/2(Γ) is dense in L2(Γ), we conclude that Dνu = MTu in the

L2-sense. We combine these last results with Green’s third identity (Theorem B.5 in the

Appendix) to obtain,

u = SDνu−KTu− G(∆u+ k2u)

= SMTu−KTu− G(∆u+ k2u).

The right-hand side above vanishes identically since we have already shown that Tu = 0 and

∆u+ k2u = 0. This concludes the proof.

Now we take advantage of the equivalence between the original Direct Problem 2.3 and

Operator Problem 2.6. The goal is to use the Riesz-Fredholm theory for operator equations

of the second kind to prove the existence of a unique solution for (2.12). Since we have

already proven uniqueness, it only remains to show that the hypothesis of the Riesz-Fredholm

Theorem A.5 is satisfied (see Appendix A). In other words, we only need to show that the

operators A and C defined in (2.9)-(2.10) are compact. This we do without further ado.

Lemma 2.9. The operator A : H1(Ω) → H1(Ω) is compact.

Proof. Let {un} ⊂ H1(Ω) be a sequence bounded in the H1-norm. By the weak-compactness

(Theorem A.3) of the Hilbert space H1(Ω) then it has a weakly convergent subsequence.

Allowing some abuse of notation, we denote it by {un}. Hence, there exists u ∈ H1(Ω) such

that

〈un, v〉H1(Ω) → 〈u, v〉H1(Ω) as n→ ∞, for all v ∈ H1(Ω).
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Now we claim that {Aun} converges to Au in the H1-norm which would establish the com-

pactness of the operator A.

‖Aun − Au‖2
H1(Ω) = 〈Aun, Aun〉H1(Ω) − 2Re〈Aun, Au〉H1(Ω) + 〈Au,Au〉H1(Ω)

≤ |〈Aun, Aun − Au〉H1(Ω)| + |〈Au− Aun, Au〉H1(Ω)|

= |〈un, Aun − Au〉L2(Ω)| + |〈Au− Aun, Au〉H1(Ω)|

≤ ‖un‖L2(Ω)‖Aun − Au‖L2(Ω) + |〈Au− Aun, Au〉H1(Ω)|.

Here we have used (2.9) and the Cauchy-Schwarz inequality. Notice now that the second term

on the right-hand side approaches zero since {Aun} is weakly convergent to Au (Theorem

A.4). Moreover, {un} is a bounded sequence in both theH1- and L2-norms. The operator A :

H1(Ω) → H1(Ω) is bounded and since H1(Ω) is compactly embedded into L2(Ω) (Theorem

A.6) then A : H1(Ω) → L2(Ω) is compact. From Theorem A.4 it follows that the first term

above approaches zero as well. This concludes the proof.

Lemma 2.10. The operator C : H1(Ω) → H1(Ω) is compact.

Proof. This proof is very similar to the preceding one. Let {un} ⊂ H1(Ω) be a sequence

bounded in the H1-norm. By the weak-compactness (Theorem A.3) of the Hilbert space

H1(Ω) then it has a weakly convergent subsequence. Allowing some abuse of notation, we

denote it by {un}. Hence, there exists u ∈ H1(Ω) such that un ⇀ u in the H1-sense. Now

we claim that {Cun} converges to Cu in the H1-norm.

‖Cun − Cu‖2
H1(Ω) = 〈Cun, Cun〉H1(Ω) − 2Re〈Cun, Cu〉H1(Ω) + 〈Cu,Cu〉H1(Ω)

≤ |〈Cun, Cun − Cu〉H1(Ω)| + |〈Cu− Cun, Cu〉H1(Ω)|

= |〈MTun, Tun − Tu〉L2(Ω)| + |〈Cu− Cun, Cu〉H1(Ω)|

≤ ‖M‖‖T‖‖un‖H1(Ω)‖Tun − Tu‖L2(Ω) + |〈Cu− Cun, Cu〉H1(Ω)|.

Here we have used (2.10). Notice now that the second term approaches zero since {Cun} is
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weakly convergent to Cu (Theorem A.4). Moreover, {un} is a bounded sequence in the H1-

norm. The trace operator T : H1(Ω) → H1/2(Γ) is bounded and since H1/2(Γ) is compactly

embedded into L2(Γ) (Theorem A.6), then T : H1(Ω) → L2(Γ) is compact. From Theorem

A.4 it follows that the first term approaches zero as well. This establishes the compactness

of the operator C.

Finally we are ready to conclude the well-posedness of the Direct Problem 2.3 or equiv-

alently of the Operator Problem 2.6.

Theorem 2.11 (Well-Posedness). For each f ∈ L2(Ω), the Direct Problem 2.3 has a unique

solution u ∈ H1(Ω) and it depends continuously on the forcing data f , that is, there exists a

constant K such that

‖u‖H1(Ω) ≤ K‖f‖L2(Ω).

