
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2010-12-08

Automated Tool Design for Complex Free-Form Components Automated Tool Design for Complex Free-Form Components

Kevin G. Foster
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Foster, Kevin G., "Automated Tool Design for Complex Free-Form Components" (2010). Theses and
Dissertations. 2383.
https://scholarsarchive.byu.edu/etd/2383

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2383?utm_source=scholarsarchive.byu.edu%2Fetd%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Automated Tool Design for Complex Free-Form Components

Kevin G. Foster

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
Christopher A. Mattson

Michael P. Miles

Department of Mechanical Engineering

Brigham Young University

April 2011

Copyright © 2011 Kevin G. Foster

All Rights Reserved

ABSTRACT

Automated Tool Design for Complex Free-Form Components

Kevin G. Foster

Department of Mechanical Engineering

Master of Science

In today’s competitive manufacturing industries, companies strive to reduce
manufacturing development costs and lead times in hopes of reducing costs and capturing more
market share from early release of their new or redesigned products. Tooling lead time
constraints are some of the more significant challenges facing product development of advanced
free-form components. This is especially true for complex designs in which large dies, molds or
other large forming tools are required. The lead time for tooling, in general, consists of three
main components; material acquisition, tool design and engineering, and tool manufacturing.
Lead times for material acquisition and tool manufacture are normally a function of
vendor/outsourcing constraints, manufacturing techniques and complexity of tooling being
produced. The tool design and engineering component is a function of available manpower,
engineering expertise, type of design problem (initial design or redesign of tooling), and
complexity of the design problem.

To reduce the tool design/engineering lead time, many engineering groups have

implemented Computer-Aided Design, Engineering, and Manufacturing (CAD/CAE/CAM or
CAx) tools as their standard practice for the design and analysis of their products. Although the
predictive capabilities are efficient, using CAx tools to expedite advanced die design is time
consuming due to the free-form nature and complexity of the desired part geometry. Design
iterations can consume large quantities of time and money, thus driving profit margins down or
even being infeasible from a cost and schedule standpoint. Any savings based on a reduction in
time are desired so long as quality is not sacrificed.

This thesis presents an automated tool design methodology that integrates state-of-the-art

numerical surface fitting methods with commercially available CAD/CAE/CAM technologies
and optimization software. The intent is to virtually create tooling wherein work-piece
geometries have been optimized producing products that capture accurate design intent. Results
show a significant reduction in design/engineering tool development time. This is due to the

integration and automation of associative tooling surfaces automatically derived from the known
final design intent geometry. Because this approach extends commercially available CAx tools,
this thesis can be used as a blueprint for any automotive or aerospace tooling need to eliminate
significant time and costs from the manufacture of complex free-form components.

Keywords: complex free form surfaces, multidisciplinary optimization, generative parametrics,

automated tool design, response surface methodology

ACKNOWLEDGMENTS

I want to express my thanks to Dr. C. Greg Jensen for the professional guidance and

direction that he has offered me over the years as both my undergraduate and graduate advisor

He is one of those rare individuals that drives you to be a better person and accomplish more

than you thought previously possible. Were it not for him I probably would not be where I am

today. I’d also like to thank my friends and fellow graduate students with whom I worked with

in the BYU ParaCAD lab for all the fun memories and assistance in developing this research.

Many hours were spent in discussion with them as to how I can develop efficient algorithms and

overcome the challenges encountered in developing this research. I’d like to thank Pratt &

Whitney in East Hartford Connecticut for funding this research and making it all possible. I’d

also like to thank Jason Elliott and Michael Weiss of the Pratt & Whitney Hollow Fan Blade

engineering staff for their engineering expertise and guidance. I would also like to thank

Scientific Forming Technologies (Ms. Misty Engelbrecht and Dr. Wu specifically) for their

generosity in granting me many licenses of their DEFORM 2D forging simulation software to

complete the research. I couldn’t have chosen a better company to promote their software. I’d

like to thank all the family and friends for their support and constant reminders to finish this

research. They have provided me with more than I can provide in return.

I would like to express my profound thanks, appreciation, and love to my beautiful wife,

Lisa. I thank her for all her understanding and support throughout the duration of my project.

She has truly stood by my side and provided me with the needed motivation to see this research

to completion. I love her and am grateful to have her as my eternal companion.

 v

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION ..1

1.1 Problem Statement ...2

1.2 Thesis Objective ..3

1.3 Delimitations of the Problem ...4

CHAPTER 2: LITERATURE REVIEW ..5

2.1 Computer Aided Design (CAD) - Parametrics ..5

2.1.1 Wireframe Modeling Systems ...7

2.1.2 Surface Modeling Systems ..7

2.1.3 Solid Modeling Systems ..8

2.1.4 Feature-based Parametric Modeling ..11

2.1.5 CAD-based Master Models ..13

2.2 CAD Application Program Interfaces (API) ...15

2.3 Computer-Aided Engineering (CAE) ..18

2.3.1 Finite Element Analysis ...19

2.4 Surface Interpolation Methods ...21

2.4.1 Non-Uniform Rational B-splines (NURBS) ..22

2.5 Multidisciplinary Optimization ..25

2.6 Statistical Response Surface Modeling ..28

2.6.1 Design of Experiments (Central Composite Designs) ...28

2.6.2 Regression Analysis ...31

2.6.3 RSM Surface Creation/Examination ..31

 vi

CHAPTER 3: METHOD ..33

3.1 Parametric Modeling ..34

3.1.1 Generative Parametrics ..34

3.1.2 PSRM Planning ..35

3.1.3 PRSM Development ..36

3.1.4 PRSM Evaluation ...37

3.2 Analysis ...38

3.2.1 Interactive Development ..38

3.2.2 API Program Development ..39

3.2.3 CAD/CAE Integration ...40

3.3 Numerical/Geometric Surface Interpolation ..42

3.4 Multidisciplinary Optimization ..43

3.5 Statistical Response Surface Methodology ..44

CHAPTER 4: DEVELOPMENT ...45

4.1 Parametric Modeling ..46

4.1.1 Planning ...46

4.1.2 Development ..52

4.1.3 Evaluation ..76

4.2 Analysis ...78

4.2.1 Mesh Creation ..79

4.2.2 Forming Simulation ...81

4.3 Numerical/Geometric Surface Interpolation ..88

4.4 Optimization ..90

4.4.1 Master Program ..91

4.4.2 iSIGHT-FD Optimization Environment ..92

 vii

4.5 Response Surface Analysis Methodology ...93

CHAPTER 5: DISCUSSION OF RESULTS ..97

5.1 Test Cases/Concept Generation ...97

5.1.1 Test Case 1: Double Sided Machined Airfoil ...97

5.1.2 Test Case 2: Single Sided Machined Airfoil ...98

5.2 Results: Parametric Modeling ..99

5.3 Results: Analysis ..104

5.3.1 ANSYS Results ..104

5.3.2 DEFORM Results ..105

5.4 Results: Evaluation ..107

5.5 Results: Optimization ..110

5.6 Results: Design of Experiments ...111

5.6.1 Results: Case Study 1- High Fidelity Model (Double Sided Machined Blade)116

5.6.2 Results: Case Study 2- High Fidelity Model (Single Sided Machined Blade)117

CHAPTER 6: CONCLUSIONS ...119

6.1 Conclusions ..119

6.2 Future Work ...123

APPENDIX A. SURFACE DEVIATION ALGORITHM ..129

APPENDIX B. MESH GENERATION MODULE ...137

APPENDIX C. SIMULATION PREPROCESSING ...141

APPENDIX D. SIMULATION POSTPROCESSING...142

APPENDIX E. ISIGHT OPTIMIZATION LOOP ..143

APPENDIX F. JMP INPUT DECK ..146

 viii

 ix

LIST OF TABLES

Table 1: Hardware and Software Used ...46

Table 2: Required Number of Files and Lines of Code for Module 1 ..65

Table 3: Required Number of Files and Lines of Code for Module 2 ..68

Table 4: Required Number of Files and Lines of Code for Module 3 ..70

Table 5: Required Number of Files and Lines of Code for Module 4 ..76

Table 6: Mesh Generation Outline ..81

Table 7: Die/Workpiece Material Properties ..82

Table 8: Simulation Preprocessing ...83

Table 9: Simulation Postprocessing Step 1 ...84

Table 10: Modeling Workspace Statistics ..102

Table 11: Modeling Methods/Time Summary ..104

Table 12: Mesh Methods/Time Summary ..105

Table 13: 2D Simulation Methods/Time Summary ..107

Table 14: Stress Output Key ...108

Table 15: Optimization Data History Example ..111

Table 16: Test Case 1 and 2 Optimization Results ...112

Table 17: Predicted Optimal Design Variable Settings ..116

Table 18: Test Case 1 Optimum Data History ..117

Table 19: Test Case 2 Optimum Data History ..118

Table 20: JMP Input Deck Part 1 ..147

Table 21: JMP Input Deck Part 2 ..148

 x

 xi

LIST OF FIGURES

Figure 1: Mathematical Definition of a Closed Solid ...9

Figure 2: Example of Subtraction, Union, and Intersection Boolean Operations10

Figure 3: Boundary Representation (B-rep) ...10

Figure 4: An Example of Parametrics (King 2004) ..13

Figure 5: Surface Normal Calculation with Cross-product ..22

Figure 6: A Parametric Design Scheme ..26

Figure 7: A General Design Optimization Loop...26

Figure 8: Two Level Three Factor Full Factorial DOE Example ...29

Figure 9: Example 3 Factor Central Composite Design ...30

Figure 10: A Tool Design Optimization Scheme ...33

Figure 11: API Modules..39

Figure 12: A Cut-away of the GP7000 Jet Engine Highlighting the Fan Blade45

Figure 13: AS File with Root Attachment Properly Positioned ...47

Figure 14: Hollow Window Boundary ...49

Figure 15: Module 1 Modeling ...50

Figure 16: Module 2 Modeling ...50

Figure 17: Module 3 Modeling ...51

Figure 18: Module 4 Modeling ...51

Figure 19: Generalized Application Organization ..53

Figure 20: Rootblock (Transparent Green) for Twisted and Straight Root Attachments54

Figure 21: Rootblock Parameterization ..55

Figure 22: Normalized Surface Vector (n) from Cross-product of (a) and (b)57

Figure 23: AS File Data Shown with Hollow Window Region (No Offset)58

Figure 24: AS File Data Side Profile (0.0” Offset) ...58

 xii

Figure 25: AS File Data Side Profile (1.0" Offset) ...58

Figure 26: Uniform Crush 0.0" and 1.0" Cross-section Overlap ..58

Figure 27: AS File Data Shown as Cross-sections with Rootblock..59

Figure 28: AS File Data Side Profile (0.0” Offset) ...59

Figure 29: AS File Data Side Profile (0.5" Offset) ...59

Figure 30: Deformation 0.0" and 0.5" Cross-section Overlap ..59

Figure 31: AS File with Oval Deflection Region and Manipulated Interior Points60

Figure 32: AS File Data Side Profile with Deflection Compensation Applied60

Figure 33: Deflection Compensation Cross-section Overlap ...60

Figure 34: AS File Full Airfoil Definition ..61

Figure 35: AS File Full Cross-section Definition (Leading Edges Shown Only)61

Figure 36: Airfoil Cross-section with In-process Geometry (Pink) and Departure Points62

Figure 37: Vertical Stringer Intersection with Rootblock Roof ..63

Figure 38: Trimmed Vertical Stringers to Rootblock Roof ..63

Figure 39: Complete Vertical Airfoil Stringers Integrated Over Rootblock64

Figure 40: Cross-section with Departure Points Shown ...65

Figure 41: Cross-section Overlaid with Departure Lines (Red) ...65

Figure 42: Blended Cross-section (Green) with Departure Lines (Magenta)65

Figure 43: Transition Governing Relationships ..66

Figure 44: Module 2 Airfoil to Transition Curve Capability ..67

Figure 45: Complete Exaggerated Module 2 Curve Transition Example #1..............................67

Figure 46: Completed Module 2 Example #2 (1/2 Die Shown for Clarity)68

Figure 47: Module 3 Vertical Stringer Parameterized Regions and with Region Biasing69

Figure 48: Module 3 Die and Workpiece Surface Examples ...70

Figure 49: Workpiece Leading Edge Root and Tip Bridging Lines ...71

 xiii

Figure 50: Workpiece Surfaces Exploded View ...72

Figure 51: Workpiece as a Solid Body ...72

Figure 52: Wireframe of Die Solid with Die Surfaces (Blue) ..73

Figure 53: Die Half Solids ..74

Figure 54: Module 4 Die Cross-section Results ...75

Figure 55: Module 4 Workpiece Cross-section Results ...75

Figure 56: Sample Section Cut for Analysis...76

Figure 57: ANSYS Meshed Objects Example ..80

Figure 58: Complete Preprocessed Model ..83

Figure 59: Postprocessed Final Simulation Time Step (Effective Stress Plot)85

Figure 60: Example of Nominal Surface Halves with Deviation Reference Points89

Figure 61: Generalized Optimization Program ...92

Figure 62: Inscribed Central Composite Design ...94

Figure 63: Design Variable Ranges and Inscribed Central Composite Mapping95

Figure 64: Inscribed Central Composite Design (Test Cases 1 and 2)96

Figure 65: Double Sided Cross-section Top View ...98

Figure 66: Double Sided All Cross-sections Front View ...98

Figure 67: Single Sided Single Cross-section Top View...99

Figure 68: Single Sided All Cross-sections Front View ...99

Figure 69: Single and Double Sided Solid Die and Workpiece Geometry.................................100

Figure 70: Cross-sectional Airfoil and Die Geometry Used for Analysis101

Figure 71: ANSYS Meshed Upper Half of Forming Die ...104

Figure 72: ANSYS Meshed Airfoil Cross-section..104

Figure 73: ANSYS Meshed Lower Half of Forming Die ...105

Figure 74: Analyzed Model Stations with Datum Planes ...106

 xiv

Figure 75: DEFORM Postprocessed Final Simulation Time Step (Effective Stress Plot)106

Figure 76: Stress Output Example ..108

Figure 77: Deviations Output Example ..109

Figure 78: Optimization History Plot Example ..110

Figure 79: Regression Results ..113

Figure 80: Response Surface Model ...114

Figure 81: Prediction Profiler Lower Range ...115

Figure 82: Prediction Profiler Mid Range ..115

Figure 83: Prediction Profiler Upper Range ...115

Figure 84: Test Case 1 Optimized History Plots ..116

Figure 85: Test Case 2 Optimized History Plots ..117

Figure 86: iSIGHT Optimization Loop Part 1 ..144

Figure 87: iSIGHT Optimization Loop Part 2 ..145

1

CHAPTER 1: INTRODUCTION

To conceptualize, design, and manufacture today’s complex products in increasingly

competitive and efficient markets there is a push causing today’s technology companies to

explore new ways to improve designs, increase productivity, and reduce costs. The engineering

tools available to engineers are always being improved to help satisfy these demands. Today

software such as parametric CAD systems, finite element analysis (FEA), computation fluid

dynamics (CFD), and other CAE software systems have been developed to meet the needs of

companies striving to improve designs, increase productivity, and reduce costs.

Today, for example, designing products such as an aircraft jet engine or the Reusable

Solid Rocket Motors (RSRM) for NASA’s Space Shuttle or future heavy lift vehicle require

detailed input and collaboration from several different disciplines. Those disciplines encompass

aerodynamics, structural design, thermo sciences, and manufacturing to name a few. In the past,

experts in these disciplines worked in small teams specialized in handling the integration

process. Today engineering groups are working to more fully implement what is called

“concurrent engineering.” Concurrent engineering moves different engineering groups away

from the “over the wall” or sequential design approach to a multi-disciplinary design approach

centered on Integrated Product Design (IPT’s) teams (Hogge 2002). IPT’s in industry strive to

discover and design the optimal scenario within the allotted time (schedule) and budget (cost).

Using a multi-disciplinary design optimization (MDO) approach to aid in convergence, an

2

optimal solution can be achieved by implementing a software concurrent-engineering approach

paradigm.

1.1 Problem Statement

In today’s manufacturing markets, companies strive to reduce development, design, and

manufacturing lead times in hopes of capturing more market share from early release of their

new or redesigned products. One of the more significant and time consuming challenges of

product development is tool design. This is especially true for large stamping dies, forging dies,

and forming molds.

The lead time for tooling, in general, is comprised of three components; material

acquisition, tool design/engineering and tool manufacturing. Lead times for the material

acquisition and tool manufacture component are typically fixed due to vendor/outsourcing

constraints, manufacturing techniques and complexity of tooling being produced. However, the

design/engineering component is a function of available manpower, engineering expertise, type

of design problem (initial design or redesign of tooling), design methods employed, and

complexity. To reduce the tool design/engineering lead time many engineering groups have

implemented Computer-Aided Design, Engineering, and Manufacturing (CAD/CAM/CAE or

CAx) tools as their standard practice to assist the design and analysis of their tooling products.

Although the predictive capabilities are efficient, using CAx tools to expedite finished

forming die surface design is an inherently time consuming process due to the cyclical nature of

the design iterations that must be made to meet and deliver original design intent. These design

iterations can consume enormous amounts of time and money. Any time saving measures are

typically welcome so long as sufficient quality is achieved.

3

This thesis research will explore the issues and limitations described above by answering

the following questions:

1. Can the integration of parametric CAD, meshing capabilities, bulk forming simulation,

and optimization accomplish a realistic part/die models prediction when the parts being

formed are defined using complex free-form surfaces?

2. Can numerical surface construction and interpolation techniques be used to accurately

allow for an objective rating on the accuracy of predictive results compared to the

original design intent?

3. Can the implementation of this methodology (the integration and automation of

associative tooling surfaces automatically derived from the original part geometry)

produce a significant reduction in design/engineering tool development lead time?

4. Can this methodology be used as a blue print for any automotive or aerospace tooling

industry to eliminate significant time and costs from the manufacture/design of complex

free-form components?

1.2 Thesis Objective

The objective of this thesis is to develop a conceptual automated tooling design scheme

methodology that integrates commercial CAD/CAM/CAE technologies. These technologies will

be coupled with numerical free-form surface construction, interpolation methods, and an

optimization engine. The intent is to obtain tooling and pre-formed work piece geometries

optimized to produce near-to-design intent products for in-process manufacturing geometry.

4

1.3 Delimitations of the Problem

The objective of this research is to validate the integration of CAD/CAM/CAE tools for

the purpose of developing an automated tool design scheme that is integrated with an

optimization engine. This allows for determination of the optimal parameter values for the

desired topology. This method was tested by implementing two test cases. Test cases 1 and 2

will be high fidelity complex free-form die-work piece surface components. The major

difference between the test cases is the manufacturing methods used to obtain the desired

geometry (i.e. double vs. single sided machining). The differences are explained in detail in

Section 5.1. Both test cases will implement the aforementioned methodology, for a jet turbine

engine compressor systems’ first stage shroudless hollow fan blade. Determination of the

original design intent is not deduced rather provided as a reference as to the validity of the

automated tool design method output. Micro shape (specific design feature) optimization of the

forging dies and work pieces will not be performed rather the questions posed in Section 1.1 will

be addressed.

5

CHAPTER 2: LITERATURE REVIEW

This chapter provides a review of past and currently accepted engineering and computer

science oriented literature that provides a basis for the methodology. The surveyed literature is

intended to establish a background for the reader regarding what research has been conducted in

fields closely related to this thesis, and how previous research has been built upon and

implemented in this thesis. The following literature review will also exploit the voids wherein

this thesis conducts pertinent research.

From the problems discussed in the previous chapter, this research requires an

investigation of the following topics:
• Computer Aided Design (CAD) (Section 2.1)

• CAD Application Program Interfaces (API’s) (Section 2.2)

• Computer-Aided Engineering (CAE) (Section 2.3)

• Surface Interpolation Methods (Section 2.4)

• Multidisciplinary Optimization (Section 2.5)

• Statistical Response Surface Modeling (Section 2.6)

2.1 Computer Aided Design (CAD) - Parametrics

The use of CAD began in the mid 1960’s as an aid for drafting. It has since become a

large contributor to shortened design times and increased product quality due to its ability to

assist in the creation, modification, analysis and optimization of a design (Lee 1999, Hsu et al.

6

1992). The ability to virtually conduct concept generation to concept finalization has led to large

advancements compared to the products of the pre-CAD era.

From its initiation, CAD has promised five important benefits to the engineering design

process (Dieter 2000, Liker et al. 1992).

• Automation of routine design tasks

• Ability to design in three dimensions

• Design by solid modeling to create digital geometric databases which permit

downstream analysis and simulation

• Electronic transfer of design database to manufacturing (CAD/CAM) where it is used

to create NC tool paths for machining and quick digital transfer for rapid prototyping

• A paperless design process

As the fundamental tool for modeling geometric systems, CAD has progressed

significantly by developing squarely on top of wireframe modeling, surface modeling, solid

modeling, and the current feature-based parametric modeling systems while enabling the

successful implementation of the benefits listed above as envisioned by its creators. This

research relies heavily upon all the different types of CAD.

In today’s CAD tools, capabilities exist to provide geometric modeling systems for

manipulating and constructing shapes, to specialized application programs used for analysis and

optimization (CAD-based Master Models). The following sub-sections provide background

information for the methods implemented in this research.

