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Abstract: Atmospheric carbon dioxide concentration (ACDC) is a crucial variable for many environmental simulation 
models, and is regarded as an important factor for predicting temperature and climate changes. However, the 
conditional variance of ACDC levels has not previously been examined. This paper analyses the trends and volatility in 
ACDC levels using monthly data from January 1965 to December 2002. The data are a subset of the well known Mauna 
Loa atmosphere carbon dioxide record obtained through the Carbon Dioxide Information Analysis Center. The 
conditional variance of ACDC levels is modelled using the generalised autoregressive conditional heteroscedasticity 
(GARCH) model and its asymmetric variations, namely the GJR and EGARCH models. These models are shown to be 
able to capture the dynamics in the conditional variance in ACDC levels and to improve the out-of-sample forecast 
accuracy of ACDC. 
 
Keywords: Atmospheric Carbon Dioxide Concentration, Conditional Volatility, Forecasting, GARCH, GJR, EGARCH. 
 
1. Introduction 
 
Atmospheric carbon dioxide concentration (ACDC) is a 
crucial variable for many environmental simulation 
models, and is regarded as an important factor for 
predicting temperature and climate changes (Glaser 
(2000)). Many studies in environmental modelling have 
focused on the application of ACDC as an indictor of 
the status of the environment (see, for example, Phillips 
et al. (1998)), while other studies have been interested 
in the impacts of rising ACDC on the ecological system 
(see, for example, Jones et al. (1998)). However, these 
studies have seldom modelled the level of ACDC 
directly, while the conditional variance of ACDC has 
not previously been investigated. Although there are 
mathematical models that are designed to estimate the 
level of ACDC based on Carbon Dioxide (CO2) 
emissions from the environment (Phillips et al. (1998)), 
these simulation models are often complicated and 
computationally intensive. Moreover, they do not 
generally provide a simple description of the dynamics 
in the level of ACDC, and it is difficult to evaluate their 
forecast performance.  
 
This paper investigates the trends and volatility in 
ACDC levels using the well known Mauno Lao data set. 
There are two motivations for modelling the conditional 
variance of ACDC. First, modelling the conditional 
variance of ACDC would allow a more accurate 
confidence interval to be constructed for the one-period 
ahead forecast. Consider the general regression model 
given by  
 

yt = E(yt | xt ) + εt , 

 
for which the variance of the forecast error, ( ˆ y T − yT ), is 
given by 
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where the variance of the innovation, σ 2, is typically 
assumed to be constant. However, if σ 2 is time varying, 
the forecast variance can be reduced by accommodating 
the conditional variance of the time series to permit a 
more accurate confidence interval to be constructed for 
the one-period ahead forecast.  
 
The second motivation for modelling the conditional 
variance of ACDC is related to the pricing of carbon 
dioxide emission quotas. In financial markets, the risk 
associated with a stock return is typically measured by 
its (possibly time-varying) volatility. Therefore, the 
volatility of ACDC should be an important indicator of 
the risk in selling or buying emission rights, and would 
also be an important factor in determining the market 
value of such quotas. Further details of emissions 
trading can be found at http://www.ieta.org.  
 
Modelling the conditional variance, or volatility, of a 
time series has been a popular topic in the financial 
econometrics literature. Three of the most popular 
models to capture the time-varying volatility in financial 
time series are the Generalised Autoregressive 
Conditional Heteroscedasticity (GARCH) model of 
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Engle (1982) and Bollerslev (1986), the Glosten, 
Jagannathan and Runkle (1992) GJR model, and 
Nelson’s (1991) Exponential GARCH (EGARCH) 
model. This paper examines the dynamics of the 
conditional variance in the level of ACDC using the 
GARCH, GJR and EGARCH models. The forecast 
performance of each model will also be investigated, 
and the standard errors of the one-day ahead forecasts 
arising from each model compared.  
 
The plan of the paper is as follows. Section 2 describes 
the data used. The structural and statistical properties of 
the three conditional variance models, namely GARCH, 
GJR and EGARCH, are given in Section 3. The 
empirical results are presented in Section 4, and Section 
5 contains some concluding remarks.  
 
