
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2010-11-17

An Onboard Vision System for Unmanned Aerial Vehicle Guidance An Onboard Vision System for Unmanned Aerial Vehicle Guidance

Barrett Bruce Edwards
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Edwards, Barrett Bruce, "An Onboard Vision System for Unmanned Aerial Vehicle Guidance" (2010).
Theses and Dissertations. 2381.
https://scholarsarchive.byu.edu/etd/2381

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2381?utm_source=scholarsarchive.byu.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

An Onboard Vision System for Unmanned Aerial Vehicle Guidance

Barrett B. Edwards

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

James K. Archibald, Chair
Dah-Jye Lee

Doran K. Wilde

Department of Electrical and Computer Engineering

Brigham Young University

December 2010

Copyright 2010 Barrett B. Edwards

All Rights Reserved

ABSTRACT

An Onboard Vision System for Unmanned Aerial Vehicle Guidance

Barrett B. Edwards

Department of Electrical and Computer Engineering

Master of Science

The viability of small Unmanned Aerial Vehicles (UAVs) as a stable platform for
specific application use has been significantly advanced in recent years. Initial focus of
lightweight UAV development was to create a craft capable of stable and controllable flight.
This is largely a solved problem. Currently, the field has progressed to the point that
unmanned aircraft can be carried in a backpack, launched by hand, weigh only a few pounds
and be capable of navigating through unrestricted airspace.

The most basic use of a UAV is to visually observe the environment and use that
information to influence decision making. Previous attempts at using visual information to
control a small UAV used an off-board approach where the video stream from an onboard
camera was transmitted down to a ground station for processing and decision making. These
attempts achieved limited results as the two-way transmission time introduced unacceptable
amounts of latency into time-sensitive control algorithms. Onboard image processing offers
a low-latency solution that will avoid the negative effects of two-way communication to a
ground station.

The first part of this thesis will show that onboard visual processing is capable of
meeting the real-time control demands of an autonomous vehicle, which will also include the
evaluation of potential onboard computing platforms. FPGA-based image processing will be
shown to be the ideal technology for lightweight unmanned aircraft. The second part of this
thesis will focus on the exact onboard vision system implementation for two proof-of-concept
applications. The first application describes the use of machine vision algorithms to locate
and track a target landing site for a UAV. GPS guidance was insufficient for this task. A
vision system was utilized to localize the target site during approach and provide course
correction updates to the UAV. The second application describes a feature detection and
tracking sub-system that can be used in higher level application algorithms.

Keywords: thesis, BYU, UAV, Robotic Vision Lab, MAGICC Lab, Helios, FPGA, image
processing, vision guided landing, feature tracking

ACKNOWLEDGMENTS

I first would like to express sincere appreciation to Wade Fife. Wade was an infinite

source of knowledge to my endless stream of questions. He also created the Helios Board,

which turned out to be the focus of my graduate education. Much appreciation also goes

to Blake Barber, who was my teammate on the UAV vision-guided landing project. Nate

Knoebel deserves recognition for acting as a pilot for numerous flight tests. I also must give

great appreciation to James Archibald. He always ensured that there was funding for my

projects, which meant a lot to me. And for being so patient in waiting for this thesis. Last,

but certainly not the least, I must express appreciation to my wife Ashley, for never allowing

me to give up.

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Smart Sensor . 2

1.1.2 Delivery Vehicle . 2

1.2 Problem Description . 3

1.2.1 Off-Loading . 4

1.2.2 Latency . 4

1.3 Objectives and Applications . 5

1.4 Outline . 7

2 Background 9

3 Platform Selection 13

3.1 System Requirements . 13

3.2 Platform Evaluation . 15

3.2.1 Micro-controller . 15

3.2.2 Digital Signal Processor (DSP) . 16

3.2.3 Graphics Processing Unit (GPU) . 16

vii

3.2.4 Field Programmable Gate Array (FPGA) 17

3.2.5 Application Specific Integrated Circuit (ASIC) 18

3.3 Chosen Solution . 19

4 Architecture 23

4.1 Process Flow . 23

4.2 Camera Basics . 24

4.2.1 Progressive Scan Shutter . 25

4.2.2 Interlaced Shutter . 26

4.2.3 Global Shutter . 27

4.2.4 Image Sensor Design . 27

4.2.5 Data Formats . 29

4.3 Techniques . 31

4.4 Inline . 31

4.4.1 Example: Threshold Counter . 32

4.5 Offline . 34

4.5.1 Example: Image Normalization . 35

4.6 Cached Inline . 37

4.6.1 Example: Bayer Pattern Demosaicing 39

5 Application: Vision-Guided Landing 45

5.1 Introduction . 45

5.2 System Design . 46

5.2.1 Color Space Conversion . 48

5.2.2 Color Segmentation . 50

5.2.3 Connected Components . 51

viii

5.2.4 Tracking and Filtering . 52

5.3 FPGA System Architecture . 53

5.4 Results . 54

5.4.1 Static Landing Site . 55

5.4.2 Moving Landing Site . 58

6 Application: Feature Tracking 63

6.1 Introduction . 63

6.2 System Design . 64

6.3 System Architecture . 66

6.3.1 Harris Feature Detector Core . 67

6.3.2 Feature Correlation Core . 70

6.4 Results . 78

7 Conclusion 83

7.1 Summary . 83

7.2 Contributions . 84

7.2.1 Hardware . 84

7.2.2 Embedded Software Framework . 87

7.2.3 Software Algorithms . 88

7.3 Future Work . 89

Bibliography 91

ix

x

List of Tables

6.1 Four possible search area configurations . 76

6.2 FPGA resource consumption of major system components 79

6.3 Performance of implemented components . 80

6.4 Maximum number of correlated features per time period 80

xi

xii

List of Figures

3.1 Helios robotic vision platform . 20

3.2 Micro air vehicle test platform . 21

4.1 Washington monument with no frame skew. Camera was stationary during
capture. 26

4.2 Washington monument with frame skew. Camera panned to the right during
capture. 26

4.3 Bayer pattern . 28

4.4 Bayer pattern profile . 28

4.5 Inline thresholded counter . 32

4.6 Original cave image. Left portion is too dark to perceive content 35

4.7 Normalized cave image. Left portion is now plainly visible 35

4.8 Histogram of original image. Pixel brightness is skewed and not evenly spread
across spectrum. 36

4.9 Histogram of normalized image. Pixel brightness is evenly spread across the
spectrum. 36

4.10 Normalization circuit . 38

4.11 Bayer grid . 40

4.12 Bayer demosaicing logic circuit . 42

5.1 VGL 4 step process . 46

5.2 RGB to HSV color conversion core . 49

xiii

5.3 FPGA image processing core . 53

5.4 Unprocessed RGB image captured during flight (≈100 m to target) 56

5.5 Color segmented image captured during flight (≈100 m to target) 56

5.6 Unprocessed RGB image captured during flight (≈50 m to target) 56

5.7 Color segmented image captured during flight (≈50 m to target) 56

5.8 Unprocessed RGB image captured during flight (≈15 m to target) 56

5.9 Color segmented image captured during flight (≈15 m to target) 56

5.10 Flight data plot of MAV flight path GPS location for static landing site sce-
nario. Target landing site is at location (25, 0). 57

5.11 Flight data plot of identified target landing site in incoming video images . . 58

5.12 MAV approaching target landing site . 59

5.13 MAV landing at target landing site . 59

5.14 MAV approaching moving vehicle landing site 61

5.15 MAV landing on moving vehicle . 61

6.1 Example of x and y image gradients . 65

6.2 FPGA camera core . 67

6.3 Harris feature detector core . 68

6.4 Harris source image . 69

6.5 Harris feature image . 69

6.6 FPGA correlation core . 70

6.7 Partitioned SRAM address space . 72

6.8 Correlator core detail . 73

6.9 Template matching search area . 74

xiv

6.10 Calibration checkerboard pattern demonstrating the feature detection and
correlation algorithms implemented by the vision system implementation. The
red crosses identify where features are in the current frame while green crosses
identify where the features were correlated to in the previous frame. In this
image, the camera was panning down to illustrate that the correlated points
(green) in the previous image follow the location of the feature in the current
image (red). 81

xv

xvi

Chapter 1

Introduction

The dawn of Unmanned Aerial Vehicles (UAV) has come and gone. It is no longer

a field with limited application or attention. Without the hampering effects of insufficient

technology, mobile vehicles have evolved into advanced sensory platforms. As expendable

devices they can be deployed in circumstances unsafe for human life or to unreachable loca-

tions. As continual rapid development continues to increase the services that they provide,

UAVs will further solidify their permanent place as specialized tools.

However, the technology is still not yet mature. Mobile computing, due to its in-

herent restrictions, necessitates custom embedded systems with niche strengths and broad

weaknesses. Development on such platforms is slow and cumbersome. Each and every new

application requires focused tailoring to meet specific system requirements. This specializa-

tion comes at a cost. Due to the limited nature of the mobile vehicle computing environment,

any tuning of system features or capabilities toward a certain application will limit appli-

cability in others. There will always be more to develop as new applications arise requiring

additional functionality. Therefore each new contribution to the field must attempt to not

just enable a single use application but to be applicable to the field in general.

1.1 Motivation

The most basic UAV is one that can autonomously navigate unrestricted airspace.

This requirement may sound simple, but it has only been achieved through a number of

significant developments. It requires a capable airframe, a source of thrust, a global posi-

tioning system, accelerometers to determine aircraft attitude, pressure sensors to determine

airspeed and altitude, and most of all it requires a tuned autopilot control system. With

this component set, this basic UAV can takeoff and fly user controllable waypoints.

1

The limitation of this basic UAV is that it does not do anything of value. A UAV is a

tool that is utilized to accomplish some specific objective, and flying predefined or dynamic

waypoints does not provide value. Above and beyond basic aerial navigation ability, a

UAV is meant to fulfill two primary functions. First, a UAV can be used to extend the

sensory perception of the user by observing the environment and then relaying back specific

information. Second, a UAV is a mobile platform that can act in place of the user over a

great distance.

1.1.1 Smart Sensor

The primary benefit that a UAV can provide to the user in terms of sensory perception

is sight. As remotely controlled aircraft, UAVs can provide a valuable high-altitude vantage

point to the user. This may be utilized to provide an eye-in-the-sky view over an area too

dangerous or out of reach for human access. Examples of such use would include forest

fire perimeter tracking or search and rescue operations. Regardless of the application, sight

extension is clearly a valuable service that a UAV can provide.

The quality of such a service can range depending on the technological capabilities

of the craft. A simple video camera and radio transmitter can be added to the UAV, which

would provide a video feed to the user who could use what was conveyed in the video in

decision making. While this may be sufficient for some simple applications, it diminishes the

role of the UAV from an autonomous craft to that of simply a remote control flying camera

as it cannot act independently from the user. A greater value could be provided if the UAV

was utilized as a Smart Sensor, which would require the UAV to have the ability to capture,

process, and make decisive judgements with the visual information a camera could provide.

Only once a UAV can utilize visual information for decision making without the need for user

interaction will it be able to be used to autonomously accomplish any high-level objective.

1.1.2 Delivery Vehicle

In addition to use as a mobile sensory device, a UAV can be used to extend the reach

of the user as a delivery vehicle. The size of deliverable payload would depend on the size

and load bearing capabilities of the aircraft. Similar to the reasoning behind the value of a

2

remote sensor, a UAV can deliver a payload to areas unsafe or physically remote from the

user. Also as a mechanical vehicle, the UAV can be considered an expendable unit, which

may be required in certain payload delivery events.

A remote sensor can only respond to obtained information by controlling the flight

path of the aircraft and relaying that information back to the user. A higher ability is for the

UAV to act upon information it collects and externally influence the environment around it.

An example of such ability would be to deliver food or a radio to a lost or stranded person

in a search and rescue operation. This goes over and above just locating the person by

extending the reach of the user to the remote location faster than the user could otherwise

travel there.

In summary the core service that a UAV must provide to be of any value is to simply

sense the surrounding environment. However, to be of greater value it must also be capable

of acting upon that perception. What is perceived, and what actions are taken based on

observations, will be dependent upon the application. Regardless of what that application

is, a UAV will need either one or both of these two capabilities to perform it.

1.2 Problem Description

There is a major obstacle to the general adoption of UAVs. As defined, a smart

sensor is one that can perceive and act independently from the user to achieve some high-

level objective. This classification requires the UAV to possess sufficient computing power to

fulfill its intended purpose. But smart sensors also have to be of physically limited dimensions

and comprised of inexpensive components to be considered cost effective.

A large UAV can support powerful but bulky processing equipment, fly farther with-

out refueling, and in general provide greater services to the user. But a large UAV is limited

in applicability as it may be physically too large for a person to carry or launch by hand. A

small UAV, or Micro Aerial Vehicle (MAV), can provide a light, easily transportable plat-

form. But smaller aircraft have limited payload capacity for sensory processing equipment,

which reduces their application scope. This is the tradeoff that constrains UAV development:

physical size versus processing ability.

3

The challenge in UAV development is not to build the larger, flying supercomputer.

Achievements in this area are limited only by the amount of fiscal resources that can be

thrown at the problem. Rather, the greater challenge is to develop a tool that performs the

desired function in the smallest form factor possible. Only with this goal in mind will UAVs

be used to their capabilities as smart sensors.

1.2.1 Off-Loading

One major obstacle with small UAV development is the limited amount of computing

power that can be contained onboard the aircraft. One solution to this obstacle is to avoid

it altogether by off-loading sensory processing to a ground-based computing station. An

example implementation of this would be to equip a UAV with a video camera and trans-

mitter and pair that with a laptop and video receiver on the ground. For some applications,

this approach would be sufficient as the user may be indifferent to where the sensor data is

processed. This approach limits the required onboard devices to sensory and transmission

equipment, which may reduce the total physical size of the aircraft.

However, there are limitations imposed by off-loading that may render the aircraft

to be insufficient in its ability to achieve the intended behavior. Ground-based processing

requires constant radio contact to and from the remote vehicle, possibly requiring a near line

of sight transmission path, which may not be realistic for every application. Transmission

of raw sensor data would also by definition require a higher bandwidth communication link,

which may increase onboard transmission equipment or power consumption more than would

be required if the raw data was processed onboard the aircraft. High volumes of raw data

transferred over a radio link will be subject to transmission noise, which may complicate

ground-based processing that must account for transmission-induced noise in the data. But

one of the most significant impacts of off-loading the raw sensor data processing to a ground-

based computing station is the introduction of latency.

1.2.2 Latency

The basic system process flow for an autonomous vehicle is to gather sensor data,

whether it be GPS location, airspeed, or visual imagery, process that data into a decisive

4

action, and then implement that action. This cycle is not casually periodic but rather must

be completed multiple if not dozens of times every second for the aircraft to maintain vehicle

control. In fact, the frequency of this process loop directly influences aircraft stability. This

cycle is known as a control loop, which can be extremely sensitive to the affects of latency.

When excessive latency is introduced into a control loop, the physical system may

become unstable, progress into violent oscillations, and crash. If latency in the control loop is

unavoidable, the vehicle cannot compensate by simply reacting slower to new sensory inputs.

A muted response to new information will reduce the agility of the UAV as it cannot rapidly

adjust to a changing environment. Therefore, physical systems such as autonomous aircraft

that rely on sensory input for vehicle guidance and control must avoid significant sources of

latency in their control loops.

The approach of off-loading sensory processing from the UAV is flawed in the fact

that it introduces latency. Raw sensor data must be transmitted down to a ground station,

processed, a course of action determined, and commands returned to the UAV over another

wireless link. With the introduction of this transmission delay, the UAV may not be able

to react quickly enough to newly obtained information, which may cause the UAV to fail

to achieve its objective. If there is a question whether the UAV would be able to complete

its intended objective, it would likely not be deployed in the first place. Consequently the

field of vision-guided, autonomous aircraft is lacking in application breadth due to excessive

reaction time to newly acquired information.

1.3 Objectives and Applications

It is the objective of this thesis to present a vision system capable of being mounted

onboard a small UAV that will enable it to acquire, process, and react to visual sensory data

without the need of a ground-based computing station. Central to the completion of this

objective is to review current approaches to onboard image processing and to select an ideal

computing platform suited for small UAV applications. To demonstrate the effectiveness

of the chosen approach, the design methodology, implementation, and successful results of

using the chosen approach will be shown in an example UAV application that requires quick

visual processing and reaction time.