7

2.1.1 Wireframe Modeling Systems

Wireframe modeling systems display visual representation of geometric entities by

displaying a wireframe (points and line) drawing of the shape. These systems store the

wireframe representation as mathematical descriptions in the form of lists of curve equations,

coordinates of the points, and the connectivity information for the shape’s curves and points.

The connectivity information describes which points belong to which curves and to which

entities the curve/point sets are adjacent to.

These systems lent themselves for ease of use due to the simple inputs required to create

a shape and the relative ease for generating such a system independent of a commercial vendor.

Wireframe modeling systems do have their pitfalls. Since the visual model is composed of lines

and points, it is oftentimes ambiguous to determine the orientation and overall visual description

(no features for depth perception). These systems also contain no information pertaining to the

inside and outside boundary faces of the objects thus rendering it impossible to determine mass

properties, derive tool path automation possibilities, or generate a mesh for finite element

analysis (Lee 1999).

For this research, wireframe modeling is the foundation for all the higher level modeling

that is required. All the construction curves for the dies and workpiece a wireframe based. For

more information on wireframe modeling see Mäntylä (1988) and Lee (1999).

2.1.2 Surface Modeling Systems

Surface modeling systems build upon the technology of a wireframe system and add the

capability to store surface equation and connectivity information. Surfaces can be created by

interpolating points, interpolating a mesh of curves, or by translating/rotating a curve.

8

Surface modeling systems are typically used to create complex structured and free-form

surfaces for visualization and machining purposes. Surfaces can also be used by finite element

analysis packages for determining proper mesh generation. By using the underlying

mathematical descriptions of surfaces, numerically controlled (NC) tool paths can be generated

for the surface objects. Although surface modeling systems overcome many weaknesses of

wireframe systems there still exist weaknesses such as the inability to calculate material volume

information due to ambiguity in determining if a surface grouping forms a closed volume (Lee

1999).

This research uses surface modeling as the main technique for generating the die surfaces

and the workpiece geometry. The surfaces provide the optimal starting point for the FE mesh to

be applied for simulation. For more information on surface modeling techniques see Choi

(1991), Mortenson (1985), Su et al. (1989), and Hosaka (1992).

2.1.3 Solid Modeling Systems

Solid modeling systems build on top of wireframe and surface modeling capabilities.

Solid modeling systems provide the possibility to provide information about what is inside the

3D model as well as information about the surface of the object. Solid modeling systems also

have the capability to calculate mass properties, generate Finite Element (FE) meshes, model

kinematic motion, model collision detection, and model 3D NC tool paths.

To define the interior and exterior of a solid object mathematically, a point set Q in 3D

Euclidean space (E3) is defined. The interior of an object and associated boundary can be

defined as the set iQ and bQ, respectively, then we can write.

9

bQiQQ ∪= (1)

If the exterior of Q is defined to be cQ, then

cQbQiQW ∪∪= (2)

where W becomes all possible points in the E3 3D space (Zied 2005). Figure 1 shows a visual

depiction of the above mathematical descriptions.

Figure 1: Mathematical Definition of a Closed Solid

There are two basic types of solid modeling techniques, Constructive Solid Geometry

(CSG) and Boundary Representation (B-Rep). With CSG the solid is constructed in a building-

block fashion by combining primitive shapes such as a sphere, cube, cylinder, cone or sphere.

These primitives can be combined by use of Boolean operations such as subtraction, union, and

intersection. Figure 2 shows the various combinatorial methods for different primitives.

 =

+
 iQ bQ Q

Q

cQ

10

Figure 2: Example of Subtraction, Union, and Intersection Boolean Operations

In B-rep models, solids are represented by sets of faces that form an air tight volume as

shown in Figure 3.

Figure 3: Boundary Representation (B-rep)

These faces are regions or subsets of closed and orientable faces (possible to distinguish

between surface normals pointing inside or outside). To ensure that a B-rep model is valid

=

11

topologically, it needs to satisfy the condition known as Euler-Poincaré relationship which is

defined as the relationship

()GBLVEF −=−+− 2 (3)

where the number of faces (F), edges (E), vertices (V), inner loops of faces (L), bodies (B) and

through holes (G) must satisfy the condition. Since B-rep modeling creates topologically valid

geometry, the CAD software database must store information about the connectivity of faces and

the equations defining he geometry faces. A B-rep model is useful for complex parts that cannot

be modeled conveniently with primitive shapes. It has also be shown in today’s B-rep modeling

capable CAD packages that once topology has been defined, many different operations can be

performed to adjust the geometry without changing the basic topology because it defines the part

topology and geometry separately (Lee 1999, Dieter 2000, Zied 2005). B-rep modeling will be

used in this research to construct the workpiece geometry’s closed volume.

For more detailed references about solid modeling and associated techniques see Mäntylä

(1988), Requicha et al. (1992), Rossignac et al.(1991), and Mortenson (1985).

2.1.4 Feature-based Parametric Modeling

It has been said that commercial CAD systems would become the soul source for

geometry construction and manipulation for multidisciplinary optimization applications

(Samareh 2001). In order for that capability to become a reality, the development of parametrics

was needed. Parametrics enable easy modification and reuse of CAD models. Parametric

systems were first introduced by Parametric Technology’s Pro/Engineer in the late 1980’s and

have since then been embraced by all commercially available CAD software (Hoffman et al.

2001). Parametrics permit efficient testing of “what if” scenarios during product design in

12

search of the best design. Parametrics also allow the models to be defined by parameters that are

linked to shapes or operations such as constraint relationships, geometry constructs, dimensions,

and various design features. These associations allow for the parametric information to flow

downstream in the models. This allows the geometry to be updatable when a parameter must be

altered. This parametric modeling ability negates the complete reconstruction of the model when

change is necessary. These parameters can be stored either internally in the CAD package or

externally in the form of text files or spreadsheets. Parametrics also support the notion of model

reuse by allowing designers to create a family of parts. For a through, comprehensive summary

of the impact that parametrics has had on solid modeling techniques see Anderl and Mendgen

(1995)

Another advantage of feature-based parametrics is the capability to have the information

on the existence, size, and location of manufacturing features enabling automatic generation of

process plans from a model (Lee 1999).

For parametric modeling to be a success, a proper parameterization scheme must be

chosen such that during the morphing and regeneration of the model to the desired parameters

values, model failure and corruption does not occur (Hoffman et al. 2001). Elliott (2004) stated

that for complex surface geometry with large number of parameters, no solution exists to allow

ease of parameterization. Figure 4 shows the basic principle of parametrics and the potential

flexibility of the model being designed.

13

Figure 4: An Example of Parametrics (King 2004)

Failures in the regeneration of a CAD model can be traced to several factors such as

kernel errors, bugs in the CAD software, or poor parameterization practices (Hogge 2002).

Where update failures and part corruption has a large rate of occurrence, an alternative solution

for parametrics is needed, such as generative parametrics. Generative parametric modeling is the

automatic reconstruction of a complex model based on the altered parameter values avoiding

update errors and file corruption. Parametric and generative parametric modeling schemes can

be used in conjunction with wireframe, surface, solid, and feature-based modeling and are used

as the modeling schemes of choice for this research. For a more in depth look at feature-based

parametric modeling see Shah et al. (1995), Hoffman (2005), and Allada et al. (1995).

2.1.5 CAD-based Master Models

When designers are faced with the task of building models that will flow downstream to

various differing disciplines, a daunting task suddenly looms that requires proper model fidelity

and construction. This model becomes the center of what is called a “CAD-centric” design

process. It is a model that stands at the center of the design process and directs product

14

definition and management (Elliott 2004). This model is frequently called a product “master

model.” Hoffman et al. (1998) defined a product master model as follows:

“The master model is an object-oriented repository that provides essential
mechanisms for maintaining the integrity and consistency of the deposited
information structures.”

Since companies typically have many departments (including design, manufacturing, marketing,

and subcontractors) it becomes a necessity to have a template file that provides CAD data in a

consistent way for all groups to use.

The concept of a master model can be applied by an assembly, or used for a single part.

The characteristics of master models have wide spread use in product design. It has been shown

by Hogge (2002) and Delap (2003) that CAD-based design can have profound success in

multidisciplinary optimization schemes by imbedding all the necessary attributes, model

smoothness parameters, continuity parameters, and data for generation/modification of

downstream applications or disciplines. It has also been stated that any defeaturing or massaging

of the CAD master models to suit needs of analysis, visualization or manufacturing is facilitated

within the domain of the master model (Elliott 2004, King 2004).

The advantages of using a CAD-based master model in CAD-centric design, analysis and

optimization have been seen in solid modeling applications. However, when using high fidelity

parameter rich surface models as the master model for design and analysis loops, this method has

not yet been explored. If this capability existed and were widely implemented, an “Intelligent

Product Data Management” system would exist that could explicitly identify and maintain

discipline model interdependencies, provide immediate feedback on change impacts, and support

multidisciplinary view of requirements, function allocation and behavior of the systems involved

(Waterbury 1999).

15

2.2 CAD Application Program Interfaces (API)

Recognized as a powerful design tool in the late 1970’s (Requicha 1980), CAD API’s

were developed to facilitate programmatic creation and manipulation of CAD models using high

level programming languages (i.e. C,C++, Java). An API is a library of functions that is utilized

in a programming environment, and allows access to the core functionality of the software (King

2004).

Zied (2000) stated that traditional parametrics create opportunities to describe flexible

designs but tend to allow parameters to conflict with each other at some time during the

modeling process. Zied also said that the designer must resolve the conflicts before moving on.

Using API’s allows for program specific error handling, debugging, access to object oriented

structures, file I/O, request of user input, and ability to handle more complex designs

(Ramsaswamy 1993, Magalhaes 2004).

It has been recognized that there exists three types of API’s: macros, program specific

languages, high-level programming language with specific functions (Hogge 2002). The

combination of the various types of API’s enable users to develop customized programs to

dynamically create and analyze models in batch operations such that process automation can be

achieved.

Macros are used in several programs ranging from word processors to CAD/CAE/CAM

software. A macro is a simple string of commands that record a sequence of actions that the user

desires be performed. Macros are among the easiest of the types of API’s to learn. Macros are

good to use to automate repetitive tasks. Some macros are recorded automatically as key stokes

and mouse clicks are used with graphical user interfaces (GUI’s).

16

Program specific languages are typically only native to a specific program for which it

has been developed. A common example of a program specific language is that developed

specifically for ANSYS, the ANSYS Parametric Design Language (APDL). The APDL allows

access to most everything available interactively but with access to the core functionality of the

ANSYS environment in a programmatic sense (Rohm 2000).

The most robust level for an API is the high-level programming language with specific

functions. This type of API incorporates high-level programming languages such as C/C++,

Visual Basic, C# or Java as the programming languages of choice. High-level languages are

typically used in third generation CAD systems such as Dassault’ CATIA or Siemens’ NX.

These APIs are the most difficult to use since the user must have a working knowledge of not

only the API toolkit and its interactive functions but also the programming language and

associated syntax necessary to communicate with the program and outside resources. One of the

benefits of high-level languages is that object-oriented concepts can easily be incorporated into

the custom API programs. Also, APIs from multiple software programs can be utilized

simultaneously, which assists in integrating multiple programs.

Rohm (2001) mentioned two disadvantages of creating custom CAD API programs: 1)

the development time is considerably larger than it would be to create interactive models 2) the

developer must know the API of the system. Though there are disadvantages, the advantages

outweigh them when families of parts need to be created. First, multiple models can be created

in very little time using a common model parameterization scheme. Secondly, because the

models are created programmatically, they lend themselves to use in optimization routines with

error checking. Finally, the API allows users to create highly customized applications within

commercial CAD software.

17

Examples of the usage of API’s can be found in many areas of industry. Rohm et al.

(2000) used API languages show that instead of recreating various models for jet engine

components when parameters are manipulated, that a program can be written that would recreate

the models every time it is executed. The main benefit advertised was that model creation cycle

time was taken from “months to minutes”.

 Ardalan (2000) developed a spacecraft design system using SolidWorks API. An

interface was created that allowed a user that was familiar with spacecraft design but unfamiliar

with the CAD system to easily create a 3-D model within the CAD package. Wilson (2004)

successfully used the Siemens NX API (UG/Open) to perform direct slicing of CAD models for

use in the rapid prototyping industry. This allowed for a more parametric approach to be

implemented and enabled rapid prototyping to occur from the CAD system. Astle (2003)

developed CAD system-independent geometric algorithms for flank milling impellers for turbo

machinery. This allowed simplified portability between systems for connecting to various CAD

systems.

Of the works cited on API CAD programming, Elliott (2004) found that only few articles

show work relating to Parameter Rich Surface Model (PRSM) features inside a parametric CAD-

based environment. He showed that research had been done to automatically generate and

manipulate spline points, curves, and surfaces to reduce model parameter count. He also found

that along with looking at an increased number of parameters within a programmatic

environment for surface applications, the number of design variables used was impressive but it

still fell short of typical PRSM parameter sets (Tang et al. 2001, Haimes et al. 2003). Elliott’s

research showed that when working with PRSM’s he was able to accomplish the following six

points:

18

• CAD models from large data sets can be created in a seamless integration of text file data

and different part models.

• Programmatic control of the variation of input parameters is possible to successfully

create feasible models within a pre-described design envelope.

• Complex free-form surface geometry with different parameterization schemes and

multiple constraints were generated.

• Reusable surface models with high-fidelity, mesh-worthy geometry were created.

• Current practices were improved upon by overcoming obstacles present in industry

design processes.

• Two part files were controlled simultaneously to programmatically transfer data.

As can be seen in the available literature, the benefits of using API’s in design, analysis, and

optimization will be demonstrated in this thesis. The API’s from NX, ANSYS, and DEFORM

are implemented in this research. The NX API is of the high-level programming language type

and is used to generate all the model geometry and also used in the evaluation process to

determine surface deviations. The API’s from ANSYS and DEFORM are of the program

specific type. The ANSYS API is used to develop a program that can logically develop a mesh

suitable for simulation. The DEFORM API is used to automate the simulation process. These

API methods are combined to handle a high number of parameter based PRSM’s for the CAD-

centric methodologies researched.

2.3 Computer-Aided Engineering (CAE)

Computer-aided engineering is the process of allowing a computer to analyze geometry

created by CAD or an analysis software package (Lee 1999). CAE allows engineers and

19

designers to virtually design and analyze products before manufacture is begun to aid in the

determination of an optimal design. It uses empirical and analytical based methods to predict

physical phenomena. CAE software is based on the finite element method (FEM), known also as

finite element analysis (FEA). CAE software generally exists as either one or a combination of

the following portions of the FEM : preprocessing, solving, and postprocessing CAE software

exists for many disciplines such as thermodynamics, heat transfer, kinematics, mechanical

design, fluid dynamics, and structural dynamics to name a few.

Combining the three main portions of FEA for CAE allows users to develop models for

predicting reality. The predictive capability of CAE tools has progressed to the point where

much of the design verification is now done using computer simulations rather than physical

prototype testing (Raphael et al. 2003).

2.3.1 Finite Element Analysis

Finite element analysis (FEA) is the most dominant method available today for

simulating model behavior for CAE. FEA approximates governing differential equations into a

large set of linear algebraic equations that can be solved on a computer (Balling 2001). The FE

method began to gain popularity in the 1960’s in the field of structural engineering. It has since

expanded into other such areas as those mentioned in section 2.3. Most industries use FEA

software on a regular basis to calculate everything from effective stresses and strains to pressures

experienced during forming processes. FEA plays an important role in the successful

implementation of this research. With FEA the forming simulations can be executed and results

obtained to determine pertinent parameter settings for final model topology. For additional

information on how the finite element method has been developed and implemented see Balling

(2006).

20

2.3.1.1 FEA Preprocessing

Mesh generation software aids in the first step of FEA by dividing the geometry under

investigation into a collection of geometrically simple subdomains called finite elements or

elements. A collection of these elements is called a grid or mesh (Reddy 1985, King 2004). The

discretization of the domain provides the necessary input to numerical solver software such as

nodal coordinates, element connectivity, element properties, and support data. In order to

simulate reality, load data, and constraints need to be in place to allow the object simulations to

be represented as they occur in nature. Loadings can be represented as forces (point and

distributed), pressures, prestressed loading conditions, and moment loading to name a few.

Constraints can take on the form of restricting translation, rotation, temperature, velocities, and

voltage, etc. For a more comprehensive list of load and constraint types see the ANSYS

documentation.

2.3.1.2 FEA Solving

Once geometry has been preprocessed, the software generates systems of equations that

relate the boundary conditions to the unknowns such as displacement, temperatures, velocities,

etc. Using a numerical solver the systems of equation are solved for the unknowns (Balling

2006).

2.3.1.3 FEA Postprocessing

The final step when using FEA is calculating the element results from the results of the

systems for equations previously solved. An important process for those that are more visual by

21

nature is visualizing and reviewing the output from the solver which is numerical in nature. This

has been coined postprocessing of the FEA solution (Balling 2006).

2.4 Surface Interpolation Methods

Surface interpolation can be understood to mean more than one thing. To delineate

between the two meanings used in this thesis the following terminology will be used: surface

construction interpolation and surface deviation interpolation.

When dealing with surface construction, surface interpolation is typically referred to as

surface fitting (Piegel 1997). Fitting with an interpolation construction scheme, curves or

surfaces are fitted precisely through given data, i.e. XYZ point coordinates, with assumed

derivatives of the curves at the data point locations. This data is typically structured such that a

numerical method or CAD package can develop a control net of curves that can be fitted with a

surface (Farin 1988). Surfaces, typical in 3rd generation CAD products, are constructed from

uniform B-splines, non-uniform rational B-spline (NURBS) or Bezier curves to name a few. For

more information on the background and development of these curves and surface types, see

Piegel et al. (1997), Elliott (2004), and Sederberg (2007).

The second type of surface interpolation can be referred to as calculating surface distance

deviations between two arbitrary surfaces. To determine the deviations from a numerical

standpoint requires knowledge of surface normals (or desired direction vector) at known data

point locations that exist on the surface. If surface normals are desired, knowledge of two

surface tangent vectors must be known at the known data point. These tangent vectors must be

at some angle θ to each other. Taking the cross-product (see Figure 5) of the two vectors will

yield the normal belonging to the surface at the known point.

22

Figure 5: Surface Normal Calculation with Cross-product

With these surface normals, the distance to the desired surface could be calculated by

interpolating the intersection point of the surface normal and surface to which the deviation

calculation is desired.

Surface construction interpolation and surface deviation interpolation are both used

heavily with this research. Knowing how to calculate surface normal vectors is used to allow

intersection algorithms to properly identify the point data locations for deviation calculations.

These methods are critical to the success of this research and allow for the evaluation of the

simulation results and testing their validity.

2.4.1 Non-Uniform Rational B-splines (NURBS)

In parametric feature-based design, it is common place to use B-splines or NURBS to

define the free-form surfaces using surface fitting techniques developed in third generation CAD

systems. The definition of a NURBS as defined by Piegel (1997) is given as

23

,
)(

)(
)(

0
,

0
,

∑

∑

=

== n

i
pii

n

i
ipii

uNw

PuNw
uC (4)

 with

The number of control points set by n dictates the number of weights, wi, associated with the

same number of control points Pi. A NURBS curve has a knot vector containing n+p+2 knots

for the curve where p is equal to the degree of the NURBS curve desired. A knot vector is a list

of parameterization values, or knots, that specify the spacing of the parameter values for the B-

spline curve (Sederberg 2007). A uniform B-spline is a curve whose knot vector consists of

evenly spaced parameter values. A non-uniform B-spline is a curve whose knot vector is not

evenly spaced thus allowing a larger variety of curves to be represented. A Non-Uniform

Rational B-spline (NURBS) is a curve that has weights associated with each control point that

determine the amount of influence the control point has on the overall spline shape. For a

NURBS curve, the pth-degree B-spline basis functions defined for a non-uniform knot vector are

defined by the following:

11

1,111,
,

10,

)()()()(
)(

0,1)(

+++

−+++

+

−

+

−

−
+

−

−
=

<≤=

ipi

pipi

ipi

pii
pi

iii

tt
tNtt

tt
tNtt

tN

otherwisetttiftN
 (5)

iP control points,

piN , basis functions,

iw weights,
u parameters, with 0≤u≤1, and
n number of control points - 1.

24

The knot vector for a NURBS curve is shown below













=
+

−

+

1

11

1

00 ,...,,,...,,...
p

iii

p

ttttttU (6)

where there are p+1 extra knots prepended and appended to the knot vector that control the end

conditions of the B-spline.

To construct a B-spline or NURBS surface, for example, a bidirectional net of control

polygon points, two knot vectors and the products of the B-spline basis functions are needed

(Sederberg 2007). A NURBS surface of degree p in the u direction and degree q in the v

direction is a piecewise rational function of the form

,
)()(

)()(
),(

0 0
,,,

0 0
,,,,

∑∑

∑∑

= =

= == n

i

m

j
qjpiji

n

i

m

j
jiqjpiji

vNuNw

PvNuNw
vuS (7)

with

The control points Pij form the bidirectional control net where the surface is defined from

(n+1)*(m+1) control points. The surface also has two associate knot vectors of the size n+p+2

knots and m+q+2 knots when its degrees are p in the u-direction and q in the v-direction. The B-

spline basis functions along with the knots vectors are of the same form as shown above in

equations 5 and 6.

jiP , control points,

qjpi NN ,, , basis functions,

jiw , weights,
vu, parameters with 0≤u,v≤1, and
mn, number of control points – 1.

