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Abstract 

ABSTRACT 

 

ACOUSTICAL ANALYSIS OF HORN-LOADED COMPRESSION DRIVERS 

USING NUMERICAL TECHNIQUES 

 

Daniel R. Tengelsen 

Department of Physics and Astronomy 

Master of Science 

 

 

Two numerical techniques, the boundary-element method (BEM) and the finite-difference 

method (FDM), are used for simulating the radiation from horn-loaded compression drivers and 

from an infinitely-baffled, finite-length pipe. While computations of the horn-loaded 

compression driver are in steady state, transient analysis of the finite-length pipe is studied as a 

precursor to transient analysis within the horn-loaded compression driver. BEM numerical 

simulations show promise for the development of new designs. Numerical simulations serve as a 

good tool for time and cost-effective prototyping as poor designs are detected before they are 

built.  
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Chapter 1 

Introduction 

1.1 Background 

 A horn-loaded compression driver is a high-frequency sound reproduction device 

commonly used in professional audio systems. They are used for sound reinforcement in arenas, 

auditoria, large churches, outdoor concert venues, and in other large-scale audience applications. 

Typically, its purpose is to reproduce frequencies between around 1 kHz to 20 kHz (though 

sometimes spanning lower frequency ranges) with as much amplitude very high amplitude 

without sacrificing the fidelity of the signal to various forms of distortion.  

 The typical design process for horns and compression drivers involves a prototyping 

phase. During this part of the design process, a single version (prototype) of each type of several 

different new horns or compression drivers is created. Each prototype is rigorously compared 

with other prototypes and existing production designs through measurements of on-axis 
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frequency response and angular directivity. If the prototype improves upon existing designs, the 

prototype may become part of the next generation of products. Unfortunately, the design process 

for horns or compression drivers often includes guesswork and is sometimes not very scientific. 

This results in costly and time-consuming prototyping processes, which may be repeated several 

times until an appropriate design is discovered. 

 With the advent of sufficient computing power, numerical simulations are becoming an 

important tool in the scientific analysis of new designs. These simulations precede the 

prototyping phase and can help loudspeaker engineering companies by providing an efficient 

first step in the design process, eliminating poor prototypes before they are created physically 

and tested experimentally. 

 In general, the three most widely used numerical schemes for loudspeaker design are the 

boundary-element method (BEM), the finite-difference method (FDM), and the finite-element 

method (FEM). Each method has its advantages, which must be understood to select the most 

efficient scheme for the system under study. Boundary-element (BE) and finite-difference (FD) 

techniques are performed in this thesis, though much work employing the FEM has shown that it 

has merit as well in modeling compression drivers. 

1.2 Research Objectives 

 One goal of the work presented in this thesis is to study various aspects of the acoustics 

and vibration important to both the horn and compression driver using BE numerical methods. 

For horns, both the directivity and frequency response are compared for several existing designs. 

This process not only tested the abilities of the numerical method, but the comparative abilities 
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of the simulation results as well. For compression drivers, an existing design was compared to 

several different prototype designs. They provided comparative results to help determine which 

models best qualified for physical prototyping.  

 Another research objective was to better understand the transient nature of horn-loaded 

compression driver systems that are most often used to radiate signals that are inherently 

transient in nature themselves. Fundamental research in this area may help improve the sound-

reproduction abilities of the horn-loaded compression driver for both transient and steady-state 

signals. Because the commercial BEM package available for this research was only able to 

perform steady-state analysis, the FDM was used instead to lay the groundwork for possible 

future transient analysis. This thesis explored infinitely-baffled, finite-length pipes to better 

understand the importance of transient analysis in horns. Although general acoustical analysis of 

wave propagation in pipes is well researched, the numerical methods used for simulation are 

constantly being explored and improved upon. 

1.3 Outline 

 Chapter 2 provides a semiformal introduction to the numerical methods employed in this 

thesis, the BEM and the FDM. A very basic introduction to the FEM is also given. The chapter is 

intended to help the reader better understand the general concepts behind numerical methods and 

to be more informed on which numerical method performs best for a given problem. 

 Chapter 3 explores analytical and numerical groundwork for transient analysis. It uses the 

FDM to study transient signal wave propagation through an infinitely-baffled, finite-length pipe 

system. The pipe serves as a precursor to the possible transient analysis that could be performed 
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on horns or other problems where transient analysis may be beneficial. Pipes are used due to 

their prevalent use and analytically definable geometry. Future work may look at similar 

transient analysis of horns and may provide an exciting new area of research for the professional 

audio industry. The Appendix includes the MATLAB code used to generate the FD results 

presented in Ch. 3. 

 Chapter 4 provides analysis of several existing horns using the BEM. It explores a 

specific set of horns whose directivities have been measured experimentally. The numerical 

simulations are compared with experimental data to verify that the BE simulations produce 

reliable results. A BE study is then conducted in which the spatial profile of the input wavefront 

is altered on several different horns in an attempt to determine an optimal spatial profile desired 

for the exiting wavefront from the compression driver. Two horns are given as examples to 

summarize results from several horns. 

 Chapter 5 provides both vibrational and acoustical analysis of the compression driver. It 

contains an analysis of the mechanical vibrations of the driver diaphragm. Laser vibrometer 

scans of diaphragm vibrations are extracted experimentally, compared with analytically-derived 

natural modes for a spherical cap, and the analytical results are subsequently used in BE 

simulations. The chapter then analyzes a group of newly-designed compression drivers and 

performs a relative comparison among the different models to demonstrate the possible use of 

numerical packages to provide insight into prototype designs before they are constructed.  

 Chapter 6 provides general conclusions for the thesis. It also identifies future work that 

may be based on the ground work has been provided by this thesis. 

 It should be noted here that Chapters 2, 3, 4, and 5 will provide additional introduction 

and background specific to the subject matter discussed therein. 
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Chapter 2 

Numerical Techniques 

2.1 Background 

 This chapter is intended to provide the reader with a better understanding of the 

numerical schemes employed in this thesis. The three most widely used numerical schemes are 

the boundary-element method (BEM), the finite-difference method (FDM), and the finite-

element method (FEM). The BEM and FDM are both used in this thesis. This chapter will 

provide an in-depth explanation of the BEM and FDM, and an introduction to the FEM. Because 

boundary-element (BE) and finite-difference (FD) simulations are so different, the chapter also 

addresses the general strengths and weaknesses of each method. A general understanding of all 

three methods enables the reader to better understand some of their similarities and differences, 

and aids the reader in knowing which computational method is best for specific scenarios.  
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2.2 The Boundary Element Method 

 The BEM is unique because it only requires information on the boundary of the domain 

to compute field values within the domain, where the domain is simply the space over which the 

governing equation is defined. Much like Gauss‟s Theorem (or the divergence theorem), the 

BEM arrives at its fundamental equation after reducing a volume integral to a surface integral. In 

doing this, however, the fluid through which acoustic waves propagate is assumed to be 

homogeneous. Since the BEM only requires mathematical specification of the boundary of the 

domain, it is especially useful when considering problems in an unbounded domain. As long as 

the boundary itself is not infinite in nature, this method naturally handles problems that would 

otherwise require artificial infinite boundaries with imperfect absorbing boundary conditions.

 The BEM has only recently been programmed in the time domain.
1
 Consequently, most 

commercial packages program the BEM to solve the Kirchhoff-Helmholtz Integral Equation 

(KHIE), which restricts the problem to single-frequency, steady-state analysis. BEM packages 

also require that the continuous boundary surface [see Fig. 2.1(a)] be made discrete by 

segmenting it into a number of different nodes and elements [see Fig. 2.1(b)]. Nodes are discrete 

locations on the boundary (circles), and elements are the area between specified nodes. 

 

FIG. 2.1. (a) A continuous boundary. (b) A discrete representation of the continuous boundary. In 

(b), nodes are indicated by the circles and elements are indicated by the straight lines. 
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 Once the discrete problem is created, the mathematics of the continuous boundary must 

be discretized as well. The integral describing the continuous surface depicted in Fig. 2.1(a) 

becomes a sum of smaller integrals, where the region of integration for each smaller integral is 

over a single element. Thus, each straight line in Fig. 2.1(b) would be represented 

mathematically by an integral, and the sum of these element integrals would approximate the 

original continuous integral. The approximation improves as the discrete boundary better 

represents the continuous boundary with a higher discretization density. 

 Before discretization, the only unknown functions within the KHIE, pressure and its 

normal derivative, are continuous over the boundary. When these functions are specified by 

boundary conditions, it is then possible to solve the problem, assuming it can be done 

analytically. After discretization, however, the KHIE has been expanded mathematically. The 

general unknown functions are still pressure and its normal derivative, but their values cannot be 

obtained as continuous functions. Instead, both functions must be obtained at the specific nodal 

point of the discrete model. As in the continuous case, the problem can be solved once both 

functions are described along the boundary. Many times, both of these functions are not known 

along the entire boundary, resulting in many unknowns. Hence, the formulation for the BEM 

first creates enough equations such that both functions are defined along the entire boundary. 

Then information within the fluid of the domain can be calculated. 

 Several unique equations are created for each of the unknowns by evaluating the 

discretized KHIE, where each node is used as the field point (computational receiver) of the 

model. After an equation is formed for each point, a system of equations can be formed and the 

discrete KHIE can be solved through matrix analysis. Although the matrix only includes 

elements on the surface of the domain, each node from each element on the discrete surface will 
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interact with all the other nodal points on the model boundary. Mathematically, this results in a 

dense (full) matrix to correctly represent the acoustic interaction of each node with itself and 

with all the other nodes on the boundary. 

 Although the matrix created by the BEM is dense, the computational domain has been 

reduced to the boundary. As long as this reduction is significant, the savings in computation time 

is also significant. For instance, if the pressure field is desired from a flat plate that radiates in 

free space, the number of points needed to represent the fluid volume is much larger than the 

points needed to represent the boundary and the numerical simulation is likely computed faster 

with the BEM. However, if the pressure field is desired within a pipe, where the number of 

points needed to represent the boundary of the pipe is comparable to the points needed to 

represent the volume of fluid within the pipe, then the BEM is most likely slower than a different 

fluid-based simulation that does not require global interdependencies between all nodes. 

2.2.1 Important Considerations 

 The purpose of this section is to suggest a few important considerations to those readers 

who are not familiar with numerical methods and expound on additional details of the BEM. 

Some of the mathematics will be addressed, insofar as needed, to explain a few mistakes 

commonly made when implementing the BEM. A few general aspects of the BEM are also 

discussed to help the reader understand more of the particular requirements for a given 

computation. For a rigorous development of the theory, the reader is referred to Refs. [2]-[7], 

which give sufficient treatment of the mathematics behind the BEM. References [2], [4], and [7] 

are most helpful, but require a substantial background in mathematics. Reference [6] is helpful 
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for a better understanding of computer implementation. The relevant mathematics in this thesis is 

based on those in Ref. [2].  

2.2.1.1  Consideration 1: Nodes and Elements 

 The mathematics used in the BEM contains several summations, integrals, and iterative 

procedures. It often requires significant effort to sort out which sum or integral goes with a 

particular node or element. Thus, a brief explanation of the fundamental mathematics will assist 

in understanding later concepts.  

 The concept of a node only requires one to have a rudimentary exposure to mathematics. 

Suppose there exists a continuous function  defined for any . One can graph a 

representation of  by plotting its values at discrete values of . Discrete values of the -axis 

must be chosen because it is impossible to input an infinite number of values on a continuous 

axis. Once the output values at those discrete points are known, the function is typically graphed 

by imposing the concepts of elements.  

 Figure 2.2 illustrates how a continuous function is created from nodes and elements. 

First, Fig. 2.2(a) shows the discrete values along the -axis that are chosen as input values for 

. Next, Fig. 2.2(b) shows the output values of , indicated by the vertical displacement 

of each chosen point from Fig. 2.2(a). These values become the place holders for the overall 

shape of the function (nodes). The elements are created when a functional relationship is created 

between two nodes, indicated by the lines in Fig. 2.2(c). These lines, or elements, can have a 

linear relationship and appear as straight lines between nodes (as drawn), or they can have a non-

linear relationship and the lines will include curvature between nodes. 
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FIG. 2.2. (a) Chosen discrete x-values. (b) Output values of f(x) at discrete x-values. (c) 

Relationships between nodes (elements/lines connecting nodes).  

Elements are defined geometrically and functionally. The geometric requirements help 

the user understand how the discrete points, or nodes, of an element are grouped together. 

Geometric grouping happens in various ways. While nodes are usually found at the edges of each 

element, this is not a requirement. For simple problems with slowly-varying pressure 

fluctuations, a single node at the center of each element is all that is needed. The number of 

nodes also depends on how the functional relationship is defined. There is no reason to have 

several nodes if the pressure across a given element is assumed to be constant. 

 Elements are defined functionally in an attempt to recreate the continuous function  

from the discrete values known at the nodal points. For example, if  varies linearly, then the 

functional values at each nodal point vary linearly and a straight line between contiguous nodes 

produces the least amount of error between the reconstructed function and the actual function 

. However, if  varies quadratically, then the reconstructed function is more accurate if it 

accounts for the curvature of the actual function. In this example, the function is known at the 

nodal values before an element‟s curvature is assigned; however, the BEM requires a 

mathematical description of the functional dependence between nodes before the values of the 

unknown function are solved at the nodal points. A linear relationship between contiguous nodes 
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is often sufficient as long as enough nodal points exist per functional wavelength. A 

computational rule of thumb suggests that the model contain at least six nodes per wavelength.
8
 

However, more elements per wavelength are required if the boundary cannot be sufficiently 

represented. 

The functional definition of an element is described mathematically by shaping functions, 

which are described in their most basic form on page 26 of Ref. [2]. Shaping functions are what 

create the lines or curves between the nodes illustrated in Fig. 2.2(c). 

While attempting to understand some of the fundamentals of the BEM, it may initially 

seem unclear whether the BEM is solving the system at the nodes or over the elements. Values of 

the unknown function are always solved at the nodal positions in the BEM. The functional aspect 

of the elements is merely the shaping function. Thus, elements define the integrand and the area 

over which integration occurs via shaping functions. 

2.2.1.2  Consideration 2: Matrix Values 

 When seeing the BEM for the first time, there is often confusion on how to build the 

system of equations created for matrix analysis. Although integration occurs over each element, 

sometimes these integrations are combined with other integrations from different elements per 

matrix value, which can be unintuitive at first glance. Thus, a brief explanation of how the matrix 

values are created will now be given. 

 The goal of the BEM is to solve the Kirchhoff-Helmholtz integral equation,  

  (2.1) 
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where  is a weighting function,  is the unknown scalar function (usually pressure),  is the 

normal derivative of  (usually normal velocity),  is the boundary,  is the free-space Green‟s 

function, and  is the normal derivative of the free-space Green‟s function. Once the problem is 

discretized into N elements, the continuous problem becomes  

  (2.2) 

where  is the iteration index for the nodes,  is the iteration index for the elements, and  is the 

surface described by the 
 
element {Equation (2.2) corresponds to Eq. (2.42) of Ref. [2]}. In 

order to solve Eq. (2.2), the shaping function  is introduced, which correlates the nodes 

across a given element—the surface of integration.  

 For illustrative purposes, consider Fig. 2.3, a two-dimensional problem, where each 

element has a node located at the ends of each element. This problem will be considered as the 

BE theory is developed. 

 

FIG. 2.3. (a) Geometry of a two-dimensional problem considered for Section 2.2.1.2. (b) Two-

dimensional problem dissected into nodes and elements. Elements are indicated by the lines and 

starred (*) numbers. Nodes are indicated by the circles and regular numbers. 
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Mathematically, a typical integration over the  element is decomposed as  

  (2.3) 

where the variables  and  are the nodal values of the unknown scalar function over the  

element. Because  and  are evaluated at specific points on the surface, they are constants 

within the integration and may be factored out. Thus,  

 

 

 (2.4) 

Equation (2.4) was formulated for an arbitrary element. Thus, no matter what shape is 

considered, as long as the element is defined such that it has two nodes on each end, it 

consistently applies. This notation is slightly changed from Ref. [2]. Because the reference only 

considers the  element and doesn‟t formulate the entire matrix,  and  are respectively 

written as  and .  

 When considering all of the elemental integrations necessary to solve the problem at its 

nodal locations, Ref. [2] gives the following equation:  

 . (2.5) 

The text only briefly mentions how  and  are constructed; however, it is imperative to 

understand how these matrices are constructed. For this example, and as is common in actual BE 

code, two elements share the same node. Hence, two integrations over two different elements 
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combine to create the matrix values  and . Therefore, by expanding matrices  and , Eq. 

(2.5) becomes 

 

 

(2.6) 

where 

  (2.7) 

and  

  (2.8) 

The index  ranges from one to the total number of shaping functions (also the number of nodes 

used to define each element), which is two in our example.  

Although the model only consists of  unknowns (nodes), Eq. (2.6) contains  

unknowns since each element is integrated separately and the nodes are temporarily separated. 

The left-hand side of Eq. (2.6) is simplified since  is a scalar function and the spatial location 

for  is the same as . Hence, these variables are identical. We then combine them and write 

them as , where  is the nodal index. The same simplification is done with values  and , 

but only if the elements are parallel. This is because the function  is a vector. Although the 

spatial location for both nodal values is identical, their normal vector may point in different 

directions and thus produce different values.  

No two contiguous elements have the same normal in this example. Thus, the  matrix 

cannot be simplified.  Once the preceding simplifications are applied to Eq. (2.6) and an Eq. 
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(2.5) has been created for all  nodes as the reception point , the following system of 

linear equations is formed: 

 

 

(2.9) 

where the matrix including all of the  elements is size , and the matrix including all of 

the  elements is size . 

 Equation (2.9) may be insufficient to solve the entire system. This depends on the 

specified boundary conditions. If the boundary condition prescribes the nodal values of , then 

only the unknown nodal values for  remain and  equations are required to solve the system. In 

this case, Eq. (2.9) is sufficient. However, if the boundary condition prescribes the nodal values 

of , then the system contains  unknowns and Eq. (2.9) must include  more equations in the 

system before a solution is acquired. 

 Assuming one formulates and solves Eq. (2.9) correctly, the unknown functions  and 

 (pressure and normal velocity) are then known on the boundary. Once these values are 

determined, both functions are used to calculate their respective values at any point on or within 

the domain.  
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2.2.1.3 Consideration 3: Absorptive Boundary Conditions 

 The BEM is, as its name suggests, a numerical scheme which requires knowledge of the 

entire boundary to infer a solution within the fluid. Many times, this approach reduces the size of 

a problem that radiates to infinity. However, if the boundary must also extend to infinity, then 

the BEM requires an infinite amount of nodes and elements to construct the problem 

computationally and is therefore ill-posed. The remedy is an artificial infinite boundary that 

imitates continuous radiation to infinity by imposing some radiation condition on the boundary 

(i.e., the Sommerfeld radiation condition
9
). The BEM does this by assigning pressure, normal 

velocity, or a combination of both along the boundaries of the model. Because the BEM does not 

have nodal points within the fluid, the absorptive boundary condition must be constructed at each 

nodal point analytically. If that cannot be done using these quantities, the BEM cannot create the 

appropriate boundary condition and the problem must be solved using a different method. The 

following example will illustrate why this process can be difficult for the BEM. 

 Suppose that we desire to model a semi-infinite-length pipe in steady state. The pipe 

model cannot reasonably extend to infinity, so it is truncated. However, due to truncation, an 

acoustic discontinuity is necessarily introduced into the model. To prevent reflection from the 

discontinuity, an artificial infinite boundary is created. With the appropriate radiation condition 

prescribed at this boundary, the simulation behaves as if the wavefront propagates continuously. 

Appropriate prescription of this boundary condition at each nodal point of the artificial infinite 

boundary requires an analytical knowledge of the amplitude and phase characteristics of each 

mode that propagates to the artificial infinite boundary. If we further assume that the excitation 

source is different from the pipe, such that the relationship between propagating eigenfunctions 
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is unknown, then the boundary condition cannot be correctly prescribed. Thus, correct 

prescription of the boundary condition at the artificial infinite boundary requires an analytical 

definition of the excitation source.  

The problem described above is specific to steady-state problems. The author is uncertain 

as to whether a similar problem exists in the time-domain approach of the BEM since the 

governing equation is different. It may be that a different approach is able to better describe the 

artificial infinite boundary.  

2.3 The Finite Difference Method 

 The next numerical scheme to discuss is the FDM. Unlike the BEM, the FDM discretizes 

the fluid, as well as the boundary. Although discretization of the fluid region adds a considerable 

number of grid points to the model, the field value on each grid point does not depend on the 

field values on all other grid points, which is the case for the BEM. Instead, the computation of a 

field value at a particular grid point only depends on a small set of field values on surrounding 

nodes, or grid points. This difference in nodal dependence is manifest in the matrix associated 

with each method. While the matrix obtained in the BEM is full, the matrix obtained by the FDM 

is banded, or sparse.  

 Another important difference between the BEM and the FDM is that the BEM requires an 

integral representation of the governing differential equations, which is commonly the Kirchhoff-

Helmholtz integral equation, approximated using all the discretization points on the boundary. 

Conversely, the FDM is governed by partial differential equations. Each grid is defined 

analytically, and partial derivatives are approximated by a linear combination of truncated Taylor 
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series expansions of surrounding grid points. The FDM method is very intuitive and is probably 

the easiest method to grasp of the three being considered. Several distinct differential equations 

can be approximated and solved quickly. Both time-domain and steady-state analysis are 

computable. The option for time-domain analysis is of particular interest since it is not readily 

available in many BE software packages. 

