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Analysing Trends and Volatility in Atmospheric Carbon
Dioxide Concentration L evels

Felix Chan? and Michael M cAleer®

8School of Economics and Commerce, University otéiegustralia Felix.Chan@uwa.edu.du
School of Economics and Commerce, University otatreéustralia

Abstract: Atmospheric carbon dioxide concentration (ACDCaisrucial variable for many environmental simulatio
models, and is regarded as an important factorpfedicting temperature and climate changes. Howether
conditional variance of ACDC levels has not pregiglbeen examined. This paper analyses the tramtisaatility in
ACDC levels using monthly data from January 196Béxember 2002. The data are a subset of the nellik Mauna
Loa atmosphere carbon dioxide record obtained tirothe Carbon Dioxide Information Analysis Cent&he
conditional variance of ACDC levels is modelledngsithe generalised autoregressive conditional bstedasticity
(GARCH) model and its asymmetric variations, nambl GJR and EGARCH models. These models are stme
able to capture the dynamics in the conditionalavere in ACDC levels and to improve the out-of-sémjorecast
accuracy of ACDC.

Keywords: AtmosphericCarbon Dioxide Concentration, Conditional VolayiliForecasting, GARCH, GJR, EGARCH.
1 Introduction

Atmospheric carbon dioxide concentration (ACDCais

crucial variable for many environmental simulation for which the variance of the forecast errgf, - vy, ), is

models, and is regarded as an important factor for given by
predicting temperature and climate changes (Glaser

(2000)). Many studies in environmental modellingda R 1 (% -%)?
P o Var(§; -y, | %) =01+ =+ 07X

focused on the application of ACDC as an indictbr o Yr =¥ 1% T |

the status of the environment (see, for exampldligzh ;(x[ —X)

et al. (1998)), while other studies have been ésted

in the impacts of rising ACDC on the ecologicaltsys
(see, for example, Jones et al. (1998)). HoweVversd
studies have seldom modelled the level of ACDC
directly, while the conditional variance of ACDCsha
not previously been investigated. Although there ar
mathematical models that are designed to estinhate t
level of ACDC based on Carbon Dioxide (CO2)
emissions from the environment (Phillips et al.989,
these simulation models are often complicated and
computationally intensive. Moreover, they do not
generally provide a simple description of the dyitam
in the level of ACDC, and it is difficult to evalteatheir
forecast performance.

where the variance of the innovatioa?, is typically
assumed to be constant. Howevergifis time varying,
the forecast variance can be reduced by accomnmgdati
the conditional variance of the time series to pedan
more accurate confidence interval to be construfided
the one-period ahead forecast.

The second motivation for modelling the conditional
variance of ACDC is related to the pricing of carbo
dioxide emission quotas. In financial markets, tisk
associated with a stock return is typically meadurg

its (possibly time-varying) volatility. Thereforethe
volatility of ACDC should be an important indicatof

the risk in selling or buying emission rights, amduld
also be an important factor in determining the raark
value of such quotas. Further details of emissions
trading can be found &ttp://www.ieta.org

This paper investigates the trends and volatility i
ACDC levels using the well known Mauno Lao data set
There are two motivations for modelling the coratitil
variance of ACDC. First, modelling the conditional
variance of ACDC would allow a more accurate
confidence interval to be constructed for the oageul
ahead forecast. Consider the general regressiorelmod
given by

Modelling the conditional variance, or volatilitpf a
time series has been a popular topic in the firmdnci
econometrics literature. Three of the most popular
models to capture the time-varying volatility indincial
time series are the Generalised Autoregressive
Yo =E(y %) +&, Conditional Heteroscedasticity (GARCH) model of



Engle (1982) and Bollerslev (1986), the Glosten,
Jagannathan and Runkle (1992) GJR model, and
Nelson’s (1991) Exponential GARCH (EGARCH)

model. This paper examines the dynamics of the
conditional variance in the level of ACDC using the
GARCH, GJR and EGARCH models. The forecast
performance of each model will also be investigated
and the standard errors of the one-day ahead f&iseca
arising from each model compared.