25

Using NURBS in models that are parameter rich and free-form in nature allow for surface

definitions to be smooth, continuous, and easy to manipulate. NURBS allow proper placement

of surface fitting data, sufficient parametric curve continuity, and allow proper geometry

continuity to ensure correct curvature of the specified curve. These techniques are the basis for

all the curves created in this thesis.

2.5 Multidisciplinary Optimization

Multidisciplinary optimization (MDO) is the process of connecting multiple

CAD/CAE/CAM (CAx) tools into a seamless program that integrates with an optimization

engine. The optimization strives to achieve the objectives of the design by iterating quickly and

autonomously through various designs until an optimal design or set of designs is achieved. To

meet the objectives in a design problem, constraints need to be created and design variables

defined (Parkinson 2006). In CAD-centric shape optimization, design variables become the

driving parameters of the parametric model. These are used in the optimization problem to allow

the optimization process to control the geometry and shape definition (Hardee et al. 1999).

For MDO to be functional, the creation of a master program is required. This involves

the file transfer (I/O) and linking of the chosen engineering software to create a dynamic process

flow for all information in the loop. The method for implementing MDO into a design process

involves several tasks, which are completed by various disciplines involved with the

optimization routine. Hogge (2002) outlined a typical parametric scheme of events in a MDO

situation (see Figure 6) as follows: parametric modeling, analysis, optimization, and design

selection.

26

Figure 6: A Parametric Design Scheme

To make the master program run smoothly, API programs specific for each discipline

need to be developed. Once the disciplines are integrated for MDO, the next step is to automate

the handoff of information from one program to the next so that the sequence is allowed to run in

a batch mode of operation. There are several methods for linking analysis codes to optimization

software. One method is to use input and output files to link the optimizer and analysis code as

illustrated in Figure 7.

Figure 7: A General Design Optimization Loop

The optimization program changes the design variables and creates a new input file. The

analysis code is then executed using the new input file and the results of the analysis are written

to an output file. The optimization engine reads the outputted results file and the loop (design

27

iterations) continue until an optimal set of parameters is determined. This should be done with

software that can handle process integration, design exploration, analysis and visualization. For

this thesis, this will be handled with iSIGHT-FD, a suite of visual and flexible tools used to set

up an automated plan to thoroughly explore the design space and find optimal solutions.

Within the last decade, CAD-centric shape optimization has been successfully

implemented using commercially available CAD software (Hardee et al. 1999, He et al. 1998,

Hogge 2002, Ou et al. 2002 and 2003, Delap 2003, Wu et al. 2004). Although shape

optimization has been successful, there are some limitations and needs stated by researchers. A

fundamental need that is becoming less of a concern as API’s improve and software becomes

more integrated is the inability to exchange data between CAD, analysis, and optimization tools

seamlessly (Hogge 2002, Delap 2003, Elliott 2004, King 2004). Vanderplaats (1999) stated that

except for robust, well-defined structures, full automation of CAD, analysis, and optimization

processes is not possible and requires multiple intermediate preparatory steps to be employed.

Elliott (2004) worked with parameter rich surface models (PRSM’s) that had a high number of

driving parameters and recommended that with the improvements in future technology that

PRSM CAD-centric optimization methodologies could be incorporated into MDO loops to

handle high fidelity complex models with faster convergence times.

Some of the limitations stated and described in the past are overcome by this research.

First, the exchange of data between software tools can be automated even when dealing with less

familiar simulation software that has a limited API. Second, recent developments in the API’s of

today’s third generation CAD software make it possible to generate models robust enough for

automation and integration with optimization. These models allow for repetitive procedures that

took weeks to successfully execute to now execute programmatically in minutes. Lastly,

28

allowing PRSM’s with the thousands of driving parameters to be integrated with optimization

capabilities to allow for faster convergence than has been seen in the past by focusing on the

critical driving parameters.

2.6 Statistical Response Surface Modeling

Response surface modeling methods originally were developed to analyze experimental

data and to create empirical models of the observed response values (Gunita 1997). Response

Surface Methodology (RSM) is an experimental technique invented to find the optimal response

within specified ranges of the factors. These designs are capable of fitting a second-order

prediction equation for the response (JMP 2005). The particular forte of RSM is its applicability

to investigations where there are few observations because the experiment is both very expensive

and very time consuming to perform (Gunita 1997).

The term “Response Surface Methodology” refers to a complete package of statistical

design and analysis tools which are generally used for the following steps (Lawson et al. 2001):

1) Design and collection of experimental data (DOE)

2) Regression analysis to select the best equation for description of the data

3) Examination of the fitted surface contour plot to understand design space

2.6.1 Design of Experiments (Central Composite Designs)

To be able to collect data about the response of some model or simulation a structured

approach must be taken to ensure “sensible” data can be obtained. Trial and error methods are

time consuming and will not describe the design to allow prediction of a response based off of

29

various input combinations. Factorial designs consist of all combinations of a factor level or two

or more factors (see Figure 8).

Figure 8: Two Level Three Factor Full Factorial DOE Example

The goal is to understand the impacts the factors (variables) have on the system of

interest. Frequently this involved the use of replication (to understand variability),

randomization of experiments (ensures no erroneous signals), and addition of center points.

Using a full factorial with replicates and center points can be taxing (time and resource

consuming) for a 3 factor experiment (~20+ experiments). Frugality becomes of primary

importance since it can oftentimes be time consuming and expensive to obtain all the results

needed for a full factorial design (Larsen et al 2001). To reduce the number of needed

experiments, another experimental design method known as central composite design (CCD)

may be used. CCDs build upon two level factorial designs. CCDs are typically used for

unconstrained optimization but can be adapted for constrained optimization by modifying the

CCD for discrete limits on the factors (design variables). The model for 2k factorial design is:

∑∑∑
−

= +==

∧

++=
1

1 11
0

k

i
ji

k

ij
iji

k

i
i XXbXbbY (8)

30

 With the interactions terms of higher order usually neglected (2

1
i

k

i
ii Xb∑

=

). Equation 8

allows for the estimation of the coefficients (b0, bi, and bij) for the main effects and 2 factor

interactions (Simpson 1998). The only missing terms from the full quadratic equation are the

squared terms in each Xi. To estimate these terms a set of axial (star points) and center points

are used. These extra points are essentially a set of one-at-a-time experiments. Using a central

composite design permits the development of a reasonably accurate data representing the design

response. Figure 9 shows an example of a 3 factor central composite design.

Figure 9: Example 3 Factor Central Composite Design

31

2.6.2 Regression Analysis

The goal of response surface methodology is to detail the relationship between the response and

the independent variables of interest to seek an optimum set of system conditions (Biles 1984).

To do so a polynomial approximation equation (quadratic equation) relating the factors to

response is created. Using non-linear regression techniques a quadratic equation can be

generated that shows which factors (variables) are significant and what the corresponding

coefficients of the equation are. This is accomplished by minimizing iteratively the sum of the

squares. The model for a general quadratic equation for k independent variables is:

∑∑∑∑
−

= +===

∧

+++=
1

1 1

2

11
0

k

i
ji

k

ij
iji

k

i
iii

k

i
i XXbXbXbbY (9)

Using computer aided regression analysis tools, the significant factors and their interactions can

be identified and their coefficients obtained forming the quadratic equation that represents the

design space of interest. A more detailed description of RSM techniques and tools can be found

in (Box and Draper, 1987).

2.6.3 RSM Surface Creation/Examination

Given a quadratic model, certain software can plot surfaces or contour plots over the

factor ranges. When only 2 or 3 important variables exist, 3D surface plots can be created either

manually or automatically in statistical analysis software. This provides an approximation of the

true response surface over the region of interest, allows the optimum operating conditions to be

chosen, and permits improved understanding of the estimated response the model provides for

various design parameter combinations.

32

33

CHAPTER 3: METHOD

The method presented in this chapter involves the file transfer (I/O) and linking of chosen

engineering software to create a dynamic process flow of all information to create an

optimization loop. A Design of Experiments (DOE) is used to create a Response Surface Model

(RSM) using results from the optimization scheme that will predict what the optimal design

variables should be to produce the optimal results. This method achieves the objectives outlined

in section 1.1. To accomplish the objectives, a commercially available iterative workflow

environment handles the integration of the general steps shown in Figure 10

This method enables significant time savings by integrating the outlined CAE operations

into an autonomous CAD-centric tooling design optimization routine. For a description of the

advantages behind CAD-centric models in optimization, refer back to Section 2.1.5. The

interactive and programmatic implementation of this method is presented in Chapter 4.

Figure 10: A Tool Design Optimization Scheme

34

3.1 Parametric Modeling

Complex free-form surfaces are generally constructed with a large amount of engineering

knowledge (Elliott 2004). Due to the large amount of required knowledge and information their

construction process is long and tedious. Surface modeling or remodeling time is encountered

every time an update or change is required. To ease the additional work load due to possible

design changes, CAD parametrics are used. Parametrics allow the control of complex

geometries through the introduction of variables to the underlying mathematical equations.

Parametrics avoid “hard coding” of parameter values for the underlying geometries. Changing

the controlling variables, allows the geometry changes to be made without requiring an engineer

to start over.

When large and complicated models such as free-form die and work piece geometries are

created, updates are required to obtain the proper shapes. Updating a model can be undesirable

due to the required time needed to recalculate every object and feature affected by the change.

As model complexity increases the time required to make changes and updates increases.

Likewise model complexity increased the probability of update errors and inconsistencies within

the parametric model. To overcome the model update time and update error possibilities, a

generative approach to CAD parametrics is used. The generative approach to modeling is the

conduit for all of the geometric model construction in this research.

3.1.1 Generative Parametrics

A generative parametric model is one that is recreated automatically every time a

modification is made to the parameterization scheme of the part. For large complex free-form

surfaces this is desirable and thus eliminates the possibilities of encountering update errors,

35

which render the part geometries corrupt. This method requires a considerable amount of

preparation and effort during the model construction phase but allows for significant time

savings during execution of the design iterations.

To accomplish the level of automation necessary for complex free-form surfaces, object-

oriented programming (OOP) coupled with application programming interfaces (API’s) are used

for generating the initial and modified models for the design cycle. The API’s allow for

automated model construction eliminating the man hours used to interactively construct the

model surfaces.

Elliott (2004) determined that programmatic surface modeling for the PRSM object class

requires study of three steps in order to develop successful automated parameterization schemes

which are: planning, development, and evaluation. The research Elliott has performed is the

backbone of the modeling methodology described in this research. This research builds squarely

on top of the notion of reusable parameter rich surface models for the design and construction of

forming die and workpiece geometry. This research implements applicable code snippets from

Elliott’s research for the development of this optimization methodology.

3.1.2 PSRM Planning

In order to successfully apply feature-based parametrics to complex free-form concepts,

thorough planning is needed to properly scope the amount of work needed during concept

development. The planning stage can be described by three different stages, similar to

developing solid modeling schemes.

The first stage is identifying the necessary inputs to generate parametric models. This

entails determining what format the input should assume (i.e. imported external part files, bulk

point data sets, or individual parameter name/value input).

36

The second stage is designing a strategy for modeling the specific product. This step aids

in creating a seamless automated design process. Stage two involves not only the CAD model

geometry creation sequence but also the imposed rules required by various downstream

disciplines. An equally important aspect of the design strategy involves determining what

feature primitives and surface elements are needed at which location in the model.

The third and final stage of planning is parameterization of the surface modeling features.

This entails determining the complete set of design parameters and which parameters can remain

unchanged or subsequently derived from the master design parameters. During this stage it is

important to determine the model hierarchy along with the appropriate constraint types such as

tangency, continuity, parallelism, object size, shape, and location to name a few.

3.1.3 PRSM Development

Once the features, parameters, and relationships have been identified for the PRSM

objects, the model can be developed. Developing the PRSMs can be accomplished by either an

automated (programmatic) or manual (interactive) approach. An automatic approach to

modeling is taken for the required complex free-form surfaces. It is recommended that an

automatic approach be taken if many instances of a similar concept need to be analyzed.

Developing a complex automated parameterization tool enables fast and efficient geometry

creation within the PRSM domain. Developing an automated application for a complex class of

parts allows the difficult and time consuming model characteristics to be transformation into

non-cumbersome attributes. The attributes simply describe the design requirements, rather than

presenting obstacles. By creating an automated model generation approach, the model becomes a

reusable product model requiring little to no manual engineer intervention.

37

The modeling methodology developed for this thesis consists of algorithms written using

a high-level programming language and third-generation CAD system APIs. As presented in

Section 2.2, CAD API’s allow a designer to programmatically model parts, query product

models, and create assemblies and drawings by allowing access to all of the core interactive

functionality in a programmatic form. User Functions (UF) or executables are the product of the

implementation of CAD API’s. Most third-generation CAD APIs, such as CAA RADE

(CATIA) and UG/OPEN (NX), provide a C/C++ language interface that supports ANSI C

standards. Using the object oriented data structures offered by C/C++ within the automated

model parameterization tool the input data can be stored, implemented, and manipulated for this

research.

3.1.4 PRSM Evaluation

Elliott (2004) outlined important criterion for deciding the effectiveness of product

modeling schemes for complex free-form surfaces. The requirements set forth for the evaluation

of these types of surfaces are the following necessary capabilities:

• Allows for large amounts of input data

• Creates reusable models by automatic parameterization of independent model

features

• Generates high-fidelity geometry

• Builds and improves upon current design process

The models created by the methods developed not only need to function properly for the above

capabilities but also for model variations of the product family when desired.

38

3.2 Analysis

With successful completion of a generative parametric model for the desired product, the

model needs to be prepared and submitted to the downstream analysis applications. In many

cases, several CAE software programs are needed to perform the desired analyses. Each analysis

process requires automated execution of the disciplines used. In order to link all the analysis

codes together, each of the programs (modules), are developed so as to allow easy connection to

the master program.

When developing automated techniques for handling the analysis portion of the master

program there are typically three stages of development namely: 1) manual interactive

exploration of the desired function (Section 3.2.1), 2) development of API program modules that

automatically analyze each discipline (Section 3.2.2), and 3) connecting the modules so as to

achieve fluent communication between programs (Section 3.2.3). There are two separate

analysis codes linked together for this research: ANSYS mesh generation and DEFORM

forming simulation.

3.2.1 Interactive Development

When developing a new procedure for the automation of a certain process, it is

recommended to carry out the procedure interactively with the graphical user interface. This

enables the developer to determine all the necessary steps for complete automation and to know

what portions of the development process exist as part of the software’s core functionality and

which portions require customized development. By establishing guidelines for creating the

modules, all the required inputs and outputs needed for preprocessing through postprocessing

39

can be identified. This allows the modules to be developed in parallel with discipline experts

and allows for ease of integration into the master program.

3.2.2 API Program Development

Separate API based automated programs are needed for each application desired for the

analysis software programs of choice. The API programs can be developed using either a single

API toolkit or a combination of many toolkits as described in Section 2.2. Figure 11

demonstrates a possible scenario for a program that requires analysis in three separate

disciplines.

Figure 11: API Modules

Each discipline has the possibility of requiring development of multiple API programs as needed

to fulfill the requirements of the application. The modules could be developed to run in parallel

or in series based on software availability and the computational availability. This research runs

the analysis modules sequentially due to licensing constraints in the software chosen for

integration.

40

3.2.3 CAD/CAE Integration

As described in the section heading, to achieve automation of the proposed design cycle,

a thorough integration of the necessary components must be developed. Modeling and analysis

codes must be packaged such that integration is as simple as calling an executable with the

proper inputs readily available. The framework for the project, iSIGHT-FD, will integrate NX

CAD, ANSYS mesh generation capabilities, DEFORM forging simulation, and numerical

surface construction for evaluation to form a complete loop. When direct connections do not

exist between the engineering software of choice, custom scripts and links are developed to

achieve seamless software integration. This includes the creation of the properly formatted input

and output files along with all the necessary support files for proper execution.

A common step for overcoming the discontinuities between parameterized CAD models

and downstream analysis (when analysis isn’t performed in the CAD software) is to identify

commercially available direct connections between CAE systems. If the direct connection does

not exist, a standard neutral file format such as IGES or STEP can be used for translation.

Frequently program specific input format must be used to execute analysis code. Special

formats must be generated as an output or translation prior to executing downstream analysis. In

general, these preparatory actions can be executed in sub-routines developed in an API

environment to properly format the data for the next program. Generation of unique input should

be capable of batch execution once the parametric CAD models have been constructed.

CAE analysis typically occurs in three steps: preprocessing, numerical simulation, and

postprocessing as described in Section 2.3. Preprocessing involves the preparation of a model

for submittal to the solver. Examples of preprocessing could include import or creation of the

geometry entities, generation of a FE mesh, applying boundary conditions (loads and

41

constraints), and application of any other system default settings. The numerical simulation step

involves submitting the input deck, of proper format, to the desired numerical solver and

allowing the results to be calculated and saved. Postprocessing is the process of extracting and

viewing the results desired from the simulation either from a GUI or outputted results file.

Depending of the optimization objectives of the system being developed, the analysis can

be constructed many various ways. One popular method CAE software providers are promoting

is a complete package (whole analysis process occurs inside of the same software program).

Oftentimes, all the needed programs cannot produce the proper fidelity results or multiple

programs are required for analysis and must be shared among the better (or chosen) of the CAE

tools available industry wide. That being the case for this research, automated methods for

allowing the preprocessor, numerical simulator, and postprocessor need to be developed to

ensure seamless communication between different programs (see Section 2.2). Given the high

fidelity of the complex free-form surfaces necessary, a software program with full access to its

core programmatic functionality would be needed to generate the desired structured mesh. This

is accomplished inside of ANSYS by way of the ANSYS Parametric Design Language (APDL)

API. The output from ANSYS contains the proper DEFORM input format. DEFORM, a

forming/forging simulation solver, acts as a secondary preprocessor applying system specific

default settings. DEFORM, once the simulation has been executed, performs initial

postprocessing to extract the displaced nodal locations and associated stresses.

When communication between the various programs is not available, simple scripts,

batch system routines, and simple C++ algorithms allow the modules to perform the required

tasks. This enables the programs to communicate in series (or parallel) by passing the necessary

information from one program to the next in a simple and smooth manor.

42

3.3 Numerical/Geometric Surface Interpolation

The simulation results are used in conjunction with numerical surface construction

techniques to develop a mathematical model of the NX 3D surfaces. The displaced forming die

surface data are compared to the original design intent (nominal surface profile). Surface fitting

techniques are used to analyze 3D surfaces from the simulation results and the desired nominal

surface contour (see Section 2.4). The nominal surface profile data is supplied to the program as

an input. The program to construct the optimal surfaces can be developed using an OOP

language in a strictly analytical manor or inside of a custom API program that can graphically

display the results if desired. This research uses the latter (UG/OPEN API toolkit) to develop the

means for interpolating the deviations between the simulated results and nominal surfaces using

surface deviation interpolation. The nominal surface profile data is passed to the surface

construction program as a bulk point data set that represents the final formed part and desired die

surface geometry for the operation being simulated.

Two methods are employed to give a fitness value to the deformed surfaces. A fitness

value is a method for determining the amount of validity the surfaces possess. This fitness value

is used in the optimization to judge the closeness of the simulated vs. desired nominal surface

representation. Method 1 uses the surface normals and develops an estimate for the surface-to-

surface deviations. Method 2 uses a linear distance between the two surfaces in the direction of

die movement. Both methods require the calculation of the intersection point between a

direction vector and a complex free-form surface. The deviation values are compared with each

other to ensure that the deviations are within family for the specified point. Method 2 is passed

to the optimization engine for evaluation based on the methods described above.

43

3.4 Multidisciplinary Optimization

It has been stated by Hogge (2002) that there are two main challenges to performing

MDO: computational expense and organizational complexity. Computational expense (time

needed to run analysis) increases as the various disciplines required use more analysis code

(software) and design variables. The organizational complexity increases when multiple analysis

packages and various design approaches are brought together to form one method or design

system capable of multiple cycles or iterations. The iSIGHT-FD framework is used to create a

workflow of the model and analysis modules. The optimization is also handled by iSIGHT-FD.

The chosen framework typically handles the integration of the optimization technique by way of

input, optimization iteration and then output results. Using an optimization technique external to

the integration framework, such as Microsoft Excel solver or OptdesX is possible but will not be

implemented in this research.

 By using iSIGHT-FD and its optimization capabilities, an iterative work flow

environment is created. In order to perform the optimization, objectives and constraints must be

determined. Constraints and ranges on CAD parameter values (the optimization scheme is CAD-

centric, see Section 2.1.5) are constrained within the iSIGHT-FD framework.

There exist multiple algorithms for optimization. The algorithms used for this research

must be able to explore continuous non-linear design spaces, be well suited for long running

simulations, and exploit the local area around initial design point in order to locate the optimum.

For these requirements, a gradient based or a sequential quadratic programming based algorithm

could be used as the optimization technique. The choice for the optimization algorithm and

reasoning for that selection is presented in section 4.4.2.