2. Data 
 
The level of ACDC has been closely monitored and 
documented for over 30 years. The data used in this 
paper are a subset of the famous Mauna Loa monthly 
data set, which can be downloaded from 
http://cdiac.esd.ornl.gov/trends/co2/sio-mlo.htm. The 
scientific details regarding the measurement of the 
ACDC level can be found in Keeling, Bacastow and 
Whorf (1982). Due to missing observations in 1958 and 
1964, only the data from January 1965 to December 
2002 are used in this paper, giving a total of 456 
observations.  
 
Figure 1 contains the plots of ACDC levels from 
January 1965 to December 2002. The data exhibit 
cyclical patterns around a time trend. Furthermore, the 
autocorrelation function of ACDC suggests that it is 
highly correlated with its past and is highly persistent, 
as shown in Table 1. The high first-order 
autocorrelation coefficient might suggest that the series 
are non-stationary, but the Phillips-Perron (1988) (PP) 
test for non-stationarity shows that the ACDC level is 
trend stationary. Using the EViews 4 econometric 
software package with a wide range of lags, the choice 
of the truncated lag order did not seem to affect the test 
results. The motivation for using the PP test over the 
conventional Augmented Dickey-Fuller (ADF) test is to 
accommodate the possible presence of ARCH/GARCH 
errors. While the ADF test accommodates serial 
correlation by specifying explicitly the structure of 
serial correlation in the errors, the PP test does not 
assume the specific type of serial correlation or 
heteroscedasticity in the disturbances, and can have 
higher power than the ADF test under a wide range of 
circumstances.  
 

The sample volatility, tv , of a time series, ty , with a 

non-constant conditional mean is typically calculated as 
follows:  
 

          vt = (yt − E(yt | ℑt −1))
2 = ε t

2,              (1) 
 

where tℑ  denotes the information set available to time 

t. Since the level of ACDC exhibited cyclical patterns, a 
time trend, and strong autocorrelation, it is reasonable to 
specify the conditional mean to be  
 

       E(yt |ℑ t−1) = φ0yt−1 + φ1t + θ'Dt           (2) 
where )',...,,( 1221 θθθθ =  and Dt = (D1,D2,...,D12)' is the 

vector of seasonal dummy variables, such that 1=iD  in 

month i, otherwise 0=iD , 12,...,1=∀i . The plot of the 

volatility of ACDC can be found in Figure 2.  
 

Table 1: Autocorrelation of the ACDC level. 
 

Lag Autocorrelation 

1 0.991 
2 0.978 
3 0.964 
4 0.952 
5 0.942 
6 0.934 
7 0.929 
8 0.926 
9 0.925 
10 0.926 
11 0.926 
12 0.922 

 
 
Figure 1. Atmospheric Carbon Dioxide Concentration, 

January 1965 – December 2002 
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The descriptive statistics of the level,yt , the estimated 
residuals from (1), εt , and the volatility, vt , of ACDC 
are given in Table 2. 
 
As shown in Figure 1 and Table 2, the level of ACDC 
grew steadily over the last 35 years. The descriptive 
statistics of the estimated residuals, as given in 
equations (1) and (2), indicate that the error term, εt , is 



 3 

normally distributed. In fact, the Lagrange multiplier 
test for normality, LM(N), is 1.446 with a p-value 
0.485, suggesting that normality cannot be rejected. The 
p-values of both the F and LM test statistics for the null 
hypothesis of no ARCH effects with one lag are 0.001, 
suggesting that the null hypothesis can be rejected at the 
1% level of significance. Therefore, there is 
considerable evidence to suggest that the conditional 
variance of ACDC is not constant over time, so that 
conditional volatility models would seem to be an 
appropriate choice for capturing the time-varying 
volatility in the level of ACDC.  
 

Figure 2. Volatility of Atmospheric Carbon Dioxide 
Concentration, 

January 1965 – December 2002 
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Table 2. Descriptive statistics of the level, estimated 

residuals and volatility of ACDC 
  

 Statistics yt  εt  vt  

Mean 344.5 0.000 0.085 
Median 343.5 -0.005 0.033 

Maximum 375.6 0.801 0.76 
Minimum 317.3 -0.872 0 

SD 16.00 0.292 0.125 
Skewness 0.147 0.117 2.353 
Kurtosis 1.809 3.148 9.054 

 
 
3. Models Specifications 
 
The primary empirical purpose of the paper is to model 
the volatility in the level of ACDC. This approach is 
based on Engle’s (1982) idea of capturing time-varying 
volatility (or uncertainty) using the autoregressive 
conditional heteroskedasticity (ARCH) model, and 
subsequent developments forming the ARCH family of 
models (see, for example, the recent survey by Li, Ling 
and McAleer (2002)). Of these models, the most 
popular has been the symmetric generalised ARCH 
(GARCH) model of Bollerslev (1986) and the 

asymmetric Glosten, Jagannathan and Runkle (1992) 
(GJR) model, especially for the analysis of financial 
data. A number of further theoretical developments has 
been suggested by Wong and Li (1997) and Ling and 
McAleer (2002a, 2002b, 2003). 
 