Proof. The proof relies on checking that the hypothesis of the Riesz-Fredholm Theorem A.5

is satisfied so that it can be applied to the Operator Problem 2.6. Indeed, this is the case

since it follows from Lemmas 2.9-2.10. The injectivity of the operator (I − (1 + k2)A − C)

is established by the uniqueness Theorem 2.8. Hence, we conclude that the Direct Problem

2.3 is well-posed.

It is proper to mention here that the unique solution to the source problem for the

Helmholtz equation in R
3 can be written explicitly as a volume potential just like in the

classical sense. See Section 2.1. Recall that the volume potential of f is the function u = Gf

defined by the following expression,

u(x) = (Gf)(x) =

∫

R3

G(x, y)f(y)dy, x ∈ R
3, (2.13)

where G is the fundamental solution to the Helmholtz equation defined by (2.4) and f ∈

L2(R3) is assumed to be compactly supported. The following theorem proves that (2.13) is
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indeed a strong solution for both Problems 2.1 and 2.2.

Theorem 2.12. Let f ∈ L2(R3) be compactly supported, and u be the volume potential of

f as defined by (2.13). Then u ∈ H2
loc

(R3) and ∆u + k2u = −f a.e. in R
3. In addition,

u satisfies the Sommerfeld radiation condition (2.2) and the Dirichlet-to-Neumann equation

(2.6) on any surface that encloses the support of f . Hence u is a strong solution for both

Problems 2.1 and 2.2.

Proof. The proof of the regularity of the volume potential can be found in [53, Theorem 9.9],

[4, Theorem 8.2] and [69]. Now, since G satisfies the Sommerfeld radiation condition then

so does u. Hence u is a strong solution for Problem 2.1.

Now u is a radiating solution to the homogeneous Helmholtz equation in the exterior of

any surface that encloses the support of f . By definition of the DtN map, then u satisfies

equation (2.6) on that surface. Therefore, u is a strong solution for Problem 2.2.

The first consequence of the above theorem is that the volume potential (2.13) is indeed

the unique solution for the variational Direct Problem 2.3. This follows from the fact that

a strong solution of a BVP can easily be shown to satisfy the variational counterpart of the

same problem. The next implication is concerning the DtN map. Since the volume potential

(2.13) is simultaneously the unique solution for both the original Problem 2.1 defined in all

of R
3 and the variational Direct Problem 2.3 defined in Ω, then we have shown the following

assertion.

Corollary 2.13. The unique solution for the variational Direct Problem 2.3 coincides with

the restriction of the unique strong solution for the original Problem 2.1 to the domain Ω.
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Chapter 3. Inverse Source Problem

A lack of information cannot be remedied by any mathematical trickery !

Cornelius Lanczos

The purpose of this chapter is to investigate the inverse source problem for the Helmholtz

equation. Recall that given a source f and a frequency k > 0 there exists a unique solution

u ∈ H1(Ω) that satisfies the Direct Problem 2.3. When needed, we will make explicit

reference to the dependence of u on the frequency k by writing u = uk or u = u(x, k). We

will consider an admissible set of frequencies denoted by K ⊂ R+. With this notation we

are ready to define the inverse problem.

Problem 3.1 (Inverse Source Problem). Let uk ∈ H1(Ω) be the solution to the Direct

Problem 2.3 for given frequency k ∈ K and some unknown source f ∈ L2(Ω). The inverse

source problem is, given the traces Tuk on Γ, find the source f .

The focus is placed on the effect that multi-frequency data has on establishing uniqueness,

i.e., whether the unknown source can be identified from the knowledge of multi-frequency

measurements of the radiated waves. One of the major contributions of this work is a proof

that multi-frequency data does indeed determine the unknown source uniquely. We answer

the following question: How much data is needed to determine the source ? In particular,

we prove that data obtained from finitely many frequencies is not sufficient, that is, we show

the existence of sources that do not radiate at any finite number of distinct frequencies. On

the other hand, if the frequency varies within an open interval of the positive real line, then

the source is determined uniquely.
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We start this chapter by characterizing the set of non-radiating and introducing the idea

of minimum-norm solutions for the inverse problem. Then, we proceed to characterize the

set of purely-radiating sources. These concepts are made mathematically precise using the

variational setting laid out in Chapter 2. As a consequence, we reproduce the analogue results

obtained by Albanese and Monk for Maxwell’s equations [37] and previously investigated by

Marengo, Devaney and Ziolkowski [44, 51, 52] among others.

3.1 Non-Uniqueness and Minimum-Norm Solutions

We begin this section by giving a precise definition of non-radiating sources for the Helmholtz

equation.

Definition 3.2 (Non-Radiating Source). A source f ∈ L2(Ω) is said to be non-radiating at

a frequency k if the solution uk ∈ H1(Ω) of the Direct Problem 2.3 corresponding to this

source f is such that Tuk = 0 on Γ. Let N(Ω, k) denote the set of all non-radiating sources

for the Helmholtz equation at the frequency k.