44

3.5 Statistical Response Surface Methodology

Response Surface Modeling (RSM) methods are used to characterize in detail the

relationship between the factors (design variables) and the response (optimization results). The

goal is to be able to predict the response to specific inputs. Response surface methodology refers

to the use of three steps of statistical design and analysis, namely: Design (which includes the

collection of experimental data which allow fitting a general quadratic equation for smoothing

and prediction); Regression analysis to select the best quadratic equation for description of the

data; and examination of the fitted surface via contour plots and other graphical/numerical

means.

There are many types of RSM designs that can be employed depending on cost of model

execution. Design methods such as full factorial, central composite, box behenken, and small

composite designs are commonly used along with their variants.

Given that the methodology used in this thesis predicts long simulation run times,

exploring all possible combinations of a 3k factorial design (k being the number of design

variables) would be very costly. Central Composite Designs (CCDs) are more frugal with

experiments than full factorial designs and are commonly used in conjunction with computer

simulations.

Using graphical and numerical methods internal to the RSM software, true optima for a

particular design can be identified. Section 4.5 details the development of the specific modeling

methods used to help identify the optimum design variable selection.

45

CHAPTER 4: DEVELOPMENT

This chapter discusses how the method outlined in Chapter 3 is applied using the selected

CAD and CAE software. The test case for the method is applied to a 1st stage compression

system’s shroudless hollow fan blade for a turbine jet engine shown in Figure 12. The airfoil

chosen for this study exemplifies all the required characteristics for parameter rich complex free-

form surface models in that it requires free-form surface construction, large amounts of data as

inputs, surfaces are representative of difficult to parameterize non-reusable features, requires

high-fidelity mesh generation for optimal model description, and is a large portion of the

complex and lengthy multidisciplinary optimization process.

Figure 12: A Cut-away of the GP7000 Jet Engine Highlighting the Fan Blade

Shroudless
fan blades

Compressor
blades

Turbine
blades

46

The development of the methodology is accomplished with the use of the NX UG/OPEN API,

ANSYS ADPL API, DEFORM’s macro scripts, iSIGHT-FD for integration, and JMP for

Response Surface Modeling. The sections in this chapter are parallel to the sections in Chapter

3. The hardware and software used is listed in Table 1.

Table 1: Hardware and Software Used

CPU HP xw4300 w/Intel Pentium 4, 3.4 GHz CPU & 3.25 GB RAM
Operating System Microsoft Windows XP Professional
Compiler Microsoft Visual Studio .NET C++
CAD Software Siemens NX 4.0
Mesh Software ANSYS 10.0
Analysis Software DEFORM-2D v9.01

Integration Software iSIGHT-FD 1.0
Statistical Analysis
Software

JMP 8

4.1 Parametric Modeling

Since the parametric model functions as the catalyst for changes implemented by the

optimization process, it must accurately represent the geometry necessary for all of the

downstream analyses. The method for generating parameter rich complex surface models, as

outlined in Chapter 3, must be followed to successfully plan, develop, and evaluate the

generative modeling approach.

4.1.1 Planning

Planning for an automated generative modeling scheme for parameter rich complex

surface models is extremely important. The genius of a most major projects stems from planning

work done in advance. The planning for this implementation is presented in the following

sections and includes:

47

1. Identifying and characterizing the necessary inputs for the modeling

methodology.

2. Developing a modeling strategy that defines the parameterization and

construction of the automated CAD models

4.1.1.1 Inputs

The starting point for all the shroudless Hollow Fan Blade (HFB) surfaces developed for

use in this thesis require an airfoil definition in a bulk point aero source (AS) file, a NX root

attachment part file, and a predefined bounding box defining the region for the hollow cavities of

the airfoil in the form of a NX part file.

Aero Source (AS) File

An AS file is a text file generated by aerodynamicists that have determined the optimal

shape an airfoil must have to obtain the desired performance characteristics for a jet engine. The

text file contains Cartesian coordinates that describe the flow path for the airfoil shape (see

Figure 13).

Figure 13: AS File with Root Attachment Properly Positioned

Root
Attachment

AS File Flowpath
Contours

48

The coordinates are arranged such that there are a certain number of cross-sections and

certain number of points per section defining the airfoil region. The format of the aero source

files used in this research is similar to those typically found in industry.

The AS files used in this research are non-proprietary in nature but do provide a realistic

starting point for the complex model generation. Although the AS files used are not those used in

industry, the b-spline curves and surfaces developed under the applied methods are of the same

mathematical form as those typically found throughout industry. AS files used in this research

contain the same level of fidelity as industry airfoil surface models. Each AS file represents a

unique airfoil design. The AS files include the Cartesian coordinates for the flow path and also

contain other important parameters such as the number of cross sections and number of points

per section.

In order to import the data, the AS files were scanned by the automated surface modeling

program and the driving parameters and data coordinate points were stored as 3-dimensional

floating point variables within the program database.

Root Attachment

The second input to the HFB automated surface modeling program is a NX part file

containing the root attachment of the workpiece. This part is the portion of a completed airfoil

that attaches the fan blade to the engine rotor or “hub”. In industry, root attachment geometry

does not vary significantly from engine-to-engine. Figure 13 shows a typical root part used for

HFBs. This part file is solid geometry and has associative parameter names or labels associated

with features and faces necessary for downstream parameterization of curves and surfaces. For

the HFB automated surface modeling program, the solid root attachment has all of its surfaces

49

flagged with identifiers for later object recognition and positioning of die and workpiece surface

constructs.

Hollow Window Bounding Box

For the purpose of developing a HFB automated surface modeling tool, a perimeter for

the hollow cavities of the HFB must be defined. This is accomplished by using a NX part file

that contains a single joined curve that describes the perimeter of the hollow cavities (see Figure

14).

Figure 14: Hollow Window Boundary

The solitary closed curve defines the cavity region (whether in a flat or twisted state) where

compensation is needed. This region ensures that cavity collapse does not occur during forming

simulation.

4.1.1.2 Strategy

Developing a strategy for a program that automatically creates complex free-form

surfaces is much different than interactively (using a graphical user interface) creating the same

Hollow window
boundary curve

Hollow cavities

50

models. When a programmatic approach is taken for such complex models, it must be capable of

producing an exact model to that created interactively and do so repetitively. The design process

must likewise be able to preserve design intent and process quality.

The goal of this research is to generate the forming die surfaces for a particular HFB that

will produce the design intent once the forming simulation has been executed. The blade

workpiece will also be created from the same starting point as the die surfaces. To generate the

die and workpiece surfaces, the original design intent must be reverse engineered. To reverse

engineer the design intent to produce die surface and workpiece geometry a specific strategy has

been developed. This strategy allows all geometry pieces to use either all or a portion of the

programmatic method developed for successful implementation. To automate the

parameterization and generation of the surfaces, the design must be accomplished by way of four

general steps, otherwise called modules as shown in Figure 15 to Figure 18.

Figure 15: Module 1 Modeling

Figure 16: Module 2 Modeling

Root
attachment

region

AS file
region

Die surface
 horizontal transition

extensions

51

Figure 17: Module 3 Modeling

Figure 18: Module 4 Modeling

Module 1

Module 1 begins with the AS file and root attachment inputs. The two inputs are

integrated together with vertical B-spline curves that pass through the AS file data points and

intersect with a pre-final form root attachment. This creates vertical curves that follow the

contour of the airfoil from the base of the root attachment to airfoil tip and successfully

integrates the two inputs as shown in Figure 15.

Module 2

Module 2 has two capabilities to handle two completely different surface outputs. If

generating the airfoil workpiece, module two is responsible for developing the leading and

trailing edge curve transition to form a closed workpiece. If development of a forming die is

required it handles the transition from the airfoil to the die plane for the forming surface

scenario. This transition takes into account the die draft angles, die machining requirements,

Exported
 section cuts

(Maroon)
Upper and lower

die surfaces (blue)

Die solidity
(purple)

52

forming flashing collection areas, and shape forming parameters to encourage proper die fill.

This operation is performed for both the upper and lower die surfaces.

Module 3

Module 3 is used to generate the net of B-spline control curves through which a B-spline

surface is created (see Figure 17). The control net of curves is developed by properly spacing

curves that extend from the root attachment to tip of the airfoil along the span of the die surface

area. Cross-section curves are created from the leading to trailing edges of the airfoil for the

width of the airfoil surface. Surfaces from the control net of curves for both the die halves of the

airfoil.

Module 4

Module 4 creates solid geometry from the Module 3 resultant surfaces and prepares the

model for downstream analysis by applying defeaturing (where needed), model simplification,

and any simulation assumptions that must originate from the CAD model. This entails taking the

cross-sectional slices at the proper stations of the solid die and workpiece geometries. This

provides the 2D slices of the simulation domain used by downstream programs for analysis. The

NX parts representing the three objects are then saved individually to the proper location for later

retrieval (see Figure 18). The three objects representing the die and workpiece geometry are

later reunited for simulation purposes.

4.1.2 Development

This section explains the details involved in developing the four modules that

parameterize the HFB die and workpiece geometric features and creates the generative design

program executable. The automated design application has been developed using the high level

53

programming language C/C++ coupled with the native toolkit functions from the UG/Open API

library of NX. The modeling method is a seamless NX application that automates the generation

of HFB die/workpiece models and applies parameters and constraints to the detailed surface

features. The automated design tool has been developed to run external to the interactive NX

environment.

Separate modeling applications have been created for generating the die surfaces and

workpiece geometry. The strategy described in section 4.1.1.2 was implemented for each

application.

Figure 19: Generalized Application Organization

Figure 19 shows the organizational sequence of generalized algorithms used for each application

developed. The following sub-sections describe the construction of each module and any

pertinent algorithms. Due to partial proprietary restrictions, the modeling algorithms are not

discussed in explicit detail rather key points and explanations along with visual examples of

algorithm functionality are presented.

54

Module 1 Development

The development of Module 1 is broken into 4 parts: rootblock reverse engineering

development, AS data envelope preparation, airfoil die/workpiece rootblock integration, and

airfoil die/workpiece departure transition creation.

 Module 1 Part 1

Part 1 imports the root attachment geometry (Section 4.1.1.1) and parametrically reverse

engineers the attachment to an earlier form of developmental geometry. The reverse engineered

object created around the root attachment is called a rootblock. The rootblock is shown in two

different configurations in Figure 20 by the semi-transparent shell resembling a house. The

rootblock encapsulates the root attachment by use of the parameterization shown in Figure 21.

The rootblock represents the root geometry needed for integration with the AS file data.

Figure 20: Rootblock (Transparent Green) for Twisted and Straight Root Attachments

55

Figure 21: Rootblock Parameterization
Module 1 Part 2

Part 2 of Module 1 applies the appropriate manufacturing/machining extra amount of

material (also referred to as the machining envelope) to the AS data and prepares the airfoil

leading and trailing edges for proper manufacturing blade clearance. The die/blade clearance is

required to ensure the forming dies provide sufficient compressive force on the workpiece to

facilitate the correct cavity back pressure. This cavity back pressure ensures proper die cavity

fill and forces the workpiece geometry to form to the correct die shape specifications.

 It is important to note that the process being simulated is a bulk forming simulation

(macro shape) not a net forming simulation (micro shape). Therefore, the simulation results will

have the proper airfoil shape and curvature but will contain unfinished features such as the

leading and trailing edges which are formed in a subsequent manufacturing process not covered

in this thesis.

To apply the machining envelopes (additional stock material) necessary, the AS file

Cartesian point data is manipulated prior to creating B-splines (cross-sections) through the AS

file data points. From these curves the airfoil machining/forming surfaces can be generated.

56

Prior to initial cross-section curve creation the AS file data points X, Y, and Z

coordinates must be adjusted to represent the pre-formed geometry needed as the simulation

starting point. This is accomplished by multiple mathematical based data manipulation

operations. The three main manipulation operations are listed here: uniform crush, deformation

compensation, and deflection compensation. These manipulation operations have been chosen

as design variables for the optimization scheme and are described in the following paragraphs.

Uniform Crush

Given that the airfoil could contain an internal scheme of hollow cavities, there is a

potential during forging that the hollow cavities could collapse resulting in an unusable part. The

cavity collapse would be partly due to the structural membrane covering the cavities being

insufficiently thick. To compensate for a thin surface over the hollow region, a uniform extra

thickness is added to the geometry to strengthen the complex part. To compensate for this issue

in this research, the region is defined as a “hollow window” as shown in Figure 14 described in

Section 4.1.1.1. To generate the offset, every data point that falls inside of the hollow window

region has a normalized outward surface vector calculated. The normalized outward surface

vector is calculated using cross-product algorithm that uses two vectors as inputs. The vectors

used in the algorithm are determined from adjacent data points to the base point the surface

vector is to be created as shown generally in Figure 22.

Using a projection algorithm the X, Y, and Z point coordinates are offset along the

outward normalized surface vector a specified uniform distance.

Figure 23 through Figure 26shows the uniform distance offset performed on the AS file

data in the hollow window region.

57

Figure 22: Normalized Surface Vector (n) from Cross-product of (a) and (b)

 This operation of applying the cavity protection of the specified region is referred to as

Uniform Crush. It is applied to both the airfoil workpiece and applied in reverse to the die

geometry.

Deformation Compensation

The second operation is an offset applied only to the airfoil workpiece. The offset adds

material to the airfoil to compensate for the plastic deformation over the hollow cavity zone of

the airfoil. The algorithm calculates an offset based off of the part and die tolerances, an

allowable material deformation percentage, and an estimated amount of deformation. The

algorithm adjusts the data points of the workpiece where the deformation would occur along the

outward surface normal vector as was describe for Uniform Crush. Figure 27 through Figure 30

shows an exaggerated application of this deformation compensation.

58

Figure 23: AS File Data Shown with
Hollow Window Region (No Offset)

Figure 24: AS File
Data Side Profile
(0.0” Offset)

Figure 25: AS File
Data Side Profile
(1.0" Offset)

Figure 26: Uniform Crush 0.0" and 1.0" Cross-section Overlap

The estimate of deformation is another one of the design variables used in the

optimization routine.

AS File
Cross-sections

Hollow
Window

Rootblock
House

Cross-section
mean line No offset section

profile

Exaggerated 1.0”
uniform crush

profile

59

Figure 27: AS File Data Shown as
Cross-sections with Rootblock

Figure 28: AS File
Data Side Profile
(0.0” Offset)

Figure 29: AS File
Data Side Profile
(0.5" Offset)

Figure 30: Deformation 0.0" and 0.5" Cross-section Overlap

Deflection Compensation

The third operation used to describe the location of the data points is a compensation for

deflection to the die geometry. The die geometry is subject to large loads which lead to

deflection (compression) of the die material albeit hardened tool steel. The workpiece geometry

is represented by high strength titanium and therefore will slightly alter the forming shape of the

dies due to the competing material properties. To compensate for the die deflection, an

Rootblock
House

AS File
Cross-sections

Cross-section
Mean Line

Exaggerated 0.5”
Deformation

Profile
No Offset

Section Profile

60

algorithm has been created that offsets the die surface data points in a specified region to form

what looks like a tent on the die surfaces if exaggerated (See Figure 31 to Figure 33).

Figure 31: AS File with Oval Deflection Region
and Manipulated Interior Points

Figure 32: AS File Data Side Profile
with Deflection Compensation Applied

Figure 33: Deflection Compensation Cross-section Overlap

Rootblock
House

Deflection
Compensation

Region
AS File

Cross-sections

Deflection
Compensation

Profile and Data
Points

No Offset
Section Profile

Cross-section
Mean Line

61

The tent shape is a simplified representation of more complicated region definitions that

would be used in an industry application. The intent is to add extra die thickness to the areas

where the most die deflection will be observed. We are assuming that the most deflection will

occur in the middle of the airfoil geometry by using the tent like zone. By specifying the upper

and lower bounds in the spanwise direction (vertical direction), the data points can be assigned

an offset value which is determined by position relative to the upper and lower bounds and the

apex of the compensation region. In practice the compensation is not visible to the eye and is a

minor compensation ensuring the correct blade geometry can be created. Deflection

compensation is the third design variable used in this thesis methodology.

Before Module 1 Part 2 is complete and Part 3 of Module 1 begins, the AS Cartesian

point data, once manipulated, is used to create the initial cross-section definitions of the

airfoil/die surface geometry. Defining a finished airfoil for the process being simulated, the AS

file includes leading and trailing edge definitions (See Figure 34 and Figure 35).

Figure 34: AS File Full Airfoil
Definition

Figure 35: AS File Full Cross-section
Definition (Leading Edges Shown Only)

Airfoil mean
lines

Airfoil surface
definition

62

To obtain the in-process airfoil/die geometry where the leading and trailing edges are not

necessary, points of departure from the AS file are determined which allow for the proper

construction of the die surfaces and in-process airfoil geometry (See Figure 36:).

Figure 36: Airfoil Cross-section with In-process Geometry (Pink) and Departure Points

This is done by determining where to depart from the airfoil curvature at the leading and

trailing edges for every cross-section following specific rules. Examples of the rules for

departure could be a specified distance back along the cross-sectional cord from the leading and

trailing edges or when the airfoil begins to experience a predetermined amount of curvature the

closer the points of departure approach the leading and trailing edges respectively. With the

points of departure identified, new cross-sectional curves are created through the modified AS

data from leading edge departure point to trailing edge departure point for both sides of the

workpiece and die surfaces.

Module 1 Part 3

Development of Module 1 Part 3 uses the manipulated AS data and horizontal B-splines

created through the data for the desired surface profile. Part 3 integrates the AS data and root

attachment into a single entity. This is accomplished by creating vertical B-spine curves through

the data of the AS file and then locating the intersection point of the curves with the roof of the

root block house (See Figure 37). Figure 38 shows the vertical stringers trimmed to the surface

Departure Points

Cross-section
Mean Line

Departure Points

63

of the rootblock roof. The portion of the vertical stringers extending from the intersection points

to the tip of the airfoil definition is retained.

Figure 37: Vertical Stringer Intersection
with Rootblock Roof

Figure 38: Trimmed Vertical Stringers
to Rootblock Roof

These intersections are then used as the starting point for creating the remainder of

the vertical stringers wrapped around the rootblock, with hard intersections blended with

fillets of specified radius. Figure 39 shows the completed final vertical curves

successfully integrating the AS data and rootblock attachment together as one in the

vertical direction only.

64

Figure 39: Complete Vertical Airfoil Stringers Integrated Over Rootblock

Module 1 Part 4

The final construction stage of Module 1, Part 4, involves preparing the horizontal cross-

section curves for their final configuration. To prepare the horizontal cross-sections, the angle at

which the die surfaces must depart away from the airfoil profile is defined along the leading and

trailing edges. This departure angle is shown in Figure 41 with linear extension curves moving

out and away from the previously determined points of departure (See Figure 40) on both the

leading and trailing edges.

Complete Integrated
Vertical Stringers

(Red)

65

Figure 40: Cross-section
with Departure Points
Shown

Figure 41: Cross-section
Overlaid with Departure
Lines (Red)

Figure 42: Blended Cross-
section (Green) with
Departure Lines (Magenta)

When the departure lines have been created with the proper angles and lengths, the

departure lines have a blend radius created effectively joining the cross-sections and departure

lines together as one (See Figure 42). The joined cross-sections are given a unique identifier

and are then ready, along with the vertical stringers, for the Module 2 modeling operations. Part

4 of Module 1 is applied to both the airfoil workpiece and die surface geometry constructs.

Table 2 shows the number of files and the lines of code that are required to run Module 1.

Table 2: Required Number of Files and Lines of Code for Module 1

 Number of (.hpp)
Files

Number of (.cpp)
Files

Lines of (.hpp)
Code

Lines of (.cpp)
Code

Bond Dies 2 24 805 18,676
Prebond Blade 2 14 805 17,338

Module 2 Development

Module 2 handles the transition of the die geometry from workpiece to the die plane only

applied to the die surfaces portion of the automated modeling. Proprietary algorithms were

developed that would allow for any cross-section of the die geometry to follow specific rules of

Departure Points

Departure Lines

66

transition such that features as draft angle, transition radius, and die gap are constantly

maintained regardless of the cross-section orientation.

Figure 43: Transition Governing Relationships

Figure 43 shows the governing relationships for the transition. Figure 44 shows how the

various oriented cross-sections can successfully be transitioned to the die plane thus continuously

completing the cross-sections curves for both halves of the die geometry.

Figure 45 details the model as created through Module 2 for an instance of complex free-

form die surfaces. Table 3 shows the number of files and also the number of lines of code

required to run Module 2 for the airfoil to die plane curve transitions for any curve orientation.

 Draft Radius

Draft Radius

Draft Gap

Run Out Radiu

Die Plane Gap

Draft Angle

Inner Curve

Outer Curve

Outer Curve

Inner Curve

Run Out Radius Draft Angle

Draft Gap

 Draft Radius

Draft Radius Die Plane Gap

67

Figure 44: Module 2 Airfoil to Transition Curve Capability

Figure 45: Complete Exaggerated Module 2 Curve Transition Example #1

68

Figure 46: Completed Module 2 Example #2 (1/2 Die Shown for Clarity)

Table 3: Required Number of Files and Lines of Code for Module 2

 Number of (.hpp)
Files

Number of (.cpp)
Files

Lines of (.hpp)
Code

Lines of (.cpp)
Code

Bond Dies 2 7 805 15980

Module 3 Development

Module 3 is the lynch pin of the generative modeling operations. This development

module generates the net of vertical and horizontal curves for both the work piece and the

extended die geometry (airfoil to die plane section curves) in preparation for surface creation.

