
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2010-08-04

A Hybrid System for Glossary Generation of Feature Film Content A Hybrid System for Glossary Generation of Feature Film Content

for Language Learning for Language Learning

Ryan Arthur Corradini
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Linguistics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Corradini, Ryan Arthur, "A Hybrid System for Glossary Generation of Feature Film Content for Language
Learning" (2010). Theses and Dissertations. 2238.
https://scholarsarchive.byu.edu/etd/2238

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarsarchive.byu.edu%2Fetd%2F2238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2238?utm_source=scholarsarchive.byu.edu%2Fetd%2F2238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Hybrid System for Glossary Generation of Feature

Film Content for Language Learning

Ryan A. Corradini

A project submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Alan K. Melby, Chair
Dirk Elzinga
Michael Bush

Department of Linguistics and English Language

Brigham Young University

December 2010

Copyright © 2010 Ryan A. Corradini

All Rights Reserved

ABSTRACT

A Hybrid System for Glossary Generation of Feature

Film Content for Language Learning

Ryan A. Corradini

Department of Linguistics and English Language

Master of Arts

This report introduces a suite of command-line tools created to assist content developers with the
creation of rich supplementary material to use in conjunction with feature films and other video assets in
language teaching. The tools are intended to leverage open-source corpora and software (the OPUS
OpenSubs corpus and the Moses statistical machine translation system, respectively), but are written in a
modular fashion so that other resources could be leveraged in their place.

The completed tool suite facilitates three main tasks, which together constitute this project. First,

several scripts created for use in preparing linguistic data for the system are discussed. Next, a set of
scripts are described that together leverage the strengths of both terminology management and statistical
machine translation to provide candidate translation entries for terms of interest. Finally, a tool chain and
methodology are given for enriching the terminological data store based on the output of the machine
translation process, thereby enabling greater accuracy and efficiency with each subsequent application.

Keywords: electronic film review, language instruction, statistical machine translation, terminology
management

ACKNOWLEDGEMENTS

I would like to thank Dr. Alan Melby for his mentorship and friendship over the years,

particularly in the past several years as we have worked together to shape this project into its final form.

His insights and advice have been invaluable. Thanks also go to Drs. Mike Bush and Deryle Lonsdale for

their support and feedback as the project evolved from its initial form, and to Dr. Dirk Elzinga who

graciously stepped in at the last minute to take Dr. Lonsdale’s place when he was away leading a study

abroad program. Finally, I owe my wife a debt of gratitude for the many evenings she spent alone while I

toiled into the wee hours of the night. Without her love, encouragement, and patience with my

eccentricities, this project would never have been completed successfully. Thank you, Mary.

iv

TABLE OF CONTENTS

Abstract .. ii

Acknowledgements ... iii

Chapter 1: Background & Justification .. 1

1.1. Differing Methodologies. .. 1

1.2. Natural Language Exposure Through Video. .. 1

1.3. Challenges to the EFR Approach. ... 3

1.4. Proposal. .. 5

1.5. Criteria for Measuring Success. ... 6

1.6. Alternative Approaches. .. 6

1.7. Summary. ... 7

Chapter 2: Data Preparation ... 8

2.1. Film Segmentation. .. 8

2.2. Flagging Lexical Items. ... 11

2.3. Termbase Construction. ... 11

2.4. Training Moses. ... 14

Chapter 3: Term Lookup and Translation ... 18

3.1. Term Lookup ... 19

3.2. Machine Translation .. 20

3.3. Post-Processing of Moses Output .. 21

Chapter 4: Iteration and Improvement ... 23

4.1. Converting to VocTable Format .. 23

4.2. Re-seeding the TBX Data Store .. 24

Chapter 5: Conclusions .. 26

5.1. Analysis of Results. ... 26

v

5.2. Program Portability. .. 26

5.3. Future Work ... 28

References .. 30

Appendix I: Source Code ... 33

A1.1. XCES2Seg .. 33

A1.2. CSV2MRC .. 36

A1.3. TBX Parser ... 37

A1.4. EFR Segfile Parser .. 39

A1.5. Linguassist .. 41

A1.6. Opus2XLIFF ... 44

A1.7. XLIFF2Moses ... 49

A1.8. Moses2MNF ... 49

A1.9. MNF2VocTable .. 52

Appendix II: Getting Moses Working on Cygwin ... 56

A2.1. Support Tools. .. 56

A2.2. Compiling Moses. ... 57

A2.3. Moses Support Scripts. ... 57

A2.4. Python Unicode Issues. ... 61

1

CHAPTER 1: BACKGROUND & JUSTIFICATION

1.1. DIFFERING METHODOLOGIES. It could well be said that for as long as there have been teachers, there

have been differences of opinion about the best way to teach. While such a sweeping generalization may

be difficult to prove, at least within the context of second-language instruction, it certainly seems apt.

Some educators have taken a grammar-based approach, teaching language from the bottom up. Others

insist that an immersive approach is best, fully surrounding students in their target language. Further, a

great many variations exist between these two extremes (Mora 1998). The Electronic Film Review

(hereafter EFR) project takes something of a hybrid approach, juxtaposing authentic natural language

content (in the form of commercial films on DVD) with annotative material that allows the student to

supplement their understanding of the target language when and how they choose (Melby, 2004). It is the

intent of this project to build upon the work done by Melby and others, to provide tools that will enable

content developers for language instruction to more easily create rich, immersive natural language

experiences for their students.

1.2. NATURAL LANGUAGE EXPOSURE THROUGH VIDEO. For over 30 years, language educators have

recognized the potential benefit of using video to teach language in a real-world context, but have often

struggled to fit it into an already-crowded curriculum. Researchers have found that students are able to

learn language skills from multimedia presentations, but are often quick to point out that such content

must be supplemented by the instructor in order to be properly contextualized and understood (Secules,

Herron and Tomasello 1992).

A second trend in the past decade has been notable growth in the ubiquity of personal computers in

the classroom, as technology has continued to grow in sophistication even as it has decreased in cost.

With the advent of first the CD-ROM, and later the DVD, multimedia applications for language education

have become increasingly common. These applications often contain extensive textual material in

2

addition to video, which allow language lessons to be contextualized in a way not possible with video

alone. Often, this supplemental content serves to exemplify not only the language, but associated cultural

knowledge as well (Kramsch and Andersen 1999). Such contextualization enables the learner to better

function in the target culture, as they acquire not just the linguistic skills, but the sociolinguistic

knowledge necessary to use the new language effectively.

A disadvantage of this type of rich content is its accompanying cost: it is often difficult and time-

consuming to create. First, the video content itself must be acquired through some means, either licensed

from a third party or custom-filmed to capture a particular pedagogical point; both options have

significant associated costs (A. K. Melby, personal communication, June 19, 2008). Both also have

inherent limitations: third-party video usually offers little in the way of contextual material, may require

substantial work on the part of the content developer, and may be difficult or impossible to license.

Conversely, custom-filmed video is difficult to produce in such a way that it captures the viewer’s interest

and attention in the same way as content produced solely for its entertainment value. The Electronic Film

Review (EFR) approach takes some of the best of both methods: feature films are used, which keeps

development costs lower and helps to engage the learner more fully in the process (EFR Team, Brigham

Young University 2006). Further, because the original DVD content is untouched, there is no need to

acquire a license in order to use it. Such an approach provides the content developer two significant

advantages: costly licensing fees are avoided for those films where a license is possible, and the library of

films from which to choose is broadened to include those for which licensing is not available. (Bush, et al.

2004).

Even so, the creation of contextual material is nonetheless a costly and time-consuming proposition,

with a typical film requiring close to 200 man-hours of work by a content developer specially trained in

the annotation process (Keeler 2005). In order to be of the most use to the widest possible audience, the

EFR system needs an authoring suite with a gentler learning curve, one in which the process of annotation

3

is facilitated through automated means wherever possible, and made more intuitive when automation is

impractical.

1.3. CHALLENGES TO THE EFR APPROACH. There is still some question about the best way to provide

contextual, annotative content to the learner. First, it should be noted that there are differences of opinion

regarding the best way to present the annotative materials: concurrent with the video segments, or prior to

their playback (A. K. Melby, personal communication, August 27, 2009). Secondly, the types and volume

of content must be determined, often informed by the overall educational intent of the package:

vocabulary building, acculturation, grammar instruction, and listening comprehension are some common

choices. Additionally, there is an open discussion at present about whether specialized, context-sensitive

glossaries provide any benefit over a simple learner-directed dictionary lookup, that is, whether the

curriculum builder/software should indicate the correct word sense used in a given segment, or whether it

should be left to the language learner to determine from context.

Another challenge should be mentioned as well, and it bears discussion. When teaching a language,

either to a classroom full of students or in a one-on-one scenario, two markedly different approaches are

possible. The first methodology, exemplified by English as a Second Language (ESL) programs, assumes

no knowledge of the learner’s primary language: all instruction, interactions, and supplementary materials

are in the target language. This is the approach taken by Keeler in her 2005 effort, and is perhaps the more

difficult of the two in terms of content creation. Indeed, the generation of broadly comprehensible

annotations, restricted to the language of instruction, is beyond the capability of current automated

systems. The second instructional approach differs primarily in one key aspect: the primary language of

the learner(s) is taken into account, and can be leveraged in the annotative materials. Programs in English

as a Foreign Language (EFL), presently common across much of Asia, are an application of this approach

(Cautrell 2007). An evaluation of the relative merits of these two approaches is beyond the scope of this

project, but it suffices to say that both are presently regarded as legitimate endeavors.

4

This project focuses on annotation for the purpose of vocabulary enrichment, with context-

appropriate glossary entries presented concomitantly with the video content, with annotative materials in

both the learner’s primary and target languages. This narrowed emphasis will allow for a greater level of

sophistication in the resulting tool, which in turn should lead to greater improvements in the efficiency of

the overall authoring process. An evaluation of the efficacy of this particular pedagogical focus over the

others previously mentioned is outside the scope of this project, and is left to future researchers.

As has already been stated, the creation of engaging content to accompany feature films is as yet a

laborious process, one that demands more time than most instructors are willing or able to spend (Dennis

Packard, personal communication, September 2007). The overall annotation process can be broken down

into three main tasks:

1) partitioning of the film into linguistically and/or narratively significant segments,

2) identification of vocabulary items within these segments, and

3) development of explanatory content for each of these vocabulary items.

 These tasks each bear challenges in the current generation of authoring tools; film partitioning, for

instance, requires the hand-creation of an EFR segmentation script, commonly referred to as a SEGFILE.

Each segment must be transcribed, and any LEXICAL ITEMS of interest (e.g. terms, idiomatic expressions,

etc.) must be flagged for vocabulary treatment. Explanatory material must then be developed and linked

to each instance of the vocabulary item, which, as lexical items may comprise more than single words,

will involve more work than a simple dictionary lookup. The current software used to accomplish these

tasks can best be described as byzantine, and the associated learning curve for content developers is quite

steep. Further, the annotation process itself is tedious, prone to error, and requires the use of an overly

restrictive scripting language. Where visual tools exist, they are unconnected to the content compilation

tools, which depend on the well-formedness of hand-coded data files. Finally, reuse from one film to the

5

next is not facilitated, requiring a content developer to start over from scratch with each successive film

so treated.

In summary, the overall EFR content creation process—though functional in its current state—has

much room for improvement.

1.4. PROPOSAL. The difficulties outlined in the previous section can all be lessened through the judicious

use of several current resources and technologies: segmentation can be approximated by leveraging

existing online resources, vocabulary identification and EFL-style treatment can be accomplished via

terminology lookup and statistical machine translation, and reuse achieved through use of a centralized

terminology management system. Together, these new tools can form the basis for a complete authoring

suite, one that will facilitate the overall process of metadata creation, reduce development time, and

smooth the learning curve required of the end user.

At a high level, the project flow will be as follows, given a film that the content developer wishes to

treat:

1. Produce EFR-segmentation file for the film (generated from publically-available resources

where possible)

2. Content developer edits this segfile to mark up all instances of lexical items to receive

contextual glossary entries

3. Produce a terminology data file for system use, either through database export or via

automated transformation of user-edited spreadsheet

4. Parse the segfile, identifying all marked-up lexical items of interest

5. Query the terminological data store for the treatment of these lexical items

a. If no match is found, queue the item for processing by the machine translation

engine

6

6. Run all queued sentences through the machine translation engine, capturing the context and

suggested translation for the lexical items of interest

7. Merge the output of the terminology lookup and machine translation steps

8. Use this combined output file to produce context-sensitive glossary web pages, using the

existing EFR Vocabulary Tool.