In this section we seek the following orthogonal decomposition of L2(Ω),

L2(Ω) = N(Ω, k) ⊕N(Ω, k)⊥ (3.1)

This decomposition is valid if N(Ω, k) is a closed subspace of L2(Ω). This is the case because

N(Ω, k) is the nullspace of the operator T ◦ Sk : L2(Ω) → H1/2(Γ) where T is the trace

operator given by Theorem B.1 and Sk : L2(Ω) → H1(Ω) represents the solution operator

for the Direct Problem 2.3, i.e., it maps the source f into the solution uk of the direct

problem. From the well-posedness Theorem 2.11 it follows that Sk is a bounded operator.

Since both operators T and Sk are bounded, then N(Ω, k) = null(T ◦Sk) is a closed subspace

of L2(Ω) and the orthogonal decomposition (3.1) is well-defined. As a consequence, we have

the following definition for purely-radiating sources.
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Definition 3.3 (Purely-Radiating Source). A source f ∈ L2(Ω) is said to be purely-radiating

at a frequency k if f ∈ N(Ω, k)⊥.

The goal of this section is to characterize N(Ω, k) in an interesting way and show that it

is not a trivial vector space. We begin by defining the following set

N (Ω, k) =
{

g ∈ L2(Ω) such that g = ∆w + k2w for some w ∈ C∞
c (Ω)

}

. (3.2)

It is clear that N (Ω, k) ⊂ N(Ω, k) because if g ∈ N (Ω, k) so that g = ∆w + k2w for some

w ∈ C∞
c (Ω) then Tw = 0 on Γ, and by definition g ∈ N(Ω, k). Moreover, N (Ω, k) is a non-

trivial vector space since every nonzero function in C∞
c (Ω) does not satisfy the Helmholtz

equation in Ω. This follows from the fact that a solution to the Helmholtz equation is

an analytic function. This simple argument shows the existence of non-radiating sources

for the Helmholtz equation. Similarly, it is possible to show the existence of non-radiating

sources for many other linear partial differential equations such as the Maxwell, Schrödinger,

Laplace, Stokes, and Navier equations.

Remark 3.4 (Non-Uniqueness). The fact that N (Ω, k) ⊂ N(Ω, k) is a non-trivial space

implies that the inverse source problem cannot be solved uniquely given boundary data at a

single frequency. This is one of the major difficulties encountered in the mathematical study

of the inverse source problem.

The first goal of this section is to show that N (Ω, k) characterizes N(Ω, k) in the sense

that N (Ω, k) = N(Ω, k) which we proceed to prove.

Theorem 3.5. The set N (Ω, k) is dense in N(Ω, k) in the L2(Ω)-norm.

Proof. Let f ∈ N(Ω, k). From the definition of N(Ω, k) and the regularity theorems [54,

Theorem 4.18] or [53, Theorem 8.12], we obtain a strong solution uk ∈ H2
0 (Ω) so that

∆uk + k2uk = f a.e. and Tuk = 0 on Γ. Now since C∞
c (Ω) is dense in H2

0 (Ω) then

there exists a sequence {w(n)} ⊂ C∞
c (Ω) converging to uk in the H2

0 (Ω)-norm. Let g(n) =
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∆w(n) +k2w(n) ∈ N (Ω, k). It is clear that the Helmholtz operator (∆+k2) : H2
0 (Ω) → L2(Ω)

is bounded, which means that

lim
n→∞

g(n) = lim
n→∞

(∆w(n) + k2w(n)) = ∆uk + k2uk = f (in the L2(Ω)-norm).

This concludes the proof.

Another goal of this section is to prove that data obtained from finitely many frequencies

is not sufficient to recover f uniquely. We want to show the existence of nontrivial sources

that do not radiate at a finite number of distinct frequencies. This is done in a manner

similar to that of the definition of the non-radiating sources found in the set N (Ω, k) as

given by (3.2).

Let Lk1
= ∆+ k2

1 be the Helmholtz operator at a frequency k1. Similarly define Lk2
for a

frequency k2 6= k1. Now let w ∈ C∞
c (Ω) be such that Lk1

Lk2
w 6= 0, and define g = Lk1

Lk2
w,

w1 = Lk2
w and w2 = Lk1

w. Notice that all three g, w1, w2 ∈ C∞
c (Ω). Also notice that the

Helmholtz operators commute, that is, Lk1
Lk2

w = Lk2
Lk1

w = g. Hence, the source g is

non-radiating at the two distinct frequencies k1 and k2 because it gives rise to the wave fields

w1 at frequency k1 and w2 at frequency k2 such that Tw1 = Tw2 = 0. This argument can

easily be extended to an arbitrary finite number of frequencies. Hence, we have proven the

following assertion.

Theorem 3.6. There exist nontrivial sources in L2(Ω) that do not radiate at a finite number

of frequencies. Equivalently, for any finite set of frequencies K = {k1, k2, ..., kn}, there exists

g ∈ L2(Ω) such that

g ∈
⋂

k∈K

N(Ω, k) and g 6= 0.