5

Two applications were chosen for this demonstration. The primary application is the

automated landing of a UAV at a stationary or non-stationary target site. This application

was successfully completed and results are included. The secondary application is an inves-

tigation into a feature tracking system that is intended to be used as a sub-component for

an obstacle avoidance system. Since there are major components of an obstacle avoidance

system, such as collision detection algorithms and aerial avoidance maneuvers, which are

outside the scope of low-power, embedded image processing, only the image feature tracking

sub-component required to support an obstacle avoidance system is presented.

Targeted landing was selected as an example application primarily due to its absolute

intolerance of latency and the inadequacy of existing localization technology in succeeding

at the task. The basic premise of targeting landing is that a UAV in flight will eventually

need to return to earth to refuel or to reach some intended location, which will require

the UAV to land at a desired point. While the UAV is in a controlled descent toward the

landing location, it must make increasingly rapid course corrections to its flight path to

successfully arrive at the intended location. In the case of a moving target landing site, the

UAV must continuously detect any change in the landing location and then adapt its flight

path accordingly.

Existing efforts in this application area that utilize GPS tracking or off-loaded image

processing have proved insufficient. The measured GPS location of the traveling aircraft or

the landing site may not be known with sufficient accuracy due to limited sensor technology,

which may prevent the aircraft from successfully arriving at the target site. If an onboard

image sensor is used to acquire images and transmit them to a ground-based processing

station that can analyze the environment and provide course corrections, the latency of the

transmission time to and from the ground station may be too excessive to meet the real-

time control needs of the increasingly quick adjustments that must be made as the aircraft

approaches its target. This application requires a quick vision-based course correction system

to enable successful landing.

This thesis will present a vision system that is capable of overcoming the limitations

of GPS-based guidance and off-loaded image processing. The approach presented is to use an

onboard camera and perform the image processing onboard the aircraft. This approach en-

6

ables additional sensory perception beyond the limitations of noisy GPS positioners without

the added transmission latency of off-board processing.

The feature tracking system application was additionally selected primarily due to

its vast applicability as there are a wide number of uses of such a tracking system based on

passive video input. Therefore it was included in pursuit of presenting a more complete list

of fundamental image processing algorithms that can be used in a variety of applications.

1.4 Outline

This thesis is organized as follows. Chapter 2 describes prior work in the area of

targeted landing and image feature tracking. Chapter 3 will provide an evaluation of com-

puting platforms based on their ability to meet the requirements of the application. The

system requirements to achieve the chosen applications will be defined and a platform will

be selected that meets these requirements. Chapter 4 will discuss image processing meth-

ods and architecture implementation techniques on the chosen platform. Chapters 5 and 6

will discuss the exact implementation details of the computing platform that was used to

achieve successful results. The results of each application will be included in their respective

chapters. Chapter 7 provides a summary of the work, contributions the author has made,

and suggestions for future work.

7

8

Chapter 2

Background

The technical literature includes several examples of vision-based implementations of

autonomous landing. For example, several authors discuss the use of image processing to

guide the aerial descent of unmanned hovercraft (e.g., helicopters, quadrotors) onto a landing

pad as in [1, 2, 3, 4, 5]. In these applications, vision algorithms are used to estimate the pose

of the hovercraft in relation to the landing pad during descent. Adding vision algorithms to

the control loop enables precision adjustments to the descent path to be made that provide

compensation for GPS position estimation inaccuracies. The results demonstrate that vision-

assisted control algorithms are effective in providing the desired course error correction.

Results in [2] show that this approach can be made to work without a predefined

and structured landing site marker. However, easily discernible visual target features allow

image processing algorithms to be simplified and reduce required computations.

In [5] a landing site marker was used with black and white colored boxes of a fixed

size. The onboard vision system found the corners of the boxes, from which the pose of the

hovercraft was estimated. Black and white markings were chosen to minimize the effects of

varying outdoor lighting conditions. For the vision-guided landing application of this work,

a solid color target was used that can be distinguished using color segmentation.

Unlike a hovercraft, a fixed-wing MAV must approach the intended landing site on

an angled glideslope with enough forward velocity to maintain flight. Thus, limited time

is available for image processing algorithms, which establishes the need for real-time vision

computations in this application.

During autonomous landing, neither the direction of approach nor the heading angle

at impact are constrained, which implies the markings on the target landing site need not

express any orientation information. Ideally, the landing area can be recognized regardless of

9

approach angle. For this work, a single color cloth target was selected. The important visual

information about the target can consequently be summarized by the center of mass (x, y)

(in image pixel coordinates) and the size (in number of pixels) of the landmark in each image

acquired from the onboard camera. Therefore, the objective of the onboard vision system is

to determine the target center of mass (x, y) in each image captured by the onboard camera.

Vision systems for small, autonomous vehicles can be divided into two groups de-

pending on whether computation takes place locally or remotely. Tradeoffs of onboard and

off-board computation are discussed in [6]. Crucial to the success of this approach is the

choice of onboard computation. While other vehicles have employed local vision processing

(e.g., [7, 3, 5]), these were substantially larger rotorcraft. In [7] a PC-104 stack was used

and in [5] a 233MHz Pentium embedded system running Linux was used. These embedded

platforms were either too large or not powerful enough to serve as the onboard computation

platform.

Both [8] and [5] emphasize that they use off-the-shelf hardware to perform onboard

image processing. They emphasize this design decision to stress the ease of development at

the cost of performance and platform size. This work departs from this design goal, seeking

instead the most computationally powerful platform for vision-assisted flight control on a

small UAV.

Since the early days of reconfigurable computing, Field Programmable Gate Arrays

(FPGAs) have been an attractive technology for image processing [9]. The inherent paral-

lelism in typical image processing algorithms and the capability of FPGAs to harness that

parallelism through custom hardware make FPGAs an excellent computational match. A

tremendous amount of research has explored the use of FPGAs for various vision systems,

ranging from simple filtering, to stereo vision systems, to multi-target tracking (see for ex-

ample [10, 11]).

Unfortunately, much of the vision research on FPGAs has relied on multiple FPGAs

placed in large systems as in [12] that cannot fit in small vehicles. However, largely due to

Moore’s law, FPGA technology has made significant advances since its inception. In recent

years FPGA technology has progressed to the point where sophisticated imaging systems

10

can be implemented on a single FPGA (compare, for example, the 14 FPGAs used in [12]

with the single FPGA used in [13] for stereo vision).

Although the performance benefit of FPGAs has been well established for some time,

less well known is the relative size and power requirements of modern FPGA-based image

processors compared to high-performance, general-purpose CPUs [14]. These characteristics

make FPGAs ideal for this work with small autonomous vehicles (see [14, 15, 6, 16]).

Much of the literature has focused on implementing complete imaging systems on

FPGAs. The purpose of this work is different in that it aims to deliver a sophisticated,

general-purpose, image processing solution in a small, low-power package.

11

12

Chapter 3

Platform Selection

Established in Chapter 1 is the premise that UAVs require the comprehension of

visual information to fulfill their intended purpose as mobile sensory or delivery devices. The

practice of off-loading or remotely processing that visual data was explained to be insufficient

at meeting the low-latency requirements of a sensor in the control loop of an autonomous

vehicle. If the image data cannot be externally processed in a timely manner then it must

be processed onboard the vehicle itself. For this to happen, a mobile computing platform

capable of low-latency image processing must be incorporated into the control system of the

aircraft.

The purpose of this chapter is to identify a computing platform suitable for onboard

image processing. To accomplish this, the evaluation criteria for a mobile image processing

platform will first be established in Section 3.1. Possible solutions will then be evaluated

according to that criteria, exposing strengths and weaknesses of each particular architecture

in Section 3.2. Finally a platform best suited for deployment onboard a small UAV will be

selected in Section 3.3.

3.1 System Requirements

The system requirements of a mobile vehicle computing system can be broken down

into four areas:

1. Physical size

2. Power consumption

3. Computational ability

4. Development environment

13

The physical constraints of the image processing platform are driven by the size of the

aircraft. The target aircraft for this work is a small UAV that weighs about 5 pounds with a

wingspan of about 5 feet. The computational device chosen for the image system must not

add an undue burden to the aircraft that would hinder aerial maneuverability. Therefore the

vision system must weigh around 1 pound or less. The exact weight down to the ounce is

not important to specify as this is only to provide evaluation criteria for potential computing

platforms.

The power constraints are also driven by the physical size of the aircraft. As indi-

cated in Chapter 1, the motivation behind this work is to produce a mobile device that

can reasonably fly for a few hours at a stretch. Battery power supplies will be limited in

this application to what can be carried onboard the aircraft, which implies that the power

consumption of the computing system will have an inverse affect on flight time. The more

power required by the computing system the shorter the possible flight duration. As a craft

that is capable of longer flight durations will be valued more than one that is only capable

of shorter durations, a low power computing system should be utilized.

To empirically determine the maximum acceptable power consumption of an onboard

computing system, a typical commercially available hobby aircraft battery will be considered.

A common battery at the time of this writing is a 12 volt, lithium polymer battery that has

a capacity rating of 4 amp-hours, which holds a maximum of about 48 watt-hours. To last a

minimum of 3 hours, the image computing platform would therefore be required to consume

less than 16 watts. If the specific application requires a longer flight duration, then the

platform power consumption threshold would have to be reduced or the battery capacity

increased.

The exact computational requirements for the image processing system will vary

based on the application. But regardless of the application, image processing is generally

computationally intensive. To provide an example, the requirements for the vision guided

landing application will be considered. In Sections 5.2.1 to 5.2.3, the following estimates

are provided as to the number of raw mathematical computations that are required for a

640 × 480 image size. The HSV color space conversion would require an estimated 110

million calculations to convert every pixel from the RGB color space to HSV. The color

14

space segmentation step would require about 65 million calculations to threshold every pixel.

While these two steps are performed on every pixel and their exact number of calculations

determined a priori, the connected components step cannot be accurately estimated as it

depends on the content of the image.

In addition to the first three constraints that center on the runtime environment

requirements, the chosen platform must also be well suited as a development platform. As

indicated in Chapter 1, the field of vision-based guidance in aircraft is still a developing art.

As such, any platform chosen must support a relatively quick development cycle for system

designers to design, test, evaluate, and then improve their designs.

While these evaluation criteria will be the primary benchmark to compare possible

platforms, some other criteria will also be weighed. For example, the architectures ability to

perform computations in parallel, or how easily adaptable is it to new applications will also

be considered.

3.2 Platform Evaluation

At the time of this writing there are in general five possible classes of computational

devices that could be utilized in an aerial vehicle. Each of these will be individually consid-

ered according to the criteria set forth in Section 3.1.

3.2.1 Micro-controller

A micro-controller is commonly implemented as a complete self-contained embedded

system. With RAM, PROM, watchdogs, and I/O all built into a single package, it can

perform a variety of tasks without extra external equipment, which may reduce the physical

size needed for an image processing system. This class of device is often used in small and

simple applications, such as toys, automobile sub-systems, and microwave ovens to name only

a few. Micro-controllers outsell computer CPUs by roughly a 10 : 1 ratio, so availability is

abundant and cost is usually low. Power consumption is also low as predictable execution

time is emphasized over raw performance.

The most significant drawback to micro-controllers is limited raw performance. An

image processing application requires a significant number of mathematical computations

15

and the current state of micro-controllers cannot provide that level of performance. There is

also limited parallelism available as micro-controllers are primarily a single core architecture.

Since a micro-controller is computationally limited, it must be ruled out as a potential

computing platform for the target applications of this work.

3.2.2 Digital Signal Processor (DSP)

A digital signal processor is basically a micro-controller with specialized computation

engines that are optimized for Single Instruction Multiple Data (SIMD) instructions. Since

image processing tasks often require the same computation to be performed on every pixel,

SIMD instructions can provide a significant performance speed up over single-threaded CPU

implementations. These arithmetic units typically excel at multiply-accumulate operations

(MAC), which are useful for Fast Fourier Transforms (FFT), matrix operations, and convo-

lutions. Some also utilize a Very Large Instruction Word (VLIW) approach to try and keep

multiple arithmetic units busy at the same time.

While DSP architectures are excellent at data level parallelism, they fail to utilize

task level parallelism. Each processing step must wait for a turn on the arithmetic units

and then use them exclusively until completed. What this implies in image processing is

that each mathematical step of the algorithm must be executed sequentially, and there is no

ability to have an ‘application’ pipeline where data flows from one step of the algorithm to

the next. Integration with other components required in a mobile image processing system

also accentuates this issue. For example, incoming pixel data from a common digital image

sensor runs at 54 MHz, which implies that a new pixel would arrive from the camera about

every 20 ns, interrupt the DSP, which would then store the pixel in memory since there

would be no direct DMA from the camera to main memory. While a DSP would likely

have the computational ability for individual image processing tasks, the limited task-level

parallelism would make a mobile image processing platform based on a DSP challenging.

3.2.3 Graphics Processing Unit (GPU)

Recently, GPU design has changed from a single direction pipeline to a more mod-

ular architecture that can be programmed for General Purpose GPU computing (GPGPU)

16

through C programming extensions such as the Compute Unified Device Architecture (CUDA)

from nVidia. These extensions allow non-graphics applications to utilize the processing power

of GPUs for other uses. As a computation device, a GPU is simply a massive array of floating

point arithmetic units fed by a wide memory bus. Since GPUs were originally designed to

perform image processing algorithms, total device performance is equal to or better than all

of the other available architectures. The programming model is also well defined and inter-

faced in C style commands. This only requires the user to alter single-threaded algorithms

to match the parallel architecture of the GPU, which is likely easier than translating it into

a completely new language such as VHDL.

The performance of a GPU implementation comes at a high cost, and that is power

consumption. The massive number of floating point units draw staggering amounts of power

that in some graphics cards reaches into the hundreds of watts. Power consumption this high

also requires mechanical cooling devices to dissipate heat. The required power consumption

alone limits a GPU-based image processing platform from practical deployment onboard a

small UAV. One additional limitation of a GPU-based system is that a GPU cannot operate

alone as it needs a regular CPU to issue commands. So any mobile implementation would

require not only a power hungry GPU but an additional power consuming CPU just to issue

and monitor commands.

3.2.4 Field Programmable Gate Array (FPGA)

The primary strength of FPGAs is that they can be reconfigured to perform various

tasks, which enables them to serve well in development environments. The main compu-

tational strength of an FPGA is parallel processing that is inherent to the architecture.

Commonly, an embedded CPU core within the FPGA is used to run software algorithms,

while the reconfigurable fabric is used for accelerator cores that perform specific functions. In

image processing applications, individual process steps may not be completed on an FPGA

as fast as a GPU or DSP could complete them, but multiple algorithm steps can be over-

lapped in time through task-level parallelism. Power consumption on FPGAs is not the

lowest of the possible architectures, but it can be controlled by the complexity of the design

and can fit within the 16 watt limit estimated in Section 3.1. An FPGA will not be as small

17

as an ASIC implementation due to raw die size; however, similar to an ASIC an FPGA

can implement internally some functionality that would otherwise require discrete external

components, which helps limit the total physical size of the entire computing system (e.g.,

internal FPGA Block RAM (BRAM) could be used in place of an external SRAM).

The downside of FPGA development over pure software development is time. FPGA

hardware has a different programming model and is generally viewed as more difficult to

program, verify, and debug. The reconfigurable fabric in FPGAs is also generally clocked at

a slower frequency than other architectures, which reduces the potential performance of any

given single atomic computation such as a multiply or addition operation. Even though an

FPGA-based computing platform is not the best at any individual selection criteria as stated

in Section 3.1, it provides an acceptable level of performance in each area. Most importantly,

there is no critical flaw that excludes FPGAs from use on a small UAV.

3.2.5 Application Specific Integrated Circuit (ASIC)

An ASIC offers the best performance in the first three selection criteria. A custom-

made piece of silicon can, within reason, be designed to include almost any computational

ability from fully functional embedded CPUs, to specialized computational units, to I/O

modules, and customized interconnect. Performance of any implemented image processing

algorithm can be precisely tailored to match exactly the real-time needs of the application.

Power consumption will also be as low as any other solution here considered since the hard-

ware included is custom tailored for the intended application. An ASIC will also be the

smallest physical system as the entire system may be integrated onto a single component

package.

The critical limitation with an ASIC design is cost. ASIC development requires

extensive design and verification techniques to be performed that will add to development

time. Once laid out, the hardware of the ASIC is also not adaptable beyond changing

software code on any embedded CPUs. Even though it would rank the highest on the

first three selection criteria, these limitations essentially eliminate the use of an ASIC as a

development platform in the applications targeted in this work.

