

Brigham Young University BYU Scholars Archive

Theses and Dissertations

2010-06-30

Corrosion-related Gas Measurements and Analysis for a Suite of Coals in Staged Pulverized Coal Combustion

Todd A. Reeder Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation

Reeder, Todd A., "Corrosion-related Gas Measurements and Analysis for a Suite of Coals in Staged Pulverized Coal Combustion" (2010). Theses and Dissertations. 2230. https://scholarsarchive.byu.edu/etd/2230

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Corrosion-related Gas Measurements and Analysis for a Suite of Coals in Staged Pulverized Coal Combustion

Todd A. Reeder

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Dale R. Tree, Chair Thomas H. Fletcher Matthew R. Jones

Department of Mechanical Engineering

Brigham Young University

August 2010

Copyright © 2010 Todd Reeder

All Rights Reserved

ABSTRACT

Corrosion-related Gas Measurements and Analysis for a Suite of Coals in Staged

Pulverized Coal Combustion

Todd A. Reeder

Department of Mechanical Engineering

Master of Science

Eleven gas species, including CO, CO₂, H₂, H₂O, H₂S, HCl, NO_X, O₂, SO₂, COS and SO₃, were measured in a 150 kW_{th}, staged, pulverized coal, down-fired combustor using a Fourier transform infrared (FTIR) spectrometer, gas chromatograph (GC), and a Horiba PG-250 5-gas analyzer. Additional gases such as HCN, NH₃, CH₄, and other hydrocarbons were also measured. Seven coals of varying rank and composition were investigated. Measurements were obtained in reducing (S.R. = 0.85) and oxidizing (S.R. = 1.15) conditions. In particular, sulfurand chlorine-containing species including H₂S, SO₂, COS, SO₃, and HCl are discussed.

In the reducing zone, all four measured sulfur species were present although SO₃ was only 1-3% of the total coal sulfur. A trade-off between SO₂, H₂S, and COS was clearly identifiable according to S.R. H₂S and COS increased and SO₂ decreased in highly reducing or high-CO regions. The total amount of sulfur in the measured species in the reducing zone was estimated to be about 65-80% of the total coal sulfur. The total amount of sulfur measured in the four gases increased linearly with coal sulfur in both the oxidizing and reducing zones for the seven coals considered. In the oxidizing zone, SO₃ remained low (1-3% of total sulfur) with the only other measurable sulfur bearing species being SO₂.

Chlorine was found to be released in the reducing zone and form primarily HCl. As the HCl was transported into the oxidizing region, the chlorine remained as HCl. Measurement of HCl was difficult, making some of the data incomplete. The HCl concentration was found to be affected by the flow rate of gases into the sampling line and gas analyzers suggesting HCl is highly reactive and needs to be quenched rapidly or it will react during sampling.

Several trends in the data were matched by equilibrium calculations including trends for H₂S, COS and SO₂ in both reducing and oxidizing conditions. SO₃ did not match equilibrium although the amount of SO₃ was proportional to the amount of sulfur in the coal. HCl, though consistent with cited literature for several coals, did not agree with equilibrium trends or values.

Keywords: coal, swirl, reducing, oxidizing, corrosion, sulfur, chlorine, BFR, equilibrium

ACKNOWLEDGEMENTS

I would first like to express my gratitude to my wife, Haley, for her loving and endless support in pursuing a graduate degree. Dr. Dale Tree deserves tremendous thanks also for even considering me as his graduate student. His knowledge, experience, and guidance have transformed the way I think.

Funding for this work was provided by Babcock & Wilcox for which I am very grateful, for without it we could not have even begun a project of this magnitude. A big thank you goes to Dr. Steven Kung of B&W for overseeing this project and freely giving of his time, energy, and knowledge to continually further our progress.

Next, I would like to express thanks to Bill Murphy, Emily Pearson, Sylvie Bosch-Charpenay, Andy Nguyen, Troy Curtis, and others at MKS Online Products who helped me understand the fundamentals of infrared spectroscopy and helped me keep the spectrometer running long enough to finish my research. I would recommend them and their expertise to anyone considering infrared spectroscopy.

I would like to express thanks to my coworkers, all of whom I now consider to be good friends. They are, in no particular order, Kendall Hill, Curtis Stimpson, David Brunner, Brad Roper, Darrel Zeltner, Teri Snow, and Ezekiel Merriam. Their willingness to get dirty and think of solutions for various problems was critical to the success of this research.

Finally, I would like to thank the rest of my graduate committee, Dr. Thomas Fletcher and Dr. Matthew Jones for their support and input. Dr. Larry Baxter, though not on my graduate committee, offered several hours of his time and expertise which is greatly appreciated.

TABLE OF CONTENTS

LIST (OF TABLES	ix
LIST (OF FIGURES	xi
NOME	ENCLATURE	XV
1 In	ntroduction	1
1.1	Background	1
1.2	Research Objectives	3
1.2	2.1 Gas Species Data	4
1.2	2.2 Deposit Data	4
1.3	Scope	4
2 Li	iterature Review	7
2.1	H ₂ S, SO ₂ , and SO ₃	8
2.2	Hydrogen Chloride	11
2.3	Conclusions	
3 M	lethod	15
3.1	Combustion Facility	
3.1	1.1 Air Staging	17
3.1	1.2 Burner	19
3.2	Coal Delivery System	24
3.2	2.1 Coal Procurement and Analysis	25
3.3	Fuel and Air Flow Rates	27
3.4	Gas Sampling System	29
3.4	4.1 Leak Testing	34
3 4	4.2 FTIR Theory	35

	3.4.3	Analyzer Comparison and Calibration	39
	3.4.4	Reactivity Testing	40
4	Resul	ts	45
	4.1 F	Reducing Zone Gas Sampling Results	46
	4.1.1	Carbon Monoxide	47
	4.1.2	Carbon Dioxide & Water	48
	4.1.3	Oxygen	50
	4.1.4	Sulfur-containing Species	51
	4.1.5	Hydrogen Chloride	56
	4.1.6	Hydrogen Gas	57
	4.2	Oxidizing Zone Gas Sampling Results	58
	4.2.1	Carbon Monoxide and Carbon Dioxide	58
	4.2.2	Water	58
	4.2.3	Oxygen	59
	4.2.4	Sulfur-containing Species	61
	4.2.5	Hydrogen Chloride	63
	4.2.6	Hydrogen Gas	65
5	Discu	ssion of Results – Sulfur and Chlorine Gas Data	67
	5.1 E	Equilibrium Trends for Sulfur Containing Gases	67
	5.1.1	Reducing Zone Equilibrium Trends for H ₂ S, COS and SO ₂	68
	5.1.2	Comparison of Total Coal and Gas Phase Sulfur	71
	5.2	Comparison of Local Measured Sulfur Gas Species with Equilibrium	73
	5.2.1	Local Stoichiometric Ratio Calculation	73
	5.2.2	Oxidizing Zone	78
	5.3	Chlorine	81

	5.3.1	Reducing Zone	81
	5.3.2	Oxidizing Zone	83
6	Sumn	nary and Conclusions	87
Ref	erences	S	91
App	endix	A: All Recorded Data	95
App	endix	B: Original Ultimate, Proximate, and Ash Analyses	155
App	endix	C: Deposition Sleeve Manufacturing	171
App	endix	D: Local Stoichiometric Ratio Derivation	177

LIST OF TABLES

Table 1: List of Coals Selected for This Work.	3
Table 2: Typical Boilers with Respective Steam Properties.	7
Table 3: Constant Values Used on Swirl of Dual Fuel Burner.	21
Table 4: Swirl According to Any Number of Rod Rotations.	23
Table 5: Characteristics of the Burner.	23
Table 6. Ultimate, Proximate, and Ash Analyses for Each Coal.	26
Table 7: Coal and Air Flow Rates Used in the Gas Sampling Tests.	28
Table 8: Calibration Gases Used for the Analyzers.	39
Table 9: Results of HCl and H ₂ S Calibrations	40
Table 10: Results of Measured Gas Concentrations after Passing through One or More of the Components in Sample Line.	
Table 11: Illinois #6-1 – Axial Distance 77 cm.	49
Table 12: PRB – Axial Distance 90 cm.	49
Table 13: Beulah Zap – Axial Distance 77 cm.	49
Table 14: Mahoning – Axial Distance 83 cm.	49
Table 15: Indiana No. 6 – Axial Distance 70 cm.	50
Table 16: Illinois #6-2 – Axial Distance 97 cm.	50
Table 17: Gatling – Axial Distance 97 cm.	50
Table 18: Correlation between Coal Sulfur and Measured Sulfur Species.	54
Table 19: Illinois #6-1 – Axial Distance 217 cm.	59
Table 20: PRB – Axial Distance 243 cm.	59
Table 21: Beulah Zap – Axial Distance 243 cm.	60
Table 22: Mahoning – Axial Distance 243 cm.	60
Table 23: Indiana – Axial Distance 250 cm	60

Table 24: Illinois #6-2 – Axial Distance 257 cm.	60
Table 25: Gatling – Axial Distance 243 cm.	61
Table 26: Comparison of Total Measured Sulfur in the Reducing and Oxidizing Zones. The Reducing Zone Sulfur Data was Normalized to be on the Same Dilution Basis as the Oxidizing Zone.	62
Table 27: Comparison of Total Measured Sulfur Species and Total Equilibrium	72

LIST OF FIGURES

Figure 1: Diagram of the BFR Including Feed and Exhaust System
Figure 2: Measured and Calculated Mass Flow Rate as a Function of Upstream Pressure for 1.8 mm, Primary Air Orifice
Figure 3: Drawing of the Tertiary Air Device for Staged Combustion used by Nazeer (1997)18
Figure 4: of Spindle Used to Modify the Original Air Injection Probe
Figure 5: Components of the Variable Swirl Burner. 20
Figure 6: Top View of Swirl Plate
Figure 7: Correlation of Swirl and Rotations of Threaded Rod on the Dual Fuel Burner22
Figure 8: Schematic of the Bulk Bag Unloader and Feeder (Riemersma, 2010)25
Figure 9: Schematic Diagram of the Components and Analyzers of the Gas Sampling System. 31
Figure 10: Schematic Diagram of the Sample Line Inlet Including the Water Cooled Tube and Heated Sample Line (dark region), Taken from Damstedt (2007)
Figure 11: New Heated Probe Design with Replaceable 1/4-inch Teflon Tubing
Figure 12: Heated Probe Design with a 1-inch Stainless Steel Tube Inserted into the Sample Gas.
Figure 13: H ₂ S Absorption Spectrum for 1000 ppm of H ₂ S in Nitrogen
Figure 14: Setup for Calibration of the FTIR
Figure 15: Diagram of Gas Sampling System Including: (1) a 2-m Heated Sample Line, (2) a Heated Filter, (3) a 7.6-m Heated Teflon Sample Line, and (4) a Heated Pump
Figure 16: FTIR Measurement of 817-ppm H ₂ S Calibration Gas
Figure 17: Gases Can Be Sampled 23 - 257 cm Below the Annular Fuel Tube of the Burner 46
Figure 18: Sum of H ₂ S, SO ₂ , & SO ₃ in the Reducing Zone for Each Coal
Figure 19: Comparison of As Rec'd Sulfur and Total Measured Sulfur in the Reducing Zone 54
Figure 20: Trends in H ₂ S, SO ₂ , & SO ₃ for Each Coal

Figure	21: Comparison of Measured HCl to As Received Wt% Chloride for the Reducing Zone.
Figure	22: Concentrations of H ₂ S, SO ₂ , & SO ₃ for Illinois #6-1 Coal - Axial Location 217 cm. 61
Figure	23: Comparison of As Rec'd Sulfur and Total Measured Sulfur in the Oxidizing Zone63
Figure	24: Comparison of Measured HCl to As Received Wt% Chloride for the Oxidizing Zone
Figure	25: Equilibrium Concentrations of H ₂ S and SO ₂ for an Illinois #6-2 Coal at Two Stoichiometries
Figure	26: Illinois #6-2 coal. Significant Sulfur-bearing Equilibrium Species at 1400 K 70
Figure	27: Gatling coal. Significant Sulfur-bearing Equilibrium Species at 1400 K70
Figure	28: PRB Coal. Significant Sulfur-bearing Equilibrium Species at 1400 K71
Figure	29: Illinois #6-2 Coal; Measured H ₂ S, SO ₂ , and COS vs. Equilibrium Calculations at 1300 K
Figure	30: Gatling Coal; Measured H ₂ S, SO ₂ , and COS vs. Equilibrium Calculations at 1500 K.
Figure	31: PRB Coal; Measured H ₂ S, SO ₂ , and COS vs. Equilibrium Calculations at 1300 & 1400 K
Figure	32: Illinois #6-2 Coal; Measured SO ₂ vs. Equilibrium Calculations at 1100 and 1600 K.
Figure	33: Gatling Coal; Measured SO ₂ vs. Equilibrium Calculations at 1000 and 1500 K79
Figure	34: PRB Coal; Measured SO ₂ vs. Equilibrium Calculations at 1600 and 1700 K 80
Figure	35: Measured and Equilibrium HCl at 1500K for the Illinois #6-2 Coal at an Axial Distance of 83 cm
Figure	36: Measured and Equilibrium HCl at 1500K for the Gatling Coal at an Axial Distance of 97 cm
Figure	37: Measured and Equilibrium HCl at 1500K for the PRB Coal at an Axial Distance of 90 cm
Figure	38: Measured and Equilibrium HCl at 1500K for the Illinois #6-2 Coal at an Axial Distance of 257 cm
Figure	39: Measured and Equilibrium HCl at 1500K for the Gatling Coal at an Axial Distance of 243 cm

Figure 40: Measured and Equilibrium HCl at 1500K for the PRB Coal at an Axial Distance	ce of
243 cm	85

NOMENCLATURE

Acronyms

B&W The Babcock & Wilcox Company

BFR Burner Flow Reactor

BYU Brigham Young University CFD Computational Fluid Dynamics

DOE Department of Energy

EIA Energy Information Administration

FTIR Fourier Transform Infrared Gas Spectrometer

GC Gas Chromatograph

IR Infrared

NBE National Bulk Equipment S.R. Stoichiometric Ratio

SEM Scanning Electron Microscope

USC Ultra-supercritical

Arabic Letters

A/F air-fuel ratio B vane thickness

C number of carbon atoms per molecule

m mass

MW molecular weight N mumber of moles

R inner diameter of secondary air exit into BFR outer diameter of secondary air exit into BFR

S swirl

X mole fraction was fraction

Greek Letters

 α vane angle

 ξ angle of adjustment

 ξ_m maximum angle of adjustment angular momentum flux

Subscripts

act actual

air used as oxidizer to burn the fuel

c carbon fuel

stoich stoichiometric

th thermal tot

1 INTRODUCTION

1.1 Background

In recent years, energy has been an increasingly important topic in political debates and even daily conversation. As the global population steadily increases and nations continue to become more industrialized, the worldwide demand for energy will continue to rise. According to the Energy Information Administration (EIA) (2009), electricity demand in the United States alone will increase by 26% between 2007 and 2030. Of the many sources of electricity, coal is unquestionably the most abundant; according to EIA projections, coal will continue to provide the largest share of energy for U.S. electricity generation, decreasing slightly from 49 percent in 2007 to 47 percent in 2030.

The largest concern with using coal as an energy source is the exorbitant amount of pollutants emitted into the atmosphere. As stated by the EIA, in 2007 the world produced over 12 billion metric tons (26.5 trillion pounds) of carbon dioxide (CO₂) from coal alone. It is suspected that this pollution is contributing to global climate change; for this and other reasons, research is being done to create boiler systems that are more efficient and produce less CO₂ or are capable of capturing CO₂.

The amount of CO₂ produced by a coal-fired boiler is directly proportional to the amount of coal burned and, for a given amount of energy, the amount of coal burned is inversely

proportional to the boiler thermodynamic efficiency. It is well understood that cycle efficiency is a function of steam pressure and temperature.

Recently, emissions and fuel cost incentives have increased the desire to develop ultrasupercritical (USC) boilers that have a steam outlet temperature and pressure of up to 760°C (1400°F) and 35 MPa (5000 psi), respectively. These extreme conditions lead to higher efficiency and reduced emissions (Kung, 2006).

Though the increased efficiency is a tremendous benefit, the increased temperatures cause accelerated fireside corrosion (Kung, 2006). Accelerated corrosion increases maintenance time, decreasing boiler availability and reliability. Reliability is of critical importance in the energy industry and is often considered more important than efficiency. To minimize corrosion, the Department of Energy (DOE) has contracted The Babcock & Wilcox Company (B&W) to produce corrosion tests and a corrosion model relating coal properties to corrosion in ultrasupercritical boilers. In order to produce long term corrosion tests needed to develop corrosion models, B&W needs to know the gas species and deposit composition that fire side steam tubes will be subjected to. The measured gas species from these pulverized coal tests will be used to produce synthetic gases to be used in 1000 hr corrosion tests on numerous test coupons. The corrosion tests and model require a database of coal chemistry, operating conditions, and corresponding gas species data. The coals tested for this work are listed in Table 1, along with their respective ranks. With many differences among the selected coals, the model will contain a large range of chemical data. Using these data, B&W will produce a mathematical model to estimate the amount of expected corrosion for a given combination of coal, boiler tube material, and operating conditions.

Table 1: List of Coals Selected for This Work.

Coal	Rank
Illinois No. 6, Galatia	Bituminous
Powder River Basin (PRB), Black Thunder	Sub-bituminous
Beulah Zap	Lignite
Mahoning	Bituminous
Indiana No. 6	Bituminous
Gatling	Bituminous

Independent of the modeling work being done at B&W, the gas species data being collected will produce the most comprehensive set of gas species data over the largest variety of coals available in the literature. The gas species data will provide new information on the evolution of sulfur, chlorine, and nitrogen in pulverized coal flames. In addition to the 10 gas species required by B&W, NH₃ and HCN will be measured, two species critical to understanding the formation and destruction of NO_X. A map of H₂S and SO₂ measurements within a coal flame has not been reported in the literature and will help explain the intermediate behavior of sulfur between pyrolysis and effluent gas measurements obtained previously.

1.2 Research Objectives

The objective of this research was to obtain the combustion product gas composition for a suite of coals under staged combustion conditions. The gas species measurements will be adjacent to deposition measurements that are being analyzed by Brunner (2011). The gas data were collected in the Burner Flow Reactor (BFR) located on the Brigham Young University (BYU) campus. Combustion in the BFR was staged, creating two combustion regions, a reducing (S.R. = 0.85) zone and an oxidizing (S.R. = 1.15) zone, to simulate conditions normally present in commercial pulverized-coal fired boilers. The tube temperatures used to collect deposits were selected to simulate temperatures in an ultra-supercritical boiler.

1.2.1 Gas Species Data

Eleven combustion product gases were selected for measurement because of their relevance to corrosion. Each gas was measured in multiple axial and radial locations to obtain a comprehensive understanding of corrosion in both the near burner region and the superheater region of a boiler. The gases were measured directly above or below the location where deposits were collected but were also measured in additional locations when time permitted. These gases included: carbon monoxide (CO), carbon dioxide (CO₂), water (H₂O), hydrogen disulfide (H₂S), hydrogen chloride (HCl), nitrogen oxide (NO), sulfur dioxide (SO₂), sulfur trioxide (SO₃), carbonyl sulfide (COS), oxygen (O₂), and hydrogen gas (H₂).

1.2.2 Deposit Data

Deposits were collected in both combustion zones on stainless steel sleeves placed at 1/3, 1/2, and 2/3 of the way across the 75-cm inner diameter of the BFR. The deposits were then prepared for insertion into a scanning electron microscope (SEM) where they were analyzed for elemental composition. Some elements indicate a high potential for corrosion and are therefore of particular interest. These elements include, but are not limited to, chlorine, calcium, iron, sodium, and sulfur.

1.3 Scope

As stated earlier, although deposits were collected at the same time as most of the gas species data, the deposit method, results, and discussion will not be presented here and are not the focus of this work. There will also be no attempt to produce a corrosion model or corrosion

measurements. Although B&W performed some CFD analysis of the tertiary air injection, there has also been no attempt to model the BFR combustion process.

The gas species data will be compared to equilibrium results based on the fuel composition and local measured stoichiometry. Sulfur evolution in the combustion process is of particular interest because of its role in corrosion and will be the primary focus. Chlorine evolution is also of interest and will also be discussed in some detail.

2 LITERATURE REVIEW

The extent and severity of corrosion varies widely between boilers depending on the type of fuel burned and the design being used. Boilers are typically classified in terms of the steam pressure and temperature as measured at the superheater or reheater exit. Typical boilers and their approximate operating conditions are outlined in Table 2 [See Babcock & Wilcox (2010), and Kitto and Stultz, (2001)].

Table 2: Typical Boilers with Respective Steam Properties.

Boiler Type	Steam Exit Temperature,	Steam Exit Pressure,
	°C (°F)	MPa (psi)
Sub-critical	538 – 566 (1000 – 1050)	12.4 – 16.5 (1800 – 2400)
Supercritical	550 – 590 (1022 – 1094)	20.7 – 26.2 (3000 – 3800)
Ultra-supercritical	760 (1400)	35 (5000)

Numerous investigators have measured flue gas products produced by pulverized coalfired boilers while a relatively small number have obtained spatially resolved in-boiler or inflame measurements. A thorough review of the literature is presented in this chapter.

Gas concentrations existing in a boiler are a strong function of the fuel burned and the local stoichiometric ratio (S.R.). Several studies deal with pyrolysis experiments, considering the evolution of certain elements in the combustion process. Some of the results from these studies are then extrapolated to predict gas concentrations actually occurring in a boiler. Few studies were found where gases were measured in different combustion regions within a boiler.

This remainder of this section discusses the evolution of sulfur and chlorine, their significance in coal-fired boilers, and methods used to measure sulfur- and chlorine-containing gas species.

2.1 H_2S , SO_2 , and SO_3

Sulfur-containing species such as H₂S, SO₂, SO₃, and COS are known to cause fireside corrosion, as referenced by Kung (2006), Kihara et al. (1985), Devito & Smith (1991), and Ivanova & Svistanova (1971). To properly understand corrosion mechanisms, the original form of sulfur in the parent coal and its evolution in combustion must be investigated. There are many papers reporting the forms of sulfur in coal (see Huffman et al, 1991; Calkins, 1987; Kelemen et al, 1990; Gorbaty et al, 1990; LaCount et al, 1993; and Boudou et al, 1987). As summarized by Bassilakis et al (1993), sulfur comes in three different forms: organic, pyritic, and sulfatic (small fraction).

Chou et al (1986) predicted that coal-derived sulfur is released mostly as H_2S . This is in good agreement with Bassilakis et al (1993) who determined the evolution of sulfur in all eight Argonne Premium coals. In the study, samples of each coal underwent pyrolysis, where it was found that approximately 50 percent of parent coal sulfur was released, mostly in the form of H_2S . The rest of the evolved sulfur was in the tar, char and other sulfur-containing gases. As the H_2S was transported through an oxidizing region, H_2S was converted to SO_2 and H_2O . Duan, Zhao et al (2009) also performed some coal pyrolysis studies with an FTIR. In Duan's case, however, it was stated that pyritic sulfur initially becomes pyrrhotite (Fe_{1-x}S, $0 \le x \ge 0.2$) in inert atmospheres, rapidly combining with hydrogen radicals to form H_2S in pyrolysis. No such

distinction was made by Bassilakis but this clarification helps to understand more precisely the process by which H₂S is formed.

It is important to note that Bassilakis et al. measured gases with a Fourier transform infrared (FTIR) gas spectrometer but H₂S was not measured directly because of its weak infrared (IR) absorbance. Bassilakis resorted to a post-oxidation technique where heat and oxygen were added to the gas sampling stream after the furnace and before the spectrometer to convert the H₂S to SO₂. By monitoring the SO₂ evolution rate, a measurement for H₂S was recorded. In Duan's case, however, H₂S was measured directly, despite the low absorbance of H₂S. The uncertainty of Duan's measurements is unknown. No literature was found where H₂S was measured directly from a coal boiler. The most relevant pieces of literature found are Bassilakis et al. and Duan et al. but in both studies, H₂S was measured from small amounts of coal under pyrolysis studies only.

Models have been created to predict the amount of H₂S in a localized region. Kaminskii (1996) performed research based on pulverized anthracite in various boilers and went so far as to develop equations predicting the amount of H₂S (as well as other gases) as a function of CO, SO₂, and an excess air coefficient. The reported range of H₂S, dependent on local stoichiometry, was up to 1400 ppm. The relevance of the model to coals other than the anthracite reported in the study is questionable and would need to be determined.

Since SO₃ is a small fraction (~1%) of SO₂ (Srivastava et al, 2004), it is not expected to have a large impact on the total sulfur in the gas phase. As will be discussed in the results section of this work, equilibrium calculations also specify that SO₃ will be a very small fraction of the total sulfur at high combustion temperatures.

SO₂ and SO₃ can be measured in a variety of ways. SO₂ measurements are common and are typically measured using infrared absorption. Fukuchi and Ninomiya (2006) measured SO₃ by ultraviolet absorption and also developed a method to measure SO₃ by thermal conversion of SO₃ to SO₂. Jaworowski and Mack (1979) reviewed a few methods for measuring SO₃ including an isopropyl alcohol method, controlled condensation, and dew point measurement. It was concluded that no one method was clearly superior but that the controlled condensation method produced the most reliable results. Finally, Himes (2006) reported measuring SO₃ by way of FTIR spectroscopy. This latter approach of FTIR is of particular interest as it was the method used in the current work to measure SO₃. Steps taken in recording accurate SO₃ data will be discussed in subsequent chapters.

Models have been created to predict both the amount of H₂S in a localized region and the amount of corrosion on furnace walls. Kaminskii (1996) performed research based on pulverized anthracite in various boilers and went so far as to develop equations predicting the amount of H₂S (as well as other gases) as a function of CO, SO₂, and an excess air coefficient.

In summary, H₂S, SO₂, SO₃, and COS are known to cause fireside corrosion, H₂S being the most corrosive of the four gases. Sulfur is reported to be initially released as H₂S in a reducing zone, with some of it converting to SO₂ and small fractions as SO₃ and COS. Models have been created to try and predict the amount of H₂S based on the amounts of other gases; these models, however, prove to be case-limited and their efficacy with conditions different from those with which they were created would need to be determined. No literature was found where direct measurements of H₂S and SO₃ were obtained from a coal-fired boiler, making this work of significant value.

2.2 Hydrogen Chloride

It is well known that hydrogen chloride (HCl) is a common product gas found in coal furnaces (Boll and Patel, 1961; Clarke and Morris, 1983). According to Manolescu and Mayer (1979), HCl has an effect on fireside corrosion. In their study, conditions for superheater tubes of a pulverized coal boiler were simulated by exposing tubes to a synthetic flue gas, often termed syngas, which contained HCl. It was reported that the corrosion rate, composition, and morphology of the samples were similar to those found on actual superheater tubes. Because of these and other studies, it is critical that the fate of chlorine be considered when investigating corrosion in coal-fired boilers.

There have been numerous studies on the nature of chlorine in coal. Gibb (1983) reported on several of these studies and, in addition, performed his own experiments regarding this topic. Edgecombe (1956) reported that most, if not all the chlorine in coal was organically bound while Daybell and Pringle (1958) postulated that much of the chlorine is in the form of NaCl. The form of chlorine is important because the molecular structure and bonding determines the availability and evolution from the coal during combustion. Gibb, in performing his own independent studies, saw chlorine decompose and measured 42-71% of original coal chlorine in dry, oxygenfree nitrogen at 258 °C. His studies concluded that the majority of chlorine is weakly bonded to coal as ions, and not in the form of NaCl.

Another result from Gibb's study showed that 90-100% of evolved chlorine came out in the form of HCl. Additionally, chlorine was found to evolve out of the coal very rapidly, leaving little chlorine left in coal particles that impact furnace walls. Gibb concluded that chlorine impacts the water tubes primarily as HCl, forming ferrous chloride (FeCl₂).