 Since the FDM is easy to code, its use is not restricted to a commercial package. Two-

dimensional models run efficiently on an average computer, but most three-dimensional models 

easily become too large computationally and may require the use of a super-computer, taking 

days to compute a single scenario. Since an attractive possibility for using this method is to 

compute several scenarios quickly, computational speed is a priority. Thus, all three-dimensional 

models treated in this thesis are cylindrically symmetric such that the computational domain of 

each model reduces to a two-dimensional cross section. Although this restriction is not a big 

disadvantage, it does limit the computational possibilities of the FDM by impeding research on 

any three-dimensional models that are not axisymmetric. A general method for approximating 

derivatives of any order is shown to help the reader better understand this numerical scheme.  

2.3.1 Approximating Derivatives via Taylor Series Expansions 

 In order for a function to be expressed as a Taylor series, the function and all of its 

derivatives must be defined.
10

 If the same function is expanded multiple times—about different 

points—then some linear combination of these expansions may be found that approximates a 

certain-order derivative. The accuracy of the approximation will depend on how many terms, 

other than the desired derivative, are set to zero when all of the expansions are aggregated.
11

 The 
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number of nodes used to create the approximate derivative also affects the accuracy. Though not 

always true, generally the more points used in the approximation, the easier it is to create. The 

following example illustrates a general method for approximating a function‟s derivatives using 

Taylor series expansions. For ease, derivatives are notated as a subscript of the function (i.e. 

). 

2.3.1.1 Example: Approximating a First Derivative 

 Assume that five points, spaced a distance  apart, are used to approximate the first 

derivative of a function  The initial equation may be written as 

  (2.10) 

where , , , , and  are the unknown coefficients that need to be solved. If the desired 

accuracy is of order , then each Taylor series expansion is truncated after the fifth term. After 

expansion, the functions in Eq. (2.10) become 

 

 

 

 

 

 

(2.11) 

 Determining the coefficients , , , , and  is done by forming a system of equations 

with the desired aggregate for each derivative (or term in each expansion) indicated on the right-

hand side. Since the goal is to solve for  and cancel all other terms with error less than , no 
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contributions are desired from , , , and . This is indicated by the right-hand 

side of the following equation:  

   (2.12) 

Each column in the matrix contains the coefficients of each expansion given in Eq. (2.11). This 

system of equations is solved by multiplying both sides by the inverse of the 5x5 matrix, after 

which the coefficients are solved: 

  (2.13) 

Substitution of the coefficients into Eq. (2.10) gives 

  (2.14) 

where the error of the approximation is grouped in the term . Thus, an approximation for 

 with error of order  is described by Eq. (2.14). 

 An alternate approximation for  can be derived using only points to the right, or only 

points to the left. The coefficients result in different values, but the end result is the same. The 

coefficients for any given scenario are easily computed once the order of accuracy and number 

of points are chosen. Additional examples of deriving coefficients generally are given in Ref. 

[11]. 
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2.4 The Finite Element Method 

 The FEM method is similar to the BEM in that many people have created packages that 

are efficient and usable; however, the concept behind the FEM is more akin to the FDM. Like 

many instances of the FDM, each field value being computed in the FEM only depends on local 

changes from field values at surrounding grid points. As seen before, this effect results in a 

sparse matrix which is much faster to compute than a full matrix. However, the FEM is based on 

discretization of the fluid and the boundary by representing the operators in the governing 

differential equation and matrices. Many times, these matrices are thought of as describing the 

mass and spring components of each grid point.
12

  

 Regardless of its similarities to the FDM, the FEM does not have the stringent mesh 

requirements seen in the FDM. It is free to have irregularly-spaced and non-analytically defined 

meshes. Thus, the FEM is very popular for applications in which geometries are irregular, or in 

which the mesh cannot easily be mapped into an analytical domain. These meshes are used for 

both transient and steady-state analysis and allow the coupling of multiple domains. 

 Because this method is not used in any of the simulations performed in this thesis, an in-

depth explanation of this method is not given. However, a fairly rigorous treatment is given in 

Refs. [12] and [13], for the interested reader. 

2.5 Selection of an Appropriate Computational Method   

 With a reasonable understanding of the three numerical methods, a simple description of 

their strong points may help the reader to better understand where each method is best employed.  
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 The BEM generally performs well when the domain of the problem is infinite or semi-

infinite in nature. Because the numerical integration is only a surface integral, the fluid needs to 

be homogeneous. The BEM also performs faster than other numerical schemes when the amount 

of points needed to define the fluid is significantly larger than the number of points required to 

define the boundary. Otherwise, computation time may be comparatively higher for the BEM. 

Although the commercial BE package used for this thesis does not include time-domain analysis, 

this is starting to become available and will not be a future restriction for this method. Currently, 

however, most BE software only allows steady-state, single-frequency analysis. The BEM also 

has difficulty imposing absorbing boundary conditions (i.e., an anechoic termination) when 

models need to account for higher-order mode propagation and when an appropriate radiation 

condition cannot be imposed. Simple absorbing boundary conditions only work when the 

excitation frequency is well below the cutoff frequency of the first higher-order mode of the 

system in the case of wave propagation in pipes. In this manner the absorptive boundary 

condition is constant spatially, and can be predefined, as is required, before simulation. 

 The FDM requires discretization of the fluid, instead of just the boundary, and works best 

with enclosed boundaries. However, the FDM can be used to simulate an infinite domain by 

creating artificial infinite boundaries where infinite radiation is imitated. The FDM is a highly 

intuitive method and is versatile due to its adaptable manner of approximating derivatives. Its 

programming is straightforward and does not require a commercial package to perform 

meaningful computations. The FDM requires an analytically defined grid and does not perform 

well with irregularly shaped geometries. However, this restriction is somewhat circumvented 

when using generalized curvilinear coordinates to define irregular geometries. Since any 
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differential equation can be approximated by Taylor series expansions, time-domain analysis is 

as easy to simulate as stead-state analysis with the FDM.  

 The FEM is most similar to the FDM. It requires discretization of the fluid, but does not 

require an analytically defined mesh. It is readily available in many commercial packages and 

seems versatile in nature. This package was not used to simulate any of the problems analyzed in 

this thesis. However, it is still a plausible scheme that can provide time-domain analysis of very 

complex geometries, which is used to simulate many models of compression-driver and horn 

systems.  





 

25 

Chapter 3 

Transient Analysis from Finite-Length Pipes 

3.1 Background 

 Wave propagation through and from a pipe is a widely studied field in acoustics. Many 

researchers interested in turbofans, ventilation systems, mufflers, exhaust pipes, loudspeakers, 

etc. use the analytical analysis of pipes as a first step to better understand their more complicated 

system of interest. The initial research on wave propagation through pipes was performed by 

Lord Rayleigh,
14

 who analytically considered infinite-length pipes in steady state. His methods 

were later expanded upon by Pearson,
15

 who gave an analytical treatment of the dispersive nature 

of transient signals in infinite-length pipes. Pearson‟s work was confirmed experimentally by 

Proud et al.,
16

 who used water-filled rectangular ducts to study the dispersive effects of transient 

signals. Baumeister
17

 produced similar results numerically.  
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 After the establishment of infinite-pipe theory, analytical progress was made with finite-

length pipes.
18-20

 Probably the most recognized is the work done by Levine and Schwinger.
18

 By 

using Green‟s functions, their work rigorously defined the radiation from an unbaffled, finite-

length pipe in steady state. Their work has been furthered in different ways to produce more 

uniform convergence between the pipe domain and the half-space domain by using alternate 

integral equations,
19

 but the solution remains more or less the same. An area of possible 

improvement in the solution was introduced by Amir and Matzner.
20

 They used different basis 

functions within the pipe and in doing so improved the mathematical disparity of the pipe 

domain and the half-space domain by requiring fewer basis functions to obtain an accurate 

approximation.   

 Though analytical treatment of propagation through finite-length pipes and subsequent 

radiation has progressed general understanding, numerical work has helped to more accurately 

simulate this problem and allow for a better understanding of its results. Both the finite-

difference method (FDM) and finite-element method (FEM) were first used to solve steady-state 

problems within finite-length pipes.
21-24

 Because these methods required large matrices, early use 

was restricted to smaller computational domains (less grid points) and lower frequencies. To 

reduce the computational burden of the steady-state approach, Baumeister introduced a time 

domain method using FD techniques.
17

 If the simulation ran long enough, the transient solution 

would decay to nothing and the steady-state solution would therefore be obtained without 

matrices. While this work helped to reduce computation time, problems from the interaction of 

the artificial infinite boundary with higher-order modes could not be considered due to an ill-

defined boundary condition at the pipe exit.
25

 A comprehensive review of the use of numerical 

methods in duct acoustics was given in Ref. [25]. 
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 While many of these authors have numerically obtained solutions for sound radiation 

from a finite-length pipe (baffled and/or unbaffled), their results are either only for steady-state 

conditions or using transient signals (a sine wave modulated by a Heaviside function at ) to 

obtain the steady state.
21-24

 Thus, transient effects within the pipe were not isolated sufficiently to 

independently observe their effects. This concept, however, may be particularly relevant to audio 

transducer applications as many signals reproduced by them are generally innately transient. 

Dalmont et al. used both the FDM and BEM to analyze subsequent radiation for several different 

pipe-like geometries (with and without a baffle) in steady state.
24

 Tsubakishita et al. did similar 

work to Dalmont et al. in terms of steady-state analysis, but their approach was more accurate as 

they approximated the governing differential equations to fourth-order accuracy.  

 Others who considered wave propagation through pipe-like structures for short-duration 

transient signal were Noreland
26

 and Davis.
27

 Both of their research used the idea of transmission 

lines to model the excitation source. However, the transmission-line method restricts wave 

propagation to the plane-wave mode. Since higher-order modes are an important part of this 

work, this approach is not appropriate for the problems considered in this article. Stepanishen 

and Tougas also published a paper on pulse-like transient radiation from a finite-length pipe.
28

 

They gave an in-depth analytical description of acoustic wave propagation and radiation form a 

finite-length pipe due to short-duration transient signals. However, a one-to-one correspondence 

of pipe modes to half-space modes was used as a necessary simplification of their approach. One 

of their key findings was that radiation from higher-order pipe modes showed no on-axis 

radiation. By using numerical methods to evaluate this problem, both domains are inherently 

coupled to one another and the accuracy of their simplification may be observed.  
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 The numerical simulations reported in this chapter incorporate a leapfrog FDM for 

evaluation of wave propagation for short-duration transient signals. The pipe is made rigid and 

the case of no mean flow is considered as this is more characteristic of an audio transducer. 

Curvilinear coordinates are used to generate smooth grids that do not need to be truncated before 

the half-space domain, eliminating the need for a problematic impedance boundary condition at 

the pipe exit.
17

 As considered by Stepanishen and Tougas, several higher-order modes are 

independently excited here in an initially quiescent field by single-cycle, gated sine waves. 

Propagation through and from the pipe are simulated and their subsequent radiation patterns are 

presented and discussed. Some of the problems created from using such short-duration transient 

signals in the simulation are also addressed.  

3.2 The Mathematical Model 

3.2.1 The Physical Problem 

 Transient radiation is studied from a finite-length pipe mounted to an infinite-length 

baffle. At time , the fluid is excited at the end of the pipe not mounted to the baffle. The 

excitation signal is defined as either a gated, single-cycle sine wave. Once excited, an acoustic 

wave propagates through the pipe and eventually radiates to infinity.  

 Inside the pipe and in the half plane outside the pipe, the sound pressure is 

mathematically modeled by the wave equation, where symmetry around the polar -axis is 

assumed. The wave equation expressed in cylindrical coordinates is 
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  (3.1) 

where  is pressure,  is the acoustic sound speed. By imposing cylindrical symmetry,  

   

and through expansion of the first term, Eq. (3.1) becomes 

  (3.2) 

Also, the pipe and baffle have rigid walls. An illustration of the physical problem is given in Fig. 

3.1. The right-hand illustration in depicts the physical domain of propagation D. Its boundaries 

 are also illustrated.  

 

FIG. 3.1. Physical domain used to study transient radiation from a finite-length pipe. 

 The boundary condition at  is modeling a rigid condition for both the pipe wall and the 

infinite baffle. At , the interface conditions,  
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  (3.3) 

  (3.4) 

combined with the boundary condition leads to 

  (3.5) 

The condition on  is defined by the nature of the excitation at this end of the pipe. It is 

assumed that the pressure field is initially quiescent. Also, the mathematical description of the 

outgoing wave at infinity is through the well-known Sommerfeld radiation condition, given by 

 as , where the subscripts  and  denote derivatives in time and space, 

respectively. This Initial Boundary Value Problem (IBVP) is solved numerically for  using FD 

in generalized curvilinear coordinates to account for irregular geometries. For computational 

reasons, a truncation of the infinite half-plane to the right of the pipe is necessary. Thus, the 

boundary  in Fig. 3.1 corresponds to an artificial infinite boundary. This requires an 

introduction of an absorbing condition at  instead of the Sommerfeld radiation condition. This 

condition should be such that there are no spurious reflections at the boundary. In this thesis, a 

condition, as  of  is used. A complete review of 

absorbing boundary conditions is found in Refs. [29]-[30]. The IBVP in complete form is written 

as 

 

  D,        (3.6) 

  C4 C3, (3.7) 
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  C1, (3.8) 

  C2, (3.9) 

   and   ,  D. (3.10) 

3.2.2 The Physical Problem in Generalized Curvilinear Coordinates 

 Since this problem can only be solved analytically for very few cases, where the 

geometry of the pipe and the surrounding fluid can be described in separable coordinates 

(Cartesian, cylindrical, etc.), the IBVP [Eqs. (3.6)-(3.10)] will be numerically solved. For this 

purpose, it is first written in terms of generalized curvilinear coordinates. Much of the work done 

in generalized curvilinear coordinates (  and ) translates to Cartesian coordinates (  and ), it is 

desirable to write the IBVP in terms of  and . Since the wave equation no longer depends on 

, the variables  and  are easily identified with  and , respectively. Thus, , , and 

Eq. (3.6) can be written as 

  (3.11) 

where  is now a function of , , and . Figure 3.2 illustrates how the coordinate systems 

identify with one another. 
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FIG. 3.2. Pictorial relationship between cylindrical and Cartesian coordinates. 

 The change to curvilinear coordinates can be mathematically described by a 

transformation between generalized curvilinear coordinates  and Cartesian coordinates 

. Figure 3.3 pictorially describes this transformation T : D’ D, defined by  

and  from a rectangular region D’ called the computational domain to the plane 

region D called physical domain. 

 

FIG. 3.3. Transformation used in the generation of boundary conforming coordinates. 
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 As a result, the pressure is written in terms of curvilinear coordinates as 

 Moreover, the wave equation expressed in Eq. (3.11) transforms into  

 

 

(3.12) 

in generalized curvilinear coordinates. Partial derivatives are denoted as subscripts and 

 corresponds to the Jacobian of the transformation. For completeness, a derivation 

of Eq. (3.12) follows. Considering the inverse transformation T -1, pressure  can be expressed as  

  (3.13) 

Then, by using the chain rule 

 

 

 

 

(3.14) 

  (3.15) 

and 

  (3.16) 

 Substitution of Eqs. (3.14)-(3.16) into Eq. (3.12) produces 
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(3.17) 

This equation is not a sufficient stopping point since derivatives are expressed in terms of both 

coordinate systems. In order to express Eq. (3.17) in a single coordinate system, a relationship 

between first order derivatives in both coordinate systems must be established. Returning to the 

definition of the transformation, coordinates  and  are expressed as 

  (3.18) 

  (3.19) 

Taking a partial derivative of  in Eqs. (3.18) and (3.19) produces 

  (3.20) 

  (3.21) 

Writing Eqs. (3.20) and (3.21) in matrix form gives 

 . (3.22) 

 If the same process is repeated by taking a partial derivative with respect to , the 

resulting matrix changes to 

  (3.23) 

Combining these systems of equations produces 

   (3.24) 
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where the right-hand side of Eq. (3.24) is the identity matrix. Since the product of the two 

matrices on the left-hand side of Eq. (3.24) equals the identity matrix, one matrix is the other‟s 

inverse.  

 Relationships of the first-order derivatives of both coordinate systems can be obtained 

from Eq. (3.24). The inverse of the left-most matrix in Eq. (3.24) is given by 

   

Therefore, 

  (3.25) 

Term by term from Eq. (3.25), the following relationships hold between first derivatives of the 

two coordinate systems: 

 

 

 

 

 

 

 A similar procedure can also relate the two coordinate systems for second-order 

derivates. These relationships are given as 

 

 

 

 

 

 

where 

 

 

 

 

 

 



36 Chapter 3 | Transient Analysis from Finite-Length Pipes 

 

After some lengthy algebraic work involving substitution of , , , , , , , and 

, it can be shown that the wave equation, Eq. (3.12), can be written as  

 

 

(3.26) 

 So far, the transformation T between the coordinate system  and  has not been 

defined. In the next section, T is defined through the solution of a system of elliptic partial 

differential equations (PDE). 

3.2.3 Elliptic Grid Generation 

 Among the desirable properties of grid generation procedures are smoothness and non-

overlapping gridlines. Based on the maximum value principle for PDEs, these two properties can 

be achieved by defining T : D’ D as the solution of the quasi-linear elliptic system 

  (3.27) 

  (3.28) 

where , , and , with Dirichlet boundary conditions. 

The system of Eqs. (3.27) and (3.28) is known as Winslow elliptic grid generator.  

 A more robust grid generator can be obtained by introducing control functions  and  

into Eqs. (3.29) and (3.30). These control functions are responsible for grid properties such as 

orthogonality, gridline spacing, and cell areas among others. In this thesis, the grid generator 
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introduced by Villamizar and Acosta will be adopted.
31

 Thus, these control functions help to 

define the transformation T as  

  (3.29) 

  (3.30) 

where  and  are the grid control functions. The 

grids generated by Eqs. (3.29) and (3.30) constitute a generalized transformation of polar grids to 

arbitrary regions. Substitution of the right-hand side of Eqs. (3.29) and (3.30) into Eq. (3.26) 

simplifies the expression considerably. In summary, the entire IBVP is written in terms of 

generalized curvilinear coordinates as 

 

 D’,  , (3.31) 

  C4
’ C3

’, (3.32) 

  C1
’, (3.33) 

 
 C2

’, (3.34) 

     and     ,       D’, (3.35) 

where . Equations (3.31)-(3.35) are in the form used during FD discretization, as 

described in the following section. 
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3.2.4 Discretization 

 A second-order discretization of all the governing equations expressed in curvilinear 

coordinates is used in this thesis. Since the governing equations are partial differential equations 

in time and space, discretization must occur both temporally and spatially. Temporally, the 

computation requires the current and past time steps to infer what the solution of the governing 

equation over the computational domain will be in the future. This second-order method is 

known as the leapfrog scheme. Time steps are indicated with the index  and written as 

superscripts in the following equations. Spatially, the computational domain D’ is described by 

the coordinates  and , where  and . For convenience, the computational 

step size for both of these coordinates is . The spatial step size is indicated with the 

subscripts  and , which correspond to steps taken in  and  respectively. 

 By solving for the future time step of pressure, using both the spatial and temporal 

discretizations, the wave equation described by Eq. (3.31) becomes  
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(3.36) 

where  and  is the time step. All of the relevant discretizations are as follows: 

  

  

  

  

  

All of the other metrics found in Eq. (3.36) are composed of these discretizations.  Equation 

(3.36) is only used to calculate approximate values for  on the interior points in the 

computational domain. When the computation is at an edge of the domain, the boundary 

condition equations, Eqs. (3.32)-(3.34), need to be discretized. Depending on the location of the 

boundary point, different discretizations may be required because the interior points necessary 
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for the approximation cannot be referenced the same way. Accurate computation at the 

boundaries require the consideration of ghost points. These are points that lie outside of the 

domain, but can still be used in the calculation of the field values at the boundary points. 

Essentially, the ghost points provide the additional grid point needed to combine the governing 

equation [Eq. (3.36)] with the discretized boundary condition equations. This combination of 

equations is desirable because field values at boundary points are affected by both. 

 Since the discretizations of the boundary conditions are different for each boundary of the 

domain, they are treated individually. Thus, at the boundary line C1, a second-order discretization 

leads to 

  (3.37) 

where the value at the ghost point, , has been solved for. Once the field value at the ghost 

point is known, it is substituted into Eq. (3.36) for calculation of the pressure field at the 

boundary point. Thus, the boundary condition equations are accounted for in the governing 

equation by substitution of the ghost point. 

 The rigid condition on boundary C4 and the symmetry condition on boundary C3 are very 

similar. Both require that the normal derivative of the pressure be zero. Their discretizations are 

similar since their normal vectors are in the same axis (but opposite in direction) in the 

computational domain. Once again, second-order discretizations and ghost points are used to 

calculate the field values at these boundaries. Thus,  
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  (3.38) 

which solves for the ghost point for boundary C4, and 

  (3.39) 

which solves for the ghost point for boundary C3, due to symmetry. Intuitively, this is exactly 

what is needed since symmetry should impose a mirror image of the problem. Both sets of ghost 

points are substituted into Eq. (3.36) to calculate the pressure field with application of the 

boundary conditions from the ghost points.  

 Finally, a second-order discretization for the absorbing boundary condition on boundary 

C2 is presented. Because both the governing wave equation and the absorbing boundary condition 

contain derivatives of pressure temporally and spatially, finding  requires that both 

equations be first solved in terms of their ghost point, . Then both discrete equations are 

set equal to one another, eliminating the field value at the ghost point, and the resulting single 

equation is solved for the future pressure value . This procedure leads to,  
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(3.40) 

where  and .  

 In summary, a FD technique has been developed, supported by a set of special elliptic 

grids, that applies to wave propagations through axially symmetric boundaries in three-

dimensional space. Villamizar and Acosta
32-36

 have developed a variety of curvilinear grids, 

including the one used in this thesis, and have applied them to multiple scattering in two-

dimensions. 

