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ABSTRACT

Asynchronous Database Drivers

Mike Heath

Department of Computer Science

Master of Science

Existing database drivers use blocking socket I/O to exchange data with relational
database management systems (RDBMS). To concurrently send multiple requests to a RDBMS
with blocking database drivers, a separate thread must be used for each request. This ap-
proach has been used successfully for many years. However, we propose that using non-
blocking socket I/O is faster and scales better under load.

In this paper we introduce the Asynchronous Database Connectivity in Java (ADBCJ)
framework. ADBCJ provides a common API for asynchronous RDBMS interaction. Various
implementations of the ADBCJ API are used to show how utilizing non-blocking socket I/O
is faster and scales better than using conventional database drivers and multiple threads
for concurrency. Our experiments show a significant performance increase when using non-
blocking socket I/O for asynchronous RDBMS access while using a minimal number of OS
threads. Non-blocking socket I/O enables pipelining of RDBMS requests which can improve
performance significantly, especially over high latency networks. We also show the benefits
of asynchronous database drivers on different web server architectures.
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Chapter 1

Introduction

Relational database management systems (RDBMSs) are capable of storing large

amounts of data and coordinating access to that data among many concurrent users. Count-

less business applications, web sites, and other applications rely on RDBMSs to store, orga-

nize, and index their data. Whether used for accounting, asset management, or building an

Internet auction web site, RDBMSs are the preferred storage mechanism for most business

applications built today.

Structure Query Language (SQL) is the lingua franca of RDBMS interaction. SQL

can be used for adding, querying, modifying, and removing data from a RDBMS and is a

relatively simple data extraction and transformation language. SQL can also be used for

defining how RDBMS data should be stored and organized. Applications use a database

driver to issue SQL statements to the RDBMS. The database driver provides an interface

between the application issuing SQL requests and the RDBMS.

Database drivers often use TCP/IP as the underlying network transport to commu-

nicate with the RDBMS. To facilitate TCP/IP communication, these drivers typically use

blocking socket I/O. Therefore, when an application issues an SQL statement, the thread

that calls the database driver blocks until the RDBMS has returned a result. This model

is simple for software developers to use and has been employed for many years with great

success.

Conventional database drivers work well in a web application that runs on a web

server that uses a thread-per-connection architecture. In this type of architecture, each
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Figure 1.1: Thread-per-connection Architecture: The thread-per-connection architecture is
a common architecture used by network servers.

HTTP request is handled by the web server in a separate thread which, in the context of

this thesis, is a thread that is known and scheduled by the kernel itself. Because each HTTP

request runs in its own thread, when the web applications sends a request to the RDMBS

causing the database driver to block, the web server can continue handling other HTTP

requests (see Figure 1.1).

Although this combination of a thread-per-connection web server and a blocking

database driver works well, researchers and developers are exploring more scalable ap-

proaches. The thread-per-connection architecture does not scale well because each thread

requires its own stack space, which consumes a significant amount of memory. Addition-

ally, contention for shared resources and the CPU time required to schedule threads can

be a significant impediment to a server’s ability to scale. As an alternative, developers are

building servers using an event-driven architecture, in which multiple network connections

are handled by a single thread. This allows the server to handle thousands of concurrent

network connections [1].

Unfortunately, little work has been done on designing a database driver for this new

web server architecture. One of the problems with conventional database drivers is that they

do not work well with web servers that use an event-driven architecture because most drivers

2



have a single thread of execution which blocks on every request. As a result, having a single

thread manage multiple requests means the thread blocks on every request to the driver.

A second problem with conventional database drivers is that they do not allow for a

web application to query multiple RDBMSs in parallel without utilizing additional threads.

An example of an application that may need this capability is a web portal. Web portals

aggregate information from multiple disparate sources. Such information could include news,

stock prices, the weather, and anything else that may be of interest to a particular user.

Each RDBMS request must be made sequentially because the database driver blocks. If

each RDBMS request takes an average of 200ms, and the portal must make 12 requests,

then the web portal will take a minimum of 2.4 seconds to load. This type of delay would

make the web portal feel very slow and unresponsive to the user. If each RDBMS could

be queried asynchronously, the web portal could respond as quickly as the slowest RDBMS

request. This is not a problem limited to web portals. Any time multiple independent

RDBMS requests are issued, executing them asynchronously would generally be faster than

the conventional sequential approach.

In this thesis, we assert that database drivers using non-blocking socket I/O will

increase the performance of web applications that issue many independent requests across

multiple RDBMSs and will increase the scalability of database dependent event-driven web

applications. To test this, we introduce the Asynchronous Database Connectivity in Java

(ADBCJ) project. ADBCJ is a framework for asynchronous RDMBS interaction. Using

ADBCJ, we compare two techniques for asynchronously accessing a RDBMS. The traditional

approach to asynchronous RDBMS interaction is to push requests onto a queue and process

the requests in that queue using a thread pool as shown in Figure 1.2. The alternative is to

use non-blocking socket I/O.

Our results show that using non-blocking I/O is faster than the thread-pool approach

for many common RDBMS interactions. Non-blocking I/O also enables the use of pipelining

to improve the performance of issuing multiple requests to an RDBMS, especially over high

3



Figure 1.2: Thread pooling: Requests are enqueued to be executed by an arbitrary thread
within a pool of threads.

latency connections. Additionally, we demonstrate the use of ADBCJ in a simple web

application that shows its benefits when accessing multiple RDMBSs, regardless of whether

non-blocking I/O or a thread pool is being used to parallelize database calls. Finally, we

demonstrate how well a web-server using an event-driven architecture is able to scale when

used in conjunction with an asynchronous database driver using non-blocking I/O.

In summary, this thesis makes the following contributions:

• A database driver API for asynchronous database interaction in ADBCJ

• An ADBCJ database driver that uses JDBC to communicate with the RDBMS and a

thread-pool for asynchrony

• ADBCJ drivers for MySQL and Postgresql that use non-blocking socket I/O for asyn-

chrony

• A demonstration of the performance benefits of pipelining RDBMS requests

• A performance comparison of using a thread-pool versus non-blocking socket I/O

• A scalability analysis of our different database drivers when used on an event-driven

web server

Additionally, the database drivers we produced have been used at eBay for load

testing and are being used by LinkedIn.