Another study, performed by Ershov et al (1992), showed similar results. In their study, Ershov et al measured HCl with a mercurimetric method from a 1-m long x 44-mm inner diameter test rig. A Russian (Lake-region, Targai field) coal with a chlorine content of 0.21 wt% was combusted in multiple stoichiometries with four variables, including an excess air factor, flame temperature, coal chlorine content, and residence time of the coal/air in the reaction chamber. It was concluded that conversion of chlorine in the coal to HCl in the gas phase was a strong function of residence time, increasing from 30 to 68% with a residence time increase from 0.2 to 0.3 seconds. As residence time was increased to 0.8 seconds, HCl conversion increased to 94%. Additionally, the rate of HCl conversion was found to be a function of flame temperature, albeit somewhat weak. In all cases, completion of HCl formation occurred at a rate faster than the rate of carbon burnout. The results from Ershov's study are consistent with those found by Gibb, indicating that maximum HCl concentrations in a boiler are directly proportional to the amount of Chlorine in the coal and chlorine is not found to be abundant in any other gas species.

There are multiple ways to measure HCl, including FTIR spectroscopy (Oppenheimer et al, 2006), ion chromatography (Giuriati et al, 2003), and diode laser spectroscopy (Linnerud et al, 1998), among others. HCl does not appear to be a difficult gas to detect. However, chlorine is very reactive and can condense or react in a sample line. For example, chlorine is known to react with iron to form FeCl₂. It is therefore important to prevent HCl from reacting in the sampling line before reaching the instrumentation.

Though some research has been done in the area of chlorine evolution, the objective of this work is to characterize the fate of chlorine in staged combustion representative of modern full-scale boilers, an area that lacks comprehensive study. One study, Hack et al (2008), discusses USC oxy-fuel boilers where gases such as H₂S, SO₂, and HCl are mentioned as having

higher concentrations compared to standard sub-critical boilers but no reference is made to airfired cases.

2.3 Conclusions

Summarizing the literature of in situ gas measurements, a few studies have been performed that help in understanding the evolution of certain species, namely sulfur and chlorine. There have been several studies in the literature regarding flue gas measurements of SO₂ and SO₃ but measurements of HCl, H₂S, SO₂, and SO₃ from within a boiler or experimental coal flame were not found.

Subsequent chapters discuss measurements of the eleven gas species listed earlier. Since such a comprehensive set of data has not yet been obtained from coal-fired boilers, it is anticipated that these measurements will be of tremendous value to the coal power industry in understanding the behavior of corrosive gas species in both reducing and oxidizing regions of full-scale coal-fired boilers.

3 METHOD

This work required the simultaneous operation of several systems to produce and acquire the desired data. This section discusses these systems and how they were integrated. Although these systems may have evolved during the course of testing, improvements made to each system will not be discussed unless (1) data were acquired with multiple configurations of a system and (2) the change in configurations produced differences in the results.

3.1 Combustion Facility

The Burner Flow Reactor (BFR) facility at BYU was used to produce the combustion environment required for this work. The BFR is a down-fired, pulverized-coal, swirl-stabilized combustor with a nominal coal feed rate of 22.5 kg/hr (50 lb/hr) as shown in Figure 1. The BFR has access ports allowing gas and deposit sampling probes to be inserted at any axial position 23-257 cm (9.0 – 101.2 inches) below the primary fuel injection tube of the burner. Probes can span across the 75 cm inner diameter of the BFR to reach any radial location.

The BFR is supplied with compressed, cleaned air for the primary, secondary, and tertiary (NO_X port) air. The compressor used in this work was manufactured by Ingersoll-Rand, model SSR 75. The secondary air is heated to 138°C (280°F) by an electric heater and temperature controller. Fuel is supplied by a twin screw auger, loss-in-weight feeder. Flue gas is cooled by a wet spray scrubber and moved through the stack using an induction draft fan. The pressure in the BFR can be changed with a bypass valve which allows the exhaust fan to draw a

variable mixture of room air and BFR flue gas. Opening the bypass valve produces a positive gauge pressure in the BFR and, similarly, closing the bypass valve creates a negative gauge pressure. While collecting data, the BFR was run at a slightly positive pressure (0.1 – 0.5 in. H₂O) to eliminate air leakage into the BFR. This practice created a potentially hazardous situation by allowing product gases into the room housing the BFR. Gas monitors were located in three positions in the building that were continuously monitoring CO and SO₂. For some coals, respirators were worn when coal concentrations high in sulfur were burned.

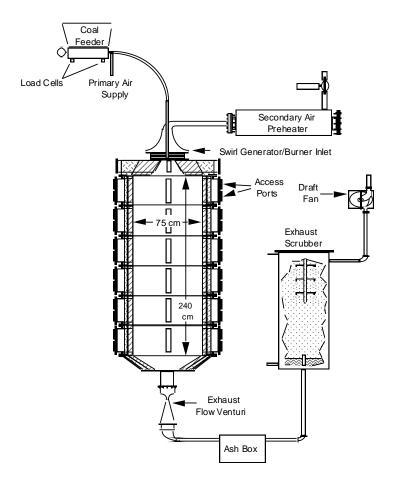


Figure 1: Diagram of the BFR Including Feed and Exhaust System.

The flow of primary air, secondary air, and tertiary air (sometimes termed overfire or burnout air) to the reactor were measured using calibrated orifice plates. Natural gas was measured using a rotometer. Natural gas was used only to preheat the BFR and was turned off when the coal feed is turned on. All of the orifice plates were calibrated and compared to the choked flow equation. An example of the primary air (the smallest orifice) calibration results are shown in Figure 2. The resulting discharge coefficient, C_D , for the primary air is 0.967. Similar results were obtained for each controlled flow.

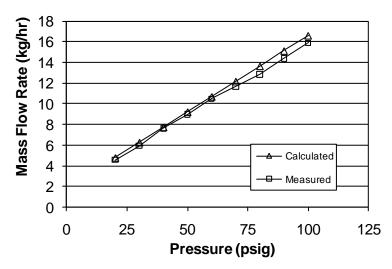


Figure 2: Measured and Calculated Mass Flow Rate as a Function of Upstream Pressure for 1.8 mm, Primary Air Orifice.

3.1.1 Air Staging

Product gas measurements were required from both a fuel rich and fuel lean combustion zone. The two zones were created in the BFR by running the primary and secondary air of the burner at sub-stoichiometric flow rates and then adding tertiary or burnout air downstream of the burner. Staged combustion is a common technology used for NO_X control in commercial boilers. The BFR was used previously in reburning and advanced reburning experiments that required staging of natural gas and air and as a result, water-cooled air injection probes were already available at the start of this project. A schematic diagram of the original water cooled injection probes is shown in Figure 3.

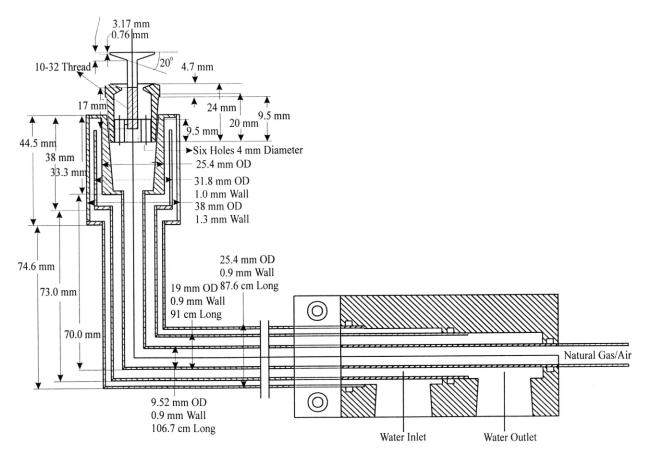


Figure 3: Drawing of the Tertiary Air Device for Staged Combustion used by Nazeer (1997).

The flow rates used previously for natural gas reburning were much lower than those required for the air flow of this project. Consequently, the six, 4mm diameter holes through which the gas had to flow were too small for the desired flow rate. CFD calculations completed by B&W also suggested that the spindle was too small and the higher flow rates of air would produce a jet that penetrated upward into the fuel rich region near the burner. They suggested an outlet diameter of 50 mm and a spindle diameter of 59.4 mm be used in order to direct flow away from the fuel rich zone. The larger exit diameter would have required a completely new water cooled probe. As a result, the largest exit area possible was selected for the existing probe and the six holes were increased from 4 mm to 4.09 mm which was the largest hole size possible.

The spindle diameter was increased from 17.4 to 44 mm as shown in Figure 4. The selection of the spindle diameter was somewhat arbitrary. It was feared that if the spindle diameter were too large, the outer edges of the spindle would not be cooled sufficiently by the exiting air and would melt when placed inside the hot combustion product gases.

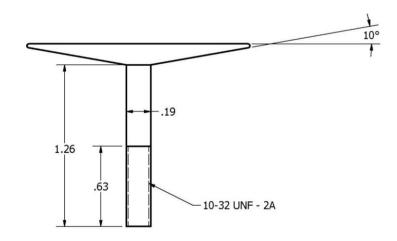


Figure 4: of Spindle Used to Modify the Original Air Injection Probe.

3.1.2 Burner

Commercial low-NO_X burners create a swirled flame to reduce emissions. The burner used in this work was a movable block swirl type, simulating a commercial low-NO_X burner by producing a longer, richer flame—thereby reducing the flame temperature and NO_X concentration. Having been used in previous experiments, the burner was originally built to accommodate two fuels. The burner consists of the components shown in Figure 5. Coal is conveyed by primary air into the injection tubes at the center of the burner. Secondary air enters the upper plenum and is directed downward into the swirl plenum. The air is then directed inward toward the fuel injection tubes through a set of triangular blocks as shown by a top view in Figure 6. One path through the blocks directs the air radially inward, producing no swirl while the second path through the blocks directs air tangentially around the center of the burner. The blocks are adjustable, producing different amounts of swirl according to their position.

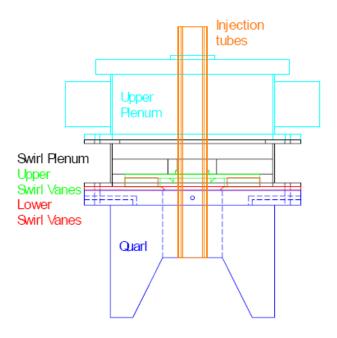


Figure 5: Components of the Variable Swirl Burner.

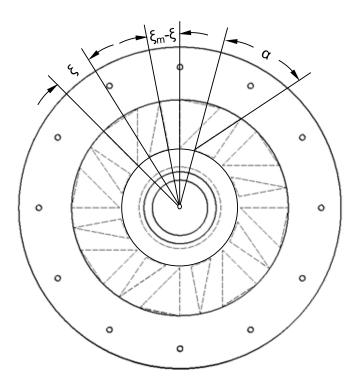


Figure 6: Top View of Swirl Plate.

The swirl is calculated by equations listed by Beér and Chigier (1972). Since this work did not include an in depth study of the burner, the reader is referred to the text for a complete

discussion of the burner geometry, though some detail is given here. Swirl, S, is defined by Equation (1), where σ is the angular momentum flux, defined by Equation (2).

$$S = \sigma \frac{R}{2B} \left[1 - \left(\frac{R_h}{R} \right)^2 \right] \tag{1}$$

$$\sigma = \frac{2\pi}{z\xi_m} \sin \alpha \frac{\cos \alpha \left[1 + \tan \alpha \tan \left(\xi / 2\right)\right] \left(\xi / \xi_m\right)}{\left\{1 - \left[1 - \cos \alpha \left(1 + \tan \alpha \tan \left(\xi / 2\right)\right)\right] \xi / \xi_m\right\}}$$
(2)

Most of the variables in these equations are defined in Figure 6: R_h and R are the inner and outer radii of the secondary air duct, respectively; B is the vane thickness; α is the angle of the vane; and ξ and ξ_m are the rotation and maximum rotation of the swirl plate, respectively. Values for the fixed variables associated with this swirl plate are listed in Table 3.

Table 3: Constant Values Used on Swirl of Dual Fuel Burner.

Variable	Value
R_h	0.5 in.
R	1.5 in.
В	0.591 in.
α	45.00°
ξm	21.56°

To change the swirl on the BFR, a threaded rod has been attached to the swirl plate. When the rod is turned counterclockwise the plates move toward a maximum swirl of 1.70 and all incoming secondary air travels between vanes with a tangential component into the burner. Conversely, if the threaded rod is turned all the way clockwise, zero swirl is achieved. The linear translation of the threaded rod was used to produce a measured vane angle. Equations 1 and 2 were used to calculate a theoretical swirl versus the number of turns on the threaded rod. The results are shown in Figure 7 as indicated by the solid symbols. A second order equation was fit to the data as shown in Figure 7 and was used to create Table 4, where the swirl can be seen for

any number of rod rotations. It should be recognized that this swirl is a theoretical value based on the geometry of the burner and the assumption of uniform velocity in the channels and pipes therein.

Some key geometric dimensions of the burner are given in Table 5. Because only one fuel was used in this work, either fuel tube in the burner could have been used to convey the coal from the feeder to the BFR. The annular tube, having a 14% larger cross sectional area than the center tube, was selected. This larger area causes lower momentum at the tube exit, thereby creating a shorter flame than if the center tube were to be used. In addition, the annular tube, being on the outside, produces more mixing between the fuel and air.

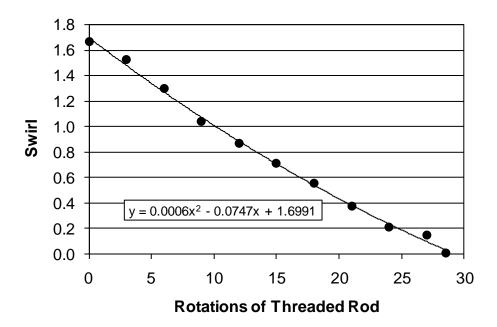


Figure 7: Correlation of Swirl and Rotations of Threaded Rod on the Dual Fuel Burner.

The upper plenum of the feeder is designed with secondary air entering from opposing sides of the burner in an attempt to produce an even distribution of air and create flow symmetry. After collecting several sets of data, it was determined that largest contribution to flow asymmetry was an uneven distance between the center and annular fuel tubes. Following this

discovery, before each experiment, the flame was visually inspected for symmetry. If the flame was not symmetric, the fuel tubes were adjusted slightly to correct the flame's direction. When swirl is low (0.1 - 0.25), however, the flame is in transition from a straight flame to a recirculating structure, and the stagnation point of the flow becomes much less stable, moving from side to side in the BFR.

Table 4: Swirl According to Any Number of Rod Rotations.

Rotations	Swirl	Rotations	Swirl
0	1.70	15	0.71
1	1.63	16	0.66
2	1.55	17	0.60
3	1.48	18	0.55
4	1.41	19	0.50
5	1.34	20	0.45
6	1.27	21	0.40
7	1.21	22	0.35
8	1.14	23	0.30
9	1.08	24	0.25
10	1.01	25	0.21
11	0.95	26	0.16
12	0.89	27	0.12
13	0.83	28	0.08
14	0.77	28.5	0.00

Table 5: Characteristics of the Burner.

Burner Geometry	Dimension
Center tube I.D. (in)	1.342
Annulus Inner I.D. (in)	1.50
Annulus Outer I.D. (in)	1.842
Secondary Air Inner I.D. (in)	2.00
Secondary Air Outer I.D. (in)	3.68
Center Tube Area (in ²)	1.414
Annulus Tube Area (in²)	0.8977
Secondary Air Tube Area (in ²)	7.495
Swirl Plate Thickness	0.25

3.2 Coal Delivery System

To facilitate the long term (10-30 hours) experiments required in this project, a new coal feed system was installed. This system consists of a bulk bag unloader and loss-in-weight feeder, as shown in Figure 8. The system also includes a platform to hold a bulk bag in place and pneumatic massage paddles to help discharge the coal. The bulk bag is approximately 49"x38"x38" in dimension and can hold up to 682 kg (1500 lb) of pulverized coal. After discharge, the coal is fed through an agitator hopper that fills the feeder hopper on demand. A pneumatic line was installed to convey the pulverized coal from the feeder to the BFR. This integrated system allows the coal feed rate to be held somewhat constant for an extended period of time. The system typically holds the feed rate to within 5% of the set point over a period of 1 minute and within 1% over a period of an hour. The feeder also maintains the flow rate to within 5% of the set point during a refill. The feeder system was purchased through National Bulk Equipment (NBE) but includes parts from both NBE and K-Tron.

Coal exits the feeder as it is pushed out of a tube by the twin augers. As with all auger systems, the coal tends to exit in clumps which can be exaggerated by the coal moisture content and the tendency of the coal to cake together. It was found to be very effective to place a wire mesh screen over the exit of the feeder to break up the coal clumps as they leave the feeder tube. Unfortunately, the wire mesh is also a collector for foreign material mixed with the coal. On two occasions, testing was interrupted by plugging at this wire mesh and therefore the mesh had to be removed. A larger mesh with holes of approximately 1 cm² was placed on the feeder exit and has proved to work very well.

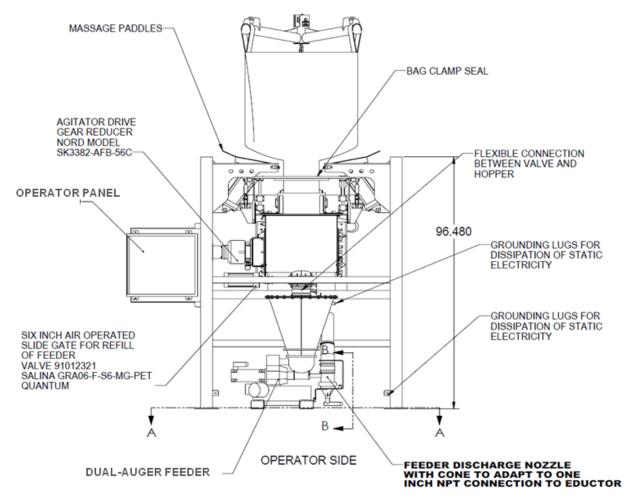


Figure 8: Schematic of the Bulk Bag Unloader and Feeder (Riemersma, 2010).

Another problem encountered with the feed system is the caking of coal to the feeder hopper. The feeder hopper walls are almost vertical and yet, moist coal can still stick to the walls and occasionally cause the center of the auger to be uncovered by coal. This problem only occurs for the high moisture low rank coals. The problem was averted by the placement of vibrators mounted to the hopper lid.

3.2.1 Coal Procurement and Analysis

All eight coals were selected by B&W and are representative of common coals used in commercial boilers around the nation. Each coal was pulverized by Headwaters Energy Services

Table 6. Ultimate, Proximate, and Ash Analyses for Each Coal.

Proximate Analysis, As Received	III. #6-1	III. #6-2	PRB-1	PRB-2	Beulah Zap	Mahoning	Indiana	Gatling	Pitt 8	Kentucky
Moisture	5.40	3.68	24.59	21.23	27.33	2.22	7.25	3.77	1.05	3.39
Ash	8.65	10.45	5.14	5.53	8.66	9.92	7.20	11.34	10.45	8.46
Vol. Matter	35.68	33.70	37.00	33.76	33.77	40.79	30.87	40.73	18.61	36.97
Fixed Carbon	50.27	52.17	33.27	39.48	30.24	47.07	54.68	44.16	68.89	51.18
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Ultimate Analysis, As Received										
Moisture (%)	5.40	3.68	24.59	21.23	27.33	2.22	7.25	3.77	1.05	3.39
Hydrogen(%)	3.74	3.14	2.55	2.06	2.03	4.18	4.02	4.07	3.86	4.34
Carbon (%)	70.16	99.79	54.75	54.39	46.56	74.67	69.48	67.11	77.37	70.89
Nitrogen (%)	1.04	0.95	0.83	0.86	0.86	0.93	1.36	0.94	1.44	1.23
Sulfur (%)	2.69	2.96	0.25	0.26	0.67	1.96	1.14	4.31	1.03	3.64
Oxygen (%)	8.32	11.16	11.89	15.67	13.89	6.12	9.55	8.46	4.80	8.05
Ash (%)	8.65	10.45	5.14	5.53	8.66	9.92	7.20	11.34	10.45	8.46
Total(%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Heating Value (Btu/lb)	12,575	12,464	9,156	9,479	7,792	13,404	12,400	12,191	13,715	12,905
Ash Analysis										
Silicon Dioxide, % as SiO2	48.12	49.13	36.04	37.42	32.25	42.65	55.14	40.35	56.77	41.70
Aluminum Oxide, % as Al2O3	19.65	18.55	16.84	17.18	12.23	29.07	21.10	22.56	29.28	18.40
Iron Oxide, % as Fe2O3	17.64	16.38	5.86	5.50	7.45	20.45	12.93	28.33	6.63	26.09
Calcium Oxide, % as CaO	4.28	5.49	21.61	17.41	19.91	1.76	2.48	2.62	06.0	4.80
Magnesium Oxide, % as MgO	0.95	1.07	5.06	3.94	6.47	0.52	0.86	69'0	0.56	06.0
Sodium Oxide, % as Na2O	1.08	99.0	1.69	1.08	3.29	0.34	1.25	0.41	0.65	0.53
Potassium Oxide, % as K2O	2.59	2.34	0.50	0.57	0.82	1.61	2.40	1.28	2.30	2.43
Titanium Dioxide, % as TiO2	1.05	0.93	1.32	1.20	0.65	1.41	1.30	1.04	1.53	96.0
Manganese Dioxide, % as MnO2	0.07	0.04	0.02	0.02	0.08	0.00	0.03	0.05	0.05	0.03
Phosphorus Pentoxide, % as P2O5	0.08	0.00	1.00	0.54	0.27	0.76	0.35	0.22	0.56	0.31
Strontium Oxide, % as SrO	0.03	0.03	0.35	0.25	0.64	0.12	0.08	0.00	0.12	0.05
Barium Oxide, % as BaO	0.05	0.05	0.62	0.43	0.73	0.07	0.06	0.11	0.12	0.18
Sulfur Trioxide, % as SO3	4.41	5.24	60.6	14.46	15.21	1.24	2.02	2.25	0.53	3.62
Alkalies as Na20	2.79	2.20	2.02	1.46	3.83	1.40	2.83	1.25	2.17	2.13
Base to Acid Ratio	0.39	0.38	0.64	0.51	0.84	0.34	0.26	0.52	0.13	0.57
Silica Ratio	0.68	0.68	0.53	0.58	0.49	0.65	0.77	0.56	0.88	0.57
T250, F	2429	2439	2228	2302	2130	2497	2624	2295	> 2900	2263
Chloride (%) (dry basis)	0.3892	0.283	0.0012	0.001	0.001	0.1989	0.2121	0.0387	0.0045	0.2057
Rank	Bitum.	Bitum.	Sub-bit.	Sub-bit.	Lignite	Bitum.	Bitum.	Bitum.	Bitum.	Bitum.

in Kennesaw, Georgia and delivered to BYU. The coal arrived at BYU in bulk bags, sometimes known as supersacks. A proximate, ultimate, and ash analysis were obtained for each coal, the results of which are summarized in Table 6. The particle size of the pulverized coal has been specified as 75% passing through a number 200 mesh, but the particle size distribution has not been measured. The original proximate, ultimate, and ash analyses can be seen in Appendix B.

The initial deliveries of Illinois No. 6 and Powder River Basin (PRB) coals were consumed during testing in 2009. Additional coal was ordered and received in the third and fourth quarters of 2009. The additional PRB coal had not been tested at the time of this writing but the additional Illinois #6 coal had. For clarity in understanding the data, the two deliveries of Illinois #6 coals will be called Illinois #6-1 and Illinois #6-2, respectively. Although similar, differences in the composition of the two deliveries of coal are larger than expected. The Illinois #6-2 coal has significantly less chlorine and sodium, and higher ash content than the Illinois #6-1 coal. Therefore, significant differences can be expected when comparing product gas data between the two coals.

3.3 Fuel and Air Flow Rates

Coal and air flow rates used for each of the five tests completed to date are shown in Table 7. The feed rate of coal for the Illinois #6 test was selected based on prior experience as the amount of heat required to maintain the BFR at a high enough temperature to produce ignition and burnout (150 kW). The flow rates of coal for the other fuels were selected to maintain the heating rate of the Illinois #6 coal.

Air flow rates were selected in order to produce a fuel-rich reducing zone of S.R. = 0.85 followed by burnout air and an oxidizing zone of S.R. = 1.15. The ultimate and proximate

analyses of each coal were used to calculate a stoichiometric air-fuel ratio. Due to an error in the program used to calculate the stoichiometric A/F ratio, the values actually used in some of the experiments are slightly leaner than they should have been for three of the coal tests (Illinois-2009, PRB, and Beulah Zap). The actual S.R. based on the fuel and air flow rates are also listed. The uncertainty of the fuel and air flow rates was estimated to be approximately 2%. The uncertainty of the calculated stoichiometric air-fuel ratio is also 2%, primarily based on the uncertainty of moisture content. Thus, the total uncertainty of the S.R. is on the order of 3%.

Table 7: Coal and Air Flow Rates Used in the Gas Sampling Tests.

14010 77	Coar and Am T	2011 22000	55 C 5 C 64 222	tire Gus Suri	-p	, ,	
	Illinois #6-1	PRB	Beulah Zap	Mahoning	Indiana	Illinois #6-2	Gatling
Coal (kg/hr)	20	30	32	19.30	20.28	20.18	20.63
Primary Air (kg/hr)	18.8	27	22	28.54	28.94	27.28	28.07
Secondary Air (kg/hr)	139.8	148	135	132.8	124.09	119.8	127.13
Tertiary Air (kg/hr)	50.4	62.2	51.8	45.7	54.37	51.72	54.84
Secondary Air Temp. (°C)	138	138	138	138	138	138	138
Swirl Number	0.66	1.09	1.67	0.77	0.77	0.77	0.77
Stoichiometric A/F	9.01	6.63	5.46	9.80	8.97	8.47	8.90
Ave. S.R., Reducing Zone	0.88	0.88	0.89	0.85	0.84	0.86	0.85
Ave. S.R., Oxidizing Zone	1.16	1.19	1.19	1.14	1.14	1.16	1.14

The swirl number of each test was chosen based on a sparse matrix of preliminary gas data and visual observations of the flame. The O₂ concentration near the BFR exit was measured as the swirl ratio was changed. At zero swirl, the Illinois #6 coal produced a lifted flame that penetrated slightly off-axis of the centerline almost the entire length of the BFR. Initially, the flame shortened and the O₂ concentration at the BFR exit decreased as swirl was increased. After reaching a swirl of 0.6 or higher, the flame shape appeared stable and the O₂ no longer decreased with increasing swirl. Regions of high CO, along with other gases typically found in a reducing region, such as H₂S, were found in the near-burner region. The swirl for Illinois #6 was therefore selected at 0.66 as the lowest swirl to produce a swirl stabilized, attached flame.

A similar process was used to determine the swirl number used for the other coals. The swirl ratio was varied and near-burner gas composition was measured. The lower rank coals visually appeared to require a higher swirl ratio to produce a stable recirculating flame. This can be attributed to the higher momentum of the primary flow relative to the secondary flow in the lower rank coals. As can be seen in Table 7, the lower rank coals required approximately the same total flow of air to complete the combustion and thus secondary air flow and secondary momentum is similar for all coals. The primary air and fuel flow rates are both increased with the low rank coals increasing the ratio of primary to secondary momentum. Thus the swirl ratio of PRB was 1.09 and Beulah Zap, 1.67. The last four tests (Mahoning, Indiana, Illinois-2010, and Gatling) were similar coals (all the same rank with similar moisture contents; see Table 6) and a swirl of 0.77 created the desired conditions for all four.

3.4 Gas Sampling System

The goal of the gas sampling system is to deliver gases to the analyzers that are free of solid particles and are unaltered chemically from those sampled in the BFR. This requires the removal of particulate from the gas stream to protect the optical components in the gas analyzers and rapid cooling of the gas to 180°C to prevent chemical reactions, and avoid condensation of water and acids. A total of eleven gas species were measured, including CO, CO₂, H₂, H₂O, H₂S, COS, HCl, NO, O₂, SO₂, and SO₃. Three different analyzers were used to collect all of the desired gases.

The analyzer used to measure most of the gases was a Fourier transform infrared (FTIR) gas spectrometer. The FTIR, manufactured by MKS Online Products, was used to measure CO, CO₂, H₂O, H₂S, COS, HCl, NO, SO₂, and SO₃ which includes all gases of interest except H₂ and

O₂. Though more detail on FTIR theory will be given later, each gas is measured by the amount of infrared light it absorbs. Some gases absorb light very well and the accuracy for these gas measurements is high. Some gases, such as H₂S, HCl, and SO₃, are not strong absorbers and are therefore more difficult to measure. The steps taken to ensure proper measurement of these gases are discussed later.