The resulting surfaces are then joined/sewn together to form solid entities which would represent

the general state of the tooling/workpiece for the forming operations.

Using a predetermined parameterization (user specified) scheme for multiple regions on

the cross-section curves, vertical curves running through the parameterized locations on the

cross-section curves can be run from root to the tip of the airfoil geometry. Figure 47 shows

seven parameterized regions for the die geometry on the cross-sections.

69

The vertical and horizontal curves are given identifiers such that a native NX curve mesh

surface creation algorithm can be executed. Figure 48 shows the surfaces generated to this point

in Module 3 for both the die surfaces and workpiece geometry. The surfaces are now ready to be

converted into solid geometry in Module 4.

Figure 47: Module 3 Vertical Stringer Parameterized Regions and with Region Biasing

1 2

4

3

5

6

70

Figure 48: Module 3 Die and Workpiece Surface Examples

Table 4: Required Number of Files and Lines of Code for Module 3

 Number of (.hpp)
Files

Number of (.cpp)
Files

Lines of (.hpp)
Code

Lines of (.cpp)
Code

Bond Dies 2 5 805 15360

Module 4 Development

With the die halves and workpiece surfaces from Module 3 generated, their respective

solids can be created. The workpiece solid is most easily created. The leading and trailing edge

surfaces that close off the gap between the workpiece upper and lower surfaces are created by

extracting the edge end points closest to the root and tip on the leading or trailing edges and

creating a line object that bridges the leading and trailing edges gap at the root and tip. These

two new curves are shown in Figure 49 on the leading edge of the sample airfoil.

Workpiece Surfaces

Die Surfaces

71

Figure 49: Workpiece Leading Edge Root and Tip Bridging Lines

Using the leading edge curves of the upper and lower workpiece surfaces, a surface

sweep function is executed using the newly generated curves as guides for the boundary of the

leading edge surface. The same procedure is repeated for the trailing edge. With the four

surfaces (workpiece/die interfacing surfaces, leading and trailing edge surfaces) now created, the

root and tip cap surfaces (See Figure 50) are created using the same method but by autonomously

locating the proper edge curves, using the lines created previously. Figure 50 shows the die

interfacing, leading/trailing edge, and root/cap surfaces used to create the workpiece solid in an

exploded view.

72

Figure 50: Workpiece Surfaces Exploded View

Figure 51: Workpiece as a Solid
Body

The surfaces representing the blade are then sewn together using a native sew function in

the modeling software to create an airtight entity that produces the workpiece solid. Figure 51

shows the solid workpiece completed and ready for subsequent modeling operations for analysis

preparation.

To create the die solids, a minimum die thickness must be observed and therefore the

point of maximum height on the die surfaces is located. With the max height of the die surface

located an imaginary line is extended in the direction of extrusion equal to the amount of proper

die thickness. The four corners of the die surface have lines extended in the same direction that

terminate at the height determined by the apex of the imaginary line representing minimum die

Trailing Edge
Surface

Tip Cap Surface

Leading Edge
Surface

Workpiece/Die
Interfacing
Surfaces

Root Cap Surface

73

thickness. The curves are then connected such that a wireframe of the die solid is generated.

Figure 52 shows the wireframe structure developed prior to creating the enclosed volume for the

die solids.

Figure 52: Wireframe of Die Solid with Die Surfaces (Blue)

 With the wireframe guide curves in place, surfaces are created in a similar manner as the

workpiece surfaces to form an enclosed volume which is sewn together generating the individual

die solids. The same procedure is executed for both the dies except in opposite directions.

Figure 53 shows the solid bodies generated from the sewn surfaces. The die and workpiece

solids are now prepared to be sectioned in preparation for model simulation.

74

Figure 53: Die Half Solids

With 3D solid die and workpiece geometry now available, they must be sectioned into

2D planar sections as specified by the thesis methodology. The Z height locations of the section

cuts in the XY plane are specified in the input file for model construction. Figure 54 and Figure

55 show the dies and airfoil workpiece sectioned.

Creating 2D cross-sections is valid for the methodology developed in this thesis due to

the plane strain assumption since the sections of the dies/workpiece taken are long and thin and

do not experience large deformation.

75

Figure 54: Module 4 Die Cross-section Results

Figure 55: Module 4 Workpiece Cross-section Results

The sections are chosen based off of strategic datum plane placement (equally spaced

through span of airfoil body) and then exporting the resulting 2D upper and lower die and

76

workpiece geometries to the appropriate part files which are saved for subsequent use in the

optimization of the forging analyses (See Figure 56).

Figure 56: Sample Section Cut for Analysis

Table 5: Required Number of Files and Lines of Code for Module 4

 Number of (.hpp)
Files

Number of (.cpp)
Files

Lines of (.hpp)
Code

Lines of (.cpp)
Code

Bond Dies 2 6 805 15454
Prebond Blade 2 4 805 15271

4.1.3 Evaluation

To evaluate the parametric modeling scheme developed in this research not only do the

deviations of the simulated model need to be minimized (see Section 3.3) but also some quality

criterion need to be addressed. This section discusses the validation criterion for the test studies

undertaken for the HFB models and expands on the required capabilities and qualities of the

resulting product models. The following sections include the evaluation procedures for the

necessary questions asked prior to permitting the models to be used in the optimization routine

developed in this research. The questions are namely, does the modeling procedure:

• allow for a large data input?

• create reusable surface models?

77

• generate high-fidelity geometry?

The above questions are addressed in the sub-sections below.

4.1.3.1 Input Data

The input data for the automated parameterization tool must be capable of building HFB

surface models for a variety of AS files and root body part files. The AS files used in this

research represent a twisted airfoil placed flat on a level surface (no twist applied). This type of

AS file is called an Unwrap AS file and is used primarily as the starting point for the workpiece

and die surfaces demonstrated in this research. The bulk data point files all contain at least 5000

ordered input data points that must be read as inputs to the program. This is considered to be a

large amount of data input in industry.

To further demonstrate the power of programmatic parametric modeling using CAD

API’s, examples are provided in Section 5.2 of the modeling parameterization scheme applied to

two (2) different HFB airfoils. This shows the power and flexibility of generative CAD

parametrics by way of only submitting different input AS files. Section 5.2 contains the results

from the test cases performed to test the input capabilities of the HFB APT application. These

tests are performed prior to allowing the models to be used with optimization.

4.1.3.2 Reusable Models

The reusable model paradigm allows CAD master models to be manipulated in order to

create a new design or instantiation, rather than creating them out of nothing. In the

programmatic approach, to reuse a model is to execute a user function or an executable that

automatically creates a new design with new model design variables.

78

The generative modeling scheme automatically assigns parameters, constraints, and

relationships to newly created surface geometry. A single input parameter file was used that

contains all of the design variables that control the complete construction of the surfaces. This

same file contains the optimization design parameters that are varied to locate the optimal

parameter settings.

To determine whether reusable models can be generated from the methodology,

successful generation of all the required surfaces is necessary for the design parameters

investigated.

4.1.3.3 High-fidelity Geometry

An automated parameterization tool for PRSMs must generate geometry that is always

consistent. An evaluation algorithm, also used for check surface deviations, has been developed

to check surface geometry for proper alignment to the desired nominal geometry. A routine has

been implemented which calculates the deviations between all surfaces at strategically chosen

locations on the die/workpiece surfaces. See Appendix A for the complete surface deviation

algorithm.

4.2 Analysis

The analyses employed for this research were developed to operate in a batch mode

environment. They were created to run from a command prompt or from a batch script file. The

inputs necessary for the analysis modules are read from text files that store the input information

in a separate location thus allowing all phases of the model/analysis development to have access

to system parameters. Using this approach simplified the process of integrating all the different

79

functionalities (modeling, discretizing the domains, and analyzing) into a single seamless

program.

The analysis modules that were created to check the validity of the free-form surface

models for validity are listed below:

• Mesh Creation

• Structured Mesh Generation

• Forming Simulation

• Simulation Preprocessing

• Solve Forming Simulation

• Simulation Postprocessing

The engineering software chosen for the system is shown in Table 1. The following

sections describe how the analysis modules were developed. The sections also discuss the steps

and process for creating each module.

4.2.1 Mesh Creation

For the purposes of this research, the FE mesh generated from the model geometry is

created in the ANSYS environment. An ANSYS specific APDL macro is automatically

executed in batch which develops custom structured mesh for each NX cross-section part file.

The structured mesh file is then formatted and handed off to the analysis software using ANSYS

system calls that generate a properly formatted analysis input keyword file and saved into a

specific file location.

ANSYS has been chosen to generate the initial mesh for two reasons. The first reason is

due to its ability to intelligently generate custom mesh and analysis scenarios. The second

80

reason is to show that a mesh can be generated in one program, successfully formatted and

exported to another program for use. The second reason demonstrates the ability to integrate

software to form custom programs across multiple disciplines.

4.2.1.1 Structured Mesh Generation

ANSYS Parametric Design Language (APDL) was used to create the 2D mesh. An

APDL macro file (.mac extension), was created and used as the macro script run for every

partfile requiring a mesh be constructed (three separate macro files). Following the general rule

of having a minimum of at least three elements across the narrowest portion of the objects

(Balling 2006), a mesh size was chosen, and the objects were meshed using a mapped meshing

routine in ANSYS. Figure 57 below shows an example of the meshed objects used in the

forming simulation. It is also important to note that four node quadrilateral elements were used

because DEFORM 2D can only use 1st order (4 node) quadrilateral elements.

Once the mesh had been generated, a unique and properly formatted input file for

DEFORM was created since a direct connection between ANSYS and DEFORM 2D currently

does not exist. The generated files contain, object names, number of nodes, all Cartesian node

coordinates, number of elements, and all element connectivity’s. This file is then saved with a

unique name.

Figure 57: ANSYS Meshed Objects Example

81

Table 6 outlines the macro file generated for the meshing operation. The complete macro

file is located in Appendix B.

Table 6: Mesh Generation Outline

~UGIN Import NX model directly
ET Select an element type
AESIZE Specifies the element size to be meshed
LESIZE Select the number of elements per edge
AMESH Meshes the cross-section (area)
*CFOPEN Opens a file for writing
NODE Locates node closest to specified coordinate
VWRITE Writes formatted data to file

4.2.2 Forming Simulation

The analysis/model simulation software of choice for this research was DEFORM 2D

(developed by SFTC). DEFORM 2D is a Finite Element Method (FEM) based process

simulation system designed to analyze two dimensional (2D) flow of various metal forming

processes.

Due to the size and fidelity of the models, a full three dimensional simulation of the

forming process considered would require enormous amounts of time. The airfoils under

consideration are describing an intermediate manufacturing process before any twist or bending

has been applied to the airfoil. Due to the nature of the design process being simulated and the

wide die cross-section in comparison to the thickness of the die, a plane-strain assumption could

be made to simplify the simulation. This assumption states that relative to the width of the dies,

the thickness is small thus allowing the assumption of constant cross-section to be used. This

way the DEFORM 2D solver could be used to analyze cross-sections from the blade-die

situation.

82

The forming analysis is to calculate the stress on the dies and workpiece as well as

determine the final state of the die and workpiece surfaces during an isothermal forming process.

The dies for this research are made out of high quality chromoly tool steel, namely, AISI-H-13

that has been quenched and tempered at 1000 C. The effective die stress must not exceed the

material yield strength of 250 ksi. As a perceived standard for the turbine engine industry, the

airfoil’s material composition is titanium (Ti-6Al-4V). Table 7 shows key material

characteristics for the die and workpiece that are pertinent to this research. The workpiece is

allowed to plastically deform to achieve the desired form whereas the dies are not.

Table 7: Die/Workpiece Material Properties

Chromoly Tool Steel (AISI-H-13) Units (ksi)

Yield Stress 8000

Titanium (Ti-6 Al-4V)

Yield Stress 250

4.2.2.1 Simulation Preprocessing

Although a portion of the preprocessing occurs inside of ANSYS (mesh generation), all

the system defaults, loadings, and constraints are applied by way of DEFORM macros and the

DEFORM 2D text based preprocessor. Once the macro commands have been determined, using

the interactive DEFORM text-based preprocessor, the preprocessor can be called from the

command line with the macro file used as the command line input. This enables the interactive

preprocessor to be bypassed and now run in batch from the command line. The changes required

for each simulation need to be written to the macro file before execution to ensure proper

83

simulation database generation. The updating of the macro file is accomplished using iSIGHT’s

data exchange program.

To execute the preprocessor program, simulation default boundary conditions, meshed

die/workpiece objects, loading conditions, object positioning data, friction data, specified die

stop reference objects, and all contact information are imported into the program and then

submitted for database creation. Figure 58 shows a preprocessed model with all objects labeled

and object contact points shown. The complex free-form part geometries, nodal locations, and

element connectivity’s are the only portions of the analysis that undergo design iterations for

every simulation.

Figure 58: Complete Preprocessed Model

To obtain the stress and displacement on a cross-section the steps in Table 8 must be

followed.

Table 8: Simulation Preprocessing

KFREAD Reads a DEFORM specific keyword file
OBJPOS Positions objects in contact with each other
CNTACT Determines the nodes in contact
FRCFAC Determines the type of friction
GENCTC Generates contact elements between objects
REFPOS Specifies a reference object

KFWRITE Writes a keyword file based on current status
GENDB Generates simulation database

Upper and Lower
Die Ram

Simulators

Upper and Lower
Dies

Airfoil Workpiece Contact Points

84

Appendix C shows the complete macro file along with the fields of the macro that are

updated with each optimization run (highlighted in blue).

4.2.2.2 Solve Forming Simulation

Once preprocessing has been completed and the DEFORM database file generated, the

simulation is run directly from the command line. This is accomplished by executing

DEFORM’s simulation control script from the command line with the database file as the input.

Since the simulations need to be run sequentially due to the single DEFORM license available

for this research, the simulations are run in a sequential batch mode. Once a solution has been

obtained, the solution database file containing the results are saved for further interrogation and

data extraction.

4.2.2.3 Simulation Postprocessing

Postprocessing takes place in two (2) parts. Part 1 takes place in two steps and Part 2 a

single step. DEFORM is primarily an interactive program requiring large amounts of user

interaction. Since the program needed to run in a batch mode, all of the interactive actions for

postprocessing were automated. Step 1 of Part 1 requires the database to be queried and to

extract the final time step of the solution simulation (final position of the forming operation).

This is accomplished with the system keywords shown in Table 9.

Table 9: Simulation Postprocessing Step 1

DBREAD Reads a specified time step from solution
KFWRITE Writes a keyword file based on current status

85

Step 1 allows for the extraction of the final time step where it is saved off as the results

file (.key extension) for the particular simulation (see Figure 59). Complete results of the

optimization are presented in Chapter 5.

Figure 59: Postprocessed Final Simulation Time Step (Effective Stress Plot)

Step 2 of Part 1 is more involved. Due to the fact that the geometry was meshed in ANSYS and

imported into DEFORM, the object boundaries are unknown to DEFORM. Using the text-based

preprocessor and a sequence of static commands written in a text file, the preprocessor utilizes

the interactive text based preprocessor to extract the boundary edges (nodal coordinates) and

write them to the output file previously created in Step 1 of Part 1. Appendix D shows the inputs

to the text based preprocessor used to extract the peripheral geometry used for evaluation and

deviation calculation.

Part 2 of postprocessing is executed after all simulations have been completed and all

result files have been saved for the design iteration. Part 2 consists of cycling through the result

files and locating the maximum effective stress (Von Mises Stress) and maximum principle

stress (X and Y directions only) for each object in the simulation. The objective of Part 2 is to

identify any simulations that violated any of the material max yield stress conditions. The dies

are not to yield but the airfoil blade must move plastically but not yield. Yielding of the airfoil

would reduce the blade loading capability if exceeded. The maximum effective stress (Von

Mises Stress) is calculated as shown in Equation 10 below.

86

222 3 xyyxyxssectiveStreMaximumEff τσσσσ +−+= (10)

The extraction and calculation of the max stress conditions for the dies and workpiece are

calculated in the following code fragment.

 .
 .
 .

34 count=0;
35 FILE* outFile;
36 outFile = fopen("stressOutput.txt","w");
37 for(int i=0;i<1;i++) //0 for PS and 1 for SS
38 {
39 if(i==0){strncpy(side,"cordwise",9);}
40 else{strncpy(side,"spanwise",9);}
41 printf("%s\n",side);
42
43 //numCordSecs because of the
44 //numCordSecs section cuts
45 for(int j=0;j<numCordSecs;j++)
46 {
47 sprintf(filename,
48 "..\\Simulation\\I-O\\
49 OUTPUT_%s_%d.KEY",side,j);
50 printf("%s\n",filename);
51
52 FILE *outputFile = fopen(filename,"r");
53 if(outputFile==NULL)
54 {
55 printf("Output file
56 '%s' to be read is not
57 correct\n",filename);
58 return 5;
59 }
60 //Iterate 3 times since 3 objects with stresses
61 fprintf(outFile,"%s_%d\n",side,j);
62 fprintf(outFile,
63 "Obj#\tNode#\tMaxEffStress\
64 tPrDir\tMaxPrStress\n");
65 for(int k=1;k<4;k++)
66 {
67 fgets(val,100,outputFile);
68 while(strncmp(val,"STRESS",6)!=0 && count<1000000)
69 {
70 fgets(val,100,outputFile);
71 count++;
72 }
73 printf("\n%s",val);
73
74 sscanf(val,"STRESS %s %s",temp,temp1);
75 printf("%s %s\n",temp,temp1);
76 ObjNum = atoi(temp);NumDataPnts = atoi(temp1);

87

77 for(int m=1;m<NumDataPnts+1;m++)
78 {
79 fscanf(outputFile,"%s %s %s %s %s\n",
80 effStressNodeNum,sigX,sigY,sigZ,tauXY);
81
82 stressEff = sqrt(pow((atof(sigX)),2)+
83 pow((atof(sigY)),2)-
84 (atof(sigX))*(atof(sigY))+
85 3*pow((atof(tauXY)),2));
86
87 if(stressEff>maxEffStress)
88 {
89 //Extracting the max stress
90 maxEffStress = stressEff;
91 maxEffStressNodeNum =
92 atoi(effStressNodeNum);
93
94 if(k==2 && stressEff>objTwoMax)
95 {
96 objTwoMax = stressEff;
97 }
98 if(k==3 && stressEff>objThreeMax)
99 {
100 objThreeMax = stressEff;
101 }
102 }
103
104 //maxPrincipleDir 1=X, 2=Y, 3=Z
105 if(abs(atof(sigX))>maxPrincipleStress)
106 {
107 maxPrincipleStress = atof(sigX);
108 maxPrincipleDir = 1;
109 }
110 if(abs(atof(sigY))>maxPrincipleStress)
111 {
112 maxPrincipleStress = abs(atof(sigY));
113 maxPrincipleDir = 2;
114 if(k==1 && abs(atof(sigY))>objOneMax)
115 {
116 objOneMax = abs(atof(sigY));
117 }
118 }
119 if(abs(atof(sigZ))>maxPrincipleStress)
120 {
121 maxPrincipleStress = abs(atof(sigZ));
122 maxPrincipleDir = 3;
123 }
124 }
125 fprintf(outFile,
126 "%d\t%d\t%lf\t%d\t%lf\n",
127 k,maxEffStressNodeNum,maxEffStress,
128 maxPrincipleDir,maxPrincipleStress);
129 maxEffStress = 0.0;
130 maxEffStressNodeNum = 0;
131 maxPrincipleStress = 0.0;
132 maxPrincipleDir = 0;
133 count=0;

88

134 }
135 fclose(outputFile);
137 fprintf(outFile,"\n");
138 }
139 }
140 fprintf(outFile,"Obj#1MaxPrincipleStressYDir:\t%lf\n",objOneMax);
141 fprintf(outFile,"Obj#2MaxEffectiveStress:\t%lf\n",objTwoMax);
142 fprintf(outFile,"Obj#3MaxEffectiveStress:\t%lf\n",objThreeMax);
144 fclose(outFile);

.
.
.

Shown above is the calculation of the effective stress (line 82 to 85) for the two dimensional

results from DEFORM 2D. Once the maximum stress conditions have been located, they are

written to a separate file (line 140 to 144) to later be tested against the constraints of the

optimization.

4.3 Numerical/Geometric Surface Interpolation

The overall objective of this research is to determine the remaining deviations after

simulation on the complex free-form surfaces representing the dies and workpiece. With the

simulations complete and the data postprocessed, the results must be compared against the

nominal design intent for accuracy. The calculations were done inside of a NX custom

executable.

The program for determining the deviations takes place in three (3) steps. Step 1 imports

the nominal AS file into NX and constructs an interpolated geometric representation of the die

and blade surfaces. The nominal surface is split into two separate surfaces representing the

top/bottom die and the left/right side of the workpiece. Importing the text file containing the

intersection locations (same input file used for model generation), the intersect locations are

projected onto the surface half closest to the data point in the direction of die movement. The

89

points now on the nominal surface are reference points used to calculate surface deviations with

the simulated surface results.

Figure 60: Example of Nominal Surface Halves with Deviation Reference Points

Step 2 consists of reading in the peripheral geometry of the die and workpiece geometry.