18

3.3 Chosen Solution

Based on the selection criteria stated in Section 3.1 and the individual platform

evaluations in Section 3.2, an FPGA-based platform was chosen as the platform for the target

applications of this work. As stated in the platform evaluation, FPGA-based platforms are

not the highest performing, lowest power, or smallest physically of the available options.

However, FPGAs do not have a critical flaw that eliminates their use in light-weight aircraft

and instead are a sufficient mix of the selection criteria.

The onboard vision system utilized in this work was the Helios robotic vision platform

developed at Brigham Young University [14] which is shown in Figure 3.1. Even though

all the use cases described in this work are for image processing applications, Helios is in

fact a general purpose FPGA-based development platform. The main component of the

Helios platform is a Xilinx Virtex-4 FX FPGA, which contains up to two 400MHz embedded

PowerPC processors. This specific FPGA is ideal for embedded image processing as it

provides both a CPU for standard C code execution and reconfigurable FPGA fabric for

hardware-accelerated algorithm implementation.

Other additional peripheral components include a 32 MB SDRAM that serves as the

main memory for the system, while a 4 MB SRAM is available to be used as a local memory

cache for custom image processing tasks. A 16 MB flash memory is also included. A USB

2.0 port provides high-speed data transfer, including live video to a desktop computer during

system development and debugging. A RS-232 serial port provides low-speed connectivity,

which realistically is too slow for image transfers, but is perfectly satisfactory for debugging

or for a command interface.

The Helios platform was designed with the intention to be as flexible as possible.

Therefore the system design was constructed of a main board with all the primary high-speed

devices, and interchangeable daughter cards that can be customized for any given applica-

tion. A 120-pin expansion header is used to connect the Helios main board to specialized

daughter boards. Daughter boards are essentially I/O boards with device-specific connectors

for cameras, servos, communication devices, etc. As a computing platform, it serves as a

rich development environment with a small physical footprint (2.5” x 3.5” at 37 grams) that

is well suited for mobile image processing applications.

19

Figure 3.1: Helios robotic vision platform

This work was a joint effort between the Robotic Vision Lab and the Multiple Agent

Intelligent Coordination and Control Lab (MAGICC Lab) at Brigham Young University. The

author was responsible for the implementation of the vision system and Blake Barber from

the MAGICC lab was responsible for adapting the flight control algorithms of the existing

Kestrel autopilot. Those control algorithms will not be discussed here, but the aircraft that

was used in these applications is shown in Figure 3.2. ‘Ray’ as this aircraft was called is an

all electric mono-wing design constructed out of a styrofoam core that is wrapped in kevlar.

The leading edge of the body was modified to provide a viewport that could house the Helios

board and a fixed mounted camera.

With the computing architecture chosen as an FPGA-based platform, the next step

in the process is to evaluate the given techniques that can be used for real time image

processing.

20

Figure 3.2: Micro air vehicle test platform

21

22

Chapter 4

Architecture

All architectures have constraints. This is true no matter the computing platform

being considered. Limitations of the system play a major role in the design and implementa-

tion of an application. They set the bounds of what the system designer can utilize to fulfill

desired functionality. The constraints of the system also limit the methods and techniques

available for the system implementation.

All architectures also have strengths. The unique abilities of different architectures

are what distinguish one from the next. Some are highly parallel. Others are functionally

specialized with high performance. Regardless of the platform, it will have distinct abilities

that must be utilized in the methods and techniques used in the system implementation.

The purpose of this chapter is to identify and illustrate the methods and techniques

available for real-time image processing on an FPGA-based computing platform. The outline

of this chapter is as follows. Section 4.1 describes the basic refinement principle that image

processing must accomplish. Section 4.2 reviews foundation level information that must be

understood when designing a system that processes digital images such as shutter modes,

sensor design, and image data formats. Section 4.3 provides an example-based description

of the three techniques used to implement image processing algorithms on FPGAs, which

are inline, offline, and cached inline.

4.1 Process Flow

Video images contain a near infinite amount of information available for interpreta-

tion, which also means that in raw form, video images are essentially useless. To be of any

value, a system that processes video images must capture raw images, analyze them, and

produce useful, actionable information. The vision system must be thought of as a process

23

that refines large quantities of raw data and extracts specific information. The summarized

data must therefore be physically less data, possibly even a single value, to be useful in

decision making.

To demonstrate this process, a sample application will be considered. A common need

in image processing is to find the location of an object in an image. The theoretical number

of potential images can be determined by computing the variant space of the incoming image.

An 8-bit color scale for each of the R, G and B channels would produce a 24-bit color space

for each pixel in the image. A standard definition size image of 640× 480 contains 307,200

pixels, which results in a variant space of

�
224

�(307,200)
.

The result of the image processing required for this work is a single numeric pair (x, y) of

10-bit values, which has a variant space of

2(10×2)
.

The resulting reduction in data is effectively infinite.

However, a vision system cannot summarize all information. With a near infinite

input vector space the potential number of output vectors are also infinite. The system must

focus on specific things to look for and specific results to summarize. And to be applicable to

a real-time environment, the process flow must be continually run on a never-ending stream

of images.

4.2 Camera Basics

Before discussing the details of image processing techniques, the characteristics of the

data input need to be understood. Regardless of the silicon or optical technology used, all

cameras function essentially the same. They expose a 2D silicon array of transistors to light,

measure the amount of light received in a given period of time, convert that measurement

into a numerical value for each pixel, and transmit the pixel values out over a data bus. Due

to practical considerations, there is not a data port for each pixel off of the image sensor.

24

Therefore, pixel data does not come out all at once, but rather it comes out slowly over a

serial bus.

Image sensors come with a few different shutter modes. The most common are:

progressive, interlaced, and global. Progressive cameras expose one row of pixels of the

image sensor at a time. Interlaced sensors expose all the odd or even rows at the same time,

and global shutter cameras expose the entire frame at once. The primary difference in the

construction of these sensors is the amount of RAM built into the sensor.

4.2.1 Progressive Scan Shutter

Progressive scan image sensors are the most basic of the three types. They have only

a single row buffer built in, which implies that only a single row of pixels can be ‘captured’

at a given time. Progressive scan sensors expose each row in the array for the same amount

of time, but begin the exposure of each row at different times, with the separation in the

exposure about equal to the amount of time required to clock out the prior row.

The most significant aspect of progressive scan image sensors to machine vision ap-

plications is the impact of frame skew. Since the image sensor captures each row at separate

times, there is a time delta between the capture of the first row and the last row of the

image. If the scene is near static, implying there is little horizontal, vertical, or rotational

motion in the scene, then the impact of frame skew will be negligible. If there is motion in

the scene, any subject items in the image will be ‘skewed.’

An example of frame skew can be found in Figures 4.1 and 4.2. Figure 4.1 shows

a picture of the Washington monument without any frame skew, which implies that it was

captured while the camera was stationary. Figure 4.2 depicts what would be recorded if the

camera panned to the right during capture. It can be seen that the monument ‘leans’ to the

right, because the monument moved to the left in the camera’s field of view as the camera

panned to the right. The upper rows of the image represent what was in the field of view of

the camera when the frame capture began, and the bottom rows represent what was in the

field of view when the frame capture ended. While the skew in these figures is exaggerated

for demonstration purposes, the impact of frame skew on image processing algorithms must

be considered when evaluating a progressive scan camera for any mobile vehicle application.

25

Figure 4.1: Washington monument
with no frame skew. Camera was sta-
tionary during capture.

Figure 4.2: Washington monument
with frame skew. Camera panned to the
right during capture.

4.2.2 Interlaced Shutter

Interlaced cameras were developed with the intent to convey motion more fluidly

to the human eye. This was achieved by doubling the frame rate but only capturing and

transmitting half of the total image each cycle. The single image is split into fields of the

odd and even rows of the image. During a single field exposure, all of the odd or even

rows in the image are exposed and captured at the same time. The two separate fields are

then assembled into a single image. And due to the fact that the single composite image is

comprised of two exposures at separate times, the motion is blurred and is perceived by the

human eye as more fluid.

While an interlaced image conveys motion more fluidly to the human eye, it, however,

is problematic for machine vision applications. For example, if there is a moving object in

an image, it will be centered at one location in the odd rows of the image, and a different

location in the even rows of the image. The odd and even fields are essentially two separate

images, each of which has a vertical resolution of 1/2 of the total composite image with

a 1 pixel vertical shift between the two. Therefore, when running some image processing

26

algorithms, the two would have to be processed separately, or one of the two fields would

have to be ignored. In either case, the result is a source image that has a 50% reduction in

vertical resolution, which skews the pixel aspect ratio from square to rectangular.

4.2.3 Global Shutter

Global shutter cameras expose all pixels in the image at the same time. Every cycle,

the camera resets all of the photon sensing transistors and starts capturing light. After the

exposure time has elapsed, the level of each pixel is captured and converted to a digital

value. Then the image is ‘read out’ pixel-by-pixel, and row-by-row, just like progressive and

interlaced cameras.

These are less common in consumer applications as the video is perceived to be ‘jerky’

when compared to a progressive or an interlaced camera. But in machine vision applications,

a global shutter camera is the ideal camera type. With the entire image exposed at the same

moment there is no frame skew, as demonstrated in Figures 4.1 and 4.2. There is also no

reduction of vertical resolution found with interlaced images. Each image is a representative

sample ‘snapshot’ of the scene, which can be considered to be exactly what was seen at a

single moment in time.

But a global shutter does not eliminate all the affects of motion. Since the entire

image is exposed simultaneously, any motion in the scene will be ‘blurred’ in the captured

image. This blurring effect is accentuated by faster movement of objects in the scene, or

by longer exposure times. Therefore, to minimize the blurring effect of a moving scene, the

global camera should be operated at the highest possible frame rate (i.e., shortest exposure

time) that the processing system can sustain.

4.2.4 Image Sensor Design

Color values in images are typically represented as the combination of the brightness

of the red, green, and blue channels at that point in the image. Therefore a color pixel is

defined by the data set (R, G,B). However, image sensors do not capture all three of the R,

G, and B channels at each pixel. In fact image sensors are capable of capturing only one

color channel at each pixel location.

27

An image sensor is an array of color filers placed on top of transistors similar to

the graphic shown in Figure 4.3. Each block in Figure 4.3 represents a single transistor,

which will only measure the amount of light received through the color filter as shown in

Figure 4.4. There exist several variants of this pattern, which utilize filters of different colors

or arrangements of the filters on the transistor array, but the ‘RGBG’ Bayer pattern shown

in Figure 4.3 is the most basic and will suffice for this discussion. Regardless of the array

pattern used, the consequences are still the same: the image sensor will not produce all three

color channels for each pixel. Bayer pattern images do not have distinct (R, G,B) values

for each pixel and must be converted into an image that has an (R, G,B) value set for each

pixel. This process is called ‘demosaicing’ and will be discussed in an example later in this

chapter.

!"#$%&"'()&'*+

,&-+./()01./

2."3$/(4//01

Figure 4.3: Bayer pattern

!"#$%&"'()&'*+

,&-+./()01./

2."3$/(4//01

Figure 4.4: Bayer pattern profile

28

4.2.5 Data Formats

There exist many data formats that can be used to represent an image. However,

in the field of mobile image processing applications only a few of the possible image data

formats are produced by mobile image sensors. Each has advantages for specific applications

and these will briefly be discussed here. The image formats that are commonly produced by

small image sensors are:

1. Grayscale

2. Bayer

3. RGB 888

4. RGB 565

5. YUV

Grayscale

Grayscale images, which are often mistakenly called ‘Black and White’ images, are

the simplest image format. The pixel values in the image represent the brightness or the total

amount of light received at that point. Common value ranges for grayscale images are 8-bit

and 10-bit, which allow a maximum of 256 and 1, 024 different brightness levels respectively.

Grayscale is often useful for algorithms that compare two images together or search for image

features such as the Harris feature detector algorithm which will be discussed in Chapter 6.

Bayer

Bayer pattern color images as discussed previously are essentially useless in their

original form. They only exist as an intermediate format. Even though most cameras can

output the captured image in this format, it must be converted into another format before

any image processing can be performed.

RGB 888

The RGB 888 format implies that each pixel in the image is defined by the value

set (R, G,B), and each of those channels are 8-bit values. This is a very common image

29

representation. For example, Bitmap images (with a .BMP extension), use this format.

Since the RGB 888 format is comprised of three 8-bit channels the total color space that

is representable by each pixel is 224, which is commonly called a 24-bit image. This format

provides the most accuracy in image processing as it is the highest quality that can be

obtained from an 8-bit color image sensor.

RGB 565

The RGB 565 format is a reduction from the RGB 888 format. The purpose of this

reduction is to reduce memory requirements from 3 bytes per pixel down to 2 bytes per pixel.

The 565 definition specifies that 5-bit values are used to store the R and B channels, and

6-bits are used to store the G channel. The green channel gets the extra bit because the

human eye is more sensitive to green light than red or blue. Conversion from RGB 888 to

RGB 565 can be achieved simply by dropping or rounding the last 2 or 3 bits of the 8-bit

values.

YUV

The YUV color format was invented as a way to add color information to the

grayscale format without breaking backward compatibility with devices that could only

receive grayscale images. The Y or luma channel represents the brightness of the pixel,

while the U and V channels represent blue and red chrominance values. The Y component

is comparable to the simple grayscale format, while the chrominance values are difference

values that represent how much brighter or darker the blue and red channels are from the

total pixel brightness. Many cameras are capable of delivering this format as it is used in

NTSC video transmissions for standard definition televisions. Unless the image processing

application requires the transmission of video in an NTSC format, this format is not useful

in image processing algorithms. This is primarily due to the fact that many image processing

algorithms are based on (R, G,B) values.

30

4.3 Techniques

An FPGA-based computing environment provides unique abilities that enable mul-

tiple image processing techniques to be utilized. The computational structure of an FPGA

is one massive fabric of individual computational elements that can be connected and con-

figured in essentially limitless ways. The elements can be connected in series to form an

arithmetic pipeline, grouped together into processing units, or function as memory buffers.

However, the most significant advantage of the fabric, as it pertains to image processing, is

not just the configurability, but the ability to have system components operate in parallel.

Real-time image processing is essentially performing the same algorithmic operations

again-and-again on a continuous series of images. Processing video image data can there-

fore be classified as ‘stream processing.’ Regardless of the data format, the techniques for

embedded image processing operations can be grouped into the following categories:

1. Inline

2. Offline

3. Cached Inline

These classifications were not found in the existing literature at the time this work

was performed. The author defined these classifications while reflecting on the general design

structure of the multiple FPGA logic components that were developed as part of this work.

The intent of listing them here is to provide the reader with a framework to guide future

FPGA logic development. It is important to note that the image processing techniques listed

here only apply to the algorithms used to reduce the information contained in raw images

to specific, actionable information, and not the tracking or decision making processes that

would use that specific information in a mobile autonomous vehicle.

4.4 Inline

Inline processing is the most basic of the image processing techniques. It is also the

fastest. All data processing operations are organized into a single pipeline. Image data

is pushed through the pipeline one pixel after another. A diagram of the computational

architecture is shown in Figure 4.5.

31

!"#$% !&#$% !'#$%
"()*+,-
./01(1
23456

7)*+,-
/849:;4<6
23456

")*+,-
0+=489
23456

">)*+,-
?=:+5=6@-
AB3*68(CD-$-C7D

./0-E43684
./0-,F-

/849:;4<6
GH86:HF<@-
EF3I484,F8

?=:+5=6@-
EFB=,68

Figure 4.5: Inline thresholded counter

As shown in the diagram, pixel data is clocked out of the camera 1 pixel at a time

as a continuous stream. Each pixel is then clocked through the computational pipeline at

a rate of 1 pixel per clock cycle. This can be viewed as pre-processing since the image

data is passed through a processing engine prior to being stored in memory. The output of

the inline processing unit can be a pixel stream of the same dimensions as the input, or it

could be as simple as a single value. Example applications that can be implemented using

the inline technique are those with independent pixel operations where each pixel can be

processed without looking at adjacent pixels, such as color space conversion, thresholding,

and segmentation.

4.4.1 Example: Threshold Counter

To demonstrate an inline processing unit, consider a simple application that counts

the number of pixels in an image that are brighter than a threshold value. This application

requires the conversion of the input image stream from the RGB color space into grayscale,

the detection of whether the pixel is brighter than a threshold value, and the counting of the

number of pixels above that value. This can all be accomplished using the inline processing

approach.