The gas chromatograph (GC), manufactured by Agilent Technologies (model 3000 Micro GC), operates by separating gases according to the time it takes to travel through a separation column. Once separated, the thermal conductivity of the gas at the column exit is used to determine the gas concentrations. The GC was purchased primarily for the measurement of H_2 , but the same column that measures H_2 can also be used to measure O_2 , N_2 , and CO.

The Horiba PG-250 is a five gas analyzer built to measure common combustion product gases including CO, CO₂, NO, O₂, and SO₂. Three of the gases are measured using infrared absorption (CO, SO₂ and CO₂). NO is measured using chemiluminescence and O₂ is measured using a zirconium oxide cell. Before passing into the analyzer, gas must pass through a desiccant as the instrument cannot handle excessive amounts of moisture. Experience has shown that the desiccant and water trap influence the SO₂ concentration in the gas and therefore the Horiba analyzer was not used to measure SO₂. Additionally, CO has a maximum detection limit of 5000 ppm which is too low for most measurement locations in the reducing region of the BFR studied in this work. Because all ten gases of interest are measured by the FTIR and GC, the Horiba PG-250 was only used to obtain redundant measurements and wasn't always necessary for recording data.

A schematic diagram of the current sampling system is shown in Figure 9, where all bolded items are heated to prevent condensation. A water cooled tube is inserted into the BFR

through a circular port in an access door. The water-cooled tube acts as a housing to protect an electrically heated probe (heating jacket and sample tube) from the combustion gases inside the BFR. The heating element in the probe is connected to a temperature controller which maintains the heated sample line at 180°C. The heated sample line is available commercially as Teflon or stainless steel. Both materials have been evaluated in this study with preference for Teflon due to its chemical stability with the combustion gases, as will be discussed shortly. The water-cooled tube and heated sample line are nominally 5 ft in length which is long enough to traverse the diameter of the BFR. Outside of the BFR, a second heated line, 25 ft in length, is used to carry the gases from the BFR to the analyzers.

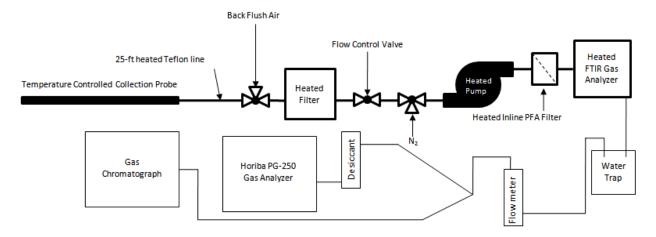


Figure 9: Schematic Diagram of the Components and Analyzers of the Gas Sampling System.

Just before reaching the analyzers, the gas sample travels through a series of components necessary for proper measurement. The first is a 3-way valve that, turned one direction, allows gas to continue toward the analyzers or, turned the other way, allows high pressure air to back flush the probe; clean air travels backward through the 25-ft heated line and heated probe to free them of any debris. After the 3-way valve, the sample passes through a heated Teflon filter. This filter is controlled to 180°C and contains no metallic components on any surfaces in contact with the gases. Upon exiting the heated Teflon filter, the gas travels through two more valves. The

first valve, a needle valve, is in place strictly to control the flow through the sampling system. When the valve is closed, the pump cannot draw any gases from the BFR whereas if the valve is completely open, the pump is not restricted (except for line and filter pressure losses) in its ability to sample gases from the BFR. The second valve, a three-way valve, controls the source of the gas that passes into the gas analyzers. The valve is used to switch between nitrogen from a compressed gas cylinder and the sample line. The nitrogen is used as a zero reference point for the FTIR and a calibration point for the Horiba PG-250. The gas subsequently travels through a heated pump that is oil-less and uses a Teflon diaphragm. The pump head and valve body are made of 316 stainless steel but are Teflon coated. The final component the gas must travel through before entering the FTIR is an in-line Teflon-PFA (perfluoroalkoxy) filter with a single 47 mm-diameter Whatman qualitative (grade 5) filter paper (Whatman No. 1005 047).

While in the FTIR, the sample is maintained at a temperature of 150° C and a pressure as close to one atmosphere (1 atm) as possible. The FTIR can accurately compensate for pressure variations that are within \pm 10% of 1 atm. After exiting the FTIR, the gas passes through a water trap located in an ice bath, reducing the water vapor to the saturation pressure at 0°C, thus reducing moisture in the lines prior to the subsequent analyzers. After the water trap, the gas sample passes through a rotometer containing a needle valve used to control the FTIR pressure and then the flow is split with one line going to the GC and the second going to the Horiba PG-250.

The configuration of components discussed above and shown in Figure 9 was not always as shown. Various items were added throughout the duration of the project that made gas sampling easier and/or more repeatable. The changes made were such that the system worked more reliably for longer periods of time but not necessarily more accurately. Anyone attempting

to sample gases with a similar setup is encouraged to follow the above configuration to avoid unnecessary troubleshooting that has already been corrected for during this research.

A major challenge for the sampling system was preventing Teflon from melting at the probe tip. A detailed drawing of the sampling probe that was initially used for this project, designed by Damstedt (2007), is shown in Figure 10. The flow of water in the cooling jacket is indicated by the arrows with the heating element shown by the shaded area. Combustion gases enter the probe from the left into a Teflon tube inside the heating jacket. The problem encountered with this probe design was that the Teflon tube tip can melt due to the high temperatures of combustion gases and occasional flame impingement. Once the Teflon tube was melted, a new heated probe assembly had to be ordered to replace it because the Teflon tube was not designed to be removable.

In consultation with the manufacturer of the heated line, a new design was produced as shown in Figure 11. The new heated line is similar to the original design with the only significant difference being that the center tube is a larger 3/8"-OD stainless steel tubing. The 3/8"-OD tubing allows a ¼"-OD Teflon tube to be inserted through the ID. The Teflon tubing could be easily replaced when damaged from overheating without the need to change the entire heating element.

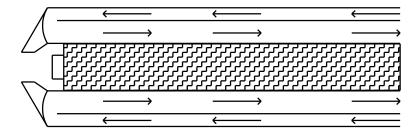


Figure 10: Schematic Diagram of the Sample Line Inlet Including the Water Cooled Tube and Heated Sample Line (dark region), Taken from Damstedt (2007).

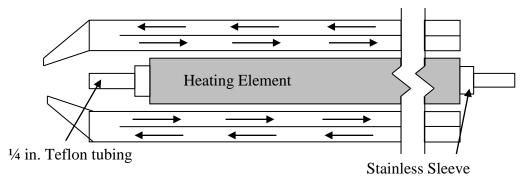


Figure 11: New Heated Probe Design with Replaceable 1/4-inch Teflon Tubing.

This modified probe design has been used with a short stainless steel tube and compression fitting as shown in Figure 12. The stainless tubing approximately 50 mm (2 inches) in length protruded approximately 25 mm (1 inch) into the combustion chamber. Pressure inside the BFR was always positive while data were being collected, nevertheless if the end of the sample tube was located inside the water cooled tube and not out in the combustion gases, air would leak into the sample. Therefore, a metal piece protruding into the combustion gas was necessary.

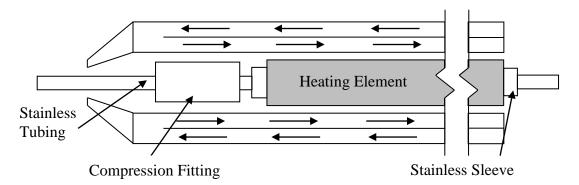


Figure 12: Heated Probe Design with a 1-inch Stainless Steel Tube Inserted into the Sample Gas.

3.4.1 Leak Testing

During warm up for each experiment, a mass balance was completed on the oxygen which allowed a check on the fuel, air, and O_2 measurements. The mass balance was necessary each time to ensure there were no leaks in the gas sampling system. It was performed by

calculating the excess oxygen for the fuel/air flow under lean conditions assuming complete combustion. For example the methane, air, and fuel flows were set to an S.R. of 1.15. The appropriate oxygen concentration for the mixture assuming complete combustion of natural gas to CO_2 and H_2O was calculated. Agreement between the measured and calculated O_2 was generally within 0.4% which means that the S.R. was being measured within approximately 0.02. This is within the combined uncertainty of 2% in the fuel and air flow. When disagreement was greater than 0.5% O_2 , the source of error was identified before continuing with the test. The most common sources of errors were (1) the BFR pressure was not positive and thus air was leaking into the BFR, (2) there was a leak in the sample line, and (3) the gas analyzer was out of calibration.

A similar test was performed after the beginning of coal flow. The overall stoichiometry was set to an S.R. of 1.15 and the exit oxygen concentration is measured and compared to the expected value of 3% O₂. If the O₂ concentration is not within 0.5%, sources of error were investigated. In addition to the most common errors found with natural gas and air flow, additional errors can occur with the mass flow rate of the coal, primary air flow, and incomplete combustion of the coal.

3.4.2 FTIR Theory

The FTIR spectrometer, model number MG2030 manufactured by MKS Online Instruments was used to measure CO, CO₂, H₂O, H₂S, COS, HCl, NO, SO₂, and SO₃. The FTIR has a 5.11 m, long-pass gas cell and a maximum resolution of 0.5 cm⁻¹. The instrument transmits an infrared light through the sample gas and collects a measurement of the absorption of light as a function of wave number (WN). Each gas has a known spectral absorption pattern which can be quantified when compared to calibration spectra taken at the same temperature and pressure.

Absorption of gases follows Beer's law which states that the amount of transmitted light through a gas is exponentially proportional to the product of absorption coefficient, κ_{η} , and path length through the gas, s (Modest, 2003). Mathematically, this is expressed as Equation 3, where τ is the amount of transmitted light and s is the optical path length the light has taken through the gas. For simplicity, absorbance is defined as the negative logarithm of τ as shown in Equation 4 (Bosch-Charpenay, 2010).

$$\tau = \frac{I}{I_0} = 10^{-\kappa_{\eta} s} \tag{3}$$

$$A_{\eta} = -\log_{10}(I/I_0). \tag{4}$$

This implies that absorbance is directly proportional to the absorption coefficient of a gas and the optical path length. Since the absorption coefficient can be expressed in terms of molar absorptivity, ε_{η} , and gas concentration, c, absorbance can be expressed as shown in Equation 5.

$$A_{\eta} = \varepsilon_{\eta} cs . \tag{5}$$

When measuring combustion products, the total absorbance is the sum of the absorbance of all gases in the mixture. Though each gas absorbs in a large range of wave numbers, an analysis band is specified for each individual gas by which the concentration of the gas is calculated. For example, though H_2S has a spectrum spanning from $400 - 3000 \text{ cm}^{-1}$, the region selected as the analysis band is only a small portion of the total spectrum ($2670 - 2700 \text{ cm}^{-1}$). This region was selected because it contained the least interference from other gases. The rest of the spectrum is still very important, however, because it is used in calculating the concentrations of other gases that absorb in different regions. The MKS software attempts to determine the concentration of gases by interpolating between the calibration spectra to match the measured spectrum. In the H_2S example, the data between $2670 - 2700 \text{ cm}^{-1}$ are used to calculate the H_2S

concentration while the rest of the H_2S spectrum is used to determine the absorption contribution of H_2S in other spectral regions so that other gases can be properly calculated.

H₂S is a particularly difficult gas to measure because of its low signal to noise ratio using IR spectroscopy. It is advantageous to use the FTIR for H₂S measurements because it is a continuous measurement and can be made simultaneously with the other gas measurements, but the poor signal to noise ratio can cause low accuracy in the FTIR measurements. Because of the importance of analyzing H₂S, particular care has been taken to characterize the accuracy of this measurement. The spectral absorption pattern for 1000 ppm of H₂S is shown in Figure 13. Note the maximum absorbance is about 0.012 absorbance units (AU), where absorbance is measured according to Equation (4). This low magnitude corresponds to a transmitted IR intensity of 0.973*I*₀, meaning at that specific wave number (1292.8 cm⁻¹), 2.7% of the IR light was absorbed by H₂S.

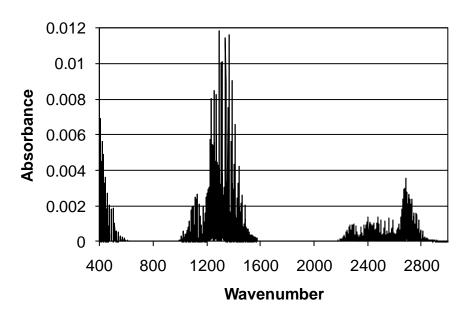


Figure 13: H₂S Absorption Spectrum for 1000 ppm of H₂S in Nitrogen.

As stated above, the FTIR software interpolates among the calibration spectra, creating a calculated spectrum that closely matches the measured spectrum. The error, E, in a gas measurement is determined by Equation 6 (Bosch-Charpenay, 2010),

$$E = \frac{\sqrt{\sum_{i=0}^{n} \left(meas_{i} - calc_{i}\right)^{2}}}{\sum_{i=0}^{n} calc_{i}} \times conc$$
(6)

where i refers to each wave number, and n is the amount of wave numbers in a given analysis region. The terms meas and calc refer to the absorbance value of the measured and calculated spectra, respectively, and conc is the measured concentration of the gas. To be clear, this calculation assumes that the difference between the measured and calculated spectra, or residual, is only noise. Therefore, it is strictly a measure of precision and not accuracy or complete uncertainty.

It is possible that gases can be interfered with by other gases absorbing in the same spectral region, causing the reported value to deviate from the actual value. Some possible gases that have interfered with the H_2S measurement are water and acetylene, but this interference has been found to be less than 150 ppm. Combining possible interference with the precision of the H_2S measurement, the overall accuracy is approximately ± 250 ppm. This should be seen as a worst case scenario, as the interference from other gases is not always present. Averaging several spectra can decrease the uncertainty to a worst case of about ± 125 ppm. Although the uncertainty in H_2S is significant, reasonable data have been recorded at levels well above the uncertainty level and prove to be very valuable in considering the behavior and evolution of sulfur. These data are presented in Chapter 4 and Appendix A.

3.4.3 Analyzer Comparison and Calibration

Certified calibration gases were used to calibrate the Horiba PG-250 and GC. The calibrations were done routinely, usually in the morning of each day before data collection. The calibration gases used to calibrate the Horiba and GC are listed in Table 8. It should be mentioned that the GC was only calibrated with a CO concentration expected in fuel-lean regions and the Horiba cannot measure CO above 5000 ppm.

Table 8: Calibration Gases Used for the Analyzers.

Analyzer	Gas	Concentration (Nominal)
	O_2	0, 0.1, 22 (%)
GC	H_2	0, 0.1, 2.0(%)
	CO	0, 0.1 (%)
	O_2	0, 22 (%)
Horiba	CO_2	0, 18 (%)
погіва	CO	0, 4500 (ppm)
	NO	0, 1000 (ppm)
FTIR	H_2S	800 (ppm)
FIIK	HCl	100 (ppm)

For the FTIR, rather than producing a new spectral absorption curve, the results from the manufacturer's (MKS) calibration curve were used and compared with certified calibration gases. The calibration gases, found in Table 8, were fed directly into the FTIR as shown in Figure 14. Results of the measurements for H₂S and HCl are shown in Table 9. The results show excellent agreement between the measured and actual concentrations with a 3% or less variation. SO₃ is very toxic and difficult to purchase. It is also highly reactive and would be difficult to maintain in a gas cylinder. It should be noted that the existing calibration for SO₃, obtained by MKS, was obtained by producing a reaction with the products being fed into the FTIR. MKS has expressed confidence in the spectral shape but not the magnitude. All other gases measured by

the FTIR are more common and easier to measure because of their IR absorption properties. It was therefore unnecessary to compare these gases with calibration gases.

Table 9: Results of HCl and H₂S Calibrations.

G	Fas	Cylinder Concentration (ppm)	FTIR Measurement (ppm)	Error
Н	I_2S	817	827	+ 2%
Н	ICl	96	93	- 3%

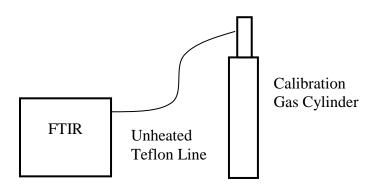


Figure 14: Setup for Calibration of the FTIR.

3.4.4 Reactivity Testing

Several combustion gases of interest, including H₂S, HCl, and SO₃, are chemically reactive and can condense out in the sampling line when the temperatures fall below their respective dew points. In order to determine the loss of H₂S and HCl in the sampling line, calibration gases were passed through individual and multiple components of the sampling system. A diagram of the sampling line used for the reactivity testing is shown in Figure 15. This sample system differs from the one currently used (Figure 9) because the testing was done prior to the current set-up. Four components of interest for this test included (1) a 2-m heated stainless steel sample line, (2) a heated stainless steel filter, (3) a 7.6-m heated Teflon sample line, and (4) a heated pump.

Results of the measured concentrations after passing through various components are listed in Table 10. Results are compared to those when the gases were fed directly into the FTIR through a short 2 m Teflon line (see Table 9). Although not all of the components were tested, a trend is evident. When either calibration gas was passed through Teflon lines (components 3 and 5), losses were minimal or negligible. However, when the gases were passed through stainless steel tubing (component 1), the loss became significant, around 10%. Losses in the filter which was housed in stainless steel were also significant at 10%. Following these tests, it was decided that stainless steel components in the sampling train needed to be eliminated as much as possible. A Teflon filter and Teflon heated lines have been used to replace the stainless steel components.

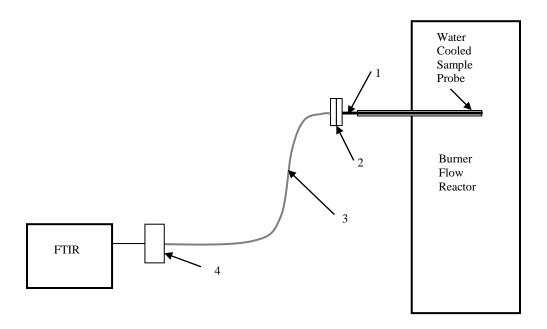


Figure 15: Diagram of Gas Sampling System Including: (1) a 2-m Heated Sample Line, (2) a Heated Filter, (3) a 7.6-m Heated Teflon Sample Line, and (4) a Heated Pump.

Also of interest is the variability seen in the sample line data for H_2S . Although the average H_2S concentration measured is in good agreement with the standard, a variation of ~100 ppm occurred from sample to sample, as shown in Figure 16. While all of the gases show some

degree of variability from one scan to the next, the scattering of H_2S concentration is higher compared to its average. Reasons for variability in the H_2S sample are discussed earlier in Chapter 3.4.2. In this case, there were no other gases to interfere with H_2S and the scattering was simply caused by the low absorbance of the H_2S gas. Averaging the data based on 16 data points has produced an average value of 744 ppm for H_2S , a 95% confidence at ± 12 ppm.

Table 10: Results of Measured Gas Concentrations after Passing through One or More of the Components in Sample Line.

Gas	Components	FTIR	Difference From
(concentration)	Components	Measurement	Direct Delivery (%)
H ₂ S (817 ppm)	3	821 ppm	- 6 ppm (-0.7%)
H ₂ S (817 ppm)	1, 2, 3, 4	744 ppm	- 83 ppm (-10%)
HCl (96 ppm)	3	91 ppm	- 2 ppm (-2%)
HCl (96 ppm)	5	91 ppm	-2 ppm (-2%)
HCl (96 ppm)	2, 5	80 ppm	-13 ppm (-14%)
HCl (96 ppm)	1, 4, 5	80 ppm	-13 ppm (-14%)

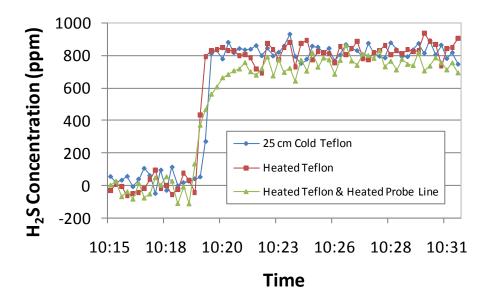


Figure 16: FTIR Measurement of 817-ppm H₂S Calibration Gas.

Another potential loss of H₂S, HCl, and SO₃ can be associated with condensation in the sampling line. The specified line temperature of 180°C is sufficiently high to prevent condensation of acids and water. The challenge was to maintain this temperature in the sample

line throughout the testing. The heated filter was thought to be the lowest temperature point in the sampling train and was upgraded. The lowest temperatures then appeared to be in the water cooled tube or at a fitting connection between the heated lines. The line temperatures were carefully monitored at different line locations. In addition to maintaining the line temperatures, several other species sensitive to condensation, such as NH₃ and HCN, were also monitored. Condensation in the line would reduce their concentrations. Therefore, lower than expected values in these species would have also served as an indication for condensation. Experience suggests that HCl is the first of the measured species to condense.

4 RESULTS

This chapter presents experimental results, discussing important characteristics and trends in the data. The reported data are directly useful for understanding the gas phase distribution of potentially corrosive elements in the coal such as sulfur and chlorine and as empirical results for use in corrosion analyses. Additional discussion will be provided in Chapter 5 where equilibrium calculations are presented and compared with the measured data. The FTIR contains data for numerous gas species that were not of specific interest to corrosion such as NH₃ and HCN. These data are reported in Appendix A. Although only two tables (one reducing and one oxidizing) of data for each coal are presented in this chapter, all acquired data can be found in Appendix A.

For reference in reviewing the data, Figure 17 illustrates the dimensions of the BFR. The BFR is 265 cm axially, as measured from the fuel injection tube outlet located at the bottom of the burner, and has a 75 cm inner diameter. The tertiary air was inserted about half way down the BFR, near 140 cm. Accordingly, some of the tertiary air penetrates up into the lower part of the reducing zone, having been injected slightly upwards. Because of this, reducing zone gas species were sampled well above the tertiary air insertion point (usually at 63 – 97 cm axially).

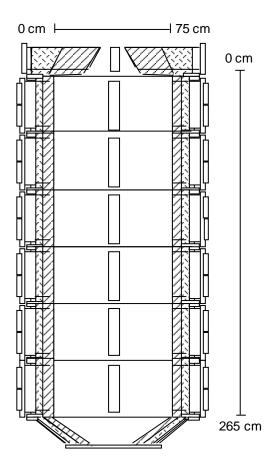


Figure 17: Gases Can Be Sampled 23 - 257 cm Below the Annular Fuel Tube of the Burner.

4.1 Reducing Zone Gas Sampling Results

Gas species data of each coal for the reducing zone are shown in Table 11 – Table 17. The data are shown in the chronological order in which they were taken. The radial position given is measured from the north wall of the BFR. When viewing the tabulated gas concentration data it should be remembered that the largest single gas species in the mixture is nitrogen (N_2) which is 78% of the incoming air. The concentration of other gases can be significantly influenced by dilution with air in fuel lean regions and can be very high in regions where gases evolve from the coal at a faster rate than the coal is mixed with or reacts with air. The data reported in this chapter are raw data and are not corrected to an equivalent O_2 concentration to

allow the absolute magnitudes to be evaluated but in some cases to aid the discussion, the data will be normalized to $3\% O_2$.

It should also be remembered that the FTIR (used to measure all reported species except O_2 and H_2) is a heated, wet measurement while the O_2 and H_2 are dry measurements being obtained with the GC after cooling the product gases to 0 °C and removing the water. These data have not been adjusted to the same basis (i.e. they are reported as they were measured).

4.1.1 Carbon Monoxide

The first column containing CO is useful for identifying fuel rich and fuel lean regions within and between the reducing and oxidizing zones. The CO concentrations show that a similar fuel rich stoichiometry was produced in the near burner fuel-rich zone for each coal. Maximum CO concentrations vary from 3-5% among all the tests. The CO concentration shows the symmetry or lack thereof for each flame. For the Illinois #6 and PRB coals, the flame was richest south of the centerline at 50-60 cm. The asymmetry was eventually found to be caused by the primary fuel tube being off center from the annular secondary air tube and could be adjusted prior to collecting data. The CO concentrations (and other gas concentrations) are more symmetric in the latter five coal tests after it became a practice to visually center the flame before starting a test. The flame symmetry can however be difficult to assess visually leading to asymmetric gas phase data being collected. This lack of symmetry shifted the location of the richest region of the BFR from the centerline toward the walls of the reactor but did not appear to have a significant impact on the magnitude or trends of the gases being measured.

4.1.2 Carbon Dioxide & Water

The second and third columns show CO_2 and H_2O . These species give some indication of the completeness of combustion and the amount of mixing with air. The highest values of CO_2 and H_2O will occur in stoichiometric regions where the carbon content of the coal is burned out and there is little or no dilution from excess air. In fuel rich regions, CO_2 is lower with some of the carbon being split between CO and CO_2 , but the sum of CO and CO_2 is approximately constant. CO_2 is highest when O_2 and CO concentrations are both low indicating a near-stoichiometric location. These locations occur between the fuel rich center and the fuel lean wall regions.

When comparing CO₂ concentrations for different coals, CO₂ is expected to be highest in coals of low stoichiometric air fuel ratio because of the lower dilution of the products with air nitrogen. The Beulah Zap and PRB coals have the lowest stoichiometric air fuel ratios due to their higher oxygen content. As expected, the total CO₂ plus CO concentrations of these two coals are higher than the other coals.

When comparing coals, the differences in H_2O concentration in the product gases are dominated by the amount of moisture in the coal. The PRB coal and Beulah Zap are both high moisture coals and therefore have higher H_2O concentrations at a given S.R. This can be seen in the data where the highest H_2O concentrations for PRB Beulah Zap are 15 and 21 % respectively while H_2O concentrations for the other coals are on the order of 10% or less.

Table 11: Illinois #6-1 – Axial Distance 77 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	COS (ppm)	H ₂ (%)	O ₂ (%)
10	642	15.44	7.35	18	180	296	2129	44	0	0.95	4.07
20	1574	16.29	7.78	20	224	275	2253	36	4	0.33	3.31
30	7619	15.85	8.91	10	244	230	2529	39	-7	0.04	1.35
40	22414	14.76	9.77	788	157	96	1773	37	57	0.17	0.69
50	17264	15.07	9.88	376	187	141	2258	37	41	0.65	0.10
60	32254	14.40	10.47	991	144	99	1497	23	132	0.89	0.07
70	22070	14.47	10.12	671	129	148	1828	33	118	0.67	0.06

Table 12: PRB – Axial Distance 90 cm.

Dist.	CO	CO_2	H ₂ O	H_2S	HCl	NO	SO_2	SO_3	COS	H_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	5130	14.17	12.16	-41	1	301	190	11	7	0.03	4.35
20	5116	13.96	11.20	-81	1	311	179	12	6	0.08	4.08
30	6642	14.04	11.43	-27	0	321	171	11	7	0.12	3.46
40	38487	14.11	15.17	203	0	215	149	6	13	1.32	0.41
50	34866	14.48	14.32	180	0	288	141	7	13	1.13	0.66
60	15135	15.24	12.58	53	0	311	168	9	11	0.35	1.85
70	1835	13.72	10.65	-35	0	360	149	10	7	0.03	4.33

Table 13: Beulah Zap – Axial Distance 77 cm.

Dist.	CO	CO_2	H_2O	H_2S	HCl	NO	SO_2	SO_3	COS	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	11617	17.79	16.94	54	4	454	781	12	20	0.32	2.89
20	39181	17.86	18.91	170	3	227	629	15	71	1.51	0.90
30	47406	16.21	20.50	571	3	174	298	13	108	2.07	0.96
40	42536	16.05	21.29	465	2	211	419	10	75	2.06	0.86
50	29380	17.39	19.14	98	2	287	666	19	45	0.90	1.26
60	6640	17.24	16.64	-43	1	410	719	18	21	0.18	3.01
70	1030	16.25	15.01	-32	1	510	668	19	11	0.07	3.36

Table 14: Mahoning – Axial Distance 83 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	COS (ppm)	H ₂ (%)	O ₂ (%)
10	3001	17.59	6.79	-62	4	373	1585	36	-26	0.02	2.20
20	7813	17.71	9.38	7	10	381	1746	36	-7	0.11	1.58
30	20719	17.23	10.39	-52	12	410	1861	42	1	0.37	0.92
40	35154	16.34	11.97	88	19	330	1708	30	33	0.80	0.62
50	17333	17.45	11.53	-47	14	337	1836	36	4	0.78	0.64
60	2295	17.54	9.56	-28	14	356	1642	33	-7	0.92	0.84
70	481	16.50	7.98	-2	15	390	1447	31	-1	3.51	0.02

Table 15: Indiana No. 6 - Axial Distance 70 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	COS* (ppm)	H ₂ (%)	O ₂ (%)
10	652	11.69	6.79	-41	44	375	800	29	-9	0.00	4.44
20	17225	11.79	9.27	93	66	212	910	23	16	0.87	0.81
30	42635	10.63	10.56	303	188	76	522	8	42	2.56	0.59
40	39253	10.75	10.46	423	184	66	436	7	13	3.18	0.56
50	30262	11.22	10.13	318	132	80	432	14	19	2.19	0.56
60*	16239	14.42	9.44	-27	16	280	1237	30	0	0.10	0.80
70*	10105	14.46	8.49	-76	12	349	1133	26	-2	0.19	0.73

^{*} These data were collected on a different day than other data in the same table.