The border of the geometry is stored in the output file from the DEFORM simulation using the

proper notation. To simplify the deviation calculations, a single B-spline is created through the

data points of each object. The curves created for each object are then used in conjunction with a

direction vector in the direction of the die movement and the reference points of the nominal

surface to perform intersection routines. The intersection algorithm determines the distance the

simulated surface (in the direction of die movement) is from the nominal surface. These

distances are then saved in the database for use in Step 3, calculating the deviations.

The final step, Step 3, of the numerical/geometric surface interpolation is to determine

the global fitness value for the deviations. The global fitness value is a final representation of all

the deviations found for the design iteration. The calculated value is used as the objective value

Deviation
Reference

Points

Pressure
Side Surface

Half

Suction Side
Surface Half

90

for the optimization iteration. The equation below shows the analytical representation for

determining the fitness value.

()m
ii TPF −= (11)

F Iteration deviation fitness value,
iP Deviant data point of simulated surface,

iT Data point used as reference on nominal surface,
m Deviation weighting factor.

The C/C++ function below implements Equation 11 above in a programmatic form. It is

important to note that ()ii TP − will already have been calculated and inputted as the vector of

deviations. The deviation weighting factor used for the optimization is m = 2.

double calc_global_deviation(std::vector<double> &deviations)
{
 int i=0;
 int size=(int)deviations.size();
 double sum=0.0;
 for(i=0;i<size;i++)
 {
 sum = sum + (deviations[i]*deviations[i]);
 }
 return sum;
}

Once the global deviation fitness function has been calculated for the design iteration, the

deviations and the fitness values are written to a text file for use by the optimization routine.

4.4 Optimization

After the all the modeling and analysis modules have been created, the optimization of

the entire system is ready to be constructed. The process of creating the optimization loop

involves linking the modeling, simulation, and evaluation modules together. In conjunction with

91

the modules, design variables need to be selected, optimization algorithm and associated settings

determined, design variable limits prescribed, determine the appropriate objectives, and identify

the constraints. The objective of the design scenario implied for this research is to minimize the

deviations from the simulated surfaces in comparison to the design intent (nominal surfaces). In

order to reduce the computation time to perform the optimization, a plane-strain assumption was

made which suggests that using long and thin cross-sections of the overall 3D model will

produce allowable results at a much more efficient pace. This assumption allowed the use of 2D

analysis to increase the efficiency of the optimization loop. The following sections discuss the

steps of the optimization process.

4.4.1 Master Program

The optimization of the HFB airfoil and die surfaces required that the modeling, analysis,

and evaluation modules be run in sequence. These modules were integrated into the master

program. The master program of the design optimization scheme links the modeling, meshing,

and analysis together so that they can be executed independently from the optimization if

desired. A generalized schematic of the master program showing the integration of the modules

is found in Figure 61.

92

Figure 61: Generalized Optimization Program

4.4.2 iSIGHT-FD Optimization Environment

After all the modules have been created and set up to prepare their output to represent the

proper input to the downstream program the optimization master program needs to be

constructed within the iSIGHT-FD environment. This was done using iSIGHT-FD’s graphical

user interface. The first step in setting up the optimization was to establish a task plan. The task

plan is the loop that the optimization will perform to evaluate a design and then return the results.

The task plan can consist of as many operations that are needed to handle your iteration scenario.

The optimization loop used for the forming analysis is shown in Appendix E.

The next step is to establish limits for the design variables, add constraints, and specify

an objective. The last step is to specify which type of algorithm to use. A generalized reduced

93

gradient (GRG) algorithm was chosen due to its ability to enforce feasibility of the topology due

to the imposed constraints and follow a “path of steepest descent/ascent” to the design optimum.

The optimization was run with three design variables, three constraints of yield stress

conditions (one per object in simulation) and an objective function to minimize the deviation

fitness value (see Section 4.3).

4.5 Response Surface Analysis Methodology

It became apparent during initial simulation trial runs that a complex design space could

possibly exist. An experimental Design of Experiments (DOE) was necessary to properly

explore and characterize the design space. A Response Surface would be used to show the

estimated response over the variable ranges. To develop a surface profile to predict the model

response a quadratic equation would need to be constructed. Factorial designs commonly only

allow for estimation of all main effects and interactions. In order to get a quadratic equation (the

squared terms for each factor Xi) an estimation is made using a set or axial points (star points)

and center points. The axial points and the center points essentially are a set of one-at-a-time

experiments with three levels of each of the independent variables.

An Inscribed Central Composite RSM design was chosen due to its ability to produce a

response surface using fewer experiments than a full factorial design with sufficient fidelity.

Another reason an “inscribed” central composite design was chosen is that the design variables

have defined upper and lower limits that could not be altered. The inscribed method allows axial

points to be at the limits for the design variables but not exceed them. Figure 62 is a visual of the

Inscribed Central Composite design.

94

Figure 62: Inscribed Central Composite Design

Central Composite designs contain an imbedded factorial (fractional factorial) with center

points and a group of “star points” that allow for estimation of curvature. This requires having 5

levels for each design variable.

The limits for the three design variables (Uniform Crush, Deflection Compensation, and

Deformation Compensation) are true limits and exploring outside of the maximum and minimum

values would be impossible due to model design constraints. Figure 63 shows the design

variable ranges and mapped 5 levels for each variable.

With the variables mapped to the five factor settings the Inscribed CC design could be

created for both test cases (see Figure 64).

95

Figure 63: Design Variable Ranges and Inscribed Central Composite Mapping

JMP statistical analysis software was used to perform the linear regression analysis to

determine the best fitting quadratic equation for the data. Once the quadratic equation was

obtained through regression the equation was plotted over the design variable ranges to give a

graphical representation of the design space. This allowed the optimum design variables values

to be obtained and verified with the optimization routine.

96

Figure 64: Inscribed Central Composite Design (Test Cases 1 and 2)

97

CHAPTER 5: DISCUSSION OF RESULTS

The objective of this thesis was to develop a methodology that applies an automated

tooling design scheme that integrates commercial CAD/CAM/CAE technologies. The intent is

to obtain tooling and pre-formed work piece geometries optimized to produce near-to-design

intent products. This was accomplished by developing an automated generative parametric

modeling scheme and integrating it with analysis and optimization capabilities.

This chapter presents the results from the die/workpiece optimization implementation as

laid out in Chapter 4 as well as the results of the DOE and subsequent response surface.

5.1 Test Cases/Concept Generation

5.1.1 Test Case 1: Double Sided Machined Airfoil

Test case 1 is based on an AS file that contains the nominal (post forming) definition of

an airfoil that is designed to receive machining operations on both sides of the airfoil. It is an

airfoil that is symmetric about the modeling ‘X’ axis. The reasoning for machining both sides is

to obtain the desired surface thickness over the hollow cavities of the blade. This airfoil has 34

cross-sections with 112 data points defined per cross-section. Figure 65 and Figure 66 show the

distinct cross-sectional shape and form the airfoil of interest possesses.

98

Figure 65: Double Sided Cross-section Top View

Figure 66: Double Sided All Cross-sections Front View

5.1.2 Test Case 2: Single Sided Machined Airfoil

Test case 2 is represented the same as Test case 1. The profile is slightly altered to

represents a conceptual method to manufacture an airfoil, namely machining a single sided of the

airfoil. In other words one side of the airfoil is formed to near net shape while the opposite

receives machining operations to obtain proper airfoil surface to hollow cavity thickness. This

99

airfoil has 35 cross-sections with 112 data points defined per cross-section. Figure 67 and Figure

68 show the distinct cross-sectional shape and form the single sided machined airfoil possesses.

Figure 67: Single Sided Single Cross-section Top View

Figure 68: Single Sided All Cross-sections Front View

5.2 Results: Parametric Modeling

The modeling of the die and workpiece geometry followed Section 4.1. The die and

workpiece CAD geometry was successfully created using the generative parametric approach.

Approximately 100,000 lines of code (see Table 10) were used to develop the generative

100

parametric modeling scheme. When writing the code to handle the modeling of both the airfoil

and the forging dies it was found that approximately 70% of the code was common. The

remaining 30% of the code was specific to either construction of the airfoil or the forging dies.

Executing the model creation via a “behind the scenes” program proved to be a fairly simple task

since the code was tested in a piecewise fashion in the GUI prior packaging for test case use.

Running a visual execution within the NX environment was an effective method for debugging

the code prior to packaging for standalone execution.

Figure 69 shows an instance of the solid geometry created for each test case.

Figure 69: Single and Double Sided Solid Die and Workpiece Geometry

A minor challenge was identified during the sectioning of the solid geometry which was

to identify a sectioning method that would successfully replicate the sectioning of the model for

every desired cross-sectional cut. There is a native sectioning tool in NX that is frequently

employed for sectioning activities. It was found that although a solid model was created that the

101

section tolerances were excessive and a closed curve defining the 2D perimeter of a cross-

sectional piece was not always obtainable (would require joining operations to create a

continuous curve). An alternative method using datum planes to create intersections with the

solids proved to be successful since a projection of the solid models intersection with the datum

would always produce a continuous closed curve. The closed curve was extracted and a

bounding plane surface was (required for area meshing operations) created that would be

exported and uniquely identified for downstream analysis (See Figure 70).

Figure 70: Cross-sectional Airfoil and Die Geometry Used for Analysis

It was estimated by the Hollow Fan Blade Design Engineering group at Pratt & Whitney

(East Hartford, CT) that manual modeling, employing as much parameterization as was possible

for the complexity of the design intent, would take approximately 2 man months (~320 man

hours to develop) and would be plagued with update errors. Executing the generative parametric

scheme (on average) required 12 minutes to model the 3D geometry and save off the cross-

102

sections as individual files for downstream operations. This was characterized by Pratt &

Whitney as an extreme success and modeling times could be decreased when run on faster

computer processors with more RAM than that which was used for this research.

To develop the automated program for model development, code development was

extensive. Table 10 has some simple statistics such as number of files and number of lines of

code that were required for generating the airfoil and die geometry. It is also estimated that an

individual with extensive programming and CAD API background could reduce the file/line

count although lines of code would still remain on the order of thousands. Given the amount of

coding required, serious consideration must be taken prior to proceeding down this path although

not every application will be as complicated as the one presented in this research.

Table 10: Modeling Workspace Statistics

Airfoil *.cpp *.h/*.hpp Total
Files 25 2 27
Lines of Code 32,6091 8052 33,414

Dies *.cpp *.h/*.hpp Total
Files 14 2 16
Lines of Code 65,4701 8052 66,275
¹ Same *.h/*.hpp files used for Airfoil and Dies
2 X # files are common to both the Airfoil and Dies

A few simple questions should be asked while deciding if generative parametrics is

viable for the modeling application under consideration:

1. Will the model be used repeatedly?

2. Is the parameterization scheme necessary to build the model overly complicated

and prone to errors?

3. Is manual model development extremely time intensive (more than 80+ man

hours)?

103

4. Are modeling operations executed in series therefore preventing parametric

modeling updates?

Answering these questions will help the designer decide if a traditional modeling approach can

be taken or a generative parametric scheme would be appropriate.

The development of in process airfoil workpieces and the associated forging dies meet

the above criteria. Some key results are outlined below:

1. Die/blade geometry created easily and efficiently with no modeling errors

2. Design variables easily read and adjusted via text based input file

3. Hundred of unique parametric design variables built into the code to control

unique features of the models autonomously

One of the objective questions (See Section 1.1) of this thesis was whether or not the

implementation of the methodology can produce a significant reduction in design/engineering

tool development lead time. This can be answered in the affirmative due to the reduction in

model development time not considering the initial development costs of customizing the

application. Knowing that the model will need to be created for many different design variable

combinations allowed for integrating this approach for the application. Moving from ~4-8 weeks

per design iteration to ~ 12 minutes per iteration is considered a significant time savings of the

manufacturing lead times. That represents an approximate ~99.94% decrease in modeling times.

This alone classifies this research as a tremendous success if it were the only success that was

had. In order to develop such a modeling scheme the developer must have a complete

understanding of the CAD API environment and software. A medium level programming

proficiency is also required since you must utilize the API and develop User Defined Functions

(UDFs). Table 11 summarizes the modeling results.

104

Table 11: Modeling Methods/Time Summary

Modeling Method

Airfoil Dies

Manual Parametric Modeling ~ 3 weeks ~ 5 weeks

Generative Parametric Modeling ~ 4 minutes ~ 8 minutes

5.3 Results: Analysis

Analysis results are presented in two separate sections since mesh development was

executed outside of the DEFORM simulation environment in ANSYS.

5.3.1 ANSYS Results

ANSYS was used to develop the structured 2D meshed sections. A macro was developed

using native API functions to automatically import NX geometry, identify section edges using

spatial positioning, and create a structured quadrilateral mesh with sufficient element numbers

(minimum of 3 elements, Balling 2006) through the thinnest web thickness of the cross-sections

by automatically assigned node density functions. Figure 71, Figure 72, and Figure 73 show

finished examples of each of the die/blade geometries.

Figure 71: ANSYS Meshed Upper Half of Forming Die

Figure 72: ANSYS Meshed Airfoil Cross-section

105

Figure 73: ANSYS Meshed Lower Half of Forming Die

The mesh data for each cross-sectional piece was exported in the required DEFORM

input format as a text file. The data exported contained Cartesian node coordinates, number of

elements, and all element connectivity’s which properly define the geometry in DEFORM. The

files, since created from the ANSYS mesh macro, were always repeatable. The ANSYS macro

used is located in Appendix B.

Manual mesh development times for a cross-sectional set of data as well as the required

automated mesh development times are presented in Table 12.

Table 12: Mesh Methods/Time Summary

Mesh Generation Method

Airfoil Dies

Manual Cross-section Meshing ~ 4 minutes ~ 4 minutes/die half

Automated Cross-section Meshing ~ 30 seconds ~ 30 seconds/die half

5.3.2 DEFORM Results

The forging simulations used the exact same input deck (preprocessing, contact

definitions, material properties, loading conditions, etc) for every simulation with only the

meshed geometry input files (Cartesian nodal coordinates and element connectivity’s for the

106

airfoil and die halves) being updated for each simulation run. This allowed the forging

simulations to be executed repeatedly with the only meshed geometry changing each run.

Figure 74: Analyzed Model Stations with Datum Planes

The simulation results for the 2D sections (See Figure 74) per iteration were extracted at

the last time step in the simulation before minimum squeeze (final minimum distance between

the dies) was met. The final time step was extracted with the data of each piece of analyzed

geometry (element nodal locations, stresses, and strains) and saved for the evaluation step in the

optimization scheme (see Section 5.4). Figure 75 shows a cross-section visual simulation final

time step.

Figure 75: DEFORM Postprocessed Final Simulation Time Step (Effective Stress Plot)

107

Execution times using DEFORM 2D are presented in Table 13.

Table 13: 2D Simulation Methods/Time Summary

Forging Simulation Method Simulation Execution Times

Manual 2D Execution Time ~15 minutes per cross-sectional simulation

Automated 2D Execution time ~5 minutes per cross-sectional simulation

Utilizing the plane-strain assumption and analyzing faster 2D cross-sectional models a

97.5% reduction (~17 hrs vs. ~25 min/5 sections) in simulation execution times was expected

and easily demonstrated prior to integration into the methodology. The significant time savings

with minimal fidelity being sacrificed was the basis for selecting 2D analysis that proved to

allow far more design iterations in less time than a single 3D analysis.

5.4 Results: Evaluation

Evaluation of the simulation results followed the methods described in Section 4.3. Two

important data extractions were made. The final resting place (nodal positions) and max

principle stress in the X and Y directions for each simulated piece of the cross-sectional cuts

were extracted for evaluation (see Figure 76). To interpret Figure 76 a few definitions are

needed as shown in Table 14.

108

Figure 76: Stress Output Example

Table 14: Stress Output Key

cordwise_# Cross-section number; 0 being closest
to root and 4 being closest to tip

obj# Workpiece or die half identifier; 1 –
workpiece, 2 – upper die, 3 – lower die

Node# The node belonging to the stress
location

MaxEffStress The maximum effective stress (Von
Mises)

MaxPrStress Maximum principle stress in the
respective objects

PrDir Direction of maximum principle stress;
1 – X direction, 2 – Y direction

109

The workpiece surface nodal locations were used to determine the distance between the

nominal surface profile and the simulated. As described in Section 4.3 the deviations were

calculated using the resultant blade surface profile at each cross-section and a global fitness

value for the five cross-sections surface deviations calculated. This value became the objective

function value for the design iteration. Figure 77 shows a portion of a text based output file that

contains the results for the deviations. There are two types of deviations that were calculated and

used for comparison and validation that the deviations were in the “same ballpark” with each

other. All simulations produced deviations from both calculation methods that were consistently

representative of the data. The object intersection (“objInterDevObjective”) deviation was the

most accurate indicator of the deviations (Modeled after movement of die in a linear fashion) and

was sent to iSIGHT as the objective value.

Figure 77: Deviations Output Example

With the principle stresses (σx, σy) and shear stress in the XY plane (τxy), the max

effective stress σmax, otherwise known as the von mises stress, was calculated for both sides of

110

the dies and the workpiece. This information was saved and compared against the materials

respective yield stress conditions (See Table 7) to ensure the die and workpiece material had not

failed during forging simulation. This data was correlated to the optimization design constraints

and a condition of success or failure flagged for the design iteration. During all the simulations

the yield stress conditions were never violated for the workpiece and dies.

5.5 Results: Optimization

Optimization was executed as described in Section 4.4 using iSIGHT-FD as the

integration software. All modules (modeling, meshing, simulation, data extraction, and

deviations analysis) along with all the data exchanges we created successfully. Appendix E

shows the complete optimization architecture employed. The material property constraints were

integrated and maintained throughout all iterations. The objective function was easily imported

into the iSIGHT optimization engine as described in Section 5.4. Figure 78 shows an example of

the history plots for the design variables. They show how convergence to a solution was

achieved for a specific starting point for the 3 design variables.

Figure 78: Optimization History Plot Example

111

Table 15: Optimization Data History Example

Initial trials showed convergence to a solution occurred routinely although the solution

varied depending on the initial design variable inputs. A trial and error method was employed to

obtain a general feel for the complexity of the design space and to determine approximate run

times for converging to a solution. It became apparent that a more structured approach to

determining the optimal design variable values for minimum surface deviations was needed.

That observation led to the use of a Design of Experiment (DOE) that facilitated effective

characterization of the model response using Response Surface Modeling (RSM) methods for

predicting best possible variable combinations.

5.6 Results: Design of Experiments

Using the experimental design described in Section 4.5, the inputs were fed into the

optimization routine and the minimum objective function results obtained once convergence

occurred. Table 16 shows the results obtained.

112

Table 16: Test Case 1 and 2 Optimization Results

CCI
 X1 X2 X3 Yopt1 Yopt2
Run Defl Comp Defor Comp Uni Test Case 1 Test Case 2

1 0.007 0.007 0.002 0.017171 0.016189
2 0.023 0.007 0.002 0.02283 0.02727
3 0.007 0.023 0.002 0.017171 0.016189
4 0.023 0.023 0.002 0.02283 0.022434
5 0.007 0.007 0.008 0.037224 0.045019
6 0.023 0.007 0.008 0.023058 0.035634
7 0.007 0.023 0.008 0.037244 0.045019
8 0.023 0.023 0.008 0.023058 0.016189
9 0 0.015 0.005 0.030452 0.016189

10 0.03 0.015 0.005 0.024827 0.035964
11 0.015 0 0.005 0.02283 0.025287
12 0.015 0.03 0.005 0.023172 0.025287
13 0.015 0.015 0 0.024288 0.025287
14 0.015 0.015 0.01 0.042926 0.016189
15 0.015 0.015 0.005 0.023172 0.025287
16 0.015 0.015 0.005 0.023172 0.025287
17 0.015 0.015 0.005 0.023172 0.025287
18 0.015 0.015 0.005 0.023172 0.025287
19 0.015 0.015 0.005 0.023172 0.025287
20 0.015 0.015 0.005 0.023172 0.025287

Prior to any statistical analysis being done with the experimental data it was noted that

the center point results for each test case produced no variation (curvature) (See Table 16). That

result can be attributed to the repeatability of computer simulations producing the same result

which further verified model stability.

Liner regression analysis was used to obtain a predictive quadratic equation for the

models (Test cases 1 and 2). JMP statistical analysis software was used for the analysis. An

attribute variable was assigned to each test case which allowed for both data sets to be analyzed

simultaneously and viewed on-demand in the regression results. The JMP input deck used to

obtain the linear regression analysis results is found in Appendix F.

113

The regression results show that a single model could represent both test cases. The

attribute variable used as the switch between both test cases proved to be insignificant which

demonstrated that a single model could represent both test cases. Figure 79 shows the regression

results (significant factors and factor combinations).

Figure 79: Regression Results

Deflection Compensation and Uniform Crush along with their interaction proved to be

the significant factors and effects of the analysis. The resultant quadratic equation from the

analysis is shown below in Equation 12.

)*(*9453.247)(*4294.1)(*0476.00197.0 UniDeflCompUniDeflCompYopt −+−= (12)

 From Equation 12, a 3D contour plot of the design space was generated (See Figure 80).

From these graphs it is clear that a saddle situation exists inside of the design space. The

minimum amount of surface deviations (Yopt) occurs when deflection composition and uniform

crush are both at their minimum values of zero. The predicted value, when both significant

variables are at their minimum, should fall in the range of 0.01157+/-0.012562 inches.