Consider a GARCH(p,q) model for the level of ACDC, 

ty :   

 
yt = E(yt | ℑt −1)+ε t ,             (3) 

 
where ℑ t  denotes the information set available to time 
t, and the shocks (or variations in the level of ACDC) 
are given by 
 

εt = ηt ht , ηt ~ iid(0,1)

ht = ω + α iεt− i
2

i=1

p

∑ + β iht− i

i=1

q

∑ ,
           (4) 

 
and 0,0 ≥> iαω  (i = 1,…,p) and 0≥iβ  (i = 1,…,q) 

are sufficient conditions to ensure that the conditional 
variance .0>th  The ARCH (or α ) effect captures the 

short run persistence of shocks, while the GARCH (or 
β ) effect captures the contribution of shocks to long 

run persistence (namely, βα +  for  p=q=1). Using 

results from Ling and Li (1997) and Ling and McAleer 
(2002a, 2002b) (see also Bollerslev (1986) and Nelson 
(1990)), the necessary and sufficient condition for the 

existence of the second moment of tε , or E(εt
2) < ∞ , 

for GARCH(1,1) is 1<+ βα .  

 
Equation (2) assumes that a positive shock (εt > 0) has 
the same impact on the conditional variance, ht , as a 
negative shock (εt < 0), but this assumption is often 
violated in practice. In order to accommodate the 
possible differential impact on the conditional variance 
between positive and negative shocks, Glosten, 
Jagannathan and Runkle (1992) proposed the following 
asymmetric GJR specification for ht : 
 

ht = ω + (α i + γ i I(εt− i ))εt− i
2

i=1

p

∑ + βht− i

i=1

q

∑ ,      (5) 

 
where I(εt )  is an indicator function such that  
 

I(εt ) =
0, εt ≥ 0

1, εt < 0.

� 
	 

 

 

 
When 0=β , GJR(1,1) is called the asymmetric 

ARCH(1), or AARCH(1), model. Furthermore, for 
GJR(1,1), 0,0 >+> γαω  and 0>β  are sufficient 

conditions to ensure that the conditional variance 
.0>th  The short run persistence of positive (negative) 
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shocks is given by α  (α + γ ). Under the assumption 
that the conditional shocks, ηt

, follow a symmetric 

distribution, the average short run persistence is α + γ
2

, 

and the contribution of shocks to average long run 

persistence is α + γ
2

+ β . Ling and McAleer (2002a) 

showed that the necessary and sufficient condition for 

E(εt
2) < ∞   is α + γ

2
+ β <1.  

 
The parameters in equations (1), (2) and (3) are 
typically estimated by the maximum likelihood method 
to obtain Quasi-Maximum Likelihood Estimators 

(QMLE) in the absence of normality of tη . The 

conditional log-likelihood function is given as follows: 
 

∑∑ ��
�

�
��
�

�
+−=

t t

t
t

t
t h

hl
2

log
2

1 ε . 

 
Ling and McAleer (2003) showed that the QMLE for 
GARCH(p,q) is consistent if the second moment is 

finite, that is, ∞<)( 2
tE ε . Furthermore, Jeantheau 

(1998) showed that, when ,0≠β  the following log-

moment condition  
 

         E(log(αηt
2 + β)) < 0             (6) 

 
is sufficient for the QMLE to be consistent for 
GARCH(1,1), while Boussama (2000) showed that the 
QMLE is asymptotically normal for GARCH(1,1) under 
the same condition. It is important to note that (6) is a 
weaker condition than the second moment condition, 
namely α + β <1. However, the log-moment condition 
is more difficult to compute in practice as it is the 
expected value of a function of an unknown random 
variable and unknown parameters.  
 