Table 16: Illinois #6-2 – Axial Distance 97 cm.

Dist.	CO	CO ₂	H ₂ O	H ₂ S	HCl	NO	SO ₂	SO ₃	COS	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	8256	15.82	9.20	-1	30	213	2402	53	15	1.10	0.53
20	23505	14.85	9.77	491	262	49	1098	30	93	1.04	0.50
30	28591	14.63	9.81	578	255	36	748	22	108	1.16	0.53
40	25197	14.71	9.83	646	242	42	802	25	109	1.32	0.52
50	13365	15.46	9.62	477	177	83	2049	47	101	0.61	0.52
60	6764	15.93	8.63	20	90	192	3456	68	14	0.23	0.54
70	6993	15.98	7.82	43	44	227	2675	64	1	0.07	0.74

Table 17: Gatling – Axial Distance 97 cm.

Dist.	CO	CO_2	H_2O	H_2S	HCl	NO	SO_2	SO_3	COS	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	18168	16.79	10.43	353	15	164	2861	54	98	0.30	0.77
20	20853	16.73	10.15	404	53	115	2614	58	124	0.40	1.62
30	27136	14.65	10.49	760	15	92	2154	52	57	2.24	0.02
40	21515	16.66	10.23	680	10	107	2606	57	71	2.32	0.02
50	13377	17.22	10.20	307	5	125	3112	62	53	0.23	0.34
60	10594	17.39	10.49	305	4	127	3146	64	4	0.07	0.92
70	6111	17.66	9.43	-69	3	190	3643	80	4	0.03	1.59

4.1.3 Oxygen

Staying with the major species, the O_2 concentrations are shown in the final column. Though both the Horiba PG-250 and GC measure O_2 , the GC values were selected for use because they were more closely correlated with the timing of the FTIR data. The Horiba produces a running average of the concentration in the measurement cell while the GC provides

the concentration of a small amount of gas in the sample line at a particular instant in time. O_2 is generally seen to change inversely with CO as would be expected. The O_2 concentration is higher near the walls where CO is low and lowest near the center where CO is a maximum. The O_2 is very low (less than 0.5%) in the richest regions of the flame (CO above 25,000) and significantly higher near the walls with values on the order of 2-5%. This is an indication that burnout air is flowing up along the walls from the tertiary air injector or is available from the recirculating secondary air. In some of the later experiments, the tertiary air injector was inverted to inject air downward in the BFR. In spite of this change, O_2 was still prominent near the walls indicating that the O_2 present was primarily originating from the secondary air.

The O_2 values in the reducing and oxidizing zone for Beulah Zap are slightly higher than would be expected when compared to the other coals. It was initially thought there was a leak in the sample line causing the high readings but it was later determined that air was being entrained in the primary air line at the feeder. A correction was made for the entrained O_2 as can be seen in results for the subsequent tests. Because of the leak, the S.R. of the reducing zone as evidenced by higher O_2 values, was higher (S.R = 0.89) than the target value (S.R. = 0.85).

4.1.4 Sulfur-containing Species

The sulfur-bearing species of H₂S, SO₂, COS, and SO₃ are critical to fireside corrosion and therefore are of particular interest. H₂S and COS are seen to follow the same trend as the CO being highest in the reducing zone and lowest or zero near the walls where O₂ is present. At the same locations where H₂S and COS are relatively high, the concentration of SO₂ is low. An exception to this result is the data for the Mahoning coal where SO₂ is seen to be high across the entire BFR profile and H₂S and COS are only measurable at the richest measured test point at a radial position of 40 cm. As will be seen in the discussion, the trend of increasing H₂S and COS

with decreasing S.R. is consistent with equilibrium trends where sulfur is preferentially formed as H_2S and COS under reducing conditions and SO_2 under oxidizing conditions. The concentration of SO_2 deceases slightly near the walls where oxygen is present because of dilution with the air. The concentration of SO_3 is seen to be very low compared to the other sulfur species, typically on the order of 2-3 percent of the total sulfur.

The sum of H_2S , SO_2 , SO_3 , and COS for each coal as a function of radial position in the reducing zone is shown in Figure 18. The sum is relatively constant across the diameter of the BFR with a deviation of typically less than 10 percent across the diameter. The least constant data seems to be from Illinois #6-1 and Gatling coals. This non-uniform data may be due to incomplete combustion, unsteady conditions in the BFR during the measurement or measurement uncertainty. The uncertainty in the measurements is dominated by the uncertainty of the H_2S measurement and is considered to be approximately ± 100 ppm.

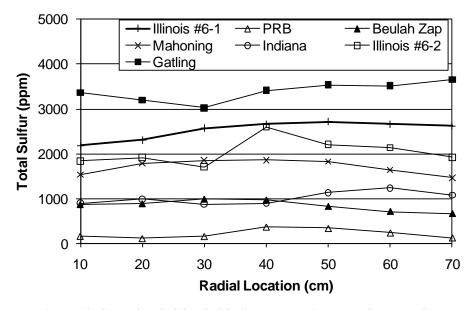


Figure 18: Sum of H₂S, SO₂, & SO₃ in the Reducing Zone for Each Coal.

The average sum of H₂S, SO₂, SO₃, and COS in the reducing zone are compared to the total sulfur in the coal in Table 18. In the table, the magnitudes of measured sulfur-containing gases are seen to scale linearly with the sulfur content in the coal. This trend is illustrated more clearly in Figure 19, where the parent coal sulfur is plotted against the average total measured sulfur-containing gases for each coal. The data appear to have a linear relationship, showing that a relatively constant amount of sulfur is released from each coal in the reducing zone. The maximum possible sulfur was determined with equilibrium calculations and is also plotted in Figure 19.

When comparing the measured values with the maximum sulfur possible, the Illinois #6-2 and Gatling coals appeared to release a smaller fraction of sulfur into the gas phase than the other five coals. One possible explanation of this disparity in sulfur release is that gases are reacting with a part of the sampling line for the Illinois #6-2 and Gatling coals but not for the others. This is possible because the flow rate of gases was decreased for the Illinois #6-2 and Gatling tests to mitigate particulate accumulation in the filters. The decreased flow rate caused the gases to be in contact with each component of the gas sampling system for a longer amount of time. At the tip of the gas sampling probe—the first component the gases enter—is a small (1-3 inches long) piece of stainless steel. This stainless steel is necessary to prevent hot gases from melting the Teflon sampling lines. As discussed in Chapter 3.4.2, stainless steel is known to react with H₂S (and possibly other sulfur-containing gases). Though the stainless steel tip is small, it is possible that gases were reacting with it at lower flow rates. This theory is discussed in more detail in Chapter 4.1.5.

Table 18: Correlation between Coal Sulfur and Measured Sulfur Species.

Coal	Sulfur wt%, As Received	Total Measured Sulfur Avg. (ppm)
Illinois #6-1	2.69	2534
PRB	0.25	219
Beulah Zap	0.67	846
Mahoning	1.96	1709
Indiana	1.14	1018
Illinois #6-2	2.96	2048
Gatling	4.31	3388

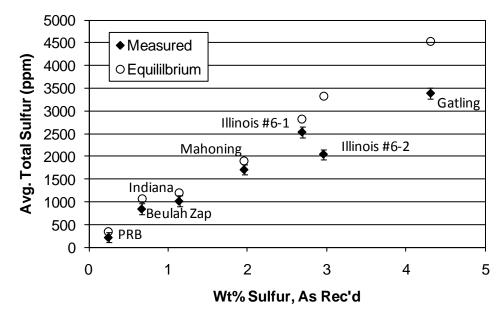


Figure 19: Comparison of As Rec'd Sulfur and Total Measured Sulfur in the Reducing Zone.

A clear trend is seen for all of the coals measured—when CO increases, H_2S and COS increase and SO_2 decreases. The highest values of H_2S and lowest values of SO_2 occur where CO is a maximum. This is consistent with equilibrium considerations which predict that H_2S is formed in reducing conditions. The correlation of H_2S and SO_2 values with equilibrium predictions is a topic worthy of additional investigation and will be discussed in the next chapter. H_2S is a particularly difficult species to measure because of the low signal to noise ratio, as mentioned in Chapter 3.4.2. The uncertainty of the H_2S measurement when the instrument is clean is on the order of ± 50 ppm. Therefore, negative values on the order of ± 50 -100 ppm are

sometimes encountered and can be interpreted as near zero H_2S . Generally, at a given axial location, the increase in H_2S is seen to be approximately equal to the decrease in SO_2 from one location to the next. Plots showing these trends are shown for each coal in Figure 20. CO is also included in each plot to elucidate how fuel rich the gas mixture is at each location. More information regarding these plots and the data is found in the next chapter where equilibrium calculations are discussed.

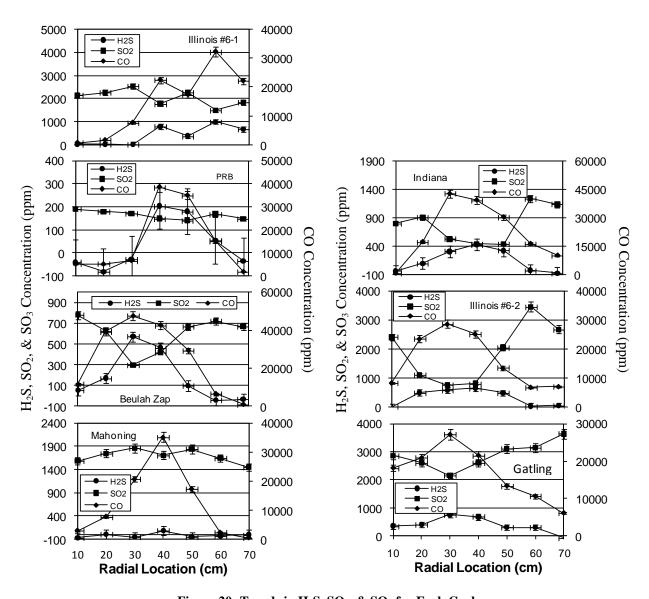


Figure 20: Trends in H_2S , SO_2 , & SO_3 for Each Coal.

4.1.5 Hydrogen Chloride

HCl is another species critical to fireside corrosion. The literature suggests (Gibb, 1983) that chlorine is loosely bonded in the coal with 90-100% of it being released rapidly and forming HCl. The chloride concentration in the PRB and Beulah Zap coals is very low—0.0012 and 0.0010 wt%, respectively. For these coals the concentration of HCl of 1-2 ppm (essentially zero) in the reducing zone is at the instrument detection limit. The Illinois #6-1 coal on the other hand has a chloride concentration of 0.39 wt% (see Table 6) and thus produced measurable amounts of HCl in the reducing zone on the order of 150-250 ppm. The Mahoning and Indiana coals both had chloride contents of approximately 0.20 wt%, about half the amount found in the Illinois #6-1 coal. While the Indiana coal produced HCl in line with the Illinois coals, Mahoning produced a maximum of only 19 ppm—far less than half that of the Illinois #6-1 coal. Both Illinois #6-2 and Gatling coals produced results consistent with a linear relationship between HCl and coal chlorine. Figure 21 compares the measured HCl concentration with the amount of chloride in the coal for the reducing zone. With the exception of the Mahoning data (open marker), a somewhat linear trend is seen in the data.

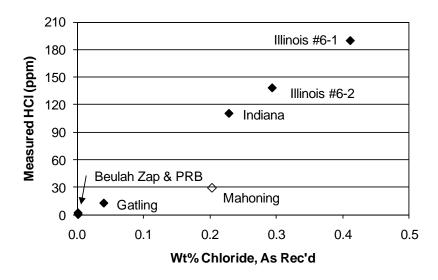


Figure 21: Comparison of Measured HCl to As Received Wt% Chloride for the Reducing Zone.

It was noted during some of the Indiana tests that HCl was slow to respond to changes in radial sampling location in the BFR. When CO and other gases would increase, HCl would rise only slowly. Some of these occurrences can be seen in Appendix A. It was later determined that the HCl concentration is affected greatly by the flow rate of gases through the sampling line. With low sampling flow rates, the HCl concentration would decrease and respond slowly to changes in radial sampling location. With high flow rates, the HCl concentration was higher and responded to sampling location changes just like other gases did. It is theorized that the HCl was reacting within the sampling line at the lower flow rates because of the increased residence time prior to quenching to 180°C. This same phenomenon of low HCl occurred in all the Mahoning tests, possibly creating the anomaly in the reported data above. The reason for the low HCl was not determined until after the Mahoning tests were completed. It is suggested that future work include repeating the Mahoning tests to determine if a low flow rate was indeed the cause of the lower measured HCl concentration.

In addition to chlorine forming HCl in the reducing zone, chlorine reportedly remains as HCl unless reacting with a metal surface where it forms FeCl₂. Gibb's findings correlate well with the measured HCl data. HCl is formed in the reducing zone and remains as HCl in the oxidizing zone. This appears consistent with the measured data with Indiana and Mahoning coals being the exceptions. For both of these coals, low sampling flow rates in the oxidizing zone are suspected.

4.1.6 Hydrogen Gas

Hydrogen is the final species given in the tables and is the only species in addition to O_2 that was obtained with the GC. The H_2 is highest in the richest locations and drops to zero in fuel-lean locations. In equilibrium calculations, hydrogen concentrations are typically on the

order of about half the concentration of CO. The ratio of H_2 to CO varies from approximately 1/4 to 1/2 for the majority of the measured data.

4.2 Oxidizing Zone Gas Sampling Results

This section presents the combustion gas species for the oxidizing region where the target S.R. was 1.15. Results from the oxidizing region for the seven tested coals are shown in Table 19 – Table 25.

4.2.1 Carbon Monoxide and Carbon Dioxide

Ideal combustion concludes that all carbon will eventually become CO_2 . In the oxidizing region, combustion is more complete than in the reducing zone and the CO is almost completely converted to CO_2 . Because of the addition of burnout air, on the order of ~30% by volume to the mixture, the concentration of CO_2 should decrease in the oxidizing zone compared to the reducing zone unless additional CO_2 is formed. The data are consistent with CO being converted to CO_2 between the reducing and oxidizing zones.

4.2.2 Water

The reduction in water concentration between the reducing and oxidizing zones can also be explained by dilution from the tertiary air. In all cases, the water concentration decreases when traveling from the reducing to oxidizing zone. If the mass of water were to remain the same between the two combustion zones, the addition of tertiary air in the oxidizing zone should decrease the water concentration by about 30% on a relative basis. Like carbon, not all of the hydrogen is immediately oxidized in the reducing zone and some water is formed between the two measurement locations. For example, H₂ measured in the reducing zone is converted to H₂O

in the oxidizing zone. Other hydrocarbons are also present in the reducing zone, seen in Appendix A. When comparing the percent change in the H₂O measurement between reducing and oxidizing zones for each coal, it varies widely. One possible reason for this inconsistency is the completeness of combustion in both the reducing and oxidizing zones.

4.2.3 Oxygen

The O_2 measurements in the oxidizing region are more uniform, indicating better mixing than in the reducing section. O_2 tends to average close to three percent in the oxidizing region for most coals. Beulah Zap is one exception because, as previously discussed, there was air entrainment in the primary air line that allowed excess oxygen into the reactor during that test. The data are correct according to the conditions they were recorded in; there was not an issue with the instruments used to obtain the measurements).

Table 19: Illinois #6-1 – Axial Distance 217 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	H ₂ (%)	O ₂ (%)
10	92	13.66	6.09	9	152	147	1834	36	0.00	5.69
20	163	15.91	6.83	2	179	153	2114	43	0.00	3.31
30	2129	16.45	7.82	15	247	146	2381	46	0.00	1.46
40	96	16.91	7.65	-53	185	131	2281	42	0.00	1.81
50	306	16.98	7.92	10	190	140	2333	43	0.00	1.92
60	423	16.24	7.76	0	182	153	2233	38	0.00	2.45
70	690	13.40	6.78	27	196	168	1902	33	0.00	2.92

Table 20: PRB – Axial Distance 243 cm.

Dist.	CO	CO ₂	H ₂ O	H ₂ S	HCl	NO	SO ₂	SO ₃	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	11	14.93	10.83	54	2	272	115	6	0.00	3.52
20	21	14.53	10.91	-44	1	237	120	6	0.00	2.73
30	23	17.01	12.67	11	2	251	182	10	0.00	2.36
40	59	17.26	13.10	-3	2	243	203	8	0.00	1.41
50	50	17.60	13.02	28	3	254	193	10	0.00	1.80
60	24	16.77	12.57	40	3	270	162	8	0.00	2.41
70	20	13.33	10.94	4	3	257	102	7	0.00	3.82

Table 21: Beulah Zap – Axial Distance 243 cm.

Dist.	CO	CO_2	H ₂ O	H ₂ S	HCl	NO	SO_2	SO ₃	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	9	10.67	8.57	59	2	304	273	2	0.00	5.31
20	22	13.69	11.03	178	2	264	458	9	0.00	7.33
30	20	13.74	11.20	172	2	269	481	11	0.00	5.18
40	16	13.64	11.28	191	2	264	494	12	0.00	5.31
50	15	13.26	11.17	162	2	261	476	10	0.00	5.97
60	23	12.85	11.17	135	1	253	453	7	0.00	6.69
70	40	12.46	12.68	201	1	250	402	7	0.00	6.69

Table 22: Mahoning - Axial Distance 243 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	H ₂ (%)	O ₂ (%)
10	324	16.36	7.88	-56	7	234	1546	37	0.00	2.54
20	193	16.39	10.52	-10	9	229	1692	38	0.00	2.70
30	321	16.58	11.61	72	10	230	1668	35	0.00	2.86
40	83	15.43	10.03	-50	12	251	1501	31	0.00	4.55
50	82	15.31	8.50	-48	11	254	1434	34	0.00	3.89
60	220	15.89	7.81	-31	13	266	1466	37	0.00	4.05
70	149	15.41	6.94	-11	14	282	1374	33	0.00	4.89

Table 23: Indiana – Axial Distance 250 cm.

Dist.	CO	CO ₂	H ₂ O	H ₂ S	HCl	NO	SO_2	SO ₃	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	607	13.32	8.45	-4	7	110	889	29	0.00	2.77
20	465	13.28	7.97	-13	9	143	882	26	0.00	3.12
30	701	13.25	7.32	-5	16	154	870	28	0.00	3.71
40	769	13.23	7.24	-27	19	148	868	25	0.00	3.57
50	750	13.10	7.13	35	24	152	853	25	0.00	3.60
60	118	12.91	6.91	-47	23	153	813	25	0.00	3.95
70	389	12.79	6.99	-5	26	147	803	24	0.00	3.81

Table 24: Illinois #6-2 – Axial Distance 257 cm.

Dist.	CO	CO_2	H ₂ O	H ₂ S	HCl	NO	SO ₂	SO ₃	\mathbf{H}_2	O_2
(cm)	(ppm)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)
10	493	14.01	6.77	7	136	182	2094	54	0.00	2.63
20	95	13.86	6.29	-91	128	154	1989	49	0.00	3.55
30	152	13.67	6.45	28	146	192	1970	46	0.00	3.62
40	237	13.55	6.44	-11	146	177	1962	54	0.00	3.53
50	608	13.22	6.64	-33	148	174	1949	54	0.00	3.31
60	464	14.80	6.88	-15	134	186	2208	46	0.00	1.88
70	1300	15.13	7.41	14	158	177	2284	54	0.00	1.39

Table 25: Gatling – Axial Distance 243 cm.

Dist. (cm)	CO (ppm)	CO ₂ (%)	H ₂ O (%)	H ₂ S (ppm)	HCl (ppm)	NO (ppm)	SO ₂ (ppm)	SO ₃ (ppm)	H ₂ (%)	O ₂ (%)
10	74	15.00	6.83	59	-2	113	2788	54	0.00	3.79
20	74	14.96	6.97	59	1	108	2823	60	0.00	3.68
30	106	15.09	7.00	52	5	112	2828	56	0.00	3.86
40	74	14.36	6.74	26	6	118	2650	53	0.00	4.83
50	73	13.79	6.55	36	6	115	2497	46	0.00	5.42
60	93	14.82	6.85	97	6	109	2711	50	0.00	4.22
70	71	14.26	6.71	58	7	116	2574	52	0.00	4.67

4.2.4 Sulfur-containing Species

As mentioned, H_2S is expected to become SO_2 in the oxidizing zone. This result is observed in the data where H_2S is typically within a range from negative to positive 50 ppm, or essentially zero for each coal. Figure 22 illustrates this for the Illinois #6-1 coal and very similar data can be seen for each coal in Table 19 – Table 25. The uncertainty of the SO_2 measurement in Figure 22 is within 1% of the measured value.

As SO_3 is transported from the reducing to oxidizing condition, it remains a small (1-3%) fraction of the total sulfur. The amount of SO_3 increases with increasing sulfur in the coal. Both of these results are in agreement with the cited literature (Srivastava et al, 2004).

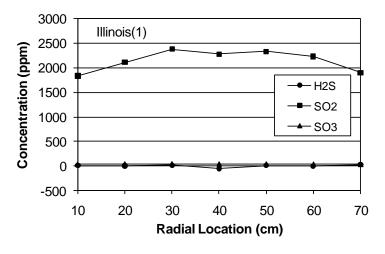


Figure 22: Concentrations of H₂S, SO₂, & SO₃ for Illinois #6-1 Coal - Axial Location 217 cm.

The SO₂ values in the oxidizing zone are similar in magnitude to those in the reducing zone; however, as noted earlier the tertiary air is added between the two measurements diluting the rich mixtures by approximately 30%. Since the measured SO₂ values in the oxidizing zone are not lower there is clearly an indication of sulfur release between the reducing and oxidizing zone measurements. In order to determine how much sulfur was released, the total sulfur in the reducing zone gases was multiplied by the ratio of the reducing zone air flow rate to the total air flow rate to correct the reducing zone concentrations to the equivalent concentration in the oxidizing zone. The total sulfur release was compared to the maximum possible according to equilibrium calculations. Table 26 shows the percent increase in total measured sulfur between the reducing and oxidizing zone (absolute basis). The Beulah Zap data shows a slight decrease in total sulfur between the two zones that is within the measurement uncertainty. The other coals all show an increase in gas phase sulfur between the two measurement locations. The change in sulfur for both low rank coals, Beulah Zap and PRB, is small. The high rank coals showed a sulfur increase of 5-20%.

Table 26: Comparison of Total Measured Sulfur in the Reducing and Oxidizing Zones. The Reducing Zone Sulfur Data was Normalized to be on the Same Dilution Basis as the Oxidizing Zone.

Coal	Reducing Zone Sulfur (ppm) Sulfur (ppm) Sulfur (ppm)		Percent Increase
Illinois #6-1	1723	2196	10
PRB	164	175	1
Beulah Zap	634	599	-8
Mahoning	1283	1542	14
Indiana	716	871	8
Illinois #6-2	1739	2102	20
Gatling	2541	2804	5

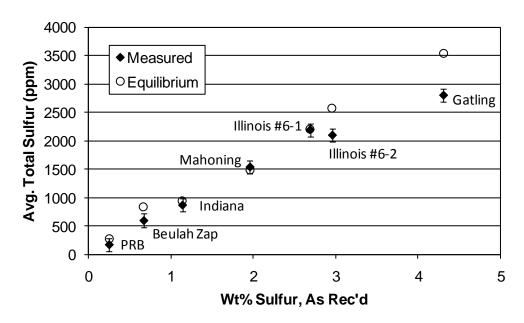


Figure 23: Comparison of As Rec'd Sulfur and Total Measured Sulfur in the Oxidizing Zone.

In the reducing zone, the fraction of coal sulfur released to the four measured sulfur containing gases was relatively constant. Since the gases are better mixed and more complete combustion has occurred, the same trend is expected in the oxidizing zone. Figure 23 shows the comparison of as received sulfur with the sum of H₂S, SO₂, and SO₃ for each coal in the oxidizing zone. The apparent linear trend seen in the reducing zone is even clearer in the oxidizing zone.

4.2.5 Hydrogen Chloride

A plot of measured HCl in the coal as a function of coal chlorine is shown in Figure 24. As discussed in the literature review, chlorine is expected to form HCl rapidly in a reducing environment and stay in that form throughout oxidation unless interacting with a surface or particles (Gibb 1983). Data from Illinois #6-1 and Illinois #6-2 coals appear to support Gibb's conclusion. The average HCl concentration of the Illinois #6-1 coal in the oxidizing zone was

measured to be 190 ppm and that of Illinois #6-1 measured 143 ppm, similar to the results of the reducing zone (167 and 157 ppm, respectively). The same argument can be made here as with the sulfur that the oxidizing concentrations should be lower than the reducing zone concentrations due to dilution of the tertiary air. Thus there is an indication of additional HCl formation between the reducing and oxidizing zones. The concentrations of HCl in the oxidizing zone are much lower for Indiana and Gatling than in the reducing zone. As discussed in Chapter 4.1.5, it was determined during additional testing that HCl was significantly affected by the flow rate of gases traveling through the sampling line. These flow rates were definitely lowered during the Indiana and Mahoning tests. Gatling is uncertain, but the HCl data in the oxidizing zone appears too low to fit a linear trend. Therefore, the accuracy of the HCl measurements is questionable and needs to be determined more accurately by performing repeat tests on at least the Mahoning and Indiana coals.

In addition to labeling each data point in Figure 24, the HCl data that is suspect has been plotted with open markers. If the data are taken to be correct, there appears to be a nonlinear relationship between coal chlorine and HCl. These data suggest a threshold level of coal chlorine required before significant amounts of gas phase HCl is produced. Given the problems encountered with the HCl measurement, such a conclusion would be inappropriate at this time. Additional insights will be given in the discussion of the data in the next chapter and additional data will be needed to provide a strong conclusion.

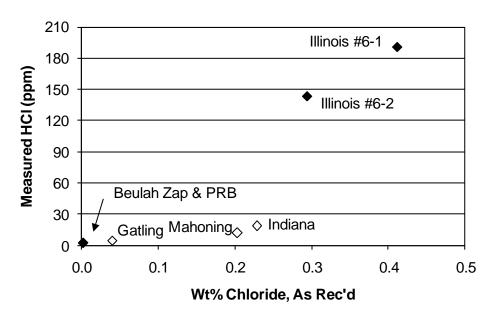


Figure 24: Comparison of Measured HCl to As Received Wt% Chloride for the Oxidizing Zone.

4.2.6 Hydrogen Gas

Hydrogen gas is not expected in the oxidizing region because it is expected to oxidize when the staged air is added. Recorded data match this expectation with no H_2 recorded in the oxidizing zone. In some cases, small amounts of H_2 (2-17ppm) were measured in the oxidizing region. They cannot be seen in the tabulated results because H_2 is reported in %, not ppm and should be considered background noise.

5 DISCUSSION OF RESULTS – SULFUR AND CHLORINE GAS DATA

Two of the most significant coal elements relative to fireside gas corrosion are sulfur and chlorine. Sulfur and chlorine containing gas species are difficult to measure and detailed combustion zone measurements of H₂S, SO₂, SO₃, COS, and HCl are a unique contribution of this work. This chapter will discuss these species measurements in detail.

Equilibrium calculations can serve as a guide for the interpretation of measured gas concentrations. Equilibrium calculations are presented for three coals, including Illinois #6, PRB, and Gatling. These coals were selected because they differ substantially in chlorine and sulfur content. Additionally, PRB is a lower rank coal with relatively high moisture content. Equilibrium calculations were completed using a publically available equilibrium code written by McBride and Gordon (1994; 1996) at NASA-Glenn. An equilibrium calculation requires the elemental composition of the fuel and oxidizer, temperature, and pressure to be defined. The elemental composition of the coal was obtained through an ultimate analysis and a standard ash analysis for each coal, as reported in Chapter 3.2.1. In the calculations, both average and local S.R.'s have been used to make comparisons with equilibrium results.