114

Figure 80: Response Surface Model

To further show the identified optimum a Prediction Profiler was used in JMP to

visualize the predicted output given various significant variable inputs. Figure 81 to Figure 83

show different predictive outputs for Deflection Comp and Uniform Crush settings. The vertical

red dotted line represents the variable values and the dotted blue lines represent the predicted

variability.

It is important to note that the variability band narrows around the deflection comp and

uniform crush values of 0.015 and 0.005 respectively. This is attributed to the experimental

central composite design chosen (See Figure 62). Increasing the number of experimental data

points obtained inside of the inscribed sphere of the design space (while maintaining the

properties of orthogonality, rotatability and uniform precision) it is believed that a smaller error

on the predicted optimum would have been obtained. This is in part due to an increased number

of experimental points inside of the inscribed sphere of the design space effectively improving

the error bounds attained for the predictions.

115

Figure 81: Prediction Profiler Lower Range

Figure 82: Prediction Profiler Mid Range

Figure 83: Prediction Profiler Upper Range

116

Since deformation compensation was considered insignificant it was irrelevant as to what

its starting value should be. Using the mid range value for deformation compensation and the

predicted settings for uniform crush and deflection compensation the predicted optimum for test

case 1 and 2 were executed (see Table 17).

Table 17: Predicted Optimal Design Variable Settings

X1 X2 X3
Deflection

Compensation
Deformation

Compensation
Uniform
Crush

0 0.015 0

5.6.1 Results: Case Study 1- High Fidelity Model (Double Sided Machined Blade)

Using the optimization inputs from Table 17, the double sided blade input produced a

predicted minimum deviation of 0.017171 inches at the design variable settings shown in Table

17. Figure 84 and Table 18 shows the optimization history plots and history data for the

optimum.

Figure 84: Test Case 1 Optimized History Plots

117

Table 18: Test Case 1 Optimum Data History

This value falls inside of the RSM predicted minimum deviation of 0.01157 +/– 0.012562

(the range is 0.024132 to -0.000992 or otherwise ‘0’). Given the variable (factor) ranges, the

results for test case 1 can be considered accurate and only improved by using more design points

for the DOE/RSM activity.

5.6.2 Results: Case Study 2- High Fidelity Model (Single Sided Machined Blade)

Using the same optimization inputs from Table 17 as was used in the previous section for

the double sided airfoil, the single sided blade input produced a predicted minimum deviation of

0.016189 inches at the design variable settings shown in Table 17. Figure 85 and Table 19

shows the optimization history plots and history data for the optimum.

Figure 85: Test Case 2 Optimized History Plots

118

Table 19: Test Case 2 Optimum Data History

This value falls inside of the RSM predicted minimum deviation of 0.01157 +/– 0.012562

(the range is 0.024132 to -0.000992 or otherwise ‘0’). Given the variable (factor) ranges, the

results for test case 2 can be considered accurate and only improved by using more design points

for the DOE/RSM activity.

119

CHAPTER 6: CONCLUSIONS

6.1 Conclusions

The objective of this research was to develop an automated tooling design scheme

that integrates commercial CAD/CAM/CAE technologies. In order to demonstrate this

objective, a methodology was developed that automated creation of complex free form

surface models, component meshing, simulation, and surface evaluation all coupled with an

optimization engine. In Chapter 4, the application for complex free-form surfaces was

developed for a jet engine shroudless hollow fan blade. The implementation of a generative

parametric CAD paradigm applied to complex surface models integrated with the various

CAx tools accomplished the objectives described in Section 1.1. The objectives are repeated

here for reference.

1. Can the integration of parametric CAD, meshing capabilities, bulk forming

simulation, and optimization accomplish a realistic part/die models prediction when

the parts being formed are defined using complex free-form surfaces?

The technologies mentioned in objective 1 were successfully integrated into a master

program that was capable of driving to an optimal solution for the test cases

presented. The generative parametric models were created to the desired fidelity.

The objective function of the optimization showed that the total surface deviation

calculations could be reduced by identifying the correct design variable combinations.

120

Using RSM, experiments were run that allowed for the creation of a response surface

and identification of the optimal design variable settings to achieve the minimal

amount of surface deviations.

2. Can numerical surface construction and interpolation techniques be used to accurately

allow for an objective rating on the accuracy of predictive results compared to the

original design intent?

Yes, surface creation through the design intent allowed for an interpolative method of

deviation calculation to be determined. It worked quite well using both surface

normal deviations off of specified points on the nominal surface and also a minimum

distance technique from the nominal surface location and the derived surface.

Although both methods were calculated the deviations used for this research were the

distance from the nominal surface in the direction of die movement. The surface to

surface deviations were captured in the objective function and easily fed into the

optimization engine for iteration to iteration evaluation.

3. Can the implementation of this methodology (the integration and automation of

associative tooling surfaces automatically derived from the original part geometry)

produce a significant reduction in design/engineering tool development lead time?

It was demonstrated by engineers at Pratt & Whitney in charge of developing

workpiece and die models for the complex free form die surfaces that approximately

2 man months (~320 hrs) were needed to model the free-form geometry (non-

parametric). This research demonstrates that full 3D models of both the airfoil

workpiece and the forming die geometry could be modeled and sectioned in ~10 to 12

minutes. The generative parametric modeling was easily repeatable for varying

121

design inputs. Using the optimization scheme and the need to build new models for

each new design variable input there was a result of ~600x speed up in modeling

capability.

4. Can this methodology be used as a blue print for any automotive or aerospace tooling

industry to eliminate significant time and costs from the manufacture/design of

complex free-form components?

Yes. It was demonstrated that for complex 1st stage compressor blades for a jet

engine’s shroudless hollow fan blade that significant time and cost savings for high

fidelity models can be achieved. This methodology could be easily adapted for other

complex free form surface applications such as complex automotive body panels, ship

hulls, consumer goods, machinery, bio-mechanical systems, etc. It is important to

note that development of generative parametric models of the magnitude

demonstrated integrated with simulation/analysis would only be justified when the

desired model would be needed for more than a single design scenario. Performing a

cost verse benefit analysis to determine if the methodology would be an overall cost

savings would be required.

The generative parametric modeling scheme coupled with the automated analysis for

optimization were evaluated to show the effectiveness of the design tool in overcoming the

obstacles commonly found when analyzing such large models. Chapter 5 revealed results of

the automated optimization scheme and test cases conducted as well as discussed the

advantages/time savings of using a generative parametric design tool. The methodology

122

allowed identification of the design parameter needed to obtain tooling and pre-formed work

piece geometries optimized to produce near-to-design intent products.

The results from the test cases (Test Case 1: 0.017171 inches and Test Case 2:

0.016189 inches) would be acceptable given that they were within 20 mils of the nominal

surface for both test cases and are representative of in process forging geometry. It is

interesting to note that the experimental machining method (single sided machining – Test

Case 2) for the airfoils investigated would produce smaller deviation errors per the

simulation. This discovery will be passed on to Pratt & Whitney for investigation.

From the results and accomplishments of this conceptual methodology, automation of

design and integration of the various CAx applications was successful at identifying the best

possible design variable combinations within the given modeling constraints. The results

show successful implementation on complex free-form surfaces that were previously unable

to be developed in any efficient parametric way.

It is recommended by the author that tool design groups spending too much time with

design iterations should invest in robust state-of-the-art design tools that automate time

intensive processes and eliminate problematic characteristics of such complex models into

simply executed programs. Manual (interactive) die and workpiece construction along with

trial and error methods to determine the proper surface contours is extremely cumbersome.

The application of generative programmatic parametrics on complex free form surfaces

yields a high rate of return and delivers, in the end, a faster tool development cycle time

123

6.2 Future Work

Further research and a logical next step in the development of this methodology

would be to implement it on true production level airfoil definitions and test if simulation

output produces similar results.

The models proved out in this thesis were not capable of being physically verified.

The cost to develop a die capable of forming such complex surfaces costs on the order of

$1,000,000 with the workpiece cost at $50,000. If a 3D forming simulation tool had been

available during the development and testing of this research, further verification could have

been achieved by comparing the 2D vs. 3D results to have better estimated the

modeling/simulation error.

In depth DOE’s could be used to determine the appropriate design variable ranges.

The variable ranges were estimated based on actual experience from the chief design

engineer for the Hollow Fan Blade group at Pratt & Whitney. Performing statistical screening

studies would have allowed the most pertinent and feasible variable and associated values to

be identified (improved model fidelity).

Another recommendation that could be key furthering implementation of this research

would be to integrate the DOE into the iSIGHT workflow. Connecting the two major

activities can be easily accomplished and would have eliminated the need to manually load

optimization starting points into the system. It is also safe to point out that results would be

automatically cataloged. One major advantage to integrating optimization and DOE would

be to eliminate the need to manually set up the DOE in JMP. A seamless autonomous

optimization could offer even further time savings in determining the optimal design

conditions.

124

Development of the iSIGHT workflow required a high level of user

interaction/preparation. Had a scripting language (such as PERL) been used to execute the

various modules a more modular optimization system could have been created. iSIGHT with

integration of a script based programming language would have required less user interaction

and it is strongly recommended that iSIGHT only be used to execute standalone programs

that encompass all the required steps for optimization execution.

Although the research was classified as a success, higher fidelity results could have

been achieved by slightly modifying the chosen central composite design. This would have

been accomplished by using an extended central composite design for computer simulation

experiments. That entails analyzing more experimental points inside of the feasible design

space. Result there from would reveal a higher fidelity RSM that would provide a more

detailed estimation of the error for the model prediction.

125

REFERENCES

Allanda, V., Anand, S. (1995), “Feature-based modeling approaches for integrated
manufacturing: state-of-the-art survey and future research directions,” International
Journal of Computer Integrated Manufacturing, Vol. 8, Issue 4, pp. 411-440

Anderl, R. Mendgen R., (1995), “Parametric Design and its Impact on Solid Modeling

Applications,” Proceedings of the 3rd Symposium on Solid Modeling Applications, Salt
Lake City, Utah December 1995, pp.1-12

Ardalan, S. (2000) “DrawCraft: A Spacecraft Design Tool for Integrated Concurrent

Engineering,” Aerospace Conference Proceedings, IEEE, Vol. 11, pp. 501-510

Bates, P. D., Stewart, M. D., Desitter, A., Anderson, M. G., Renaud, J. P., and Smith, J. A.

(2000). “Numerical simulation of floodplain hydrology.” Water Resources Research,
36(9), 2517-2529.

Bedient, P. B. and Huber, W. C. (1988). Hydrology and Floodplain Analysis, Addison-Wesley.

Balling, R.J., (2006), Continuum Mechanics and Finite Element Analysis, Brigham Young

University Academic Publishing, Provo, UT, ISBN# 0-7003-8553-3.

Biles, W. E., 1984, "Design of Simulation Experiments," 1984 Winter Simulation Conference

(WSC) (Sheppard, S., Pooch, U.,et al., eds.), Dallas, TX, IEEE, pp. 99-104.

Box, G. E. P. and Draper, N. R., 1987, Empirical Model-Building and Response Surfaces, John

Wiley & Sons, New York.

Choi, B.K., (1991), Surface Modeling for CAD-Cam, Elsevier Science Inc., New York, NY

Delap, D. C. (2003), CAD-Based Creation and Optimization of a Gas Turbine Flowpath Module

with Multiple Parameterizations, M.S. Thesis, Brigham Young University

Dieter, G.E., (2000), Engineering Design: A Materials and Processing Approach, McGraw Hill,

3rd Ed.

Elliott, J. H. (2004), An Automated Approach to Feature-Based Design for Reusable Parameter-

Rich Surface Models, M.S. Thesis, Brigham Young University

Farin, G., (1988), Curves and Surfaces for Computer Aided Geometric Design, Academic Press,

San Diego, CA.

126

Haimes, B., (2003), “Unified Geometry Access for Analysis and Design”, Proceedings of the

12th International Meshing Roundtable, Sandia National Laboratories, pp.21-31

Hardee, E., Chang, K., Tu, J., Choi, K., Grindeanu, I., and Yu, X., (1999), “A CAD-based

Design Parameterization for Shape Optimization of Elastic Solids,” Advances in
Engineering Software, Vol. 30, pp. 185-199.

Giunta, Anthony, A., (1997), Aircraft Multidisciplinary Design Optimization Using Design of

Experiments Theory and Response Surface Modeling Methods, Doctorate of Philosophy
in Aerospace Engineering, Virginia Polytechnic Institute

Beichang, He, Roehl, Peter J., Irani, Rohinton K., (1998), “CAD and CAE integration with

application to the forging shape optimization of turbine disks”, AIAA Paper 98-2032, 7th
AIAA/USAF/NASA/ISSMO Symposium on Multi-disciplinary Analysis and Optimization,
St. Louis, MO, September 1998.

Hoffman, C., Kim, K., (2001), “Towards Valid Parametric CAD Models,” Computer-Aided

Design, Vol. 33, 2001, pp. 81-90

Hoffman, C., (2005), “Constraint-Based Computer-Aided Design,” Journal of Computing and

Information Science in Engineering, Vol. 5, Issue 3, pp.182-187

Hogge, D., (2002), Integrating Commercial CAx Software to Perform Multidisciplinary Design

Optimization, M.S. Thesis, Brigham Young University.

Hosaka, M., (1992), Modeling of Curves and Surfaces in CAD/CAM, Springer-Verlag New

York Inc., New York, New York

Hsu, T., Sinha, D. (1992), Computer-Aided Design: An Integrated Approach, West Publishing,

St. Paul, MN.

King, M. (2004), A CAD-Centric Approach to CFD Analysis with Discrete Features, M.S.

Thesis, Brigham Young University

Lawson, J., Erjavec, J., (2001), Modern Statistic for Engineering and Quality Improvement,

Duxbury, Pacific Grove, CA.

Lee, K., (1999), Principles of CAD/CAM/CAE Systems, Addison Wesley, Reading, MA.

Liker, J.K., Fleischer, M., Arnsdorf, D., (1992), Fulfilling the Promise of CAD, Sloan

Management Review, pp.74-86

Magalhaes, W. (2005), Parametric Void Insertion for CAD-Centric Topological Optimization,

M.S. Thesis, Brigham Young University

127

Mäntylä, M., (1988), An Introduction to Solid Modeling, Computer Science Press, Rockville,
Maryland

Mortenson, M.E.,(1985), Geometric modeling, John Wiley & Sons, Inc. New York, NY

Ou, H., Armstrong, C.G., (2002), “ Die shape compensation in hot forging of titanium aerofoil

sections,” Journal of Materials Processing Technology, Vol. 125-126, February 2002, pp.
347-352.

Ou, H., Armstrong, C.G., Price, M.A., (2003), Die shape optimization in forging of aerofoil

sections,” Journal of Materials Processing Technology, Vol. 132, pp. 21-27.

Parkinson, A., (2006), Optimization-Based Design, Brigham Young University Academic

Publishing, Provo, UT., ISBN# 0-7003-7848-0

Piegel, L., Tiller, W. (1997), The NURBS Book, Springer Verlag, Berlin-Heidelberg-New York,

ISBN# 3-540-61545-8

Ramaswamy, R., Ulrich, K., Kishi, N., Tomikashi, M. (1993), “Solving Parametric Design

Problems Requiring Configuration Choices,” ASME Journal of Mechanical Design, Vol.
115, pp. 20-28.

Raphael, B., Smith, I.F.C., (2003), Fundamentals of Computer Aided Engineering, John Wiley,

ISBN# 978-0-471-48715-9

Requicha, A. G. (1980), “Representation for Rigid Solids: Theory, Methods and Systems,” ACM

Computing Surveys, Vol. 12 No. 4, pp. 427-464.

Requicha, A.A.G., Voelcker, H.B.,(1982) "Solid Modeling: A Historical Summary and

Contemporary Assessment,"IEEE Computer Graphics and Applications, Vol. 2, No. 2,
March 1982, pp. 9-24.

Rohm, T., Tucker, S. S., Jones, C. L., Jensen, C. G. (2000), “Parametric Engineering Design

Tools and Applications,” ASME Design Automation Conference, Baltimore, Maryland,
September 10-13, 2000.

Rohm III, T. (2001), Graphical Creation of CAD Parametric Application Programs, M.S.

Thesis, Brigham Young University.

Rossignac, J.R., Turner, J. (1991), Proc. Symp. Solid Modeling Foundations and CAD/CAM

Applications, ACM Press, New York

Samareh, J. A., “Survey of Shape Parameterization Techniques for High-Fidelity

Multidisciplinary Shape Optimization,” AIAA Journal, Vol 39, No. 5, 2001, pp.877-884

Sederberg, T., (2007), Computer-Aided Geometric Design, http://cagd.cs.byu.edu/~557/text/

128

Shah, J.J., Mantyla, M, (1995), Parametric and Feature-Based CAD/CAM: Concepts,

Techniques, and Applications, Wiley-Interscience, ISBN# 978-0-471-00214-7

Su, B., Liu, D., (1989), Computational geometry: curve and surface modeling,

Academic Press Professional, Inc., San Diego, California,

Simpson, T., Korte, J., Mauery, T., Mistree, F., (1998), “Comparison of Response Surface and

Kriging Models for Multidisciplinary Design Optimization,” AIAA-98-4755

Tang, P.S., Chang, K.H., (2001), “Integration of Topology and Shape Optimization for Design of

Structural Components,” Structural and Multidisciplinary Optimization, Vol. 22 No. 1,
pp.65-82

Vanderplaats, G., (1999), “Structural design optimization status and direction,” Journal of

Aircraft, Vol. 36, No. 1, January - February 1999, pp. 11-19.

Waterbury, S.C., (1999), “STEP for Multi-Disciplinary Model Management: ‘Intelligent PDM’,”

ESA/NASA Video/Teleconference STEP for Aerospace applications, July 16, 1999

Wilson, M., (2004), Integration of Rapid Prototyping Preprocessing Operations with a

Commercial CAD System, M.S. Thesis, Brigham Young University

Wu, Wei-Tsu, Tang, JuiPeng, (2004), “Manufacturing Process and Process Modeling,” Scientific

Forming Technologies Corporation (DEFORM), SFTC Paper # 394

Zeid, Ibrahim, (2005), Mastering CAD/CAM, McGraw-Hill, NY, NY

129

APPENDIX A. SURFACE DEVIATION ALGORITHM

/*===
=========================
Program : SurfaceDeviations.cpp
Project : Thesis Project
Purpose : Calculates the deviations between simulated data and design
intent

Revision History June 1, 2007 Started
 KGF
===
========================*/
#include "master_include.hpp"
#include "kevin_master_include.hpp"
#include "objectData.hpp"

int SurfaceDeviations(char* path)
{
 tag_t ps_surf = cycle_by_name("ps_surface");unblank(ps_surf);
 tag_t ss_surf = cycle_by_name("ss_surface");unblank(ss_surf);

 char val[256],val1[256];
 int numCordSecs=0,numSpanSecs=0;
 sprintf(val,"num_cordwise_sections");get_input_data1(path,val,numCordSe
cs);
 sprintf(val,"num_spanwise_sections");get_input_data1(path,val,numSpanSe
cs);
 char* filename = "C:\\Research\\PartFiles\\intersectLocationsPS.txt";
 char* filename1 = "C:\\Research\\PartFiles\\intersectLocationsSS.txt";

 FILE* psPntsFile = fopen(filename,"r");
 FILE* ssPntsFile = fopen(filename1,"r");
 int i=0,j=0,k=0;
 //int numPnts = numCordSecs*numSpanSecs;
 double projectDir[3] = {0,1,0};
 double*** ps_pnts = new double**[numSpanSecs];
 double*** ss_pnts = new double**[numSpanSecs];
 char junk[256],junk1[256],junk2[256],junk3[256];

 for(i=0;i<numSpanSecs;i++)
 {
 ps_pnts[i] = new double*[numCordSecs];
 ss_pnts[i] = new double*[numCordSecs];
 for(j=0;j<numCordSecs;j++)
 {

130

 ps_pnts[i][j] = new double[3];ss_pnts[i][j] = new
double[3];
 fgets(val,100,psPntsFile);fgets(val1,100,ssPntsFile);
 //gets the intersection points of the cord and span
sections cuts from model
 sscanf(val,"%s %s
 %s\n",junk,junk1,junk2);ps_pnts[i][j][0] = atof(junk);ps_pnts[i][j][1]
= atof(junk1);ps_pnts[i][j][2] = atof(junk2);
 //create_dumb_pnt2(2,ps_pnts[i]);
 sscanf(val1,"%s %s
 %s\n",junk,junk1,junk2);ss_pnts[i][j][0] = atof(junk);ss_pnts[i][j][1]
= atof(junk1);ss_pnts[i][j][2] = atof(junk2);
 //create_dumb_pnt2(3,ss_pnts[i]);

 pnt_obj_project(ps_pnts[i][j],ps_surf,projectDir,100,ps_pnts[i][j]);
 create_dumb_pnt2(186,ps_pnts[i][j]);

 pnt_obj_project(ss_pnts[i][j],ss_surf,projectDir,100,ss_pnts[i][j]);
 create_dumb_pnt2(216,ss_pnts[i][j]);
 }
 }
 fclose(psPntsFile);
 fclose(ssPntsFile);