3.2  Numerical Simulation 

 The model simulated in this thesis is exactly one-fourth the size of the mathematical 

model used by Stepanishen and Tougas.
28

 In order to compare relevant results, the frequencies 

used in our model are increased by a factor of four so the wavelengths can be reduced by a factor 

of four as well. This creates the same pipe diameter to wavelength ratio used by Stepanishen and 

Tougas. Thus, the 2 kHz and 4 kHz results reported by Stepanishen and Tougas correspond to 

the 8 kHz and 16 kHz results presented in this work. The cylindrical, rigid pipe is 0.5 meters 
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long with a radius of  19.05 mm (0.75 inches). One end of the pipe is mounted to an infinite, 

rigid baffle.   

 The absorbing boundary condition, applied at boundary C2, is a constant radius 

 from the origin, located at the center of the exit of the pipe. Boundary C2 was placed from 

the pipe exit, over 7.5 times the Rayleigh distance ( , where k is the acoustic wavenumber) 

for the highest frequency considered. Although the radiation patterns versus angle at 80 and 100 

cm from the exit of the pipe (when the computational model is evaluated with C2 at greater 

distances) look slightly different, indicating that the 50 cm boundary may still be in the near 

field, it is of computational interest for transient analysis to keep the model smaller with an 

artificial infinite boundary at the approximate 50 cm radius from the center of the pipe exit. 

 To independently excite natural modes of the pipe independently, an appropriate 

acceleration profile is defined. The goal is to create a source function such that all of the acoustic 

energy produced by the source is transferred into any desired mode. Following Ref. [28], the 

acceleration profile of the piston, , was required to satisfy the following relationship: 

  (3.41) 

where  is the modal coefficient,  is the mode, or eigenfunction of a circular pipe, and  

is the cross-sectional area of the pipe. For a circularly symmetric pipe these eigenfunctions are 

  (3.42) 

where  is a zero-order Bessel function of the first kind. Subscript 
 
is always zero 

because only axisymmetric modes are considered (as done by Stepanishen and Tougas). The 

values of  are determined from the rigid boundary condition at , the radius of the pipe, 
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and are the set of discrete values which satisfy the wave equation in the radial direction 

Substitution of Eq. (3.42) into Eq. (3.41) results in  

  (3.43) 

 At this point, an acceleration profile different from Stepanishen and Tougas‟ is chosen. 

While their function is versatile, it cannot excite modes of the pipe independently. Based on the 

orthogonality property of the Bessel functions, the acceleration profile is chosen as 

  (3.44) 

where  is the period defined by single-cycle sine wave. Thus, by orthogonality and for 

, 

  (3.45) 

where  is the 
 
root of the first-order Bessel function of the first kind. This spatial profile is 

the simplest profile that can be chosen if pipe modes are to be independently excited. Any other 

spatial profile would require an infinite series to describe the shape of a Bessel function.  

 If the acceleration profile above is used to excite each pipe mode independently, there 

can be problems with minimal excitation of lower-order modes (namely the plane-wave mode). 

Essentially, the discrete profile of the pressure distribution does not perfectly couple the energy 

to the specific pipe mode of interest and leakage occurs [see Fig. 3.6(c)]. This imperfection has 

only been observed during excitation of higher-order modes, where the spatial portion of each 

acceleration profile becomes more difficult to represent, and is reduced significantly after 

increasing the number of grid lines in the radial direction.  
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3.3  FDM Results 

 The FD model allows the study of the angular and time dependent properties of each 

natural mode of the pipe as it radiates to the absorbing boundary. In order to study the radiation 

from the modes of the pipe independently, the prescribed acceleration profile at the source 

boundary is prescribed as a Bessel function of order zero, as explained in the previous section. 

Simulations of the first three modes of the pipe, independently excited and radiated to the 

absorbing boundary, are recorded and analyzed using a 3101 x 71 point grid. Figures 3.4 and 3.5 

show the development of wave propagation over time for the plane-wave and the first higher-

order mode for a 16 kHz single-cycle, sine wave excitation signal, respectively. While the pulse 

begins and stays as a compact, single condensation for the plane-wave mode (explained later), 

the signal rapidly disperses as it propagates for all other higher-order modes. Upon arrival at the 

exit of the pipe, each wave crest imparts its energy to either transmission and eventual far-field 

radiation [as shown more clearly in Figs. 3.4(e)-3.5(e)], or reflection back down the pipe [as 

shown more clearly in Figs. 3.4(f)-3.5(f)].  
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FIG. 3.4. Wave propagation images for a single-cycle 16 kHz excitation signal in the (0,0) mode. 

Wave propagation for the full spatial model is shown to scale in (a), (c), and (e). Wave 

propagation within the pipe at an exaggerated vertical scale is shown in (b), (d), and (f). The times 

for each subplot are as follows: (a) and (b) 0.0625 ms, (c) and (d) 1.5 ms, (e) and (f) 2.2 ms. 
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FIG. 3.5. Wave propagation images for a single-cycle 16 kHz excitation signal in the (0,1) mode. 

Wave propagation for the full spatial model is shown to scale in (a), (c), and (e). Wave 

propagation within the pipe at an exaggerated vertical scale is shown in (b), (d), and (f). The times 

for each subplot are as follows: (a) and (b) 0.0625 ms, (c) and (d) 1.5 ms, (e) and (f) 2.2 ms. 

 The preceding figures are best understood within the context of group and phase speed. 

As explained in many fundamental acoustics textbooks,
37-38

 phase speed is defined as  
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(3.46) 

and group speed, the speed at which the energy propagates, is defined as  

  (3.47) 

where  is the cutoff frequency for the  pipe mode. Considering Eqs. (3.46) and (3.47) for a 

given cutoff frequency, frequencies greater than the cutoff frequency propagate (with no 

attenuation) through the pipe at its specified group speed, while frequencies less than the cutoff 

frequency decay exponentially with distance.  

 Figure 3.4 shows the propagation of a single-cycle sine wave with a plane-wave spatial 

profile. Since, the cutoff frequency of the plane wave mode is 0 Hz, all frequencies with this 

spatial profile propagate through the pipe with no evanescence. Additionally, all frequencies 

have the same group and phase speed. As a result, the pulse-like shape created at the beginning 

of the pipe is maintained throughout the first propagation down the pipe, from the source to the 

pipe exit. The pressure profile for the plane-wave mode (see Fig. 3.4) does not appear to be the 

gated sine wave assigned to the acceleration profile because it is proportional to velocity.
9
 To 

understand what the pulse should look like in the pressure field, the acceleration profile is 

integrated in time and multiplied by constants of the fluid. Thus, the pressure takes the form 

 

 

 

 (3.48) 
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for the plane wave mode. 

 Figure 3.5 is also explainable through the concepts of group and phase velocity. The 

cutoff frequency for the first axisymmetric cross mode is no longer 0 Hz as it was for the plane 

wave mode, but is approximately 10,975.3 Hz. Thus, frequencies below the cutoff decay 

exponentially and frequencies above the cutoff propagate. An additional observation due to 

dispersion is that higher frequencies are observed to lead lower frequencies. Their group speeds 

are higher and thus travel down the pipe more quickly. As the frequencies increase, their group 

speed approaches the sound speed of the fluid . If multiple modes were excited in the pipe for a 

single frequency, lower modes would travel down the pipe faster as their group velocity would 

be higher. Combining these concepts helps to understand the problem where multiple modes and 

multiple frequencies are excited. Again, lower-order modes travel down the pipe faster than 

higher-order modes for a single frequency, but higher frequencies travel down the pipe faster 

than lower frequencies of a given mode (with exception to the plane-wave mode). Additionally, 

because the boundary conditions for the pipe walls are completely rigid, no energy is lost in the 

reflections from the pipe walls. These reflections would not be produced to this magnitude if the 

boundary condition of the pipe walls included a finite amount of damping. 

 Physically, at higher frequencies multiple modes are almost always excited. Thus, lower 

frequencies (usually contained in lower-order modes due to evanescence of low frequencies for 

higher-order modes) travel down the pipe faster than higher frequencies and can significantly 

spread out with a long enough pipe to where the sweep in frequency is audible.
16

 After more time 

has passed, the signal falls in pitch. This is due to the slowly-decaying, reactive energy of lower 

frequencies.
28

 Higher frequencies radiate from the pipe more easily due to the mostly resistive 

acoustic loading seen at the exit of the pipe. Because their wavelengths are so small, the exit of 
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the pipe begins to resemble a free-field condition, rather than a reactive boundary. Thus, almost 

no energy is reflected back into the pipe for higher frequencies, and most of the high-frequency 

energy is found, in the beginning of the signal arriving in the far-field. Lower frequencies 

continue to ring due to the high amount of energy reflected back down the pipe. This energy 

containment within the pipe causes continued lower frequency radiation and accounts for the fall 

in pitch after the initial rise in pitch due to dispersion. 

 As alluded to previously, a main point of analysis for each simulation is to record the 

radiated pressure over time as it arrives at the absorbing boundary (the semi-circular boundary, 

or right-hand side of the model as depicted in Figs. 3.4 and 3.5). By storing these data, the 

radiated pressure along this boundary from the finite-length pipe can be viewed as a function of 

time. Figure 3.6 shows the results of the pressure amplitude as a function of angle and time. The 

various subplots depict the radiation due to different pipe modes as noted in the caption. Note the 

different arrival times for each independently excited mode. The plane-wave mode travels at the 

sound speed of the fluid . If this variable is taken to be 343 m/s and the sound must travel 1.008 

meters, the signal should first arrive at the boundary at approximately 2.939 ms. Very high 

frequencies of higher-order modes can travel close to the sound speed of the fluid; however, the 

numerical grid needs to be very fine to account for these frequencies. The main body of energy is 

contained in frequencies centered around 16 kHz (the frequency of the single-cycle excitation 

period), which will travel notable slower than the plane-wave mode. When multiple modes and 

frequencies are excited, Fig. 3.6(d) shows arrival of the plane wave mode first, while each 

higher-order modes take progressively longer to arrive at the absorbing boundary. 
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FIG. 3.6. Far-field radiation (pressure magnitude) measured at 0.508 meters from the exit of the 

pipe as a function of angle and time. (a) (0,0) mode. (b) (0,1) mode. (c) (0,2) mode. (d) 

Combination of several modes. 

3.4  Discussion 

 As Stepanishen and Tougas
28

 found, the results in Fig. 3.6 show significant off-axis 

radiation for higher-order modes. The radiation pattern not only depends on frequency, but also 
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on the spatial excitation profile of the driver. As frequency increases or the pipe mode number 

increases, and so does the angle of maximum radiation (with exception to the plane-wave mode 

whose maximum radiation is on axis). Table 3.1 summarizes the angles at which maximum 

radiation occurs for the 8 kHz and 16 kHz single-cycle sine-wave excitation signals. 

TABLE 3.1. Angles of maximum pressure radiation for the first three modes of the pipe.  

 8 kHz 16 kHz 

Mode (0,0) 0
o 

0
o 

Mode (0,1) 27
o
 33

o
 

Mode (0,2) 36
o
 34

o 

 The angles at which maximum pressure radiation occurs agree with the results obtained 

by Stepanishen and Tougas. However, in contrast to their results, on-axis pressure radiation from 

higher-order modes in these finite-difference simulations is non-zero. The theory derived in 

Stepanishen and Tougas‟ paper assumes that the pipe modes correlated with the half-space 

modes on a one-to-one basis, where no modal coupling occurs between the two domains. As a 

result, the acoustical spatial profile at the exit of the pipe was simply used as the velocity spatial 

profile at the excitation boundary, which resulted in zero on-axis radiation for higher-order 

modes in the far field. Stepanishen and Tougas did realize the importance of accounting for 

modal coupling between domains and cited it as future work; however, this becomes difficult to 

do analytically, requiring the use of some numerical method for a more accurate depiction of 

pressure radiation for higher-order modes. 

 The model used to compute the results in Fig. 3.6 automatically accounts for coupling 

between the pipe modes and the half-space modes. Thus, on-axis radiation is expected to a 

certain degree since individually excited higher-order modes of the pipe excite all of the half-

space modes. The coefficient for each half-space mode highly depends upon the spatial profile of 
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the propagating acoustic modes in the pipe. The majority of the energy for a pipe mode is 

transferred to the half-space modes on a one-to-one basis, but not completely. This possibly 

explains why the pressure maximums obtained in the results presented here agree with those 

found by Stepanishen and Tougas, although minor variations in the radiation patterns are 

observed. Thus, Stepanishen and Tougas‟ omission of modal coupling from the analytical model 

resulted in a loss of the finer details of the radiation patterns—one of those details being the 

existence of on-axis radiation.  

 Although the numerical simulation simplifies the problem of matching the pipe domain 

with the half-space domain, the FDM has many problems of its own. First, for transient signals 

as short as the one considered here, numerical dispersion can be difficult to handle. The 

simulation must have a sufficient grid size for all higher frequencies that are excited within the 

model. As the excitation signal becomes shorter, amplitudes of higher frequencies become more 

significant. Second, the analysis done by Stepanishen and Tougas is only valid in the far field. 

The expression used by them to describe the half-space modes is essentially the Rayleigh integral 

where the specified velocity is a mode of the pipe. Ironically, if the directivity of a baffled 

circular piston is computed in the near field via the Rayleigh integral, significant on-axis 

radiation is produced. Thus, on-axis radiation found in the current study may be (in part) a near-

field effect. As the receiver locations move farther from the source, the on-axis radiation 

decreases; however, the on-axis radiation never disappears completely—even when the receiver 

locations are fairly distant from the source. Lastly, to ensure that the recorded radiation patterns 

were not significantly affected by the imperfect absorbing boundary condition, the boundary was 

moved farther from the exit of the pipe (by increasing ) while radiated pressure was still 
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recorded at the same location. Results were the same, showing that the on-axis radiation is likely 

not occurring due to the imperfect absorptive boundary condition.  

3.5  Conclusions 

 A FD model was created to observe far-field pressure radiation patterns for an infinitely 

baffled, finite-length pipe. Natural modes of the pipe were excited individually by using a Bessel 

function for the spatial velocity profile. The independent excitation of these modes resulted in 

unique radiation patterns over time and angle. The temporal acceleration used for boundary 

excitation was a single-cycle sine wave. Results were presented for the single-cycle sine wave 

with a corresponding period of 16 kHz. Each of the signals were varied spatially to excite the 

(0,0) and (0,1) natural modes of the cylindrical pipe.  

 Peak-pressures recorded at the absorptive boundary (a 50.8 cm semicircle centered 

around the exit of the pipe) were observed at very similar locations as found by Stepanishen and 

Tougas.
28

 However, the numerical results presented here produced notable on-axis radiation for 

higher-order modes. On-axis radiation in these results was due to innate coupling of pipe modes 

with half-space modes in the numerical model, which was not accounted for by Stepanishen and 

Tougas. Thus, a single-mode excitation of a mode within the pipe will excite all of the half-space 

modes (to varying degrees).  

 The effects of dispersion were discussed for situations involving multiple frequencies 

with excitation of single and multiple pipe modes. Dispersion causes lower modes to travel 

through the pipe faster than higher modes; however, for a given mode higher frequencies were 

observed to travel faster than lower frequencies, as expected from well-established theory. 
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Physically, multiple pipe modes are easily excited and, for long enough pipes, an audible sweep 

in frequency occurs. Others have remarked about a prolonged ringing caused by the fundamental 

resonance of the pipe length. This occurs after several reflections of the transient signal occur 

within the pipe. Thus, the excitation of short-duration transient signals through a finite-length 

pipe results in an initial sweep in frequency due to dispersion, followed by prolonged radiation of 

the fundamental frequency of the pipe (a decrease in pitch).  

 Further work may include extending these results to horns (pipes of varying cross-

section). The effects seen in the horn may be less pronounced, but may help to better understand 

radiation patterns produced by transient signals—which patterns can be very different from 

steady-state radiation patterns. Further work may also include using a time-dependent, three-

dimensional numerical package to excite non-axisymmetric modes. 
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Chapter 4 

Steady-State Analysis of Horns with 

Simplified Excitation Signals 

4.1 Background 

 In 1919, Webster published a study on wave propagation through horns and on their 

acoustic impedance.
39

 Webster realized that acoustical radiation properties of systems like the 

phonograph could be dramatically altered by the shape and size of the attached horn. It was his 

goal to change these parameters and increase the acoustical amplification of the system as much 

as possible. In many respects, his paper was the first modern attempt to quantify the acoustical 

effects of horns from a mathematically rigorous perspective. Webster gave an equation 

describing wave propagation through a tube of varying cross-sectional area (a horn), now known 

as Webster‟s horn equation: 
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  (4.1) 

where  is the acoustic pressure,  is the cross-sectional area at position , and  is 

the speed of sound.  

 Since that time, several authors have revisited Webster‟s techniques and refined his 

theory.
40-42

 For example, Webster originally assumed that the wavefronts traveling through the 

horn must be planar. This was later corrected to include any wavefront whose propagation could 

be defined by one coordinate of any three-dimensional coordinate system. This type of wavefront 

was termed a one-parameter wave. Although Eq. (4.1) has not changed in its form, its 

mathematical interpretation is better understood within this context. An insightful paper on one-

parameter waves was published by Putland
43

 in response to a related paper by Geddes.
44

  

 Horns tend to “amplify” acoustic signals because they create a more efficient transfer of 

energy between mechanical and acoustical domains (by creating a gradual impedance match 

between the two domains). This improved energy transfer is due to the way its shape gradually 

introduces a wavefront into free space. The equivalent acoustic impedance of an unbaffled horn 

driver, looking into the diaphragm, is much higher than the acoustic impedance of the radiation 

loading that the diaphragm sees. Additionally, the acoustic impedance of a pipe decreases with 

increasing cross-sectional area. Thus, if the diaphragm is presented with a horn possessing a 

smaller diameter opening that gradually increases towards its exit, then the acoustic impedance 

loading will also gradually decrease, thereby providing the desired gradual impedance match.  

 Horns not only efficiently transform mechanical energy to acoustic energy, they also 

channel the acoustic energy to create more directional radiation. Although amplification and 

directional radiation properties of horns have both been well studied, modern research has given 



4.1 Background 59 

 

less attention to the amplification properties of horns due to the advent of powerful electrical 

amplifiers. Some of the prominent areas of horn research include throat and radiation 

impedance,
45-46

 far-field sound radiation,
47-50

 and numerical techniques for wave propagation.
51-54 

 One of the earlier studies on radiation impedance of horns was performed by Freehafer.
41

 

He studied the analytical case of radiation impedance for an infinite, hyperbolic horn. Similar 

studies on radiation impedance for other shapes of horns have also been performed.
45

 In early 

days, most horns used in the audio industry flared exponentially. This changed quickly with the 

introduction of constant-directivity (CD) horns,
55

 where other geometries showed more 

consistent sound radiation over angle for larger bandwidths. After this, many different horn 

geometries were experimented with, which produced new ways to predict the extent of the far-

field sound radiation. One method, comparable to the Rayleigh integral, uses the pressure 

distribution at the exit of the horn to calculate the far-field directivity pattern;
47

 however, 

experimental specifications such as microphone size and measurement spacing are its biggest 

setbacks. Another method, more analytically inclined, was used by Gloukhov,
48

 who predicted 

the directivity patterns based on the Huygens-Fresnel principle. He showed that directional 

manipulation of acoustic wavefronts is achievable when the aperture is comparable to a 

wavelength. Yet another technique was developed by Ureda to provide another way of looking at 

diffraction patterns.
49

 However, his results only included plane-wave excitation at the entrance of 

the horn.  

 Since many horn geometries are not analytically definable, the majority of work done has 

been through either experiment or numerical simulation. Early computational research required 

analytical simplifications to a large degree as only minimal computations could be performed. 

One of the first to build a full computational model was Geddes
50

 who created a computational 
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model of a horn-loaded compression driver. His simplifications included cylindrical symmetry of 

both the compression driver and horn, an exponential flare in the horn geometry, and encasement 

of the system within a sphere where the exit of the horn acts has a vibrating cap set in a sphere. 

Johansen was another to use computational models to compare radiation from conical horns.
51

 

Similar to Geddes, Johansen‟s simplification was a pulsating spherical cap, which effectively 

showed that both radiation patterns from conical horns and a spherical cap were almost identical. 

This technique of computing the radiation from a spherical cap is very popular and has been used 

by many to correctly calculate directivity and pressure radiation, even without the need of a 

numerical model for simulation.
46

 The drawback of the spherical-cap approach is that only 

certain frequencies will produce wavefronts that align with the radius of curvature specified by 

the spherical cap. Reference [46] includes a good overview of the additional research performed 

in this field.  

 As computer processing speed has increased and numerical schemes have become more 

robust, many numerical methods have been used to study horns. Geddes used the finite-element 

method (FDM) in his computational model of the horn-loaded compression driver.
50

 More 

recently, Hladky-Hennion used the FEM more generically for evaluation of wave propagation in 

various two-dimensional waveguides.
52

 These results were numerically fundamental and could 

be extended to asymmetric models, similar to those studied in this chapter. The finite-difference 

method (FDM) was used in the work done by Noreland
26

 and Dalmont et al.
24

 Both researchers 

worked to better understand the radiation from horns used in musical acoustics. Noreland‟s work 

simplified the analysis by only assuming plane-wave excitation of the horn by creating a blend of 

analytical and numerical techniques. Dalmont et al. considered axisymmetric horns in steady 

state for multiple cases to better understand an instruments acoustic loading. Lastly, the 
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boundary-element method (BEM) was used by Henwood
53

 and Johansen.
51

 Although, both the 

results of Johansen and Henwood used analytical simplifications to reduce computational 

requirements, the BEM handled the problem of infinite radiation well as its formulation does not 

require any analytical simplifications for an artificial infinite boundary. 

 Although the use of horns is ubiquitous and the methods for analyzing them seem 

innumerable, numerical simulation with as little analytical assumptions as possible will help to 

reveal weaknesses of existing numerical methods. This work will more-fully explore the use of 

the BEM in determining directivity patterns produced by various three-dimensional horn designs. 