9. Use the output of the machine translation process to enrich the terminological data store

A more detailed discussion of this implementation will be described in the following chapters.

1.5. CRITERIA FOR MEASURING SUCCESS. We will use four main criteria to measure the success of the

project:

1) provide a full replacement for all current functionality,

2) automate the lookup of lexical items in a termbase to see if they are already covered

3) automate the selection of context-sensitive translations for those items not already treated

4) provide a mechanism for enriching the termbase with the new suggested translations

If these criteria are met, then we will deem the project a success. Moreover, it is anticipated that this

change in methodology will lead to greater efficiencies over time, as the growth of the shared vocabulary

database will lead to faster term extraction cycles, and reuse of existing database entries will result in

much faster vocabulary item treatment, as this will be as quick as creating a hyperlink or performing a

database lookup. Because this growth will likely take some time before reaching a point where it has such

an effect, an evaluation of its efficacy will be left to future researchers.

1.6. ALTERNATIVE APPROACHES. It should be noted that the tools we use to accomplish these tasks are

not the only possible solutions. For instance, film segmentation could be done via visual pattern

recognition and scene detection (Lin and Zhang 2000). Film transcription and transcript time-alignment

could be accomplished through Optical Character Recognition (OCR) of the film’s subtitles (Li,

7

Doermann and Kia 2000) or direct extraction of closed-captioning (line 21) data (Zhu, Toklu and Liou

2001). Both of these were considered, then ultimately rejected due to the inherent inaccuracy of many

subtitle and closed-captioning streams, which often do not closely match, but only approximate, the audio

content.

Finally, in recent years researchers have demonstrated a technique termed Shadow Speaking, in

which an observer watching a film repeats the dialog into a sound-canceling microphone, which is then

processed by an automatic speech recognizer (Boulianne, et al. 2006). This approach, although proven to

be quite effective, was deemed unsatisfactory for an end-user application such as the one intended for this

project: it seems unlikely that a content developer would want to shadow-speak an entire film prior to

being able to annotate it, and even the more technically inclined would likely prefer to focus on the

linguistically-focused aspects of film treatment.

1.7. SUMMARY. As the nations of the world become more and more closely interconnected, the need for

multilingual education grows increasingly urgent. In order to be most effective, the need for this

educational content to engage and retain the student’s attention grows as well. In turn, as the need for

engaging content expands, more efficient production tools will be required to keep up with the demand. It

is in this spirit that the present effort has been undertaken, with the hope that its fruits will be used to

better prepare the rising generation to meet the demands of a global society.

The remainder of this paper will be as follows: Chapter 2 will discuss the data preparation steps

undertaken to ensure clean and usable data inputs, and provide an overview of the process of creating

language/phrase models for the machine translation engine. Chapter 3 will describe the twin processes of

terminology lookup and machine translation of lexical items. Chapter 4 will outline the process for

iteratively improving the terminological data store by incorporating the results of the translation step on

each subsequent invocation. Finally, Chapter 5 will discuss the results of the project, and its implications

for future work in the field.

8

CHAPTER 2: DATA PREPARATION

As with any project, the quality of the program’s outputs is limited by the quality of the inputs; the

data preparation phase of the project concerns the creation of good inputs. This involves several subtasks:

film transcript alignment/segmentation, lexical item identification, seeding of a preliminary terminology

database, and training the statistical machine translation system.

2.1. FILM SEGMENTATION. The problem this poses is twofold: first, time codes that mark the beginning

and end of each video segment must be defined, and second, the linguistic content of these segments must

be transcribed. There are multiple approaches to fully automating this task, many of which were

mentioned in section 1.6. For the purposes of this project, however, we have chosen to leverage freely-

available online resources to provide the basis for film segmentation. The OPUS open-source parallel

corpus, created by Jörg Tiedemann, includes, as one of its main resources, the OpenSubs corpus

(Tiedemann 2009). Originating from the popular Internet web site OpenSubtitles.org, this corpus

comprises 361 bitexts in 30 languages, and is freely available for download. Included are a collection of

BITEXTS, parallel text files in which sentences in the source and target language are aligned with one

another. These are encoded in the XCES (XML Corpus Encoding Standard) format, and represent time-

9

aligned, segmented transcript information for all the films included in the OpenSubs corpus. Figure 1

shows a sample segment from one of these bitexts:

Figure 1: Sample XCES Segment

<s id="331">
 <time id="T228S" value="00:16:29,019" />
 <w id="331.1">The</w>
 <w id="331.2">most</w>
 <w id="331.3">famous</w>
 <w id="331.4">pirate</w>
 <w id="331.5">in</w>
 <w id="331.6">his</w>
 <w id="331.7">time</w>
 <w id="331.8">.</w>
</s>
<s id="332">
 <w id="332.1">My</w>
 <w id="332.2">dad</w>
 <w id="332.3">told</w>
 <w id="332.4">me</w>
 <w id="332.5">all</w>
 <w id="332.6">about</w>
 <w id="332.7">him</w>
 <w id="332.8">.</w>
 <time id="T228E" value="00:16:33,092" />
</s>

At first glance, the XCES appears to only contain two useful pieces of information: <s>entences,

which in turn contain <w>ords. The temptation, then, is to treat the <s> elements as segments as well.

However, upon closer inspection, we see that the first sentence begins with a <time> element, and the

second sentence ends with one. Additionally, the two time elements have matching id attributes–T228S

and T228E, respectively–which seem to refer to the Start and End timecodes of a segment named T228).

Experimentation with these timecodes in the legacy EFR segmentation tool reveals that these timecodes

do, indeed, define the boundaries of the dialog in question. Armed with this knowledge, we can now

convert XCES segments like Figure 1 into EFR segfile blocks as shown in Figure 2:

Figure 2: Film Segment in EFR Segfile Format

29641-29763 (00:16:29:01 - 00:16:33:03)
Scene 228

10

//T: The most famous pirate in his time. My dad told me all about him.

With this understanding of the precise nature of the data structures encoded in these XCES files, a

better conversion into EFR-segfile is possible. Initially, since the starting point was an XML-based

format, an attempt was made to use XSLT transformations to accomplish the reformatting. However,

XSLT has very poor support for string manipulation, which is important due to the not-insignificant

differences between the XCES time format and the EFR-segfile format. See (1) and (2) for a comparison:

(1) XCES timecode: 00:16:29,019

(2) EFR-segfile timecode (frame count): 29641

EFR-segfile timecode (SMPTE timecode): 00:16:29:01

Timecodes in XCES are represented by hh:mm:ss,mms (hours, minutes, seconds, and milliseconds).

EFR-segfile uses two formats: the first is a raw frame count, useful for low-level DVD access; the second

is the similar hh:mm:ss:ff (hours, minutes, seconds, frames) format commonly used in media players. At

the standard conversion rate of 30 frames per second, both numbers are straightforward to derive in any

language capable of evaluating math expressions:

(3) 019 ms = 0.019 sec * 30 frames/sec = 0.57 frames ≈ 01 frames

00:16:29,019 (29.019 sec) + (16 min * 60 sec/min) = 989.019 sec

989.019 sec * 30 frames/sec ≈ framecode 29671

For all of its utility, XSLT isn’t capable of that kind of mathematical feat. Therefore, the decision was

made to use Python, a robust, mature scripting language available on most modern platforms. The

resulting script, xces2seg.py, takes an XCES file as input and produces a correctly-formatted EFR-

segfile as output. This script, along with all other project scripts, is included in Appendix I: Source Code.

11

One final note on segmentation: for films not explicitly included in the OpenSubs corpus, the OPUS

project provides a set of command-line Perl scripts to convert raw subtitle files—such as those available

on OpenSubtitles.org—into new XCES-formatted data files. Once in XCES format, these files can then in

turn be transformed into EFR-segfile format with the xces2seg tool.

2.2. FLAGGING LEXICAL ITEMS. Once a preliminary segfile has been generated for a film, the content

developer will need to manually review each segment to identify the lexical items of pedagogical interest.

For the initial implementation of the system, this is still a manual process: the segfile must be opened in a

text editor, and the desired lexical items marked up with pseudo-XML start and end tags, as in Figure 3:

Figure 3: EFR Segfile Segment with Markup

29641-29763 (00:16:29:01 - 00:16:33:03)
Scene 228
//T: The most famous <item> pirate </item> in his time. My dad told me all about
him.

These tags will be used by the segfile processor to generate the glossary and vocabulary helps for the

student. This process will be discussed in more detail in the next chapter.

2.3. TERMBASE CONSTRUCTION. More often than not, a content developer just beginning to treat films for

instructional use will not have a database of those lexical items they want to present to their students as

part of the film screening. Such a database of TERMS1

1 For the purposes of this project, we define ‘term’ as a word or group of words carrying a specific semantic concept.

, hereafter referred to as a TERMBASE, provides a

centralized location for maintenance and access purposes, which can greatly speed up the process of

glossary creation. Once a term has been identified, documented, and stored in their termbase, a content

developer can simply refer back to that entry every time they want to add contextual help to an instance of

that term in the transcript. Further, lexical items referencing a given term or concept need not be restricted

to single words, nor must term instances only take a single lexical form.

12

Many termbase applications have a proprietary data representation, but users often need to share

terminological data across group, company, and even international lines. The ISO Term Base eXchange

(TBX) standard was developed for just this reason (LISA 2008). As an XML application, TBX is verbose,

but versatile: instead of a single schema, it actually defines a family of Terminological Markup

Languages, or TMLs, which cover just about every conceivable type of terminological information, and

which can be added to when a particular need cannot be met by any existing TMLAdditionally, since it is

an XML-based format, TBX can be automatically queried, merged, and transformed into a variety of

termbase import formats. This makes it an ideal tool for use in our system: a content developer with a

termbase can export all or a subset of their terminology into a TBX representation, and provide it to the

application for lookup of a transcript’s lexical items of interest.

However, the verbosity of the TBX family of formats can be daunting to a curriculum developer that

does not yet have a terminology management solution. In order to take advantage of the benefits of

terminology lookup, these individuals would have to hand-create and maintain their data directly in raw

TBX. To help address this need, the Localization Industry Standards Association (LISA) has developed a

simplified form called TBX-Basic (A. K. Melby 2009), which includes the most frequently used data

categories for translation purposes. This simplified format also includes a non-XML representation

dubbed MRC2

The original EFR tool chain that this system is replacing utilizes a much simpler glossary format: a

Microsoft Excel spreadsheet, one row per concept, one lexical item each for source and target language,

and a few additional data categories that apply to the concept as a whole. Table 1 contains an extract of

one such spreadsheet, used in the ESL treatment of the film Holes (note that some columns have been

omitted for brevity’s sake):

 TermTable, which can be transformed losslessly into the XML form. Nevertheless, even

this format may be overly complicated for some users.

2 Multiple Rows per Concept; see ttt.org/tbx for more information.

13

Table 1: Simple concept-oriented vocabulary spreadsheet

Concept ID Head Word Grammar Definition

best_served.v.1 best served verb To be “best served” means that something “will help
the most.”

Using this original table layout as a basis, and given the need to quickly add a large number of rows

to the termbase, a very simple flattened data layout was devised that could be transformed into MRC

format, and from there into TBX-Basic. Table 2 shows an example of this flattened format, Figure 4

shows its corresponding MRC TermTable representation, and Figure 5 shows a fragment of TBX

corresponding to those same rows.

Table 2: Flattened Terminological Data

subjectField partOfSpeech en-us fr-fr

General Adjective fabulous superbe

General Noun feet pieds

Figure 4: Flattened Terminological Data in MRC Format

C013 subjectField General
C013en1 term fabulous
C013en1 partOfSpeech adjective
C013fr1 term superbe
C013fr1 partOfSpeech adjective

C014 subjectField General
C014en1 term feet
C014en1 partOfSpeech noun
C014fr1 term pieds
C014fr1 partOfSpeech noun

14

Figure 5: Flattened Terminological Data in TBX-Basic Format

<termEntry id="C013">
 <descripGrp><descrip type="subjectField">General</descrip></descripGrp>
 <langSet xml:lang="en">
 <tig id="C013en1">
 <term>fabulous</term>
 <termNote type="partOfSpeech">adjective</termNote>
 </tig>
 </langSet>
 <langSet xml:lang="fr">
 <tig id="C013fr1">
 <term>superbe</term>
 <termNote type="partOfSpeech">adjective</termNote>
 </tig>
 </langSet>
</termEntry>
<termEntry id="C014">
 <descripGrp><descrip type="subjectField">General</descrip></descripGrp>
 <langSet xml:lang="en">
 <tig id="C014en1">
 <term>feet</term>
 <termNote type="partOfSpeech">noun</termNote>
 </tig>
 </langSet>
 <langSet xml:lang="fr">
 <tig id="C014fr1">
 <term>pieds</term>
 <termNote type="partOfSpeech">noun</termNote>
 </tig>
 </langSet>
</termEntry>

The conversion from this flat format to MRC TermTable was accomplished via a simple Python

script, flat2mrc.py. This file was then transformed into TBX-Basic via the LISA TBX tools.