4



Chapter 2

Related Work

A great deal of research has been dedicated to database drivers, event-driven net-

working, and web server performance analysis. This section provides an overview of some of

this research and highlights some of the important factors we need to consider.

2.1 Existing Database Drivers

Many software platforms have well defined APIs for RDBMS interaction. The software that

implements these APIs for a particular RDBMS are called database drivers. These APIs

provide a common interface that is independent of the actual RDBMS software (i.e. MySQL,

Oracle, Postgresql, etc.) that is being used. The Windows operating system has ODBC [2],

the Java platform provides JDBC [3], Perl has DBI [4], Python has its own database driver

API [5] and the list goes on. These database driver APIs all require that each request block

until the RDBMS has processed the SQL request and returned a response.

A popular technique to achieve asynchronous RDBMS access is to use thread pooling

(see Figure 1.2). With thread pooling, individual requests are placed in a queue, allowing the

requesting thread to return immediately without blocking. A pool of worker threads services

the requests in the queue. The thread pool can process as many concurrent RDBMS requests

as there are threads in the pool. The Twisted framework is an example of a framework that

supports this technique for asynchronous RDBMS access [6]. The web application has to be

built to take advantage of thread pooling.

5



Repeated RDBMS interaction can be improved by pooling RDBMS connections. Con-

nection pooling preserves connections between requests, allowing them to be reused thereby

eliminating having to needlessly duplicate the work required to connect and authenticate to

the RDBMS. Connection pooling not only improves performance but has also been shown

to improve web application scalability in some cases. If the web application acquires and

releases an RDBMS connection from the pool on an as needed basis, the number of requests

being processed at one time can exceed the number of RDBMS connections available in the

pool. If the web application acquires an RDBMS connection from the pool when it begins

processing a web request and returns it when the request is finished, no other web requests

may use that connection. Exclusively holding an unused RDBMS connection prevents other

resources from using this limited resource. Conversely, if the web application acquires an

RDBMS connection only when it needs to query the database and immediately returns the

connections to the pool when the query has been processed, the web application can continue

doing non-database work while a different request uses the now available connection [7].

2.2 Web Server Architectures

Internet servers must be able to service multiple clients concurrently. There are various

architectures that can be used to achieve this. Some of the more popular server architectures

that are commonly used when building web servers are outlined below.

2.2.1 Thread-Per-Connection

As stated in the introduction, the most common approach to building network servers in

general and web servers in particular is the thread-per-connection architecture. By default,

system calls to read and write to a network socket are blocking calls. If a thread is waiting

for data from one socket, it cannot do anything else until the read completes. To deal with

multiple sockets, we need multiple threads. In the thread-per-connection architecture, there

is one thread for each socket being processed. When the threads blocks to perform I/O
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on the socket, the blocking does not affect the other sockets being processed by different

threads.

To minimize the cost of creating and destroying threads, many existing servers main-

tain a pool of threads for socket I/O. This is the same technique we described earlier in

this section for achieving asynchronous RDBMS interaction. Thread pooling makes it pos-

sible for the server to reuse threads which is faster than creating a new thread for each new

connection. An additional benefit of thread pooling is that the server can accept more con-

nections than there are threads in the thread pool. This is possible because new connections

are placed in a queue before being processed by a thread. If all the threads in the pool are

in use, the socket is not processed until a thread in the pool becomes available. This will

increase the latency required to process the connections but in many cases increased latency

is better than rejecting all incoming connections when the server is under heavy load. Servers

that use thread pooling also have to be careful not to fill their queue to the point that they

run out of memory.

The problem with the thread-per-connection architecture is that threads are a rel-

atively expensive operating system resource compared to a network socket. Each thread

requires its own stack, which consumes memory. If a shared resource is required by each

thread, contending for exclusive access to that shared resource can have a significant impact

on performance. Additionally switching back and forth between many different threads both

consumes CPU cycles and reduces the effectiveness of the CPU’s second-level cache because

the CPU has to continually address so many different stacks.

The Apache HTTP Server 2.0 is an example of a thread-per-connection web server. To

support different operating systems as optimally as possible, Apache uses a modular design

called Multi-Processing Modules (MPMs) to support different threading models. Various

MPMs are bundled with Apache. The prefork MPM forks a process to handle each HTTP

request. This is similar to using multiple-threads but can be more stable and makes it possible

to use libraries that are not thread-safe. The worker MPM spawns multiple processes each
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of which manages its own pool of threads. The worker MPM is faster than the prefork

MPM but the prefork MPM is used by default on Unix operating systems for backwards

compatibility with Apache HTTP Server 1.3. There are also MPMs that take advantage

of platform specific threading or networking features. The MPM used by Apache may be

configured during compilation or at run-time [8].

2.2.2 Event-Driven

The problem of scaling to thousands of concurrent network connections has been outlined by

Kegal [1]. The prevailing solution is to use an event-driven architecture. In an event-driven

architecture, a single thread can process hundreds or even thousands of concurrent network

connections. Because event-driven servers do not not have to deal with the added overhead

incurred by using a large number of threads, event-driven architectures can scale better and

handle a significantly greater number of concurrent network connections.

In a server that uses an event-driven architecture, each thread indicates to the oper-

ating system which network sockets it is interested in. When the state of a socket the thread

is interested in changes, the thread is notified of that change in the form of a socket event.

The socket event indicates which socket had a state change, what the change was, and any

data that may be needed to process the event. Examples of socket state change include the

acceptance of a new socket connection by a listening server socket, receipt of new data on a

socket, or a socket closure.

When data is written to a socket, it is done asynchronously. This means that the

thread won’t block when it writes data to the socket. The data to be written is stored in

an operating system buffer until the data has been successfully sent to the remote host.

The operating system buffers are typically limited in size, which prevents the threads from

sending large amounts of data in a single request. If the thread needs to send more data to

a socket than the operating system is able to buffer, it must send a portion of the data and

wait until the operating system indicates that more data may be sent to the socket. These
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write availability notifications come in the form of socket events the same way the thread

receives other socket events.

Event-driven architectures are much more complex than thread-per-connection ar-

chitectures for a number of reasons. In a thread-per-connection architecture, each network

request is handled in a straightforward sequential fashion. In an event-driven architecture,

each thread has to correlate each socket event to a particular request and maintain each

request’s state in its own state machine. Additional complexity comes from reading frag-

mented network data. Let’s say, for example, that a server is expecting 1000 bytes of data.