Additionally, different spatial profiles will be used as inputs at the entrance of the horn. The 

subsequent steady-state radiation for these profiles will be numerically simulated to better 

understand the optimal wavefront shape created by compression drivers. These input boundaries 

of different curvature will help to better understand the nature of acoustic wavefronts as they 

propagate through a horn of arbitrary cross-sectional area.  

4.2  Modeling of Existing Horns 

 The geometries of the existing horns under test cannot be described by one coordinate in 

any given three-dimensional coordinate system. As a result, wave propagation within these horns 

cannot be described by Eq. (4.1). Thus, numerical simulations are an attractive alternative to 

solving the problem analytically. Simulations for this chapter were performed using Coustyx, a 

BE package which uses iterative methods to solve the system of equations created by the BEM, 

for several constant-directivity horns. Field points (computational receivers) were placed 2 

degrees apart along arcs in the -  and -  planes (the -axis being the axis along the length of 
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the horn), approximately 6 meters from the entrance of the horn. Each simulation calculates the 

pressure and particle velocity at the field points for the one-third octave band center frequencies 

between 200 Hz and 20 kHz, a total of 21 frequencies.  

 Because the mesh had to be fine enough to correctly simulate 20 kHz (using at least 6 

points per wavelength), it was not computationally practical to model the entire horn. The 

remedy was to cut the model into a quarter of its original size and take advantage of the 

symmetry of each horn. Employing mathematical symmetry planes significantly reduces the 

computational burden for each model, while still maintaining the full and original geometry of 

each horn. These symmetry planes are used to recreate the pressure and normal velocity profiles 

of the missing parts of the original geometry to simulate the complete geometry with fewer 

elements. Each symmetry plane is defined in Cartesian coordinates, so any symmetry displayed 

by the horn must be defined over a Cartesian plane. The entrance of each horn was then spanned 

with a planar boundary, which was used as the excitation source for each simulation. After 

discretization, each mesh was approximately 40,000 elements. Figure 4.1 shows a typical model 

reduction performed to enhance computational speed. Figure 4.2 illustrates the approximate size 

of the elements used to represent existing horn geometries. The length of each horn is 0.3048 

meters (12 inches). 
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FIG. 4.1. Pictorial illustration of a full horn model and a reduced quarter of the model. Pink 

boundary represents excitation source. 

  

FIG. 4.2. Mesh of existing horn used in BE simulation. 
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 This simplified excitation source is used because the planar boundary is much easier to 

numerically create than a compression driver. The models of each horn run faster 

computationally and help benchmark good numerical techniques for this first study, only 

involving horns. Additionally, it is generally assumed that the wavefronts emerging from the exit 

of the compression driver are planar. To simulate this condition, the excitation source is assigned 

a constant velocity in the -direction. Since the BEM is used for steady-state analysis, the 

assumed wavefront could be produced at the entrance of the horn and, for the time being, the 

compression driver is eliminated from the numerical simulation. This planar boundary is 

illustrated in Fig. 4.1 (pink-colored boundary). 

 Experimental measurements of directivity (performed by others) are compared with their 

respective simulations to check the numerical directivity results. Experimental measurements 

were obtained by mounting each horn under test to a rotational system inside an anechoic 

chamber. For each field point, the rotational system moved to a certain angle, paused its 

movement as the system was measured, and the process was repeated for an entire polar slice 

(360 degrees). Slices in both the vertical and horizontal axes of the horn were taken. 

 Experimentally measured directivities did differ from numerical simulations in terms of 

averaging. Numerically simulated directivities for each horn were calculated at a single 

frequency (the center frequency of the one-third octave band of interest). However several 

frequencies were used to calculate experimental directivity (for a full one-third octave band), 

which essentially smoothed the resulting patterns. This difference should not be significant at 

low frequencies due to the lack of rapid variation in directivity at low frequencies. Although the 

design of each horn is to produce a similar directivity pattern over a large bandwidth, large 

variations can occur at high frequencies. Accordingly, values for one-twelfth octave center 
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frequencies within each one-third octave band are numerically computed at higher frequencies. 

The directivity for each horn is computed using these five frequencies (there are five one-twelfth 

octave band center frequencies within a given one-third octave band), though very minimal 

differences in the directivity patterns are observed between single frequency patterns (at the one-

third octave center frequencies) and patterns obtained by averaging the data from all five 

frequencies. Thus, only the center frequencies for each one-third octave band are used to create 

simulated directivity patterns.  

 The horns under test are designed to have a constant directivity over a broad frequency 

range. The angular specifications listed for each horn are the rough approximations for its 

beamwidth, which is defined as the angular span in which the decibel value is not reduced by 

more than 6 dB. For example, a 30° x 45° horn is designed to have a 30° vertical beamwidth and 

a 45° horizontal beamwidth. Figures 4.3 through 4.6 indicate the -6 dB down point with a bold 

line. The coverage pattern is the angle spanned by the portion of the directivity pattern greater 

than -6 dB. Figures 4.3 and 4.4 compare numerical and experimental results for a 30° x 45° horn 

(part no. 702133). Figures 4.5 and 4.6 compare a 120° x 60° horn (part no. 702135). 
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FIG. 4.3. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 30° x 45° 

horn (---) and experimental measurement (—). The decibel value is indicated radially and 0 

degrees is on-axis with the horn. The 30° slice is shown. 
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FIG. 4.4. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 30° x 45° 

horn (---) and experimental measurement (—). The decibel value is indicated radially and 0 

degrees is on-axis with the horn. The 45° slice is shown. 
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FIG. 4.5. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 120° x 60° 

horn (---) and experimental measurement (—). The decibel value is indicated radially and 0 

degrees is on-axis with the horn. The 120° slice is shown. 



4.2  Modeling of Existing Horns 69 

 

  

  

  

FIG. 4.6. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 120° x 60° 

horn (---) and experimental measurement (—). The decibel value is indicated radially and 0 

degrees is on-axis with the horn. The 60° slice is shown. 
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 For both horns, simulation data compare well with experimental data at 10 kHz and 

below. The disagreement may be due to the minimal changes due to including more frequencies 

in each directivity pattern (as done experimentally). Other factors such as potential rocking of the 

diaphragm at high frequencies and non-rigid horn boundaries for the experimental measurement 

may also contribute to some of the minor differences in off-axis radiation. Above 10 kHz, the 

simulation significantly diverges from the experimental measurements. To verify that higher-

frequency discrepancies were not due to the coarseness of the model, the mesh was refined by 

increasing the number of elements by several thousand and the simulation was rerun for the 30° 

x 45° horn. The refined model showed no difference in the far-field directivities, demonstrating 

that the less-refined mesh was sufficient. No difference in the directivities of the two meshes also 

confirmed the disagreements between simulation and experiment for frequencies above 10 kHz. 

Although complete agreement between simulation and experiment is not shown, the results 

presented in this section demonstrate the validity of the BEM simulations for most frequencies. 

The departure of numerical simulation with experimental measurements at higher frequencies is 

explained in more depth in Sec. 4.4. 

4.3  Input Wavefront Study 

 Once the limitations of BE simulations are understood (through comparison with 

respective experimental data), a study involving variation of the input wavefront and its effect on 

far-field pressure radiation is undertaken. The main idea of this study is to observe the changes in 

directivity and frequency response as a wavefront, constant in both magnitude and phase, is 

made nonplanar. Three different curvatures were studied: (1) an outward curvature, (2) no 
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curvature (planar), and (3) an inward curvature. The radius of curvature for both the inward and 

outward curvature was 2.54 cm (1 inch). The radius of the horn at this input boundary is 

approximately 1.75 cm (0.69 in.). A pictorial illustration of each curvature is shown in Fig. 4.7. 

They are not drawn to scale, but are intended to illustrate the general curvature orientations. 

 

FIG. 4.7. Illustration of the different curvatures used for input wavefront study: (a) an outward 

curvature, (b) no curvature, and (c) an inward curvature. Not drawn to scale. 

4.3.1 Comparative Study of Directivity 

 Wavefront curvature was studied using the BEM. Since the wavefronts produced by the 

diaphragm of the compression driver are ideally only moving in the direction along the length of 

the horn (the -axis), a constant velocity in this direction is the prescribed boundary condition for 

all cases under study.  

 Figures 4.8 and 4.9 compare all cases for the 30° x 45° horn. Figure 4.10 and 4.11 

compare all cases for the 120° x 60° horn. As seen in the previous study, the directivity patterns 

for all three cases are almost identical below 10 kHz. At 10 kHz and above, there are significant 

discrepancies. The directivities associated with all three cases for the 120° x 60° horn do not 

diverge significantly until above 12.5 kHz for the 120° cross section (see Fig. 4.10). This is the 

only cross section between both horns that with a pipe-like geometry for part of its boundary.    
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FIG. 4.8. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 30° x 45° 

horn inward (---), outward ( ), and no curvature (—). The decibel value is indicated radially and 

0 degrees is on-axis with the horn. The 30° slice is shown. 
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FIG. 4.9. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 30° x 45° 

horn inward (---), outward ( ), and no curvature (—). The decibel value is indicated radially and 

0 degrees is on-axis with the horn. The 45° slice is shown. 
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FIG. 4.10. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 120° x 

60° horn inward (---), outward ( ), and no curvature (—). The decibel value is indicated radially 

and 0 degrees is on-axis with the horn. The 120° slice is shown. 
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FIG. 4.11. Comparison of pressure directivity in dB (normalized to 0 dB) of a simulated 120° x 

60° horn inward (---), outward ( ), and no curvature (—). The decibel value is indicated radially 

and 0 degrees is on-axis with the horn. The 60° slice is shown. 
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 Although all of the directivity plots compared here are computed using only the center 

frequency for each one-third octave band, many of the discrepancies between different 

curvatures may be less significant if multiple frequencies were used.  

 As discussed in Sec. 3.4, radiation from a pipe, or horn, is highly dependent on modal 

excitation. For all curvatures considered in this section, the transfer of energy to each mode of a 

given horn will most likely occur differently. Also, evanescence occurs in horns as it does in 

pipes. Excitation signals at frequencies below the cutoff frequency for the first higher-order 

mode will rapidly create wavefronts of constant magnitude as each one propagates down the 

horn. A far-field consequence of this phenomenon is that directivities look similar—even with 

different wavefront curvatures. Thus, normalized directivity patterns should appear similar until 

higher-order modes can significantly affect radiation. The frequency at which higher-order 

modes begin to propagate depends upon the horn geometry. 

4.3.2 Comparative Study of Frequency Response 

 Although, no significant differences in the normalized directivity patterns were observed 

below 10 kHz, overall output levels did differ. Figure 4.12 compares the unnormalized on-axis 

frequency responses for the 30° x 45° horn with each type of curvature. Figure 4.13 compares 

the unnormalized on-axis frequency response for the 120° x 60° horn with each curvature. A 

constant excitation velocity of approximately 2.08 m/s was used for each simulation to compare 

acoustic radiation for a given source velocity. Results for the 30° x 45° horn are louder by 

several dB than for the 120° x 60° horn for much of the frequency range shown. This is likely 

due to the increased spreading of energy from the larger beamwidths of the 120° x 60° horn. 
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FIG. 4.12. Simulated results for on-axis frequency response of a 30° x 45° horn with different 

input wavefront curvatures. 

 

FIG. 4.13. On-axis frequency response numerical simulations of a 120° x 60° horn for different 

input wavefront curvatures. 
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 The outward curvature (with the dome curving away from the mouth of the horn) 

generally performs better than flat and inward curvatures when comparing on-axis frequency 

response. The outward curvature performs consistently better for the 30° x 45° horn below 10 

kHz, and fluctuates considerably for the 120° x 60° horn throughout the frequency band 

displayed. Similar results were also observed by Suzuki et al. in Refs. [56] and [57], who studied 

the difference in on-axis frequency response and directivity of inward and outward-curved 

domes in a semi-infinite pipe or infinite baffle, respectively. However, further work needs to be 

done to directly compare the current results with those done in Refs. [56] and [57] and apply 

them more generally to horns. 

 A possible application of these results may be in choosing a different “optimal” 

wavefront at the entrance of the horn. Traditionally, this wavefront is desired to be planar. 

However, the outward curvature profile, instead of the planar profile, gave greatest overall sound 

pressure level at the majority of frequencies simulated for one of the horns (the 30° x 45° horn). 

On the other hand, each curvature may significantly affect the overall system by introducing 

large dips in the frequency response (as shown for the 120° x 60° horn) and may significantly 

change the directivity.
57

  

4.4 Higher-Frequency Disagreement 

 For both the existing horn models and the models with a curved excitation source, BE 

simulations compare well with experimental data below 10 kHz. Normalized directivity patterns 

also look almost identical for all three curvatures under test below 10 kHz. In order to better 

understand this consistent divergence above this frequency, the horn may be compared to a pipe 
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at the entrance (throat) of the horn. If the pipe has the same radius as the entrance of the horn, 

then the approximate cutoff frequency for the first axisymmetric higher-order mode is 

approximately 

  (4.2) 

 where the speed of sound  is 343 m/s, the radius of the pipe  is 19.05 mm (0.75 inches), and 

the  is approximated as 3.83 for the first higher-order mode. Additionally, if we consider a 

pipe the same length as the horn, the normalized contribution of the first higher-order mode is 

defined to be  

 
 

(4.3) 

where  is the frequency of the excitation signal and  is the distance that the evanescent mode 

has traveled. Considering an excitation frequency of 10 kHz, the first higher-order mode will 

decay by about a factor of 10
11

 after 0.3048 meters (12 inches), the length of the hypothetical 

pipe. Hence, it is easily seen for a pipe that any higher-order modal contributions would be 

insignificant in the far field at and below 10 kHz.  

 Figure 4.14 shows the geometric differences of the two horns used for the simulations 

presented in this thesis. The 30° x 45° horn is illustrated on the left and the 120° x 60° horn is 

illustrated on the right. As previously explained, the 30° x 45° horn deviates from experimental 

measurement around 10 kHz, and its geometry flares immediately. On the other hand, the 120° x 

60° horn does not deviate from the experimental measurement until after 12.5 kHz, and its flare 

does not occur until half way down through the horn.  
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FIG. 4.14. Side view of the horns simulated in Sec. 4.3. The 30° cross section of the 30° x 45° 

horn is shown on the left and the 120° cross section of the 120° x 60° horn is shown on the right.  

 Although pipe modes and cutoff frequencies can be very different than those for a similar 

length horn, their analytical analysis is helpful as a horn can be thought of as a composition of 

several very small-length pipes. As the radius of the pipe gets larger, the amount of evanescence 

imposed on higher-order modes decreases. Thus, the amount of higher-order modal decay caused 

by a pipe will be larger than that caused by a horn. Figure 4.15 through 4.20 show the magnitude 

of the interior pressure field for both cross sections of the 120° x 60° horn. The 120° cross 

section is similar to a pipe for the beginning portion of its geometry and prevalent decay of 

higher-order modes are observed at and below 10 kHz (see Fig. 4.15). In contrast, the 60° cross 

section opens up very quickly (similar to both cross sections of the 30° x 45° horn) and higher-

order modes contribute much sooner. Significant amounts of higher-order modes appear to 

propagate much farther down the length of the horn for the 60° cross section even at 4 kHz (see 

Fig. 4.17).  



4.4 Higher-Frequency Disagreement 81 

 

 

FIG. 4.15. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 120° 

cross section at 4 kHz. 
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FIG. 4.16. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 120° 

cross section at 10 kHz. 
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FIG. 4.17. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 120° 

cross section at 16 kHz. 
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FIG. 4.18. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 60° 

cross section at 4 kHz. 
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FIG. 4.19. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 60° 

cross section at 10 kHz. 
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FIG. 4.20. Pressure magnitude of the interior pressure field for the 120° x 60° horn along the 60° 

cross section at 16 kHz. 

 As seen in the preceding figures, higher-order modes are seen to be computationally 

insignificant at a frequency well below the cutoff frequency for the first higher-order mode, 
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where only the plane-wave mode contributes to far-field pressure radiation. Although higher-

order modes do not evanesce as much within a horn, a similar phenomenon is observed. The 

120° x 60° horn agrees with the experimental measurement at higher frequencies, likely because 

of the pipe-like effects of the first half of its geometry, causing more rapid higher-order 

evanescence than in the 30° x 45° horn.  

 Higher-frequency disagreement may also be a manifestation of the incorrect 

representation of physical excitation source. The excitation source used in the BE simulations is 

piston like where a physical diaphragm would break up into modes, coincidentally, at 

frequencies around the cutoff frequency for higher-order pipe modes. As a result, when the 

excitation signal is well below the cutoff frequency, such that experimental measurement and 

numerical simulation are reduced to single-mode propagation, simulation and experiment agree. 

Otherwise, the simulation cannot accurately assign relative amplitude and phase to propagating 

pipe modes, without an accurate displacement profile for the diaphragm, which results in 

incorrect far-field pressure predictions for higher frequencies. 

4.5  Conclusions 

 The results presented in this chapter highlight several important features that should be 

emphasized in horn design. First, the modal components of wave propagation through the horn 

greatly affect the far-field pressure radiation. This has been shown for steady-state analysis and 

is likely also true in transient analysis (as seen from the results shown in Ch. 3). While 

unnormalized radiation levels for different wavefront curvatures may change for low 

frequencies, normalized directivity patterns are not altered until higher-order modes contribute 
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significantly in the overall radiated energy. At high enough frequencies, when higher-order 

modes do propagate, the effect of each mode is significant enough that even a slight change in 

the coefficients of the propagating modes produces notable changes in the far-field response of 

the system. 

 A more in-depth study of various excitation wavefronts may challenge the long-held 

belief that a planar wavefront is most desirable at the entrance of the horn. The outward 

curvature produced larger sound pressure levels over a significant range of frequencies for one of 

the cases presented. However, the results for a more pipe-like horn suggest that radiation 

efficiency will heavily depend on horn geometry. Comparisons of frequency response were only 

presented on-axis; off-axis frequency response, though not shown here, does not produce the 

same result. Further research will need to be done to confirm the general application of this 

result. 

 It may be tempting for a designer to decrease the size of the entrance of the horn to only 

allow plane wave (zeroeth order) mode propagation through the horn throat over the entire audio 

bandwidth. Though not addressed in this thesis, a smaller horn entrance introduces distortion due 

to acoustic nonlinearities sooner for lower amplitude signals, which debilitates the sound 

reproduction system. Thus, real progress in horn design will need to control radiation patterns 

while incorporating higher-order cross-sectional modes of the horn. 

 Finally, it must be remembered that the results presented in this chapter were obtained by 

modeling horns only. The compression driver was not included in the models. Chapter 5 will 

present results including the coupling of a compression driver to a horn. Chapter 5 will also show 

that the modes of a diaphragm greatly affect the radiation from a horn-loaded compression 

driver. 
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Chapter 5 

Steady-State Analysis of Horn-Loaded 

Compression Drivers 

5.1 Background 

 The compression driver is commonly employed by many sound reproduction systems, 

and is generally used for reproducing frequencies above about 1 kHz. A compression driver is 

composed of several parts. The most pertinent components to this research are the diaphragm (a 

spherical cap typically made of titanium, aluminum, etc.) and the phase plug. Although these 

components vary in size and relative proportion, almost every compression driver design uses 

them. From an acoustical standpoint, the channels in the phase plug are not the only important 

aspects of the compression driver. The throat of the compression driver (volume of air from the 

phase plug exit to the compression driver exit) and the compression chamber (volume of air 
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between the diaphragm and the entrance of the phase plug) are also important when analyzing 

the acoustic qualities of the compression driver. Figure 5.1 depicts an illustration of the cross 

section of a compression driver. Each of the aforementioned components in the compression 

driver is indicated numerically. 

 

FIG. 5.1. Illustration of the cross section of a compression driver. The illustration is motivated by 

an Electrovoice ND6 compression driver schematic. Drawing not to scale. 

 The compression driver transforms electric energy to mechanical energy then to acoustic 

energy. The research on compression drivers in this thesis separately considers some of their 

mechanical and acoustical properties.  

 The study of the mechanical properties focuses on the modal vibrations of the diaphragm. 

For low-frequency excitation, the vibration of the diaphragm is spatially coherent (piston like), 

similar to the boundary condition assigned in an ideal numerical simulation. As frequency 

increases, however, the diaphragm begins to vibrate in its higher-order modes. When this occurs, 

spatial coherence is reduced and acoustic radiation fluctuates considerably. 

 In order to create more accurate models, necessary coupling of these domains should be 

incorporated into the numerical studies performed. As seen in previous chapters, popular 
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numerical simulations showing promise in this area of research include the finite-difference 

methods (FDM),
58

 finite-element methods (FEM)
58-59

, and boundary-element methods (BEM).
60

 

Barlow used both the FDM and FEM to better design both coned and metal diaphragms such that 

prominent modal breakup would occur at different frequencies, outside of the audible bandwidth 

[58]. While understanding of mechanical vibration of diaphragms with certain shapes and 

materials has progressed, acoustic radiation was not included in these models.
58-59

 Others were 

more concerned with the radiation modes exiting from a compression driver, but simplification 

of the source (similar to Ch. 4), gaining a better understanding of acoustic radiation without 

taking into account mechanical vibrations of the dome.
60-61

 Even experimental procedures like 

laser vibrometer were used to scan diaphragm vibrations to obtain mode shapes, but an 

understanding of these vibrations on subsequent radiation was not addressed.
62

 Other aspects of 

research on diaphragms have included curvature (typically spherical) affects acoustic 

radiation,
57,61

 or how the small chambers housing the voice coil cause problematic resonances 

(i.e., parasitic resonance dips in the overall system frequency response).
63

 Two-port networks to 

model the radiation from both the compression driver and horn as individual components has 

also been shown to help speed up design of each component with fairly good agreement to 

experimental data.
64

  

 This work attempts to use laser vibrometry scans to increase accuracy of modal 

vibrations in the numerical models (isolated within the mechanical domain), while eventually 

incorporating them into a boundary-element (BE) simulations to understand the mechanical 

effects on far-field radiation. Some laser vibrometry scans are presented that were used to extract 

the natural modes of the diaphragm. And BE simulation of the analytical reconstruction of the 

mechanical vibrations is shown as well.  
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 Additionally, this chapter will help to better understand the role of the phase plug in 

terms of the subsequent acoustic radiation. One of the earliest pioneers in phase plug research 

was Smith. He compared several frequency response measurements of compression drivers and 

found that annular-ring channels in phase plug design suppressed higher-order modes of the 

diaphragm best (and produced the smoothest frequency response).
65

 Though one can find earlier 

research publications on the phase plug,
66

 the industry has had success with the original design 

proposed by Smith.
67-69

 Murray gave much recognition to Smith‟s work within the loudspeaker 

community upon his own research in this field of study.
67

 Both Henricksen
68

 and Dodd et al.
69

 

compared many of Smith‟s original proposed designs to their own proposed designs. Of the 

many designs tested, Smith‟s annular-ring design consistently performed better. All of the 

designs simulated in this chapter are annular-ring designs.  