5.1 Equilibrium Trends for Sulfur Containing Gases

Equilibrium products greater than 10⁻¹⁴ in concentration produced by the NASA equilibrium program for the Illinois #6 coal include: COS, CS₂, CaS(cr), H₂S, S, SH, SN, SO, SO₂, SO₃, S₂, S₂O, S₃, and SiS. Note that this list is incomplete to cover all the possible sulfur

containing species that can form or that were considered by the equilibrium program. Of all available species, only five were significant (> 1 ppm) over a range of 0.8 – 1.0 S.R. and a temperature range of 1300 – 2400 K which represents the range of gas temperatures thought to be possible in the reducing region of the BFR. The five significant and measurable gases are COS, H₂S, SO₂, SO₃, and CaS(cr). CaS(cr) is a solid phase sulfur bearing compound that was not measurable with the instruments used in this research.

5.1.1 Reducing Zone Equilibrium Trends for H₂S, COS and SO₂

In order to understand the major trends produced by equilibrium, H₂S and SO₂ are shown in Figure 25 for two stoichiometries over a range of temperatures with the Illinois #6-2 coal. At S.R. = 0.9 and temperatures above 1800 K, sulfur is seen in the figure to be primarily in the form of SO₂ with little or no sulfur as H₂S. As temperature is decreased, sulfur is converted from SO₂ to H₂S such that the two concentrations are approximately equal at 1300 K. Lowering the gas temperature at a fixed fuel rich stoichiometry therefore shifts the equilibrium from SO₂ to H₂S. A second trend seen in this figure is that decreasing the S.R. from 0.9 to 0.8 shifts the transition of SO₂ to H₂S to a higher temperature. At an S.R. of 0.8, the crossover point where the equilibrium concentration of H₂S approximately equals that of SO₂ is at 1500 K. Equilibrium calculations show that H₂S can be created by decreasing the S.R. or decreasing temperature under reducing conditions. The trend of increasing H₂S with decreasing S.R. is seen in all of the fuel rich gas data for all of the coals shown in Table 11 – Table 17.

The equilibrium results for all sulfur species from the Illinois #6 coal greater than 1 ppm are shown in Figure 26 as a function of S.R. at 1400 K. This figure again shows that decreasing the S.R. decreases SO₂ and increases H₂S. As the S.R. decreases to 0.80, approximately 60 percent of the sulfur is in the form of H₂S while the remaining 40 percent appears to be divided

evenly among the other four gases. In addition to H_2S , several other sulfur species including COS, S_2 , and CaS(cr) are predicted. This result shows that a decrease in SO_2 in fuel rich regions will not be matched by an equal increase in H_2S because additional species are being formed. This trend also agrees with the measured data.

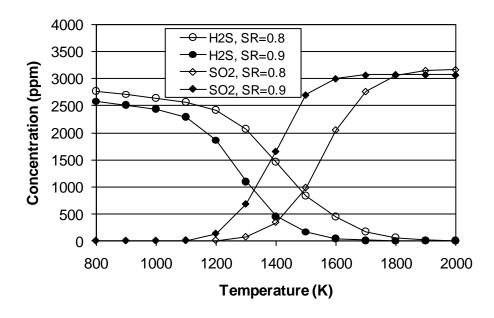


Figure 25: Equilibrium Concentrations of H₂S and SO₂ for an Illinois #6-2 Coal at Two Stoichiometries.

The equilibrium data from the Gatling coal (Figure 27) is similar to that of Illinois #6, except the magnitudes of all species are greater as would be expected by the higher sulfur content of the Gatling coal. The PRB equilibrium and measured gas data showed some differences from the Illinois #6 and Gatling coals. Equilibrium results for the PRB coal are shown in Figure 28. The magnitude of the y-axis is approximately one tenth that of the Illinois #6 coal (Figure 26) as would be expected with approximately an order of magnitude less sulfur in the coal. Under fuel rich conditions, the amount of S₂ and CaS remain negligible for the PRB coal while for the Illinois #6 and Gatling coals they were similar in magnitude to COS. The PRB equilibrium results suggest that the ratio of H₂S to SO₂ would be greater than those of

Illinois #6 and Gatling coals. From the data, this appears to be true although the uncertainty of the H_2S measurement is clearly too large to draw any strong conclusions. The maximum H_2S to SO_2 ratio for the PRB coal is 1.36 whereas it is only 0.72 and 0.34 for Illinois #6 and Gatling, respectively.

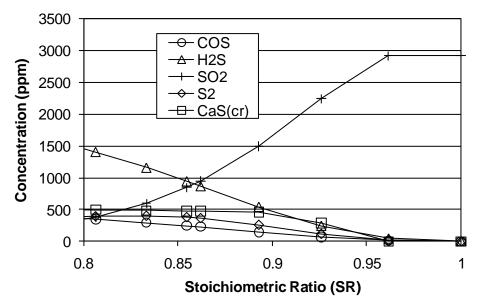


Figure 26: Illinois #6-2 coal. Significant Sulfur-bearing Equilibrium Species at 1400 K.

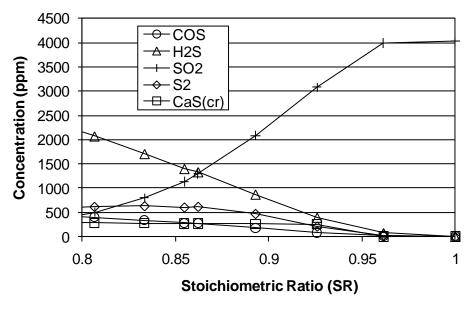


Figure 27: Gatling coal. Significant Sulfur-bearing Equilibrium Species at 1400 K.

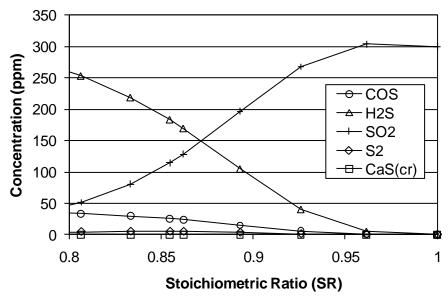


Figure 28: PRB Coal. Significant Sulfur-bearing Equilibrium Species at 1400 K.

5.1.2 Comparison of Total Coal and Gas Phase Sulfur

Given the fairly comprehensive measurement of gas phase sulfur species that were measured, an estimation of the fraction of total sulfur in the gas phase becomes possible. It is very difficult to produce an accurate determination of the total mass of sulfur in the gas phase because of the difficultly of converting a concentration measurement into a mass measurement. To do so requires the density of the gas, which is unknown. Damstedt (2007) used a method for estimating the mass flux of measured elements by integrating the product of the local mass flux and the measured mass fraction of a species. Doing so required the assumption that mass flux was uniform radially across the reactor and that the gas species concentrations were symmetrical. Both of these assumptions are suspect in our particular data although such an approach could be used to provide an estimate.

An alternative method is to compare the measured gas concentrations from an equilibrium calculation with the measured data. The same basic difficulties arise in making the comparison—the temperature and local stoichiometric ratio of the measured locations are not known. An average S.R. of 0.85 in the reducing zone and 1.15 in the oxidizing zone were used in conjunction with an estimated temperature of 1400 K to make the comparison.

The average of the total of all measured sulfur-bearing gas species are compared with the total determined by equilibrium for the three coals at an S.R of 0.85 and temperature of 1400 K in Table 27. The table shows that a large fraction (62-79%) of the coal sulfur is found in the four measured gas species (SO₂, H₂S, COS, and SO₃) for all three coals.

Table 27: Comparison of Total Measured Sulfur Species and Total Equilibrium Sulfur Species at S.R. = 0.85 and 1400K.

Coal	Measured (ppm)	Equilibrium (ppm)	% of Equilibrium
PRB	209	324	65
Illinois #6-2	2035	3259	62
Gatling	3388	4303	79

Because of the uncertainty of the measurement associated with the unknown temperature and local S.R.'s discussed above, it can only be concluded that a large fraction of the coal sulfur is being released. Clearly, some of the sulfur from the coal ends up in the solid phase in the deposit and ash. Deposit analyses from coal-fired boilers in the near burner region suggest not all pyritic sulfur in the coal is available for reaction which may account for some of the sulfur not being measured. Additional insight could be gained by sampling particles at multiple axial locations in the BFR and analyzing them for sulfur content. This analysis was not performed as part of this work but is a suggestion for future work.

5.2 Comparison of Local Measured Sulfur Gas Species with Equilibrium

5.2.1 Local Stoichiometric Ratio Calculation

To compare measured data with equilibrium calculations, the local stoichiometric ratio (S.R.) and temperature of each sampling location must be known. As discussed previously, the S.R. values are nominally 0.85 and 1.15 in the reducing and oxidizing regions, respectively. However, the S.R. is not constant within each region since the fuel and air are clearly not yet mixed, especially in the reducing region.

It is possible to estimate the local S.R. by using the measured product concentrations to determine the mixture fraction. A formal derivation of these calculations can be found in Appendix D but a brief overview will be discussed here. A similar method was introduced by Damstedt (2007).

The mixture fraction, f, is defined as the mass of the originating fuel divided by the total mass in the system. Mathematically, this is expressed as

$$f = \frac{m_f}{m_f + m_{air}} \tag{7}$$

where m is mass and the subscripts 'f' and 'air' refer to the fuel and air, respectively.

Next, the stoichiometric ratio (S.R.) is defined as the actual ratio of air to fuel $(A/F)_{act}$ divided by the stoichiometric ratio of air to fuel $(A/F)_{stoich}$. This is expressed as

$$SR = \frac{\left(\frac{m_{air}}{m_f}\right)_{act}}{\left(\frac{m_{air}}{m_f}\right)_{stoich}}.$$
(8)

These two equations can be manipulated and combined to produce the following:

$$f = \frac{1}{1 + SR\left(\frac{m_{air}}{m_f}\right)_{stoich}}. (9)$$

Damstedt (2007) shows how the mass for fuel and air identified in Equation 7 can be related to the measured carbon containing species in the gas phase and the molecular weight of the mixture as shown in Equation 10. A derivation of Equation 10 can be found in Damstedt (2007).

$$f = \frac{MW_c \sum X_i C_i}{Y_c MW_{mix}},\tag{10}$$

where MW_c and Y_c are the molecular weight and mass fraction (of the fuel) of carbon respectively and MW_{mix} is the molecular weight of the complete product gas mixture. X_i is defined as the mole fraction of each species while C_i is the number of carbon atoms in each species. Setting Equations (9) and (10) equal to one another yields an equation for the local S.R. value at any sampling location, expressed mathematically as

$$SR = \frac{\left[\frac{Y_c M W_{mix}}{M W_c \sum X_i C_i} - 1\right]}{\left(\frac{m_{air}}{m_f}\right)_{stoich}}.$$
(11)

A derivation, similar to Damstedt's (2007), of Equation 11 can be found in Appendix D. The derivation assumes the following:

1. The mass fraction of carbon in the fuel, Y_c , remains constant as the coal is burned (i.e., the coal burns as a homogenous mixture). A constant mass fraction requires for example that volatiles and char have the same composition. Though the amount of

- carbon burned with each of these components is different, this disparity is not accounted for in the equations.
- The molar density of the sampled mixture is constant during the sampling process.This would require the temperature of the sampled gas to remain constant.
- 3. The measured gases can produce an accurate approximation of the total gas molecular weight. The concentration of nitrogen is calculated as the difference of all measured gases and unity. If a significant amount of unmeasured gas is different in MW than nitrogen, the mixture molecular weight will be in error.

The CO₂ concentration is an important species for this calculation given the large amount of carbon contained in this gas. Unfortunately there is a considerable amount of uncertainty involved in this measured gas concentration. After correcting for differences in the dry and wet measurements of CO₂ obtained with the Horiba PG-250 and FTIR respectively, the two measurements were found to differ by about 10% (relative). The FTIR is capable of better resolution but CO₂ was not a matter of focus during FTIR calibration and analysis. The PG-250 is calibrated with calibration standard gases before each use and there is less reason to believe that its measurements are incorrect. The PG-250 was not used for all experiments however, so the FTIR measurements were used in reporting the data to maintain consistency.

The local temperature of gases at the measurement locations is also not known. This makes a direct comparison of the gas data and equilibrium calculations more difficult and less conclusive. Previous temperature measurements have been obtained by Nazeer et al (1999); and Tree and Clark (2000) in the BFR under similar conditions but with a different coal and a different burner. These measurements obtained with a suction pyrometer show maximum temperatures from 1500-1600 K.

Energy balance calculations to determine the gas temperature suggest temperatures above 1600 K are likely. If 1600 K is selected as the best estimate for the gas temperature, Figure 25 shows that the equilibrium sulfur will be almost exclusively in the form of SO₂. This equilibrium prediction is in conflict with the measured data which show substantial amounts of COS and H₂S. Possible explanations for this conflict are discussed below.

An investigation was made to determine at what temperature the equilibrium calculation could be made to best match the measured data. A comparison at 1300 K between the measured and equilibrium data for the Illinois #6 coal is shown in Figure 29. At this lower gas temperature, the measured H₂S, COS, and SO₂ appear to be in good agreement with the equilibrium calculation. Results for Gatling at 1500 K and PRB at 1300 and 1400 K are shown in Figure 30 and Figure 31, respectively. As with the Illinois #6 coal, PRB and Gatling trends can be matched with equilibrium calculations. One data point in the Gatling results (30 cm) did not match the trend of the other Gatling data. The S.R. calculated for this point was high because of an abnormally low CO₂ measurement. It is unknown why the CO₂ measured 2% lower than the previous and subsequent data and therefore this data point is seen as an outlier.

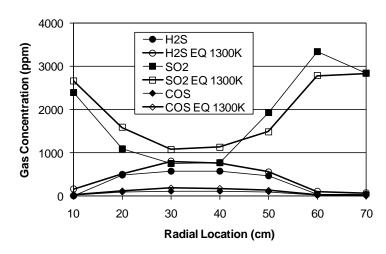


Figure 29: Illinois #6-2 Coal; Measured H₂S, SO₂, and COS vs. Equilibrium Calculations at 1300 K.

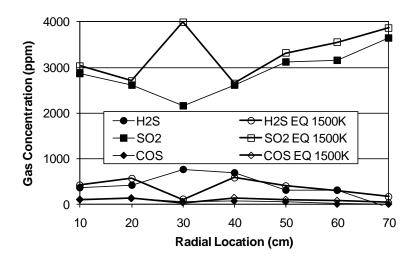


Figure 30: Gatling Coal; Measured H₂S, SO₂, and COS vs. Equilibrium Calculations at 1500 K.

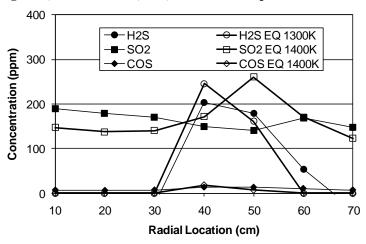


Figure 31: PRB Coal; Measured H₂S, SO₂, and COS vs. Equilibrium Calculations at 1300 & 1400 K.

The disparity in gas temperatures required to produce a match between measured and equilibrium concentrations cannot be explained by trends in adiabatic flame temperature or heating rates. The adiabatic flame temperature of each coal air mixture is within 50 K and all coals were fired at the same heating rate. These two factors should produce similar gas temperatures among the different coals.

At least two possible explanations exist for why the equilibrium temperature must be lower than the expected gas temperature in order to match the data. The first is that the gas composition is moving towards but is simply not in equilibrium. As noted in the literature

review, sulfur is thought to decompose from the coal primarily as H₂S and COS, but conversion from H₂S and COS to SO₂ and other species may be too slow to reach equilibrium making the ratio of H₂S to SO₂ higher than would be predicted by equilibrium. Regions which are fuel rich may be slower to move toward equilibrium leaving more H₂S and COS in these regions while fuel lean regions move more rapidly toward SO₂. Another possibility is that the gas temperature is decreasing during sampling and the equilibrium is shifted to lower temperatures during the sampling process. Knowing the flow rate through the gas sampling system and the area of the sampling line, the time required to quench the gas from the temperature at the sampling location down to 180 °C in the sampling probe was estimated to be 50-100 ms. The sample flow rate was not seen to influence sulfur measurements but it has been found to influence HCl values. If sulfur is still reactive during the sampling process and can shift from SO₂ to H₂S and COS while cooling, a similar process may be possible within a boiler as combustion gases approach boiler tubes.

SO₃ was not included in the equilibrium comparison because the data were too close to zero to be distinguished from the zero line and would have made the graph more cluttered and difficult to read. Equilibrium values for SO₃ are less than one ppm under fuel rich conditions at these temperatures. The measured values are higher than predicted by equilibrium, suggesting that SO₃ is formed rapidly from sulfur in the coal; however, reactions of SO₃ to the equilibrium products of H₂S, SO₂, and COS are too slow to reach equilibrium.

5.2.2 Oxidizing Zone

In the oxidizing zone, based on reported flue gas measurements, sulfur is expected to be primarily in the form of SO₂. This is in fact the case as seen in Table 19 – Table 25. When the Illinois #6-2, Gatling, and PRB coal data are compared with equilibrium calculations in the

oxidizing zone, trends match very well. This can be seen for any one of the coals in Figure 32 – Figure 34. The uncertainty of the SO₂ measurement is within 1% of the measured value.

Though not as strong as in the reducing zone, SO_2 is a mild function of temperature in the oxidizing zone according to equilibrium calculations. The Illinois #6-2 and Gatling coal sulfur is predicted to be SO_2 above 1400 K. Between 1000-1400 K, a fraction (5% at 1400 K and 20-30% at 1000 K) of the sulfur begins to be predicted in the form of SO_3 and CaSO4(solid). Even at temperatures as low as 1000 K, most Illinois #6-2 and Gatling sulfur is predicted to be SO_2 .

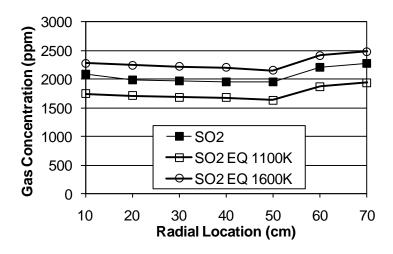


Figure 32: Illinois #6-2 Coal; Measured SO₂ vs. Equilibrium Calculations at 1100 and 1600 K.

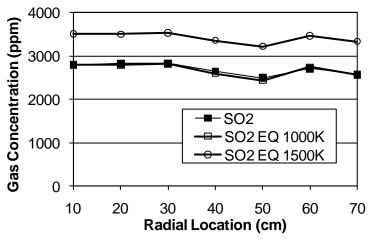


Figure 33: Gatling Coal; Measured SO₂ vs. Equilibrium Calculations at 1000 and 1500 K.

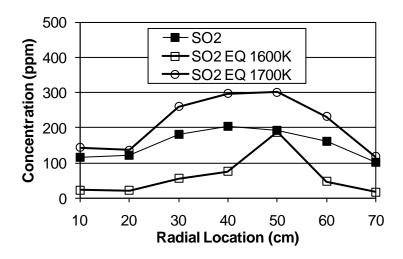


Figure 34: PRB Coal; Measured SO₂ vs. Equilibrium Calculations at 1600 and 1700 K.

PRB sulfur, however, is predicted to be SO₂ only at temperatures of 1700 K and above. As the temperature drops below 1700 K, equilibrium predicts PRB sulfur to be in the form of calcium sulfate (CaSO₄). CaSO₄ even dominates SO₂ at some fuel lean stoichiometries at 1700 K. Table 20 and Figure 34 show that PRB SO₂ data are between 100-200 ppm in the oxidizing zone. This large change in SO₂ between the locations close to the wall and the center of the BFR follow the equilibrium suggestion that some of the sulfur has been converted to CaSO₄.

The fact that SO₂ matches equilibrium trends does not indicate that the gas is actually in equilibrium. The PRB results, which matched equilibrium trends at a temperature much higher than expected, are a good example of this. From Nazeer's (1997) work, the temperature in the oxidizing zone is expected to be near 1300 K. It is possible that the gas mixture in the oxidizing zone is at the expected temperatures but the kinetics related to SO₂ converting to CaSO₄ could be slow enough to keep much of the sulfur in the gas phase. Regardless of the varying temperatures among the equilibrium comparisons of SO₂ in the oxidizing region, the trends match very well.

5.3 Chlorine

5.3.1 Reducing Zone

As mentioned previously, chlorine also participates in corrosion and is therefore of high interest. The only chlorine species measured in this research was hydrogen chloride, or HCl. According to Gibb (1983), 90-100% of evolved chlorine is in the form of HCl. Since less than 10% of the evolved chlorine is reportedly in other species, measuring only HCl appears to be reasonable when attempting to account for chlorine evolution as was done with sulfur.

When equilibrium calculations are performed for any of the coals with the as received constituents, the chlorine is predicted to be in the form of iron chloride (FeCl₃). It has been suggested by Baxter (2010) that only a small fraction of the iron is available for reaction because it is in stable forms within the coal. If iron is removed from the equilibrium input, the chlorine is calculated to be primarily in the form of KCl, NaCl, and HCl. However, according to Baxter (2010), not all the sodium (Na) and potassium (K) in coal are available for reaction either.

It has already been stated that some gases, such as SO₃, do not match equilibrium trends and it is clear that HCl does not match equilibrium calculations either since several elements had to be altered to achieve results similar to Gibb's findings. After altering the inputs for the coals used in the equilibrium comparison (Illinois #6-2, Gatling, and PRB) so that all chlorine was predicted to be in the form of HCl, no strong correlation can be drawn between measured and equilibrium values for any of the three coals, as shown in Figure 35 – Figure 37, respectively. Of the three coals, PRB matched equilibrium values the best but the low concentration of measured HCl (always less than 1 ppm) is well below the uncertainty of the HCl measurement and no quantitative conclusions can be drawn from this comparison.

Initially, equilibrium values at different temperatures were compared to the measured data. However, the equilibrium values from multiple temperatures were so similar that only one temperature (1500 K) was used. It is possible that, unforced, equilibrium calculations predict HCl to behave differently at different temperatures.

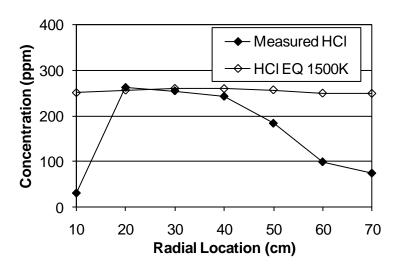


Figure 35: Measured and Equilibrium HCl at 1500K for the Illinois #6-2 Coal at an Axial Distance of 83 cm.

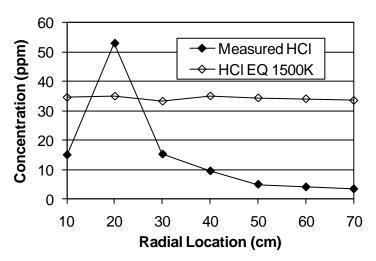


Figure 36: Measured and Equilibrium HCl at 1500K for the Gatling Coal at an Axial Distance of 97 cm.

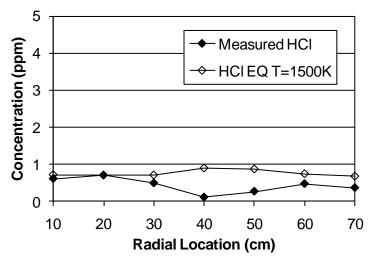


Figure 37: Measured and Equilibrium HCl at 1500K for the PRB Coal at an Axial Distance of 90 cm.

Recent findings have provided insight into the HCl measurements obtained in this research. It was discovered that the flow rate of gases through the sampling system causes wide variation in the HCl reading. As the flow of gases through the FTIR is increased, the measured HCl concentration increases also. Likewise, as the flow is decreased, the HCl concentration decreases. For a Kentucky #11 (Warrior) coal at the lowest (reasonable) flow rate through the FTIR, an HCl concentration was recorded that was 40% lower than the measurement obtained with a higher flow rate. This new discovery causes past HCl measurements to become suspect and could easily account for the poorly matched measured and equilibrium values shown for the Illinois #6-2, Gatling, and PRB coals.

5.3.2 Oxidizing Zone

In the oxidizing zone of the BFR, the gas mixture is more homogeneous because of the extra time given the gases to react and mix. Accordingly, the HCl concentrations in the oxidizing zone are more constant across the diameter of the BFR. This is seen in Table 19 – Table 25 and is easily seen with the Illinois #6-2 HCl data in Figure 38. The measured HCl data for the

Gatling and PRB coals is also somewhat constant but is at lower concentrations which cause the graphs of the data (Figure 39 & Figure 40) to appear otherwise. As discussed previously, HCl is considered neutral when considering its preferential existence in reducing and oxidizing stoichiometries. Because of this, HCl is expected to be present at similar concentrations as the reducing zone, with the dilution effect creating a slightly lower concentration.

The Illinois #6-2 HCl data accounts for approximately 75% of the total chlorine in the coal. The PRB data is relatively low and not adequate for proper comparison, but the Gatling HCl data is lower than expected. These data may have been affected by the flow rate of the gases through the sampling line, as discussed previously.

Figure 38: Measured and Equilibrium HCl at 1500K for the Illinois #6-2 Coal at an Axial Distance of 257 cm.

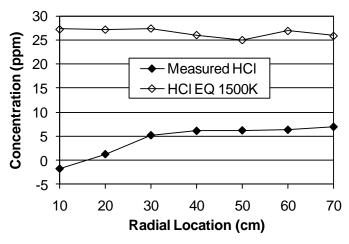


Figure 39: Measured and Equilibrium HCl at 1500K for the Gatling Coal at an Axial Distance of 243 cm.

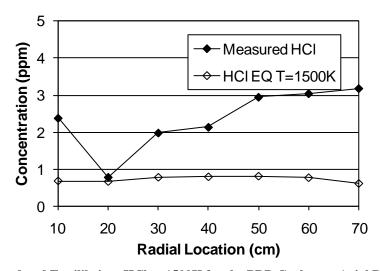


Figure 40: Measured and Equilibrium HCl at 1500K for the PRB Coal at an Axial Distance of 243 cm.

6 SUMMARY AND CONCLUSIONS

Knowing the boiler gas phase composition is critical to understanding and minimizing the corrosion rates of water walls and superheater tubes. Sulfur- and chlorine-bearing species are of particular interest because of their significant contribution to these corrosion rates. Combustion in the BFR was staged to simulate both near-burner (S.R. = 0.85) and superheater (S.R. = 1.15) conditions.

Measurements of eleven species under both reducing and oxidizing conditions are reported. Deposit samples were obtained adjacent to the gas samples but are not reported. For all coals, the gas measurements showed a low-S.R. reducing zone in the center of the BFR near the burner, transitioning to an oxidizing environment near the walls. CO values were in the range of 2.5 - 4% in the richest regions. Oxygen was near but typically not zero (0.5 - 1%) in regions of relative high CO. In the oxidizing zone, the gas mixture was somewhat mixed with relatively flat profiles for all measured gases. O₂ concentrations ranged from 2.5 - 5% depending of the coal and/or location. The gas species data are self-consistent showing expected trends between the major species.

More than 60% of the sulfur for each coal was released into the gas phase while in the reducing zone. Additional sulfur, dependent of coal rank, was released between the reducing and oxidizing zones during char burnout. Total sulfur release between the reducing and oxidizing zones varied among the coals but was greater for the higher rank coals. The total measured sulfur (sum of H₂S, SO₂, SO₃, and COS) was relatively linear with the as received coal sulfur in both

the reducing and oxidizing zones. In the oxidizing zone, most of the sulfur converted to SO_2 with a small (1-3%) fraction remaining as SO_3 .

In the reducing zone, H_2S , SO_2 , and COS follow equilibrium trends at temperatures of 1300 - 1500K. The highest values of H_2S and COS were recorded in low-S.R. conditions. SO_2 was lowest in these same locations, increasing with higher S.R.'s. The gas temperatures were not measured in this research but from Nazeer (1997), they are expected to be near 1500 - 1600 K in the reducing zone. There are two possible reasons that explain why the measured data match equilibrium at lower than expected temperatures: 1. The quench time down to $180 \,^{\circ}C$ is long (50-100 ms) relative to the kinetics and the gases continue to react, creating concentrations of H_2S and SO_2 consistent with lower temperatures. 2. Fuel sulfur when released originally forms H_2S and is slow to transition to SO_2 which is the preferred equilibrium state at higher temperatures.