In a thread-per-connection architecture the server can block until all 1000 bytes have been

received. In an event driven architecture, the server may receive multiple data read events

containing less than the desired 1000 bytes. It is the server’s responsibility to accumulate

these events until the desired amount of data has been received.

Fortunately there are various frameworks that help to reduce the complexity of event-

driven application development. Some of these frameworks include: Apache MINA [9], Griz-

zly [10], and Twisted [6]. These frameworks automatically handle certain types of socket

events, alleviating the need to manually do so by application developers. They also pro-

vide tools for maintaining the state of different network connections, assist in assembling

fragmented network data, as well as facilitate sending large amounts of data.

On POSIX based operating systems, the system calls poll() and select() can be utilized

for event-driven networking. poll() and select() both work by accepting a list of sockets as

arguments and return to the caller which socket events need to be processed. Banga et al.

demonstrate how this approach is not very scalable when working with thousands of socket

descriptors [11]. Both poll() and select() have to iterate over the list of socket descriptors

presented to them as arguments to determine which socket has pending events. The Banga

et al. paper introduces explicit event notification, in which an application registers with the

operating system which socket descriptors it is interested in only once. The application can

then request events for the registered sockets. This eliminates the need to repeatedly pass
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a list of socket descriptors to the operating system. It also makes it easier for the operating

system to be fair in determining the order in which an application receives socket events.

The explicit event notification system described by Banga et al. has been implemented

for the Linux platform using epoll [12], for the Solaris platform using /dev/poll [13], and for

the various BSD platforms using kqueue [14]. Each explicit event notification implementation

has been shown to be faster and more scalable than their poll() or select() counterparts.

There are various types of event-driven architectures. Some of these architectures are

described briefly here. Pariag et al. provide a more detailed explanation and of each archi-

tecture [15]. Their paper compares the performance and scalability of event-driven archi-

tectures with thread-per-connection architectures. They report that although the different

event-driven architectures have different performance and scalability characteristics, they

consistently outperform and scale better than even the cutting edge thread-per-connection

architecture.

2.3 Measuring Web Server Performance and Scalability

One of the widely used benchmarking suites for web server performance is SPECweb [16].

There are various versions of SPECweb; the latest of which is SPECweb2005. SPECweb2005

provides both a Java Server Pages (JSP) and a PHP based application that are used for

measuring a particular web server’s performance. This application emulates the functionality

of an e-commerce application. The SPECweb2005 load generator produces workloads that

are representative of real user access patterns. SPECweb2005 also simulates the behavior

of popular web browsers by downloading images using two parallel HTTP connections and

simulating browser caching.

However, there are two significant problems with SPECweb2005 for our purposes.

The first problem is that the provided server application is not built for an event-driven

web server. The second problem is that the provided application is not capable of effec-

tively using asynchronous event-driven database drivers. An additional problem is that the
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SPECweb2005 load-generator client does not generate overload conditions because it is a

closed-loop system [17]. In a closed loop system, the client does not begin a new request

until the previous request has finished. This restriction prevents the client from issuing more

requests than the server can reliably handle. The solution is to use a partially open-loop

system in which the number of requests sent to the server is a set amount and any requests

that do not complete within a predetermined amount of time are closed and marked as fail-

ures. httperf [18] is a tool that creates a partially open-loop system and is the tool used by

Pariag et al. [15].
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Chapter 3

Solution

3.1 ADBCJ

To compare different approaches for asynchronous RDBMS interaction, we built Asyn-

chronous Database Connectivity in Java (ADBCJ). ADBCJ is similar to existing database

drivers in that it provides an abstract API to define how database interaction is to be done.

The key difference between the ADBCJ API and traditional APIs is that calls to ADBCJ

that have the potential to block return immediately and execute asynchronously. This means

that the calling thread does not have to wait for the database operation to complete and

can instead perform other operations.

ADBCJ follows a service provider interface (SPI) design similar to many other database

driver APIs. The SPI design provides a system wherein multiple service providers implement

a common API. Consumers of the API need not worry about which implementation is in use

as long as they follow the contract defined by the API. In the context of RDBMS interaction,

service providers are commonly referred to as database drivers. The SPI design allows us

to build a single benchmark and run the benchmark using different implementations of the

API and compare the results without having to make modifications to the benchmark [19].

3.2 ADBCJ API

The ADBCJ API defines an interface for achieving RDBMS-independent connectivity similar

to what is currently provided by existing APIs such as JDBC, ODBC, etc. The primary tasks

that are facilitated by this API are (1) establishing a connection to an RDBMS, (2) sending
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SQL statements to the RDBMS without blocking, and (3) notifying the application through

an event dispatch mechanism when the result of an SQL statement is ready for consumption.

Currently the ADBCJ API only provides support for basic database functionality.

We currently support querying and updating the database using resource local transactions.

ADBCJ currently only supports simple data types such as integers, floating points, and

strings. Providing a complete API with support for things like late binding, binary objects,

distributed transactions, etc. would go beyond the scope of this thesis.

The ADBCJ API is flexible enough to be used in both a blocking manner and an

asynchronous event-driven manner. When an SQL statement is sent to the server, the API

immediately returns a future object [20], which represents a pending operation. A future

object promises to make the result of the pending operation available when the operation

completes. In the case of an error, the future object is used to propagate the error.

When using ADBCJ, any operation that has the potential to block will instead execute

asynchronously to the calling process and return a future object. The future object can be

used to cancel the pending request or block until the pending operation has completed.

Additionally, ADBCJ future objects are also observable as described by the observer design

pattern [21]. This means that one or more observers (or event handlers) can be registered

with the future object and the observers will be called when the database operation has

completed. The listener gets called when the database operation completes. If a listener is

added to the future after the operation has completed, the listener gets invoked immediately

by the thread that is adding the listener.

The observable future approach makes ADBCJ flexible in how it is used. ADBCJ

can be used in a fork-join fashion. In fork-join, the calling thread initiates the execution of

several asynchronous tasks and then waits for all the tasks to complete. Psuedo code for

this can be done using ADBCJ is shown in Figure 3.1. Alternatively, ADBCJ can be used

in an event-driven approach as shown in the psuedo code in Figure 3.2.
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Figure 3.1: Fork/Join: This Java code snippet shows how ADBCJ can be used for doing
fork/join style concurrency.