Hence, concerning the multi-frequency Inverse Source Problem 3.1, data obtained from

finitely many frequencies is not sufficient to recover the unknown source f uniquely.
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We can now address the concept of minimum-norm solutions for the inverse problem.

Notice that if f solves the inverse source problem at a frequency k, then f + g for any

g ∈ N(Ω, k) will solve it as well. Out of the infinitely many solutions to the inverse problem

we can select the one that has minimum L2-norm. This is a consequence of the well-known

best approximation theorems for Hilbert spaces [45, Section 1.5]. We state this in the form

of a corollary.

Corollary 3.7 (Minimum-Norm Solution). Given an arbitrary source f ∈ L2(Ω) there exist

unique decomposition f = fN + fP with fN ∈ N(Ω, k) and fP ∈ N(Ω, k)⊥, such that fP is

the minimum-norm solution to the inverse source problem associated with f .

Proof. From the orthogonal decomposition (3.1) we obtain f = fN + fP with fN ∈ N(Ω, k)

and fP ∈ N(Ω, k)⊥. Now notice that all solutions to the inverse problem associated with f

have the form h = fP + g for g ∈ N(Ω, k) and from the orthogonal decomposition we have

that ‖h‖2 = ‖fP‖
2 + ‖g‖2. So the norm of h is minimized when g = 0, that is fP is the

minimum-norm solution of the inverse problem.

3.2 Multi-Frequency Uniqueness

In this section we study the establishment of uniqueness for the Inverse Source Problem 3.1

when measurements of the wave field uk on the surface Γ are considered for many frequencies

k ∈ K. The goal is to prove that the unknown source f can be identified uniquely if K is

any open interval of the positive real line.

Recall the variational Direct Problem 2.3 satisfied by the wave field uk ∈ H1(Ω) associated

with the unknown source f ∈ L2(Ω),

〈∇uk,∇v〉L2(Ω) − k2〈uk, v〉L2(Ω) − 〈MTuk, T v〉L2(Γ) = 〈f, v〉L2(Ω) for all v ∈ H1(Ω).

We may choose v = vk to be plane waves of the form vk = eikx̂·z, traveling in the direction

x̂ ∈ S
2 with frequency k > 0. The expression above then renders the Fourier transform Ff
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of the unknown function f . After integration by parts to pass the all of the derivatives onto

the function vk, we obtain,

(Ff)(kx̂) = (2π)−3/2
(

〈Tuk, Dνvk〉L2(Γ) − 〈MTuk, T vk〉L2(Γ)

)

, kx̂ ∈ R
3. (3.3)

This last expression gives rise to a reconstruction algorithm based on the inverse Fourier

transform as described in Chapter 4. Another useful choice for the functions vk ∈ H1(Ω)

is the set of Dirichlet eigenfunctions of the Laplacian in the region Ω or any other domain

containing Ω. Then, the expression (3.10) yields the Fourier coefficients of the unknown

source f . This is the foundation of the reconstruction algorithm devised in [49].

We are now ready to prove the uniqueness result.

Theorem 3.8 (Uniqueness). Let K ⊂ R+ be an open interval. Suppose that f (1), f (2) ∈ L2(Ω)

are two sources such that their radiated waves (solutions of the Direct Problem 2.3) coincide

on the surface Γ for all frequencies k ∈ K. Then f (1) = f (2).

Proof. Let u
(1)
k and u

(2)
k be the wave fields radiated at frequencies k ∈ K by f (1) and f (2),

respectively. Set f = f (1) − f (2) and u = u
(1)
k − u

(2)
k , and notice that by the linearity of the

Helmholtz equation, then uk is the solution of the Direct Problem 2.3 for the source f . The

goal is to show that f = 0. Since the wave fields u
(1)
k and u

(2)
k coincide on the surface Γ, then

we have that Tuk = 0 for all k ∈ K. Now, from the identity (3.3) we obtain that the Fourier

transform (Ff)(kx̂) = 0 for all k ∈ K and all x̂ ∈ S
2. It is known by the Paley-Wiener

theorem [70, Section 2.8] that the Fourier transform of a function with compact support is

analytic. Since Ff vanishes in the open region (S2 × K) ⊂ R
3, then it vanishes identically

in all of R
3. By simply applying the inverse Fourier transform to (3.3) we obtain that f = 0

as desired.

21



3.3 Variational Characterization of the Unknown Source

We now turn to the characterization of the set N(Ω, k)⊥. The approach follows Albanese

and Monk [37]. For that reason, we define a variational problem whose solutions will be

shown to be dense in N(Ω, k)⊥. This new problem will be called adjoint to the original

Direct Problem 2.3.