In the oxidizing zone, SO₂ matched equilibrium trends but at varying temperatures. Expected temperatures in the BFR for the oxidizing zone are near 1300 K. The temperature of equilibrium calculations that matched the measured data best were lower than expected for the Illinois #6-2 and Gatling coals. For the PRB coal, the temperature of equilibrium calculations that matched the measured data best was higher than expected.

Equilibrium calculations show the most stable forms of chlorine are, in order: FeCl₂, KCl, HCl, and NaCl. When HCl is compared to the total amount of gaseous chlorine possible, the measured Illinois #6-2 data reports that 75% of the chlorine in the coal was in the form of HCl in the oxidizing zone. Therefore, the measured HCl does not match equilibrium unless iron and potassium are made unavailable. Even with these two elements unavailable, HCl is predicted to be somewhat constant in similar stoichiometric conditions. Most of the HCl data do not match

this equilibrium trend, and a possible reason for HCl not matching better with the total chlorine possible is the fact that the HCl concentration is greatly affected by the flow rate of gases through the gas sampling line.

It is anticipated that these results will be valuable to the energy industry. The conditions in which they were obtained cause the data to be directly applicable to pulverized coal combustion with air, in both rich and lean stoichiometries. Such a comprehensive set of data have not yet been measured in a coal-fired boiler or boiler-like conditions. With the data, correlations between coal chemistry, gaseous combustion products, and corrosion can be created. With this increased understanding the amount of corrosion incident in a commercial boiler may be reduced, allowing for increased efficiencies and, in turn, increased boiler availability and reliability.

REFERENCES

- Babcock & Wilcox Company (2010). "Boilers." Available from http://www.babcock.com/products/boilers/. Internet; accessed 02 February 2010.
- Bassilakis, R., Y. Zhao, P.R. Solomon, M.A. Serio, (1993). "Sulfur and Nitrogen Evolution in the Argonne Coals: Experiment and Modeling." *Energy & Fuels*, 7(6), 710-720.
- Baxter, L., Personal Communication. Brigham Young University 04Apr2010.
- Beér, J.M., N.A. Chigier. *Combustion Aerodynamics*. London: Applied Science Publishers Ltd, 1972, pp. 113-114.
- Boll, R.H., H.C. Patel, (1961). "The Role of Chemical Thermodynamics in Analyzing Gas-side Problems in Boilers." *Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Power, series A*, 83(4), 451-467.
- Bosch-Charpenay, S. Personal Communication. MKS Online Products, 18Feb2010.
- Boudou, J.P., M. Nip, J.J. Boon, J. Boulegue, J.W. de Leeuw, L. Malechaux, (1987). "Identification of Some Sulphur Species in a High Organic Sulphur Coal." *Fuel*, 66(11) 1558-1569.
- Brunner, D.R., (2011). *Deposit Composition for a Suite of Coals in Staged Combustion*. Master's Thesis, Brigham Young University. Thesis Expected April 2011.
- Calkins, W.H., (1987). "Investigation of Organic Sulfur-containing Structures in Coal by Flash Pyrolysis Experiments." *Energy & Fuels*, 1, 59-64.
- Chou, S.F., P.L. Daniel, A.J. Blazewicz, R.F. Daniel, (1986). "Hydrogen Sulfide Corrosion in Low-NO_X Combustion Systems." *Journal of Materials for Energy Systems*, 7(4), 361-369.
- Clarke, F., C.W. Morris, (1983). "Combustion Aspects of Furnace Wall Corrosion." *Corrosion-resistant Materials for Coal Conversion Systems*, London, New York, 47.
- Damstedt, B.D., (2007) Structure and Nitrogen Chemistry in Coal, Biomass, and Cofiring Low-NOx Flames. PhD Dissertation, Brigham Young University.

- Daybell, G.N., W.J.S. Pringle, (1958). "The Mode of Occurrence of Chlorine in Coal." *Fuel*, 37, 283-292.
- DeVito, M.S., D.L. Smith, (1991). "Controlled Condensation Method: New Option for SO₃ Sampling." *Power*, 135(2).
- Duan, L., C. Zhao, W. Zhou, C. Qu, X. Chen, (2009). "Investigation on Coal Pyrolysis in CO₂ Atmosphere." *Energy & Fuels*, 23(7), 3826-3830.
- Edgecombe, L.J., (1956). "State of Combination of Chlorine in Coal." Fuel, 35, 38-48.
- Energy Information Administration (2009). Annual Energy Outlook 2009.
- Ershov, Yu.B., V.G. Meshcheryakov, Yu.P. Enyakin, (1992). "Formation of Hydrogen Chloride in Pulverized Coal Flare During Combustion of Coal with High Content of Chlorine." *Thermal Engineering*, 39(7), 61-64.
- Fukuchi, T., H. Ninomiya, (2006). "SO₃ Concentration Measurement Using Ultraviolet Absorption Spectroscopy and Thermal Conversion." *IEEJ Transactions on Fundamentals and Materials*, 126(10), 977-982.
- Gibb, W.H., (1983). "The Nature of Chlorine in Coal and its Behaviour During Combustion." Corrosion Resistant Materials for Coal Conversion Systems, Ch. 2, 25-45. London: Applied Science Publishers, 1983.
- Giuriati, C., M.C. Cristofori, A. Gorni, F. Abballe, (2003). "Ion Chromatography Applications in the Determination of HF, HCl, NO_X, SO_X, on Stationary Emissions." *Annali dell'Istituto superiore di sanità*, 39(2), 223-228.
- Gorbaty, M.L, G.N. George, S.R. Kelemen, (1990). "Direct Determination and Quantification of Sulphur Forms in Heavy Petroleum and Coals 2. The Sulphur K Edge X-ray Absorption Spectroscopy Approach." *Fuel*, 69(8), 945.
- Hack, H., A. Seltzer, G. Stanko, (2008). "Design Considerations for Advanced Materials in Oxygen-fired Supercritical and Ultra-supercritical Pulverized Coal Boilers." *Advances in Materials Technology for Fossil Plants Proceedings from the 5th International Conference*, 993-1000.
- Himes, R., (2006). "Keeping an Eye on SO₃." Power Engineering, 110(4), 24, 27-28, 30, 32.
- Huffman, G.P., S. Mitra, F.E. Huggins, N. Shah, S.Vaidya, F. Lu, (1991). "Quantitative Analysis of All Major Forms of Sulfur in Coal by X-ray Absorption Fine Structure Spectroscopy." *Energy & Fuels*, 5, 574-581.

- Ivanova, I.P, L.A. Svistanova, (1971). "Corrosion of 12Kh1MF Steel and Different Corrosion-Resistant Coatings in an Atmosphere of Flue Gases when Burning Anthracite Culm." *Thermal Engineering (English Translation of Teploenergetika)*, (1), 60-63.
- Jaworowski, R.J., S.S. Mack, (1979). "Evaluation of Methods for Measurement of SO₃/H₂SO₄ in Flue Gas." *Journal of Air Pollution Control Association*, 29(1), 43-46.
- Kaminskii, V.P., (1996). "The Mechanism of How Several Components of the Flame Form and Act on the Tube Metal of the Waterwalls of Power Boilers when Burning Anthracite Culm." *Thermal Engineering*, 43(6), 505-510.
- Kelemen, S.R., G.N. George, M.L. Gorbaty, (1990). "Direct Determination and Quantification of Sulphur Forms in Heavy Petroleum and Coals 1. The X-ray Photoelectron Spectroscopy (XPS) Approach." *Fuel*, 69(8), 939.
- Kihara, S., K. Nakagawa, A. Ohtomo, H. Aoki, S. Ando, (1985). "Simulating Test Results for Fireside Corrosion of Superheater and Reheater Tubes Operated at Advanced Steam Condition in Coal-Fired Boilers." *High Temperature Corrosion in Energy Systems*, 361-376.
- Kitto, J.B., S.C. Stultz, editors (1992). *Steam, its generation and use: Edition 40*, The Babcock & Wilcox Company, a McDermott company, ISBN 09634570-0-4.
- Kung, S.C., (2006). Fireside Corrosion in Coal- and Oil-Fired Boilers, ASM Handbook, 13C.
- LaCount, R.B., D.K. Walker, R.B. LaCount Jr., R.K. Walker, A.L. Stewart, T.K. Trulli, D.G. Kern, et al. (1993). "Advances in Coal Characterization by Programmed-temperature Oxidation." *Fuel*, 72(8), 1203-1208.
- Linnerud, I., P. Kaspersen, T. Jæger, (1998). "Gas Monitoring in the Process Industry Using Diode Laser Spectroscopy." *Applied Physics B: Lasers & Optics*, 67, 297-305.
- Manolescu, A.V., P. Mayer, (1979). "Influence of Hydrogen Chloride on Corrosion of Boiler Steels in Synthetic Flue Gas." *Corrosion*, B35(12-16 Mar), 9 pages.
- McBride, B.J., S. Gordan, (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Cleveland, Ohio, USA, Lewis Research Center, pts. I.
- McBride, B.J., S. Gordan, (1996). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Cleveland, Ohio, USA, Lewis Research Center, pts. II.
- Modest, M.F. Radiative Heat Transfer, Second Edition. California: Academic Press, 2003.

- Nazeer, W.A., (1997) Species and Temperature Measurements in a Pulverized Coal Controlled Profile with Natural Gas Reburning. Master's Thesis, Brigham Young University.
- Nazeer, W.A., R.E. Jackson, J.A. Peart, and D.R. Tree, (1999). "Detailed Measurements in a Pulverized Coal Flame With Reburning," Fuel, 78(6), 689-699.
- Oppenheimer, C., P. Bani, J.A. Calkins, M.R. Burton, G.M. Sawyer, (2006). "Rapid FTIR Sensing of Volcanic Gases Released by Strombolian Explosions at Yasur Volcano, Vanuatu." Applied Physics B: Lasers & Optics, 11(2/3), 453-460.
- Riemersma, K., Personal Communication. National Bulk Equipment, Inc., 11Feb2010.
- Srivastava, R.K., C.A. Miller, C. Erickson, R. Jambhekar, (2004). "Emissions of Sulfur Trioxide from Coal-fired Power Plants." Journal of the Air & Waste Management Association, 54(6), 750-762.
- Tree, D.R., A.W. Clark, (2000). "Advanced Reburning Measurements of Temperature and Species in a Pulverized Coal Flame." Fuel, 79(13), 1687-1695.
- United States Department of Energy (2007). "Coal." Available from http://www.energy.gov/energysources/coal.htm; Internet; Accessed October 25, 2008.

APPENDIX A: ALL RECORDED DATA

In addition to the data presented in the Results chapter, other data were recorded for each coal. These data, along with additional measured gas species, are presented here. The axial distance of each data set is shown in the upper left cell of each table. For reference, the dimensions of the BFR are shown below. The reducing zone nominally consisted of the top three sections (0 - 140 cm) while the oxidizing zone consisted of the bottom three sections (140 - 265 cm).

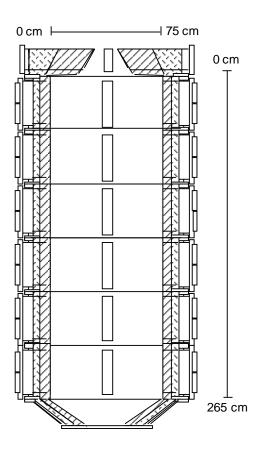


Figure 41: Dimensions of the BFR for Use in Analyzing Data.

A.1 Illinois #6-1

Table 28: Illinois #6-1 Coal – Axial Distance 77 cm.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D - 4' -1 D' -()		28: Illinois #				(0)	70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Radial Dist. (cm)	10	20	30	40	50	60	70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GO ()						22271	22050		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	**									
H ₂ S (ppm) 18 20 10 0 376 991 671 HCl (ppm) 180 224 244 157 187 144 129 NO (ppm) 296 275 230 96 141 99 148 SO ₂ (ppm) 2129 2253 2529 1773 2258 1497 1828 SO ₃ (ppm) 44 36 39 37 37 23 33 The following four gases were measured by the Horiba PG-250 NO (ppm) 255 210 177 79 119 107 139 CO (ppm) 1059 1220 >5000 9										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ ` '									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂ S (ppm)									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HCl (ppm)	180	224	244	157	187	144	129		
SO3 (ppm) 44 36 39 37 37 23 33 NO (ppm) 255 210 177 79 119 107 139 CO (ppm) 1059 1220 >5000 >600 90 90 90 90 90 90 90 90	NO (ppm)	296	275	230	96	141	99	148		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₂ (ppm)	2129	2253	2529	1773	2258	1497	1828		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₃ (ppm)	44	36	39	37	37	23	33		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The following four gases were measured by the Horiba PG-250									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO (ppm)	255	210	177	79	119	107	139		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO (ppm)	1059	1220	> 5000	> 5000	> 5000	> 5000	> 5000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO ₂ (%)	14.97	16.10	17.37	16.94	17.13	16.82	16.97		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O ₂ (%)	4.07	3.07	1.35	0.82	0.95	0.98	1.07		
O2 (%) 0.18 3.31 2.60 0.69 0.10 0.07 0.06 The following were additional species measured by the FTIR Acetylene (ppm) 12 33 160 326 194 304 148 Aldehyde (ppm) 4 3 9 20 14 20 12 Dodecane (ppm) -1 -1 0 -1 -1 -1 -1 Ethanol (ppm) 1 5 1 30 2 25 6 Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm)	2 \ /									
The following were additional species measured by the FTIR Acetylene (ppm)	H ₂ (%)	0.95	0.33	0.04	0.17	0.65	0.89	0.67		
Acetylene (ppm) 12 33 160 326 194 304 148 Aldehyde (ppm) 4 3 9 20 14 20 12 Dodecane (ppm) -1 -1 0 -1 -1 -1 -1 -1 Ethanol (ppm) 1 5 1 30 2 25 6 Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 N ₂ O (ppm) -3 -4 -4 0	$O_2(\%)$	0.18	3.31	2.60	0.69	0.10	0.07	0.06		
Acetylene (ppm) 12 33 160 326 194 304 148 Aldehyde (ppm) 4 3 9 20 14 20 12 Dodecane (ppm) -1 -1 0 -1 -1 -1 -1 -1 Ethanol (ppm) 1 5 1 30 2 25 6 Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 N ₂ O (ppm) -3 -4 -4 0	T	he following	g were addi	tional speci	es measured	by the FT	IR			
Dodecane (ppm) -1 -1 0 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1 1	Acetylene (ppm)	12	33	160	326	194	304	148		
Ethanol (ppm) 1 5 1 30 2 25 6 Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	Aldehyde (ppm)	4	3	9	20	14	20	12		
Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	Dodecane (ppm)	-1	-1	0	-1	-1	-1	-1		
Ethylene (ppm) 0 4 62 92 23 20 7 Formaldehyde (ppm) 1 1 4 2 2 2 1 HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	Ethanol (ppm)	1	5	1	30	2	25	6		
HCN (ppm) 3 6 23 65 47 78 48 MeOH (ppm) -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	Ethylene (ppm)	0	4	62	92	23	20	7		
MeOH (ppm) -1 -1 -1 -1 -2 -1 -1 0 Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	Formaldehyde (ppm)	1	1	4	2	2	2	1		
Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	HCN (ppm)	3	6	23	65	47	78	48		
Methane (ppm) 18 91 482 1546 955 1506 814 NH ₃ (ppm) 0 0 1 1 1 1 1 NO ₂ (ppm) -3 -4 -4 0 -2 2 -1 N ₂ O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1	MeOH (ppm)	-1	-1	-1	-2	-1	-1	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * *	18	91	482	1546	955	1506	814		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * *	0	0	1	1	1	1	1		
N2O (ppm) 7 7 4 -4 -2 -4 -3 Phosgene (ppm) 0 0 1 2 1 1 1		-3	-4	-4	0	-2	2			
Phosgene (ppm) 0 0 1 2 1 1 1										
Propane (ppin) 3 3 3 -2 1 -2 -3	Propane (ppm)	3	3	3	-2	1	-2	-3		
Propylene (ppm) 0 0 5 1 0 -2 -1	_ ^ ^ _									
Toluene (ppm) 8 -1 -48 -67 -56 -75 -47										

Table 29: Illinois #6-1 Coal – Axial Distance 217 cm.

			0-1 Coai – A			ı			
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	ases were r	neasured by	the FTIR				
CO (ppm)	92	163	2129	96	306	423	690		
CO ₂ (%)	13.66	15.91	16.45	16.91	16.98	16.24	13.40		
H ₂ O (%)	6.09	6.83	7.82	7.65	7.92	7.76	6.78		
H ₂ S (ppm)	9	2	15	-53	10	0	27		
HCl (ppm)	152	179	247	185	190	182	196		
NO (ppm)	147	153	146	131	140	153	168		
SO ₂ (ppm)	1834	2114	2381	2281	2333	2233	1902		
SO ₃ (ppm)	36	43	46	42	43	38	33		
The	e following	four gases	were measu	red by the I	Horiba PG-2	250			
NO (ppm)	100	140	137	123	131	177	156		
CO (ppm)	102	150	1951	82	300	369	790		
CO ₂ (%)	17.94	15.67	17.13	16.47	16.89	16.36	15.80		
$O_2(\%)$	4.81	3.84	2.50	3.13	2.77	3.38	3.74		
The following two gases were measured by the GC									
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
$O_2(\%)$	5.69	3.31	1.46	1.81	1.92	2.45	2.92		
T	he following	g were addi	tional speci-	es measured	by the FT	IR			
Acetylene (ppm)	-10	6	7	6	6	6	0		
Aldehyde (ppm)	-2	-1	0	-2	-1	0	1		
Dodecane (ppm)	-1	0	-1	-1	-1	-1	-1		
Ethanol (ppm)	-1	-1	3	0	-2	-2	-2		
Ethylene (ppm)	0	0	0	0	0	1	0		
Formaldehyde (ppm)	2	1	1	1	1	3	3		
HCN (ppm)	1	1	8	1	1	2	3		
MeOH (ppm)	0	-1	0	-1	-1	-1	-1		
Methane (ppm)	4	3	5	5	5	7	4		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	-3	-3	-3	-4	-4	-4	-4		
N ₂ O (ppm)	5	8	5	6	3	5	9		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	2	2	2	2	3	3	2		
Propylene (ppm)	2	1	1	0	0	1	1		
Toluene (ppm)	5	6	11	1	6	5	-2		

Table 30: Illinois #6-1 Coal – Axial Distance 50 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
(*)				neasured by					
CO (ppm)	717	4554	34731	58660	24343	3286	2332		
CO ₂ (%)	12.15	11.62	12.54	10.35	14.13	16.17	16.30		
H ₂ O (%)	6.24	7.00	9.40	11.20	10.97	8.53	8.36		
H ₂ S (ppm)	19	64	281	1782	267	52	13		
HCl (ppm)	155	148	147	113	140	183	189		
NO (ppm)	321	383	390	174	306	396	343		
SO ₂ (ppm)	1788	1909	2582	2005	2392	2376	2309		
SO ₃ (ppm)	41	41	38	21	45	45	50		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	302	362	384	212	310	313	331		
CO (ppm)	682	3400	> 5000	> 5000	> 5000	2700	2500		
CO ₂ (%)	12.32	12.10	14.49	13.12	16.69	16.48	16.66		
$O_2(\%)$	6.45	6.73	2.16	1.13	1.26	3.02	2.92		
The following two gases were measured by the GC									
$H_2(\%)$	0.00	0.04	0.98	3.36	0.52	0.02	0.03		
O ₂ (%)	6.18	6.04	1.54	0.21	0.33	1.99	1.98		
Ti	ne following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-11	44	1368	2010	242	23	18		
Aldehyde (ppm)	2	4	73	204	16	1	1		
Dodecane (ppm)	-1	0	4	-24	-1	0	-1		
Ethanol (ppm)	-4	-1	78	292	9	4	-4		
Ethylene (ppm)	0	6	334	969	19	1	0		
Formaldehyde (ppm)	1	4	17	15	5	3	2		
HCN (ppm)	3	17	195	450	62	9	7		
MeOH (ppm)	-1	0	-1	-10	0	-1	-1		
Methane (ppm)	8	106	2948	4913	778	35	32		
NH ₃ (ppm)	0	0	0	1	1	0	0		
NO ₂ (ppm)	0	-1	0	2	2	-1	-2		
N ₂ O (ppm)	14	17	2	-7	0	9	8		
Phosgene (ppm)	0	0	3	10	0	0	0		
Propane (ppm)	2	2	7	12	0	2	2		
Propylene (ppm)	1	2	22	71	0	0	0		
Toluene (ppm)	4	-3	-28	84	-72	-1	4		

Table 31: Illinois #6-1 Coal – Axial Distance 77 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70
Radiai Dist. (ciii)			gases were n			00	70
CO (ppm)	704	3301	23104	32355	the F FIR		
$CO_2(\%)$	14.24	14.53	14.17	14.06			
H ₂ O (%)	6.31	6.77	9.38	10.73			
H_2S (ppm)	53	-25	293	533			
HCl (ppm)	136	130	173	144			
NO (ppm)	353	291	232	167			
SO ₂ (ppm)	1932	2015	2408	2142			
SO ₃ (ppm)	41	29	32	32			
	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	301	274	234	166			
CO (ppm)	716	2095	> 5000	> 5000			
CO ₂ (%)	13.82	14.63	16.34	15.65			
$O_2(\%)$	5.29	4.60	1.94	1.70			
	The follo	owing two g	gases were i	neasured by	y the GC		
$H_2(\%)$	0.00	0.00	0.05	0.46			
O ₂ (%)	5.33	5.43	4.47	2.11			
TI	he following	g were addi	tional speci	es measured	d by the FT	IR	
Acetylene (ppm)	9	83	942	1026			
Aldehyde (ppm)	2	6	52	49			
Dodecane (ppm)	-1	-1	0	1			
Ethanol (ppm)	1	2	68	66			
Ethylene (ppm)	0	5	195	188			
Formaldehyde (ppm)	1	2	5	3			
HCN (ppm)	2	14	136	168			
MeOH (ppm)	-1	-1	-3	-4			
Methane (ppm)	9	180	2252	2575			
NH ₃ (ppm)	0	0	0	1			
NO ₂ (ppm)	-2	-2	2	3			
N ₂ O (ppm)	5	8	0	-5			
Phosgene (ppm)	0	0	2	3			
Propane (ppm)	2	3	6	4			
Propylene (ppm)	1	2	8	7			
Toluene (ppm)	5	-5	-25	-28			

A.2 PRB

Table 32: PRB Coal – Axial Distance 243 cm.

Radial Dist. (cm)	10	20	30 Coal – Axia l	40	50	60	70			
Radiai Dist. (Cili)		ving eight g				00	70			
CO (mm)						24	20			
CO (ppm)	11	21	23	59	50	24	20			
CO ₂ (%)	14.93	14.53	17.01	17.26	17.60	16.77	13.33			
H ₂ O (%)	10.83	10.91	12.67	13.10	13.02	12.57	10.94			
H ₂ S (ppm)	54	-44	11	-3	28	40	4			
HCl (ppm)	2	1	2	2	3	3	3			
NO (ppm)	272	237	251	243	254	270	257			
SO ₂ (ppm)	115	120	182	203	193	162	102			
SO ₃ (ppm)	6	6	10	8	10	8	7			
The following four gases were measured by the Horiba PG-250										
NO (ppm)	270	210	250	230	260	290	278			
CO (ppm)	10	220	26	170	50	14	41			
CO ₂ (%)	14.90	17.20	17.39	18.41	18.03	17.32	16.08			
$O_2(\%)$	4.80	2.62	3.00	2.20	2.63	3.25	4.30			
The following two gases were measured by the GC										
$H_2(\%)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
$O_2(\%)$	3.52	2.73	2.36	1.41	1.80	2.41	3.82			
Ti	he following	g were addi	tional speci	es measured	by the FT	R				
Acetylene (ppm)	6	3	6	6	6	6	-3			
Aldehyde (ppm)	-1	-2	-1	-2	-2	-2	-1			
Dodecane (ppm)	-1	-1	-1	-1	-1	0	0			
Ethanol (ppm)	8	4	7	2	5	5	7			
Ethylene (ppm)	0	0	0	0	0	0	0			
Formaldehyde (ppm)	0	0	0	0	0	0	1			
HCN (ppm)	0	0	0	0	0	0	0			
MeOH (ppm)	0	0	0	0	0	0	0			
Methane (ppm)	3	2	1	1	1	1	2			
NH ₃ (ppm)	5	2	3	3	4	4	6			
NO ₂ (ppm)	2	2	3	2	1	3	2			
N ₂ O (ppm)	0	2	-1	-1	-1	-1	0			
Phosgene (ppm)	0	0	0	0	0	0	0			
Propane (ppm)	0	0	0	0	1	0	0			
Propylene (ppm)	0	0	0	0	0	0	0			
Toluene (ppm)	7	0	1	-3	-3	4	3			

Table 33: PRB Coal – Axial Distance 90 cm.

					<i>c</i> 0	70			
					60	70			
						14792			
						14.50			
						13.64			
57	71	95	228	297	170	65			
1	1	1	0	0	0	1			
324	319	307	308	259	205	314			
149	159	151	118	105	108	158			
10	9	10	8	11	6	14			
SO ₃ (ppm) 10 9 10 8 11 6 14 The following four gases were measured by the Horiba PG-250									
315	319	315	323	257	240	313			
2540	2069	> 5000	> 5000	> 5000	> 5000	> 5000			
14.69	14.33	16.42	17.36	17.45	17.83	17.71			
5.27	5.64	3.50	1.76	1.47	1.26	2.24			
0.04	0.04	0.24	0.97	1.39	1.09	0.23			
4.93	5.22	2.89	0.88	0.40	0.21	2.24			
ne following	g were addi	tional speci-	es measured	d by the FT	IR				
3	2	138	678	670	254	61			
-1	-1	7	40	38	17	-1			
-1	0	-1	0	1	0	0			
-3	-3	-4	22	31	5	-3			
0	1	31	266	253	48	6			
0	0	1	5	3	1	2			
1	1	7	24	25	16	5			
0	0	0	-4	-5	-3	0			
22	26	275	1343	1528	919	214			
10	8	23	174	273	261	61			
0	0	1	0	1	3	1			
0	0	0	-1	-1	-2	-1			
0	0	0	1	2	1	0			
1	0	1	2	1	1	0			
-1	0	0	7	0	-5	-2			
2	0	-29	-56	-62	-79	-32			
	10 The follow 2443 14.09 11.29 57 1 324 149 10 e following 315 2540 14.69 5.27 The following 3 -1 -1 -3 0 0 1 0 22 10 0 0 0 1 -1	The following eight grades and state of the following eight grades are state of the following eight grades and state of the following four gases are following four gases are following two grades are following two grades are following were additionally and grades are following two grades are following two grades are following two grades are following were additionally are following were additionally are following two grades are followed are fo	10 20 30 The following eight gases were reconstruction 2443 2415 9340 14.09 14.43 14.42 11.29 11.23 13.03 57 71 95 1 1 1 324 319 307 149 159 151 10 9 10 e following four gases were measured following four gases were measured following four gases were measured following two gases were following two gases were following two gases were following two gases were following were additional specification following follow	10 20 30 40 The following eight gases were measured by 2443 2415 9340 29916 14.09 14.43 14.42 14.02 11.29 11.23 13.03 15.76 57 71 95 228 1 1 1 0 324 319 307 308 149 159 151 118 10 9 10 8 e following four gases were measured by the Base following four gases were measured by the Base following four gases were measured by the Base following two gases were measured by the Base following were additional species for measured by the Base following two gases were measured by the Base following two gases were measured by the Base following for gase following for gase following for gase for gase following for gase following for gase for gase for gase following for gase	The following eight gases were measured by the FTIR 2443	10			

Table 34: PRB Coal – Axial Distance 243 cm.