Another note about this data: the items included all have a subject field of general, as they are

extracted from film transcripts that aren’t typically constrained to a narrow domain. This potentially

makes the extracted terminology less useful than if it were domain-specific; in practice, the more precise

the domain, the more accurate the produced glossary entries will be.

2.4. TRAINING MOSES. The final data preparation task to be done is the creation of statistical models for

the machine translation engine. The system targeted by the project is Moses, an open-source, statistical

machine translation application frequently used within the academic community. Two distinct toolkits

15

exist for creating Moses-compatible models: IRSTLM, developed by the Fondazione Bruno Kessler, and

SRILM, produced by SRI International

Once the tools have been built, they can be used to generate a LANGUAGE MODEL and PHRASE

MODEL, which may be a bit misleading, as they do not represent actual linguistic data, but rather,

statistical information about the language and phrase constructions present in the corpus of data used to

train the system. These models can be tuned to meet particular needs. For example, if a content developer

wishes to treat a series of films within a narrow linguistic domain (e.g. movies about baseball), a training

corpus extracted exclusively from other such films (Field of Dreams, The Rookie, etc) could be used to

provide more accurate results from the decoder.

. These tools, as well as Moses itself, were intended to be used

primarily in a UNIX/Linux environment, but can be made to run in both Apple’s OS X operating system

and Microsoft Windows (via the Cygwin emulator). The Moses online documentation covers the setup

process in Linux and OS X, but fails to detail the steps necessary to get everything running correctly in

Windows/Cygwin. See Appendix II for a detailed list of the changes that need to be made to accomplish

this.

The first step is to prepare the data to be used for training inputs. Here again we will be leveraging

work produced by Tiedemann as part of the OPUS project: each of the language pairs in the OpenSubs

corpus can be downloaded in a format easily processed by the language/phrase modeling tools. This

process will be clearest with a detailed chronology of the commands run from within a Cygwin Bash

shell, so the following narrative will be interspersed with blocks representing these command sequences.

Begin by creating a folder hierarchy within the main Moses directory, if these folders do not already

exist:

$ mkdir work/opus

Next, download the eng-fre.txt.gz sentence alignments from the OPUS/OpenSubs website

(located at http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php at the time of this writing).

http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php�

16

Uncompress eng-fre.txt into work/opus, and split it into parallel English and French text files, per

Moses’ training data requirements. OPUS provides a Perl script for this purpose, but we’ve provided a

Python script as well3

$ python linguassist/opus2moses.py work/opus/eng-fre.txt work/opus/corpus/eng-fre en
fr

:

After matching up the English and French sentences and discarding any that don't sync up, 216,418

sentence pairs remain in the eng-fre.en and eng-fre.fr files:

$ wc -l work/opus/eng-fre.en work/opus/eng-fre.fr
 216418 work/opus/eng-fre.en
 216418 work/opus/eng-fre.fr
 432836 total

The next step is to tokenize and normalize the input files, using the Moses scripts:

$ mkdir work/opus/corpus && mkdir work/opus/lm
$ cat work/opus/eng-fre.en | tools/scripts/tokenizer.perl -l en >
work/opus/corpus/eng-fre.tok.en
$ cat work/opus/eng-fre.fr | tools/scripts/tokenizer.perl -l fr >
work/opus/corpus/eng-fre.tok.fr
$ tools/scripts/lowercase.perl < work/opus/corpus/eng-fre.tok.en > work/opus/lm/eng-
fre.lowercased.en
$ tools/scripts/lowercase.perl < work/opus/corpus/eng-fre.tok.fr > work/opus/lm/eng-
fre.lowercased.fr

The Moses training walkthrough recommends filtering out all long sentences via the clean-corpus-

n.perl script. However, given the brief nature of most sentences in the OPUS corpus, this is unnecessary.

Once the data has been properly prepared, we can proceed to build the language model, using

SRILM:

$ tools/srilm/bin/cygwin/ngram-count -order 3 -interpolate -kndiscount -unk -text
work/opus/lm/eng-fre.lowercased.fr -lm work/opus/lm/opus.lm

This process results in a modest number of n-grams, but enough to give the system a decent workout:

$ head -n 5 work/opus/lm/opus.lm

\data\
ngram 1=49398
ngram 2=356029

3 As with the rest of the project’s source code, opus2moses.py is included in the Appendix.

17

ngram 3=168242

Now, we train the phrase model. As this process can take quite a long time and put a strain on the

CPU, the training walkthrough suggests running it in the background and via the nice priority scheduler.

(Note also that the training walkthrough identifies this script as train-factored-phrase-model.perl,

but in recent exports from the central repository, it seems to have been renamed to simply train-

model.perl):

$ nohup nice tools/moses-scripts/scripts-20100605-2158/training/train-model.perl -
scripts-root-dir tools/moses-scripts/scripts-20100605-2158/ -root-dir work/opus -
corpus work/opus/corpus/eng-fre.lowercased -f en -e fr -alignment grow-diag-final-and
-reordering msd-bidirectional-fe -lm 0:3:/cygdrive/c/LingMA/moses/work/opus/lm/opus.lm
>& work/opus/training.out

The end result, after about an hour of processing, will be complete language and phrase models in the

work/opus folder. We will return to these models in the next chapter.

18

CHAPTER 3: TERM LOOKUP AND TRANSLATION

Once the input formats and Moses training data are ready, the second task to be addressed by the new

system is the identification and treatment of vocabulary items of instructional interest.

At a high level, this module has three inputs and a single output format:

We can visualize Step 2 as a black box taking in an EFR segmentation file, a TBX file of

terminological data, and a Moses configuration file pointing to the language and phrase models generated

in Step 1. The system analyzes these inputs and produces one or more output files in a specialized TBX

TML developed specifically for this project, MNF (Mapped iNterchange Format). This format is basically

a superset of TBX-Basic, with a few custom data categories to maintain information linking term

concepts with their in-context lexical items. This will make the process of contextual glossary generation

in Step 3 much simpler, as the outputs of both the term-lookup and machine-translation processes will

retain information about which segments contain which lexical items. Inside this black box, this module

actually consists of three distinct processes:

1. Term lookup

2. Machine translation of the lexical items of interest not found in the termbase

19

3. Post-processing of the machine translation output

3.1. TERM LOOKUP. Once the data sources are prepared, the first step to producing a new glossary is to

process the EFR segfile, looking for those lexical items identified by the instructor to receive glossary

treatment. This is done via the Linguassist.py script, the full source of which is located in Appendix 1.

Linguassist performs three basic steps:

1) Parse the EFR Segfile and identify all marked-up lexical items of interest

2) Load the TBX file and query it for matches from these items

3) Output the list of terms it found, and the list of items it failed to find

The Segfile parsing is done by a helper module, segfile/parser.py. Its algorithm is pretty

straightforward: for each film segment it finds, it looks for the pseudo-XML <item> start and end tags. If

found, it extracts the lexical item embodied by these tags and indexes it for easy retrieval later on. It also

stores the full transcript for that segment, as well as its timecode and title, in case these are needed later.

The TBX parsing is also accomplished by a helper module, TBX/parser.py. As with the Segfile

parser, it is quite straightforward. In fact, the current incarnation is perhaps overly simplistic in its TBX

parsing, and will fail to capture any additional information beyond source and target terms, languages,

and subject field. Future iterations of the parser should capture the full breadth of information contained

in the provided TBX file, whatever its source. That said, this version captures the essential information.

Once Segfile and TBX are parsed, the rest is trivial: Linguassist iterates through the list of items of

interest provided by the Segfile, and queries the TBX class for a match. This querying mechanism isn’t

sophisticated, but simply does a lexical string match; future versions would do well to implement some

level of BASE FORM REDUCTION (BFR)4

4 Without BFR, the lookup is constrained to the specific lexical representation found in the source text. More
accurate results can be achieved by including references to a term’s alternate forms in the termbase.

. If a match is found, the term and its originating context are

20

output to a ‘hit-list’ file in MNF format, which can be merged with the MNF file produced by the Moses

post-processing; see section 3.3 for more on this.

Any lexical items which cannot be found in the provided TBX termbase are output to a ‘missed-list’

flat file, in a format suitable for automated translation via the Moses decoder.

3.2. MACHINE TRANSLATION. Moses operates on files in the same basic format as the language modeling

tools discussed in Chapter 2: Data Preparation: plain text, one sentence per line, tokenized and normalized

to lower case. The Moses input file generated by Linguassist has two additional features that will be

important when post-processing the Moses output: first, the term of interest is identified by XML-style

start and end <item> tags, so it can be extracted from the output translation (we keep the lexical item in

its full sentence context to give Moses enough information to translate more accurately). The second

addition to the standard input format comes at the end of each line: <src>, another XML tag. This tag

contains a comma-delimited list of segment IDs where that lexical item is found in the original text. This

is how the software determines which glossary entries to highlight during any given segment of the film,

as we will see in Chapter 4: Iteration and Improvement.

Figure 6 shows a sample line from a Moses input file that contains this additional XML markup,

along with its corresponding output line:

Figure 6: Sample Moses input and output line with XML markup

The most famous <item> pirate </item> in his time . My dad told me all about him .
<src>225,228,1261,1263,1448,1455</src>

le plus célèbre <item> pirate </item> dans son temps . mon père m ' a raconté son
histoire <src>225,228,1261,1263,1448,1455</src> .

Note that the two tags make different use of whitespace: the start and end <item> tags don’t touch the

lexical item they contain, or the text on either side thereof. The <src> tag is offset from the rest of the

21

sentence, but its content must not contain any whitespace, lest it be treated as text to be translated. This is

due to the way Moses handles XML markup. The -xml-input command-line parameter can explicitly

direct the decoder to include, exclude, or ignore any markup, but by default, XML tags are treated as

pass-through. That is, Moses will ignore the tags when translating, but attempts to re-insert the markup

in the appropriate places in the output sentences. That means that the translation of the lexical item should

still be marked with <item> tags, making it easy to parse out of the full sentence, and the <src> tag should

still be at the end of the string, leaving the sentence uninterrupted. In the next section, we will make use

of both of these features.

3.3. POST-PROCESSING OF MOSES OUTPUT. Once the Moses decoder has given its best efforts to translate

the input sentences it was given, we feed the input and output files into our next tool, Moses2MNF. This

script lines up the source and target sentence pairs, finds the marked-up term in each, and uses them as the

basis for a collection of new <termEntry> elements, as exemplified in Figure 7:

Figure 7: Moses input, output, and the resulting MNF

// Moses input sentence:

setting <item> booby traps </item> so anybody who tried to get in would die .
<src>254,255,787,788,792,809,971,1338,1340,1341</src>

// Moses output sentence:

<item> des pièges </item> si quelqu ' un qui a essayé de mourrait .
<src>254,255,787,788,792,809,971,1338,1340,1341</src>

// Generated MNF term entry:

<termEntry id="booby_traps">
 <descrip type="subjectField">General</descrip>
 <admin type="sourceSegment">254</admin>
 <admin type="sourceSegment">255</admin>
 <admin type="sourceSegment">787</admin>
 <admin type="sourceSegment">788</admin>
 <admin type="sourceSegment">792</admin>
 <admin type="sourceSegment">809</admin>
 <admin type="sourceSegment">971</admin>
 <admin type="sourceSegment">1338</admin>
 <admin type="sourceSegment">1340</admin>
 <admin type="sourceSegment">1341</admin>
 <langSet xml:lang="en">
 <tig>
 <term>booby traps</term>

22

 <descrip type="context">setting booby traps so anybody who tried to
get in would die .</descrip>
 </tig>
 </langSet>
 <langSet xml:lang="fr">
 <tig>
 <term>des pièges</term>
 <descrip type="context">des pièges si quelqu ' un qui a essayé de
mourrait .</descrip>
 </tig>
 </langSet>
</termEntry>

These MNF files contain all of the information necessary to create simple contextual glossaries for an

EFR: term representation in the source and target languages, an in-context usage of that term in each

language, and references to the segment IDs where those lexical items originated. This process will be

discussed in greater detail in the next chapter.