Problem 3.9 (Adjoint Problem). Given boundary data η ∈ L2(Γ), find a function ψ ∈

H1(Ω) satisfying

A(ψ, φ) = 〈η, Tφ〉L2(Ω), for all φ ∈ H1(Ω), (3.4)

where the sesquilinear form A : H1(Ω) ×H1(Ω) → C is defined as follows,

A(ψ, φ) = 〈∇ψ,∇φ〉L2(Ω) − k2〈ψ, φ〉L2(Ω) − 〈M∗Tψ, Tφ〉L2(Γ). (3.5)

Here T is the trace operator from Theorem B.1, and M∗ : H1/2(Γ) → H−1/2(Γ) denotes

the adjoint of the Dirichlet-to-Neumann operator. Notice also that ψ would depend on the

frequency k, so we may write ψ = ψk.

Let us denote the set of solutions of the Adjoint Problem 3.9 by

P(Ω, k) =
{

ψ ∈ H1(Ω) a solution of Problem 3.9 for some η ∈ L2(Γ)

and fixed frequency k
}

, (3.6)

P (Ω, k) = P(Ω, k) (closure in the L2(Ω)-norm). (3.7)

In order for P(Ω, k) to be well-defined it is necessary to show that the Adjoint Problem 3.9

is well-posed. This we do in the form of a lemma.

Lemma 3.10. The Adjoint Problem 3.9 is well-posed.
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Proof. The well-posedness of the Adjoint Problem 3.9 can be proven in a completely analo-

gous way to the proof of the well-posedness of Problem 2.3. In fact, Lemma 2.4 provides the

key step to prove uniqueness since M and M∗ satisfy the same crucial property (see Theorem

2.8 for proof of uniqueness). Then from the Riesz-Fredholm Theorem A.5 we obtain that for

each element η ∈ L2(Γ) there exists a unique function ψ ∈ H1(Ω) that satisfies the Adjoint

Problem 3.9. Hence P(Ω, k) is a well-defined set.

As done in [37] for Maxwell’s equations, the Adjoint Problem 3.9 can be used to obtain

a variational characterization of the unknown source f . This is done by developing a link

between f and the boundary measurements Tuk on the surface Γ. Let ψk ∈ H1(Ω) be a

solution to the Adjoint Problem 3.9 for some η ∈ L2(Γ). Then

A(ψk, φ) = 〈η, Tφ〉L2(Γ), for all φ ∈ H1(Ω), (3.8)

Denote by uk ∈ H1(Ω), the solution to the original Direct Problem 2.3 for the unknown

source f . Then we also have,

B(uk, v) = 〈f, v〉L2(Ω), for all v ∈ H1(Ω). (3.9)

Now, we let φ = uk and v = ψk, and the combination of (3.8) and (3.9) renders,

〈f, ψk〉L2(Ω) = 〈Tuk, η〉L2(Γ), for all ψk ∈ P(Ω, k). (3.10)

The above variational characterization of the unknown source f can be employed to obtain

the projection of f on the space P (Ω, k). This is important as we shall show that P (Ω, k)

is in fact the set of all purely-radiating sources. In other words, expression (3.10) may be

used to compute the minimum-norm solution of the inverse source problem as asserted by

Corollary 3.7.

The definition of the set P (Ω, k) as a closed subspace of L2(Ω) allows us to establish
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another orthogonal decomposition

L2(Ω) = P (Ω, k) ⊕ P (Ω, k)⊥. (3.11)

Now we proceed to characterize the space N(Ω, k)⊥ by proving that N(Ω, k)⊥ = P (Ω, k) or

equivalently that N(Ω, k) = P (Ω, k)⊥

Theorem 3.11. A function f ∈ L2(Ω) belongs to P (Ω, k)⊥ if and only if it belongs to

N(Ω, k).

Proof. Let f ∈ L2(Ω) be arbitrary. The proof relies on the variational characterization (3.10)

where u ∈ H1(Ω) is the unique solution to the Direct Problem 2.3.

Now assume that f ∈ P (Ω, k)⊥. In (3.10) let η = Tuk ∈ H1/2(Γ) ⊂ L2(Γ) and ψk ∈

P(Ω, k) be the associated solution of the Adjoint Problem 3.9. Then it follows that Tuk = 0

which means that f ∈ N(Ω, k). Conversely, if f ∈ N(Ω, k) then Tuk = 0 by definition. It

follows from (3.10) that 〈f, ψk〉L2(Ω) = 0 for all ψk ∈ P(Ω, k). Hence f ∈ P (Ω, k)⊥ since

P(Ω, k) is dense in P (Ω, k).

In summary, we conclude from Theorem 3.11 that the orthogonal decompositions (3.1)

and (3.11) are the same because N(Ω, k) = P (Ω, k)⊥ and P (Ω, k) = N(Ω, k)⊥. In addition,

the variational characterization (3.10) can be employed to obtain the projection of the un-

known source f on the space P (Ω, k) and this projection coincides with the minimum-norm

solution of the inverse source problem.

Finally, we wish to mention that the Adjoint Problem 3.9 is just the variational formu-

lation of the following boundary value problem,

∆ψ + k2ψ = 0 in Ω,

∂ψ

∂ν
−M∗ψ = η on Γ.