1 Future<Resul tSet> f u tur e1 = connect i on . executeQuery ( . . . ) ;
2 Future<Resul tSet> f u tur e2 = connect i on . executeQuery ( . . . ) ;
3 Future<Result> f u tur e3 = connect i on . executeUpdate ( . . . ) ;
4 Resu l tSet r s1 = futur e1 . get ( ) ;
5 Resu l tSet r s2 = futur e2 . get ( ) ;
6 Resul t r e s u l t = futur e3 . get ( ) ;

Figure 3.2: Event-driven: This Java code snippet shows how ADBCJ can be used for event-
driven style concurrency.

1 connect i on . executeQuery ( . . . ) . addLi s tener (
2 new DbListener<Resul tSet >() {
3 public void onComplete ( Future<Resul tSet> f u tu r e ) {
4 . . .
5 }
6 }
7 ) ;
8 connect i on . executeUpdate ( . . . ) . addLi s tener (
9 new DbListener<Result >() {

10 public void onComplete ( Future<Result> f u tu r e ) {
11 . . .
12 }
13 }
14 ) ;
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Figure 3.3: ADBCJ SPI Relationship: Each ADBCJ driver must provide a ConnectionMan-
agerFactory instance that is used by the ConnectionManagerProvider to provide a Connec-
tionManager instance to the application.

ConnectionManagerProvider

createConnection(url : String)

ConnectionManagerFactory

<<interface>>

ConnectionManager

<<interface>>Creates

Invokes

3.2.1 Connecting to an RDBMS

To use ADBCJ, an application uses the class ConnectionManagerProvider to obtain an

instance of ConnectionManager. A ConnectionManager instance is what is used to connect

to an RDBMS. To create a ConnectionManager instance, the application must provide a

connection URL. The connection URL is a RFC 1738 compliant URL [22]. The URL scheme

is always “adbcj”. A sub-scheme follows the scheme indicating which driver the application

wants to use. The host and port portions of the URL are naturally used to determine

which host to connect to and which port the RDBMS is listening on for connections. The

path portion of the URL indicates which database schema the application wants to use. A

username and password may also be specified in the URL to authenticate the application to

the RDBMS. An example ADBCJ URL might look like ”adbcj:mysql://localhost:1368/test”

where ”mysql” indicates that a MySQL driver is to be used to connect to a MySQL instance

running in the local machine and will use the ”test” database. JDBC uses a similar scheme

for indicating which database driver should be used.

The relationship between ConnectionManagerProvider, ConnectionManagerFactory,

and ConnectionManager is show in Figure 3.3.
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Figure 3.4: ADBCJ Application: A sample ADBCJ application executing an SQL query
against a MySQL database.

1 ConnectionManager connManager = ConnectionManagerProvider
2 . createConnectionManager ( ” adbcj : mysql : // example : password@localhost /example ” ) ;
3 DbFuture<Connection> connectFuture = connManager . connect ( ) ;
4 Connection connect i on = connectFuture . get ( ) ;
5 DbSessionFuture<Resul tSet> r e s u l tS e tFutu r e = connect i on . executeQuery ( ”SELECT f i e l d FROM example ” ) ;
6 r e su l tS e tFutu r e . addLi s tener (new DbListener<Resul tSet >() {
7 public void onCompletion (DbFuture<Resul tSet> f u tu r e ) throws Exception {
8 Resu l tSet r s = fu tu r e . get ( ) ;
9 for (Row row : r s ) {

10 System . out . p r i n t l n ( row . get ( ” f i e l d ” ) ) ;
11 }
12 }
13 } ) ;

The ConnectionManager is used to connect to the RDMS and manages all the es-

tablished connections to the RDBMS. This operation could block because connecting to an

RDBMS involves network I/O. Therefore, the ConnectionManager returns a future object

that is used to obtain the instance of Connection that represents the RDBMS connection.

The Connection object is what is used to send SQL queries to the database.

3.2.2 Result Sets

SQL query results are stored in ResultSet objects. A ResultSet is a collection of rows and

a row is a collection of values associated with a specified database column. The ResultSet

interface in ADBCJ extends the java.util.List interface from the Java collections API. This

makes it easy for application developers to access each row in the result set.

By default ADBCJ will return up to 1,000 rows. This is done to prevent the applica-

tion from running out of memory if a very large result set is returned by the RDBMS.

3.2.3 Sample Usage

A sample application that uses ADBCJ to connect to a MySQL RDBMS and issue a simple

SQL query is shown in Figure 3.4.
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Lines 1-2 show the creation of a ConnectionManager instance. The example ADBCJ

URL on line 2 indicates that the program wants to use a MySQL driver. To connect to the

RDBMS, the URL specifies that the username ”example” should be used with the password

”password”, the application should connect to the local host, and the MySQL database

”example” should be used.

Lines 3-4 establish a connection to the RDBMS. The call to the connect() on line 3

returns a future object. On line 4 the application blocks until the connection is established.

On lines 5 a query is asynchronously sent to the RDBMS and the value of the returned

future object is held in the resultSetFuture variable. Instead of blocking, as we did when

connecting, we add a listener to the resultSetFuture on line 6 that will be invoked when the

result is received from the RDBMS. The future object that is passed in to the listener on

the onCompletion method on line 7 is the same future object that is stored in the variable

resultSetFuture. On line 8, we extract the ResultSet instance from the future object. Lines

9-11 iterate over the results and print the results out to the console. We can use the Java

for each loop syntax on the result set because of the fact that a ResultSet is a Java list.

3.3 ADBCJ Database Drivers

For this thesis, we built various ADBCJ database drivers. One driver uses a thread pool for

asynchrony and delegates RDBMS commands to a conventional JDBC driver. We compare

the performance of the thread pool approach against various ADBCJ drivers that use non-

blocking I/O for asynchrony.

3.3.1 Thread Pool Database Driver

The thread pool based database driver uses the same approach that we described earlier

in 1.2. Any RDBMS request that has the potential to block is queued up and a thread in

the pool picks up the request, executes it using a conventional blocking JDBC driver, and

puts the result in the request’s future object. If the future object has any event listeners
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registered with it, the event listeners are invoked by the pooled thread that made the call to

the RDBMS using JDBC.