 The phase plug is incorporated into the compression driver to improve radiation 

efficiency and wavefront coherence. The radiation efficiency is greatly improved because it 

reduces the overall amount of movable fluid within the compression driver, thereby providing a 

higher impedance loading to match the high mechanical impedance (of the diaphragm). 

Wavefront coherence is improved due to the consistent geometric path length between the 

diaphragm and the exit of the compression driver. If a wavefront arrives at the exit of the phase 

plug and adds with another wavefront destructively, radiation is severely reduced. Thus, the goal 

of the phase plug is to provide equal path lengths for the sound to travel from the various points 

of the diaphragm to the exit of the driver,
70

 ideally creating a constant-phase wavefront at the 

exit of the phase plug.  

 Traditionally, researchers have focused only on the phase of the emerging wavefront 

from the compression driver. However, Geddes points out that this is not sufficient for a planar 
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response at the exit of the compression driver.
71-72

 In order for a wavefront to aggregate as a 

plane wave, both the phase and magnitude must be equal for a given cross section. 

 The phase plug study performed in this chapter uses the BEM to analyze seven different 

designs. The numerical simulation of each prototype may help to design a more coherent 

acoustic pathway, which may also increase acoustical radiation. Because any changes in the 

cross-sectional area of the acoustic pathway must be included in the analysis, the entire acoustic 

pathway of the compression driver and horn are part of the BE simulations. The purpose of this 

study is not only to determine whether these modifications improve upon the performance of an 

existing design, but to also demonstrate the how the use of numerical simulations improves upon 

traditional prototyping procedures. A major benefit of conducting numerical simulations of phase 

plug designs is the savings in cost and time in comparison to building and testing them 

experimentally, since changes can more easily be made to numerical models. Mechanical 

vibrations are not included in this experiment, although both horns and compression drivers are 

part of each simulated model.  

5.2 The Diaphragm 

 The excitation source of the compression driver is the diaphragm. Attached to the 

diaphragm is a coil of wire through which an alternating current (the audio signal) flows. 

Because of its interaction with a fixed magnetic field, this induces a force which pushes the 

diaphragm back and forth, creating sound. Ideally, the diaphragm moves coherently, its entire 

geometry oscillating at a constant amplitude and phase. This, however, is not the case over the 

entire frequency range under consideration due to modal breakup of the diaphragm. 
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 The diaphragm design under consideration (see Fig. 5.2) is complex. It is not well 

defined by a single coordinate system, and thus is extremely difficult to evaluate analytically. 

The corrugations that line the edge of the spherical dome make the analytical definition of the 

geometry intractable. For analytical analysis purposes, the diaphragm geometry is simplified to a 

spherical cap alone. 

 

FIG. 5.2. Illustration of the compression driver diaphragm. 

5.2.1  Natural Modes 

 The natural modes of a spherical cap may be derived analytically. The following is based 

on the derivation found in Ref. [73], but with additional explanations.  

 Using thin plate theory, the partial differential equation for a circular plate is 

  (5.1) 

where  is the bending stiffness, and  and  are the density and thickness of the given plate 

respectively. The variable  is the displacement normal to the surface of the plate at a given 

location and time, and is the variable we wish to solve for.  
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 If the radius of curvature of a spherical cap is large enough, its geometry and vibrational 

behavior approach that of a circular plate. The governing equations of motion are similar. For a 

spherical cap, a stiffness term  is included, where  is Young‟s modulus,  is the 

thickness of the plate, and  is the radius of curvature. If this extra term is included in Eq. (5.1) 

and  is assumed to be time harmonic, the expression for a spherical cap is approximated as  

  (5.2) 

where . Thus, Eq. (5.2) must be solved for , the displacement component moving 

normal to the plane in which the geometry of the circular plate was defined (the z-axis).   

 In order to solve the equation, the fourth-order derivative must first be simplified. This is 

accomplished by factoring  from each term of Eq. (5.2), and then creating two useable terms 

with second-order derivates. By doing so, Eq. (5.2) becomes 

 

 

 

 (5.3) 

where .  

 Each bracketed term in Eq. (5.3) renders specific and solvable equations. They are solved 

by assuming  has two independent solutions for its motion in each direction of its coordinate 

system, . This method is known as separation of variables. Thus, expanding Eq. 

(5.3) in terms of  and  gives 
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 (5.4) 

 After variables  and  are separated, Eq. (5.4) is solved. First, the  component is 

solved since it is grouped into one term. Since  and  have been completely separated from one 

another, their complete terms in Eq. (5.4) must equal a constant. Thus,  

  (5.5) 

where  is a constant. The normalized solution for  is  

  (5.6) 

where  is a phase factor so that the nodal lines can be shifted in  depending on the boundary 

conditions. 

 The complete solution for  from Eq. (5.4) [after substitution of Eq. (5.5)] is 

  (5.7) 

Equation (5.7) is Bessel‟s equation and provides four different solutions. Bessel functions of the 

first and second kinds,  and  respectively, are solutions when the  term is 

used, and the modified Bessel functions  and  are solutions when the  term is 

used. Thus, the complete solution for  is written as 

  (5.8) 

where , , , and  are constants. Thus, the expression for  is given as 
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 (5.9) 

 Equation (5.9) is simplified through the application of boundary conditions. First, the 

amplitude of the spherical cap must be finite at the origin. Because both  and 

 are undefined,  and  must be zero. Second, because this method is to be used 

for higher frequencies, where laser vibrometer scans of the dome have revealed minimal 

displacement and velocity at the edge of the spherical cap, the boundary condition at  

(where  is the radius of the spherical cap) is roughly approximated as being rigid. In order for a 

rigid condition to be applied at , the displacement and velocity in the -axis are specified to 

be zero at this boundary.  

 To solve for coefficients  and  by mere substitution is difficult. Instead, the linear 

system of equations is solved by matrix analysis. The matrix is formed by including both the 

boundary condition for zero displacement and its derivative, 

  (5.10) 

This expression is satisfied if the determinant of the matrix of Bessel functions is zero. Hence, 

the determinant must satisfy the relationship 

  (5.11) 

The roots of this equation indicate when the system undergoes resonance (the system‟s natural 

frequencies). They are found by putting the expression for  in terms of . Therefore, 
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 (5.12) 

Since for a flat, circular plate, Eq. (5.12) can be viewed as an expression for the 

natural frequencies of a flat plate plus a correction term based on the radius of curvature and 

material properties of the spherical cap. Recall that this equation is only valid when the spherical 

cap only has slight curvature. Because the diaphragm of the compression driver used in this 

chapter extends to π/4 in our polar angle, this approximation may be insufficient. 

 The natural modes derived for the spherical cap closely resemble those of a circular plate. 

Figure 5.3 shows a few of these modes, which are later compared to experimental data from an 

actual diaphragm, obtained using a Scanning Laser Doppler Vibrometer (SLDV). 

 

 

 

 

 

 

 

 

 



5.2 The Diaphragm 99 

 

 

  

  

FIG. 5.3. Predicted modes for a spherical cap. Mode: (a) (0,0); (b) (0,1); (c) (1,0); (d) (1,1). 

 This derivation may be improved by deriving the natural modes in spherical coordinates. 

This would require fewer approximations and would place no restriction on the curvature of the 

dome. Another possible improvement would result by refining the boundary condition at . 

Because the voice-coil, which is located near , is moving with the diaphragm, it may be 

more appropriate to have a small, non-zero displacement and/or velocity at the boundary, instead 

of the rigid condition assumed in the derivation, or to model this diaphragm boundary as a free 

boundary (with the second and third derivatives of the geometric slope into the boundary 

equaling zero).  
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5.2.2  SLDV Scans 

 The SLDV is used to measure vibration (displacement, velocity, or acceleration) of a 

given structure perpendicular to a user-defined plane. It may be used to find frequencies where a 

single natural mode dominates the systems response, or it may be used to decompose a system‟s 

complex vibrational response into its analytical modes. In order for the SLDV to extract 

structural velocity information, a laser beam shines on the structure of interest. The diaphragm, 

the structure to be measured, is enclosed within the outer casing of a standard compression driver 

and its view is obstructed to the laser. Thus, the back of one compression driver is cut away to 

allow an unobstructed view for the SLDV‟s laser. This alters the acoustic loading seen by the 

diaphragm, and the natural modes extracted with the SLDV are altered. Although the acoustic 

loading may significantly change the modal contributions of the structural vibration, the 

diaphragm still vibrates as a summation of natural modes which allows the derived natural 

modes to be tested. Further work, proposed at the end of this section, suggests other ways to 

maintain the proper acoustic loading and still allow experimental extraction of the modes with 

the SLDV. 

 After the data are extracted from the SLDV, a least-squares fitting is conducted using the 

previously derived natural modes. The problem is constructed in a least-squares sense,
74 

  (5.13) 

where vector  represents the unknown coefficients for each natural mode in matrix . Each 

element in  can be complex and is the desired information from Eq. (5.13). Vector  is formed 

by organizing the data measured with the SLDV. Matrix { , ,…, }, where each 

column of the matrix  represents a natural mode. Each column is  points long, which 
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corresponds to the total number of scan points from the SLDV. Although formation of vector  

does not require any particular order, the discrete spatial location for the  entry must be the 

same for all columns in matrix . In other words, each row for  and  must correspond to the 

same spatial location on the spherical cap. Usually, the first dozen modes are more than enough 

for most problems within the audio bandwidth. This was observed experimentally as modes 

above lowest twelve had very small coefficients. Other times, the number of natural modes used 

to formulate  after the SLDV scans were observed visually. 

 Equation (5.13) is solved by applying an orthogonality condition. For a surface, this 

condition is written as 

  (5.14) 

for a continuous system, or  

  (5.15) 

for a discrete system, where  is the identity matrix,  is the Hermitian of , and  represent 

the discrete differentials, 

  (5.16) 

By using the discrete form of orthogonality, Eq. (5.13) is solved for  as follows: 

 

 

 

 (5.17) 
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 The first attempt to reconstruct the data with the analytically derived natural modes was 

with a scan centered around 12.8 kHz. The scan was taken of an existing ND6 compression 

driver diaphragm (see Fig. 5.1) while producing white noise. It was mounted to a vibration-free 

table, oriented such that the diaphragm and exit of the compression driver were parallel with the 

table (oriented as if mounted in a loudspeaker box). The back of the driver is removed and the 

driver does not have any front loading.  

 Figure 5.4(a) compares the instantaneous velocity data obtained with the SLDV, and Fig. 

5.4(b) shows the reconstructed instantaneous velocity using Eq. (5.17). The modes in the SLDV 

data seem well defined at this frequency, and appear similar to the modes used for the fitting. 

 

  

FIG. 5.4. Spatial velocity profiles of a compression driver diaphragm driven at 12.8 kHz. (a) 

SLDV data used for reconstruction. (b) Reconstruction of Scanning Laser Doppler Vibrometer 

(SLDV) data using natural modes.  

 With moderate accuracy, the excitation pattern at 12.8 kHz from the SLDV is 

reconstructed with the analytically derived natural modes. To determine whether this 
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reconstruction technique is reproducible with different acoustical loadings, other scans at 12.5 

kHz, 16 kHz, and 20 kHz with different acoustical loads were performed. These scans show how 

changes in acoustical loading might affect the vibrational response of the diaphragm. Four 

different scans were performed at each frequency, changing the front loading but keeping the 

back open for the scans. The four different acoustical loads mounted to the front of the 

compression driver are as follows: (1) with no additional loading, (2) mounted to a 30° x 45° 

horn, (3) with clay loaded around the entire edge of the exit of the driver (completely blocking 

the outside channel of the phase plug), and (4) with clay loaded around half the edge of the exit 

of the driver. The scans with different acoustical loadings were intended to provide some insight 

into the effect of removing the back cap of the compression driver with regard to the diaphragm 

vibrations. Although removal of the back cap may change the vibrational information of the 

diaphragm much differently, drastic changes in the front loading may suggest the rough 

magnitude of change that one might expect with removal of the back cap. Differences in modal 

contributions are illustrated in Figs. 5.5 and 5.6 after complex instantaneous velocities of various 

SLDV scans are subtracted from one another. Prominent modal patterns still exist where the 

acoustic loading closer to the diaphragm changes more drastically. While the maximum error 

between the compression driver with the horn and alone is 4%, error up to 30% was observed 

between the compression driver with clay and alone. Errors for the other measurements fall 

between these two extremes. Larger differences occur as the changes in acoustical loading draw 

nearer to the diaphragm. If the modal contributions are the same, the magnitude of their 

difference is constant. These results are shown in Figs. 5.5(c) and 5.6(c). Figure 5.5 shows a 

comparison of the compression driver with and without clay in the outside channel of the driver 
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exit. Figure 5.6 shows a comparison of the compression driver with and without the horn 

mounted to it. 

 

  

 

FIG. 5.5. (a) Scanning Laser Doppler Vibrometer (SLDV) measurement with no additional 

loading. (b) SLDV measurement with clay fit into outside edge of compression driver exit. (c) The 

magnitude of the difference of both velocity profiles.  
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FIG. 5.6. (a) Scanning Laser Doppler Vibrometer (SLDV) measurement with no additional 

loading. (b) SLDV measurement with a 30° x 45° horn mounted to the compression driver. (c) The 

magnitude of the difference of both velocity profiles.  

 The SLDV scans provide evidence that the vibrational modes of the diaphragm do 

change due to moderate acoustical loading changes. To better understand how much the 

vibrational response of the diaphragm has changed due to the removal of the back cap, BE 
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simulations are performed to compare experimentally measured radiation with simulated 

radiation using the diaphragm vibrations of the SLDV scan. Because the SLDV scans are not 

symmetric, as required for inputs into the BE models, the analytically reconstructed velocity is 

used instead. Figure 5.7 shows that the modal pattern input for the BE simulation does not match 

what is happening physically.  

  

 

FIG. 5.7. Directivity results of Boundary-Element (BE) simulations run with, and without, the 

reconstructed Scanning Laser Doppler Vibrometer data. Both results are compared to experimental 

data of the physical system. The BE simulations are mounted to a 30° x 45° horn. 

 These simulations serve as additional evidence that if modes are to be correctly extracted 

analytically, the radiation loading needs to be taken into account. To do this experimentally, 

would require an optically-precise, transparent back cap for the compression driver. SLDV 
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measurements have been taken through glass before, but measurements require the transparent 

cap to have no vibration. This may be difficult for the back cap due to its proximity to the 

acoustic source. It is also possible that the disagreement in directivity is due to errors in the 

approximate natural modes that were derived for the reconstruction. These modes are perhaps 

not similar enough to the actual modes (as seen in Fig. 5.4), and therefore do not reconstruct the 

SLDV data sufficiently well. The experimental data prove to be more useful for the simulation; 

however, the absence of the back cap seems to be the cause of the largest error. Thus, this is a 

possible area of future work as better modes can be derived and the experimental procedures for 

understanding modal breakup can be greatly improved. 

5.3 Phase Plugs 

 The acoustical analysis of compression drivers in this chapter is focused on the phase 

plug. With each new pathway created in the phase plug, the potential for destructive interference 

and inefficient radiation is also created. The goal of the research was to discover what geometric 

model will produce the highest sound pressure levels without destroying the uniformity of the 

frequency response. The frequency responses trend upwards most likely because these 

simulations do not account for voice-coil inductance or modal breakup of the diaphragm. 

 The presentation style of the study is very similar to the presentation style for the study 

done on horns described in Ch. 4. First, an existing compression driver is simulated using the 

BEM to determine the validity of the simulation procedure. Next, the acoustical pathways of the 

existing compression driver are altered such that several different prototypes can be compared 

before being manufactured. 
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5.3.1 Modeling of Existing Compression Driver 

 Before simulating any new phase plug designs, an existing model is simulated to check 

the accuracy of the BEM. Since the compression driver is not usually used as a sound source by 

itself, simulations of each compression driver include a reference horn. Previous unpublished 

work recommended that the compression driver be mounted to an infinitely-long, “anechoically-

terminated” pipe. Because the modal composition of the pressure wavefronts at a given cross 

section of the pipe cannot be analytically derived, the BEM has difficulty correctly prescribing 

an absorbing boundary condition at the nodal locations of the artificial infinite boundary (see 

Sec. 2.2.1). Additionally, due to the limitations of the available numerical package, the BEM was 

only used for steady-state analysis.  

5.3.1.1 Model Specifications 

 In order to mesh both the horn and the compression driver fine enough for correct 

analysis within the entire audio bandwidth, the size of the mesh is necessarily twice the size of 

those in the previous studies of Ch. 4. Average models contained upwards of 60,000 elements, 

which significantly increased computation time. While previous models ran overnight, the 

computation time for these models was on the order of a few days. Computation time also 

depends on the available computing power. For this work a 64-bit computer with 48 GB of 

RAM, 16 processors at 2.4 GHz each, and a Windows Server 2008 operating system was used. 

Figure 5.8 shows the full mesh used to simulate an existing compression driver mounted to a 

reference horn (recall that, due to symmetry, only a quarter of the horn is necessary to model). 
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FIG. 5.8. Mesh used in simulation. A side view (top) and a back view (bottom) are shown. 
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 Another change to the computational run time was increasing the number of evaluated 

frequencies to 33, where only 21 frequencies were simulated in the Ch. 4 computations. Because 

of parasitic resonances and increased variation at higher frequencies, an additional 12 

frequencies were added to each computation. Thus, for these simulations the one-third octave 

center frequencies are evaluated from 200 Hz to 8 kHz, and then the one-twelfth octave center 

frequencies are evaluated between 8 kHz and 20 kHz. The increase in model size and frequencies 

rendered an approximate run time of about 4 to 5 days. 

 Another issue resulting from the addition of the compression driver boundaries in the BE 

simulations was poor convergence. Matrices can either be solved directly or iteratively. Coustyx, 

the BE package used in this work, uses an iterative solver (GMRES) to arrive at an approximate 

solution more quickly.
62

 However, the size of the mesh and possibly the proximity of the 

diaphragm boundary to the boundary of the phase plug (about 0.33 mm) causes the problem to 

converge slowly. Convergence is eventually obtained, but these simulations need approximately 

2 to 8 times more iterations for accurate results than the previous Ch. 4 models. 

 As illustrated in Fig. 5.9, pressure and velocity values for many of these computations 

were computed at a distance of 3.048 meters (10 ft.) from the exit of the compression driver for 

the first 45° of the specified arc. The field points outside of the horn-loaded compression driver 

are considered to be in the far field ( ) for frequencies above 200 Hz and allow general 

assessment of the system directivity and on-axis frequency response. Additional field points at 

the exit of the compression driver provide more information about the system frequency 

response before propagation into the far field. 



5.3 Phase Plugs 111 

 

 

FIG. 5.9. Drawing indicating receiver locations (red dots) found in each numerical simulation 

where the compression driver is mounted to the reference horn. This drawing is not to scale. 

 For experimental verification, the existing compression driver was mounted to the 30° x 

45° and 120° x 60° horns and the on-axis frequency response for each system was obtained at 

3.048 meters (10 ft.) from the entrance of the horn. Experimental measurements were obtained 

previously by others in an anechoic chamber at approximately the same distance. Figure 5.10 

compares simulation and experimental results for the 30° x 45° horn. Figure 5.11 compares 

results for the 120° x 60° horn. The reference pressure for both the experimental and simulated 

data is 20 Pa, and the excitation velocity of the simulated diaphragm mounted to both horns 

was approximately 1.66 m/s. 
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FIG. 5.10. Frequency response results for simulation and experiment of an ND6 compression 

driver on a 45° x 30° horn. Measurement is on-axis, 3.048 m from the entrance of the horn. 

 

FIG. 5.11. Frequency response for simulated and experimental results of an ND6 compression 

driver on a 120° x 60° horn. Measurement is on-axis, 3.048 m from the entrance of the horn. 
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 As seen in these figures, fairly significant disagreement exists between the results of the 

numerical simulations and experimental measurements, particularly at higher frequencies. For 

the simulations, the diaphragm of the compression driver is prescribed a constant velocity over 

frequency. However, this boundary condition is not physical, as discussed in Sec. 5.2 since the 

diaphragm vibrates in higher-order modal patterns. The diaphragm undergoes a mass-spring 

mechanical resonance (usually around 400 to 700 Hz), which increases its excursion and 

subsequent radiation. Incorporation of the electrical domain of the compression driver will also 

provide some differences. Since the impedance of the voice coil increases with frequency, less 

current is drawn at higher frequencies. With less current, excursion and subsequent radiation 

decreases. Other electro-mechano-acoustical effects also may affect its vibration. Figures 5.10 

and 5.11 illustrate these differences as the simulations tend to produce less radiation at lower 

frequencies without the resonance of the diaphragm, and more radiation for higher frequencies 

due to a lack of modal break-up of the diaphragm and electrical inductance.  