McAleer, Chan and Marinova (2002) established the 
log-moment condition for GJR(1,1) when ,0≠β  

namely 
 

E(log((α + γ I (ηt ))ηt
2 + β)) < 0,             (7) 

 
and showed that it is sufficient for the consistency and 
asymptotic normality of the QMLE for GJR(1,1). 
Furthermore, using Jensen’s inequality, they showed 

that the second moment condition, namely α + γ
2

+ β <1, 

is also a sufficient condition for consistency and 
asymptotic normality of the QMLE for GJR(1,1). 
Therefore, the structural and statistical properties of 
both GARCH(1,1) and GJR(1,1) have been established 
(see Chan, Hoti and McAleer (2002) for the structural 
and statistical properties of the multivariate GJR(p,q) 
model).  

 
An alternative model to capture asymmetric behaviour 
in the conditional variance is the Exponential GARCH 
(EGARCH(1,1)) model of Nelson (1991), namely:  
 
  

111 log||log −−− +++= tttt hh βγηηαω , 1|| <β .       (8) 

 
When β = 0, EGARCH(1,1) becomes EARCH(1). 
There are some distinct differences between EGARCH 
and the previous two GARCH models, as follows: (i) 
EGARCH is a model of the logarithm of the conditional 
variance, which implies that no restrictions on the 
parameters are required to ensure 0>th ; (ii) Nelson 

(1991) showed that 1|| <β  ensures stationarity and 

ergodicity for EGARCH(1,1); (iii) Shephard (1996) 
observed that 1|| <β  is likely to be a sufficient 

condition for consistency of QMLE for EGARCH(1,1); 
(iv) as the conditional (or standardized) shocks appear 
in equation (4), McAleer et al. (2002) observed that is 
likely 1|| <β  is a sufficient condition for the existence 

of all moments, and hence also sufficient for asymptotic 
normality of the QMLE of EGARCH(1,1).  
 
Furthermore, EGARCH captures asymmetries 
differently from GJR. The parameters α  and γ  in 
EGARCH(1,1) represent the magnitude (or size) and 
sign effects of the conditional (or standardized) shocks, 
respectively, on the conditional variance. However, α  
and γα +  represent the effects of positive and 

negative shocks, respectively, on the conditional 
variance in GJR(1,1).  
 
As GARCH is nested within GJR, a standard asymptotic 
test of 0:0 =γH  can be used to test the two models 

against each other. However, as EGARCH is non-nested 
with regard to both GARCH and GJR, the non-nested 
models are not directly comparable. Ling and McAleer 
(2000) proposed a simple non-nested test to 
discriminate between GARCH and EGARCH. Denoting 
GARCH as the null hypothesis and EGARCH as the 
alternative, the optimal test statistic for 0: =δGARCHH  

is given by:  
 

tttt ghwh ˆ1
2

1 δβαε +++= −−             (9) 

 

where tĝ  is the generated one-period ahead conditional 

variance of EGARCH. For the reverse case, that is, 
denoting EGARCH as the null hypothesis and GARCH 
as the alternative, the optimal test statistic for 

0: =δEGARCHH  is given by:  

 
       

ttttt hgwg ˆloglog||log 111 δβγηηα ++++= −−−        (10) 

 

where tĥ  is the generated one-period ahead conditional 

variance of GARCH. Ling and McAleer (2000) showed 
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that the QMLE of δ in both (9) and (10) are 
asymptotically normal under the respective null 
hypotheses, and consistent under the respective 
alternative hypotheses. They also derived the power 
functions of both test statistics under the respective 
hypotheses.  A similar non-nested test for testing GJR 
and EGARCH against each other was derived in 
McAleer et al. (2002).  
 
4. Empirical Results 
 
4.1 Full Sample Estimates  
 
The parameter estimates and their Bollerslev-
Wooldridge (1992) robust t-ratios of the ARCH(1), 
AARCH(1), EARCH(1), GARCH(1,1), GJR(1,1) and 
EGARCH(1,1) models, with conditional means as 
defined in (2), are available on request. These estimates 
were obtained from EViews 4.0 using the BHHH 
algorithm.  
 