The Java platform has built in support for thread-pools using the ExecutorService

API. This API provides out-of-the-box support for creating thread-pools and submitting

tasks to the thread-pool. The ConnectionManager instance that is created when using

this driver holds the ExecutorService instance and uses this ExecutorService instance for

executing RDBMS connection and query operations.

The ADBCJ URL for using this driver starts with ”adbcj:”, as is required by all AD-

BCJ URLs. The remaining part of the URL is a conventional JDBC URL. For example, the

URL ”adbcj:jdbc:mysql://example:password@localhost/example”, indicates that the thread

pool database driver should be used and in turn the JDBC MySQL driver should be used

for the actual RDBMS interaction.

The most challenging aspect of building our thread pool based database drivers is

that because we rely on JDBC for the actual communication to the RDBMS we have to deal

the limitation of the JDBC Connection not being thread safe. A single JDBC Connection

instance can be accessed by different threads, this just can not happen simultaneously.

Therefore, we cannot simply submit RDBMS requests to the connection pool as they arrive.

Instead, our database driver maintains its own queue. The request at the head of the queue

gets submitted to the thread pool. When the submitted request completes, the driver checks

if there is a request waiting in its queue and submits it to the thread pool for execution.

3.3.2 Non-blocking I/O Database Driver

The non-blocking database drivers required us to implement the specific RDBMS over wire

protocols from the ground up as it is not possible to take an existing database driver and

simply tell it to start using non-blocking I/O. The RDBMSs that we decided to support are

MySQL and Postgresql. We chose these RDBMSs because they are open source and their

network protocols are well documented.
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To implement the drivers, we looked at two different non-blocking I/O frameworks:

Apache MINA1 [9] and JBoss Netty [23]. Both are high performance non-blocking I/O

frameworks both designed to make implementing network protocols easier.

MINA and Netty both implement the reactor pattern. The reactor pattern is a design

pattern that describes how multiple concurrent inputs are demultiplexed and dispatched to

request handlers. This pattern is used by many non-blocking I/O frameworks because it

provides a clear separation of protocol logic and I/O handling.

After doing some performance analysis [24], we chose to use Netty. One of the key

benefits of Netty that makes it well suited to our purposes is that Netty can send network

data from the calling thread without that calling thread blocking. When sending data,

Netty checks if the socket’s write buffer is full. If the buffer is not full, the data can be

sent immediately. If the buffer is full, the data gets queued to be sent later. This gives

Netty clients many of the same performance characteristics that blocking I/O clients have.

Additionally, Netty uses a number of sophisticated lock-free data structures that are better

suited for high scale environments.

One of the significant benefits of non-blocking I/O is that it allows us to pipeline

requests to the RDBMS. This optimization has produced dramatic benefits. Pipelining

provides the ability to send more than one request without waiting for the response from

previous requests. This concept is illustrated in Figure 3.5. We examine the benefits of

pipelining more deeply in Section 4.1.2

One of the challenges of building an asynchronous system like ADBCJ is managing

queue sizes. Even with non-blocking I/O and pipelining, we still have to queue up requests

until the response for the request is received. If we queue up too many requests, we will

eventually run out of memory. Clearly the size of the queue has to be capped at some point.

ADBCJ has two configurable approaches for dealing with a queue that is at its limit. The

first approach is to immediatly fail and throw an exception. The second approach is to block

1The author was a member of the Apache MINA Project Management Committee.
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Figure 3.5: Pipelining: Using pipelining, multiple requests may be sent without waiting for
responses from previous requests.

until the queue size has decreased. Some thread pool implementations have a third option to

deal with large queues, and that is to execute the task to be queued from the calling thread.

This approach violates the first in first out properties of a queue and is not acceptable for

ADBCJ because RDBMS requests must often be executed in order for a given connection.
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Chapter 4

Results

By doing a few micro-benchmarks, we show the relative performance of using blocking

JDBC drivers, non-blocking drivers using JDBC and a thread-pool, and using a driver using

non-blocking I/O. Our non-blocking drivers are able to significantly outperform blocking

JDBC drivers, especially over high latency connections, due to the ability to pipeline multiple

requests. We also show the performance characteristic of using our various database drivers

within the context of a conventional Java web server accessing multiple data sources. Finally,

we examine the impact on scalability of our different database drivers when using an event-

driven web server.

All of our benchmarks are run using the Oracle Java SE Runtime Environment build

1.6.0 19-b04 using the Java HotSpot Server VM. Benchmarking Java applications can be

tricky because the HotSpot VM can execute Java byte code in an interpreted mode or

convert the byte code to instructions native to the underlying processor. Converting the

byte code to native code is not a static process either as the code can go through various

levels of optimization depending on how frequently it gets executed. A naive benchmark

running on HotSpot would simply run the code being measured multiple times and average

the results. The problem with this approach is that the first few executions of the code

could be interpreted, subsequent requests could be compiled to native code, and if the code

is executed frequently enough, the native code could be further optimized.

To get around the optimization problem, it is recommended that Java based bench-

marks go through a warm-up first and then go through a measurement phase. The rec-
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Table 4.1: Performance Comparison of Various Database Drivers

MySQL
Driver Mean Std. Dev.
JDBC 23ms 2.7ms
Thread-pool 34.9ms 10.5ms
Netty 4.84ms 1.6ms

Postgresql
Driver Mean Std. Dev.
JDBC 25.9ms 11.5ms
Thread-pool 79.2ms 12.7ms
Netty 5.65ms 1.0ms

ommendation from Oracle is to execute the code being measured at least 50,000 times to

ensure that it gets fully optimized by the HotSpot VM. In all of our benchmarks, we execute

the code to be measured 100,000 times to ensure that it is fully optimized and then take

measurements [25].

Unless otherwise stated, all of our benchmarks were run on machines with a single

Intel Xeon dual core processor running at 2.33 GHz with 2GB of RAM running on Linux

2.6.21.7-2 SMP from Red Hat. Each host is on the same gigabit/second switched Ethernet

network.

4.1 Micro Benchmarks

4.1.1 How does the performance of our different database drivers compare?

First and foremost, we compare the difference in performance between conventional blocking

I/O JDBC drivers, our ADBCJ drivers that execute JDBC calls asynchronously using a

thread-pool, and our non-blocking I/O drivers using Netty. This benchmark executes the

same SQL query 50 times. For the conventional JDBC test, we ran each query sequentially.