 The peak in Fig. 5.11 at 630 Hz does not correlate with the preceding analysis. This 

resonance appears to be associated with the fundamental frequency of a closed-open pipe of 

about 12 to 15 cm in length. The throat of the 120° x 60° horn measured in Fig. 5.11 flares in one 

direction, but maintains a pipe-like geometry in the other. The diaphragm acts as the closed end, 

the cross section of the pipe-like geometry is the pipe, and the open end is created when the horn 

begins to rapidly flare. When the system undergoes resonance, radiation increases. The 

acoustical resonance is more pronounced in BE simulation, possibly because of the lack of 

damping within the model. Another reason that this resonance does not appear in experiment 

may be due to the non-constant velocity boundary condition of the diaphragm. In simulation, this 

boundary does not alter its velocity component and is not affected by increased radiation. 



114 Chapter 5 | Analysis of Compression Drivers 

 

 Incorporation of the electrical inductance into the model would improve agreement 

between the simulated and measured data. With this incorporation, the diaphragm velocity would 

be specified as a function of frequency. Incorporation of this parameter is difficult as both the 

mechanical and acoustical domains couple with the electrical domain. Thus, the mechanical and 

acoustical loading of the compression-driver model would need to be known to incorporate these 

loadings into an electro-mechano-acoustical equivalent circuit. An accurate equivalent circuit 

would allow extraction of a velocity correction due to the voice coil impedance. The diaphragm 

velocity might be extracted experimentally, but this is beyond the scope of this work. 

 Regardless of the discrepancies seen in Figs. 5.10 and 5.11, general trend of increasing 

radiation with frequency is followed in both simulations of the existing compression driver. This 

provides some confidence in the BEM and since none of the prototypes include the electrical or 

mechanical domains, these simulations provide a meaningful first look at the acoustical 

performance of various prototype designs.  

5.3.1.2 Parasitic Resonances 

 Before the BE simulations were able to be verified, a gap (for the voice-coil) in the 

geometry of the compression driver was eliminated. This gap provided an additional cavity 

where air could compress, decreasing overall radiation. This phenomenon has been termed a 

parasitic resonance.
50

 These interior-cavity resonances are not apparent in physical 

measurements if the majority of the gap is filled. For the experimental results presented, these 

gaps have been filled with a plastic ring. The voice coil also takes up space in this cavity. There 

is also a finite amount of viscous and/or thermal damping in this cavity that is not accounted for 

in the model. Since this boundary is mostly filled physically, elimination of it in the model is a 



5.3 Phase Plugs 115 

 

valid assumption. Although these parasitic resonances will not appear in the frequency response, 

their resonances fall within the audio bandwidth of interest and thus merit some attention. 

 Figure 5.12 shows the original mesh used to calculate the frequency response of the 

existing compression driver containing parasitic resonances. The bottle-shaped cross-sectional 

gap (in red) causes a significant acoustical resonance (as confirmed by a simple Helmholtz 

resonance calculation). Since these gaps were filled for the compression drivers tested 

experimentally, these gaps are removed from the models to better simulate the filling of the gaps. 

Once this gap is removed from the model, the resonance is eliminated and far-field radiation is 

more well behaved. The magnitude of the dip in the simulated frequency response is due, in part, 

to the fact that the cavity under resonance is undamped, since damping is not included in the BE 

simulations. Both the bottle-shaped gap and the straight gap below the surround of the 

diaphragm are removed in the final simulation geometry. Thus, a fictitious boundary is placed at 

the beginning of the spherical curvature of the diaphragm and the edge of the phase plug. Figure 

5.12 shows the different geometries which produced the frequency response data with and 

without the boundary in the simulation. 
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FIG. 5.12. Illustration of the gap in the BE mesh (top) that causes a parasitic resonance, and the 

reduced boundary (bottom) used to eliminate it.  

 Depending on the size and shape of the cavity, the resonance can occur anywhere within 

a broad range of frequencies. For the existing compression-driver model, resonance occurs 

around 2.5 kHz. Once the gap is removed, the resonance is eliminated. Other models show 

similar resonances as high as 5 kHz (model 5 of Sec. 5.3.2). As expected, when the gap is 

removed, the resonance (along with other resonances at higher frequencies) disappears.   
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FIG. 5.13. Frequency response comparison at compression driver exit of an existing model with 

and without the boundary causing a parasitic resonance at 2.5 kHz. 

 Care must be taken when analyzing this plot. Many of the dips seen in a discrete 

frequency response may be more pronounced if alternate discrete frequency values are chosen, 

which is why only an approximate value is known for the parasitic resonance in Fig. 5.13. 

Although a continuous spectrum would be more insightful (if it were possible to simulate 

numerically), these discrete frequency-response measurements do help to understand the 

significant acoustical effects of the compression chamber, phase plug, and throat of each 

compression-driver model. 
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5.3.2  Phase Plug Study 

 Since the BEM provides reasonable agreement throughout most of the audio bandwidth 

for on-axis pressure radiation, the phase plug can be altered several different ways in an attempt 

to better understand where the current phase-plug design might be improved. Seven different 

phase-plug models were studied to determine which phase plug characteristics may render better 

next-generation products. The boundaries of the phase plug channels and the lengths of the phase 

plug exits are the altered features in these prototypes. All seven compression drivers are loaded 

to a cylindrically-symmetric reference horn for their BE simulations. The reference horn is 

0.3048 meters (12 inches) long and flares exponentially. This horn was used instead of the 

constant directivity horns (horns used in previous sections) to provide an axisymmetric model, 

which reduces computation time. 

 For this study, each model is referred to by a number. Table 5.1 describes the basic 

geometric differences for each. Model 1 is the existing compression driver that was used in Sec. 

5.3.1 to validate the BE simulation and is also the standard with which other prototypes are 

compared. None of the models have the boundary surrounding the voice-coil so that parasitic 

resonances were eliminated. Each model diaphragm is given the same velocity boundary 

condition for each simulation. The results were not normalized, so any acoustical differences in 

overall radiated pressure are observable. Figures 5.14 through 5.16 allow observation of the 

differences in the frequency responses of the seven models. 
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TABLE 5.1. Description of the seven compression driver models used in the study of phase plug designs. 

Model # Model Description 

1 Standard driver. 

2 Increased spacing between standard driver diaphragm and phase plug. 

3 Shortened driver with quicker channel expansion. Straight phase plug paths. 

4 One wavy phase plug channel (outside channel) and two straight channels. 

5 Two wavy phase plug channels and one straight channel (inside channel).   

6 
Standard driver with a shorter distance between phase plug exit and 

compression driver exit. 

7 
Standard driver with a longer distance between phase plug exit and 

compression driver exit. 

 Although most of the changes with each of the prototypes are in the phase plug, this is 

not the only component that was changed in these models. The compression chamber and 

compression driver throat length were changed as well. These models will help to better 

understand the effects on radiation performance for each component varied. Much of this is 

addressed as each prototype is compared to the existing compression-driver model. It should also 

be noted that while these frequency response measurements contain many points at high 

frequencies, large gaps still exist between each discrete frequency. Many features of these 

models may be hidden between the chosen frequencies. 

 Figure 5.14 shows the on-axis pressure radiation in dB for models 1, 2, and 3. The most 

notable difference is that model 2 has significantly lower radiation output above 8 kHz. It may be 

an undesirable design since the BE simulation does not account for the electrical inductance or 

modal breakup of the diaphragm. Therefore, the frequency response of a physical model 2 likely 

decreases rapidly at high frequencies. Model 3 compares well with the existing compression 

driver; however, its frequency response seems less smooth, with possible resonances that may 
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not be detected with the discrete frequencies chosen. Lower radiation from model 3 is observed 

in some of the lower and mid frequencies.  

 

FIG. 5.14. Comparison of on-axis frequency response radiation for models 1, 2, and 3. 

 Figure 5.15 compares on-axis pressure radiation in dB for models 1, 4, and 5. Models 4 

and 5 both have wavy-shaped phase plug channels, but the characteristics of these waves are 

different. Two of the three channels of the model 4 phase plug are wavy, while only the outside 

channel is wavy for model 5. Apart from a dip in the response at 11.8 kHz, model 4 outperforms 

model 1 in level at several frequencies. Once again, these results may change when electrical and 

mechanical domains are included in the simulations. However, these results show a general 

increase in on-axis pressure radiation for higher frequencies.  
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FIG. 5.15. Comparison of on-axis frequency response radiation for models 1, 4, and 5. 

 Figure 5.16 compares on-axis pressure radiation in dB for models 1, 6, and 7. The 

frequency responses of models 6 and 7 are not much different than that of the existing 

compression driver, model 1. The low and mid frequencies reproduced by model 6 outperform 

those reproduced by model 7, but only by about 1 dB. Although most likely not the major 

contributor, the diaphragm is farther away from the measurement points since the origin of 

measurement is always at the exit of the compression driver. Additionally, model 7 allows for 

slightly more evanescence of higher-order modes at lower frequencies. This may also have an 

effect on the overall on-axis, far-field radiation for each prototype. 
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FIG. 5.15. Comparison of on-axis frequency response radiation for Model 1, 6, and 7. 

5.4 Conclusions  

 Mechanical vibrations of the diaphragm were quantified in terms of analytically-derived 

natural modes of a spherical cap. However, these modes are only moderately capable of 

reconstructing the measured dome vibrations. In order to acquire laser vibrometer scans of the 

diaphragm, the back cap of the compression driver was cut away. This changed the acoustical 

loading on the diaphragm significantly. Altered acoustic loading on the front of the dome was 

observed to cause differences in vibration. The difference in acoustic loading was also made 

manifest in BE simulations that used the reconstructed modal vibration patterns. In order to 

experimentally obtain modal patterns of the diaphragm, to subsequently use as a more accurate 

model of diaphragm motion in simulations, one must maintain the proper acoustic loading. 
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 Acoustical analysis of the horn-loaded compression driver included BE simulations of 

several different compression driver models. Generally speaking, no prototype outperformed the 

existing model (model 1). However, the results of the simulations should be analyzed carefully. 

Many of the high-frequency resonances appear reduced or eliminated from certain models, while 

they are very obvious with others. It is possible that these resonances exist in all of the models, 

but lie in between the frequency data points displayed. If a resonance lies between two discrete 

simulation frequencies, it may not be apparent in the frequency response. Although many of 

these resonances would not be as extreme if damping were included in the model, care must be 

taken when comparing the results, since the BE simulations only analyzed the acoustical domain. 

A full picture of a horn-loaded compression driver‟s frequency response would require coupling 

of the electrical and mechanical domains.  

 Future work in this area may involve a more numerically rigorous approach to the 

problem of incorporating diaphragm modes into the modeling. While the analytically-derived 

natural modes of a spherical cap may be improved upon for the model used in this chapter, the 

method of reconstruction described in the chapter required the back cap to be removed from the 

compression driver—changing the vibrational modes of the diaphragm. An alternative may be to 

construct a transparent back cap, which must remain rigid, to allow laser imaging while 

maintaining the acoustic loading. A numerical alternative would be to use a finite element model 

of the entire compression driver, since it may be better able to simulate the correct modal 

vibrations of the diaphragm.  
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Chapter 6 

Conclusions 

6.1 Conclusions 

 Numerical simulations for a horn-loaded compression driver and an infinitely baffled 

finite-length pipe have been presented and analyzed. For the compression driver, simulations 

were used as a comparative tool between various computer-drafted models. Horns were 

simulated individually and then with the compression driver as a composite systems. The 

majority of these simulations were done with the boundary-element method (BEM). For the pipe, 

the simulations were computed using the finite-difference method (FDM). Because such a 

variety topics were covered in the thesis, summaries and conclusions are given for Chapters 3, 4, 

and 5 individually. 

 In Chapter 3, numerical simulations of transient wave propagation and subsequent 

radiation for a constant cross-section pipe were presented and analyzed. As stated previously, 
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these simulations used the FDM, which helped produce better understanding of transient 

radiation for pulse-like signals from a finite-length pipe. This analysis also served as a basis for 

understanding transient radiation from other geometries like horns. Independent natural modes of 

the pipe were excited individually and compared with one another. The plane-wave mode was 

noted to have maximum radiation on axis, where higher-order modes have their maximum 

radiation off axis. When pipe modes were excited individually, a fair amount of coupling of the 

pipe modes with the half-space modes was observed and should not be ignored in future 

analytical models. This work also gives insight into some of the differences between transient 

and steady-state radiation, and lays the groundwork for possible analysis of transient radiation 

from horn-loaded compression drivers. However, convergence issues of the FDM with non-

analytically defined geometries would need to be ironed out. 

 In Chapter 4, the numerical simulations and experimental results for two existing horns, 

in terms of directivity and frequency response, were compared. The horns were first modeled to 

ensure better understand the limitations of the boundary-element (BE) simulations. A study was 

subsequently performed in which the curvature of the input wavefront was varied. Moderate 

differences in the overall frequency responses were observed as the amount of energy imparted 

to the higher-order modes changed, depending on the curvature of the excitation boundary. In 

one case, the simulated planar wavefront did not produce as much radiation as the simulated 

outward-curvature wavefront, possibly challenging the long-held belief that a planar wavefront is 

most desirable at the entrance of the horn. No differences in the horn directivity patterns were 

observed until above 10 kHz. The horn geometry governs the propagation of low-frequency 

wavefronts. It was shown that the horn geometry causes evanescence of higher-order modes 

below 10 kHz, producing similar directivity results for many different excitation sources. Above 
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10 kHz, significant contributions from higher-order modes (mostly the first higher-order mode) 

affected the far-field pressure radiation such that the directivity no longer agreed with 

experimental results. Any estimation of the combination of multiple modes propagating through 

the horn and the subsequent radiation into the far-field needs to be very precise. 

 In Chapter 5, the compression driver was analyzed. Two components of the compression 

driver were looked at in depth: (1) the diaphragm and (2) the phase plug. In the analysis of the 

diaphragm, approximate natural modes of a spherical cap were derived and fit to experimental 

laser vibrometer scans of the diaphragm. The scans were performed by cutting off the back of the 

compression driver—to provide the necessary visible access to the surface of the dome. Several 

different scans were performed while the front acoustic loading was changed in several different 

ways. The acoustic loading significantly affected the coefficients used to determine the 

appropriate linear combination of the natural modes comprising the vibration of the diaphragm. 

This was verified with more scans. A BE simulation used the reconstructed profile for the 

vibration of the diaphragm but it resulted in poor agreement between the simulated and 

experimental directivities. Possible reasons for this disagreement were given and more work will 

need to be done to accurately use this type of technique. 

 In the analysis of the phase plug, seven different models were numerically constructed 

and tested via BE simulations. One of the seven was an existing compression driver. Thus, a 

comparative analysis with this model was performed to better understand how the other six 

designs differed from the existing design. Problems with parasitic resonances were discovered 

and overcome to give more accurate frequency responses for each model. These models took 

very long to run and seemed to be pushing the limits of available computational power. None of 

the models seemed to clearly perform better than the others. The existing design seemed to be 
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the smoothest, though a higher density of frequency points may need to be run to confirm this 

result. 

6.2 Future Work 

One of the most exciting areas of future work is that of extending the transient analysis to horn-

loaded compression drivers. Since many signals reproduced by these systems are transient in 

nature, a better understanding of the transient effects of horn radiation is necessary and may 

provide meaningful breakthroughs in fundamental horn design. The methods were developed in 

this thesis with the FDM, but stability is difficult to achieve when signals are short transients (as 

many higher frequencies are excited). Further research may be able to perfect the FDM to better 

handle transient signal stability in three-dimensional models. The FEM may be a viable option as 

the stability problems can be avoided due to more flexible meshing requirements; the drawback 

to the FEM is that numerical inversions are required for each temporal step, which would greatly 

increase the necessary computation time. 

While individual studies of horn and compression driver components could carry on 

indefinitely, it is in the coupling of these problems that more meaningful analysis will likely 

occur. The numerical solution most readily accessible for solving multi-domain problems is the 

FEM. As discussed briefly in Ch. 2, this method is very popular and has been commercialized by 

several companies. Irregular geometries are handled easily and meshing does not have the 

analytical complications associated as with the FDM. The FEM can also solve multi-domain 

models. It may be that coupling numerical solvers, such as FEM and BEM solvers, will allow 

further progress in this area of research. Modern technology will only continue to improve, 
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making the transition to numerical studies an increasingly attractive and beneficial method for 

product development. 

 The question of electrical, mechanical, and acoustical nonlinearity present in the physical 

model will eventually need to be addressed. Analyzing these systems with linear numerical 

methods may overlook some of the signal distortion that is present physically. Figures 4.14 

through 4.19 show that peak pressures of between 200-500 Pa (140-148 dB sound pressure 

levels) are necessary in horn throats to produce typical radiation output levels from the horn. 

With systems producing very high sound pressure levels, nonlinear acoustical effects can easily 

occur and is something designers must be aware of. Numerical models will eventually need to 

investigate possible nonlinear effects as these problems will not be detected using current linear 

numerical techniques. For example, one may incorrectly ascribe some experimentally measured 

distortion to other sources such as coil rub or voice coil excursion outside of the linear range of 

the magnetic field when it may be the case that the operator drove the compression driver at 

amplitudes such that acoustic nonlinearity (or distortion) was generated within the horn and/or in 

the radiated field. The FDM may in fact prove to be a useful method for handling this problem 

due to its ability to handle complex nonlinear wave equations.  
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Appendix 

MATLAB Code 

The code used to compute the finite-difference computations of Ch. 3 is given here. Each 

function called by MainWave.m is given in as a different section of the appendix 

A.1 MainWave.m 

%-------------------------------------------------------------------------- 
% FD code used to compute transient radiation from a finite-length, 
% infinitely-baffled pipe. 
% 
% Created By Daniel Tengelsen and Sebastian Acosta 
% 
% Stepanishen and Tougas' model reduced by a factor of 4. Hence, 
% Stepanishen Frequencies: 200, 2000, 2500,  4000,  5000,  10000 
% Our Frequenceis:         800, 8000, 10000, 16000, 20000, 40000 
%-------------------------------------------------------------------------- 
clear all; close all; clc; 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y; 
global u v vrms; 
global jacobian delta; 
global alpha beta gamma;  



142 Appendix | MATLAB Code 

 

global xxi xeta xxixi xetaeta xxieta yxi yeta yxixi yetaeta yxieta; 
global axi geta; 
global lambda kappa; 
global R; 
global i1 i3; 
global Xc Yc; 
global  P_dt P_field; 

  
%-------------------------------------------------------------------------- 
%                           Initial Data 
%-------------------------------------------------------------------------- 
% Grid Parameters 
%------------------------------------- 
N1 = 51;                                   % Number of Xi-curves 
N2 = 31;                                    % Number of Eta-curves 
TOL = 1e-6;                                 % Tolerance grid  
N = 10000;                                  % Max number of SOR iterations 
w = 1.9;                                    % SOR parameter 

  
% Field Parameters 
%------------------------------------- 
freq = 8000;                                % Frequency [Hz] 
dt = 3.0e-7;                                % Time step [s] 
brk = round(1/(freq*dt)); 
dt = 1/(freq*brk); 
TimeMax = 0.0042;                           % Physical Time [s] 
Tmax = TimeMax/dt;                          % Maximum Number of time steps 
C = 343;                                    % Wave speed [m/s] 
imag = 1i;                                  % Imaginary unit 

  
% Initializing Variables 
%------------------------------------- 
x = zeros(N1,N2);                           % X-coordinates  
y = zeros(N1,N2);                           % Y-coordinates  
u = zeros(N1,N2);                           % Grid plotter 
v = zeros(N1,N2,3);                         % Pressure Field 
vrms = zeros(N1,N2);                        % RMS Pressure Field 
jacobian = zeros(N1,N2);                    % jacobian  
delta = zeros(N1,N2);                       % jacobian  
alpha = zeros(N1,N2);                       % alpha metric factor  
gamma = zeros(N1,N2);                       % gamma metric factor  
beta = zeros(N1,N2);                        % beta metric factor  
xxi = zeros(N1,N2);                         % Coord Deriv 
xeta = zeros(N1,N2);                        % Coord Deriv 
yxi = zeros(N1,N2);                         % Coord Deriv 
yeta = zeros(N1,N2);                        % Coord Deriv 
xxieta = zeros(N1,N2);                      % Coord Deriv 
yxieta = zeros(N1,N2);                      % Coord Deriv 
xxixi = zeros(N1,1);                        % Coord Deriv 
yxixi = zeros(N1,1);                        % Coord Deriv 
xetaeta = zeros(N1,1);                      % Coord Deriv 
yetaeta = zeros(N1,1);                      % Coord Deriv 
axi = zeros(N1,N2);                         % metric factor derivatives 
geta = zeros(N1,N2);                        % metric factor derivatives 
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lambda = zeros(N2,1);                       % Auxiliary variables 
kappa = zeros(N2,1);                        % Auxiliary variables 
R = zeros(N2,1);                            % Absorbing Radius  

  
%-------------------------------------------------------------------------- 
%                      Grid Generation Algorithm 
%-------------------------------------------------------------------------- 
fprintf('\n***************************************************** \n'); 
fprintf('************** GENERATING ELLIPTIC GRIDS ************ \n'); 
fprintf('***************************************************** \n\n'); 

  
% Choose the grid to be created 
%---------------------------------------- 
i1 = Horn_Step(N1,N2,-0.000);                       Go to Horn_Step 

  
% Create Initial Grid for SOR 
%---------------------------------------- 
InitialGrid(N1,N2,i1);                              Go to InitialGrid 

  
% Okay Initial Grid  
% --------------------------------------- 
figure 
mesh(x,y,u,'EdgeColor','black'); 
xlabel('x','FontSize',18); 
ylabel('y','FontSize',18); 
axis equal; 
set(gca,'FontSize',18) 
view(0,90); 
title('INITIAL GRID - Press Enter to Continue','FontSize',18); 
pause 