Padial Dist (am)	10		30		50	60	70
Radial Dist. (cm)		20	gases were n	40		OU	/0
CO (nam)		ving eight g		35		150	
CO (ppm)	59		80		55	158	
CO ₂ (%)	17.56	16.68	17.65	16.33	16.36	16.72	
H ₂ O (%)	12.90	12.31	13.00	12.07	12.09	12.36	
H ₂ S (ppm)	94	81	109	59	66	90	
HCl (ppm)	1	1	1	1	1	1	
NO (ppm)	248	265	247	268	271	259	
SO ₂ (ppm)	200	185	213	180	176	186	
SO ₃ (ppm)	13	9	12	9	9	10	
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	255	251	248	274	275	201	
CO (ppm)	63	63	69	33	53	28	
CO ₂ (%)	18.15	18.11	18.16	16.56	16.64	19.25	
$O_2(\%)$	2.75	2.86	2.87	4.20	4.12	1.91	
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.02	
O ₂ (%)	2.02	1.38	1.51	2.93	3.18	1.25	
T	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	6	6	6	6	6	7	
Aldehyde (ppm)	-3	-1	-1	-1	-2	-1	
Dodecane (ppm)	-1	0	-1	-1	-1	-1	
Ethanol (ppm)	-2	-5	-6	-4	-5	-4	
Ethylene (ppm)	0	0	0	0	0	0	
Formaldehyde (ppm)	1	1	0	0	0	0	
HCN (ppm)	0	0	0	0	0	0	
MeOH (ppm)	0	0	0	0	0	0	
Methane (ppm)	3	2	2	2	2	2	
NH ₃ (ppm)	20	9	6	5	5	5	
NO ₂ (ppm)	1	1	0	2	1	1	
N ₂ O (ppm)	-1	-1	-1	-1	-1	-1	
Phosgene (ppm)	0	0	0	0	0	0	
Propane (ppm)	1	1	1	1	1	1	
Propylene (ppm)	-1	-1	-1	0	0	0	
Toluene (ppm)	3	5	3	7	5	5	

Table 35: PRB Coal – Axial Distance 90 cm.

					60	70				
					bU	70				
			<u>*</u>		1.4720	1.075				
						1675				
						14.54				
						10.58				
						-30				
						0				
						360				
189		172	149	142	168	147				
6	8	8	2	5	13	7				
The following four gases were measured by the Horiba PG-250										
319	313	316	215	302	317	359				
2402	3752	> 5000	> 5000	> 5000	> 5000	1570				
15.24	15.46	16.15	17.84	17.52	17.44	15.18				
5.16	4.41	4.19	1.45	1.89	2.92	5.41				
O ₂ (%) 5.16 4.41 4.19 1.45 1.89 2.92 5.41 The following two gases were measured by the GC										
0.03	0.08	0.12	1.32	1.13	0.35	0.03				
4.35	4.08	3.46	0.41	0.66	1.85	4.33				
he following	g were addi	tional speci-	es measured	by the FT	IR					
17	13	43	674	535	76	1				
-2	-3	-1	37	31	1	-3				
-1	0	-1	3	0	-1	-1				
-5	-4	-3	28	7	-8	-1				
0	1	5	369	149	12	0				
0	1	1	6	3	1	1				
1	1	3	27	24	7	1				
0	0	0	-4	-3	0	0				
57	50	110	1654	1222	254	13				
12	11	16	200	201	64	18				
0	1	1	-1	3	1	-1				
-1	0	0	-1	-2	-1	0				
0	0	0	1	1	0	0				
1	1	1	2	2	1	1				
0	0	0	14	-1	-1	0				
8	3	0	-28	-64	-49	4				
	10 The follow 4934 15.03 12.09 -44 1 303 189 6 e following 319 2402 15.24 5.16 The follo 0.03 4.35 the following 17 -2 -1 -5 0 0 1 0 57 12 0 -1 0 1	The following eight graph of the following for the following four gases are following four gases of the following two graph of the following were additionally and the following two graph of the following two graphs of th	10 20 30 The following eight gases were reads 4934 4929 6790 15.03 14.75 14.61 12.09 11.24 11.49 -44 -61 -21 1 1 0 303 312 321 189 179 172 6 8 8 e following four gases were measured for gases were for	10 20 30 40 The following eight gases were measured by 4934 4929 6790 38157 15.03 14.75 14.61 14.77 12.09 11.24 11.49 15.18 -44 -61 -21 202 1 1 0 0 303 312 321 215 189 179 172 149 6 8 8 2 e following four gases were measured by the Base of the Base of the Base of the Base of Superior and Sup	The following eight gases were measured by the FTIR 4934 4929 6790 38157 34748 15.03 14.75 14.61 14.77 14.64 12.09 11.24 11.49 15.18 14.35 -44 -61 -21 202 165 1 1 0 0 0 303 312 321 215 284 189 179 172 149 142 6 8 8 2 5 e following four gases were measured by the Horiba PG-2 319 313 316 215 302 2402 3752 >5000 >5000 >5000 15.24 15.46 16.15 17.84 17.52 5.16 4.41 4.19 1.45 1.89 The following two gases were measured by the GC 0.03 0.08 0.12 1.32 1.13 4.35 4.08 3.46 0.41 0.66 ne following were additional species measured by the FT 17 13 43 674 535 -2 -3 -1 37 31 -1 0 -1 3 0 -5 -4 -3 28 7 0 1 5 369 149 0 1 1 6 3 1 1 3 27 24 0 0 0 0 -4 -3 577 50 110 1654 1222 12 11 16 200 201 0 1 1 -1 3 -1 0 0 -1 -2 0 0 0 0 14 -1	10				

Table 36: PRB Coal – Axial Distance 137 cm.

						70			
					60	70			
					T	T			
						18623			
						14.68			
12.33	12.96	13.02	13.08	12.51	12.74	12.32			
-66	49	181	-12	63	64	20			
1	1	0	0	0	0	0			
261	228	97	220	243	216	244			
206	209	113	193	191	165	174			
9	7	9	9	12	11	12			
e following	four gases	were measu	red by the I	Horiba PG-2	250				
261	231	91	224	248	221	250			
> 5000	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000			
18.14	18.31	17.56	18.11	17.92	17.76	17.85			
2.73	1.84	1.27	1.81	2.38	1.97	2.55			
- ' '									
0.17	0.47	1.94	0.79	0.48	0.99	0.51			
1.36	0.79	0.06	0.66	1.61	0.65	1.32			
he following	g were addi	tional speci	es measured	by the FT	IR				
14	45	188	156	66	100	43			
-3	-2	7	3	0	2	-3			
-1	-1	0	0	0	0	0			
-6	-7	-9	-10	-7	-9	-7			
0	1	14	14	4	5	2			
1	1	1	1	1	1	1			
1	5	18	12	7	12	6			
0	0	-4	-1	-1	-2	-1			
50	239	1191	618	322	616	293			
19	49	304	142	92	168	101			
0	1	2	1	0	0	1			
-1	-2	-2	-2	-1	-2	-1			
0	0	0	0	0	0	0			
1	1	1	1	1	1	1			
0	0	-5	-2	-1	-2	-1			
-1	-12	-50	-47	-25	-23	-19			
	10 The follow 6279 16.00 12.33 -66 1 261 206 9 e following 261 > 5000 18.14 2.73 The following 14 -3 -1 -6 0 1 1 0 50 19 0 -1 0	The following eight g 6279 20920 16.00 15.19 12.33 12.96 -66 49 1 1 261 228 206 209 9 7 e following four gases at the following two g 0.17 0.47 1.36 0.79 the following were addited at the following were addited at the following two g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 20 30 The following eight gases were received for the following eight gases were received for the following following following following following following following four gases were measured for following four gases were measured for following four gases were measured for following follo	10 20 30 40 The following eight gases were measured by 6279 20920 45780 29266 16.00 15.19 15.14 14.76 12.33 12.96 13.02 13.08 -66 49 181 -12 1 1 0 0 261 228 97 220 206 209 113 193 9 7 9 9 e following four gases were measured by the Base of the following four gases were measured by the Base of the following four gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following were additional species measured by the Base of the following were additional species measured by the Base of the following were additional species measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the Base	The following eight gases were measured by the FTIR 6279 20920 45780 29266 20285 16.00 15.19 15.14 14.76 14.64 12.33 12.96 13.02 13.08 12.51 -66 49 181 -12 63 1 1 0 0 0 0 0 0 0 0	10			

Table 37: PRB Coal – Axial Distance 90 cm.

						7 ^				
					60	70				
					T					
						509				
						11.44				
						8.09				
						-65				
			0		0	0				
			251			248				
128	94	59	106	121	136	123				
10		15	10	10	10	7				
The following four gases were measured by the Horiba PG-250										
270	228	131	257	280	291	300				
> 5000	> 5000	> 5000	> 5000	4200	770	680				
15.14	19.49	16.44	16.90	15.09	14.85	14.87				
4.57	2.11	1.47	2.30	5.38	5.77	5.86				
O ₂ (%) 4.57 2.11 1.47 2.30 5.38 5.77 5.86 The following two gases were measured by the GC										
0.55	1.76	2.55	1.21	0.11	0.02	0.01				
3.56	0.91	0.30	1.21	4.70	4.50	4.75				
ne following	g were addi	tional speci	es measured	by the FT	IR					
81	536	1045	488	22	7	2				
6	35	60	31	1	2	0				
0	2	6	0	-1	-1	-1				
-2	16	69	8	-2	0	1				
9	96	396	117	3	0	0				
1	1	1	2	2	1	1				
8	32	50	24	4	0	0				
-1	-3	-11	-4	-1	0	0				
391	1630	3213	1279	92	7	4				
68	233	544	272	82	32	11				
2	7	11	6	4	4	3				
-1	-2	-2	-1	0	-1	-1				
0	0	1	1	1	1	0				
0	1	2	1	0	0	0				
-1	-4	-6	-4	-2	-1	-1				
-30	-68	-16	-64	-6	11	7				
	10 The follow 18460 12.45 11.40 -46 0 280 128 10 e following 270 > 5000 15.14 4.57 The follo 0.55 3.56 ne following 81 6 0 -2 9 1 8 -1 391 68 2 -1 0 0 -1	The following eight g 18460	10 20 30 The following eight gases were reads 18460 48017 59196 12.45 14.15 13.92 11.40 13.87 15.13 -46 160 312 0 0 0 280 217 117 128 94 59 10 8 15 e following four gases were measu 270 228 131 > 5000 > 5000 > 5000 15.14 19.49 16.44 4.57 2.11 1.47 The following two gases were measu 0.55 1.76 2.55 3.56 0.91 0.30 ne following were additional specion 81 536 1045 6 35 60 0 2 6 -2 16 69 9 96 396 1 1 1 8 32 50 -1	10 20 30 40 The following eight gases were measured by 18460 48017 59196 39082 12.45 14.15 13.92 14.25 11.40 13.87 15.13 13.58 -46 160 312 95 0 0 0 0 280 217 117 251 128 94 59 106 10 8 15 10 e following four gases were measured by the Berth of the state of the	The following eight gases were measured by the FTIR 18460	10 20 30 40 50 60 The following eight gases were measured by the FTIR 18460 48017 59196 39082 6457 878 12.45 14.15 13.92 14.25 14.17 14.57 11.40 13.87 15.13 13.58 10.72 10.32 -46 160 312 95 -35 -62 0 0 0 0 0 0 280 217 117 251 280 294 128 94 59 106 121 136 10 8 15 10 10 10 e following four gases were measured by the Horiba PG-250 270 228 131 257 280 291 > 5000 > 5000 > 5000 > 5000 4200 770 15.14 19.49 16.44 16.90 15.09 14.85 4.57 2.11 1.47 2.30				

Table 38: PRB Coal – Axial Distance 243 cm.

						- ^
					60	70
			<u>*</u>		Т	
						127
						17.11
12.21	11.77	10.49	12.18	12.18	12.18	11.63
-109	-84	-88	-211	-156	-78	-35
0	0	0	0	1	1	0
196	213	241	190	227	230	229
203	194	196	212	211	225	311
10	8	7	8	7	8	11
e following	four gases	were measu	red by the I	Horiba PG-2	250	
216	215	163	193	231	233	219
290	60	45	120	11	46	144
18.04	17.51	19.23	18.43	18.15	18.07	18.89
3.08	3.65	2.27	3.56	3.93	3.96	3.00
The follo	owing two g	gases were i	neasured by	the GC		
0.00	0.00	0.09	0.00	0.00	0.00	
2.08	2.60	0.73	1.80	1.83	2.20	
he following	g were addi	tional speci-	es measured	by the FT	IR	
9	6	-2	7	7	7	7
-3	-4	-4	-5	-7	-6	-4
0	0	0	2	1	1	1
-3	-2	-2	-3	-4	-9	-10
0	0	0	0	0	0	0
0	0	0	1	2	1	1
0	0	0	0	0	0	0
0	0	0	-1	-1	-1	-1
4	2	3	3	2	4	3
12	9	8	19	12	11	12
4	4	4	8	1	3	5
-1	-1	-1	-1	-1	-1	0
0	0	0	0	0	0	0
1	1	0	1	0	0	0
-1	-1	0	-1	-1	-1	-1
12	-2	8	-1	3	0	0
	10 The follow 905 18.11 12.21 -109 0 196 203 10 e following 216 290 18.04 3.08 The follo 0.00 2.08 The following 9 -3 0 -3 0 0 0 0 4 12 4 -1 0 1 -1	The following eight g 905	The following eight gases were result of the following followin	10 20 30 40 The following eight gases were measured by 905 55 36 165 18.11 16.93 14.30 16.34 12.21 11.77 10.49 12.18 -109 -84 -88 -211 0 0 0 0 196 213 241 190 203 194 196 212 10 8 7 8 e following four gases were measured by the Base of the following four gases were measured by the Base of the following four gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were measured by the Base of the following two gases were me	The following eight gases were measured by the FTIR 905 55 36 165 13 18.11 16.93 14.30 16.34 16.74 12.21 11.77 10.49 12.18 12.18 -109 -84 -88 -211 -156 0 0 0 0 0 1 196 213 241 190 227 203 194 196 212 211 10 8 7 8 7 e following four gases were measured by the Horiba PG-2 216 215 163 193 231 290 60 45 120 11 18.04 17.51 19.23 18.43 18.15 3.08 3.65 2.27 3.56 3.93 The following two gases were measured by the GC 0.00 0.00 0.09 0.00 0.00 2.08 2.60 0.73 1.80 1.83 ne following were additional species measured by the FTI 9 6 -2 7 7 -3 -4 -4 -5 -7 0 0 0 0 0 0 0 0 0 0 0	10

Table 39: PRB Coal – Axial Distance 243 cm.

		ie 39: PKB					_		
Radial Dist. (cm)	10	20	30	40	50	60	70		
				neasured by		T			
CO (ppm)	53	207	98	48	81	203	160		
CO ₂ (%)	15.45	17.81	17.56	14.78	17.45	17.62	17.14		
H ₂ O (%)	11.77	12.01	11.77	9.90	11.67	11.92	11.64		
H ₂ S (ppm)	44	-94	-34	-27	-5	51	-46		
HCl (ppm)	1	0	1	0	0	1	1		
NO (ppm)	234	207	204	232	205	184	178		
SO ₂ (ppm)	262	336	318	231	312	333	329		
SO ₃ (ppm)	7	10	10	6	9	7	10		
The	e following	four gases	were measu	red by the I	Horiba PG-2	250			
NO (ppm)	174	160	74	47	68	184	175		
CO (ppm)	340	217	74	47	59	222	128		
CO ₂ (%)	18.21	19.03	18.78	16.08	18.29	18.96	18.38		
$O_2(\%)$	3.47	2.99	3.28	5.19	3.40	3.03	3.54		
The following two gases were measured by the GC									
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.01	0.00		
$O_2(\%)$	1.56	1.51	1.29	7.08	4.61	1.08	1.80		
Ti	he following	g were addi	tional speci-	es measured	by the FT	IR			
Acetylene (ppm)	5	7	7	2	7	8	7		
Aldehyde (ppm)	4	7	2	6	3	8	5		
Dodecane (ppm)	-1	-1	-2	-1	-1	-2	-2		
Ethanol (ppm)	1	-2	-3	3	-7	1	1		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	0	0	0	0	0	0	0		
HCN (ppm)	0	0	0	0	0	0	0		
MeOH (ppm)	0	0	0	0	0	0	0		
Methane (ppm)	2	3	3	3	3	3	3		
NH ₃ (ppm)	29	17	14	13	10	8	7		
NO ₂ (ppm)	0	-1	2	1	-3	0	-2		
N ₂ O (ppm)	-1	-1	0	1	0	0	-1		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	2	1	1	2	2	1	2		
Propylene (ppm)	-1	-1	-1	-1	-1	-1	-1		
Toluene (ppm)	-1	2	-3	6	-3	1	-2		

Table 40: PRB Coal – Axial Distance 90 cm.

	Tal	<u>ble 40: P</u> RB	Coal – Axia	<u> I Distanc</u> e 9	0 cm.		
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	ving eight g	gases were r	neasured by	the FTIR		
CO (ppm)	589	4205	8663	6061	12558	17384	251
CO ₂ (%)	10.58	12.93	13.51	15.16	15.06	14.98	14.43
H ₂ O (%)	7.66	9.82	11.40	12.41	12.67	12.83	10.14
H ₂ S (ppm)	50	63	26	-70	26	81	-83
HCl (ppm)	0	1	1	0	1	0	0
NO (ppm)	362	359	369	315	265	253	448
SO ₂ (ppm)	182	232	271	296	311	316	244
SO ₃ (ppm)	2	8	8	9	7	8	7
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	y the GC		
H ₂ (%)							
$O_2(\%)$							
T	he following	g were addi	tional speci-	es measured	by the FTI	R	
Acetylene (ppm)	-5	29	95	39	36	38	6
Aldehyde (ppm)	7	2	10	7	5	9	4
Dodecane (ppm)	0	-1	-1	0	-1	-1	-2
Ethanol (ppm)	-6	-3	3	2	-5	3	3
Ethylene (ppm)	0	5	21	3	1	1	0
Formaldehyde (ppm)	0	0	1	0	0	0	0
HCN (ppm)	0	2	5	2	3	4	0
MeOH (ppm)	0	0	0	0	0	0	0
Methane (ppm)	4	89	235	81	140	187	2
NH ₃ (ppm)	6	8	12	17	21	34	26
NO ₂ (ppm)	-1	3	0	2	2	1	-1
N ₂ O (ppm)	6	3	1	0	-1	-1	0
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	1	2	2	2	2	2	2
Propylene (ppm)	0	0	1	-1	-1	-1	-1
Toluene (ppm)	-3	-6	-36	-4	-3	-3	9

A.3 Beulah Zap

Table 41: Beulah Zap Coal – Axial Distance 77 cm.

Dadial Dist (am)			2ap Coal – A			60	70			
Radial Dist. (cm)	10	20		40	50	60	70			
GO ()		wing eight g								
CO (ppm)	3009	6059	27633	32953	27659	15463	10278			
CO ₂ (%)	14	13	14	13	14	14	15			
H ₂ O (%)	11	9	13	19	16	14	14			
H ₂ S (ppm)	0	-18	254	444	309	69	137			
HCl (ppm)	3	4	4	1	0	1	1			
NO (ppm)	299	225	122	109	87	198	257			
SO ₂ (ppm)	490	263	125	82	6	315	377			
SO ₃ (ppm)	9	4	3	-6	-1	9	9			
The following four gases were measured by the Horiba PG-250										
NO (ppm)										
CO (ppm)	3700	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000			
CO ₂ (%)	16.03	16.8	18.08	18.01	18.25	18.5	18.33			
$O_2(\%)$	3.93	3.25	1.79	2.14	2.45	3.19	3.78			
The following two gases were measured by the GC										
H ₂ (%)					1.72	0.81	0.91			
$O_2(\%)$	3.93	3.25	1.79	2.14	0.98	2.57	1.27			
Ti	he following	g were addi	tional speci	es measured	by the FT	ĪR				
Acetylene (ppm)	4	30	354	607	366	128	63			
Aldehyde (ppm)	3	7	31	50	40	9	5			
Dodecane (ppm)	0	0	2	5	3	0	0			
Ethanol (ppm)	7	4	25	59	32	7	8			
Ethylene (ppm)	2	16	265	480	284	57	16			
Formaldehyde (ppm)	1	1	1	1	1	1	1			
HCN (ppm)	2	4	20	31	7	6	5			
MeOH (ppm)	0	0	-1	-1	-5	0	0			
Methane (ppm)	57	210	1389	1891	1480	585	282			
NH ₃ (ppm)	38	33	39	148	463	155	129			
NO ₂ (ppm)	0	-3	-6	-8	-3	-1	-1			
N ₂ O (ppm)	0	1	-1	-2	-2	-1	-1			
Phosgene (ppm)	0	0	1	1	1	0	0			
Propane (ppm)	0	0	-1	2	0	0	0			
Propylene (ppm)	0	1	17	46	8	0	-2			
Toluene (ppm)	10	12	-38	-23	-30	-7	4			

Table 42: Beulah Zap Coal – Axial Distance 77 cm.

	r abie 4	42: Beulah Z	Lap Coai − P	axiai Distan	ce // cm.				
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	gases were r	neasured by	the FTIR				
CO (ppm)	3392	10504	25426	35680	27675	15323	10278		
CO ₂ (%)	15	15	13	13	14	14	15		
H ₂ O (%)	12	13	14	16	15	14	14		
H ₂ S (ppm)	-7	93	240	391	264	172	137		
HCl (ppm)	2	1	1	0	0	1	1		
NO (ppm)	315	231	160	92	103	211	257		
SO ₂ (ppm)	434	326	56	7	14	365	377		
SO ₃ (ppm)	12	8	1	-1	-2	9	9		
The following four gases were measured by the Horiba PG-250									
NO (ppm)									
CO (ppm)	4100	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000		
CO ₂ (%)	17.18	17.65	17.76	17.33	18.15	18.41	18.33		
$O_2(\%)$	5.43	4.72	3.92	3.88	3.54	3.65	3.78		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.54	1.56	2.13	1.67	1.59	0.49	0.91		
$O_2(\%)$	2.23	2.20	1.96	0.95	2.69	1.67	1.27		
Ti	ne following	g were addi	tional speci-	es measured	by the FT	IR			
Acetylene (ppm)	3	135	553	842	409	0	0		
Aldehyde (ppm)	2	10	35	63	37	545	282		
Dodecane (ppm)	0	1	1	6	3	126	129		
Ethanol (ppm)	12	7	16	62	30	-1	-1		
Ethylene (ppm)	4	38	248	581	273	-1	-1		
Formaldehyde (ppm)	1	1	1	1	1	0	0		
HCN (ppm)	2	10	24	16	7	0	0		
MeOH (ppm)	0	0	-2	-4	-3	0	-2		
Methane (ppm)	85	430	1326	2163	1445	-5	4		
NH ₃ (ppm)	91	123	220	451	364	0	0		
NO ₂ (ppm)	-1	-2	-5	-7	-1	0	0		
N ₂ O (ppm)	0	0	-2	-2	-2	0	0		
Phosgene (ppm)	0	0	0	0	1	116	63		
Propane (ppm)	0	0	0	2	1	118	66		
Propylene (ppm)	-1	-1	9	41	11	6	22		
Toluene (ppm)	6	2	-43	-18	-35	21	5		

Table 43: Beulah Zap Coal – Axial Distance 243 cm.

	1 abie 4	s: Beulan Z	ap Coal – A	xiai Distanc	e 245 cm.			
Radial Dist. (cm)	10	20	30	40	50	60	70	
	The follow	ving eight g	ases were r	neasured by	the FTIR			
CO (ppm)	19	47	51	11	9	11	18	
CO ₂ (%)	13	14	14	14	13	13	14	
H ₂ O (%)	10	11	11	11	12	12	12	
H ₂ S (ppm)	157	189	201	225	117	103	108	
HCl (ppm)	2	2	2	2	2	2	2	
NO (ppm)	247	217	207	216	214	234	199	
SO ₂ (ppm)	274	391	400	463	447	495	523	
SO ₃ (ppm)	8	7	8	7	11	11	12	
The following four gases were measured by the Horiba PG-250								
NO (ppm)	263	230	224	249	235	253	219	
CO (ppm)	21	46	46	11	8	11	16	
CO ₂ (%)	14.39	15.69	16.01	14.79	14.85	15.52	15.60	
$O_2(\%)$	5.71	5.08	4.98	6.30	6.40	5.96	6.02	
	The follo	owing two g	gases were i	neasured by	y the GC			
H ₂ (%)	0.30		0.04	0.00	0.00	0.00	0.00	
O ₂ (%)	2.02	5.08	9.79	5.71	4.75	7.92	4.61	
TI	ne following	g were addi	tional speci	es measured	by the FT	IR		
Acetylene (ppm)	-15	-18	-17	-17	-17	-15	-17	
Aldehyde (ppm)	-12	-11	-10	-10	-7	-12	-9	
Dodecane (ppm)	0	-1	-1	-1	0	-1	-1	
Ethanol (ppm)	8	5	11	7	9	4	10	
Ethylene (ppm)	0	0	0	0	0	0	0	
Formaldehyde (ppm)	2	1	2	1	1	1	1	
HCN (ppm)	0	0	0	0	0	0	0	
MeOH (ppm)	0	1	1	0	0	0	0	
Methane (ppm)	5	5	4	4	3	3	3	
NH ₃ (ppm)	21	15	15	14	12	12	11	
NO ₂ (ppm)	-2	-1	0	0	0	-1	-1	
N ₂ O (ppm)	1	1	0	0	0	0	0	
Phosgene (ppm)	-1	-1	-1	-1	-1	-1	0	
Propane (ppm)	1	2	2	2	2	1	1	
Propylene (ppm)	1	1	1	1	1	1	1	
Toluene (ppm)	7	5	4	4	4	4	2	

Table 44: Beulah Zap Coal – Axial Distance 243 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70			
radiai Dist. (ciii)				neasured by		00	70			
CO (ppm)	9	22	20	16	15	23	40			
CO ₂ (%)	11	14	14	14	13	13	12			
H ₂ O (%)	9	11	11	11	11	11	13			
H ₂ S (ppm)	59	178	172	191	162	135	201			
HCl (ppm)	2	2	2	2	2	1	1			
NO (ppm)	304	264	269	264	261	253	250			
SO ₂ (ppm)	273	458	481	494	476	453	402			
SO ₃ (ppm)	2	9	11	12	10	7	7			
The	e following	four gases	were measu	red by the I	Horiba PG-2	250				
NO (ppm)	212	287	296	288	280	268	273			
CO (ppm)	26	21	18	13	61	28	35			
CO ₂ (%)	15.50	15.40	15.34	15.05	14.70	14.41	14.04			
$O_2(\%)$	6.14	6.31	6.47	6.77	7.08	7.31	7.59			
The following two gases were measured by the GC										
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
$O_2(\%)$	5.31	7.33	5.18	5.31	5.97	6.69	6.69			
Tl	ne following				•	IR				
Acetylene (ppm)	-5	-18	-17	-17	-16	-15	-15			
Aldehyde (ppm)	-12	-8	-12	-7	-9	-11	-10			
Dodecane (ppm)	-1	-1	-1	-1	-1	-1	-1			
Ethanol (ppm)	1	9	9	5	7	8	8			
Ethylene (ppm)	0	0	0	0	0	0	0			
Formaldehyde (ppm)	1	1	1	1	2	2	2			
HCN (ppm)	0	0	0	0	0	0	0			
MeOH (ppm)	0	0	0	0	0	1	1			
Methane (ppm)	2	4	4	4	4	4	2			
NH ₃ (ppm)	9	9	8	8	8	7	8			
NO ₂ (ppm)	-4	0	-2	0	0	-1	1			
N ₂ O (ppm)	1	0	0	0	0	0	0			
Phosgene (ppm)	0	0	0	0	0	-1	-1			
Propane (ppm)	0	1	1	1	1	1	2			
Propylene (ppm)	1	1	1	1	1	1	1			
Toluene (ppm)	-8	5	3	4	7	6	9			

Table 45: Beulah Zap Coal – Axial Distance 243 cm.