For the ADBCJ tests, we scheduled each query to be executed and then used the return

future objects to block until all the requests had completed using a fork/join approach for

concurrency as described in Chapter 3.2.
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This benchmark was run on one host that connected to a second host running either

MySQL or Postgresql over a 1Gb/s Ethernet network. We used a sample size of 1,000 and

show the average query response time in Table 4.1.

Analysis

We anticipated that the performance of conventional JDBC would be faster than using

a thread-pool because of the overhead of queuing/dequeuing requests and the subsequent

inter-thread communication required for notifying the calling thread that the request has

completed. However, we did not expect this overhead to be as significant as it is. Addition-

ally, we did not expect such a big difference between MySQL and Postgresql. After doing

some profiling and deeper investigation, we have no explanation for this disparity. We ran

similar benchmarks executing queries with varying result set sizes as well as different SQL

command such as INSERT, UPDATE, and DELETE SQL operations that all resulted in

relatively similar results.

When using Netty, the performance difference is significant. This is primarily due to

the ability to pipeline requests when using non-blocking I/O.

4.1.2 What are the performance benefits of pipelining?

Pipelining provides significant performance benefits, and we wanted to examine at what point

does pipelining impact performance in a positive way. To do this we built an experiment that

sent multiple requests over the same connection. We started with a single request and moved

up to 25 requests. We ran the experiment using the loopback interface, over a gigabit/second

Ethernet network, as well as over the Internet1. To compare the difference, we used a simple

JDBC driver as a baseline, and then use our non-blocking driver with pipelining disabled,

and again with pipelining enabled. We collected 1,000 samples for each configuration.

1The hosts we used in our Internet experiment were connected using a Comcast cable Internet connection

in West Jordan, Utah through the BYU network connecting to a database located at the Riverton Office

Building of the LDS Church.
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Conclusion

We show the average latency of each experiment in Figures 4.1, 4.2, and 4.3. The latency

over the loopback device is extremely small and, as would be expected, there is no significant

difference between pipelining vs. non-pipelining on MySQL. On Postresql, however, we see

a small benefit is gained from pipelining. The latency on a gigabit/sec Ethernet network

is still relatively low, but even after just two requests, there is a significant improvement in

performance. Over the Internet, where latency is relatively high, we see an improvement by

a factor of five.

4.1.3 How do our ADBCJ drivers scale?

We look at how well ADBCJ scales both horizontally and vertically. Horizontal scaling

demonstrates how well ADBCJ performs across multiple RDBMS hosts while vertical scaling

demonstrates how well ADBCJ performs with multiple connections to a single host.

One of the goals of ADBCJ is to be able to efficiently interact with a large number

RDBMSs. To measure how well ADBCJ is able to do this, we created an experiment that

connects to an arbitrary number of RDBMSs and executes a single SQL query that returns

a small result set. We chose to use a single query because we did not want any advantages

from pipelining to bias the results. We measured the time it takes to asynchronously send

a query to each RDBMS and receive a response using fork/join style concurrency. We ran

the experiment multiple times. We first connected to a single RDBMS and then sequentially

increased the number of RDBMSs to eight. We would have tried connecting to more RDBMS

hosts if we had the available hardware to reliably run the experiment. We executed our test

query 50,000 times for each configuration and show the averages in Figure 4.4. Ideally, as

the number of RDBMSs increase, the graph should remain relatively flat. When using non-

blocking socket I/O, the slope of the graph is fairly shallow. The graphs when using a thread

pool are not as shallow but still scale fairly well.
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Figure 4.1: Pipelining results over loopback interface: When the latency is very low, there is
no clear performance increase from pipelining when using MySQL and a slight performance
gain for Postgresql.
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Figure 4.2: Pipelining results over 1 gigabit/sec network: Even with moderately low la-
tency on a gigabit/sec Ethernet network, using pipelining has a three times performance
improvement.
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Figure 4.3: Pipelining results over the Internet: When the latency is relatively high, using
pipelining produces a five times perfmance increase.
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Figure 4.4: Horizontal scalability: Horizontal scaling results.

Figure 4.5: Vertical scalability: Vertical scalability is nearly linear.
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Vertical scalability is a challenging issue due to the fact that the RDBMSs we are

using cannot scale to a high number of concurrent connections. By default, both MySQL

and Postgresql have a limit of 100 concurrent client connections. Increasing the number of

connections that MySQL can handle is simply a matter of changing the MySQL configuration

property max connections. The maximum value of this property is, according to MySQL

documentation, limited by the available hardware [26].

Scaling Postgresql is more difficult. MySQL uses a thread-per-connection architecture

whereas Postgresql forks new processes and uses shared memory for coordinating the various

processes. For details on how we were able to scale Postgresql, see Appendix A.1.

To measure the vertical scalability of ADBCJ, we built an experiment that creates

a specified number of connections to the RDBMS. We then measure the time it takes to

send the same SQL query we used in the horizontal scalability experiment across each con-

nection and get a response. The results are shown in Figure 4.5. The difference between

the non-blocking socket I/O results and the thread pooling results are more dramatic than

the horizontal scaling results. As the number of connections increases, the difference in

performance is much less with non-blocking socket I/O than with thread-pools.

Analysis

As we increase the number of RDBMSs, performance degrades more slowly giving non-

blocking socket I/O an advantage for horizontal scalability. Our non-blocking socket I/O

drivers also have a clear performance advantage when vertically scaling up to many connec-

tions to a single RDBMS instance.

4.2 ADBCJ on a Conventional Web Server

One of the use cases that we identified when initially developing ADBCJ was a portal like

application that aggregates data from multiple RDBMSs. We predicted that asynchronously

fetching the data would be faster than serially fetching the data. To test this hypothesis, we
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Figure 4.6: Database Driver Performance Comparison Rate: The average number of requests
per second for each load (higher is better).

Figure 4.7: Database Driver Performance Comparison Reply Time): The average reply time
in ms for each load (lower is better).
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designed a portal like web application that aggregates data from multiple sources. We built

two versions of this application, one that uses conventional JDBC and another that uses

ADBCJ. We compare the performance of serially fetching the data versus various techniques

for asynchronously fetching the data.