23

CHAPTER 4: ITERATION AND IMPROVEMENT

Once the main tasks of termbase lookup and machine translation are finished, all that remains is to

make use of the results.

As discussed in Chapter 3: Term Lookup and Translation, the main outputs of the processes

comprising Step 2 are one or more MNF files, representing the translations of the lexical items identified

by the instructor for glossary treatment. To make use of these entries, they must first be converted into a

format usable by the rest of the EFR authoring toolchain. Additionally, we want to load the results from

the Moses translation piece back into the centralized TBX data store in order to enable quicker and more

accurate glossary creation in subsequent iterations.

4.1. CONVERTING TO VOCTABLE FORMAT. With the MNF data generated in Step 2, the process of

building the EFR VocTable is quite straightforward. As discussed in Chapter 2: Data Preparation, the

EFR VocTable format is row-based, each row indicating a unique entry. The basic format includes

segmentation information for the film being treated, one word on each line. If that word constitutes the

HEAD WORD of a lexical item, the row then includes an additional 9 columns of terminological

information about that item (or simply a previously-defined term’s concept ID). When MNF data is

converted to this format, it should look something like Table 3:

24

Table 3: Abbreviated VocTable CSV

Chapter# Token# Token Utterance ID Concept ID Translation Images

1 1 pirate T225 pirate.1 pirate pirate.png

1 2 pirate T228 pirate.1 … …

1 3 pirate T1261 pirate.1

 … … …

2 7 booby T254 booby_traps.1 des pièges trap.png

2 8 booby T255 booby_traps.1 … …

2 9 booby T787 booby_traps.1

The original VocTables created by the EFR system had complete coverage for the film transcript,

covering every token in the entire film from beginning to end. However, this was more as a help to the

content developer than it was necessary to the glossary-generation code. The tables produced by

MNF2VocTable, consequently, include only those rows that directly contribute to the glossary output.

Even with this difference, however, the resulting VocTable CSV file is fully compatible with the legacy

EFR system’s glossary generator. Future efforts may replace that application as well, but such efforts are

outside the scope of this project.

4.2. RE-SEEDING THE TBX DATA STORE. If a commercial software package is being used for terminology

management, this is quite straightforward. Since the MNF format is a superset of TBX, it can be easily re-

ingested by the termbase, integrating any of the outputs from Moses that the content developer feels are of

sufficient quality. A new export from the termbase can then be made for any subsequent EFR film

treatment, which will enable the content developer to capitalize on the results of the previous generation.

25

It is expected that this process of continually re-seeding the termbase with machine-produced, human-

approved result sets will, over time, have a significant impact on EFR development time.

26

CHAPTER 5: CONCLUSIONS

5.1. ANALYSIS OF RESULTS. This project was envisioned as a way to reduce the time and effort involved

in the creation of EFR film annotations. The logical question to ask at this point is, did it accomplish that

goal?

The first aim of the project was to “provide a full replacement for all current functionality.” This has

been accomplished, as anything that could be done manually previously (film segmentation, term lookup,

translation suggestion) has a counterpart in the new system.

The next goal of the project was to automate the lookup of lexical items in a termbase. As Section 3.1

described, this has been achieved in a limited form, albeit without any kind of base form reduction, which

would render the lookup much more intelligent. A possible workaround was suggested, in which all

inflected forms of a lexical items are included as alternate forms for the concept entry, but this is an

imperfect solution at best.

Third, the project set out to automate the suggestion of context-sensitive translations for lexical items

in need of treatment. This has been accomplished via the Moses invocation methodology outlined in

Sections 3.2 and 3.3.

The final goal of the project was to create a means whereby a termbase could be enriched via

incorporation of machine-suggested translations. As Section 4.2 indicated, this is accomplished via the

tool chain’s ability to convert the Moses input/output files into a TBX-compatible format, which can then

be easily imported into most terminology management packages. This is perhaps the most powerful and

immediately useful of the tools created as part of this effort.

5.2. PROGRAM PORTABILITY. The scripts created for this project were written in such a way that many of

them can be run independently, without needing to commit to the entire tool chain as a whole. Some

examples may serve to best explain under what conditions this would be fruitful.

27

The XCES2Seg tool, written to quickly convert an OPUS transcript file into EFR-segfile format, is

useful for anyone looking to create an Electronic Film Review for a film covered by the OpenSubs

corpus, whether or not they intend to use it for targeted language instruction. As a standard, EFR was

created for many types of customized video playback. Beyond the “study lab” application of immediate

concern to this project, the software has been successfully used in classroom lectures, theater screenings,

and even private home viewings. The ability to quickly create a starting EFR is therefore of interest to a

broader audience.

Similarly, the CSV2MRC tool enables the efficient creation of a barebones TBX-Basic file, which could

be used to quickly seed a beginning termbase, or any other purpose for which a TBX data file could be

used. This therefore provides a useful entry point for newcomers to terminology management, who may

have yet to commit to a full-fledged termbase solution.

In the course of tool creation, standalone parsers for both TBX and EFR-Segfile were produced.

These could both be reused in future Python applications or command-line-based toolchains where either

of those formats is required, which little to no modification necessary.

Finally, the XLIFF.py module, which contains conversion routines for both OPUS-to-XLIFF and

XLIFF-to-Moses transformation paths, could be reused when interaction with XLIFF (XML Localisation

Interchange File Format) data is desired. A standard produced by the Organization for the Advancement

of Structured Information Standards (OASIS), XLIFF has significant support within the localization

community, and this module allows developers to move data in and out of that format. Localization data

originally in an unrelated format could, for example, be used to generate Moses training data that may be

a better fit for a given application than the data in the OpenSubs corpus. The XLIFF.py module could also

be used to transform OpenSubs data files into XLIFF for use in an application wholly unrelated to EFR

creation.

28

5.3. FUTURE WORK. Although, as has been mentioned already, film transcripts are often quite difficult to

treat, part of the data preparation and term identification process could be automated with some simple

segment processing. For instance, a segfile pre-processor could be created to automatically recognize and

flag certain classes of items such as proper names, ordinal numbers, expletives and other STOP WORDS

(i.e. those words in a language whose purpose is largely pragmatic, rather than informational). This would

potentially make it easier for a future system to offer suggestions about lexical items to be treated, rather

than relying solely upon the instructor to identify these manually.

Another simple improvement to the segfile processor would be to have it scan the text for repeat uses

of lexical items identified by the instructor in previous segments. Thus a given lexical item would only

need to be flagged once in order to be presented to the student at every subsequent occurrence throughout

the film. The benefit of such a pre-processor would, however, hinge on its ability to correctly determine

different contextual meanings for the same lexical item.

The benefits of the terminology lookup step could be increased dramatically if coupled with a good

base form reduction algorithm. This would eliminate the need for inclusion of all alternate forms in the

termbase’s concept entries, which in turn would result in less redundancy in any produced glossary

entries.

A similar performance improvement could be achieved if, instead of relying on user-supplied TBX

files, the system could access a centralized, internet-accessible termbase (Melby, Fields and Carmen

2006). Once vocabulary items have been identified—by either the system or the user—a database lookup

could be performed. If that lexical item has been previously treated and uploaded by anyone, the software

can alert the content developer to its availability. They can then simply link to the existing treatment,

saving the user the trouble of writing it themselves, or they can create an alternate treatment if desired.

The instructor may elect to upload the information they create back into the central termbase, thus

facilitating the treatment of future instances of that same vocabulary item by others. Over time, as the

29

central termbase grows, one could reasonably expect that the term lookup and definition steps will

become more and more efficient, as each new user will be able to leverage the work of those that have

come before.

Finally, the benefits of the new system outlined herein should be rigorously evaluated by those

qualified to do so: content developers. Specifically, two points of evaluation could and should be made by

future researchers:

1) Is this new system more user-friendly, that is, can curriculum developers be trained more quickly

and effectively in its use?

2) Does this new system lower the barrier to entry for EFR creation, allowing more content

developers to more easily produce their own Electronic Film Reviews?

Ultimately, if the EFR approach is to be successful in the long term, these questions must be

addressed. It is the author’s hope that this project will be a positive step in that direction.

30

REFERENCES

Boulianne, G., et al. "Computer-assisted closed-captioning of live TV broadcasts in French." Ninth

International Conference on Spoken Language Processing. Pittsburgh: ISCA, 2006. 273-276.

Bush, Michael, Alan K. Melby, Thor Anderson, Jeremy Browne, and Merrill Hansen. "Customized

Video Playback: Standards for Content Modeling and Personalization." Educational Technology 44

(2004): 5-13.

Cautrell, Annie. "ESL Vs. EFL: What's the Difference?" Associated Content. August 02, 2007.

http://www.associatedcontent.com/article/334179/esl_vs_efl_whats_the_difference.html?cat=4 (accessed

08 01, 2010).

EFR Team, Brigham Young University. "The EFR Project." The EFR Project Web Page. May 17,

2006. http://efr.byu.edu/ (accessed 08 01, 2010).

Jang, Photina Jaeyun, and Alexander G. Hauptmann. "Improving acoustic models with captioned

multimedia speech." IEEE International Conference on Multimedia Computing and Systems. Florence:

Carnegie Mellon University, 1999. 767-771.

Keeler, Farrah D.B. Developing an Electronic Film Review for October Sky. Unpublished master’s

thesis. Provo, Utah: Brigham Young University, 2005.

Kramsch, Claire, and Roger W. Andersen. "Teaching Text and Context Through Multimedia."

Language Learning & Technology 2, no. 2 (January 1999): 31-42.

Li, Huiping, David Doermann, and Omid Kia. "Automatic text detection and tracking in digital

video." IEEE Transactions on Image Processing 9, no. 1 (2000): 147-156.

31

Lin, Tong, and Hong-Jiang Zhang. "Automatic video scene extraction by shot grouping." 15th

International Conference on Pattern Recognition (ICPR'00). Barcelona: IEEE Computer Society, 2000.

4039.

LISA. Term Base eXchange (TBX). Romainmôtier: Localization Industry Standards Association,

2008.

Melby, Alan K. "TBX-Basic Translation-Oriented Terminology Made Simple." Revista Tradumàtica,

2009.

Melby, Alan K., Paul J. Fields, and Marc Carmen. "Language Databases, Statistics and Social

Networks." LACUS Forum XXXII. Hanover: Dartmouth College, 2006. 133-143.

Melby, Alan Kenneth. "The EFR (Electronic Film Review) approach to using video in education."

Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications.

2004. 593-597.

Mora, Jill Kerper. "Methods of Second-Language Teaching." MoraModules. July 25, 1998.

http://www.moramodules.com/L2MethodsMMdl/Default.htm (accessed June 25, 2010).

Och, Franz Josef, and Hermann Ney. "A Systematic Comparison of Various Statistical Alignment

Models." Computational Linguistics 29 (March 2003): 19-51.

Secules, Teresa, Carol Herron, and Michael Tomasello. "The Effect of Video Context on Foreign

Language Learning." The Modern Language Journal 76, no. 4 (1992): 480-490.

Tiedemann, Jörg. "News from OPUS - A Collection of Multilingual Parallel Corpora with Tools and

Interfaces." In Recent Advances in Natural Language Processing, by N. Nicolov, K. Bontcheva, G.

Angelova and R. Mitkov, 237-248. Amsterdam: John Benjamins, 2009.

32

Zhu, Weiyu, Candemir Toklu, and Shih-Ping Liou. "Automatic news video segmentation and

categorization based on closed-captioned text." 2001 IEEE International Conference on Multimedia and

Expo (ICME'01). Tokyo: IEEE Computer Society, 2001. 211.

33

APPENDIX I: SOURCE CODE

The full Python 2.4 source code is included here for reference. The most current version of the

software will also be available for electronic download at http://www.ttt.org/efr and http://buyog.com/efr.

A1.1. XCES2SEG: convert OPUS-style XCES script alignment files to EFR’s Segfile format

#!/usr/bin/env python
"""XCES2Seg: processes an XCES file and produces a parallel file in EFR segmentation
format.