The plan of the paper is as follows. Section 2 diess
the data used. The structural and statistical ptiggeof
the three conditional variance models, namely GARCH
GJR and EGARCH, are given in Section 3. The
empirical results are presented in Section 4, aui@

5 contains some concluding remarks.

2. Data

The level of ACDC has been closely monitored and
documented for over 30 years. The data used in this
paper are a subset of the famous Mauna Loa monthly
data set, which can be downloaded from
http://cdiac.esd.ornl.gov/trends/co2/sio-mlo.htm The
scientific details regarding the measurement of the
ACDC level can be found in Keeling, Bacastow and
Whorf (1982). Due to missing observations in 1958 a
1964, only the data from January 1965 to December
2002 are used in this paper, giving a total of 456
observations.

Figure 1 contains the plots of ACDC levels from
January 1965 to December 2002. The data exhibit
cyclical patterns around a time trend. Furthermtme,
autocorrelation function of ACDC suggests thatsit i
highly correlated with its past and is highly pstsit,

as shown in Table 1. The high first-order
autocorrelation coefficient might suggest that ¢skees
are non-stationary, but the Phillips-Perron (19g3%)
test for non-stationarity shows that the ACDC leigel
trend stationary. Using the EViews 4 econometric
software package with a wide range of lags, theceho
of the truncated lag order did not seem to affeettest
results. The motivation for using the PP test ower
conventional Augmented Dickey-Fuller (ADF) testas
accommodate the possible presence of ARCH/GARCH
errors. While the ADF test accommodates serial
correlation by specifying explicitly the structuref
serial correlation in the errors, the PP test does
assume the specific type of serial correlation or
heteroscedasticity in the disturbances, and care hav
higher power than the ADF test under a wide rarfge o
circumstances.

The sample volatility,V, , of a time series)y,, with a

non-constant conditional mean is typically caloetbas
follows:

vy = (yt - E(yl | Dt—l))z = ‘EtZ’ (1)

where [J, denotes the information set available to time

t. Since the level of ACDC exhibited cyclical pattera
time trend, and strong autocorrelation, it is reasde to
specify the conditional mean to be

E(Y: |00 = goYer + 64t + 6D, @)
where 6= (911621""612)l and Dt = (DI,DZ,...,DH)' is the
vector of seasonal dummy variables, such that1 in
monthi, otherwiseD, =0, 0i =1,...12. The plot of the

volatility of ACDC can be found in Figure 2.

Table 1: Autocorrelation of the ACDC level.

Autocorrelation
0.991
0.978
0.964
0.952
0.942
0.934
0.929
0.926
0.925
0.926
0.926
0.922
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Figure 1. Atmospheric Carbon Dioxide Concentration,
January 1965 — December 2002
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The descriptive statistics of the lewl, the estimated
residuals from (1)&,, and the volatility,v,, of ACDC
are given in Table 2.

As shown in Figure 1 and Table 2, the level of ACDC
grew steadily over the last 35 years. The descriptive
statistics of the estimated residuals, as given in
equations (1) and (2), indicate that the error tefmjs



normally distributed. In fact, the Lagrange multiplier
test for normality, LM(N), is 1.446 with a p-value

asymmetric Glosten, Jagannathan and Runkle (1992)
(GJR) model, especially for the analysis of financial

0.485, suggesting that normality cannot be rejected. The data. A number of further theoretical developments has

p-values of both the F and LM test statistics for thé nul
hypothesis of no ARCH effects with one lag are 0.001,

suggesting that the null hypothesis can be rejected at the

1% level of significance. Therefore, there is

been suggested by Wong and Li (1997) and Ling and
McAleer (2002a, 2002b, 2003).

Consider a GARCH(p,q) model for the level of ACDC,

considerable evidence to suggest that the conditional y,:

variance of ACDC is not constant over time, so that
conditional volatility models would seem to be an
appropriate choice for capturing the time-varying
volatility in the level of ACDC.