We chose two datasets for this test. One dataset is a list of 40,000 names and phone

numbers. The second dataset contains 5 million rows of web access logs. We put each of

these datasets on separate MySQL and Postgresql instances, resulting in a total of four data

sources from which to aggregate data.

Our application queries 5 contacts at random from each contact database. The ap-

plication queries the access logs over a one hour period, selected at random, and returns the

number of times a given URI was accessed during that period.

We built our application using the Java Servlet API. The Java Servlet API is the

standard API for building web applications on the Java platform [27]. We deployed the

various versions of our application to the Apache Tomcat 6.0.26 servlet container [28]. See

Appendix A.3 for details on how we changed the default Tomcat configuration.

To test the performance of our application, we used httperf to run various tests

ranging from 1 connection to 1,000 concurrent HTTP connections, in increments of 50.

Each connection connected 100 requests. We measured the number of requests/second the

server was able to handle as well as the number of threads and memory usage of the web

server. The parameters we used for executing httperf are found in Appendix A.2.

Our application renders a single HTML page containing the query results. To gen-

erate this page, we used the FreeMarker template engine library [29]. Both versions of our

application use the same FreeMarker template.

The JDBC version of our web application simply executes each query serially in a

manner conventional to many database driven web applications. Because Tomcat does not

provide database connection pooling support, we used a connection pool provided by the

Spring Framework [30].
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The ADBCJ version of our web application uses the fork-join approach to concurrency

similar to what is shown in Figure 3.1. We tested this application in two configurations: one

using our thread-pool based drivers and the second using our non-blocking I/O drivers. To

pool the ADBCJ RDBMS connections, we used a simple connection pooling mechanism that

we built into ADBCJ.

One of the challenges of using thread-pools is determining how many threads to use

in the pool. The more threads we have, the more concurrent requests we are able to process.

With our configuration, we were able to create about 2,200 threads in the JVM before getting

OutOfMemoryExceptions. Tomcat needs 1,000 of these threads for handling HTTP requests.

It also uses a handful of threads for monitoring and management activities. So, for the tests

that use the thread-pool based ADBCJ driver, we used a thread-pool with a maximum of

1,100 threads.

The initial results for our thread-based asynchronous database drives were abysmal,

averaging around 36 requests/second. Our earlier performance tests involved either a sin-

gle connection and multiple queries or multiple connections and a single query. It turns

out that when multiple queries are issued with multiple connections, performance degrades

significantly. In this experiment, we issue multiple queries to the RDBMSs managing the

contacts databases. The first query is promptly submitted to the thread pool. Once the

initial request has completed, the subsequent request is submitted to the thread pool. At

this point, the queue to the thread pool has grown and the latency required to execute the

subsequent requests increases as well. This queuing behavior is by design to ensure fairness

in the case of a large number of connections trying to use a small thread pool.

To solve the latency problem, we added a mode of operation to our thread pool-based

asynchronous database driver that lets it operate in an “unfair” mode. When a RDBMS

request completes execution in the thread pool, it checks to see if there are subsequent

requests for the connection. If so, the requests are executed immediately. We use the

“unfair” mode of operation in this experiment.
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With the systems we used for testing, a user can have up to 1,024 file descriptors

open. Each TCP socket uses a file descriptor. With Tomcat using 1,000 file descriptors for

handling HTTP requests and each request using 4 file descriptors to communicate with each

RDBMS host, we had to increase this limit. See Appendix A.5 for details on how we changed

the file descriptor limit.

We ran our experiment using six individual hosts. Four hosts for running the various

RDBMSs, one host running Tomcat, and a third host for running httperf. In Figure 4.6 we

show the results of the experiment, graphing the average number of requests/second against

the number of concurrent web connections. In Figure 4.7 we show the average reply time for

each request.

The thread pool-based database drivers can query each RDBMS concurrently, outper-

forming the JDBC database drivers when the number of web connections is low. However,

as the number of concurrent web requests increases past 400, the thread pool gets saturated,

thereby increasing the latency of queued requests and the performance starts to degrade.

Our non-blocking I/O database drivers, however, improve performance dramatically.

We believe the primary reason for the dramatic performance difference is that these drivers

are able to send data to the socket from the calling thread. This eliminates the latency

incurred when queuing up requests to be executed in a second thread. We are also able to

use pipelining and benefit from its performance gains when issuing multiple queries to the

contacts databases.

As the load increases, the driver starts encountering errors. All of the errors we

logged stem from connection reset errors communicating with one of the Postgresql RDBMs.

After getting a connection reset error, we saw numerous connection timeout errors trying to

reconnect to the Postgresql instance.
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Figure 4.8: Event-driven Web Server Performance Requests/Second: The average number
of requests per second for each load (higher is better).

Figure 4.9: Event-driven Web Server Performance Reply Time: The average reply time in
ms for each load (lower is better).
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4.3 ADBCJ on an Event-Driven Web Server

On the Java platform, there are various frameworks for building event-driven web servers,

but they are different and do not adhere to common standard like the Servlet API. Among

these various frameworks, we chose to use Netty to build our event-driven web server. This

was an obvious choice as we are already using Netty for our database drivers.

The event-driven web application we built simulates the functions that a real e-

commerce application might have including searching for items, viewing the details of an

item, and purchasing an item.

Our goal is to be able to scale this application to 10,000 concurrent connections.

This was a difficult challenge given the fact that relational databases themselves typically

do not scale well. With the hardware that we used for our other tests, we were unable to

get Postgres to scale reliably past 700 or connections. MySQL was able to scale past a few

thousand concurrent connections but this was still inadequate. For this test, we were able

to secure a server with a quad-core Intel Xeon processor running at 2.66GHz with 8GB of

RAM running the 64-bit Linux 2.6.21.7-2 SMP kernel from Red Hat. On this machine we

were able to scale MySQL to 10,000 concurrent connections but could not scale Postgresql

reliably past a few thousand concurrent connections. Because of this, we chose to only use

MySQL for this experiment.

Similar to our experiment on a conventional web server, we chose to use FreeMarker

for rendering HTML. This application has five simple web pages for doing the following:

• A landing page that allows the customer to search for items. The search terms are

chosen by random from a pre-determined list of search terms.

• Search results.

• Item details.

• A purchase item page.