Figure 4.5 includes a source camera which outputs a 640× 480 image in 16-bit RGB

565 format. The image captured from the camera is clocked out one pixel per clock cycle

over the camera’s data bus. The speed of that bus is not relevant for this example, as it only

32

focuses on the flow of data. Following the camera are three computational pipeline stages

labeled: f1(x), f2(x), and f3(x).

The first computational stage, f1(x), converts the incoming 16-bit color RGB 565

stream into grayscale. This is required to determine the overall brightness value of a single

pixel. This is accomplished using

Y = 0.3×R + 0.59×G + 0.11×B (4.1)

where Y is the grayscale value and R, G, and B are the individual red, green and blue values

This algorithm does not depend on any future or prior values and only requires the

data of each pixel to compute the grayscale brightness at each pixel and therefore meets the

definition of an inline processing unit.

The second stage, f2(x), performs the thresholding. If the 8-bit grayscale value coming

out of the first stage is above the threshold value then the f2(x) stage outputs a binary 1,

otherwise it outputs a 0 according to

Result =






1, if Y > Value

0, if Y <= Value

. (4.2)

As this equation only requires the comparison of the incoming pixel value with a static value,

it meets the criteria of an inline processing unit.

The third stage, f3(x), counts the number of pixels that are above the threshold. Since

the input image dimensions are 640 × 480, the total pixel count in the image is 307, 200.

Theoretically, every pixel in the image could have a grayscale brightness value above the

threshold, and therefore the counter would need to be able to count up to at least 307, 200.

For an unsigned binary counter, this implies a minimum of 19 bits. The counter in f3(x) is

incremented each time the output of f2(x) is a binary 1 and is reset to zero at the start of

each image.

In this example, a hypothetical scenario was used to demonstrate the inline processing

design technique. The advantage of this technique is speed. Each stage only adds the latency

required to implement its arithmetic function. And each of the three stages in this example

33

design can be implemented in FPGA logic that only requires one or two clock cycles to

complete. Therefore, these pipeline stages would implement the thresholded counter with

the addition of only a few clock cycles of latency.

The disadvantage to the inline approach is that it can only be used to implement

a limited set of algorithms. Each processing unit can only look at a single pixel at a time

in the order that they were received. There can be no re-ordered or random access to the

stream. Therefore, the applications that it can implement must be simple operations that

can be considered ‘pre-processing.’

4.5 Offline

The offline technique requires that the whole image be captured and stored in memory

before processing begins. The ‘offline’ designation is meant to imply that the processing is not

directly connected with the image data pipeline that streams pixel data out of the camera.

Since the entire image is captured into memory before processing begins, the algorithms

utilized can access any part of the image at random as there is no constrained sequential

access pattern. Therefore the typical process flow is to capture the complete image to some

form of memory and then turn that memory space over to a processing unit that accesses

pixel data as needed.

Offline processing is the method used by CPU-based image processing systems. In

these systems, an image is first captured from a camera device through some type of ‘frame

grabber.’ This device interfaces with the camera, captures a full image streaming out of the

camera, and transfers it to main memory. The image is then handed over to the program

running on the CPU, which can access the entire image at random.

The major advantage of the offline method is the ability to access at random any data

in the image. This allows for selective analysis of a limited portion of the image that would

take too much time if attempted on every pixel location in the image or iterative access to

pixel locations that are not known until runtime. The most significant drawback of offline

processing is the requirement to wait until the full image is captured before processing can

begin. This imposes additional latency equal to the full capture time of the image, which

may impact real-time decision making in a vision-guided vehicle.

34

4.5.1 Example: Image Normalization

To demonstrate the offline processing technique, an image normalization implemen-

tation will be considered. Normalization is a technique to more evenly distribute the pixel

values in the image across the possible range of pixel values. This is sometimes referred to

as contrast stretching or dynamic range expansion. The main goal of this algorithm is to

correct the affects of bad lighting in images.

In visual imagery, this is used to ‘brighten’ under-exposed images or ‘darken’ over-

exposed images, which allows the human eye to perceive more of the image content. This

prevents areas that would be ‘too dark’ or ‘too bright’ to be meaningful. In machine vision

algorithms such as those used on a mobile vehicle, the justification is slightly different.

Normalization of images in a video stream helps minimize lighting variation between images.

Maintaining consistency in the relative spectral distribution in video stream images aids

image analysis algorithms by reducing the amount of variation that needs to be tracked and

compensated. For example, image processing algorithms that utilize static thresholding,

such as the example described in Section 4.4.1, would require an input image stream that is

not adversely affected by lighting changes.

Figure 4.6: Original cave image. Left
portion is too dark to perceive content

Figure 4.7: Normalized cave image.
Left portion is now plainly visible

Shown in Figure 4.6 is an unmodified image taken inside a cave. As can clearly be

seen, the image is dark and some of the content, particularly the left side of the image, is not

35

discernible. The histogram of this image is shown in Figure 4.8, which also shows that the

image is skewed toward the darker side of the spectrum. This dark-shift of the image was

caused by the use of insufficient lighting equipment when the image was taken. While there

is no method to reconstruct image data that was not captured, the image can be normalized

to shift the content that is too dark to discern into a more visible spectrum.

Figure 4.8: Histogram of original im-
age. Pixel brightness is skewed and not
evenly spread across spectrum.

Figure 4.9: Histogram of normalized
image. Pixel brightness is evenly spread
across the spectrum.

Figure 4.7 shows the cave image with image normalization applied. As can been seen

in the image, the once ‘dark’ areas of the image, which contained imperceptible content, are

now plainly visible. Also, the histogram shown in Figure 4.9 shows that the image content

has been spread more evenly across the total grayscale spectrum. The histogram does show

gaps which are a result of the linear spreading algorithm. If desired, these can be eliminated

through the use of a slight blur filter.

The algorithm to implement image normalization can vary in complexity from simple

linear scaling to complex histogram distribution functions. In this example implementation,

a simple linear scaling algorithm will be considered. Prior to computation, the maximum

and minimum grayscale pixel values in the image need to be computed. These are utilized

in

N(x, y) = (I(x, y)−MIN)×
�

255

Max−Min

�
(4.3)

where N(x, y) refers to a pixel at location (x, y) in the normalized image, and I(x, y) refers

to a pixel at location (x, y) in the original image.

36

In this algorithm, all the pixel values are shifted down by the minimum value and

are then scaled up to fill the entire 255 value range in typical 8-bit grayscale images. For

example if the image only contains pixel values in the range [30−200], then every pixel value

is first shifted down by 30, which results in a range of [0− 170]. Then the image is scaled to

fill the available range by multiplying each pixel value by 255
170 , which results in a full range

of [0− 255].

The FPGA circuit implementation of the image normalization algorithm is shown in

Figure 4.10. In this implementation the image data that is streamed out of the camera is

stored in some form of memory. In addition to being streamed to memory, the image pixel

data is fed through inline pre-processing blocks to determine the maximum and minimum

values.

Once the entire image has been captured into the memory, the actual processing

begins. First the maximum and minimum values are pushed through a subtractor to compute

the (Max−Min) parameter, which is then pushed into a fixed numerator divider unit that

computes the 255
(Max−Min) parameter. The image is then read out of memory one pixel at

a time, and is fed through the arithmetic blocks. The pixel data first passes through the

subtractor which computes the (pixel − Min) parameter, which is then passed into the

multiplier unit which computes the final normalized value.

In review, this example was intended to demonstrate the offline processing technique.

In this technique, the entire image was captured to memory before processing began. The

normalization algorithm requires the entire image to be fully read out of the camera be-

fore beginning the normalization conversions, because it needs to find the maximum and

minimum pixel values in the image, which may possibly be the last pixel in the image. As

previously indicated, completely capturing the image to memory adds at a minimum latency

equal to the time required to completely clock the image out of the camera.

4.6 Cached Inline

Cached inline processing is the next step up in complexity from pure inline processing.

Computation is still performed in a pipeline, as in inline processing, but the functional units

can store prior data that has passed through the pipeline and use that data in implemented

37

!"#$%&
'()*+,-.

/,0-%12-$%

3(0)-.
4%1&5216"
7#18"9:;.<.:3;

4%1&5216".
=1#"%1

>

!1<
?)*@"%

!)*
?)*@"%

/,0-%12-$%
AB.C DE

F
B

D

D

'()*+,-.
!,6-)+6)"%

3(0)-.
G16,"

A'HH.I.A!1<.C !)*EE

3(0)-.
G16,".

AJ)<"6.C !)*E

3(0)-.
K$%#16)L"@.
J)<"6.G16,"

3(0)-.
!)*)#,#.
J)<"6.G16,"

3(0)-.
!1<)#,#
J)<"6.G16,"

?)*@"% ?)*@"%

>
'()*+,-.

/,0-%12-$%
AB.C DE

B

D

I
M()*+,-.
N)O)@"%
A'HH.I.BE

B

3(0)-.
G16,"

A!1<.C !)*E

Figure 4.10: Normalization circuit

38

algorithms. This implies that the pipeline utilizes memory elements to store and retrieve

data.

The offline technique also utilizes memory to store the incoming image data, but

what separates the cached inline approach from the offline approach is the timing of when

the actual computations begin. In offline processing, the entire image is slowly acquired

from the camera and computations begin after it has been completely stored in memory.

However, in cached inline processing the computations begin prior to the entire image being

read out of the camera. What this timing implies is that there is an additional delay or

time shift in the output of the system beyond the latency required to simply clock the data

straight through the pipeline.

The size of the memory is not defined and can be as small as a single pixel or as large

as the entire image. Situations most often encountered by the author involve storing a few

rows of the image. Algorithms that require the buffering of a few rows of the image often

involve kernel operations. These are 3 × 3 or 5 × 5 blocks of the original image that are

centered around a pixel of interest. When buffering multiple rows of the image to perform

kernel operations, latency is added in chunks. Each row buffered of the image will add the

latency to clock out each pixel of that row from the camera. The effect of this latency

simply delays the time between the capture of the image and the output of the image from

the system.

However much data is buffered, this approach still computes the algorithms prior to

the resulting image being completely stored in main memory, and is still a pre-processing

technique. The main drawback of this approach is memory utilization. FPGA systems have

limited block RAM available for internal memory storage systems, which implies that an

external memory may be required to satisfy the design goals of the intended application. To

demonstrate the use of the cached inline technique, an example will be explored.

4.6.1 Example: Bayer Pattern Demosaicing

Converting a Bayer pattern image into an RGB format is a common task when dealing

with a raw image sensor. There are many algorithms to choose from that have varying degrees

of arithmetic complexity and visual accuracy. For this example, the simplest algorithm will

39

be demonstrated which is Bilinear Interpolation. The general procedure for the bilinear

method is that for each missing channel at a given pixel, the average of that channel in the

neighboring pixels is used to fill in the missing values. This is demonstrated mathematically

in

G (i, j) =
1

4

�
G(i + m, j + n). (4.4)

(m,n)= {(-1,-1), (-1,1), (1,-1), (1,1)}

Equation 4.4 describes how to compute the green channel value at a red or blue pixel

in the Bayer image. The value is simply the average of all the neighboring green pixels. As

shown in Figure 4.11, the green channel value at location 1 would be the average of the green

pixels to the left, right, up and down from the red pixel at location 1. The blue value at

location 1 would be the average of the blue pixels on the corners of location 1.

Computation of the red and green channels at a blue pixel such as at location 3 are

similar to those for the red pixel. But the computation of the red and blue channels at a

green pixel such as at location 2 are different based on what row of the image the location

is in. At location 2, the red channel is the average of the two red pixels on the left and right

side of location 2, and the blue channel is the average of the blue pixels above and below

location 2. But at location 4, the red channel is the average of the two red pixels above and

below location 4, and the blue channel is the average of the two blue pixels on the left and

right of location 4. Therefore the implementation of the Bayer algorithm must distinguish

between GR rows and BG rows.

!
" #
$

Figure 4.11: Bayer grid

40

An FPGA system implementation of the Bayer demosaicing algorithm is shown in

Figure 4.12. In this implementation there are four main sections: the row buffers, the sliding

pixel window registers, the control logic, and the arithmetic logic. The objective of this

implementation is to create a 3 × 3 ‘sliding window’ around each pixel point in the image.

This is done because the computation of the missing channels at any given pixel location

requires the neighboring pixels that touch the side or corners of the given pixel. Each of

these individual units will be discussed.

The row buffers each store 1 full row of the source image, which, in this example,

consists of 640 pixels. Ignoring the other logic elements in the system implementation, the

row buffers as a whole are intended to store 3 complete rows of the image. The image data

is cascaded one pixel at a time from one row buffer to the next as each new pixel is clocked

out of the camera.

The sliding pixel window registers are what store the 3× 3 pixel grid. As each pixel

is shifted through the row buffers, the pixel data represented in the pixel registers slides

one pixel from left to right in the image. The window begins in the upper left corner of

the image and continues shifting right until it hits the right edge of the image and then

it advances down one row in the image, starting again at the left edge. The limitation of

this sliding window algorithm is that the results for the top and bottom row and the left

and right column are undefined as a 3 × 3 window at those locations runs off the available

image data. Therefore the resulting image is 2 pixels less in each dimension; a 640 × 480

image would become a 638× 478 image. If a 640× 480 result image size is required by the

application, a workaround to this limitation can be to simply increase the capture window

on the camera up by 2 pixels in each dimension or a 642× 482 image in this case.

The purpose of the control logic in this circuit is to keep track of the row and column

of the pixel of interest, which is the pixel located in the center (2, 2) location of the sliding

window registers in Figure 4.12. This is done so that the control logic can specify to the

arithmetic logic what operations are to be performed and what registers to draw values from

to compute the missing channel information. For example, if the center pixel is a red pixel

such as that at location 1 in Figure 4.11, then the control logic would instruct the arithmetic

41

!"#$%&''()$*
+,-./$
%01()

!"#$%&''()$2

!"#$%&''()$3 435*6 43526 43536

425*6 42526 42536

4*5*6 4*526 4*536

7"8/)"9
:";.<

%&''()=$0)($>?@$A.B(9=$#.C(

4D6$+,-./$E.B(9$!(;.=/()=$

F GG

%01()
HI0;(>?@B?+@

%01()$70I()0

%&''()=$0)($>?@$A.B(9=$#.C(

F GGF GG

3@,-./$
E.B(9$J09&(

+,-./$!5K5%$
J09&(=

>*+B?L+?$.8A&/$0CC() M.N.C()

O&B :";.<

>*+B?L+
HI0;($P.Q(

%01()$M(I"=0.< <")(

Figure 4.12: Bayer demosaicing logic circuit

42

logic to compute the green channel value from the average of the side pixels and the blue

channel value from the average of the corner pixels.

The arithmetic logic consists of two 10-bit, 4-input adders, and a configurable divisor

unit. The 4-input adders sum up either two or four values from the pixel registers depending

on what type of pixel is located in the center (2, 2) location of the sliding window registers in

Figure 4.12. The configurable divisor unit is really just a simple multiplexor that can divide

by 2 or divide by 4, which is all that is necessary for this example circuit. If the divisor is

required to divide by 2, it simply ‘shifts’ the 10-bit result down one bit, and if it is required

to divide by 4, it shifts the 10-bit result down by two bits.

In review, the purpose of this example was to demonstrate the cached inline image

processing technique. In this technique, a portion of the image is buffered for use in inline

processing. As shown in this example, three rows of the image were buffered internally, and

the image processing arithmetic computations begin prior to the entire image being read out

of the camera, which qualifies this example as a cached inline technique.

43

44

Chapter 5

Application: Vision-Guided Landing

5.1 Introduction

The problem addressed in this chapter is the autonomous landing of a fixed-wing

MAV, such as the one shown in Figure 3.2, on a visually recognizable target at an approxi-

mately known GPS location. Using GPS coordinate-based navigation, the MAV may over-

or undershoot the landing site due to inaccurate location measurement of the landing site

or due to inaccurate position estimation of the MAV while in flight [1]. To compensate for

this measurement error, an onboard vision system is added to the MAV, consisting of an

image sensor and the computational hardware required to support real-time machine vision

algorithms. Using an onboard vision system, the target landing site can be visually identified

during approach, allowing the MAV’s trajectory relative to the intended landing site to be

determined. By including this information in the local control loop, an onboard autopilot

can make the required trajectory corrections in real-time, enabling the MAV to land at the

intended location.