Usage: xces2seg.py -i [XCES file] -o [EFR segfile]
"""

import sys
import codecs
import os
import re
import getopt
import xml.etree.ElementTree as et

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "i:,o:,v:,t:,l:,d:")
 except getopt.error, msg:
 print __doc__
 print "\nParameter error(s):"
 print msg
 sys.exit(1)

 if opts:
 # get user-defined params in a more useful format
 params = opts_to_dict(opts)

 # ensure all required params have been provided and are valid
 validation_errors = validate_params(params)

 # if any (required) parameters are missing, terminate and report
 if validation_errors:
 print __doc__
 print "\nValidation error(s):"
 print '\n'.join(validation_errors)
 return 1

 # validation passed; proceed
 try:
 process(params)
 except Exception, e:
 print "Process failed!\n\nDetails: %s" % e

 else:
 print __doc__

def opts_to_dict(opts):
 """Takes an array of tuples, as returned by getopt,

http://www.ttt.org/efr�

34

 and returns a dict of corresponding name-value pairs"""
 params = {
 "xces_file": "",
 "seg_file": ""
 }
 for opt in opts:
 if opt[0] == "-i":
 params['xces_file'] = opt[1]
 elif opt[0] == "-o":
 params['seg_file'] = opt[1]
 elif opt[0] == "-v":
 params['dvdid'] = opt[1]
 elif opt[0] == "-t":
 params['title'] = opt[1]
 elif opt[0] == "-l":
 params['lang'] = opt[1]
 elif opt[0] == "-d":
 params['domain'] = opt[1]

 return params

def validate_params(params):
 """Takes a dict of name-value pairs representing command-line params,
 and validates that all required params are present and valid.
 Returns an array of error strings"""
 errors = []

 # check xces file
 if not params['xces_file']:
 errors.append("Missing XCES input file")
 elif not os.path.exists(params['xces_file']):
 errors.append("Specified XCES input file not found")

 # check segfile
 if not params['seg_file']:
 errors.append("Missing EFR segmentation file")
 elif not os.path.exists(params['seg_file']):
 errors.append("Specified EFR segmentation file not found")

 return errors

def process(params):
 """Main program loop; takes parameter dictionary as its sole input,
 and returns 0 if successful."""

 # load & parse the XCES
 raw_xml = et.parse(params['xces_file']).getroot()
 sentences = raw_xml.findall("s") # get all sentences

 # write segfile header
 fOut = codecs.open(params['seg_file'], 'w', 'utf-16')
 fOut.write("//MediaID:%s\n" % params.get('dvdid','nnnnnnnnnnnnnnnn'))
 fOut.write("//Title:%s\n" % params.get('title','1'))
 fOut.write("//Language:%s\n" % params.get('lang','en-US'))
 fOut.write("//subjectField:%s\n" % params.get('domain','General'))

 # for each sentence in the XCES:
 itr = sentences.__iter__()
 try:
 count = 0
 while 1:

35

 time0 = time1 = id = None
 allText = ''
 while not time1:
 t0, t1, id, words = getSentence(itr.next())
 if t0:
 time0 = t0
 if t1:
 time1 = t1
 allText = ' '.join([allText,words])

 smpte0 = timeToSmpte(time0)
 smpte1 = timeToSmpte(time1)
 f0 = smpteToFrameCode(smpte0)
 f1 = smpteToFrameCode(smpte1)
 fOut.write("%d-%d (%s - %s)\n" % (f0, f1, smpte0, smpte1))
 fOut.write("Scene %s\n" % id)
 fOut.write("//T:%s\n\n" % allText)
 count += 1

 except StopIteration:
 print "Found %d segments." % count

 except:
 print "Error while parsing XCES input:\n", sys.exc_info()

 fOut.close()
 return 0

def getSentence(s):
 # start <time>
 time0 = time1 = id = None
 if s[0].tag == 'time':
 time0 = s[0].get('value','00:00:00,00')
 id = s[0].get('id','TS')[1:-1]

 # child <w>ords
 words = s.findall("w")
 alltext = ' '.join([w.text for w in words])

 # end <time>
 if s[-1].tag == 'time':
 time1 = s[-1].get('value','00:00:00,00')

 return time0, time1, id, alltext

def smpteToFrameCode(smpte):
 t = smpte.split(':')
 h = int(t[0]) * 108000
 m = int(t[1]) * 1800
 s = int(t[2]) * 30
 f = int(t[3])
 return h+m+s+f

def timeToSmpte(timeStr):
 if timeStr.find(',') > -1:
 t = timeStr.split(',')
 return "%s:%d" % (t[0], int(t[1])*3/100)
 else:
 return timeStr

if __name__ == '__main__':
 main()

36

A1.2. CSV2MRC: convert CSV-style tabular data into the MRC TermTable format (which can then be

transformed into TBX; see http://www.ttt.org/tbx/ for tools and documentation)

#!/usr/bin/env python
"""Produce MRC termbase files from a basic 4-column format
(subjectField,partOfSpeech,srcLang,tgtLang)

Usage: csv2mrc.py [input_file] [output_file]
"""

import sys
import os
import time

logLevel = ['Info','Warning','Error']
def _log(f, lvl, msg):
 f.write("%s [%s] %s\n" % (time.strftime("%H:%M:%S"), logLevel[lvl], msg))

def main():
 if len(sys.argv) > 2:
 args = sys.argv[1:]
 else:
 print __doc__,
 return 1

 if os.path.exists(args[0]):
 try:
 fIn = open(args[0], 'r')
 fOut = open(args[1], 'w')
 fLogOut = open(args[0]+'.log', 'w')

 srcText = tgtText = srcContext = tgtContext = ""
 iCount = 0

 # parse header line
 csvhead = fIn.readline()
 columns = csvhead.strip().split('\t')
 writeHeader(fOut, columns[2])

 while 1:
 line = fIn.readline()
 if not line: break

 #fLogOut.write("-> got line: '%s'\n" % line.strip())

 if not line.strip():
 #ignore blank lines
 pass

 else:
 #_log(fLogOut,1,"Unmatched line: '%s'" % line)
 cells = line.strip().split('\t')
 iCount += 1

 conceptId = "C%03d" % iCount

http://www.ttt.org/tbx/�

37

 fOut.write("%s\tsubjectField\t%s\n" % (conceptId,cells[0]))
 fOut.write("%s%s1\tterm\t%s\n" % (conceptId,columns[2],cells[2]))
 fOut.write("%s%s1\tpartOfSpeech\t%s\n" %
(conceptId,columns[2],cells[1]))
 fOut.write("%s%s1\tterm\t%s\n" % (conceptId,columns[3],cells[3]))
 fOut.write("%s%s1\tpartOfSpeech\t%s\n" %
(conceptId,columns[3],cells[1]))

 fOut.write('\n')

 except:
 print "offending line:'%s' (len:'%d')" % (line,len(line))
 print sys.exc_info()

 # write any end matter
 writeRespPerson(fOut)

 fIn.close()
 fOut.close()

def writeHeader(file, srcLang):
 file.write("=MRCtermTable\n")
 file.write("A\tworkingLanguage\t%s\n" % srcLang)
 file.write("A\tsourceDesc\tOpenSubs subtitle translations\n")

def writeRespPerson(file):
 file.write('\n')
 file.write("R001\ttype\tperson\n")
 file.write("R001\tfn\tRyan Corradini\n")
 file.write("R001\temail\tryancorradini@yahoo.com\n")
 file.write("R001\ttitle\tEFR software engineer\n")

if __name__ == '__main__':
 main()

A1.3. TBX PARSER: helper class, used by Linguassist (see A1.4) and MNF2VocTable (see A1.8).

#!/usr/bin/env python
"""Parses TBX file and provides term-lookup method to calling code.

Usage: parser.py [TBX file]
"""

import sys
import os
import re
import xml.etree.ElementTree as et

XML namespace
__ns = 'http://www.w3.org/XML/1998/namespace'
__ns_esc = '{'+__ns+'}'

def parse(filename, mnf=False):
 termEntries = {}; indices = {}
 if os.path.exists(filename):
 try:
 raw_xml = et.parse(filename).getroot()

38

 entries = raw_xml.findall("text/body/termEntry")
 print "Got %d term entries." % len(entries)

 for entry in entries:
 id = entry.get("id")
 if id:
 if not id in termEntries:
 entryInfo = getTermEntryInfo(entry)
 if entryInfo:
 termEntries[id] = entryInfo
 for lang in entryInfo['langSets']:
 ls = entryInfo['langSets'][lang]
 for tigID in ls['tigs']:
 tig = ls['tigs'][tigID]
 langCode = ls['lang']
 if not langCode in indices:
 indices[langCode] = {}
 indices[langCode][tig['term'].lower()] = id
 else:
 print "Duplicate termEntry id:", id
 else:
 print "No termEntry id; skipping this entry"

 except:
 print "Error processing TBX:\n", sys.exc_info()
 return None, None

 return (termEntries, indices)

def getTermEntryInfo(termEntryNode):
 entryInfo = {'id': termEntryNode.get("id"),
 'term_index':{},
 'langSets':{},
 'metadata':[]}
 currLangSet = None
 currGrp = None
 currTig = None
 currLevel = entryInfo

 itr = termEntryNode.getiterator()
 for el in itr[1:]: # ignore the termEntry node
 if el.tag == "langSet":
 # close out the current langSet, if there is one, and create a new one
 if currLangSet:
 if currLevel == currTig:
 if currGrp:
 currTig['metadata'].append(currGrp)
 currGrp = None
 currLangSet['tigs'][currTig['id']] = currTig
 currTig = None
 if currGrp:
 currLangSet['metadata'].append(currGrp)
 currGrp = None

 entryInfo['langSets'][currLangSet['lang']] = currLangSet
 currLangSet = {"lang":el.get(__ns_esc+"lang"),'metadata':[],'tigs':{}}
 currLevel = currLangSet

 elif el.tag[-3:] == "Grp":
 # nested element
 if currGrp:
 currLevel['metadata'].append(currGrp)
 currGrp = {}

39

 elif el.tag[-3:] == 'tig':
 if currTig:
 currLangSet['tigs'][currTig['id']] = currTig
 currTig = None
 currTig = {"id": el.get('id'),'metadata':[],'term':None}
 currLevel = currTig

 elif el.tag == 'term':
 if not currTig:
 if 'term' in currLevel:
 currTig = currLevel
 else:
 currTig = {'id':None,'term':None,'metadata':[]}
 currTig['term'] = el.text
 entryInfo['term_index'][currLangSet['lang']] = el.text

 elif 'type' in el.keys():
 # basic element
 if currLevel:
 currLevel['metadata'].append({el.get('type'):el.text})

 else:
 # everything is attached to the term entry itself
 print "unhandled tag:",el

 # close out the last remaining langSet, Group, whatever
 if currLangSet:
 if currLevel == currTig:
 if currGrp:
 currTig['metadata'].append(currGrp)
 currGrp = None
 currLangSet['tigs'][currTig['id']] = currTig
 currTig = None
 if currGrp:
 currLangSet['metadata'].append(currGrp)
 currGrp = None

 entryInfo['langSets'][currLangSet['lang']] = currLangSet

 return entryInfo

if __name__ == '__main__':
 if len(sys.argv) > 2:
 args = sys.argv[1:]
 else:
 print __doc__,
 sys.exit(1)

 parse(args[0])

A1.4. EFR SEGFILE PARSER: Helper module for parsing EFR segfiles; used by A.1.5, Linguassist.