This means that purely-radiating sources for the Helmholtz equation are themselves (ap-
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proximate) weak solutions to the Helmholtz equation. This is the subject of several papers

[37, 44, 51, 52].
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Chapter 4. Reconstruction Algorithm

I owe a lot to my engineering training because it taught me to tolerate approx-
imations. Previously to that I thought ... one should just concentrate on exact
equations all the time.

P.A.M. Dirac

In this chapter we develop a simple algorithm to obtain an approximate reconstruction

of the source f . The algorithm is based on the Fourier transform with incomplete data. As

more data is available with higher frequency content, then the algorithm is shown to render

a convergent reconstruction of the true source f . Furthermore, if f is assumed to belong to

a Sobolev space Hs(R3) for some s > 0, then the rate of convergence is estimated.

4.1 Reconstruction via Fourier Transform

The proof of uniqueness for Theorem 3.8 can be employed to develop an algorithm to solve

the Inverse Source Problem 3.1. We consider the problem where the traces Tuk are available

for frequencies k ∈ (0, K). This is the case in many applications where the frequency cannot

exceed a given threshold. The use of the relationship (3.3) translates into the knowledge of

the Fourier transform (Ff)(kx̂) for all x̂ ∈ S
2 and all k ∈ (0, K), that is,

(Ff)(kx̂) = (2π)−3/2

∫

Γ

[

u(y, k)
∂e−ikx̂·y

∂ν(y)
−Mu(y, k)e−ikx̂·y

]

dS(y). (4.1)

In order to obtain an approximation of the Fourier transform we would have to evaluate the

DtN map. Fortunately there are many efficient algorithms to evaluate the DtN map or good
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approximations of it called absorbing boundary conditions. See for instance [56, 57, 58, 59,

60, 61].

Now, if we had the availability of (Ff)(x) for all x ∈ R
3 then we would recover the

unknown source by simply applying the inverse Fourier transform, i.e.,

f = F−1Ff. (4.2)

However, in practice we only know (Ff)(x) for |x| < K. In other words, we have knowledge of

the function χB(K)Ff , where χB(K) is the characteristic function of the open ball B(K) ⊂ R
3

with center at the origin and radius K. A natural and simple algorithm is to define an

approximate reconstructed source fK as follows,

fK = F−1
(

χB(K)Ff
)

. (4.3)

Hence, the reconstruction algorithm is simply an incomplete inverse Fourier transform.

4.2 Multi-Frequency Stability

The goal of this section is to obtain an error bound for the source reconstruction algorithm

described in Section 4.1. The expression (4.3) renders an approximate reconstructed source

given by fK = F−1
(

χB(K)Ff
)

. Notice that we cannot guarantee fK to have its support

within Ω. The idea is to estimate the error of the reconstruction in the L2(R3)-norm. We

have the following error bound under certain regularity assumptions on the true source f . At

the same time, we would like to determine the influence of noise or error in the measurements.

Hence, we define the recovered source as

fK,ε = F−1
(

χB(K)Ff + ε
)

, (4.4)
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where ε ∈ L2(R3) represents the error in the measurements. We would like to show that fK,ε

approaches f as K → ∞ and ε→ 0. This we do in the form of a theorem.

Theorem 4.1. Let f and fK,ε be given by (4.2) and (4.4) respectively. In addition, assume

that f ∈ Hs(R3) for some s > 0. Then there exists a constant C such that

‖f − fK,ε‖L2(R3) ≤
C

1 +Ks
‖f‖Hs(R3) + ‖ε‖L2(R3). (4.5)

Proof. Consider the following estimates.

‖f − fK,ε‖L2(R3) = ‖F−1
(

Ff − χB(K)Ff − ε
)

‖L2(R3)

= ‖
(1 − χB(K))

(1 + |y|s)
(1 + |y|s)Ff − ε‖L2(R3)

≤ sup
y∈R3

{

(1 − χB(K))

(1 + |y|s)

}

‖(1 + |y|s)Ff‖L2(R3) + ‖ε‖L2(R3)

≤
C

1 +Ks
‖f‖Hs(R3) + ‖ε‖L2(R3).

Here we have used (4.2) and (4.4), the fact the the Fourier transform is unitary, and the

characterization of the Sobolev spaces Hs(R3) in terms of the Fourier transform as described

by Theorem A.8 in the Appendix.

We have established an error estimate under certain regularity assumptions on the source

function f . We conclude that multi-frequency data not only leads to uniqueness for the

inverse source problem, but in fact it contributes with a stability result for the reconstruction

of an unknown source.

4.3 Explicit Examples

In this short section we perform the reconstruction of specific sources using the method

described in Section 4.1. For simplicity, we only consider spherically symmetric sources for
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which the Fourier transform in R
3 reduces to

(Ff)(k) =
2

(2π)1/2

∫ ∞

0

f(r)
r sin(rk)

k
dr, 0 ≤ k.