  
% Calling Grid Generator 
%---------------------------------------- 
time1 = cputime; 
[iter,err] = gridgen(N1,N2,TOL,N,w);                Go to gridgen 
time2 = cputime; 

  
% Reporting Grid Generation Results 
%---------------------------------------- 
fprintf('\n\t\tNumber of Iterations:\t%.0f \n',iter); 
fprintf('\t\tMaximum Point-Error:   \t%e \n',err); 
fprintf('\t\tTime Lapse:            \t%0.2f sec\n\n',time2-time1); 

  
% Plotting Final Grid 
%---------------------------------------- 
mesh(x,y,u,'EdgeColor','black'); 
xlabel('x','FontSize',18); 
ylabel('y','FontSize',18); 
axis equal; 
view(0,90); 
title('FINAL GRID - Press Enter to Continue','FontSize',18); 

  
%-------------------------------------------------------------------------- 
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%                Leapfrog Finite-Difference Scheme 
%-------------------------------------------------------------------------- 

  
% Computing Metric Factors 
%---------------------------------------- 
Metrics_Step(N1,N2);                                Go to Metrics_Step 

  
% Computing the Courant Number 
%---------------------------------------- 
CFL = min(min(delta(1:N1-1,1:N2-1)))/C; 
fprintf('\n\t The Courant Number is: \t %.2e \n',CFL); 

  
% Initial Conditions 
%---------------------------------------- 
for i=1:N1, 
    for j=1:N2, 
        v(i,j,1) = 0; 
        v(i,j,2) = v(i,j,1); 
    end 
end 

  
% Initial Field 
%---------------------------------------- 
figure, 
surf(x,y,v(:,:,2)); 
shading interp; 
caxis([-1 1]); 
xlabel('x','FontSize',18); 
ylabel('y','FontSize',18); 
title('INITIAL FIELD - Press Enter to Continue','FontSize',18); 
axis([x(1,1) x(N1,1) min(min(y(1,1))) max(max(y)) -2 2]); 
set(gca,'Fontsize',18) 
view(0,90) 

  
%Starting Leapfrog Scheme 
%---------------------------------------- 
fprintf('\n***************************************************** \n'); 
fprintf('************* IMPLEMENTING LEAPFROG SCHEME ************ \n'); 
fprintf('***************************************************** \n'); 
fprintf('\nPRESS ENTER TO CONTINUE ... \n '); 
pause 

  

  
LeapFrog_Step(freq,C,dt,Tmax,N1,N2);               Go to LeapFrogHigher 

  
%-------------------------------------------------------------------------- 
%                          Plotting Results 
%-------------------------------------------------------------------------- 
figure 
dir = [P_dt(end:-1:2,1:end); P_dt(:,1:end)]; 
t = linspace(0,dt*length(dir(1,:)),length(dir(1,:))); 
th = [-pi/2:pi/(length(dir(:,1))-1):pi/2]*180/pi; 
surf(t(7500:end),th,abs(dir(:,7500:end))); 



A.2 LeapFrog_Step.m 145 

 

xlim([2.8e-3, 4.2e-3]) 
ylim([-90, 90]) 
view(0,90) 
shading interp 
xlabel('time (sec)','FontSize',18) 
ylabel('angle (rad)','FontSize',18) 
title(['Directivity vs. Time at f = ' num2str(freq)],'FontSize',18) 

  
figure 
surf(t(7500:end),th,abs(dir(:,7500:end))); 
xlim([2.8e-3, 4.2e-3]) 
ylim([-90, 90]) 
view(45,50) 
shading interp 
xlabel('time (sec)','FontSize',18) 
ylabel('angle (rad)','FontSize',18) 
title(['Directivity vs. Time at f = ' num2str(freq)],'FontSize',18) 

  
% Final Field 
figure, 
surf(t(7500:end),th,abs(dir(:,7500:end))); 
xlim([2.8e-3, 4.2e-3]) 
ylim([-90, 90]) 
view(-68,74) 
shading interp 
xlabel('time (sec)','FontSize',18) 
ylabel('angle (rad)','FontSize',18) 
title(['Directivity vs. Time at f = ' num2str(freq)],'FontSize',18) 

  
fprintf('\n***************************************************** \n'); 
fprintf('******************* END OF PROGRAM ****************** \n'); 
fprintf('***************************************************** \n'); 

 

A.2 LeapFrog_Step.m 

%-------------------------------------------------------------------------- 
% This function is used in MainWave 
% It computes Leapfrog algorithm for any acceleration profile, 
% specifically higher-order modes of the pipe. 
% 
% Created by Daniel Tengelsen and Sebastian Acosta 
%-------------------------------------------------------------------------- 

  
function LeapFrog_Step(freq,C,dt,Tmax,N1,N2) 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
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%-------------------------------------------------------------------------- 
global x y v vrms; 
global jacobian; 
global alpha beta gamma;  
global xxi xeta xxixi xetaeta xxieta yxi yeta yxixi yetaeta yxieta; 
global axi geta; 
global lambda kappa; 
global R; 
global P_dt P_field; 

  
%-------------------------------------------------------------------------- 
%                           Initial Data 
%-------------------------------------------------------------------------- 
ghostw = zeros(N1,1); 
ghosta = zeros(N1,1); 
ghosts = zeros(N2,1); 

  
% Field Parameters 
%------------------------------------- 
w = 2*pi*freq;                    % Angular Frequency 
rad = 0.75*0.0254;                % Pipe radius 
r = linspace(0,rad,N2);           % Grid points along pipe radius 
rho = 1.21;                       % Density of Air 

  
k = 0;                            % Index for pressure magnitude 
iter = 1;                         % Index for pressure at infinite boundary 
n=1;                              % Index for Leapfrog algorithm 
mi = 1;                           % Index for pressure field snapshots 

  
%-------------------------------------------------------------------------- 
%                        Leapfrog Algorithm 
%-------------------------------------------------------------------------- 
while (n <= Tmax),         
    % Constant velocity boundary condition 
    %------------------------------------------------ 
    if n <= 1/(freq*dt) 
        uN = 1e-2; 
        mc = 3.83;                % Mode coefficient (zeros of BesselJ_1) 
        % 
        ES = uN*besselj(0,0/rad*r)*sin(w*(n-1)*dt);      %Excitation Signal 
        dES = -w*uN*besselj(0,mc/rad*r)*cos(w*(n-1)*dt); %Time Deriv. of ES 
    else 
        ES = 0;                                          %Excitation Signal 
        dES = zeros(size(r));                            %Time Deriv. of ES 
    end 

  
    % Advance in time inner points 
    %------------------------------------------------ 
    for i = 2:N1-1, 
        for j = 2:N2-1,         
            vxi = (v(i+1,j,2)-v(i-1,j,2))/2; 
            veta = (v(i,j+1,2)-v(i,j-1,2))/2; 
            vxixi = v(i+1,j,2)-2*v(i,j,2) +v(i-1,j,2); 
            vetaeta = v(i,j+1,2)-2*v(i,j,2)+v(i,j-1,2); 
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            vxieta = (v(i+1,j+1,2)-v(i+1,j-1,2)-v(i-1,j+1,2)+v(i-1,j-1,2))/4; 

             
            v(i,j,3) = (C*dt)^2*((alpha(i,j)*vxixi  ... 
                - 2*beta(i,j)*vxieta ... 
                + gamma(i,j)*vetaeta ... 
                + 0.5*axi(i,j)*vxi + 0.5*geta(i,j)*veta)/jacobian(i,j)^2 ...   
                + (veta*xxi(i,j) - vxi*xeta(i,j))/(y(i,j)*jacobian(i,j)))...  
                + 2*v(i,j,2) - v(i,j,1); 
        end 
    end 

     
    % Solve for Ghost Points for the Source boundary 
    %------------------------------------------------ 
    for j = 2:N2-1, 
        veta = (v(1,j+1,2)-v(1,j-1,2))/2; 
        ghosts(j) = v(2,j,2)... 
            - 2/alpha(1,j)*(beta(1,j)*veta... 
            + jacobian(1,j)*sqrt(alpha(1,j))*dES(j)*rho); 
    end 

     
        % Bottom Left 
        veta = -(3*v(1,1,2) - 4*v(1,2,2) + v(1,3,2))/2; 

  
        ghosts(1) = v(2,1,2)... 
            - 2/alpha(1,1)*(beta(1,1)*veta... 
            + jacobian(1,1)*sqrt(alpha(1,1))*dES(1)*rho); 

  
        % Top Left (this is rigid) 
        veta = (3*v(1,N2,2) - 4*v(1,N2-1,2) + v(1,N2-2,2))/2; 

  
        ghosts(N2) = v(2,N2,2)... 
            - 2/alpha(1,N2)*(beta(1,N2)*veta... 
            + jacobian(1,N2)*sqrt(alpha(1,N2))*dES(N2)*rho); 

     
    % Solve for Ghost Points for the wall and absorbing boundaries 
    %------------------------------------------------ 
    for i=2:N1-1, 
        ghostw(i) = beta(i,N2)/gamma(i,N2)*(v(i+1,N2,2)-v(i-1,N2,2))... 
            + v(i,N2-1,2); 
        ghosta(i) = v(i,2,2); 
    end 
    ghostw(1) = beta(1,N2)/gamma(1,N2)*(v(2,N2,2)-ghosts(N2)) + v(1,N2-1,2); 
    ghosta(1) = v(1,2,2); 

     
    % Advance in time at rigid wall 
    %------------------------------------------------ 
    for i=2:N1-1, 
        vxi = (v(i+1,N2,2)-v(i-1,N2,2))/2; 
        veta = (ghostw(i)-v(i,N2-1,2))/2; 
        vxixi = v(i+1,N2,2)-2*v(i,N2,2)+v(i-1,N2,2); 
        vetaeta = ghostw(i)-2*v(i,N2,2)+v(i,N2-1,2); 
        vxieta = (ghostw(i+1)-v(i+1,N2-1,2)-ghostw(i-1)+v(i-1,N2-1,2))/4; 
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        v(i,N2,3) = (C*dt)^2*((alpha(i,N2)*vxixi  ... 
            - 2*beta(i,N2)*vxieta ... 
            + gamma(i,N2)*vetaeta ... 
            + 0.5*axi(i,N2)*vxi + 0.5*geta(i,N2)*veta)/jacobian(i,N2)^2 ...   
            + (veta*xxi(i,N2) - vxi*xeta(i,N2))/(y(i,N2)*jacobian(i,N2)))...  
            + 2*v(i,N2,2) - v(i,N2,1); 
    end 

  
    % Advance in time at rigid wall - Corner Point (Top Left) 
    %------------------------------------------------ 
        vxi = (v(2,N2,2)-ghosts(N2))/2; 
        veta = (ghostw(1)-v(1,N2-1,2))/2; 
        vxixi = v(2,N2,2)-2*v(1,N2,2)+ghosts(N2); 
        vetaeta = ghostw(1) - 2*v(1,N2,2) + v(1,N2-1,2); 
        vxieta = ((3*v(2,N2,2) - 4*v(2,N2-1,2) + v(2,N2-2,2)) ... 
            - (3*ghosts(N2) - 4*ghosts(N2-1) + ghosts(N2-2)))/4; 

  
        v(1,N2,3) = (C*dt)^2*((alpha(1,N2)*vxixi  ... 
            - 2*beta(1,N2)*vxieta ... 
            + gamma(1,N2)*vetaeta ... 
            + 0.5*axi(1,N2)*vxi + 0.5*geta(1,N2)*veta)/jacobian(1,N2)^2 ...   
            + (veta*xxi(1,N2) - vxi*xeta(1,N2))/(y(1,N2)*jacobian(1,N2)))...  
            + 2*v(1,N2,2) - v(1,N2,1); 

         

  
    % Advance in time at Absorbing Boundary 
    %------------------------------------------------ 
    for j=2:N2-1, 
        veta = (v(N1,j+1,2)-v(N1,j-1,2))/2; 
        vetaeta = v(N1,j+1,2)-2*v(N1,j,2)+v(N1,j-1,2); 
        vxieta = (3*v(N1,j+1,2)-4*v(N1-1,j+1,2)+v(N1-2,j+1,2)... 
            -3*v(N1,j-1,2)+4*v(N1-1,j-1,2)-v(N1-2,j-1,2))/4;   

  
        v(N1,j,3)= 1/(1+C*dt*R(j)/(jacobian(N1,j)*lambda(j))... 
            *(alpha(N1,j)+0.25*axi(N1,j)... 
            -xeta(N1,j)*jacobian(N1,j)/(2*y(N1,j))))... 
            *((C*dt)^2/jacobian(N1,j)^2 ... 
            *((alpha(N1,j)+0.25*axi(N1,j)... 
            -xeta(N1,j)*jacobian(N1,j)/(2*y(N1,j)))... 
            *(-2*kappa(j)/lambda(j)*veta... 
            - jacobian(N1,j)/lambda(j)*v(N1,j,2)... 
            + R(j)*jacobian(N1,j)/(C*lambda(j)*dt)*v(N1,j,1))... 
            + 2*alpha(N1,j)*(v(N1-1,j,2) - v(N1,j,2))... 
            - 2*beta(N1,j)*vxieta + gamma(N1,j)*vetaeta ... 
            + (geta(N1,j)/2+xxi(N1,j)*jacobian(N1,j)/y(N1,j))*veta) ... 
            + 2*v(N1,j,2) - v(N1,j,1)); 
    end 

  
    % Advance in time at Source 
    %------------------------------------------------ 
    for j = 2:N2-1,         
        vxi = (v(2,j,2)-ghosts(j))/2; 
        veta = (v(1,j+1,2)-v(1,j-1,2))/2; 
        vxixi = v(2,j,2)-2*v(1,j,2) +ghosts(j); 
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        vetaeta = v(1,j+1,2)-2*v(1,j,2)+v(1,j-1,2); 
        vxieta = (v(2,j+1,2)-v(2,j-1,2)-ghosts(j+1)+ghosts(j-1))/4; 

  
        v(1,j,3) = (C*dt)^2*((alpha(1,j)*vxixi  ... 
            - 2*beta(1,j)*vxieta ... 
            + gamma(1,j)*vetaeta ... 
            + 0.5*axi(1,j)*vxi + 0.5*geta(1,j)*veta)/jacobian(1,j)^2 ...   
            + (veta*xxi(1,j) - vxi*xeta(1,j))/(y(1,j)*jacobian(1,j))) ...  
            + 2*v(1,j,2) - v(1,j,1); 
    end 

     
    % Advance in time at axis of symmetry 
    %------------------------------------------------ 
    for i=2:N1-1, 
        vxi = (v(i+1,1,2)-v(i-1,1,2))/2; 
        veta = (v(i,2,2)-ghosta(i))/2; 
        vxixi = v(i+1,1,2)-2*v(i,1,2)+v(i-1,1,2); 
        vetaeta = v(i,2,2)-2*v(i,1,2)+ghosta(i); 
        vxieta = (v(i+1,2,2)+ghosta(i-1)-v(i-1,2,2)-ghosta(i+1))/4; 

  
        v(i,1,3) = (C*dt)^2*((alpha(i,1)*vxixi  ... 
            - 2*beta(i,1)*vxieta*0 ... 
            + gamma(i,1)*vetaeta ... 
            + 0.5*axi(i,1)*vxi + 0.5*geta(i,1)*veta)/jacobian(i,1)^2 ...   
            + (xeta(i,1)^2*yxixi(i)-2*xxi(i,1)*xeta(i,1)*yxieta(i)... 
            +xxi(i,1)^2*yetaeta(i))*(xeta(i,1)*vxi-xxi(i,1)*veta)... 
            /jacobian(i,1)^3 ... 
            + (xeta(i,1)^2*xxixi(i)-2*xxi(i,1)*xeta(i,1)*xxieta(i)... 
            +xxi(i,1)^2*xetaeta(i))*(yxi(i,1)*veta-yeta(i,1)*vxi)... 
            /jacobian(i,1)^3)... 
            + 2*v(i,1,2) - v(i,1,1); 
    end 

     
    % Advance in time at corner (Bottom Left) 
    %------------------------------------------------ 
    vxi = (v(2,1,2)-ghosts(1))/2; 
    veta = 0; %(v(1,2,2)-ghosta(1))/2; 
    vxixi = v(2,1,2)-2*v(1,1,2)+ghosts(1); 
    vetaeta = v(1,2,2)-2*v(1,1,2)+ghosta(1); 
    vxieta = (v(2,2,2)-ghosta(1)-(-3*ghosts(1) + 4*ghosts(2) - ghosts(3)))/4;  

  
    v(1,1,3) = (C*dt)^2*((alpha(1,1)*vxixi  ... 
        - 2*beta(1,1)*vxieta ... 
        + gamma(1,1)*vetaeta ... 
        + 0.5*axi(1,1)*vxi + 0.5*geta(1,1)*veta)/jacobian(1,1)^2 ...   
        + (xeta(1,1)^2*yxixi(1)-2*xxi(1,1)*xeta(1,1)*yxieta(1)... 
        +xxi(1,1)^2*yetaeta(1))*(xeta(1,1)*vxi-xxi(1,1)*veta)... 
        /jacobian(1,1)^3 ... 
        + (xeta(1,1)^2*xxixi(1)-2*xxi(1,1)*xeta(1,1)*xxieta(1)... 
        +xxi(1,1)^2*xetaeta(1))*(yxi(1,1)*veta-yeta(1,1)*vxi)... 
        /jacobian(1,1)^3)... 
        + 2*v(1,1,2) - v(1,1,1); 

     
    % Advance in time at corner (Bottom Right) 
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    %------------------------------------------------ 
    for i=N1, 
        v(i,1,3)=(4*v(i,2,3)-v(i,3,3))/3; 
    end 

     
    % Advance in time at corner (Top Right) 
    %------------------------------------------------ 
    v(N1,N2,3)=(4*v(N1,N2-1,3)-v(N1,N2-2,3))/3; 

  
    %---------------------------------------------------------------------- 
    %                          Plots and Updates 
    %---------------------------------------------------------------------- 
    % Real Time Animation 
    %------------------------------------------------ 
    if (mod(n,10)==0), 
        surf(x,y,(v(:,:,2))); hold on; 
        surf(x,-y,(v(:,:,2))); hold off; 
        shading interp; 
        colorbar 
        caxis([-0.015 0.015]); 
        xlabel('x','FontSize',18); 
        ylabel('y','FontSize',18); 
        title(['Time Iter =',num2str(n), ' and Frequency = ', ... 
               num2str(freq)],'Fontsize',16,'Fontweight','demi'); 
        axis([x(1,1) x(N1,1) 0 max(max(y)) -2 2]); 
        view(0,60); 
        pause(0.01); 
    end 

     
    % Calculates Pressure Magnitude field after system is in steady state 
    %------------------------------------------------ 
    if n >= round(Tmax-1/freq/dt), 
        t = k*dt; 
        vrms = (vrms*t  + abs(v(:,:,2)).^2*dt)/(t+dt); 
        k = k+1; 
    end 
    P_dt(1:N2,iter) = v(N1,:,2)'; 
    iter = iter+1; 

     
    % Snapshots of Pressure Field 
    %------------------------------------------------ 
    if n == 301 || n == 4441 || n == 8601 
        P_field(:,:,mi) = v(:,:,2); 
        mi = mi + 1; 
    end 

         
    % Update 
    %------------------------------------------------ 
    n = n + 1; 
    v(:,:,1) = v(:,:,2); 
    v(:,:,2) = v(:,:,3);       
end 
vrms = sqrt(vrms); 
return 
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A.3 Horn_Step.m 

%-------------------------------------------------------------------------- 
% This function is used in MainWave 
% It computes the initial boundaries to form the initial grid. 
% 
% Created by Daniel Tengelsen and Sebastian Acosta 
%-------------------------------------------------------------------------- 

  
function i1 = Horn_Step(N1,N2,curve) 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y; 
global R; 
global i3; 

  
%-------------------------------------------------------------------------- 
%                           Initial Data 
%-------------------------------------------------------------------------- 
scale = 0.0254;             % Conversion factor between inches and meters 
rad = 0.75;                 % Radius of the pipe (inches) 
i3 = N2-1; 
R = 20*scale*ones(N2,1);    % Radius from pipe exit to absorbing boundary 

  
%-------------------------------------------------------------------------- 
%                      Definiting Main Vertices 
%-------------------------------------------------------------------------- 
% Vertix 1 
%----------------------------- 
x(1,1) = -19.685*scale; 
y(1,1) = 0; 

  
% Vertix 2 
%----------------------------- 
x(N1,1) = R(1); 
y(N1,1) = 0; 

  
% Interpolate between vertices 1 and 2 
%----------------------------- 
interpoint(x(1,1),x(N1,1),y(1,1),y(N1,1),1,N1,1,1);   Go to interpoint 

  
% Vertix 3 
%----------------------------- 
x(N1,N2) = 0; 
y(N1,N2) = R(1); 

  
[val,i1] = min(abs(x(:,1)-0.001)); 
xinc = 19.685/(i1-1); 
anginc = pi/2/(N2-1);       % Angular Increment 
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% Vertix 4 
%----------------------------- 
x(i1,N2) = 0; 
y(i1,N2) = rad*scale; 

  
% Vertix 5 
%----------------------------- 
x(1,N2) = -19.685*scale; 
y(1,N2) = rad*scale; 

  
%-------------------------------------------------------------------------- 
%                      Other Interpolation Between Vertices 
%-------------------------------------------------------------------------- 
% Interpolate between vertices 2 and 3 
%----------------------------- 
ang = 0; 
for j=1:N2, 
    x(N1,j) = R(j)*cos(ang); 
    y(N1,j) = R(j)*sin(ang); 
    ang = ang + anginc; 
end 

  
% Interpolate between vertices 3 and 4 
%----------------------------- 
interpoint(x(i1,N2),x(N1,N2),y(i1,N2),y(N1,N2),i1,N1,N2,1); 