#!/usr/bin/env python

import os
import re

40

sTimecodeMatch = u"[0-9]{2}:[0-9]{2}:[0-9]{2}:[0-9]{2}"
reSegComment = re.compile(u"^//([a-z]+):(.*)$", re.I)
reSegHeader = re.compile(u"^[0-9]+-[0-9]+[]+\(%s[]*-[]*%s\)$" % (sTimecodeMatch,
sTimecodeMatch))

def parse(filename):
 "Reads in an EFR segmentation file and returns a list of the marked-up terms of
interest."
 doc_attrs = {}
 current_segment = {}
 target_terms = []
 segments = []
 in_header = True

 if os.path.exists(filename):
 fIn = open(filename, 'r')

 while 1:
 line = fIn.readline()
 if not line: break
 line = line.strip() # eliminate trailing whitespace

 if reSegComment.match(line):
 matches = reSegComment.findall(line)[0]
 if len(matches) >= 2:
 if in_header:
 # save whatever this is as document metadata
 doc_attrs[matches[0]] = matches[1]

 else:
 # save segment metadata
 current_segment[u'attrs'][matches[0]] = matches[1]

 # if this is a Transcript attribute, look for marked-up terms
of interest
 if matches[0] == u"T":
 termStart = matches[1].find(u"<item>")
 termEnd = matches[1].find(u"</item>")
 if termStart >= 0 and termEnd >= termStart:
 term = matches[1][termStart+6:termEnd].strip()
 target_terms.append(term)
 current_segment[u'target_terms'].append(term)

 elif reSegHeader.match(line):
 #print "... segment header"
 if in_header: in_header = False
 try:
 if current_segment:
 segments.append(current_segment)
 current_segment = {u'timecode':line, u'attrs':{}, u'target_terms':
[]}

 except:
 print "bad line: %s\n(Exception: %s)\n" % (line,
str(sys.exc_info()))

 elif line:
 if current_segment:
 current_segment['title'] = line

 else:
 # whitespace-only line: signals the end of the segment

41

 pass

 fIn.close()

 else:
 pass

 return doc_attrs, segments, target_terms

if __name__ == '__main__':
 import sys
 if len(sys.argv) >= 2:
 metadata, segs, terms = parse(sys.argv[1])
 print "Doc metadata:", metadata
 print "Terms of interest:", terms

 A1.5. LINGUASSIST: Processes an EFR segfile, identifying all marked-up lexical items of interest and

looking them up in the provided TBX termbase. Any items that are found are written out to a “hits” flat

file, and any that are not found are output to a “missed” file, to be processed by Moses.

#!/usr/bin/env python

"""LinguAssist: processes an EFR segmentation file, looking for matching terminology
in
the provided TBX termbase, and outputting two lists: a 'hit-list' terms that were
found in the termbase, and a 'miss-list' of terms that were not found, prepared
for input to the Moses machine translation system.

Usage: linguassist.py -s [segmentation file] -t [TBX termbase]
 -l [target lang] -h [hit-list filename] -m [miss-list filename]
"""

import sys
import codecs
import os
import re
import getopt
import segfile.parser as segparser
import TBX.parser as tbxparser

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "s:,t:,l:,h:,m:")
 except getopt.error, msg:
 print __doc__
 print "\nParameter error(s):"
 print msg
 sys.exit(1)

 if opts:
 # get user-defined params in a more useful format
 params = opts_to_dict(opts)

 # ensure all required params have been provided and are valid

42

 validation_errors = validate_params(params)

 # if any (required) parameters are missing, terminate and report
 if validation_errors:
 print __doc__
 print "\nValidation error(s):"
 print '\n'.join(validation_errors)
 return 1

 # validation passed; proceed
 try:
 process(params)
 except Exception, e:
 print "Process failed!\n\nDetails: %s" % e

 else:
 print __doc__

def opts_to_dict(opts):
 """Takes an array of tuples, as returned by getopt,
 and returns a dict of corresponding name-value pairs"""
 params = {
 "seg_file": "",
 "tbx_file": "",
 "tgt_lang": "",
 "out_hits": "",
 "out_missed": ""
 }
 for opt in opts:
 if opt[0] == "-s":
 params['seg_file'] = opt[1]
 elif opt[0] == "-t":
 params['tbx_file'] = opt[1]
 elif opt[0] == "-l":
 params['tgt_lang'] = opt[1]
 elif opt[0] == "-h":
 params['out_hits'] = opt[1]
 elif opt[0] == "-m":
 params['out_missed'] = opt[1]

 return params

def validate_params(params):
 """Takes a dict of name-value pairs representing command-line params,
 and validates that all required params are present and valid.
 Returns an array of error strings"""
 errors = []

 # check segfile
 if not params['seg_file']:
 errors.append("Missing EFR segmentation file")
 elif not os.path.exists(params['seg_file']):
 errors.append("Specified EFR segmentation file not found")

 # check TBX file
 if not params['tbx_file']:
 errors.append("Missing TBX termbase file")
 elif not os.path.exists(params['tbx_file']):
 errors.append("Specified TBX termbase file not found")

 # check target language

43

 if not params['tgt_lang']:
 errors.append("Missing target language")

 # check hits output file
 if not params['out_hits']:
 errors.append("Missing TBX hit-list file")

 # check MNF misses output file
 if not params['out_missed']:
 errors.append("Missing TBX miss-list file")

 return errors

def process(params):
 """Main program loop; takes parameter dictionary as its sole input,
 and returns 0 if successful."""

 print "--------------------\nRunning linguassist..."

 # load & index TBX
 print "\nParsing TBX:", params['tbx_file']
 entries, indices = tbxparser.parse(params['tbx_file'])
 #print entries['C070']
 #print indices['en']
 print "Done parsing TBX."

 # parse the segfile
 print "\nParsing segfile:", params['seg_file']
 metadata, segs, terms = segparser.parse(params['seg_file'])
 print "Processed %d segments, found %d lexical items of interest" %
(len(segs),len(terms))

 # custom subject field?
 srcLang = metadata.get('Language','en')[:2]
 tgtLang = params['tgt_lang'][:2]
 print "src/tgt languages:", srcLang, tgtLang
 subject = metadata.get("subjectField","")
 print "Custom subject field: %s" % subject

 # for each segment in the segfile:
 print "\nProcessing user-specified target terms..."
 fOutCsv = codecs.open(params['out_missed'], 'w', 'utf-16')
 fOutMnf = codecs.open(params['out_hits'], 'w', 'utf-16')
 for segment in segs:
 # for each target term:
 for term in segment['target_terms']:
 normalized = term.lower()
 #print "target term:", normalized
 # look up term+subjectField in TBX
 try:
 srcTag = "<src>%s</src>" % segment.get('title','')
 if normalized in indices[srcLang]:
 # if found, save reference to target term
 termEntry = entries[indices[srcLang][normalized]]
 tgtTerm = termEntry['term_index'][tgtLang]
 targetTerm = u"<item>%s</item>" % tgtTerm
 fOutMnf.write("%s %s\n" % (targetTerm,srcTag))
 else:
 # add to list for Moses input
 #print "Term not found in source index. Marking for submission to
SMT."
 termContext = segment[u'attrs'][u'T'] + ' ' + srcTag

44

 fOutCsv.write(unicode(termContext) + '\n')
 except:
 print sys.exc_info()

 fOutMnf.close()
 fOutCsv.close()

 print "\nDone."

if __name__ == '__main__':
 main()

A1.6. OPUS2XLIFF: takes a plain-text OPUS sentence alignment file and converts it into XLIFF

#!/usr/bin/env python

"""Produce an XLIFF document from an OpenSubtitles transcript alignment file.

Usage: xliff.py -a [opus2xliff | xliff2moses]
 -s [source_lang]
 -t [target_lang]
 [input_file]
 [output filename]
"""

import sys
import os
import re
import getopt
import time
import xml.etree.ElementTree as et

XLIFF namespace
__ns = 'urn:oasis:names:tc:xliff:document:1.2'
__ns_esc = '{'+__ns+'}'

logLevel = ['Info','Warning','Error']
def _log(f, lvl, msg):
 f.write("%s [%s] %s\n" % (time.strftime("%H:%M:%S"), logLevel[lvl], msg))

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "a:,s:,t:")

 except getopt.error, msg:
 print __doc__
 print "\nParameter error(s):"
 print msg
 return 1

 #print args, opts

 if opts:
 # get user-defined params in a more useful format
 params = opts_to_dict(opts)

 # validation passed; proceed

45

 try:
 # ensure all required params have been provided and are valid
 if validate_params(args, params):
 if params['action'] == 'opus2xliff':
 opus2xliff(args[0], args[1], params['src_lang'],
params['tgt_lang'])

 elif params['action'] == 'xliff2moses':
 xliff2moses(args[0], args[1])

 else:
 print __doc__
 print "Invalid action: %s" % params['action']
 return 1

 else:
 return 1

 except Exception, e:
 print "Process failed!\n\nDetails: %s" % e

 else:
 print __doc__

def opts_to_dict(opts):
 """Takes an array of tuples, as returned by getopt,
 and returns a dict of corresponding name-value pairs"""
 params = {
 "action": "",
 "src_lang": "",
 "tgt_lang": ""
 }
 for opt in opts:
 if opt[0] == "-a":
 params['action'] = opt[1]
 elif opt[0] == "-s":
 params['src_lang'] = opt[1]
 elif opt[0] == "-t":
 params['tgt_lang'] = opt[1]

 return params

def validate_params(args, opts):
 """Takes a dict of name-value pairs representing command-line params,
 and validates that all required params are present and valid.
 Returns an array of error strings"""
 errors = []

 # check action
 if not opts['action']:
 errors.append("Missing action")

 # only require src/tgt if in Opus2XLIFF mode
 if opts['action'] == 'opus2xliff':
 # check source language
 if not opts['src_lang']:
 errors.append("Missing source language")

 # check target language
 if not opts['tgt_lang']:
 errors.append("Missing target language")

46

 # check input file
 if len(args) < 1:
 errors.append("Missing input file")
 elif not os.path.exists(args[0]):
 errors.append("Specified input file not found")

 # check output file
 if len(args) < 2:
 errors.append("Missing output filename")

 # if any (required) parameters are missing, terminate and report
 if errors:
 print __doc__
 print "\nValidation error(s):"
 print '\n'.join(errors)
 return False

 return True

def opus2xliff(in_file, out_file, src_lang, tgt_lang):
 bndRex = re.compile('^=+$')
 srcRex = re.compile('^\(src\)="([0-9]+)">(.*)')
 tgtRex = re.compile('^\(trg\)="([0-9]+)">(.*)')

 if os.path.exists(in_file):
 fIn = open(in_file, 'r')
 fOut = open(out_file, 'w')
 fLog = open('opus2xliff.log', 'w')

 # write header
 fOut.write("<xliff version='1.2' xmlns='%s'>\n" % __ns)
 fOut.write("<file original='%s' datatype='plaintext' \n source-
language='%s' target-language='%s'>\n" % (in_file, src_lang, tgt_lang))
 fOut.write("<body>\n\t<group>\n")

 srcText = tgtText = srcContext = tgtContext = ""

 while 1:
 line = fIn.readline()
 if not line: break

 #fLog.write("-> got line: '%s'\n" % line.strip())

 if not line.strip():
 # blank lines mean the end of a film... clear our contexts
 srcText = tgtText = ""

 elif line[0] == '#': # e.g. '# xml/eng'
 # lines starting with # indicate new src/tgt filenames (and new group)
 if srcContext+tgtContext:
 srcContext = tgtContext = ""
 fOut.write("\t</group>\n<group>\n")

 elif bndRex.match(line):
 # new segment... flush whatever is in our segment buffers
 if srcText+tgtText:
 if srcText and tgtText:
 fOut.write("\t\t<trans-unit id='%s'>\n" % srcContext)
 fOut.write("\t\t\t<source>%s</source>\n" % srcText)
 fOut.write("\t\t\t<target>%s</target>\n" % tgtText)
 fOut.write("\t\t</trans-unit>\n")

47

 else:
 msg = "Ignoring incomplete segment (src:'%s'; tgt:'%s')" %
(srcText, tgtText)
 _log(fLog,1,msg)

 else:
 # In practice, these "empty segments" are really just an
 # artifact of the parsing process at the head of each film.
 # --> Safe to ignore.
 pass

 srcText = tgtText = ""

 elif srcRex.match(line):
 srcContext = srcRex.findall(line)[0][0]
 srcText += cleanXml(srcRex.findall(line)[0][1].strip())

 elif tgtRex.match(line):
 tgtContext = tgtRex.findall(line)[0][0]
 tgtText += cleanXml(tgtRex.findall(line)[0][1].strip())

 else:
 _log(fLog, 1,"Unmatched line: '%s'" % line)

 # write footer
 fOut.write("\t</group>\n</body>\n</file>\n</xliff>")

 print "Wrote output file %s" % out_file

 fIn.close()
 fOut.close()

 else:
 print "Error: Specified OpenSubs alignment file not found"

 pass

def xliff2moses(in_file, out_file_base):
 if os.path.exists(in_file):
 try:
 # parse input XLIFF
 et._namespace_map['xl'] = __ns
 xliff = et.parse(in_file).getroot()

 # open log file
 fLog = open('xliff2moses.log', 'w')

 # grab source/target language codes from XLIFF, use them to create the
output files
 fileTag = xliff.find(__ns_esc+'file')
 if fileTag:
 srcLang = fileTag.get('source-language')
 tgtLang = fileTag.get('target-language')
 errors = []
 if not srcLang:
 errors.append('XLIFF document is missing source-language attribute')
 if not tgtLang:
 errors.append('XLIFF document is missing target-language attribute')
 if errors:
 raise Exception('\n'.join(errors))
 except:
 exc = sys.exc_info()
 print "Failed to parse the specified XML.\n Details: %s\nLine #: %d" %