• A purchase successful page.
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We used three hosts to conduct this experiment: the large database server mentioned

earlier, a host for running the event-driven web server, and a host for running httperf. On

all three hosts we had to change the file descriptor limit as we did for the conventional web

server experiment. Additionally, httperf by default is configured to handle a maximum of

1,024 connections. To remedy this, see Appendex A.4 for details on how we modified httperf

to scale beyond 1,024 connections. The parameters we used for running httperf are found in

Appendix A.2.

To run httperf, we used the same parameters as in the previous experiment (see

Appendix A.2) except for the –uri parameter. We chose to always have httperf use the same

URI to make the httperf configuration simpler. The logic that gets invoked from this URI

determines which page should be rendered and sent back to the client.

For the thread-pool based database drivers we use a pool of 2,200 threads. Because

our event-driven web server uses a small number of threads, we can use a much larger

thread-pool than in the previous experiment.

We did not run any plain JDBC experiments on our event-driven web server. Because

the JDBC calls block, we know that this would perform poorly given the fact that our web

server has so few threads.

We ran httperf various times going from a single connection up to 10,000 concurrent

connections. In Figure 4.8 we show the results of the experiment, graphing the average

number of requests/second against the number of concurrent web connections. In Figure 4.9

we show the average reply time for each request. The thread-pool based driver still scales

fairly well however it is clear that the non-blocking I/O drivers are able to scale better and

have less performance degradation as the load increases.

4.4 Threats to Validity

Our micro-benchmarks are by no means exhaustive. Our drivers only support simple types

such as varchar and int. We did not add support to our drivers for more complicated types
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such as those for handling large amounts of text or binary data. The results of interacting

with these types of data could be very different from the simple data we examined.

All of our pipelining experiments executed simple SQL queries. More complicated

queries may take longer to execute and this longer execution may make the performance

improvements from pipelining negligible.

When running our web based experiments, we only used the Apache Tomcat web

servers. However, there are many Java servlet containers and other implementations of

the servlet specification may yield different performance results than the ones we gathered.

Given the simplicity of our test application, we feel that the results would be similar.

Our experiments run on an event-driven web server are the most suspect since there

are many different event-driven web server frameworks. We believe that our results would

be similar across different web frameworks. However, the fact that we used a Netty based

database driver and a Netty based web server may have impacted our results.

All of our experiments were run on Linux. Given that different operating systems

implement asynchronous I/O differently, our results may vary across different platforms. Fu-

ture research should look at comparing and contrasting our results across multiple operating

systems.
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Chapter 5

Conclusion

This thesis presents a performance and scalability oriented comparison of thread-

pool and non-blocking I/O asynchronous database drivers using the ADBCJ asynchronous

database driver framework. We show that using non-blocking socket I/O for asynchronous

database drivers has many advantages over using a thread-pool with conventional database

drivers. Queries can be sent to the RDBMS immediately instead of waiting to be executed

in a second thread, improving performance significantly. Multiple requests can be pipelined

which also improves performance in most cases. Non-blocking socket I/O based database

drivers also scale better.

We show how asynchronous database drivers can improve the performance of web

applications that access multiple datasources. The performance of asynchronous database

drivers that use non-blocking I/O instead of thread-pools are also faster in this situation.

We also show that using non-blocking I/O in conjunction with an event-driven web server

scales better than using a thread-pool for asynchrony.

However, asynchronous database drivers have a significant drawback in that they are

much more complicated to use than conventional blocking database drivers and dealing with

concurrency can be very difficult.

A future version of Java will have a new API for doing asynchronous I/O [31]. This

new API, to a large degree, mitigates a lot of the advantages of frameworks like Netty by

providing a concise API for asynchronous I/O. It would be interesting to see how a database

driver built on this API would perform compared to our existing driver built on Netty.
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Database drivers are only one area where the benefits of non-blocking socket I/O has

been demonstrated. Future research should be done to determine how non-blocking socket

I/O could be used with emerging non-relational databases such as Cassandra [32], CouchDB

[33], MongoDB [34], Voldemort [35], and other so called nosql databases.
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Appendix A

Experiments

A.1 Scaling Postgresql

To increase the number of client connections that Postgresql can handle we must update

its max connections property. We must also update the amount of shared memory that

Postgresql will use. The version of Postgresql we are using requires about 128KB of shared

memory per connection. However, our Linux installation has a default maxed shared mem-

ory setting of about 33.5MB, limiting our maximum number of connections to about 262.

Fortunately we can update the maximum about of shared memory the Linux kernel will

allow by writing the desired maximum to the file /proc/sys/kernel/shmmax.

A.2 httperf Parameters

When running our experiments against a conventional web server, we used the following

httperf configuration paramters:

–hog This tells httperf to to not limit itself to using ephemeral ports. Staying within the

limited range of ephemeral ports can often be a bottleneck.

–server Used to indicate the IP address of the web server.

–port The port the web server is listening on. In our case, using Tomcat, this defaults to

8080.

–uri The URI to be requested. The value of this parameter changed depending on whether

or not we were using the JDBC version of the application or the ADBCJ version.

–num-calls The number of requests to be issued per connection.

–num-conns The number of connections to use. We started at 1 connection and increased

to 1,000 connections in increments of 50.

–rate The rate at which connections are crated. We used the same value here as we did for

the –num-conns parameters so that all the connections would be used concurrently.
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A.3 Tomcat Configuration

By default, Tomcat will scale to 200 concurrent connections. To allow Tomcat to handle 1,000

concurrent connections, we modified the file conf/server.xml and changed the Connector

element for port 8080 by adding maxThreads=“1000”. We also increased the maximum heap

size for the JVM running Tomcat to 1GB.

A.4 Scaling httperf

By default, httper only scales to 1,024 concurrent connections. To remedy this, we modified

the header file “/usr/include/bits/typesizes.h” and change the line “#define FD SET SIZE

1024” to “#define FD SET SIZE 65536”. We then downloaded the source code to httperf

and compiled it. Our modified httperf is now able to scale well beyond what we needed to

complete our experiments.

A.5 Changing File Descriptor Limit

We chose to increase the limit to 65,536 just to be on the safe side. To do so we appended

the lines * hard nofile 65536 and * soft nofile 65536 to the file “/etc/security/limits.conf”.

To verify that the change actually took place, we executed ulimit -n.
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