A key part of this work has been the design and development of a custom com-

puting solution specifically for small autonomous vehicles based on FPGAs. The FPGA

employed in this design combines – on the same chip – one or more processor cores run-

ning conventional software with hardware resources that can be configured to implement

application-specific circuitry. Much of the effort associated with the implementation of the

vision system described in this chapter involved building, essentially from the ground up, an

embedded software environment on an FPGA.

To demonstrate the capabilities of this vision guidance system in real-time adaptation

within a dynamic environment, two vision-guided landing test scenarios were constructed.

The first was to land the MAV at a static landing site location, visually distinguished by the

45

use of a red cloth target. This situation is a demonstration of the ability of the entire system,

both vision and control, to guide the flight path of a MAV using visually acquired informa-

tion. The second scenario was to land the MAV in the back of a moving vehicle. Success in

this scenario is essentially impossible using only GPS information, but it is achievable using

visually acquired information.

Sections 5.2 and 5.3 describe the computational platform and discuss how it is used

to realize the algorithms employed in this system. Section 5.4 reports field test results,

including outcomes from flight tests.

5.2 System Design

The autopilot board used in this vision-targeted landing application is the Kestrel

autopilot from Procerus Technologies. The Kestrel autopilot and the Helios vision platform

are the only two processing units onboard the MAV. The Helios board is responsible for

all image processing tasks, and the autopilot handles the flight control of the MAV. In

combination, these two boards constitute a two stage system for vision processing and vehicle

control.

As stated in Section 5.1, the MAV vision system must perform the following actions.

First, it must recognize the location of a red cloth target that identifies the landing site.

Second, it must track and filter the location of the target. And finally, it must transmit the

(x, y) image location of the target center to the autopilot via a serial link.

!"#$% !&#$% !'#$%
"()*+,-
./01(1
23456

&1)*+,-789
23456

")*+,-
0+:4;<
23456

=+>,-?@-
A?::6B,6C-
A?3D?:6:,>(EF-$-EGF

./0-A436;4
./0-,?-789 789-

HI;6>I?JC6;
A?::6B,6C-
A?3D?:6:,>

!E#$%

H;4BK+:5-L
!+J,6;+:5

#$M<%-
=?B4,+?:-?@-
=4:C+:5-8+,6

Figure 5.1: VGL 4 step process

46

The vision system processes each frame of video from the onboard camera to identify

the target using color-based segmentation followed by the execution of a connected compo-

nents algorithm. In this implementation, this process was broken down into four separate

steps, which are shown in Figure 5.1. First, the 640× 480 RGB 565 images captured by the

digital camera were converted to the Hue-Saturation-Value (HSV) color space. Second, color

segmentation was performed on each pixel using static HSV thresholds producing a binary

image with a 1 representing each red pixel and a 0 representing each non-red pixel. Third,

a connected components algorithm was run on the binary image, which also computed the

center of mass of each red blob found. The resulting list of blobs were then tracked to ensure

consistency between successive frames.

With an FPGA-centered design, a Configurable System on a Chip (CSoC) was avail-

able to implement these four image processing tasks. Before actual implementation on the

Helios vision system was begun, the four tasks were analyzed to see which of them could take

advantage of reconfigurable hardware on the FPGA. The guiding philosophy in this system

design was to choose a software implementation of the task if it could run in real-time with

available CPU processing resources, and otherwise to employ custom FPGA hardware to

accelerate the computation so that it could run in real-time. Real-time operation is critical

for this application, as is any application involving the control of an aircraft in flight. For

the information about the location of the landing site to be useful in correcting the flight

path of the MAV, it must be delayed as little as possible.

The following subsections analyze each of the processing steps in terms of whether

they are best implemented in software or in reconfigurable hardware.

47

5.2.1 Color Space Conversion

Each pixel in the image was converted from the RGB color space to the HSV color

space according to

H =






undefined, if Max = Min

60◦ × G−B
Max−Min + 0◦, if Max = R

and G ≥ B

60◦ × G−B
Max−Min + 360◦, if Max = R

and G < B

60◦ × B−R
Max−Min + 120◦, if Max = G

60◦ × R−G
Max−Min + 240◦, if Max = B

, (5.1)

S =






0, if Max = 0

1− Min
Max , otherwise

, (5.2)

and

V = Max . (5.3)

This calculation requires a total of 12 operations per pixel: 5 compares, 1 add, 3 subtracts,

1 multiply, and 2 divides. If these calculations were to be performed in software on a video

stream of 640× 480 images at 30 Hz, then 110 million calculations would be required each

second. Each of these calculations will at best compile into a minimum of three machine

instructions per pixel on a conventional CPU.

This constitutes a significant volume of machine instructions for a single task, since the

embedded PowerPC processor can execute at most 400 million instructions per second. Since

a software implementation of color space conversion is infeasible, custom FPGA hardware

must be used.

Figure 5.2 shows the pipelined implementation of the RGB to HSV color conversion

core. In this implementation, the HSV color space conversion was divided into five steps

in FPGA hardware. Each step is implemented in a single pipeline stage, so the processing

48

!"#$%

&'()
*+,

-")

-./

0
-./

12
3

4

-./
-")

456
7"8$9"8.:/

;<35=5>7!5?:9%

78"@%54 78"@%5= 78"@%5A 78"@%5B

4&CD.85
;<3E&E
FG"@%&B'5)5BH'

?:#:9
?"G%9"

-")I-./

J./K%9
&'()
*+,1

=C./L$85
7$D89"M8:9
N256 3O

2

3

-")

-./

*+,

-
$
)

P 4555555P
N-")56 -./O

P 4555P
-")

12

0
=C./L$85

0
=C./L$85

-$#8.L#.%9

-./
-")

Q$G%9"8:9
N-")56 -./O

1
=C./L$85

7$D89"M8:9
N256 3O

-")
456

1 >$%

-
$
)

1
=C./L$85

7$D89"M8:9
N256 3O

2
3 >$%

Q$G%9"8:9

=C./L$85
-$#8.L#.%9

=C./L$8
2KK%9-$)

'

A
&
'

4
H
'

=
B
'

-")I5
-./I5
;I<I3

;I<I3

Figure 5.2: RGB to HSV color conversion core

49

adds just five clock cycles of latency after the pixel is read out of the camera. The first stage

captures the incoming pixel data in a register. The second stage determines which of the

three R, G, and B channels are the maximum and minimum values. The third stage uses

two look-up-tables to perform division and determines the numerator of the Hue value. The

fourth stage multiplies the 1
x values with their numerators using DSP slices on the FPGA.

The fifth and final stage computes the Saturation value by subtracting the Min
Max value from

1 as well as shifting the Hue value back up into the [0− 360] degree range.

This hardware implementation is substantially faster than any possible software ver-

sion as processing a single image would take a minimum of 330 million sequential instructions

in software. This implementation uses 103 slices of the FPGA hardware, or about 1.2% of

the reconfigurable logic available in the FPGA.

5.2.2 Color Segmentation

Once each pixel has been converted to the HSV color space, it must be compared to

HSV thresholds according to

image(y, x) =






1, if HMin ≤ H(x, y) ≤ HMax

and SMin ≤ S(x, y) ≤ SMax

andVMin ≤ V (x, y) ≤ VMax

0, otherwise

. (5.4)

HMin, HMax, etc. are the thresholds that define a region in the HSV color space that identifies

the specific color of the landing site marker.

The HSV thresholds consist of max and min values for each of the hue, saturation,

and intensity channels. Pixels must lie between these thresholds to be considered a possible

match for the target. These threshold values were chosen to be Hue: [330◦−10◦], Saturation:

[40−100], and Value: [100−255] after analyzing images of the target acquired from the MAV

while in flight. If the incoming pixel is within the thresholds, then the color segmentation

algorithm labels that pixel as a 1 implying that it is a ‘red’ pixel. If the pixel values are not

within the thresholds, the pixel is labeled with a 0. Segmenting a single pixel in HSV color

50

space requires seven comparison operations. For a 640× 480 video stream at 30 Hz, this

would require about 65 million calculations per second, or a minimum of about 195 million

CPU instructions.

Based on this analysis, color segmentation could potentially be performed in software,

but it would require about half of the CPU resources available. In consideration of the

processing demands of other required software tasks, the color segmentation algorithm was

implemented in hardware.

The FPGA implementation of the color segmentation task is a relatively simple core

that compares an incoming pixel to the HSV thresholds. The color segmentation hardware

core consumes just 60 FPGA slices, or less than 1% of the FPGA. Due to the simplicity of the

core, the comparison operations were implemented in only a single pipeline stage. In other

words, an FPGA core that can threshold HSV pixel values was added at the cost of only a

single cycle of delay to the incoming pixel values. In effect, this reduced the computation

time from a minimum of 195 million CPU clock cycles (for a software implementation) to

zero.

5.2.3 Connected Components

To identify the landing site marker, the 1’s in the binary image produced in the color

segmentation task must be grouped together as a connected component ‘blob.’ Each blob

found in the image represented a patch of red pixels in the original image captured from the

camera. The only information needed from each blob is the center of mass and the number of

red pixels in the blob. To accomplish this, a connected components algorithm was modified

to include the center of mass calculations as each red pixel of the blobs was found in the

image.

The actual number of computations for a connected component algorithm varies

widely depending on the number of red pixels in the image. Therefore, the decision to

implement the algorithm in software or FPGA hardware was based on the length of time re-

quired to compute the components in a worst-case situation. If the software implementation

of the connected components algorithm required longer than 33 ms to compute the com-

ponents in a single 640× 480 image, then it would be classified as unsuitable for real-time

51

operation (given a 30 Hz video rate). Although an absolute worst-case scenario was not con-

structed, hypothetical cases were able to be constructed in which the connected components

algorithm was unable to complete in real-time.

To enable real-time computation of connected components, the algorithm was broken

into two parts, one of which would be implemented in FPGA hardware and the other in

software on the PowerPC processor. The first part of the algorithm, streak finding, requires

the vast majority of the computations for the algorithm. This part of the algorithm scans

each row of the binary input image one pixel at a time. If a red pixel is found (pixel

is a binary 1), then the streak finding algorithm records the starting (x, y) pixel location

and then counts the number of consecutive red pixels in the current row. When the end

of the row is reached, or a non-red pixel is found (pixel is a binary 0), the streak finder

stops counting and adds a streak to a list. Each streak in this list is represented by three

values: (y, xstart, xend). This part of the connected components algorithm was well suited

for implementation in FPGA hardware.

A streak finding core was added to the FPGA, requiring only 70 slices, less than 1%

of the FPGA’s reconfigurable resources. By implementing this in custom hardware, CPU

computations that typically required around 18 ms (55% of the available 33 ms) per image

in software now can be completely overlapped with other processing – effectively this part

of the connected components algorithm requires zero time.

The second part of the connected components algorithm is streak grouping, which is

computed in software. This part, mainly list processing, takes as input the list of streaks

computed by the FPGA streak finding hardware core. It then groups the streaks together

into blobs and computes the center of mass of each blob. This process usually runs in less

than 1 ms and peaks at around 5 ms in near worst case situations, so it is suitable for

real-time operation.

5.2.4 Tracking and Filtering

This portion of the vision system determined if any of the recognized red blobs could

be classified as the intended landing site. The goal of this system is to filter out small or

sporadic red particles in the image and provide a higher level of confidence that an identified

52

!"#$%&'()*+%,-(

"./*0"1
"0.2*((.0

"./*0"1
"0.2*((.0

&34$5
5678

5*+.0'

!"#$%&'()*+%,-(

1.8)0.9

1.8)0.9
:.;72

16+*06%
&*0769%

<8)*0=62*

,-(
&96>*

<8)*0=62*

,-(
56()*0
<8)*0=62*

!"#$%16+*06%5.?-9*

"7@*9%36)6 !06+*%
&'82%1.0*

A&B%1.9.0
1.8>*0(7.8

1.0*

A&B%1.9.0
&*;+*8)*0

1.0*

1.88*2)*?%
1.+C.8*8)(

&)0*6D%
!78?*0%1.0*

B#:%16+*06%1.0*

Figure 5.3: FPGA image processing core

red blob is indeed the target landing site. In this filter, the blobs are first sorted in order

of size, and then the centers of mass of the largest eight blobs are tracked between frames.

If the center of a blob moves a distance greater than a maximum threshold, then that blob

is ruled out as a possible landing site. Once inconsistent blobs are filtered out, the largest

blob is classified as the intended landing site if its size exceeds a given threshold. This

processing step requires relatively few calculations and the software implementation easily

runs in real-time. Therefore, no FPGA hardware was required for tracking or filtering.

5.3 FPGA System Architecture

The FPGA image processing core implemented for this vision system is depicted in

Figure 5.3. In this architecture, the pixel data is received from the digital camera one pixel

at a time. Each pixel is then directed into the pipelined RGB to HSV color conversion

core. Five clock cycles later, the pixel is output from the HSV conversion core as a Hue-

Saturation-Value pixel. That HSV pixel is then fed into the color segmentation core where

53

HSV thresholds are applied. If the pixel is within the range of colors being searched for,

the color segmentation core outputs a binary 1, otherwise it outputs a 0. That result is

then fed into the connected components streak finder core. The streak-finding core finds

the continuous horizontal streaks of red pixels in the image and outputs three values for

each streak found: the row of the streak in the image (y), the starting column of the streak

(xstart), and the ending column of the streak (xend). Each of the streak values are then

transferred to the main system memory over the system bus on the FPGA.

5.4 Results

An initial vision-assisted landing system used an off-board computation approach. An

NTSC camera was mounted onboard a MAV which transmitted live video to a ground station

where a laptop computer would perform any image processing tasks required. This configu-

ration was simple to implement due to the use of off-the-shelf hardware. Using an off-board

computation approach, on average, only three or four flight path adjustment commands

could be sent from the ground station to the MAV during descent due to the transmission

delay between the aircraft and the ground station. Experimentally, this limitation prevented

achievement of a successful landing. The transmission delay between the MAV and the

ground station is what dictated the need for an onboard vision system.

The test platform for onboard vision processing was a fixed-wing MAV (Figure 3.2)

with dimensions 60” x 23” x 4.75” and a weight of 5 pounds. The MAV used a Kestrel

autopilot (version 2.2) from Procerus Technologies to implement GPS guidance and vehicle

control as well as the Helios vision system for image processing.

Test flights took the following form. First, the MAV was hand launched, after which

it would climb to a specified altitude. The MAV would then fly to a specified GPS waypoint

about 300 meters away from the landing site. Once this waypoint was reached the MAV

would begin an autonomous GPS guidance controlled descent toward a roughly estimated

GPS position of the landing site. When the visually identifiable marker for the landing

site was in the field of view of the fixed, forward-looking camera, the Helios vision system

would be enabled. The Helios would then begin transmitting the (x, y) image location of the

target landing site to the autopilot. The autopilot then switched over from GPS guidance to

54

vision assisted control algorithms. The vision-based control algorithms on the autopilot then

adjusted the pitch and heading of the MAV to correct the flight path toward the targeted

landing site.

Flight tests were conducted in two scenarios. In the first, the MAV was directed to

land at a static location specified by a red cloth target. The second scenario was to land

the MAV in the back of a moving pickup truck. The results of each of these will now be

presented.

5.4.1 Static Landing Site

This scenario was intended to demonstrate the capability of correcting the flight path

of a MAV using visual information. To accomplish this, a red cloth landing site marker

was placed at one location, and the MAV autopilot was then instructed to perform a GPS-

based autonomous landing maneuver to a location 25 m away from the actual location of

the target. By giving the autopilot a GPS location that was 25 m away from the actual

target situations were produced where the MAV had to perform significant flight trajectory

corrections to reach the target landing site.

Figures 5.4 through 5.9, show images captured from the Helios board during an

automated landing approach. Both the RGB and color segmented images are shown. These

images are a representative sample of what the Helios board ‘sees’ during a landing approach.

In this landing trial, the target landing site was in an empty field, which was chosen for its

level terrain and lack of obstacles. While the red cloth target is barely distinguishable in

the RGB images, it is clearly identified using the HSV color segmentation process. While

color segmentation may appear to be a simple process, the segmented images in Figures 5.4

through 5.9 clearly show that it is successful at locating the target landing site.

Figure 5.10 is a GPS plot of the flight path of the MAV while it is approaching the

target landing site, where the two axis are N/S and E/W cardinal directions and are both

delineated in meters. In the plot of Figure 5.10, it can be seen that the GPS landing target

location was set at (50, 0), while the static red cloth target was placed at (25, 0). The MAV

began its approach from about 350 m north and 100 m west of the intended landing site.