48

(exc[1], exc[2].tb_lineno)

 # successfully parsed the input; now chew through it to produce the outputs
 print "source lang: '%s'; target lang: '%s'" % (srcLang, tgtLang)
 out_path1 = '%s.%s' % (out_file_base, srcLang)
 out_path2 = '%s.%s' % (out_file_base, tgtLang)
 out_file1 = open(out_path1, 'w')
 out_file2 = open(out_path2, 'w')

 # grab all source/target elements from the XLIFF, and output them to the
src/tgt files
 xpath = 'ns:body/ns:group/ns:trans-unit'.replace('ns:',__ns_esc)
 terms = fileTag.findall(xpath)
 print "Got %d grouped translation units" % len(terms)
 _write_terms(terms, out_file1, out_file2, fLog)

 # now do it again for any ungrouped trans-units
 xpath = 'ns:body/ns:trans-unit'.replace('ns:',__ns_esc)
 terms = fileTag.findall(xpath)
 print "Got %d ungrouped translation units" % len(terms)
 _write_terms(terms, out_file1, out_file2, fLog)

 print "Wrote %s and %s output files." % (out_path1, out_path2)

 out_file1.close()
 out_file2.close()

 else:
 print "Error: Specified OpenSubs alignment file not found"

 return

def _write_terms(terms, out1, out2, fLog):
 for trans_unit in terms:
 try:
 src = trans_unit.findall(__ns_esc+"source")
 tgt = trans_unit.findall(__ns_esc+"target")
 if src and tgt:
 for l in src: out1.write(l.text.encode("UTF-8"))
 out1.write('\n')

 for l in tgt: out2.write(l.text.encode("UTF-8"))
 out2.write('\n')
 else:
 _log(fLog,1,"missing src or tgt for this trans_unit (id: %s)" %
trans_unit.get("id"))
 except Exception, e:
 msg = "Skipped this trans-unit (id: %s) (error: %s)" %
(trans_unit.get("id"), e)
 _log(fLog,1,msg)

def cleanXml(content):
 temp = content.replace('&','&')
 temp = temp.replace('>','>')
 temp = temp.replace('<','<')

 return temp

if __name__ == '__main__':
 main()

49

A1.7. XLIFF2MOSES: splits an XLIFF bitext into source/target language files to use in Moses training

(This routine is part of the same source code as A1.6, OPUS2XLIFF)

A1.8. MOSES2MNF: correlate Moses input and output files into a unified MNF file

#!/usr/bin/env python

"""Produce a TBX file in the MNF (Mapped iNterchange file) schema, given parallel
input and output files from Moses.

Usage: Moses2MNF.py -i [moses_input_file] -o [moses_output_file] -m [target_mnf_file]
 -s [source lang] -t [target lang]
"""

import sys
import os
import re
import codecs
import getopt

TBXHeader = """<?xml version='1.0' encoding="UTF-16"?>
<!DOCTYPE martif SYSTEM "TBXcoreStructV02.dtd">
<martif type="TBX" xml:lang="en">
 <martifHeader>
 <fileDesc><sourceDesc><p>__FILENAME__</p></sourceDesc></fileDesc>
 <encodingDesc>
 <p
type="XCSURI">http://www.lisa.org/fileadmin/standards/tbx/TBXXCSV02.xcs</p>
 </encodingDesc>
 </martifHeader>
 <text>
 <body>"""

MNFSegmentRef = "<admin type='sourceSegment'>__SEGID__</admin>"
MNFEntry = """
<termEntry id="__ID__">
 <descrip type="subjectField">__SUBJECT_FIELD__</descrip>
 __SEGMENTS__
 <langSet xml:lang="__LANG0__">
 <tig>
 <term>__TERM0__</term>
 <descrip type="context">__CTX0__</descrip>
 </tig>
 </langSet>
 <langSet xml:lang="__LANG1__">
 <tig>
 <term>__TERM1__</term>
 <descrip type="context">__CTX1__</descrip>
 </tig>
 </langSet>
</termEntry>"""

TBXFooter = "</body></text></martif>"

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "i:,o:,m:,s:,t:")

50

 except getopt.error, msg:
 print __doc__
 print "\nParameter error(s):"
 print msg
 return 1

 if opts:
 # get user-defined params in a more useful format
 params = opts_to_dict(opts)

 # validation passed; proceed
 try:
 # ensure all required params have been provided and are valid
 if validate_params(args, params):
 moses2mnf(args,params)

 else:
 return 1

 except Exception, e:
 print "Process failed!\n\nDetails: %s" % e

 else:
 print __doc__

def opts_to_dict(opts):
 """Takes an array of tuples, as returned by getopt,
 and returns a dict of corresponding name-value pairs"""
 params = {
 "in_file": "",
 "out_file": "",
 "mnf_file": "",
 "src_lang": "",
 "tgt_lang": ""
 }
 for opt in opts:
 if opt[0] == "-i":
 params['in_file'] = opt[1]
 elif opt[0] == "-o":
 params['out_file'] = opt[1]
 elif opt[0] == "-m":
 params['mnf_file'] = opt[1]
 elif opt[0] == "-s":
 params['src_lang'] = opt[1]
 elif opt[0] == "-t":
 params['tgt_lang'] = opt[1]

 return params

def validate_params(args, opts):
 """Takes a dict of name-value pairs representing command-line params,
 and validates that all required params are present and valid.
 Returns an array of error strings"""
 errors = []

 # check Moses in-file
 if not opts['in_file']:
 errors.append("Missing Moses in-file")

 # check Moses out-file
 if not opts['out_file']:
 errors.append("Missing Moses out-file")

51

 # check Moses in-file
 if not opts['mnf_file']:
 errors.append("Missing target MNF filename")

 # check source lang
 if not opts['src_lang']:
 errors.append("Missing source language")

 # check target lang
 if not opts['tgt_lang']:
 errors.append("Missing target language")

 # if any (required) parameters are missing, terminate and report
 if errors:
 print __doc__
 print "\nValidation error(s):"
 print '\n'.join(errors)
 return False

 return True

def moses2mnf(args,params):
 fIn = codecs.open(params['in_file'],'r',encoding='utf-8')
 fOut = codecs.open(params['out_file'],'r',encoding='utf-8')
 fMnf = codecs.open(params['mnf_file'],'w',encoding='utf-16')

 newFilename = "%s/%s" % (params['in_file'],params['out_file'])
 fMnf.write(TBXHeader.replace("__FILENAME__",newFilename))

 while 1:
 lineIn = fIn.readline()
 lineOut = fOut.readline()
 if not lineIn or not lineOut: break
 lineIn = lineIn.strip() # eliminate trailing whitespace
 lineOut = lineOut.strip() # eliminate trailing whitespace

 # build the termEntry
 term0 = extractXmlContent(lineIn, "item").strip()
 term1 = extractXmlContent(lineOut, "item").strip()
 termEntry = MNFEntry.replace("__ID__", term0.replace(" ","_")+'.1')
 termEntry = termEntry.replace("__LANG0__", params['src_lang'])
 termEntry = termEntry.replace("__LANG1__", params['tgt_lang'])
 termEntry = termEntry.replace("__TERM0__", term0)
 termEntry = termEntry.replace("__CTX0__", stripXml(lineIn))
 termEntry = termEntry.replace("__TERM1__", term1)
 termEntry = termEntry.replace("__CTX1__", stripXml(lineOut))
 termEntry = termEntry.replace("__SUBJECT_FIELD__", "General")
 segments = ""
 for segId in extractXmlContent(lineIn, "src").split(','):
 segments = segments + MNFSegmentRef.replace("__SEGID__", segId) + '\n'
 termEntry = termEntry.replace("__SEGMENTS__", segments)

 fMnf.write(termEntry)

 fMnf.write(TBXFooter)

 fIn.close()
 fOut.close()
 fMnf.close()

 print "Done."

52

def extractSegs(line):
 pos0 = line.find("<src>")
 pos1 = line.find("</src>")
 src = line
 if pos0+pos1 > 0:
 src = line[pos0+6:pos1-pos0]
 return src

def extractXmlContent(text, tagName, includeTags=False):
 tagOpen = "<%s>" % tagName
 tagClose = "</%s>" % tagName
 tagOpenLen = len(tagOpen)
 tagCloseLen = len(tagClose)

 pos0 = text.find(tagOpen)
 pos1 = text.find(tagClose)
 if pos0+pos1 > 0:

 if includeTags:
 pos1 = pos1 + tagCloseLen
 else:
 pos0 = pos0 + tagOpenLen

 content = text[pos0:pos1]

 else:
 content = text

 return content

def stripXml(line):
 # find <item>
 pos0 = line.find("<item>")
 pos1 = line.find("</item>")

 output = line[:pos0] + line[pos0+6:pos1].strip() + line[pos1+7:]

 # find <src>
 pos0 = output.find("<src>")
 pos1 = output.find("</src>")
 output = output[:pos0] + output[pos1+6:]

 return output

def cleanXml(content):
 temp = content.replace('&','&')
 temp = temp.replace('>','>')
 temp = temp.replace('<','<')

 return temp

if __name__ == '__main__':
 main()

A1.9. MNF2VOCTABLE: takes the formatted term-lookup and Moses suggestion list and writes the

combined results to an EFR VocTable (in CSV format)

53

#!/usr/bin/env python

"""Produce an EFR VocTable in CSV format, given a Moses-originated MNF(TBX) file.

Usage: mnf2voctable.py -i [input_mnf] -o [output_csv] -s [source_lang] -t
[target_lang]
"""

import codecs
import sys
import os
import re
import getopt
import time
import parser as tbx_parser

csvColumns = ['Chapter #','Token #','Token','Utterance',
 'Concept ID','Head Word','Grammar',
 'Definition','Examples','Optional Notes',
 'Translation','Level','Images']
logLevel = ['Info','Warning','Error']
def _log(f, lvl, msg):
 f.write("%s [%s] %s\n" % (time.strftime("%H:%M:%S"), logLevel[lvl], msg))

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "i:,o:,s:,t:")

 except getopt.error, msg:
 print __doc__
 print "\nParameter error(s):"
 print msg
 return 1

 #print args, opts

 if opts:
 # get user-defined params in a more useful format
 params = opts_to_dict(opts)

 # validation passed; proceed
 try:
 # ensure all required params have been provided and are valid
 if validate_params(args, params):
 fIn = codecs.open(params['in_file'], 'r')
 fOut = codecs.open(params['out_file'], 'w', encoding='utf-16')
 lang0 = params['src_lang']
 lang1 = params['tgt_lang']

 # write header
 sHeader = unicode(','.join(csvColumns) + '\n')
 fOut.write(sHeader)

 # parse MNF
 (termEntries, indices) = tbx_parser.parse(params['in_file'], mnf=True)

 # write glossary rows, followed by all subsequent references to those
rows
 tokenCount = 0
 for entryID in termEntries:
 tokenCount = tokenCount + 1
 entry = termEntries[entryID]

54

 term0 = entry['terms'][lang0]
 term1 = entry['terms'][lang1]
 token = csvEscape(term0.split()[0])
 for i in range(0,len(entry['sourceSegments'])):
 rowData = ['1', str(tokenCount), token,
entry['sourceSegments'][i], entryID]
 if i==0:
 # on first instance, we include all the row data
 termEntry = [
 csvEscape(term0), # head word
 '', # grammar
 '', # definition
 csvEscape(entry['context'][lang0]), # examples
 '', # notes
 csvEscape(term1), # translation
 '100', # level
 '' # image
]
 rowData.extend(termEntry)

 else:
 # on all subsequent instances, just output columns 1-5
 # (i.e. add 9 empty cols)
 for i in range(9): rowData.append('')

 sRow = unicode(','.join(rowData) + '\n')
 fOut.write(sRow)

 else:
 return 1

 except Exception, e:
 print "Process failed!\n\nDetails: %s" % e

 else:
 print __doc__

def opts_to_dict(opts):
 """Takes an array of tuples, as returned by getopt,
 and returns a dict of corresponding name-value pairs"""
 params = {
 "in_file": "",
 "out_file": "",
 "src_lang": "",
 "tgt_lang": ""
 }
 for opt in opts:
 if opt[0] == "-i":
 params['in_file'] = opt[1]
 elif opt[0] == "-o":
 params['out_file'] = opt[1]
 elif opt[0] == "-s":
 params['src_lang'] = opt[1]
 elif opt[0] == "-t":
 params['tgt_lang'] = opt[1]

 return params

def validate_params(args, opts):
 """Takes a dict of name-value pairs representing command-line params,
 and validates that all required params are present and valid.