The parameter estimates in the conditional mean are not 
particularly sensitive to the specification of the 
conditional variance equation, which is due to the 
block-diagonality of the Hessian matrix of the log-
likelihood function. Moreover, the log-moment 
conditions are satisfied for both GARCH(1,1) and 
GJR(1,1), and the second moment conditions are 
satisfied for the ARCH(1) and AARCH(1) models, 
thereby indicating that the QMLE are consistent and 
asymptotically normal for each of these models. 
Furthermore, ˆ β  < 1 for EGARCH, and it is not 
significant in the other two cases, suggesting the 
absence of long run persistence. Interestingly, γ  is not 
significant in either AARCH(1) or GJR(1,1), but it is 
significant in both EARCH(1) and GARCH(1,1), 
indicating the presence of asymmetric behaviour. Based 
on the significance of the parameter estimates, 
ARCH(1) and EARCH(1) are empirically superior to 
the other four specifications. Subsequently, non-nested 
tests based on (9) and (10), with β  = 0 in both 

equations, are conducted in order to choose between the 
two remaining adequate specifications. The test 
statistics are given in Table 3.  
 
As shown in Table 3, the test statistic rejects ARCH(1) 
in favour of EARCH(1) at the 10% level of significance, 
but does not reject EARCH(1) in favour of ARCH(1) at 
any reasonable significance level.  
 

Table 3. Non-nested Tests between ARCH(1) and 
EARCH(1) 

 

Null 0H  

Alternative 1H  EARCH(1):

ARCH(1):

1

0

H

H  
ARCH(1):

 EARCH(1):

1

0

H

H  

Test Statistics 1.764 0.180 
 
 
4.2 Forecasting 

 
This section examines the forecast performance and 
forecast variance for the model as defined in equation 
(2), with three different conditional variance 
specifications, namely the constant conditional variance, 
ARCH(1) and EARCH(1). The three models are re-
estimated using the sub-sample from January 1965 to 
December 2001, and the out-of-sample one-period 
ahead forecast of ACDC is calculated for January 2002 
to December 2002. Three standard forecast criteria, 
namely root mean square error (RMSE), mean absolute 
error (MAE) and mean absolute percentage error 
(MAPE), for each model are reported in Table 4. 
 

Table 4. Forecast Performance of Three Conditional 
Variance Specifications 

 

Performance  
criteria 

Constant 
conditional 

variance 
ARCH(1) EARCH(1) 

RMSE 0.701 0.680 0.458 
MAE 0.517 0.504 0.377 
MAPE 0.138 0.135 0.101 

 
As shown in Table 4, EARCH(1) has the best forecast 
performance based on the three forecast criteria. More 
importantly, allowing dynamic conditional variances 
improves the accuracy of the parameter estimates and 
also the out-of-sample forecasts. Table 5 gives the 
standard errors of the one-period ahead forecasts for 
each month from the three models.   
 

Table 5. Standard Errors of the One-Period Ahead 
Forecasts for Three Volatility Models 

 
Month Constant ARCH(1) EARCH(1) 
January 0.298 0.299 0.280 
February 0.413 0.412 0.397 
March 0.496 0.493 0.480 
April 0.561 0.558 0.546 
May 0.615 0.611 0.600 
June 0.661 0.657 0.647 
July 0.701 0.696 0.687 

August 0.735 0.731 0.722 
September 0.766 0.761 0.753 
October 0.793 0.789 0.781 

November 0.817 0.813 0.806 
December 0.838 0.836 0.828 

 
 
Apart from having the best forecast performance, the 
one-day ahead forecasts produced by EARCH(1) also 
have the smallest standard errors, as shown in Table 5. 
This suggests that the one-day ahead forecast produced 
by EARCH(1) will have the smallest confident 
intervals, indicating EARCH(1) is superior in terms of 
forecasting accuracy for the levels of ACDC. Moreover, 
the standard errors of the one-day ahead forecasts 
produced by ARCH(1) are smaller than those from the 
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constant conditional variance model for eleven of 
twelve months. These results show that the accuracy in 
forecasting ACDC levels can be improved substantially 
by accommodating time-varying conditional variance in 
modelling ACDC.  
5. Concluding Remarks 
 
This paper examined the trends and volatility in the 
level of ACDC. Six different specifications of the 
conditional variance, namely ARCH(1), AARCH(1), 
EARCH(1), GARCH(1,1), GJR(1,1) and 
EGARCH(1,1), have been estimated and tested against 
each other. The test statistics suggested that EARCH(1)  
was superior to the other five specifications, having the 
best out-of-sample forecast performance in terms of 
three different forecast criteria, namely root mean 
square error, mean absolute error and mean absolute 
percentage error. Moreover, the one-day ahead forecasts 
produced by EARCH(1) also had the smallest standard 
errors.   
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