Figure 2. Volatility of Atmospheric Carbon Dioxide
Concentration,
January 1965 — December 2002
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Table 2. Descriptive statistics of the level, estimated
residuals and volatility of ACDC

Statistics Vi & V,
Mean 3445 0.000 0.085
Median 3435 -0.005 0.033
Maximum 375.6 0.801 0.76
Minimum 317.3 -0.872 0
SD 16.00 0.292 0.125
Skewness 0.147 0.117 2.353
Kurtosis 1.809 3.148 9.054
3. M odels Specifications

The primary empirical purpose of the paper is to model
the volatility in the level of ACDC. This approach is

based on Engle’s (1982) idea of capturing time-varying
volatility (or uncertainty) using the autoregressive
conditional heteroskedasticity (ARCH) model, and
subsequent developments forming the ARCH family of
models (see, for example, the recent survey by Li, Ling
and McAleer (2002)). Of these models, the most
popular has been the symmetric generalised ARCH
(GARCH) model of Bollerslev (1986) and the

Y, = E(y, 10,,)+¢&, 3)

where [, denotes the information set available to time

t, and the shocks (or variations in the level of ACDC)
are given by

&=nnfh, 7 ~iid01)

p q (4)
h =w+ zaiﬁf-i + Zﬁ. h.;,

and « >0a,20 (i=1,...p)and 3 >0 (i =1,...0)

are sufficient conditions to ensure that the conditional
varianceh, > 0. The ARCH (ora) effect captures the
short run persistence of shocks, while the GARCH (or
[) effect captures the contribution of shocks to long
run persistence (namelyy + § for p=qg=1). Using
results from Ling and Li (1997) and Ling and McAleer
(2002a, 2002b) (see also Bollerslev (1986) and Nelson
(1990)), the necessary and sufficient condition for the
existence of the second moment &f, or E(&’) <,

for GARCH(1,1) isa + £ <1.

Equation (2) assumes that a positive shagk () has
the same impact on the conditional varianbg, as a
negative shock £ <0), but this assumption is often

violated in practice. In order to accommodate the
possible differential impact on the conditional variance
between positive and negative shocks, Glosten,
Jagannathan and Runkle (1992) proposed the following
asymmetric GJR specification fdr

h=w+ Y@+ ylE)E + D ©)

i=1 i=1

where | (&) is an indicator function such that

I(g)_{o, 20
Y7l g <o.

When p=0, GJR(1,1) is called the asymmetric
ARCH(1), or AARCH(1), model. Furthermore, for
GJR(1,1),«>0, a+y>0 and >0 are sufficient
conditions to ensure that the conditional variance
h, > 0. The short run persistence of positive (negative)



shocks is given by (a + )). Under the assumption
that the conditional shocksy,, follow a symmetric

distribution, the average short run persistencgi&y,
2

and the contribution of shocks to average long run

persistence isa+§+l[3. Ling and McAleer (2002a)

showed that the necessary and sufficient condition
E(&) <o is a+g+,8<1.

The parameters in equations (1), (2) and (3) are
typically estimated by the maximum likelihood meatho
to obtain Quasi-Maximum Likelihood Estimators
(QMLE) in the absence of normality ofy,. The

conditional log-likelihood function is given as lfmlvs:

2=~ )

t

Ling and McAleer (2003) showed that the QMLE for
GARCH(p,q) is consistent if the second moment is

finite, that is, E(£7) <o0. Furthermore, Jeantheau

(1998) showed that, wheg Z O, the following log-
moment condition

E(log(an; + ) <0 6)

is sufficient for the QMLE to be consistent for
GARCH(1,1), while Boussama (2000) showed that the
QMLE is asymptotically normal for GARCH(1,1) under
the same condition. It is important to note thatiga
weaker condition than the second moment condition,
namely @ + 5 <1. However, the log-moment condition
is more difficult to compute in practice as it iset
expected value of a function of an unknown random
variable and unknown parameters.