4.3.1 Example 1. Here we set f = χB, the characteristic function of the open ball

B ⊂ R
3 with center at the origin and unit radius. We also choose Ω = B. A straightforward

calculation shows that

(Ff)(k) =
2

(2π)1/2

∫ ∞

0

f(r)
r sin(rk)

k
dr =

2

(2π)1/2

sin k − k cos k

k3
.

Now we apply an incomplete inverse Fourier transform to obtain the reconstructed source

fK as defined by (4.3) as follows,

fK(r) =
2

(2π)1/2

∫ K

0

(Ff)(k)
k sin(kr)

r
dk =

2

π

∫ K

0

(sin k − k cos k)

k2

sin(kr)

r
dk

=
1

π

(

S(K(r + 1)) − S(K(r − 1)) − 2 sinK
sin(Kr)

Kr

)

where S represents the sine-integral S(t) =
∫ t

0
sin s

s
ds. The comparison between the true

source and its reconstruction for various values of K is shown in Figure 4.1 (left).

4.3.2 Example 2. Here we choose the following source function

f(r) =











1 − r, r ≤ 1;

0, r > 1.

As opposed to the first example, here the source is continuous. The integration to obtain

the Fourier transform Ff and the reconstructed source fK is performed numerically using

Maple 13. The comparison between the true source and its reconstruction for various values

of K is shown in Figure 4.1 (right).
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Figure 4.1: Reconstructed sources for Example 1 (left) and Example 2 (right).

30



Appendix A. Functional Analytical Tools

We start this section by stating the Lax-Milgram theorem. The proof can be found in

[46, Theorem 13.26], [71, Proposition 1.2.41], [54, Lemma 2.32], [53, Theorem 5.8], and the

original paper by Lax and Milgram [72].

Theorem A.1 (Lax-Milgram). Let H be a Hilbert space and B : H ×H → C a bilinear (or

sesquilinear) form.

(i) If the bilinear form B is bounded (there is a constant c such that |B(u, v)| ≤ c‖u‖‖v‖

for all u, v ∈ H), then there is a bounded linear operator A : H → H such that ‖A‖ ≤ c

and B(u, v) = 〈Au, v〉 for all u, v ∈ H.

(ii) If in addition the bilinear form B is coercive (there is a positive constant d such that

d‖u‖2 ≤ B(u, u) for all u ∈ H), then A has a bounded inverse and ‖A−1‖ ≤ 1/d.

As we shall see later, the nature of the Helmholtz equation will yield a sesquilinear form

that is not coercive. Hence, we can only employ the first part of the Lax-Milgram theorem.

For a given bounded linear operator between Hilbert spaces, the existence of its adjoint

operator is guaranteed by the following result. For a proof see [45, Theorem 4.9].

Theorem A.2 (Adjoint Operator). Let X and Y be Hilbert spaces, and let A : X → Y be a

bounded linear operator. Then there exists a uniquely determined linear operator A∗ : Y → X

with the property 〈Au, v〉Y = 〈u,A∗v〉X for all u ∈ X and v ∈ Y . The operator A∗ is bounded

and ‖A∗‖ = ‖A‖.

Now we state a series of important theorem from functional analysis. We start with a

convergent sequence selection criterion for Hilbert spaces. This criterion allows us a select a

weakly convergent sequence whose point of convergence becomes the candidate solution for

many problems. A proof can be found in [71, Theorem 2.1.25], [53, Theorem 5.12], and [54,

Theorem 2.31]. For its generalization to a reflexive space see [73] or [74].
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Theorem A.3 (Weak Compactness). Let H be a Hilbert space. Every bounded sequence

contains a weakly convergent subsequence.

The following theorem concern the behavior of sequences under the image of bounded

and compact linear operators. Proofs can be found any book on functional analysis. See

[71, 45, 73, 74].

Theorem A.4. Let X and Y be normed linear spaces and A : X → Y be a bounded linear

operator. Then,

(i) If un ⇀ u then Aun ⇀ Au.

(ii) If un → u then Aun → Au.

(iii) If A is compact and un ⇀ u then Aun → Au.

One of them most important tools in proving the well-posedness of variational linear

problems is the Riesz-Fredholm theory for operator equations of the second kind. The

proof to the theorem to be stated can be found in many textbooks under the subject of

the Fredholm alternative or the Riesz-Schauder theory. We refer to [45, Chapters 3-4], [74,

Chapter 5], and [71, Chapter 2].

Theorem A.5 (Riesz-Fredholm). Let A : X → X be a compact linear operator on a normed

space X. Then I − A is injective if and only if it is surjective. If I − A is injective (and

therefore bijective), then the inverse operator (I − A)−1 : X → X is bounded.

Now we state the Sobolev embedding theorems for bounded open regions of R
n with

Lipschitz boundaries. The proofs can be found in [54, Chapter 3], [75, Chapter 6], [68,

Chapter 5], [69, Chapter 10], and [53, Chapter 7].