Once the MAV reached about 50 m north of the landing site, the autopilot began using vision

55

Figure 5.4: Unprocessed RGB image
captured during flight (≈100 m to tar-
get)

Figure 5.5: Color segmented image
captured during flight (≈100 m to tar-
get)

Figure 5.6: Unprocessed RGB image
captured during flight (≈50 m to target)

Figure 5.7: Color segmented image
captured during flight (≈50 m to target)

Figure 5.8: Unprocessed RGB image
captured during flight (≈15 m to target)

Figure 5.9: Color segmented image
captured during flight (≈15 m to target)

56

assisted control. It is at this point that the MAV breaks from its original flight path and

implements a new flight path that enabled the MAV to successfully land on the intended

landing site. The purpose of Figure 5.10 is to show the trajectory change that occurred

when the vision system was enabled, which provides evidence that the vision system was

responsible for the successful landing and was not simply an idle passenger on a successful

GPS-guided landing.

−250 −200 −150 −100 −50 0 50 100 150

50

100

150

200

250

300

350

Position

Figure 5.10: Flight data plot of MAV flight path GPS location for static landing site scenario.
Target landing site is at location (25, 0).

Figure 5.11 shows a plot of the image coordinates where the target landing site was

identified in the incoming image stream. This figure identifies the initial location of the

target landing site in the upper right corner of the image. The autopilot then adjusts to this

information and steers the MAV to the right. After the course correction the target landing

site bounces around the center and then slightly off to the right of center as the autopilot

yaws into the wind to constantly adjust the desired flight path. This course correction is

also noted in Figure 5.10.

57

−300 −200 −100 0 100 200 300

−200

−150

−100

−50

0

50

100

150

200

Target Pixel Coordinates

Initial Pixel Coordinate

Figure 5.11: Flight data plot of identified target landing site in incoming video images

Images captured from the ground from this successful test flight can be found in

Figures 5.12 and 5.13. As can be seen in Figure 5.12 the red cloth target was propped up

using a short pole so that the red surface was more orthogonal to the approaching flight

path of the UAV, which provided an easier target to visually locate. The MAV, which is

highlighted in the yellow oval, can be seen in flight approaching the target and is traveling at

about 30 meters per second. Figure 5.13 was captured immediately before the MAV struck

the cloth target. After impact the cloth enveloped the plane as it decelerated while sustaining

no damage. This result was consistently and successfully repeated through multiple trials.

Therefore, the first flight test scenario, which was to land the MAV at a static landing

location, can be stated as achieved.

5.4.2 Moving Landing Site

The second flight test scenario was to land the MAV in the back of a moving vehicle.

In the first scenario, the main challenge being overcome by using vision in the control loop

was inaccurate GPS position information. This situation introduces a moving target that

58

Figure 5.12: MAV approaching target landing site

Figure 5.13: MAV landing at target landing site

59

is not at any fixed GPS location. The challenge here is to locate a moving target at an

approximate GPS location and then to dynamically adapt the MAV flight trajectory to the

target’s movement.

To land the MAV in the back of the vehicle, the bed of a pickup truck was lined with

with the same red cloth target used in the static location scenario. The MAV autopilot was

configured to approach the estimated location of the truck using GPS guidance. During the

gradual descent of the MAV, the truck began driving forward at a speed between 10 and 15

mph, as shown in Figure 5.14. During the decent of the aircraft toward the moving truck,

the operator enabled the vision system when it was about 100 meters behind the moving

truck.

The consequence of this forward movement was that it slowed down the approach

time and increased the amount of time available for trajectory adjustments. Consequently,

it provided a different challenge for the vision and control system. In the static landing

example, the challenge being overcome was the need for quick trajectory adjustments within

the one or two seconds before impact. However, in the moving truck example, the landing

process was slow and drawn out over about 10 seconds. In this situation, the challenge

for the vision system was to consistently track the landing location over the extended time

period and allow the autopilot to execute a slow and controlled decent.

In this flight test, the onboard vision system located the red target marker and was

able to track it over 10 seconds until the MAV was able to successfully land in the back of

the truck. Figure 5.15 shows the MAV approaching the truck approximately 1 second prior

to successful landing. The goal of the second scenario was to land the MAV on a moving

target. As can be seen in the figures, this goal was successfully achieved by landing the plane

in the back of a moving pickup truck. With the success of both flight test scenarios, the

landing of a MAV at a static and moving landing location, the original objectives for the

vision guided landing application have been successfully completed.

60

Figure 5.14: MAV approaching moving vehicle landing site

Figure 5.15: MAV landing on moving vehicle

61

62

Chapter 6

Application: Feature Tracking

6.1 Introduction

The intent of this second application was to design a system that could produce mean-

ingful information that could be used as the foundation for a variety of other algorithms. To

determine what information to produce, a set of machine vision algorithms was examined

that are potentially useful in the control of a small autonomous vehicle. In this examina-

tion, common image processing steps were searched for that require significant computation.

Specifically looked for were computational components that typically prevent the algorithms

from being implemented on small autonomous vehicles, where processing options are limited

by the size, weight, and power constraints of the vehicle. Two related image processing

steps were identified in many machine vision algorithms. They were feature detection and

correlation.

Image feature identification or detection can mainly be described as the process of

finding points in an image that can be located in the next image. This step is required due

to the realistic limitation that not every pixel in an image can be correlated frame-to-frame.

This is often caused by homogeneous regions in the image where a particular pixel is not

easily distinguishable from neighboring pixels. The similarity of a pixel with its neighbors

reduces the accuracy of correlation methods since the pixel may be easily confused with a

neighboring pixel.

A feature correlation algorithm provides the ability to follow identified points through

a sequence of images. This algorithm provides a rough estimation of the motion of objects in

the image or the motion of the camera relative to the environment. However, the motion of

the correlated points must be interpreted in some way to infer desired motion information.

63

It is important to note that the vision system is not a vehicle control system. The

vision system produces information about the environment and does not determine how to

control the vehicle to react to that environment. The implementation of control algorithms

is left to a control system that uses the information produced by the vision system to make

control decisions. Therefore, the design of a vision system must focus specifically on the

implementation of vision algorithms and other image processing techniques. This effectively

classifies a vision system as a sub-component of a larger control system. The application

described in this chapter focuses only on an image feature tracking sub-system that can be

utilized as part of a larger control system. The evaluation of this feature tracking vision

system implementation will therefore not be based on successful vehicle control, but rather

it will be judged based on its ability to autonomously identify and correlate image features

frame-to-frame.

Section 6.2 describes the algorithms chosen to be implemented in this vision system

application. The details of the vision system architecture are presented in Section 6.3.

Section 6.4 reports on the results achieved by this implementation.

6.2 System Design

Once it had been decided to implement feature detection and correlation algorithms,

a vision system then had to be selected that could perform these tasks. While the VGL

application described in Chapter 5 used a Xilinx FX20 FPGA, the larger FX60 version was

required for this application due to the increased need for FGPA configurable logic. The

specific FPGA embedded system that was used for this system was the Helios robotic vision

platform (Figure 3.1) developed at Brigham Young University [14]. The central component

of the Helios platform is a Xilinx Virtex-4 FX series FPGA with dual PowerPC embedded

processors that run at up to 450 MHz. This specific FPGA is ideal for embedded image

processing as it provides both an embedded CPU for standard C code execution and recon-

figurable FPGA fabric for hardware accelerated algorithm implementation. As a computing

platform, it serves as a rich development environment with a small physical footprint that

is well suited for mobile image processing applications.

64

To detect feature points in the image suitable for correlation, a Harris feature detec-

tor [17] is used, which is defined by

C(G) = det(G) + k × trace
2(G) (6.1)

and

G =




�

I
2
x

�
IxIy

�
IxIy

�
I

2
y



 . (6.2)

The Ix and Iy values in Equation 6.2 are the gradients in the x and y directions in the image.

This method was chosen for its reasonable computational requirements and ease of FPGA

implementation. Figure 6.1 provides an example of x and y gradients in an image. The

x gradient is the first derivative of the image taken in the horizontal direction, and the y

gradient is the first derivative taken in the vertical direction. For example the x gradient at

the image location I(320, 240) would be I(321, 240)− I(319, 240).

Figure 6.1: Example of x and y image gradients

Figure 6.1 is a picture of a white piece of paper with crisscrossing black lines on it.

The highlighted section shows the inner bottom left corner of an intersection of a vertical and

horizontal line. As can be seen in the figure, the transition from black to white is gradual and

not immediate, which implies that there is a non-trivial horizontal and vertical derivative.

The green window in Figure 6.1 represents a sample 3×3 window that would be passed into

65

the Harris feature equations. The 3× 3 window fades from black to white in both the right

to left and top to bottom directions, which will produce a strong Harris feature value.

Once the image feature points have been identified, they need to be located in other

frames. To accomplish this, a template matching correlation algorithm was implemented,

which is the foundation of the most basic tracking methods available. In this work, a

template window (8× 8 pixels in this implementation) around each feature is compared to

each possible location within a specified search window. The location in the searched image

that best matches the original template is selected as the correlated location.

To provide increased tolerance to image noise, template matching was performed on

a rank transformed image rather than on the original grayscale image. To compute the rank

transform of an image, each pixel is ranked, according to brightness, against neighboring

pixels within a given radius. For example, if the center pixel in a 3 × 3 window was the

brightest out of all the pixels in the window, then that center pixel would be given a rank of

8 indicating that it was brighter than the other eight neighboring pixels. The rank transform

produces a non-parametric and somewhat rotation invariant image format that increases the

accuracy of template matching comparisons. The benefits of template matching using a rank

transformed image can be found in [18]. An FPGA core to perform the rank transform was

added to the camera core as shown in Figure 6.2.

6.3 System Architecture

With an FPGA platform that contained both reconfigurable FPGA logic and dual em-

bedded PowerPC processors, various options were available to implement these algorithms.

The guiding intent was to utilize the system in the best way possible to increase the per-

formance of the required algorithms. Therefore, it was decided to utilize the reconfigurable

FPGA fabric to perform as much of the computation as possible. The system was designed

with two main components. They were: an FPGA feature detection core and an FPGA

template matching correlation core. The architecture of each of these components will now

be described.

66

!"#$%&'()*+%,-(

./0)1/2

./0)1/2
3/456

78115(%
!*8)-1*
./1*

.8+*18%
&*1582%

90)*1:86*

,-(
&28;*

90)*1:86*

,-(
<8()*1
90)*1:86*

!*8)-1*%9+84*

!*8)-1*%35()

!"#$%.8+*18%</=-2*

!18+*%
&'06%./1*

>80?
@180(:/1+

./1*

>80?*=%A%#18'(682*%9+84*

"5B*2(CDE%B%DFE
./2/1
.8+*18

@186?*1%.8+*18%./1*

Figure 6.2: FPGA camera core

6.3.1 Harris Feature Detector Core

The Harris feature detector core was designed as a single component of a larger camera

core as depicted in Figure 6.2. The camera core serves as the FPGA interface for an external

digital camera. This core, shown in Figure 6.3, implements all the required functionality

to perform the Harris feature detector algorithm on a grayscale image. The camera core

consists of the logic required to communicate with both the camera and the FPGA system

bus and other various image processing cores, among which the Harris feature core is one

component.

The camera used in this implementation was a VGA image sensor, which was con-

figured to output 8-bit grayscale pixel values. These pixel data values are then fed through

a series of image processing cores. The Harris feature core calculates a feature value, as

described in [17], for each pixel in an image. These feature values are then stored in main

memory using two different methods. Each feature image can be stored in main memory as

an ‘image’ (640 × 480 at 2 bytes per pixel), or they can be formed into a ‘list’ that stores

the (x, y) location of the strong feature points in the image. An example of a Harris feature

image can be found in Figure 6.5 along with the source image in Figure 6.4. The ‘image’ of

67

!"#$%

&'()*+(,-. /0
1/0

2

2
2

1/0

3 1/0 3 1)0

4%(5-.6 4%(5-.0 4%(5-.7 4%(5-.8 4%(5-.9 4%(5-.: 4%(5-.!

;(''$*.<-(%='-.

>-%-+%?'.@?'-

7/7

A=BB-'

&'()*+(,-.

CD(5-

E$/FG(,$1

7/7

A=BB-'

1.H

1/

1.H

1/

1/

1)

/

3

/0

1/I1)

1)0

2

2

2

2

2

2

2

2

/0
1/I1)

1)0

3

2

1/ 3 1)

1/0 2.1)0

J1/ 2.1)K0

"

/0

1-%

%'(+-

"
;(''$*.

<-(%='-.

L(,=-

Figure 6.3: Harris feature detector core

68

the features is useful for user visualization, while the ‘list’ is more useful in feature dependent

software algorithms.

Figure 6.4: Harris source image Figure 6.5: Harris feature image

An important characteristic of the data flow in this application is that the image is

transferred from the camera one pixel at a time, which allows for easy implementation of

pipelined image processing algorithms on the FPGA. This was utilized by implementing the

Harris feature equations (6.1) and (6.2) with a 9-stage pipeline architecture using a 3 × 3

kernel window for both the gradient and matrix calculations. This inline implementation

allows the Harris feature values to be computed as the image data is being streamed out

of the camera. The image properties that were used were a 640 × 480 image size, a frame

rate of 30 Hz, and a camera data bus speed of 27 MHz. At these rates, a single image is

transferred out of the camera in 11 ms. The pipelined implementation adds only 9 clock

cycles of latency to this time, which effectively allows the Harris feature values for an entire

image to be instantly available after an image has finished being read out of the camera. For

comparison, an OpenCV software implementation of the Harris feature detection algorithm

requires 14 ms, which does not include image capture time, for a similarly sized image on a

2.1 GHz Core Duo desktop computer.

There are some significant differences between this FPGA hardware implementation

and an OpenCV software implementation. Due to the resources required to implement

69

floating point calculations in FPGA hardware, this implementation uses only fixed point

arithmetic in contrast to OpenCV’s double precision software implementation. The resulting

feature values of this implementation are also constrained to 16-bit integer quantities for each

pixel, which lacks the sub-pixel accuracy of OpenCV. The limited output range of 16-bits is

due to the use of bit-width minimization techniques where an FPGA bit-vector, representing

a numeric quantity, is reduced in size and precision in an effort to conserve FPGA hardware

resources and allow a faster processing time. Consequently, this implementation cannot be

considered to be perfectly comparable to an OpenCV implementation, but it does run in

real-time.

!"#$%&'()*+%,-(

./0)1/2
3/456

708/-09

,-(
&2:;*

70)*1<:6*

,-(
=:()*1
70)*1<:6*

">

>?)*10:2
&@$=

!*:)-1*%35()

!"#$%./11*2:)/1 =/9-2*

7+:4*%A:):
A5(B:)6C*1

&@$=
./0)1/22*1

708/-09
"5?*2

D:092*1
">

">

E1:6F*1%./11*2:)/1
./1*Figure 6.6: FPGA correlation core

6.3.2 Feature Correlation Core

The feature correlation core, as shown in Figure 6.6, was designed as a standalone

core that would implement the template correlation computations of the vision system. This

core does not automatically correlate the features that are detected in the Harris detector

core. While this is physically possible, allowing the software routines running on the embed-

70

ded PowerPC to filter and select the features for correlation provides greater flexibility for

different applications. The features chosen for correlation are passed to the correlation core

as a list of points, which are then correlated, and returned to the software as a list. This

list contains the original (x, y) feature location, the correlated location (x, y), and an error

value that signifies the difference between the correlated location to the original location.

The correlation core seeks to correlate image features through the use of template

matching. The pixel data used in template matching correlation is received directly from

the camera core as the pixels are received from the camera. The pixels are received by the

inbound pixel handler, which coordinates the writing of images through the SRAM controller

to the external SRAM on the Helios platform, which serves as a high-speed image cache.

Once an image has been completely stored in the SRAM, features can then be correlated in

that image.

The dispatcher is responsible for transferring the template area and then the search

area out of the SRAM and into a processing element, which actually performs the template

comparisons. When a processing element has finished the correlation comparisons, it outputs

the (x, y) correlated location with the lowest Sum of Squared Differences (SSD) error. That

(x, y) location along with the SSD template error and the original pixel location are then

transferred back over the system bus to main memory.

Each of the major components in the correlation core will now be described.