 //bring in simulated die and workpiece geometry
 double** pntData;
 char side[256],prefix[256],outputFilename[256];
 int count=0,ObjNum=0,NumDataPnts=0,NodeNum=0;
 double cut_value=0.0;
 double XCoord=0.0,YCoord=0.0,ZCoord=0.0;
 double origin[3] = {0,0,0};
 double vec_dir[3] = {0,-1,0};

 vector<ObjectData*> ObjectVector;
 ObjectData* tempObj;

 //0,1 because the cuts were in the cordwise and spanwise directions
 //for(i=0;i<2;i++) //0 for PS slices and 1 for SS slices
 for(i=0;i<1;i++) //For use when only using the cordwise cut
direction for plain strain assumption
 {
 if(i==0){strncpy(side,"cordwise",9);strncpy(prefix,"cord",5);}
 else{strncpy(side,"spanwise",9);strncpy(prefix,"span",5);}

 for(int j=0;j<numCordSecs;j++) //5 becasue of the 5 section
cuts(#'s 0-4) in each direction
 //for(j=0;j<1;j++)
 {

 sprintf(val,"%s_section_%d",prefix,j);get_input_data2(path,val,cut_valu
e); //getting the value ('z if cord' and y if span') for where
cuts happened

 //sprintf(outputFilename,"..\\Simulation\\I-
O\\OUTPUT_%s_%d.KEY",side,j);//printf("%s\n",filename); //Used with
.exe

131

 sprintf(outputFilename,"C:\\Research\\Simulation\\I-
O\\OUTPUT_%s_%d.KEY",side,j); //Used with .dll

 FILE *outputFile = fopen(outputFilename,"r");
 if(outputFile==NULL)
 {
 printf("Output file '%s' to be read is not
correct\n",filename);
 return 5;
 }

 //Iterate 3 times since 3 objects with peripheral geometry
 for(int k=1;k<4;k++)
 {
 fgets(val,100,outputFile);
 while(strncmp(val,"DIEGEO",6)!=0 && count<1000000)
 {
 fgets(val,100,outputFile);count++;
 }

 sscanf(val,"DIEGEO %s %s %s",junk,junk1,junk2);
 printf("%s %s %s\n",junk,junk1,junk2);
 ObjNum = atoi(junk);NumDataPnts = atoi(junk2);
 printf("ObjectNum: %d\tNumDataPnts: %d\n",ObjNum,NumDataPnts);

 //system("PAUSE");

 pntData = new double*[NumDataPnts];
 for(int m=0;m<NumDataPnts;m++)
 {
 pntData[m] = new double[3];
 fscanf(outputFile,"%s %s %s
%s\n",junk3,junk,junk1,junk2);//printf("%d %1.4f %1.4f
%1.4f\n",atoi(junk3),atof(junk),atof(junk1),atof(junk2));
 pntData[m][0] = atof(junk);pntData[m][1] =
atof(junk1);
 if(i==0)
 {
 pntData[m][2] = cut_value; //shift the
z coord back to original height
 }
 else
 {
 pntData[m][2] = atof(junk2);
 }

 //rotate the points for spanwise sections back
into position
 // Only used when evaluating both directions.
Not used when only using cordwise cuts
 if(i==1)
 {
 tag_t point =
create_dumb_pnt(pntData[m]);
 rotate_object1(point,origin,vec_dir,-90);
 //Rotate datapnt objects back into YZ plane from XY by -90 deg about y
axis

132

 ask_point_data(point,pntData[m]);
 pntData[m][0] = cut_value;del(point);
 }
 }
 //tag_t testCurve =
create_dumb_bcurve2(NumDataPnts,3,1,pntData);//unblank(testCurve);

 //Load information into the class for the vector of
class objects
 if(i==0)
 {
 //Cordwise Cuts go here
 tempObj = new ObjectData();
 tempObj->cordOrSpan = i;
 //CordwiseCut or Spanwise Cut direction
 tempObj->cutNum = j;
 //Cut number in the cord or spanwise direction
 tempObj->objectNum = k;
 //Associated deform object ID
 tempObj->numPnts = NumDataPnts;
 //Number of points associated with the deform geometry
 tempObj->GetPoints(pntData,NumDataPnts);
 //Actual points of the die/workpiece geometry
 ObjectVector.push_back(tempObj);
 }
 else
 {
 //Spanwise Cuts go here
 tempObj = new ObjectData();
 tempObj->cordOrSpan = i;
 tempObj->cutNum = j;
 tempObj->objectNum = k;
 tempObj->numPnts = NumDataPnts;
 tempObj->GetPoints(pntData,NumDataPnts);
 ObjectVector.push_back(tempObj);
 }
 count=0;
 }
 fclose(outputFile);
 }
 }
 printf("Vector Size: %d\n",(int)ObjectVector.size());

 double y_dir[3] = {0,1,0},tempPnt[3];
 double approxDist = .005;
 double dev= 0.0,dev1 = 0.0;
 int counter = 0;
 std::vector<double> CordDeviation,CordDeviation1; //Corddev is for the
mindist; CordDev1 is the objprojection dev's
 std::vector<double> SpanDeviation,SpanDeviation1;
 std::vector<double> Deviations,Deviations1;

 //Calculate deviations # dev's = 2*numPnts or
(int)ObjectVector.size()
 for(i=0;i<(int)ObjectVector.size();i++)
 {

133

 tag_t curve = create_dumb_bcurve2(ObjectVector[i]-
>numPnts,3,1,ObjectVector[i]->dataPnts);
 set_name2(curve, "curve",i);
 pr("\n");
 if(ObjectVector[i]->cordOrSpan==0)
 {
 //Cordwise since deviation checks
 j=ObjectVector[i]->cutNum;
 printf("Cordwise_%d\n",j);

 //Workpiece checking (both PS and SS sides of workpiece)
 if(ObjectVector[i]->objectNum==1)
 {
 printf("Object1\n");
 //PS
 for(k=0;k<numSpanSecs;k++)
 {
 dev =
get_min_dist2(ps_pnts[j][k],curve,tempPnt);create_dumb_pnt2(100,tempPnt);

 while(pnt_obj_project(ps_pnts[j][k],curve,y_dir,approxDist,tempPnt)!=0)
 {
 approxDist = approxDist+.005;

 counter++; //same as count = count+1;
 if(counter>100)
 {
 //Jump out of the while loop
 break;
 }
 }

 if(counter>100)
 {
 dev1 = dev; // used when pnt_obj_project
fails to find intersection.... forces min dist deviation to continue
 }
 else
 {
 dev1 =
diff(ps_pnts[j][k],tempPnt);approxDist=0.005;
 }

 printf("Obj1_psDev: %lf\t%lf\n",dev,dev1);

 //Deposit information into vector

 Deviations.push_back(dev);Deviations1.push_back(dev1); //These are
for both sides
 counter = 0;//have to reset count
 }
 //SS
 for(k=0;k<numSpanSecs;k++)
 {

 dev =
get_min_dist2(ss_pnts[j][k],curve,tempPnt);create_dumb_pnt2(100,tempPnt);

134

 while(pnt_obj_project(ss_pnts[j][k],curve,y_dir,approxDist,tempPnt)!=0)
 {
 approxDist = approxDist+.005;
 counter++; //same as count = count+1;
 if(counter>100)
 {
 //Jump out of the while loop
 break;
 }
 }

 if(counter>100)
 {
 dev1 = dev; // used when pnt_obj_project
fails to find intersection.... forces min dist deviation to continue
 }
 else
 {
 dev1 =
diff(ss_pnts[j][k],tempPnt);approxDist=0.005;
 }

 //dev1 =
diff(ss_pnts[j][k],tempPnt);approxDist=0.005;

 printf("Obj1_ssDev: %lf\t%lf\n",dev,dev1);

 //Deposit information into vector

 Deviations.push_back(dev);Deviations1.push_back(dev1);
 //These are for both sides
 counter = 0;
 }
 }
 else if(ObjectVector[i]->objectNum==2)
 {
 printf("Object2\n");
 //PS Die side of things
 for(k=0;k<numSpanSecs;k++)
 {
 dev =
get_min_dist2(ps_pnts[j][k],curve,tempPnt);create_dumb_pnt2(100,tempPnt);

 while(pnt_obj_project(ps_pnts[j][k],curve,y_dir,approxDist,tempPnt)!=0)
 {approxDist = approxDist+.005;}
 dev1 =
diff(ps_pnts[j][k],tempPnt);approxDist=0.005;

 printf("Obj2_psDev: %lf\t%lf\n",dev,dev1);

 //Deposit information into vector

 Deviations.push_back(dev);Deviations1.push_back(dev1);
 //These are for both sides
 }
 }

135

 else
 {
 printf("Object3\n");
 //SS Die side of things
 for(k=0;k<numSpanSecs;k++)
 {
 dev =
get_min_dist2(ss_pnts[j][k],curve,tempPnt);create_dumb_pnt2(100,tempPnt);

 while(pnt_obj_project(ss_pnts[j][k],curve,y_dir,approxDist,tempPnt)!=0)
 {approxDist = approxDist+.005;}
 dev1 =
diff(ss_pnts[j][k],tempPnt);approxDist=0.005;

 printf("Obj3_psDev: %lf\t%lf\n",dev,dev1);

 //Deposit information into vector

 Deviations.push_back(dev);Deviations1.push_back(dev1);
 //These are for both sides
 }
 }
 }
 }
//return 0;
 double devs = calc_global_deviation(Deviations);
 double devs1 = calc_global_deviation(Deviations1);

 //For the deviations for both sides (all PS and SS)
 //char* devFileCord = "Deviations.txt";
 char* devFileCord = "C:\\Research\\Evaluation\\Deviations.txt";

 FILE* devsOutCord = fopen(devFileCord,"w");
 fprintf(devsOutCord,"minDistDevObjective:\t%lf\n",devs);
 fprintf(devsOutCord,"objInterDevObjective:\t%lf\n",devs1);

 fprintf(devsOutCord,"MINDIST\t\tOBJINTER\n");
 for(i=0;i<(int)Deviations.size();i++)
 {
 fprintf(devsOutCord,"%lf\t%lf\n",Deviations[i],Deviations1[i]);
 }

 fclose(devsOutCord);

 //clean up
 for (i=0;i<numCordSecs;i++)
 {
 for(j=0;j<numSpanSecs;j++)
 {
 delete [] ps_pnts[i][j];
 delete [] ss_pnts[i][j];
 }
 }
 delete [] ps_pnts;
 delete [] ss_pnts;

136

 ObjectVector.~vector();
 CordDeviation.~vector();CordDeviation1.~vector();
 SpanDeviation.~vector();SpanDeviation1.~vector();
 //system("pause");
 return 0;}

137

APPENDIX B. MESH GENERATION MODULE

!==
! Program mesh.mac
 !Project Thesis optimization
! Purpose To autonomously generate the meshed objects (in ANSYS)for
! simulation in DEFORM2D and export a .KEY inputfile for part
!
! Revision History March 9, 2007 Started KGF
! June 26, 2007 Revised for Cord only KGF
!==

! Load IGES file
FINISH
/CLEAR,NOSTART

!Sets the filepath name
pathName='C:\Research\'
partsPath='%pathName%PartFiles\'

!Changes the working directory
/cwd, '%pathName%\Meshing\'

num=2

!Read in the file name and imports the UG geometry
*DIM, name2use, STRING,1
*SREAD,name2use ,part,txt
string = name2use(1)

!Used for checking what object number should be assigned
*SREAD, name2use,part,txt,,2
checkString = name2use(1)

! Work around for getting the parameter name for the part file working
*cfopen,'%pathName%Meshing\commandFile',txt !open file
*CFWRITE,~UGIN,string,prt,partsPath,SURFACES,,0

!*CFWRITE,checkString
*CFCLOS

! Calls the UGIN command
/INPUT,commandFile,txt,,,0

! Plots the areas of model
/NOPR

138

/GO
APLOT

! Displays a message of partfile name
!*MSG,ui,itrai
!ps_cordwise_0

! Go into the preprocessor
/PREP7

! Define element types
ET,1,PLANE42,0

!Mesh the parts properly
!the parameter NUMDIV is for the number of divisions to match for
!lines such that mapped meshing can happen
NUMDIV=0
*if,'%checkString%',EQ,'ps',then
 !Mesh the area
 AESIZE,ALL,.2
 *GET,MINAREA,AREA,0,NUM,MIN
 MSHKEY,1
 AMESH,MINAREA
*elseif,'%checkString%',EQ,'ss'
 !Mesh the area
 AESIZE,ALL,.2
 *GET,MINAREA,AREA,0,NUM,MIN
 MSHKEY,1
 AMESH,MINAREA
*else
 !For the prebond option
 *GET,MAXIMUM,LINE,0,COUNT
 *DO,Incr,1,MAXIMUM,1
 *GET,LENGTH,LINE,Incr,LENG
 *IF,LENGTH,LT,1,THEN
 LESIZE,Incr,0.05
 *ELSEIF,LENGTH,GT,1,AND,LENGTH,LT,4
 LESIZE,Incr,0.40
 *ELSE
 LESIZE,Incr,0.2
 *ENDIF
 *ENDDO
 *GET,MINAREA,AREA,0,NUM,MIN
 MSHKEY,2
 AMESH,MINAREA
*endif

!Reorient view
/VIEW,1,,,1
/ANG,1
/REP,FAST
EPLOT

139

! For trying to create JPEG of mesh
!/SHOW,JPEG
!/RGB,INDEX,100,100,100,0
!/RGB,INDEX,0,0,0,15
!/DEV,PSFN,NINC
!/gfile,600
!PLNSOL,S,EQV
!/SHOW,CLOSE
!/IMAGE,save,'%path_name%current','jpg'
!/cle
!*ENDDO
!/EXIT

! Get the number of nodes
nsel,all,node
*get,mxnd_,node,,num,max

! Get the number of elements
esel,all,elem
*get,mxelm_,elem,,num,max

! Open new keyword file for simulation input
*cfopen,'%pathName%KeyWordFiles\%string%',KEY

! Check to see what type of object number should be used
! NODENUM is used to locate the proper nodes for the simulation die stop criteria
*if,'%checkString%',EQ,'ps',then
 object=2
 NODENUM=NODE(-10000,-10000,0)
 *vwrite,NODENUM
NODENUM %I
*elseif,'%checkString%',EQ,'ss'
 object=3
 NODENUM=NODE(-10000,10000,0)
 *vwrite,NODENUM
NODENUM %I
*else
 !For the prebond option
 object=1
*endif

! Write the output file containing all nodal locations and elem connectivity
*vwrite,object
OBJNAM %I
*vwrite,string
%C
*vwrite,object
OBJTYP %I 4 0
*vwrite,object,mxnd_
RZ %I %I

*DO,i,1,mxnd_,1,
 *get,x_loc,node,i,loc,x
 *get,y_loc,node,i,loc,y
 *vwrite,i,x_loc,y_loc

140

 %I %8.4F %8.4F
*ENDDO

!*if,'object',eq,'3',then
!*vwrite,object,mxelm_
!ELMCON %I %I
!*DO,j,1,mxelm_,1,
! *get,one_node,elem,j,node,1
! *get,two_node,elem,j,node,2
! *get,three_node,elem,j,node,3
! *get,four_node,elem,j,node,4
! *vwrite,j,one_node,two_node,three_node,four_node
! %I %I %I %I %I
!*ENDDO
!*else
*vwrite,object,mxelm_
ELMCON %I %I
*DO,j,1,mxelm_,1,
 *get,one_node,elem,j,node,1
 *get,two_node,elem,j,node,2
 *get,three_node,elem,j,node,3
 *get,four_node,elem,j,node,4
 *vwrite,j,one_node,two_node,three_node,four_node
 %I %I %I %I %I
*ENDDO
!*endif

! Close the newly created inputfile
*cfclose

Fini

141

APPENDIX C. SIMULATION PREPROCESSING

KFREAD
C:\Research\Simulation\SimulationDefaults.KEY
KFREAD
C:\Research\KeywordFiles\prebond_cordwise_0.KEY
KFREAD
C:\Research\KeywordFiles\ps_cordwise_0.KEY
KFREAD
C:\Research\KeywordFiles\ss_cordwise_0.KEY
KFREAD
C:\Research\Simulation\TEMPFIX.KEY

OBJPOS 2 2 0.0001 1 0 -1
OBJPOS 3 2 0.0001 1 0 1
OBJPOS 4 2 0.0001 2 0 -1
OBJPOS 5 2 0.0001 3 0 1

CNTACT 1 2 1
FRCFAC 1 2 1 0 0.3
CNTACT 1 3 1
FRCFAC 1 3 1 0 0.3
CNTACT 2 4 1
FRCFAC 2 4 1 0 1.0
CNTACT 3 5 1
FRCFAC 3 5 1 0 1.0

GENCTC 0.01

REFPOS 2 2 1
REFPOS 3 2 1
MDSOBJ 2 3 2 0.15

KFWRITE
C:\Research\Simulation\I-O\INPUT_cordwise_4.KEY
GENDB 2
C:\Research\Simulation\Simulation.DB

142

APPENDIX D. SIMULATION POSTPROCESSING

2
1
C:\Research\Simulation\I-O\OUTPUT_cordwise_0.KEY

E
5
1
1
5
3
E
1
2
5
3
E
1
3
5
3
E
E
8
C:\Research\Simulation\I-O\OUTPUT_cordwise_0.KEY
Y

E
Y

143

APPENDIX E. ISIGHT OPTIMIZATION LOOP

144

Figure 86: iSIGHT Optimization Loop Part 1

145

Figure 87: iSIGHT Optimization Loop Part 2

146

APPENDIX F. JMP INPUT DECK

147

Table 20: JMP Input Deck Part 1

148

Table 21: JMP Input Deck Part 2

	Automated Tool Design for Complex Free-Form Components
	BYU ScholarsArchive Citation

	Automated Tool Design for Complex Free-Form Components
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Problem Statement
	1.2 Thesis Objective
	1.3 Delimitations of the Problem

	CHAPTER 2: LITERATURE REVIEW
	2.1 Computer Aided Design (CAD) - Parametrics
	2.1.1 Wireframe Modeling Systems
	2.1.2 Surface Modeling Systems
	2.1.3 Solid Modeling Systems
	2.1.4 Feature-based Parametric Modeling
	2.1.5 CAD-based Master Models

	2.2 CAD Application Program Interfaces (API)
	2.3 Computer-Aided Engineering (CAE)
	2.3.1 Finite Element Analysis
	2.3.1.1 FEA Preprocessing
	2.3.1.2 FEA Solving
	2.3.1.3 FEA Postprocessing

	2.4 Surface Interpolation Methods
	2.4.1 Non-Uniform Rational B-splines (NURBS)

	2.5 Multidisciplinary Optimization
	2.6 Statistical Response Surface Modeling
	2.6.1 Design of Experiments (Central Composite Designs)
	2.6.2 Regression Analysis
	2.6.3 RSM Surface Creation/Examination

	CHAPTER 3: METHOD
	3.1 Parametric Modeling
	3.1.1 Generative Parametrics
	3.1.2 PSRM Planning
	3.1.3 PRSM Development
	3.1.4 PRSM Evaluation

	3.2 Analysis
	3.2.1 Interactive Development
	3.2.2 API Program Development
	3.2.3 CAD/CAE Integration

	3.3 Numerical/Geometric Surface Interpolation
	3.4 Multidisciplinary Optimization
	3.5 Statistical Response Surface Methodology

	CHAPTER 4: DEVELOPMENT
	4.1 Parametric Modeling
	4.1.1 Planning
	4.1.1.1 Inputs
	4.1.1.2 Strategy

	4.1.2 Development
	4.1.3 Evaluation
	4.1.3.1 Input Data
	4.1.3.2 Reusable Models
	4.1.3.3 High-fidelity Geometry

	4.2 Analysis
	4.2.1 Mesh Creation
	4.2.1.1 Structured Mesh Generation

	4.2.2 Forming Simulation
	4.2.2.1 Simulation Preprocessing
	4.2.2.2 Solve Forming Simulation
	4.2.2.3 Simulation Postprocessing

	4.3 Numerical/Geometric Surface Interpolation
	4.4 Optimization
	4.4.1 Master Program
	4.4.2 iSIGHT-FD Optimization Environment

	4.5 Response Surface Analysis Methodology

	CHAPTER 5: DISCUSSION OF RESULTS
	5.1 Test Cases/Concept Generation
	5.1.1 Test Case 1: Double Sided Machined Airfoil
	5.1.2 Test Case 2: Single Sided Machined Airfoil

	5.2 Results: Parametric Modeling
	5.3 Results: Analysis
	5.3.1 ANSYS Results
	5.3.2 DEFORM Results

	5.4 Results: Evaluation
	5.5 Results: Optimization
	5.6 Results: Design of Experiments
	5.6.1 Results: Case Study 1- High Fidelity Model (Double Sided Machined Blade)
	5.6.2 Results: Case Study 2- High Fidelity Model (Single Sided Machined Blade)

	CHAPTER 6: CONCLUSIONS
	6.1 Conclusions
	6.2 Future Work

	REFERENCES
	APPENDIX A. SURFACE DEVIATION ALGORITHM
	APPENDIX B. MESH GENERATION MODULE
	APPENDIX C. SIMULATION PREPROCESSING
	APPENDIX D. SIMULATION POSTPROCESSING
	APPENDIX E. ISIGHT OPTIMIZATION LOOP
	APPENDIX F. JMP INPUT DECK