Theorem A.6 (Rellich-Kondrachov). Let Ω be a bounded open set in R
n with locally Lips-

chitz boundary, k ∈ N and p ∈ [1,∞).
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(i) If k < n/p and q ∈ [1, p∗) where p∗ = pn/(n − kp) known as the critical Sobolev

exponent. Then the embedding of W k,p(Ω) into Lq(Ω) is compact.

(ii) If k = n/p, then the embedding of W k,p(Ω) into Lq(Ω) is compact for all q ∈ [1,∞).

(iii) If k > n/p, then the embedding of W k,p(Ω) into C0,α(Ω) is compact for all 0 < α <

k − n/p.

This Sobolev embedding theorem also holds for Sobolev spacesW k,p(M) on other suitable

regions M . In particular it holds when M is a compact Riemannian manifold without

boundary or with a Lipschitz boundary [67].

The last tool that we include in this Appendix is the Fourier transform and its connection

with the Sobolev spaces Hs(Rn). The theorem following the below definition of the Fourier

transform is found in [68, Section 5.8.5].

Definition A.7. If f ∈ L1(Rn), we define the Fourier transform of f by

(Ff)(y) =
1

(2π)n/2

∫

Rn

e−ix·yf(x)dx, y ∈ R
n,

and its inverse Fourier transform by

(F−1f)(y) =
1

(2π)n/2

∫

Rn

eix·yf(x)dx, y ∈ R
n.

Using Plancherel’s theorem we find that the Fourier transform is densely defined in the space

L2(Rn).

Theorem A.8 (Characterization of Hs by Fourier transform). Let s > 0, then a function

f ∈ L2(Rn) belongs to Hs(Rn) if and only if (1 + |y|s)Ff belongs to L2(Rn). In addition,

there exists a constant C such that

1

C
‖f‖Hs(Rn) ≤ ‖(1 + |y|s)Ff‖L2(Rn) ≤ C‖f‖Hs(Rn), for each f ∈ Hs(Rn).
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Appendix B. Green’s Identities

In this section we simply state Green’s first, second, and third identities in the context of

Sobolev spaces for bounded domains with Lipschitz boundaries. These identities become

crucial in the proof of the well-posedness of the variational formulation for the Helmholtz

equation. The proofs for the first and second Green’s identities are found in [54, Lemma

4.1-4.2]. In order to introduce these identities in the proper setting we need to define the

trace and normal derivative operators [54, Chapter 3-4].

Theorem B.1 (Trace). Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary Γ. Define

the trace operator T : C∞(Ω) → C(Γ) by Tu = u|Γ. Then T has a unique extension to a

surjective bounded linear operator T : Hs(Ω) → Hs−1/2(Γ) for 1
2
< s ≤ 1.

Theorem B.2 (Normal Derivative). Let Ω ⊂ R
n be a bounded domain with Lipschitz bound-

ary Γ. Define the normal derivative operator Dν : C∞(Ω) → C(Γ) by Dνu = ∂νu|Γ, where

ν denotes the outward normal to Γ. Then Dν has a unique extension to a bounded linear

operator Dν : Hs+1(Ω) → Hs−1/2(Γ) for 1
2
< s ≤ 1.

Now we proceed to state Green’s first, second, and third identities.

Theorem B.3 (Green’s First Identity). Let Ω ⊂ R
n be a bounded domain with Lipschitz

boundary Γ, u ∈ H2(Ω) and v ∈ H1(Ω). Then

〈∆u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω) = 〈Dνu, Tv〉L2(Γ).

Theorem B.4 (Green’s Second Identity). Let Ω ⊂ R
n be a bounded domain with Lipschitz

boundary Γ, and u, v ∈ H2(Ω). Then

〈∆u, v〉L2(Ω) − 〈u,∆v〉L2(Ω) = 〈Dνu, Tv〉L2(Γ) − 〈Tu,Dνv〉L2(Γ).
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We also state Green’s third identity for the Helmholtz equation using its fundamental

solution G defined in (2.4). The proof can be found in [54, Theorem 6.10]. This identity can

be conveniently expressed in terms of the Green’s volume potential G given by

(Gu)(x) =

∫

Ω

G(x, y)u(y)dy, x ∈ Ω, u ∈ L2(Ω),

and the single- and double-layer surface potentials S and K given by

(Sw)(x) =

∫

Γ

G(x, y)w(y)dS(y), x ∈ Ω, w ∈ L2(Γ),

(Kw)(x) =

∫

Γ

∂G(x, y)

∂ν(y)
w(y)dS(y), x ∈ Ω, w ∈ L2(Γ).

Theorem B.5 (Green’s Third Identity). Let Ω ⊂ R
n be a bounded domain with Lipschitz

boundary Γ, and u ∈ H2(Ω). Then we have Green’s formula,

u = SDνu−KTu− G(∆u+ k2u).
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