Inbound Pixel Handler

As the pixels are received from the camera, the inbound pixel handler, shown in

Figure 6.8, writes them into an SRAM, which serves as a local image cache. The SRAM has

a 20-bit address space and a word size of 36-bits, which implies that the SRAM is not byte

addressable. The upper 4 bits of the 36-bit word are not used in this implementation giving

the SRAM a usable capacity of 4 MB. In this application that 4 MB space is divided into

eight �500 KB segments, each of which is large enough to contain one 640 × 480 image at

one byte per pixel. The inbound pixel handler provides the functionality to keep track of the

memory address of the current image that is being written, along with the rotated addresses

of the previously acquired images.

71

To simplify the access of image data in the SRAM, the 20-bit address space was

partitioned into three sections, as shown in Figure 6.7. The lower 8 bits are used to specify

the x coordinate, while the middle 9 bits are the y coordinate. The upper 3 bits are used as

a frame select among the eight possible images that can be stored in the SRAM. Through

the use of this addressing scheme, individual pixels can be read out of the SRAM by simply

concatenating the y and x coordinates into an address.

3 2 1 9 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x coordinateFrame Select y coordinate

Figure 6.7: Partitioned SRAM address space

SRAM Controller

The SRAM controller or arbiter core, shown in Figure 6.8, serves as the interface

to the external, single-ported SRAM on the Helios platform. In this application, a single

read port and a single write port were required. To arbitrate between simultaneous requests

on the two internal ports, a simple protocol was implemented to select the least recently

serviced port. The SRAM has a 3-cycle operational latency with zero required wait states

between requests. The 3-cycle request period is matched with a 3-stage pipeline in the

SRAM controller. The pipeline operation allows a single read or write request to be issued

on each cycle, which allows the SRAM to be utilized at its maximum available bandwidth.

This is a significant achievement since the SRAM memory bandwidth is the bottleneck in

this correlation core.

It is important to note that the SRAM is a 36-bit word-sized memory device. This

implies that each read and write operation is limited to four bytes; the upper four data bits

are simply ignored.

72

!"#$%&

#'()*+,

#'()*+-

#'()*+.

#$
%
&
+%
/0
1'
*/

234*

#'(/'
56

5*784('*

56
#*(/9:

#'(/'
;<=01'

>*('?/*+41@' !"

AA, AA- AA.

!/B9*@@1C)+"4*7*C'

D=01'+
27()*

>2>E

.-=01'@
F<G+D=01'+H(4?*@

81IJH(413
KB/3JH(413

6L+
MB?C'*/
F<+@'*8G

N/(7*J@*4

O
I

'*784('*
N/(7*J@*4

@*(/9:
N/(7*J@*4

&?I

K/1'*

/*
(3

P$Q

#$
%
&
+%
/0
1'
*/

6L+
MB?C'*/

R1@8('9:*/
5

#

= = = =

S S S S

T T T T

T T T T

MB//*4('B/ MB/*

81IJH(413

/*(3J*C(04*

F<+@'*8G
N/(7*J@*4

2C0B?C3+!1I*4+U(C34*/

T T T T

(99 (99 (99(99

&1C

&1C17?7+##R+*//B/+
FIVOG+PB9('1BC

Figure 6.8: Correlator core detail

73

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

-32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 6.9: Template matching search area

Dispatcher

The main responsibility of the dispatcher is to read out the template window area

from one image in the SRAM and the search window area from another image in the SRAM

and transfer them to a processing element as shown in Figure 6.8. The features that have

been selected to be correlated are stored in the dispatcher in an internal list. Each feature

in the list consists of an (x, y) feature location, and an (x, y) search location, using 16-bit

unsigned numbers. Once the dispatcher has received a list of features to correlate from the

software algorithms running on the PowerPC, it is given a command to start processing

those feature points. The processing elements are iterative computation engines and require

a set amount of time to complete their computations. Consequently, the dispatcher cannot

continuously dispatch data to one of them as it has to wait for one of the elements to complete

and become idle. Once, the dispatcher has started execution, it will continue to dispatch

features to the processing elements until all features have been correlated.

The (x, y) feature location is used to read out an 8× 8 template window from the

SRAM into an idle processing element. An example of the template window is depicted as

the center box in Figure 6.9. As can be seen from the figure, the template window has a

non-symmetric radius which extends 4 pixels to the left and down from the center feature

location (yellow square) and 3 pixels up and to the right. A symmetric window radius such

as 7× 7 or 9× 9 is preferable for template matching algorithms. But, as will be shown

74

later, an 8× 8 window aligns better with the maximum read port widths of FPGA memory

elements.

The (x, y) feature location defines the center of the template window that is stored in

the SRAM cache. The window is read out of the SRAM row-by-row, starting with the top

row. As the window width is larger than the SRAM read width, multiple memory reads are

required for each row. If the x coordinate of the feature lies on a 4-byte memory boundary

(meaning the last 2 bits of x are zeros), then the fastest way to read out the template area

from the SRAM would be to read out the 4-byte word that is one address before the feature

location and then read out the 4-byte word starting at the feature location. In this situation,

a template area could be read out of the SRAM in 16 memory read operations. But if the x

location is not on a 4-byte aligned boundary, then the template window area will spill over

3 sequential 4-byte words in the SRAM requiring at a minimum 24 memory reads from the

SRAM to read out the template window. This is the first memory transfer challenge in the

system.

There are two possible solutions to overcome this. The first is to use byte re-alignment

engines that drop leading and trailing bytes from the reads as necessary to generate an 8-byte

wide row from the 12-byte row read out of the SRAM. This is the optimal solution as it keeps

the number of SRAM memory reads to the minimum number of 24 but requires complicated

control logic that was deemed too expensive in FPGA reconfigurable logic. Therefore, a

second solution was implemented, which was to read out the template window one byte at

a time. This requires 64 memory read operations, which is more than double the minimum

number of 24, but requires less complicated control logic. To put the template area choices

in perspective, the additional 40 memory reads were considered insignificant when compared

to the 512 memory reads that are required to read out the search area.

A search area that was as large as possible was desired to provide the ability to track a

moving target over a larger area. The size of the search area was chosen to be the maximum

area that could fit inside a single FPGA BRAM, which has a size of 2,048 bytes. These

BRAMs serve as reconfigurable dual port memory elements inside the FPGA that can be

used for any application. The BRAM was configured to have dual, 4-byte wide read / write

ports, which is the realistic maximum width for these ports. As a 4-byte word memory, the

75

BRAM had an address space of 9 bits. The BRAM address space was broken down in a

similar manner to the SRAM address space. The upper 5 address bits were used to indicate

a y coordinate in the BRAM and the lower 4 bits were used to indicate the 4-byte aligned

x coordinate. Partitioning the BRAM in this way allows for a 64× 32 block of the search

image to be stored in a single BRAM. It would be preferable if this search area were a square

and not a rectangle, but due to the size limits of the FPGA BRAM, this is the largest area

that can be stored in a single BRAM.

The search area (x, y) location in the feature list defines the center of the 64× 32

search window. The search window can be at any location in the second image and is not

required to be centered at the feature location as shown in Figure 6.9. This allows the search

window to be biased according to an estimated location computed in software according to

some prediction algorithm. By implementing a biased search window, a feature can be

correlated to any location in the image regardless of the distance from the original location.

With a search area size of 2,048 bytes partitioned into 512 words of 4 bytes, the trans-

fer from the SRAM would require a minimum of 512 read operations if the x coordinate were

on a 4-byte address boundary. The same byte alignment issues exist for the search area as

for the template area. To overcome these issues, a varying, non-symmetric search area ra-

dius was implemented so that the start of the search area always begins on a 4-byte address

boundary. This was accomplished by first computing the starting 1-byte aligned memory ad-

dress of the search area (the red block in the upper left corner in Figure 6.9) using the search

area (x, y) location from the feature list and then truncating the last two bits off the address

to generate a 4-byte aligned memory address. Using this method of non-symmetrically vary-

ing the search area radius results in four possible search area configurations as described in

Table 6.1.

Table 6.1: Four possible search area configurations
Search area x address Left x radius Right x radius

4 byte aligned + 0 -32 +31
4 byte aligned + 1 -33 +30
4 byte aligned + 2 -34 +29
4 byte aligned + 3 -35 +28

76

The varying search radius only applies to the left and right boundaries of the search

area, as the upper and lower boundaries are controlled by the y coordinate of the search

area location, which is not affected by the x coordinate 4-byte memory address alignment.

As shown in Table 6.1, the x radius of the search window varies from (−32 .. + 31) to

(−35 .. + 28).

Processing Elements

The processing elements (PE) serve as the main computation engines for all template

matching comparisons. The template and search windows of the images are transferred into

the PE’s as previously described and are stored internally in FPGA BRAMs. The main task

of the PE is to compare the 8× 8 template window to each possible 8× 8 window location

in the search area. An SSD comparison between the template and the search area windows

was used to produce an error quantity representing the similarity between the two windows.

The sum of squared differences was computed by first subtracting each pixel in the 8 × 8

template from the same corresponding location in the 8×8 search window resulting in a 8×8

difference window. Each of the 64 values in the 8 × 8 difference window was then squared

so the difference value between each pixel location is positive. The 64 values in the squared

difference window were then summed together to produce a sum of squared differences. The

8× 8 window in the search area that had the lowest SSD error was selected as the match for

the correlated feature location.

The number of possible window locations is less than the actual size of the search area

due to template window overlap. The number of possible search locations can be seen in

Figure 6.9 as the interior black rectangle that ranges (−12 .. + 12) in y and from (−28 .. + 28)

to (−31 .. + 26) in x depending on the search area (x, y) location byte alignment. This results

in 1425 possible search locations.

To meet the design objective of processing speed, the template comparisons need to

be computed quickly. The main bottleneck of this process is the memory access bandwidth

of the FPGA BRAMs. They support a maximum of 2 read or write ports at 4 bytes wide

each, resulting in a maximum read width of 8 bytes per clock cycle. This maximum BRAM

read width corresponds to a single row of an 8× 8 template window, which is the reason

77

why an 8× 8 template window was chosen rather than a 7× 7 or a 9× 9 window size which

both have a symmetric radius width of 3 or 4 respectively. With a read width of 8 bytes, a

template window can be compared to a possible search location in 8 clock cycles, one cycle

for each row in the template window.

With memory read ports configured to 4 bytes, this configuration will only work

well on template comparisons that operate on 4-byte aligned memory reads. This is the

same difficulty experienced when reading the template window out of the SRAM. In that

situation, the template area was able to be read out of the SRAM one byte at a time due

to only requiring 64 memory reads for the entire operation. However, in this situation

comparing the template window to the search area sub-window one byte at a time would

drastically reduce performance (requiring 64 cycles to compare one window instead of 8) due

to the large number of comparisons that need to be computed.

Therefore, to overcome this challenge, 4 copies of the entire search area were created

using 4 BRAMs and three byte re-alignment engines. These re-alignment engines were

implemented to drop the first one, two, or three bytes of the search area data as it is

transferred from the SRAM to the PE. By dropping zero, one, two, or three leading bytes of

the search area, each column of the original search area now lies on a 4-byte boundary in one

of the four BRAMs. By creating multiple copies of the search area, four template comparisons

can be performed in parallel. With this implementation, four template comparisons can be

computed in 8 clock cycles resulting in an average number of 2 clock cycles per template

comparison. With 1425 locations to search, a PE can correlate a single feature in about 3000

clock cycles, which on an FPGA with a 100 MHz clock requires 30 s.

6.4 Results

The feature detection and correlation cores were implemented as described on the

Helios robotic vision platform. In this implementation three PE’s were used, as shown in

Figure 6.8, which provided concurrent processing. More PE’s would have been implemented,

but the FX60 FPGA lacked enough DSP slices, which contain a hard-core, high speed

multiplier for the SSD comparisons. The camera used was a Micron MT9V111 VGA CMOS

image sensor that runs at a maximum of 30 Hz, even though this implementation is capable of

78

higher frame rates. With a system frequency of 100 MHz, the entire vision system consumed

3.4 watts measured at the input terminals to the Helios platform resulting in a system that

meets the low-power needs of a variety of applications. The resources consumed by the major

components of this system are listed in Table 6.2.

Table 6.2: FPGA resource consumption of major system components
Component FPGA Slices BRAMs DSP Slices

Harris Feature Detector Core 605 2% 4 1% 30 12%
Camera Core 2736 10% 18 7% 30 12%

SRAM Controller 99 1% 0 0% 0 0%
Dispatcher 151 1% 0 0% 0 0%
Single Processing Element 932 3% 5 2% 32 25%
Correlation Core 3877 15% 20 8% 96 75%

Total System Utilization 10171 42% 168 72% 126 98%
Total System Capacity 25280 100% 232 100% 128 100%

Once the design had been implemented in FPGA hardware, exact execution times of

the individual components were measured. The measurements can be found in Tables 6.3

and 6.4. These measurements did not show much variation and can be considered stable

execution times. While Table 6.4 lists the maximum number of correlations that could be

computed between frames captured from the camera, it would be impractical to attempt

to continuously correlate image locations between frames. The reasoning is that the goal

of the vision system is not to just correlate image feature locations but rather to use the

correlated feature points in some other algorithm such as video stabilization or an obstacle

avoidance algorithm, which implies there needs to be some time left over after correlation

to perform other useful computations. Therefore, the number of correlations that would be

attempted would be dependent upon the amount of time needed by other processes that use

those correlations. If half of the available time was utilized for feature correlation, which

was a rule-of-thumb the author used as a starting point, the system would be capable of

computing over 1, 300 image feature correlations per image frame given a 30 Hz video rate.

79

Table 6.3: Performance of implemented components
Component Time (ns) Clock Cycles

Transfer data out of SRAM into PE 6700 670
PE Correlation 30050 3005
Average time to correlate one feature 12493 1249

Table 6.4: Maximum number of correlated features per time period
Time Period No. Correlated Features

1 ms 80
1 frame @ 30 fps 2636
1 frame @ 60 fps 1318

In review, the purpose of this second application was not to perform any flight tests

or trials but rather to design an image processing system that could be used as a foundation

for other algorithms. Image feature detection and correlation were chosen as the algorithms

for this second application based on their general applicability to a variety of algorithms

such as image stabilization, target tracking, obstacle avoidance, or motion estimation. Since

there was no flight test or trial event to verify the success of this implementation, only

empirical methods based on visual observation could be utilized. Visual confirmation of

correct operation was achieved by placing various printed, grid-pattern templates in front of

the camera and observing the results.

An image is included in Figure 6.10 that illustrates the feature detection and correla-

tion algorithms as implemented in this vision system. The red crosses identify where strong

Harris features were detected in the current frame, and the green crosses identify where the

features were correlated to in the previous frame. As can be seen in the image, the points

that were tracked are near the corner edges of each of the checkerboard blocks. This demon-

strates that the Harris feature detector correctly identified strong feature points to track and

did not pick random pixel locations throughout the image. In this image, the camera was

panning down to illustrate that the correlated points (green) in the previous image follow

the location of the feature in the current image (red). As can be seen, the green crosses are

80

generally correlated directly below the red crosses, which is expected given that the camera

was panning down.

After reviewing the results found in Figure 6.10, it can be concluded that this imple-

mentation fulfills the objectives of this application by implementing a vision system that finds

and correlates a significant number of image features at camera frame rates while consuming

just 3.4 watts.

Figure 6.10: Calibration checkerboard pattern demonstrating the feature detection and cor-
relation algorithms implemented by the vision system implementation. The red crosses identify
where features are in the current frame while green crosses identify where the features were
correlated to in the previous frame. In this image, the camera was panning down to illustrate
that the correlated points (green) in the previous image follow the location of the feature in
the current image (red).

81

82

Chapter 7

Conclusion

7.1 Summary

The purpose of this work was to present a vision system suitable for onboard aerial

vehicle guidance. The applications targeted for such a system were outlined to include

smart sensors or delivery vehicles. The problems associated with existing methods, primarily

excessive latency, were described as unacceptable for any real-time vision system and that

an onboard vision system was required.

To guide the reader through the development process, first a systematic evaluation of

potential computing platforms was presented, which concluded an FPGA-based platform was

the preferred solution. An embedded image processing primer was presented that covered

the basic properties of image sensors that would have impact on a mobile vehicle image

system. Included also in this primer was an example-based explanation of the techniques

available to implement image processing algorithms on FPGA-based platforms.

Two applications were presented to fulfill the intended objectives of this work. The

first application was the development of a vision system to facilitate vision guided landing.