55

 Returns an array of error strings"""
 errors = []

 # check input file
 if not opts['in_file']:
 errors.append("Missing input file (-i)")
 elif not os.path.exists(opts['in_file']):
 errors.append("Specified input file not found")

 # check output file
 if not opts['out_file']:
 errors.append("Missing output filename (-o)")

 # check source lang
 if not opts['src_lang']:
 errors.append("Missing source language (-s)")

 # check output file
 if not opts['tgt_lang']:
 errors.append("Missing target language (-t)")

 # if any (required) parameters are missing, terminate and report
 if errors:
 print __doc__
 print "\nValidation error(s):"
 print '\n'.join(errors)
 return False

 return True

def csvEscape(text):
 if text.find(',') >= 0:
 return '"%s"' % text
 else:
 return text

if __name__ == '__main__':
 main()

56

Appendix II: Getting Moses Working on Cygwin

The Moses decoder and its associated tools are primarily intended to be used on UNIX platforms, but

have stated compatibility with Cygwin as well. However, getting things to actually build on that platform

isn’t completely straightforward. This section provides some comments on that process.

A2.1. SUPPORT TOOLS. I set out following the “Installation and Training Run-Through” guidelines

published on the official Moses web site (http://www.statmt.org/moses_steps.html), but the following

modifications were needed:

GIZA++

- Make sure when you edit the Makefile, that your editor doesn't strip out the tabs and replace them

with spaces. Many editors do this by default, but it will cause hard-to-identify errors in the code.

- A linker error of the form “cannot find -lgcc_s” indicates that you need to comment out the

line that reads “LDFLAGS = -static”, and instead use “LDFLAGS =” (this appears to be due to a

lack of support for static links in Windows and/or Cygwin)

SRILM

- The machine-type script won't run without the tcsh shell installed within Cygwin; see here:

http://www.speech.sri.com/pipermail/srilm-user/2010q2/000871.html

o This is especially interesting in light of the comment on the Moses tutorial that “These

instructions work on bash.”

http://www.statmt.org/moses_steps.html�
http://www.speech.sri.com/pipermail/srilm-user/2010q2/000871.html�

57

IRSTLM

- Running “make install” may give weird errors referring to a “NONE” folder. If so, open up the

Makefile in the IRSTLM root, plus those in the src, scripts, and example subfolders, and

replace all instances of “NONE” with “..”

A2.2. COMPILING MOSES. The Moses source code comes with project files for Eclipse, Xcode, and Visual

Studio, but these are all largely unsupported and not recommended by the development team. However,

using the Linux command-line method of compilation resulted in a much larger binary (36.7 megabytes,

as opposed to the 504 kilobytes taken up by the Windows binary), which loaded and ran much more

slowly than its native counterpart. Where possible, therefore, it is advisable to build and run the decoder

in a native environment, rather than in Cygwin (The language modeling tools, however, can only be

compiled and run in a Unix-like environment).

Another problem to bear in mind is that of version incompatibility. If you download an old binary of

the Moses decoder, but compile the language modeling tools from source, you may encounter errors such

as the following, which I saw when running a new language model with a 2-year-old Moses decoder:

Loading lexical distortion models...
have 1 models
Lexical model type underspecified for model 0!

When I compiled a clean copy of Moses from the latest source, this error went away.

A2.3. MOSES SUPPORT SCRIPTS. Moses includes a set of scripts for use in building language models,

formatting training data, and so on. As before, I tried to follow the steps outlined by the setup guide, but

encountered quite a few issues:

1. It seems that in certain instances, it may be necessary to enclose the TARGETDIR and BINDIR

values in the makefile with quote characters, even though the versions in the sample comment

aren't so delimited.

58

2. Even though the compiled binaries are correctly copied to $BINDIR, they have the wrong

extension (Unix executables have no extension at all, but Windows/Cygwin binaries end in .exe);

this leads to the following error:

Please specify a BINDIR.
The BINDIR directory must contain GIZA++, snt2cooc.out and mkcls executables.
These are available from http://www.fjoch.com/GIZA++.html and
http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/mkcls.html.

The way to fix this is to edit .\scripts\check-dependencies.pl to comment out the pertinent

block, or change the “unless” clause to include “.exe” in the filenames:

$ diff scripts/check-dependencies.pl scripts/check-dependencies.pl.unfixed
3c3
< # $Id: check-dependencies.pl 1331 2007-03-26 20:06:44Z hieuhoang1972 $

> # $Id: check-dependencies.pl.unfixed 1331 2007-03-26 20:06:44Z hieuhoang1972 $
28,37c28,37
< #unless (-x "$bin_dir/GIZA++" && -x "$bin_dir/snt2cooc.out" && -x "$bin_dir/mkcls")
{
< # print <<EOT;
< #Please specify a BINDIR.
< #
< # The BINDIR directory must contain GIZA++, snt2cooc.out and mkcls executables.
< # These are available from http://www.fjoch.com/GIZA++.html and
< # http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/mkcls.html .
< #EOT
< # exit 0;
< #}

> unless (-x "$bin_dir/GIZA++" && -x "$bin_dir/snt2cooc.out" && -x "$bin_dir/mkcls")
{
> print <<EOT;
> Please specify a BINDIR.
>
> The BINDIR directory must contain GIZA++, snt2cooc.out and mkcls executables.
> These are available from http://www.fjoch.com/GIZA++.html and
> http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/mkcls.html .
> EOT
> exit 0;
> }

3. Make tries to invoke rsync, which isn’t installed by default in Cygwin. Re-run the Cygwin installer

with Internet access to get the pertinent package.

4. Once rsync was installed, the “make release” process mostly worked–except for a few binaries it

expected, but couldn't find:

/scripts/training/lexical-reordering/score.exe

http://www.fjoch.com/GIZA++.html�
http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/mkcls.html�

59

/scripts/training/memscore/memscore.exe
/scripts/training/mbr/mbr.exe
rsync error: some files/attrs were not transferred (see previous errors) (code 23) at
/home/lapo/packaging/rsync-3.0.7-1/src/rsync-3.0.7/main.c(1042) [sender=3.0.7]
make: *** [release] Error 23

I noticed that my copy of the makefile didn't include those three, so I got a clean copy from the

original package, and re-ran “make release”. This time, make failed on the three missing binaries:

a. score.exe: build failed:

g++ -O6 -g -c reordering_classes.cpp
g++ -lz score.cpp reordering_classes.o -o score
reordering_classes.o:/cygdrive/c/LingMA/moses/scripts/training/lexical-
reordering/reordering_classes.cpp:348: undefined reference to `_gzopen'
reordering_classes.o:/cygdrive/c/LingMA/moses/scripts/training/lexical-
reordering/reordering_classes.cpp:352: undefined reference to `_gzwrite'
reordering_classes.o:/cygdrive/c/LingMA/moses/scripts/training/lexical-
reordering/reordering_classes.cpp:355: undefined reference to `_gzclose'
collect2: ld returned 1 exit status
make: *** [score] Error 1

It seems the Makefile is actually wrong; the -lz should actually be after the .cpp and .o files:

diff /scripts/training/lexical-reordering/Makefile /scripts/training/lexical-
reordering/Makefile.old
11c11
< $(CXX) -lz score.cpp reordering_classes.o -o score

> $(CXX) score.cpp reordering_classes.o -lz -o score

b. memscore.exe: build failed, but according to this note in the makefile, it’s not a problem:

Building memscore may fail e.g. if boost is not available.
We ignore this because traditional scoring will still work and memscore isn't used
by default.

c. mbr.exe: build failed:

g++ -O3 mbr.cpp -o mbr
mbr.cpp: In function `int main(int, char**)':
mbr.cpp:367: error: `time' was not declared in this scope
make: *** [mbr] Error 1

To fix this error, we need to add an explicit reference to time.h:

$ diff scripts/training/mbr/mbr.cpp scripts/training/mbr/mbr.cpp.old
12d11

60

< #include <time.h> /* added by RAC for compilation on Cygwin */

5. The Moses tutorial specifies a training script, training/train-factored-phrase-model.perl,

which is not present in the latest package. However, looking at the file training/train-

model.perl, a comment referred to it as “Train Factored Phrase Model”, so apparently the name

has just changed without the documentation being updated to reflect it.

6. I tried to run training/train-model.perl, following the example syntax from the tutorial, and

got a “permission denied” error:

bash: tools/moses-scripts/scripts-20100605-2158/training/train-model.perl:
Permission denied

This one is simple to fix. In Windows Explorer, right-click the /moses/tools folder and select

“Properties”. On the Security tab, click Advanced, then give your user full control over that folder,

overriding any existing permissions on either the ancestors or descendants.

7. Once I had a complete scripts build, and had successfully invoked train-model.perl to build a

language model and phrase model, the next step was to 'sanity check' the new models:

echo "c' est une petite maison ." | ./moses -f work/model/moses.ini

This failed with a large cascade of text, but buried within that stream is this error:

ERROR:File 5 does not exist

This apparently refers to the following section of the generated moses.ini file:

translation tables: source-factors, target-factors, number of scores, file
[ttable-file]
0 0 0 5 /cygdrive/c/LingMA/moses/work/model/phrase-table.gz

The comment seems to indicate that the section will have 4 parameters (source-factors, target-factors,

number of scores, and file), but the following line instead has 5 params (0, 0, 0, 5, and the path to

phrase-table.gz); this tracks with Moses's complaint about not being able to find a file (parameter 4 in

this section) named “5” (value 4 in that same section). I fixed this by removing one of the (apparently

redundant) zeroes:

61

$ diff moses.ini moses.ini.old
15c15
< 0 0 5 ./model/phrase-table

> 0 0 0 5 ./model/phrase-table

Having made all of the above changes, I was able to successfully follow the rest of the Moses

installation and training run-through.

A2.4. PYTHON UNICODE ISSUES. Even once you have succeeded in getting Moses and its support

tools and scripts running under Cygwin, there is one more issue to be aware of regarding Cygwin

Python’s file commands. If directed to read and write multi-byte data of any kind (e.g. UTF-8, UTF-16,

etc) to a file, Python will do so successfully. Files created using full 2-byte Unicode (referred to by

Python as UTF-16) will receive the correct Byte-Order Mark (BOM) that will identify the file’s encoding

type to all other Windows applications. However, if creating a new UTF-8 file (which would be

preferable in most circumstances due to its more efficient storage mechanism), the file doesn’t receive the

UTF-8 BOM… so Windows applications, with no evidence to the contrary, will detect the file encoding

as ASCII. In practice this may not cause any problems, as long as the data is read and written solely by

code that has a foreknowledge of its encoding type, and handles it as such. But it is an issue that must be

remembered when dealing with international data.

	A Hybrid System for Glossary Generation of Feature Film Content for Language Learning
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	Chapter 1: Background & Justification
	1.1. Differing Methodologies
	1.2.Natural Language Exposure Through Video
	1.3.Challenges to the EFR Approach
	1.4. Proposal
	1.5.Criteria for Measuring Success
	1.6. Alternative Approaches
	1.7. Summary

	Chapter 2: Data Preparation
	2.1. Film Segmentation
	2.2. Flagging Lexical Items
	2.3. Termbase Construction
	2.4. Training Moses

	Chapter 3: Term Lookup and Translation
	3.1. Term Lookup
	3.2. Machine Translation
	3.3. Post-Processing of Moses Output

	Chapter 4: Iteration and Improvement
	4.1. Converting to VocTable Format
	4.2. Re-seeding the TBX Data Store

	Chapter 5: Conclusions
	5.1. Analysis of Results
	5.2. Program Portability
	5.3. Future Work

	References
	Appendix I: Source Code
	A1.1. XCES2Seg
	A1.2. CSV2MRC
	A1.3. TBX Parser
	A1.4. EFR Segfile Parser
	A1.5. Linguassist
	A1.6. Opus2XLIFF
	A1.7. XLIFF2Moses
	A1.8. Moses2MNF
	A1.9. MNF2VocTable

	Appendix II: Getting Moses Working on Cygwin
	A2.1. Support Tools
	A2.2. Compiling Moses
	A2.3. Moses Support Scripts
	A2.4. Python Unicode Issues