McAleer, Chan and Marinova (2002) established the
log-moment condition for GJR(1,1) wher3 Z O,
namely

Elog((a+ V(7)) + B)) <0, (@)
and showed that it is sufficient for the consisteaad
asymptotic normality of the QMLE for GJR(1,1).
Furthermore, using Jensen’s inequality, they showed
that the second moment condition, nam@lyl’+ﬁ<1,

2

is also a sufficient condition for consistency and
asymptotic normality of the QMLE for GJR(1,1).
Therefore, the structural and statistical propertod
both GARCH(1,1) and GJR(1,1) have been established
(see Chan, Hoti and McAleer (2002) for the struatur
and statistical properties of the multivariate GaRY
model).

An alternative model to capture asymmetric behaviou
in the conditional variance is the Exponential GARC
(EGARCH(1,1)) model of Nelson (1991), namely:

logh, =a +a | |+, + Blogh_, | BI<1. 8
When (=0, EGARCH(1,1) becomes EARCH(1).
There are some distinct differences between EGARCH
and the previous two GARCH models, as follows: (i)
EGARCH is a model of the logarithm of the conditibn

variance, which implies that no restrictions on the
parameters are required to enswie> 0; (i) Nelson

(1991) showed thai g |<1 ensures stationarity and
ergodicity for EGARCH(1,1); (iii) Shephard (1996)
observed that| g|<1 is likely to be a sufficient
condition for consistency of QMLE for EGARCH(1,1);
(iv) as the conditional (or standardized) shockpeap
in equation (4), McAleer et al. (2002) observedt tisa
likely | B |<1 is a sufficient condition for the existence

of all moments, and hence also sufficient for asrtip
normality of the QMLE of EGARCH(1,1).

Furthermore, @ EGARCH captures asymmetries
differently from GJR. The parameterg and ) in
EGARCH(1,1) represent the magnitude (or size) and
sign effects of the conditional (or standardizdw)cks,
respectively, on the conditional variance. Howe\er,
and a + ) represent the effects of positive and
negative shocks, respectively, on the conditional
variance in GJR(1,1).

As GARCH is nested within GJR, a standard asymptoti
test of H,:y =0 can be used to test the two models

against each other. However, as EGARCH is non-deste
with regard to both GARCH and GJR, the non-nested
models are not directly comparable. Ling and McAlee

(2000) proposed a simple non-nested test to
discriminate between GARCH and EGARCH. Denoting
GARCH as the null hypothesis and EGARCH as the
alternative, the optimal test statistic fer_,. ., :5=0

is given by:
h =w+ael, + i, + &, ()
where @[ is the generated one-period ahead conditional

variance of EGARCH. For the reverse case, that is,
denoting EGARCH as the null hypothesis and GARCH
as the alternative, the optimal test statistic for
-0 =0 is given by:

H EGARCH

logg, =w+al/p4 |4y, +Blogg., +dlody  (10)

Whereﬁt is the generated one-period ahead conditional
variance of GARCH. Ling and McAleer (2000) showed



that the QMLE of din both (9) and (10) are
asymptotically normal under the respective null
hypotheses, and consistent under the

alternative hypotheses. They also derived the power (2),

functions of both test statistics under the respect
hypotheses. A similar non-nested test for tes@I@R
and EGARCH against each other was derived in
McAleer et al. (2002).

4, Empirical Results

4.1 Full Sample Estimates

The parameter estimates and their Bollerslev-
Wooldridge (1992) robust t-ratios of the ARCH(1),
AARCH(1), EARCH(1), GARCH(1,1), GJR(1,1) and
EGARCH(1,1) models, with conditional means as
defined in (2), are available on request. Thesenasts
were obtained from EViews 4.0 using the BHHH
algorithm.