In this application, color segmentation and connected component algorithms were utilized

to locate and track a single color landing site marker. Multiple landing attempts were shown

to be successful including the landing of the UAV in the back of a moving pickup truck.

The second application presented was a feature tracker sub-system. The intent of this

system was to provide a base level system that could be used in a variety of applications. The

hardware components of this system were primarily comprised of a Harris feature detector

and a correlator core that performed template matching to track locations between successive

image frames. While this sub-system was not used in a flight test situation, it was shown to

be capable of successfully identifying and tracking multiple features.

83

7.2 Contributions

The physical Helios computing platform (i.e., the main circuit board and daughter

cards) was previously developed in the Robotic Vision Lab at Brigham Young University.

However, at the time that the work on this thesis began, there was not much developed as

far as an embedded operating system or customized FPGA logic cores beyond some low level

device interfaces (Frame Sync, Camera Serial, USB chip, GPIO). Consequently, most of the

effort described in this thesis was to create a foundation level embedded image processing

platform. One goal of this work, in addition to the applications described herein, was to

create a base platform that could be easily adapted by future users to their particular needs.

In fact, at the time of this writing, this has already occurred.

The contributions that the author made can be broken down into three areas: Hard-

ware, Embedded OS, and Algorithms. A description of each of the individual contributions

under these categories is set forth below.

7.2.1 Hardware

The ‘Hardware’ contributions refer to FPGA logic cores developed as a part of this

work. As described previously, these may perform all or only a portion of the total algorithm.

PLB Camera Core

The purpose of the camera core is to capture incoming images from a camera, run

any inline or cached inline image processing algorithms, and store them in memory. To

store the images in memory, the core must communicate over a system bus in the FPGA.

At the beginning of this work, the only camera core that existed used a simple and low

performance OPB interface, which stands for On-chip Peripheral Bus. This bus was sufficient

for transferring small images (e.g., 320× 240) at low frame rates, but it did not have enough

bandwidth to carry larger images (e.g., 640× 480) at high frame rates. Therefore, the author

developed a camera core that interfaced with the PLB (Processor Local Bus) which could

sustain the required data rates.

84

HSV Color Conversion Core

It was discovered through experience by the author that varying lighting conditions

can greatly disturb image processing algorithms that run on RGB color space images. There-

fore, the first hardware core that the author developed as a part of this work was a RGB

to HSV color conversion core. This core was absolutely essential for the color segmentation

work described in Chapter 5. The H, S, and V values computed by this core had an error

margin of ±2, which has minimal impact to the machine vision algorithms described in this

work.

HSV Segmentation Core

As described in Chapter 5, performing the HSV segmentation in hardware provided

a significant performance gain to the application. This core was a simple core to develop

and only compares incoming pixel values to multiple color threshold values that can be set

at runtime. The core can segment up to 8 different colors simultaneously.

Connected Components Streak Finder Core

While multiple approaches to compute connected components exist, the one most

suited for FPGA implementation is broken down into two steps: streak finding and then

streak connecting. Streak finding attempts to find continuous horizontal streaks in a binary

image, which are described by a row, column start location, column end location, and the

color of the streak, each of which are 2-byte values. These values were then transferred to

main memory for the software portion of the algorithm to connect the streaks. This was

perfectly suited for FPGA implementation due to the inline nature of the algorithm.

Harris Feature Detector Core

The Harris feature detector core implements the Harris feature algorithm described

in Equations 6.1 and 6.2. This is a cached inline implementation due to the 3 × 3 matrix

needed for the computations. Included in the feature core is a feature filter that will suppress

any features that are below a runtime settable threshold.

85

Correlator Core

The purpose of the correlator core is to perform a template matching search process

on a list of interested points. The interested points are those found by the Harris feature

detector. This core consisted of various sub-components that were significant units in and

of themselves. These sub-components were a muti-port SRAM controller, dispatcher, and

individual processing elements that performed the template matching. One interesting note

about this core is that when activated it increased the power consumption of the Helios

board 33% from 3 to 4 Watts. It was also designed, implemented, and functioning correctly

within one week.

USB Core Improvements

When this work began there already existed a USB core that was capable of transfer-

ring single values at a time over the USB bus. While this was sufficient for small diagnostic

data, it was too slow to transfer image data. Therefore the author added ‘burst’ functionality

to allow the USB core to directly transfer image data using DMA from Helios main memory

to the USB bus. This enabled a 640 × 480 video rate of over 50 frames-per-second to be

transmitted over the USB cable to a host computer. The USB core was also improved to

allow USB hot swapping as the prior implementation required the board to be shut down

and restarted every time the cable was attached or detached.

Technique Framework

When this work began the author was not well versed in image processing implemen-

tation techniques on FPGAs. Consequently, hardware development was an iterative process

as new design approaches were discovered. To provide a framework with which to categorize

implementation techniques and speed up the design phase the author defined a classifica-

tion of the methods available to implement image processing algorithms in FPGA hardware.

These three defined categories were: inline, offline, and cached inline.

86

7.2.2 Embedded Software Framework

Since the Helios platform utilizes an FPGA with one or two embedded PowerPC

CPUs, those CPUs are used as the control center that initializes and manages the hardware

cores as well as performs some of the image processing algorithms. At the beginning of

this work, the existing software framework created for the Helios only possessed minimal

support infrastructure. Much effort was made to expand the ‘round-robin with interrupts’

[19] style system with frameworks and libraries to support the image processing tasks that

were performed on it. These are explained in greater detail below.

Primitive Structures

One of the most basic frameworks that is required in any CPU system is one that

manages allocatable memory. In an embedded environment this required a Buffer Framework

that would allocate static amounts of main memory, which was in limited supply, and use

a checkout-checkin style policy to allow onboard algorithms the ability to utilize varying

amounts of memory during runtime.

In a ‘round-robin with interrupts’ software approach, the main loop does not cycle at

a constant rate. Therefore a Loop Scheduler Framework was implemented to allow specific

functions to be scheduled to occur at specific time intervals.

Communication Libraries

An essential but not specifically identified requirement of the embedded image pro-

cessing platform is the ability to communicate with the user and other devices. To accomplish

this, a Communication Framework was implemented featuring packet-based transmission and

reception of data that is verified using an Adler-32 checksum.

Frame Table

Much of image processing is centered around performing multiple algorithms or de-

cisions on a single image frame. To facilitate the ‘process’ of image processing a Frame

Table Library was created. This library provided a single place to store raw images, color

segmented connected components, Harris feature lists, and other bookkeeping information.

87

Matrix Library

While developing an implementation of a RANSAC (Random Sample and Consensus)

homography estimation algorithm in the feature tracking application described in Chapter 6,

it became evident that a general purpose Matrix computation library was needed. The Ma-

trix library implemented by the author was modeled after that found in the Open Computer

Vision Library (OpenCV).

HIO GUI

The GUI that was developed to interface with the Helios platform was similar to

some of the other framework contributions in that it doesn’t receive much attention in the

application chapters, but required significant effort to build and constantly adapt to support

new features. This GUI is a multithreaded windows application developed using Microsoft

Visual Studio and is currently in its 4th generation. In addition to interfacing with the

Helios, a simulator was also built into the GUI to provide a more rapid environment to test

feature tracking and homography estimation algorithms.

7.2.3 Software Algorithms

The software algorithms developed as part of this work for the embedded Pow-

erPC were minor when compared to the infrastructure development efforts described in

Section 7.2.2. However, they were a required part of the image processing applications

described in Chapters 5 and 6. These are described below.

Connected Components

While most of the repetitive computations of the connected components algorithm

were handled by a hardware core, the streaks in the image were searched and connected in

a software. This algorithm performed all the searching and connecting operations ‘in place’

without requiring any additional memory utilization beyond that to store the streak structs.

88

RANSAC Homography Estimation

In addition to the simple tracking of feature points between images described in

Chapter 6, a RANSAC algorithm was implemented to estimate the translational homography

between two sequential image frames. This was intended to be used as part of a See-And-

Avoid algorithm for a UAV, but was left for future work.

7.3 Future Work

The recommendations for future development are primarily improvements to the He-

lios platform that now are within reach. These are described below.

Onboard GPS. Currently Helios requires the use of the global positioning sensor on the

autopilot for geo-localization. Adding an interface to a GPS sensor and the necessary

support software frameworks would provide a useful tool for UAV applications.

Onboard Gyroscope. Similar to the need for GPS data, an onboard Gyroscope would

allow Helios to estimate positional attitude, which would allow image coordinates to

be translated to ground-based coordinates.

Gimbaled Camera. Currently the camera can only be mounted in a fixed position. By

integrating the control of a gimbal in which the camera could be mounted, the image

processing algorithms could search, find, and track objects in flight regardless of the

flight path of the UAV.

LVDS Camera. The current video image sensor is connected using a short and rigid

22-pin parallel data cable, which limits its placement to a fixed location within only a

few inches of Helios. A LVDS (Low Voltage Differential Signaling) cable would allow

the placement of the camera at any remote location on the UAV. For example, one

camera could be placed on each wing tip and used for stereo vision applications.

HD Camera. The current image sensor used on the Helios is a standard definition

640 × 480 camera. An HD camera would provide higher detailed images, which may

improve the accuracy of image processing algorithms.

89

Higher Frame Rate Camera. While in flight, even small movements can cause a large

shift in the camera’s field of view. A higher frame rate camera, implies less time

between image captures, which reduces the possible change that must be accounted

for in tracking algorithms.

Camera Simulation Device. At present, runtime testing is crudely performed by placing

various items in front of the camera and visually inspecting the output. If there were a

device that connected to the camera input of the Helios board and a desktop computer,

a predefined set of images could be fed directly into the Helios, which would allow

repeatable testing to be performed after changes were made to the image processing

cores or software algorithms.

Bit-Level Accurate Simulator. Hardware development is slow and embedded systems

are difficult to debug. A bit-level accurate simulator running on a desktop would allow

more rapid algorithm development.

Inflight Communication. At present the only way to communicate with the Helios

while in flight is through the Autopilot. A 2-way communication device would allow

the ground-based user to instruct the Helios to track some visually identifiable object.

Wireless Video Transmission. At present, while in flight there is no way for the user

on the ground to ‘see’ what the UAV is ‘seeing.’ If the Helios could convert raw

or processed images into an interlaced NTSC stream, it could be transmitted using

commercially available wireless video transmitters. The most significant impact of this

is not the ability to transmit the raw camera images, but the processed images such

as the color segmented or Harris feature images.

90

Bibliography

[1] V. Chitrakaran, D.Dawson, J. Chen, and M. Feemster, “Vision assisted autonomous
landing of an unmanned aerial vehicle,” Proceedings of the IEEE Conference on Decision

and Control, pp. 1465–1470, December 2005. 9, 45

[2] J. Hintze, D. Christian, C. Theodore, M. Tischler, and T. McLain, “Automated landing
of a rotorcraft UAV in a non-cooperative environment,” in Proceedings of the 60th

Annual Forum of the American Helicopter Society, Baltimore, Maryland, June 2004. 9

[3] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Visually guided landing of an
unmanned aerial vehicle,” IEEE Transactions on Robotics and Automation, vol. 19,
no. 3, pp. 371–380, June 2003. 9, 10

[4] O. Shakernia, Y. Ma, T. J. Koo, J. Hespanha, and S. S. Sastry, “Vision guided landing
of an unmanned air vehicle,” Proceedings of the IEEE Conference on Decision and

Control, pp. 4143–4148, December 1999. 9

[5] C. S. Sharp, O. Shakernia, and S. S. Sastry, “A vision system for landing an unmanned
aerial vehicle,” Proceedings of the IEEE International Conference on Robotics and Au-

tomation, pp. 1720–1727, May 2001. 9, 10

[6] B. B. Edwards, W. S. Fife, J. K. Archibald, D.-J. Lee, and D. K. Wilde, “A design
approach for small vision-based autonomous vehicles,” Proceedings of the SPIE Inter-

national Conference on Intelligent Robots and Computer Vision, vol. 6384, October
2006. 10, 11

[7] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based autonomous landing
of an unmanned aerial vehicle,” Proceedings of the IEEE International Conference on

Robotics and Automation, pp. 2799–2804, May 2002. 10

[8] O. Shakernia, R. Vidal, C. S. Sharp, Y. Ma, and S. Sastry, “Multiple view motion
estimation and control for landing an unmanned aerial vehicle,” in Proceedings of the

2002 IEEE International Conference on Robotics & Automation, Washington DC, May
2002, pp. 2793–2798. 10

[9] P. Bertin, D. Roncin, and J. Vuillemin, “Introduction to programmable active memo-
ries,” in DEC Paris Research Laboratory, Tech. Rep.3, 1989. 10

[10] J. Cho and et al., “A real-time object tracking system using a particle filter,” in Proc.

of IEEE/RSJ Conf. on Intelligent Robots and Systems, October 2006. 10

91

[11] D. Masrani and W. MacLean, “A real-time large disparity range stereo-system using
FPGAs,” in Proc. of IEEE Conf. on Computer Vision Systems, January 2006. 10

[12] J. Woodfill and B. V. Herzen, “Real-time stereo vision on the PARTS reconfigurable
computer,” in Proc. of IEEE Symp. on FPGAs for Custom Computing Machines, April
1997. 10, 11

[13] Y. Jia, X. Zhang, M. Li, and L. An, “A miniature stereo vision machine (MSVM-III)
for dense disparity mapping,” in Proc. of the IEEE Int. Conf. on Pattern Recognition,
August 2004, pp. 728–731. 11

[14] W. S. Fife and J. K. Archibald, “Reconfigurable on-board vision processing for small
autonomous vehicles,” EURASIP Journal on Embedded Systems, 2007, article ID 80141.
11, 19, 64

[15] S. Fowers, D.-J. Lee, B. Tippetts, K. D. Lillywhite, A. Dennis, and J. Archibald, “Vision
aided stabilization and the development of a quad-rotor micro UAV,” in IEEE Inter-

national Symposium on Computational Intelligence in Robotics and Automation, 2007.
11

[16] B. Edwards, J. Archibald, and W. Fife, “A vision system for precision MAV targeted
landing,” in IEEE International Symposium on Computational Intelligence in Robotics

and Automation, June 2007. 11

[17] C. Harris and M. Stephens, “A combined corner and edge detector,” in 4th Alvey Vision

Conference, 1988, pp. 147–151. 65, 67

[18] R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual cor-
respondence,” in 3rd European Conference on Computer Vision, 1994, pp. 151–158.
66

[19] D. E. Simon, An Embedded Software Primer. Addison-Wesley, 1999. 87

92

	An Onboard Vision System for Unmanned Aerial Vehicle Guidance
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.1.1 Smart Sensor
	1.1.2 Delivery Vehicle

	1.2 Problem Description
	1.2.1 Off-Loading
	1.2.2 Latency

	1.3 Objectives and Applications
	1.4 Outline

	2 Background
	3 Platform Selection
	3.1 System Requirements
	3.2 Platform Evaluation
	3.2.1 Micro-controller
	3.2.2 Digital Signal Processor (DSP)
	3.2.3 Graphics Processing Unit (GPU)
	3.2.4 Field Programmable Gate Array (FPGA)
	3.2.5 Application Specific Integrated Circuit (ASIC)

	3.3 Chosen Solution

	4 Architecture
	4.1 Process Flow
	4.2 Camera Basics
	4.2.1 Progressive Scan Shutter
	4.2.2 Interlaced Shutter
	4.2.3 Global Shutter
	4.2.4 Image Sensor Design
	4.2.5 Data Formats

	4.3 Techniques
	4.4 Inline
	4.4.1 Example: Threshold Counter

	4.5 Offline
	4.5.1 Example: Image Normalization

	4.6 Cached Inline
	4.6.1 Example: Bayer Pattern Demosaicing

	5 Application: Vision-Guided Landing
	5.1 Introduction
	5.2 System Design
	5.2.1 Color Space Conversion
	5.2.2 Color Segmentation
	5.2.3 Connected Components
	5.2.4 Tracking and Filtering

	5.3 FPGA System Architecture
	5.4 Results
	5.4.1 Static Landing Site
	5.4.2 Moving Landing Site

	6 Application: Feature Tracking
	6.1 Introduction
	6.2 System Design
	6.3 System Architecture
	6.3.1 Harris Feature Detector Core
	6.3.2 Feature Correlation Core

	6.4 Results

	7 Conclusion
	7.1 Summary
	7.2 Contributions
	7.2.1 Hardware
	7.2.2 Embedded Software Framework
	7.2.3 Software Algorithms

	7.3 Future Work

	Bibliography