  
% Interpolate between vertices 4 and 5 
%----------------------------- 
for i=1:i1, 
    x(i,N2) = x(1,N2) + (i-1)*xinc*scale; 
    y(i,N2) = rad*scale; 
end 

  
% Interpolate between vertices 1 and 5 
%----------------------------- 
interpoint(x(1,1),x(1,N2),y(1,1),y(1,N2),1,N2,1,2); 
for j=1:N2, 
    x(1,j) = x(1,j) + curve*cos(pi/2*(j-1)/(N2-1)); 
end 

  
return 

A.4 Metrics_Step.m 

%-------------------------------------------------------------------------- 
% This function is used in MainWave 
% It computes the values of all metric factors (alpha, gamma, 
% beta), the jacobian, and the metric factor's partial derivatives. 
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% 
% Created by Daniel Tengelsen and Sebastian Acosta 
%-------------------------------------------------------------------------- 

  
function Metrics_Step(N1,N2) 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y; 
global jacobian delta; 
global alpha beta gamma;  
global xxi xeta yxi yeta; 
global axi geta; 
global lambda kappa; 

  
%-------------------------------------------------------------------------- 
%                       Computation of Metrics 
%-------------------------------------------------------------------------- 
% Interior Points 
%-------------------------------------------------- 
for j=2:N2-1, 
    for i=2:N1-1, 
        xxi(i,j)=(x(i+1,j)-x(i-1,j))/2;        
        xeta(i,j)=(x(i,j+1)-x(i,j-1))/2;      
        yxi(i,j)=(y(i+1,j)-y(i-1,j))/2;        
        yeta(i,j)=(y(i,j+1)-y(i,j-1))/2; 
        xxieta = (x(i+1,j+1)-x(i+1,j-1)-x(i-1,j+1)+x(i-1,j-1))/4; 
        yxieta = (y(i+1,j+1)-y(i+1,j-1)-y(i-1,j+1)+y(i-1,j-1))/4; 

  
        jacobian(i,j) = xxi(i,j)*yeta(i,j)-xeta(i,j)*yxi(i,j);  
        alpha(i,j) = xeta(i,j)^2+yeta(i,j)^2;      
        gamma(i,j) = xxi(i,j)^2+yxi(i,j)^2;        
        beta(i,j) = xxi(i,j)*xeta(i,j)+yxi(i,j)*yeta(i,j); 
        axi(i,j) = 2*(xeta(i,j)*xxieta+yeta(i,j)*yxieta); 
        geta(i,j) = 2*(xxi(i,j)*xxieta+yxi(i,j)*yxieta); 
        delta(i,j) = jacobian(i,j)/sqrt(alpha(i,j)+gamma(i,j)+2*beta(i,j)); 
    end 
end 

  
% Axis of Symmetry Points 
%-------------------------------------------------- 
for i=2:N1-1, 
    xxi(i,1) = (x(i+1,1)-x(i-1,1))/2;                       
    xeta(i,1) = (-3*x(i,1)+4*x(i,2)-x(i,3))/2;      
    yxi(i,1) = (y(i+1,1)-y(i-1,1))/2;                       
    yeta(i,1) =(-3*y(i,1)+4*y(i,2)-y(i,3))/2; 
    xxieta = (-3*x(i+1,1)+4*x(i+1,2)-x(i+1,3)+3*x(i-1,1)... 
        -4*x(i-1,2)+x(i-1,3))/4;   
    yxieta = (-3*y(i+1,1)+4*y(i+1,2)-y(i+1,3)+3*y(i-1,1)... 
        -4*y(i-1,2)+y(i-1,3))/4;   

  
    jacobian(i,1) = xxi(i,1)*yeta(i,1)-xeta(i,1)*yxi(i,1);         
    alpha(i,1) = xeta(i,1)^2+yeta(i,1)^2;                           
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    gamma(i,1) = xxi(i,1)^2+yxi(i,1)^2;                             
    beta(i,1) = xxi(i,1)*xeta(i,1)+yxi(i,1)*yeta(i,1);  
    axi(i,1) = 2*(xeta(i,1)*xxieta+yeta(i,1)*yxieta); 
    geta(i,1) = 2*(xxi(i,1)*xxieta+yxi(i,1)*yxieta); 
    delta(i,1) = jacobian(i,1)/sqrt(alpha(i,1)+gamma(i,1)+2*beta(i,1));     
end 

  
% Rigid Wall Points 
%------------------------------------------------- 
for i=2:N1-1 
    xxi(i,N2) = (x(i+1,N2)-x(i-1,N2))/2;                       
    xeta(i,N2) = (3*x(i,N2)-4*x(i,N2-1)+x(i,N2-2))/2;      
    yxi(i,N2) = (y(i+1,N2)-y(i-1,N2))/2; 
    yeta(i,N2) = (3*y(i,N2)-4*y(i,N2-1)+y(i,N2-2))/2; 
    xxieta = (3*x(i+1,N2)-4*x(i+1,N2-1)+x(i+1,N2-2)-3*x(i-1,N2)... 
        +4*x(i-1,N2-1)-x(i-1,N2-2))/4;   
    yxieta = (3*y(i+1,N2)-4*y(i+1,N2-1)+y(i+1,N2-2)-3*y(i-1,N2)... 
        +4*y(i-1,N2-1)-y(i-1,N2-2))/4;  

  
    jacobian(i,N2) = xxi(i,N2)*yeta(i,N2)-xeta(i,N2)*yxi(i,N2);         
    alpha(i,N2) = xeta(i,N2)^2+yeta(i,N2)^2;                          
    gamma(i,N2) = xxi(i,N2)^2+yxi(i,N2)^2;                             
    beta(i,N2) = xxi(i,N2)*xeta(i,N2)+yxi(i,N2)*yeta(i,N2);    
    axi(i,N2) = 2*(xeta(i,N2)*xxieta+yeta(i,N2)*yxieta); 
    geta(i,N2) = 2*(xxi(i,N2)*xxieta+yxi(i,N2)*yxieta); 
    delta(i,N2) = jacobian(i,N2)/sqrt(alpha(i,N2)+gamma(i,N2)+2*beta(i,N2)); 
end 

  
% Absorbing Points 
%-------------------------------------------------- 
for j=2:N2-1, 
    xxi(N1,j) = (3*x(N1,j)-4*x(N1-1,j)+x(N1-2,j))/2;                       
    xeta(N1,j) = (x(N1,j+1)-x(N1,j-1))/2;      
    yxi(N1,j) = (3*y(N1,j)-4*y(N1-1,j)+y(N1-2,j))/2;    
    yeta(N1,j) = (y(N1,j+1)-y(N1,j-1))/2;  
    xxieta = (3*x(N1,j+1)-4*x(N1-1,j+1)+x(N1-2,j+1)-3*x(N1,j-1)... 
        +4*x(N1-1,j-1)-x(N1-2,j-1))/4;   
    yxieta = (3*y(N1,j+1)-4*y(N1-1,j+1)+y(N1-2,j+1)-3*y(N1,j-1)... 
        +4*y(N1-1,j-1)-y(N1-2,j-1))/4;   

  
    jacobian(N1,j) = xxi(N1,j)*yeta(N1,j)-xeta(N1,j)*yxi(N1,j);         
    alpha(N1,j) = xeta(N1,j)^2+yeta(N1,j)^2;                          
    gamma(N1,j) = xxi(N1,j)^2+yxi(N1,j)^2;                             
    beta(N1,j) = xxi(N1,j)*xeta(N1,j)+yxi(N1,j)*yeta(N1,j);    
    axi(N1,j) = 2*(xeta(N1,j)*xxieta+yeta(N1,j)*yxieta); 
    geta(N1,j) = 2*(xxi(N1,j)*xxieta+yxi(N1,j)*yxieta); 
    delta(N1,j) = jacobian(N1,j)/sqrt(alpha(N1,j)+gamma(N1,j)+2*beta(N1,j)); 
    lambda(j)= x(N1,j)*yeta(N1,j)-y(N1,j)*xeta(N1,j); 
    kappa(j)=y(N1,j)*xxi(N1,j)-x(N1,j)*yxi(N1,j); 
end 

  
% Source Boundary 
%-------------------------------------------------- 
for j=2:N2-1, 
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    xxi(1,j) = -(3*x(1,j)-4*x(2,j)+x(3,j))/2;                       
    xeta(1,j) = (x(1,j+1)-x(1,j-1))/2;      
    yxi(1,j) = -(3*y(1,j)-4*y(2,j)+y(3,j))/2;    
    yeta(1,j) = (y(1,j+1)-y(1,j-1))/2;  
    xxieta = -(3*x(1,j+1)-4*x(2,j+1)+x(3,j+1)-3*x(1,j-1)... 
        +4*x(2,j-1)-x(3,j-1))/4;   
    yxieta = -(3*y(1,j+1)-4*y(2,j+1)+y(3,j+1)-3*y(1,j-1)... 
        +4*y(2,j-1)-y(3,j-1))/4;   

  
    jacobian(1,j) = xxi(1,j)*yeta(1,j)-xeta(1,j)*yxi(1,j);         
    alpha(1,j) = xeta(1,j)^2+yeta(1,j)^2;                          
    gamma(1,j) = xxi(1,j)^2+yxi(1,j)^2;                             
    beta(1,j) = xxi(1,j)*xeta(1,j)+yxi(1,j)*yeta(1,j);    
    axi(1,j) = 2*(xeta(1,j)*xxieta+yeta(1,j)*yxieta); 
    geta(1,j) = 2*(xxi(1,j)*xxieta+yxi(1,j)*yxieta); 
    delta(1,j) = jacobian(1,j)/sqrt(alpha(1,j)+gamma(1,j)+2*beta(1,j)); 
end 

  
% Corner Points (Top Left) 
%-------------------------------------------------- 
    xxi(1,N2) = -(3*x(1,N2)-4*x(2,N2)+x(3,N2))/2;                       
    xeta(1,N2) = (3*x(1,N2)-4*x(1,N2-1)+x(1,N2-2))/2;      
    yxi(1,N2) = -(3*y(1,N2)-4*y(2,N2)+y(3,N2))/2;    
    yeta(1,N2) = (3*y(1,N2)-4*y(1,N2-1)+y(1,N2-2))/2; 
    xxieta(1,N2) = (3*(-3*x(1,N2)+4*x(2,N2)-x(3,N2))... 
                  -4*(-3*x(1,N2-1)+4*x(2,N2-1)-x(3,N2-1))... 
                  +(-3*x(1,N2-2)+4*x(2,N2-2)-x(3,N2-2)))/4;   
    yxieta(1,N2) = (3*(-3*y(1,N2)+4*y(2,N2)-y(3,N2))... 
                  -4*(-3*y(1,N2-1)+4*y(2,N2-1)-y(3,N2-1))... 
                  +(-3*y(1,N2-2)+4*y(2,N2-2)-y(3,N2-2)))/4;  

  
    jacobian(1,N2) = xxi(1,N2)*yeta(1,N2)-xeta(1,N2)*yxi(1,N2);         
    alpha(1,N2) = xeta(1,N2)^2+yeta(1,N2)^2;                          
    gamma(1,N2) = xxi(1,N2)^2+yxi(1,N2)^2;                             
    beta(1,N2) = xxi(1,N2)*xeta(1,N2)+yxi(1,N2)*yeta(1,N2);    
    axi(1,N2) = 2*(xeta(1,N2)*xxieta(1,N2)+yeta(1,N2)*yxieta(1,N2)); 
    geta(1,N2) = 2*(xxi(1,N2)*xxieta(1,N2)+yxi(1,N2)*yxieta(1,N2)); 
    delta(1,N2) = jacobian(1,N2)/sqrt(alpha(1,N2)+gamma(1,N2)+2*beta(1,N2));  

     
% Corner Points (Bottom Left) 
%-------------------------------------------------- 
    xxi(1,1) = -(3*x(1,1)-4*x(2,1)+x(3,1))/2;                       
    xeta(1,1) = 0; %-(3*x(1,1)-4*x(1,2)+x(1,3))/2;     
    yxi(1,1) = 0; %-(3*y(1,1)-4*y(2,1)+y(3,1))/2;   
    yeta(1,1) = y(1,2); %-(3*y(1,1)-4*y(1,2)+y(1,3))/2; 
    xxieta(1,1) = 0; %-(3*(-3*x(1,1)+4*x(2,1)-x(3,1))... 
%                   -4*(-3*x(1,2)+4*x(2,2)-x(3,2))... 
%                   +(-3*x(1,3)+4*x(2,3)-x(3,3)))/4;   
    yxieta(1,1) = (-3*y(1,2)+4*y(2,2)-y(3,2))/2; 
    xxixi(1) = 2*x(1,1) - 5*x(2,1) + 4*x(3,1) - x(4,1); 
    yxixi(1) = 0; %2*y(1,1) - 5*y(2,1) + 4*y(3,1) - y(4,1); 
    xetaeta(1) = -2*x(1,1)+2*x(1,2); 
    yetaeta(1) = 0; %-2*y(1,1); 
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    jacobian(1,1) = xxi(1,1)*yeta(1,1)-xeta(1,1)*yxi(1,1);         
    alpha(1,1) = xeta(1,1)^2+yeta(1,1)^2;                          
    gamma(1,1) = xxi(1,1)^2+yxi(1,1)^2;                             
    beta(1,1) = xxi(1,1)*xeta(1,1)+yxi(1,1)*yeta(1,1);    
    axi(1,1) = 2*(xeta(1,1)*xxieta(1,1)+yeta(1,1)*yxieta(1,1)); 
    geta(1,1) = 2*(xxi(1,1)*xxieta(1,1)+yxi(1,1)*yxieta(1,1)); 
    delta(1,1) = jacobian(1,1)/sqrt(alpha(1,1)+gamma(1,1)+2*beta(1,1));  

  
% Corner Points (Bottom Right) 
%-------------------------------------------------- 
    xxi(N1,1) = (3*x(N1,1)-4*x(N1-1,1)+x(N1-2,1))/2;                       
    xeta(N1,1) = 0;      
    yxi(N1,1) = 0;    
    yeta(N1,1) = y(N1,2);  
    xxieta(N1,1) = 0;    
    yxieta(N1,1) = (3*y(N1,2)-4*y(N1-1,2)+y(N1-2,2))/2; 
    xxixi(N1) = -2*x(N1,1) + 5*x(N1-1,1) - 4*x(N1-2,1) + x(N1-3,1); 
    yxixi(N1) = 0;  
    xetaeta(N1) = -2*x(N1,1)+2*x(N1,2); 
    yetaeta(N1) = 0;  

     
    jacobian(N1,1) = xxi(N1,1)*yeta(N1,1)-xeta(N1,1)*yxi(N1,1);         
    alpha(N1,1) = xeta(N1,1)^2+yeta(N1,1)^2;                          
    gamma(N1,1) = xxi(N1,1)^2+yxi(N1,1)^2;                             
    beta(N1,1) = xxi(N1,1)*xeta(N1,1)+yxi(N1,1)*yeta(N1,1);    
    axi(N1,1) = 2*(xeta(N1,1)*xxieta(N1,1)+yeta(N1,1)*yxieta(N1,1)); 
    geta(N1,1) = 2*(xxi(N1,1)*xxieta(N1,1)+yxi(N1,1)*yxieta(N1,1)); 
    delta(N1,1) = jacobian(N1,1)/sqrt(alpha(N1,1)+gamma(N1,1)+2*beta(N1,1));  

     
% Coner Points (Top Right) 
%-------------------------------------------------- 
%   This metric is never used. It is not computed. 

  
return 

A.5  InitialGrid.m 

%-------------------------------------------------------------------------- 
%This function is used in MainWave 
%It interpolates linearly between points 
%Created By Sebastian Acosta 
%-------------------------------------------------------------------------- 

  
function InitialGrid(N1,N2,i1) 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y; 
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%-------------------------------------------------------------------------- 
%                Linear Interpolation Between Points 
%-------------------------------------------------------------------------- 
for i=2:N1-1, 
    interpoint(x(i,1),x(i,N2),y(i,1),y(i,N2),1,N2,i,2); 
end 

  
for j=2:N2-1, 
    interpoint(x(i1,j),x(N1,j),y(i1,j),y(N1,j),i1,N1,j,1); 
end 

  
return 

A.6 interpoint.m 

%-------------------------------------------------------------------------- 
%This function is used in Horn_Step 
%It interpolates linearly between points 
%Created By Sebastian Acosta 
% 
%starting point (x0,y0) with n = c0 
%final point (xf,yf) with n = cf 
%-------------------------------------------------------------------------- 
function interpoint(x0,xf,y0,yf,c0,cf,n,flag) 
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y; 
%-------------------------------------------------------------------------- 
%                Linear Interpolation Between Points 
%-------------------------------------------------------------------------- 
if flag == 1, 
    for i=c0:cf, 
        x(i,n) = x0 + (i-c0)*(xf-x0)/(cf-c0); 
        y(i,n) = y0 + (i-c0)*(yf-y0)/(cf-c0); 
    end 
end 

  
if flag == 2, 
    for j=c0:cf, 
        x(n,j) = x0 + (j-c0)*(xf-x0)/(cf-c0); 
        y(n,j) = y0 + (j-c0)*(yf-y0)/(cf-c0); 
    end 
end 

  
return 
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A.7 gridgen.m 

%-------------------------------------------------------------------------- 
% This function is used in MainWave 
% It create the curvilinear grid using Successive Overrelaxation. 
% 
% Created by Daniel Tengelsen and Sebastian Acosta 
%-------------------------------------------------------------------------- 

   
% The generation process is animated in real time. 

  
function [k,err] = gridgen(N1,N2,tol,N,w) 

  
%-------------------------------------------------------------------------- 
%                          Global Variables 
%-------------------------------------------------------------------------- 
global x y u; 

  
%-------------------------------------------------------------------------- 
%                           SOR Algorithm 
%-------------------------------------------------------------------------- 
k = 0;                      % iteration counter 
error2 = 0;                 % Error in vertor norm 2 
err = tol;                  % absolute error 

  
while(k<N && err >= tol && error2 < 10); 

     
    k = k+1; 

     
    % Making a copy of the current coordinate points 
    %---------------------------------- 
    xc = x; 
    yc = y; 

     

    
    % Performing grid generations 
    %---------------------------------- 
    for i=2:N1-1, 
        d = i-1; 
        e = i+1; 

         
        xxi = 0.5*(x(e,1)-x(d,1)); 
        yeta = 0.5*(y(i,2)+y(i,2)); 
        a = yeta^2; 
        g = xxi^2; 
        aux1 = 0.5/(a+g); 

         
        % Approximate coordinate x 
        %---------------------------------- 
        aux2 = a*(x(e,1)+x(d,1)); 
        aux4 = g*(x(i,2)+x(i,2)); 
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        x(i,1) = aux1*(aux2+aux4); 
        x(i,1) = (1.-w)*xc(i,1)+w*x(i,1); 

         
        for j=2:N2-1, 
            f = j-1; 
            gg = j+1; 

             
            xxi = 0.5*(x(e,j)-x(d,j)); 
            yxi = 0.5*(y(e,j)-y(d,j)); 
            xeta = 0.5*(x(i,gg)-x(i,f)); 
            yeta = 0.5*(y(i,gg)-y(i,f)); 
            xxieta = (x(e,gg)-x(e,f)-x(d,gg)+x(d,f))/4; 
            yxieta = (y(e,gg)-y(e,f)-y(d,gg)+y(d,f))/4; 

             
            a = xeta^2+yeta^2; 
            b = xxi*xeta+yxi*yeta; 
            g = xxi^2+yxi^2; 

             
            aux1 = 0.5/(a+g); 

             
            % Approximate coordinate x 
            %---------------------------------- 
            aux2 = a*(x(e,j)+x(d,j)); 
            aux4 = g*(x(i,gg)+x(i,f)); 
            aux10 = 

(xxi*xxieta+yxi*yxieta)*xeta+(xeta*xxieta+yeta*yxieta)*xxi; 
            x(i,j) = aux1*(aux2-2*b*xxieta+aux4+aux10); 

             
            % Approximate coordinate y 
            %---------------------------------- 
            aux5 = a*(y(e,j)+y(d,j)); 
            aux7 = g*(y(i,gg)+y(i,f)); 
            aux10 = 

(xxi*xxieta+yxi*yxieta)*yeta+(xeta*xxieta+yeta*yxieta)*yxi; 
            y(i,j) = aux1*(aux5-2*b*yxieta+aux7+aux10); 

             
            % SOR : accelerating convergence 
            %---------------------------------- 
            x(i,j) = (1.-w)*xc(i,j)+w*x(i,j); 
            y(i,j) = (1.-w)*yc(i,j)+w*y(i,j); 
        end 
    end 

      
    % Convergence Check 
    %---------------------------------- 
    err = max(max(max(abs(x-xc))),max(max(abs(y-yc)))); 

     
    % Real Time Animation 
    %---------------------------------- 
    if (mod(k,40)==0), 
        orient landscape; 
        mesh(x,y,u,'EdgeColor','black'); 
        xlabel('x','FontSize',18); 
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        ylabel('y','FontSize',18); 
        view(0,90); 
        title(['CALCULATING - ITER =',num2str(k)]); 
        pause(0.01); 
    end 

  
end 

  
% In case algorithm is Diverging 
%---------------------------------- 
if (k >= N || err >= tol); 
    fprintf('\n ***** ***** ***** ***** ***** ***** ***** ***** \n'); 
    fprintf('*****  The Numerical Method is Diverging  ***** \n'); 
    fprintf('***** ***** ***** ***** ***** ***** ***** ***** \n'); 
    orient landscape; 
    mesh(x,y,u,'EdgeColor','black'); 
    axis tight; 
    view(0,90); 
    title('DIVERGING','FontSize',18); 
    xlabel('x','FontSize',18); 
    ylabel('y','FontSize',18); 
end  

  
return 
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