The parameter estimates in the conditional meamatre
particularly sensitive to the specification of the
conditional variance equation, which is due to the
block-diagonality of the Hessian matrix of the log-
likelihood function. Moreover, the log-moment
conditions are satisfied for both GARCH(1,1) and
GJR(1,1), and the second moment conditions are
satisfied for the ARCH(1) and AARCH(1) models,
thereby indicating that the QMLE are consistent and
asymptotically normal for each of these models.
Furthermore, 5 < 1 for EGARCH, and it is not

significant in the other two cases, suggesting the
absence of long run persistence. Interestingdys not
significant in either AARCH(1) or GJR(1,1), butig
significant in both EARCH(1) and GARCH(1,1),
indicating the presence of asymmetric behaviousela
on the significance of the parameter estimates,
ARCH(1) and EARCH(1) are empirically superior to
the other four specifications. Subsequently, nostete

tests based on (9) and (10), witf = 0 in both
equations, are conducted in order to choose bettieen

two remaining adequate specifications. The test
statistics are given in Table 3.

As shown in Table 3, the test statistic rejects ARD

in favour of EARCH(1) at the 10% level of signifiuze,
but does not reject EARCH(1) in favour of ARCH(1) a
any reasonable significance level.

Table 3. Non-nested Tests between ARCH(1) and

EARCH(1)

Null H, H, : ARCH(1) H, :EARCH(1)
Alternative H, H,:EARCH(1) | H,:ARCH(1)
Test Statistics 1.764 0.180

4.2 Forecasting

This section examines the forecast performance and

respective forecast variance for the model as defined in egoat

with  three different conditional variance
specifications, namely the constant conditionaiarere,
ARCH(1) and EARCH(1). The three models are re-
estimated using the sub-sample from January 1965 to
December 2001, and the out-of-sample one-period
ahead forecast of ACDC is calculated for Januag§220

to December 2002. Three standard forecast criteria,
namely root mean square error (RMSE), mean absolute
error (MAE) and mean absolute percentage error
(MAPE), for each model are reported in Table 4.

Table 4. Forecast Performance of Three Conditional
Variance Specifications

Performance Constant
o conditional ARCH(1) EARCH(1)
criteria .
variance
RMSE 0.701 0.680 0.458
MAE 0.517 0.504 0.377
MAPE 0.138 0.135 0.101

As shown in Table 4, EARCH(1) has the best forecast
performance based on the three forecast criter@eM
importantly, allowing dynamic conditional variances
improves the accuracy of the parameter estimatds an
also the out-of-sample forecasts. Table 5 gives the
standard errors of the one-period ahead forecasts f
each month from the three models.

Table 5. Standard Errors of the One-Period Ahead
Forecasts for Three Volatility Models

Month Constant ARCH(1) EARCH(1)
January 0.298 0.299 0.280
February 0.413 0.412 0.397
March 0.496 0.493 0.480
April 0.561 0.558 0.546
May 0.615 0.611 0.600
June 0.661 0.657 0.647
July 0.701 0.696 0.687
August 0.735 0.731 0.722
September 0.766 0.761 0.753
October 0.793 0.789 0.781
November| 0.817 0.813 0.806
December, 0.838 0.836 0.828

Apart from having the best forecast performance, th
one-day ahead forecasts produced by EARCH(1) also
have the smallest standard errors, as shown ineTabl
This suggests that the one-day ahead forecast geddu
by EARCH(1) will have the smallest confident
intervals, indicating EARCH(1) is superior in termé
forecasting accuracy for the levels of ACDC. Moregv

the standard errors of the one-day ahead forecasts
produced by ARCH(1) are smaller than those from the



constant conditional variance model for eleven of
twelve months. These results show that the accuracy
forecasting ACDC levels can be improved substdptial
by accommodating time-varying conditional variainte
modelling ACDC.

5. Concluding Remarks

This paper examined the trends and volatility ie th
level of ACDC. Six different specifications of the
conditional variance, namely ARCH(1), AARCH(1),
EARCH(1), GARCH(1,1), GJR(1,1) and

EGARCH(1,1), have been estimated and tested against

each other. The test statistics suggested that EXRIC
was superior to the other five specifications, hgwhe

best out-of-sample forecast performance in terms of

three different forecast criteria, namely root mean

square error, mean absolute error and mean absolute

percentage error. Moreover, the one-day aheaddstec

produced by EARCH(1) also had the smallest standard

errors.
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