[-		5: Beulan Z	_			1			
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	ases were r	neasured by	the FTIR				
CO (ppm)	11	22	27	18	20	29	19		
CO ₂ (%)	13	14	14	14	14	14	13		
H ₂ O (%)	11	11	11	12	12	11	11		
H ₂ S (ppm)	180	228	184	243	183	194	111		
HCl (ppm)	1	1	1	1	1	2	1		
NO (ppm)	249	266	267	254	252	265	254		
SO ₂ (ppm)	457	490	500	602	596	520	485		
SO ₃ (ppm)	10	10	12	9	12	11	8		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	276	287	293	252	278	288	288		
CO (ppm)	8	21	25	23	16	35	18		
CO ₂ (%)	15.30	15.45	15.21	17.05	16.09	15.33	14.96		
$O_2(\%)$	6.62	6.62	6.84	5.56	6.32	6.89	7.12		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.10	0.00		
$O_2(\%)$	5.25	5.37	5.19	5.72	3.96	4.76	5.22		
Ti	ne following	g were addi	tional speci-	es measured	by the FT	IR			
Acetylene (ppm)	-17	-17	-17	-12	-18	-18	-15		
Aldehyde (ppm)	-9	-11	-12	-8	-10	-11	-10		
Dodecane (ppm)	-1	-1	-1	-1	-1	-1	-1		
Ethanol (ppm)	4	10	9	7	9	6	7		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	1	1	1	1	1	2	2		
HCN (ppm)	0	0	0	0	0	0	0		
MeOH (ppm)	1	0	0	0	1	0	1		
Methane (ppm)	4	4	4	3	3	4	4		
NH ₃ (ppm)	7	7	7	7	7	6	6		
NO ₂ (ppm)	-1	0	1	-1	-1	-2	-2		
N ₂ O (ppm)	0	0	0	0	0	0	0		
Phosgene (ppm)	-1	0	0	0	0	0	-1		
Propane (ppm)	1	2	1	1	1	1	2		
Propylene (ppm)	1	1	1	1	1	1	1		
Toluene (ppm)	6	5	3	7	4	5	4		

Table 46: Beulah Zap Coal – Axial Distance 77 cm.

	1 able	to: Beulan A	<u> Zap Coal – A</u>	xiai Distan	ce // cm.					
Radial Dist. (cm)	10	20	30	40	50	60	70			
	The follow	ving eight g	gases were r	neasured by	the FTIR					
CO (ppm)	15064	38009	45991	47058	31676	5120	353			
CO ₂ (%)	18	19	18	18	18	19	19			
H ₂ O (%)	18	18	21	22	19	16	15			
H ₂ S (ppm)	69	67	358	442	250	3	41			
HCl (ppm)	6	4	4	4	3	3	3			
NO (ppm)	432	251	202	207	277	411	520			
SO ₂ (ppm)	791	817	325	317	608	681	655			
SO ₃ (ppm)	12	16	7	9	17	16	14			
The following four gases were measured by the Horiba PG-250										
NO (ppm)	374	223	181	189	242	343	427			
CO (ppm)	> 5000	> 5000	> 5000	> 5000	> 5000	3792	331			
CO ₂ (%)	17.77	17.99	18.25	18.09	18.62	17.52	15.91			
$O_2(\%)$	2.20	1.87	3.04	3.58	4.46	6.01	7.36			
	The follo	owing two g	gases were i	neasured by	y the GC					
H ₂ (%)	0.39	1.22	2.09	2.13	1.00	0.14	0.01			
O ₂ (%)	2.62	0.85	0.80	0.81	1.41	3.02	4.79			
TI	ne following	g were addi	tional speci	es measured	d by the FT	IR				
Acetylene (ppm)	56	67	847	1193	350	35	8			
Aldehyde (ppm)	4	4	45	62	21	3	2			
Dodecane (ppm)	0	0	0	2	-1	0	0			
Ethanol (ppm)	9	21	61	99	22	8	9			
Ethylene (ppm)	3	15	174	449	97	3	0			
Formaldehyde (ppm)	0	0	0	1	0	1	1			
HCN (ppm)	1	2	37	44	18	5	1			
MeOH (ppm)	0	-1	-5	-6	-4	-1	-1			
Methane (ppm)	168	594	1723	2367	888	67	8			
NH ₃ (ppm)	7	158	327	429	312	153	90			
NO ₂ (ppm)	2	4	3	-3	2	3	1			
N ₂ O (ppm)	0	-3	-3	-3	0	1	-1			
Phosgene (ppm)	0	1	1	1	1	0	0			
Propane (ppm)	1	1	2	4	1	0	-1			
Propylene (ppm)	1	-3	-1	30	-2	-3	-2			
Toluene (ppm)	-19	-29	-28	-36	-28	-18	-8			

Table 47: Beulah Zap Coal – Axial Distance 77cm.

	Table	47: Beulan A	Zap Coal – <i>E</i>	Axiai Distan	ce //cm.					
Radial Dist. (cm)	10	20	30	40	50	60	70			
	The follow	ving eight g	gases were n	neasured by	the FTIR					
CO (ppm)	11677	39437	48108	42543	28509	6234	1552			
CO ₂ (%)	18	19	17	18	18	18	18			
H ₂ O (%)	17	19	20	21	19	17	15			
H ₂ S (ppm)	72	192	569	442	117	-27	-31			
HCl (ppm)	4	3	3	2	2	1	1			
NO (ppm)	453	226	174	207	293	412	499			
SO ₂ (ppm)	783	630	299	408	665	716	683			
SO ₃ (ppm)	12	15	13	10	19	19	18			
The following four gases were measured by the Horiba PG-250										
NO (ppm)	384	199	162	172	280	344	396			
CO (ppm)	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000	1692			
CO ₂ (%)	17.54	18.67	18.32	18.26	18.62	17.61	17.36			
$O_2(\%)$	6.06	4.82	4.90	5.15	3.90	6.01	6.59			
	The follo	owing two g	gases were i	neasured by	the GC					
H ₂ (%)	0.32	1.51	2.07	2.06	0.90	0.18	0.07			
O ₂ (%)	2.89	0.90	0.96	0.86	1.26	3.01	3.36			
T	he following	g were addi	tional speci	es measured	by the FT	(R				
Acetylene (ppm)	50	226	838	924	316	44	13			
Aldehyde (ppm)	6	14	42	50	21	-2	0			
Dodecane (ppm)	-1	-1	0	1	1	0	1			
Ethanol (ppm)	8	20	70	79	30	13	17			
Ethylene (ppm)	2	39	208	366	70	3	0			
Formaldehyde (ppm)	1	0	0	1	0	1	1			
HCN (ppm)	3	14	35	34	15	3	1			
MeOH (ppm)	0	-2	-8	-8	0	0	0			
Methane (ppm)	132	879	1864	2021	752	89	16			
NH ₃ (ppm)	65	211	489	497	147	93	66			
NO ₂ (ppm)	3	3	4	-2	4	4	-1			
N ₂ O (ppm)	0	-2	-3	-3	-1	0	0			
Phosgene (ppm)	0	1	1	1	1	0	0			
Propane (ppm)	0	1	3	4	1	-1	-1			
Propylene (ppm)	-2	-4	-4	18	-1	-3	-2			
Toluene (ppm)	-19	-45	-24	-27	-12	-3	-4			

Table 48: Beulah Zap Coal – Axial Distance 243 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70	
Radiai Dist. (Cili)		ving eight g		-		00	70	
CO (ppm)	33	59	66	29	42	49	32	
CO ₂ (%)	18	18	18	18	19	18	18	
H ₂ O (%)	14	15	15	15	15	15	15	
H_2S (ppm)	-24	50	-47	-32	-7	20	-39	
HCl (ppm)	2	2	2	2	1	2	1	
NO (ppm)	361	349	351	353	344	351	356	
SO ₂ (ppm)	529	633	615	683	722	709	683	
SO ₃ (ppm)	14	15	16	14	15	16	15	
The following four gases were measured by the Horiba PG-250								
NO (ppm)	292	287	286	292	287	289	292	
CO (ppm)	26	39	32	24	34	33	16	
CO ₂ (%)	14.57	15.25	14.77	15.38	15.62	15.52	15.36	
$O_2(\%)$	5.24	4.63	5.09	4.50	4.26	4.39	4.53	
	The follo	owing two g	gases were i	neasured by	y the GC			
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
O ₂ (%)	5.89	5.19	5.68	5.19	4.99	5.10	5.31	
TI	ne following	g were addi	tional speci		by the FT			
Acetylene (ppm)	8	8	8	7	7	7	0	
Aldehyde (ppm)	-3	5	1	5	4	4	9	
Dodecane (ppm)	1	1	0	1	0	1	9	
Ethanol (ppm)	0	9	10	15	12	14	4	
Ethylene (ppm)	0	0	0	0	0	0	-1	
Formaldehyde (ppm)	1	1	1	2	1	1	0	
HCN (ppm)	0	0	0	0	0	0	1	
MeOH (ppm)	0	0	0	-1	0	0	-1	
Methane (ppm)	3	9	6	9	9	9	-5	
NH ₃ (ppm)	17	13	12	12	10	9	0	
NO ₂ (ppm)	2	2	4	3	3	2	0	
N ₂ O (ppm)	-1	0	0	-1	-1	-1	0	
Phosgene (ppm)	0	0	0	0	0	0	0	
Propane (ppm)	1	1	1	1	1	1	0	
Propylene (ppm)	-1	-1	-1	0	0	-1	9	
Toluene (ppm)	2	-3	0	-8	-7	-6	8	

Table 49: Beulah Zap Coal – Axial Distance 243 cm.

	1 able 4	9: Beulan Z	ap Coai – A	xial Distanc	e 245 cm.					
Radial Dist. (cm)	10	20	30	40	50	60	70			
	The follow	ving eight g	gases were r	neasured by	the FTIR					
CO (ppm)	35	72	34	58	67	57	73			
CO ₂ (%)	18	18	18	18	18	18	19			
H ₂ O (%)	15	15	15	15	15	15	15			
H ₂ S (ppm)	-23	-36	-64	-46	-89	-74	-88			
HCl (ppm)	2	1	2	1	1	1	1			
NO (ppm)	341	342	356	335	339	338	341			
SO ₂ (ppm)	697	703	694	721	707	699	730			
SO ₃ (ppm)	15	15	16	14	17	13	16			
The following four gases were measured by the Horiba PG-250										
NO (ppm)	282	278	288	277	282	272	279			
CO (ppm)	29	51	26	44	44	53	68			
CO ₂ (%)	15.24	15.38	15.01	15.42	15.38	15.78	16.00			
$O_2(\%)$	4.63	4.51	4.86	4.49	4.52	4.17	3.94			
	The follo	owing two g	gases were i	neasured by	y the GC					
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
O ₂ (%)	5.43	5.48	5.63	5.20	5.02	4.98	4.50			
Tl	ne following	g were addi	tional speci	es measured	d by the FT	IR				
Acetylene (ppm)	7	7	7	7	7	7	8			
Aldehyde (ppm)	2	2	5	6	4	4	6			
Dodecane (ppm)	0	1	0	0	0	0	0			
Ethanol (ppm)	13	11	15	13	11	11	13			
Ethylene (ppm)	0	1	0	0	0	0	0			
Formaldehyde (ppm)	1	1	1	1	1	1	1			
HCN (ppm)	0	0	0	0	0	0	0			
MeOH (ppm)	0	0	0	0	0	0	0			
Methane (ppm)	9	10	9	9	9	9	9			
NH ₃ (ppm)	8	8	7	7	6	6	6			
NO ₂ (ppm)	2	3	4	2	4	2	4			
N ₂ O (ppm)	-1	0	-1	-1	-1	-1	-1			
Phosgene (ppm)	0	0	0	0	0	0	0			
Propane (ppm)	1	0	0	0	1	1	1			
Propylene (ppm)	-1	-1	-1	-1	-1	-1	-1			
Toluene (ppm)	-5	-9	-10	-7	-13	-7	-7			

A.4 Mahoning

Table 50: Mahoning Coal - Axial Distance 83 cm.

	1 abie	50: Manoni	ing Coal – A	xiai Distanc	e 83 cm.				
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	gases were n	neasured by	the FTIR				
CO (ppm)	2586	7803	20005	35225	17038	2297	485		
CO ₂ (%)	15	16	16	15	16	17	16		
H ₂ O (%)	6	9	10	12	12	10	8		
H ₂ S (ppm)	-73	9	-52	90	-51	-23	-33		
HCl (ppm)	4	10	12	19	14	14	15		
NO (ppm)	322	380	409	330	337	354	389		
SO ₂ (ppm)	1362	1747	1854	1712	1834	1635	1457		
SO ₃ (ppm)	35	35	41	30	34	34	33		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	288	317	344	287	287	292	314		
CO (ppm)	2181	> 5000	> 5000	> 5000	> 5000	1891	380		
CO ₂ (%)	15.42	16.96	16.79	16.18	17.10	16.56	15.26		
$O_2(\%)$	1.76	1.11	0.41	0.13	0.34	1.93	3.51		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.02	0.11	0.37	0.80	0.78	0.92	0.02		
$O_2(\%)$	2.20	1.58	0.92	0.62	0.64	0.84	2.76		
Ti	ne following	g were addi	tional speci	es measured	by the FT	R			
Acetylene (ppm)	15	79	308	697	247	21	6		
Aldehyde (ppm)	0	3	15	34	12	-1	0		
Dodecane (ppm)	1	0	0	-1	0	0	0		
Ethanol (ppm)	-13	-11	-18	-9	-19	-13	-20		
Ethylene (ppm)	1	5	25	42	23	1	0		
Formaldehyde (ppm)	1	1	2	2	2	3	2		
HCN (ppm)	6	13	38	98	37	8	3		
MeOH (ppm)	-1	-1	0	-1	0	-1	-1		
Methane (ppm)	18	106	448	1088	379	24	3		
NH ₃ (ppm)	1	0	0	0	0	0	0		
NO ₂ (ppm)	0	3	5	6	3	3	0		
N ₂ O (ppm)	6	6	2	-1	2	7	7		
Phosgene (ppm)	-1	0	1	1	1	0	0		
Propane (ppm)	1	2	3	4	3	2	2		
Propylene (ppm)	2	0	0	-1	0	0	0		
Toluene (ppm)	-7	-20	-39	-59	-32	-10	-9		

Table 51: Mahoning Coal – Axial Distance 243 cm.

Table	51: Manonii	ng Coal – Ax	tiai Distance	243 cm.		
10	20	30	40	50	60	70
The follow	ving eight g	gases were n	neasured by	the FTIR		
56	60	96	146	153	147	154
16	17	18	17	17	17	17
8	8	8	8	8	8	8
-67	-79	-32	-123	-77	-82	-77
16	24	39	54	66	79	82
268	263	258	268	272	276	283
1428	1473	1599	1568	1553	1523	1471
32	31	33	32	32	33	32
e following	four gases	were measu	red by the I	Horiba PG-2	250	
226	209	217	226	229	232	241
45	53	73	125	118	120	138
15.08	16.04	16.33	16.09	15.97	15.76	15.38
3.82	2.88	2.55	2.78	2.88	3.08	3.49
The follo	owing two g	gases were i	neasured by	the GC		
0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.20	2.98	2.89	3.12	3.25	3.34	3.64
ne following	g were addi	tional speci	es measured	by the FT	R	
6	6	7	7	6	7	6
1	1	2	1	3	4	4
2	2	2	1	1	1	1
-18	-17	-19	-15	-17	-14	-16
0	0	0	0	0	0	0
1	1	1	2	2	2	2
0	0	0	0	0	0	0
-1	-1	-1	-1	-1	-1	-1
2	3	3	3	2	2	3
0	0	0	0	0	0	0
-2	-2	-1	-2	-2	-3	-3
1	2	2	1	1	2	3
0	0	0	0	0	0	0
3	2	3	3	4	4	4
-1	-1	-1	-1	-1	-1	-1
-15	-15	-14	-18	-17	-20	-17
	10 The follow 56 16 8 -67 16 268 1428 32 e following 226 45 15.08 3.82 The follow 6 1 2 -18 0 1 0 -1 2 0 -2 1 0 3 -1	The following eight g 56 60 16 17 8 8 8 -67 -79 16 24 268 263 1428 1473 32 31 e following four gases g 226 209 45 53 15.08 16.04 3.82 2.88 The following two g 0.00 0.00 4.20 2.98 the following were addition for the following were addition for the following for the following two g 0.00 0.00 4.20 2.98 The following were addition for following wer	The following eight gases were respectively serviced by the following four gases were measured by the following four gases were measured by the following two gases were respectively serviced by the following two gases were respectively serviced by the following were additional specific following following following following were additional specific following were additional specific following f	10 20 30 40 The following eight gases were measured by 56 60 96 146 16 17 18 17 8 8 8 8 -67 -79 -32 -123 16 24 39 54 268 263 258 268 1428 1473 1599 1568 32 31 33 32 e following four gases were measured by the Base of the Base o	The following eight gases were measured by the FTIR 56	10

Table 52: Mahoning Coal – Axial Distance 83 cm.

	1 abie	52: Manoni	ng Coai – A	xial Distanc	e 83 cm.		
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	ving eight g	gases were r	neasured by	the FTIR		
CO (ppm)	8738	18748	32790	25560	9312	385	318
CO ₂ (%)	18	16	15	15	17	12	16
H ₂ O (%)	10	12	12	12	11	7	8
H ₂ S (ppm)	-117	-29	-30	5	-42	-14	-44
HCl (ppm)	40	29	31	29	25	24	23
NO (ppm)	421	403	349	359	411	329	469
SO ₂ (ppm)	1894	1800	1734	1875	1791	1078	1410
SO ₃ (ppm)	43	37	39	38	38	26	30
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	346	337	302	296	353	360	389
CO (ppm)	> 5000	> 5000	> 5000	> 5000	4040	306	210
CO ₂ (%)	17.09	16.95	16.25	16.69	16.89	14.91	14.85
$O_2(\%)$	0.95	0.39	0.16	0.26	1.44	4.10	4.05
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.16	0.38	0.77	0.47	0.08	0.00	0.00
$O_2(\%)$	1.27	0.81	0.62	0.80	1.82	4.50	4.47
Ti	he following	g were addi	tional speci-	es measured	by the FT	IR	
Acetylene (ppm)	76	181	299	274	106	4	6
Aldehyde (ppm)	5	13	23	18	6	-1	1
Dodecane (ppm)	1	0	1	0	0	1	0
Ethanol (ppm)	-18	-18	-20	-19	-13	-16	-13
Ethylene (ppm)	1	8	15	15	5	0	0
Formaldehyde (ppm)	1	1	1	1	2	17	6
HCN (ppm)	10	16	61	52	22	4	0
MeOH (ppm)	0	-1	0	0	-1	0	-1
Methane (ppm)	109	282	725	584	160	3	3
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	1	3	5	4	3	1	0
N ₂ O (ppm)	2	0	-1	0	3	2	4
Phosgene (ppm)	0	0	1	0	0	0	0
Propane (ppm)	2	3	3	3	2	1	2
Propylene (ppm)	1	0	0	0	0	1	0
Toluene (ppm)	-2	-36	-59	-39	-19	-2	-5

Table 53: Mahoning Coal – Axial Distance 243 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70
Tuorur 21sti (tiii)			ases were n			00	, 0
CO (ppm)	324	193	321	83	82	220	149
CO ₂ (%)	16	16	17	15	15	16	15
H ₂ O (%)	8	11	12	10	9	8	7
H ₂ S (ppm)	-56	-10	72	-50	-48	-31	-11
HCl (ppm)	7	9	10	12	11	13	14
NO (ppm)	234	229	230	251	254	266	282
SO ₂ (ppm)	1546	1692	1668	1501	1434	1466	1374
SO ₃ (ppm)	37	38	35	31	34	37	33
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	206	198	198	198	219	224	232
CO (ppm)	251	153	261	86	71	173	131
CO ₂ (%)	16.70	16.60	16.53	15.23	15.47	15.30	14.52
$O_2(\%)$	2.15	2.27	2.33	3.68	3.41	3.59	4.42
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O ₂ (%)	2.54	2.70	2.86	4.55	3.89	4.05	4.89
TI	ne following	g were addi	tional speci	es measured	l by the FT	IR	
Acetylene (ppm)	7	9	10	5	7	8	3
Aldehyde (ppm)	3	-2	-1	1	4	0	-1
Dodecane (ppm)	1	1	1	5	6	5	5
Ethanol (ppm)	-24	-25	-27	-25	-26	-21	-19
Ethylene (ppm)	0	0	0	0	0	0	0
Formaldehyde (ppm)	0	0	0	1	1	2	2
HCN (ppm)	0	0	0	0	0	1	0
MeOH (ppm)	-1	-1	-1	-1	-1	-1	-1
Methane (ppm)	2	4	4	4	4	2	2
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	1	3	2	2	0	-1	-1
N ₂ O (ppm)	1	1	2	1	1	3	2
Phosgene (ppm)	1	1	0	0	0	0	0
Propane (ppm)	2	2	3	9	7	5	4
Propylene (ppm)	-1	-1	-1	-1	-1	-1	-1
Toluene (ppm)	-46	-25	-14	-24	-31	-11	-11

Table 54: Mahoning Coal – Axial Distance 97 cm.

	1 abie	54: Manoni	ing Coal – A	xiai Distanc	e 97 cm.		
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	ving eight g	gases were r	neasured by	the FTIR		
CO (ppm)	4050	9578	20418	31398	21837	3313	674
CO ₂ (%)	16	15	15	14	14	15	15
H ₂ O (%)	7	8	9	12	13	11	10
H ₂ S (ppm)	-54	-194	-17	-97	-84	-149	-88
HCl (ppm)	10	10	11	17	22	10	19
NO (ppm)	494	463	423	301	327	451	459
SO ₂ (ppm)	1645	1701	1727	1562	1656	1518	1333
SO ₃ (ppm)	37	30	33	26	31	29	28
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	406	389	343	245	332	390	386
CO (ppm)	2559	> 5000	> 5000	> 5000	> 5000	2344	531
CO ₂ (%)	16.61	17.18	17.01	16.58	17.20	16.64	15.25
$O_2(\%)$	1.83	0.84	0.31	0.13	0.23	1.88	3.61
	The follo	owing two g	gases were i	neasured by	y the GC		
H ₂ (%)	0.06	0.13	0.38	0.67	0.35	0.04	0.00
O ₂ (%)	2.24	1.49	0.80	0.61	0.72	2.30	3.97
Ti	ne following	g were addi	tional speci-	es measured	by the FT	R	
Acetylene (ppm)	22	54	127	195	131	21	7
Aldehyde (ppm)	4	7	13	16	14	5	6
Dodecane (ppm)	2	1	2	1	2	1	1
Ethanol (ppm)	-36	-38	-41	-54	-42	-43	-36
Ethylene (ppm)	0	3	6	10	7	1	0
Formaldehyde (ppm)	1	1	1	1	1	1	1
HCN (ppm)	2	6	15	31	23	5	2
MeOH (ppm)	0	-1	-1	-1	-1	-1	-1
Methane (ppm)	31	82	247	521	322	17	4
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	3	3	5	7	7	4	3
N ₂ O (ppm)	2	1	0	-1	-1	3	5
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	4	4	4	5	5	3	3
Propylene (ppm)	0	-1	-1	-1	-1	-1	-1
Toluene (ppm)	-12	-25	-29	-42	-33	-15	-20

Table 55: Mahoning Coal – Axial Distance 83 cm.

			ng Coal – A		e 85 cm.	,	•	
Radial Dist. (cm)	10	20	30	40	50	60	70	
	The follow	ving eight g	gases were r	neasured by	the FTIR			
CO (ppm)	3265	9393	22076	31968	10299	1133	602	
CO ₂ (%)	16	16	15	14	15	14	13	
H ₂ O (%)	8	7	9	10	10	9	7	
H ₂ S (ppm)	-73	-131	-41	-68	180	-59	-218	
HCl (ppm)	24	27	16	17	16	16	48	
NO (ppm)	522	467	520	450	490	473	447	
SO ₂ (ppm)	1580	1739	1775	1674	1678	1351	1192	
SO ₃ (ppm)	25	30	32	28	30	6	38	
The following four gases were measured by the Horiba PG-250								
NO (ppm)	354	333	435	398	422	392	371	
CO (ppm)	1912	> 5000	> 5000	> 5000	> 5000	905	476	
CO ₂ (%)	13.28	13.92	16.53	16.47	16.89	15.27	13.43	
$O_2(\%)$	5.39	4.44	0.88	0.28	1.09	3.51	5.55	
	The follo	owing two g	gases were i	neasured by	y the GC			
H ₂ (%)	0.02	0.00	0.33	0.58	0.27	0.00	0.00	
$O_2(\%)$	3.40	NA	1.48	0.77	1.26	3.20	5.96	
Ti	he following	g were addi	tional speci-	es measured	by the FT	IR		
Acetylene (ppm)	19	94	251	356	106	11	-17	
Aldehyde (ppm)	11	12	19	22	11	14	18	
Dodecane (ppm)	1	1	1	0	1	-1	4	
Ethanol (ppm)	-31	-29	-29	-35	-46	-21	-36	
Ethylene (ppm)	0	3	14	15	5	1	0	
Formaldehyde (ppm)	2	2	2	2	2	1	2	
HCN (ppm)	4	12	31	49	16	4	4	
MeOH (ppm)	-1	0	-1	-1	-1	-1	-1	
Methane (ppm)	22	121	359	579	135	7	2	
NH ₃ (ppm)	0	0	0	0	0	0	0	
NO ₂ (ppm)	4	2	6	7	7	1	6	
N ₂ O (ppm)	6	6	1	0	5	6	6	
Phosgene (ppm)	0	0	0	0	0	0	0	
Propane (ppm)	3	3	4	5	3	1	4	
Propylene (ppm)	-1	-1	-1	-1	-1	0	-1	
Toluene (ppm)	-10	-32	-34	-40	-21	-9	-20	

A.5 Indiana

Table 56: Indiana Coal – Axial Distance 250 cm.

Dadial Dist (am)	10	20	30	40	50 cm.	60	70
Radial Dist. (cm)						60	70
GO (wing eight g				52 0	200
CO (ppm)	149	201	259	426	457	529	380
CO ₂ (%)	13	12	12	12	13	13	13
H ₂ O (%)	7	7	7	7	7	7	7
H ₂ S (ppm)	8	-43	-45	-10	-6	-9	-61
HCl (ppm)	0	0	0	0	0	0	0
NO (ppm)	146	158	167	174	155	156	160
SO ₂ (ppm)	800	793	783	763	846	831	793
SO ₃ (ppm)	25	27	26	28	28	29	27
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	151	159	167	175	156	156	161
CO (ppm)	148	200	258	377	482	542	380
CO ₂ (%)	15.28	15.00	14.73	14.51	16.14	15.75	15.24
$O_2(\%)$	3.75	4.04	4.30	4.52	2.96	3.43	3.98
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$O_2(\%)$	3.73	4.21	4.45	4.77	3.14	3.51	4.03
Ti	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	-21	-21	-21	-20	-22	-21	-21
Aldehyde (ppm)	6	6	4	5	6	5	6
Dodecane (ppm)	1	0	1	1	1	1	2
Ethanol (ppm)	-27	-24	-26	-26	-24	-22	-23
Ethylene (ppm)	0	0	0	0	0	0	0
Formaldehyde (ppm)	0	0	0	0	0	0	0
HCN (ppm)	1	1	1	1	1	1	1
MeOH (ppm)	0	0	0	0	0	0	0
Methane (ppm)	2	2	2	0	2	2	3
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	4	3	5	4	5	4	2
N ₂ O (ppm)	12	11	11	12	11	12	9
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	1	1	1	1	1	1	1
Propylene (ppm)	1	1	1	1	1	1	1
Toluene (ppm)	4	4	7	5	0	-1	3

Table 57: Indiana Coal – Axial Distance 70 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	wing eight g	gases were r	neasured by	the FTIR	•	
CO (ppm)	6038	33174	52866	48250	13256	5857	5599
CO ₂ (%)	13	12	11	11	14	14	14
H ₂ O (%)	8	10	12	11	9	8	9
H ₂ S (ppm)	-25	21	-6	91	36	-97	-40
HCl (ppm)	1	3	12	39	12	7	10
NO (ppm)	344	122	80	108	278	314	347
SO ₂ (ppm)	989	626	528	636	1312	1049	1032
SO ₃ (ppm)	30	22	11	11	32	31	26
The	e following	four gases	were measu	red by the H	Horiba PG-2	250	
NO (ppm)	354	124	93	125	276	334	355
CO (ppm)	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000
CO ₂ (%)	17.20	16.48	14.65	15.11	17.67	17.99	17.99
$O_2(\%)$	1.72	0.71	0.70	0.70	0.80	1.02	1.00
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.15	1.84	3.85	3.57	0.44	0.10	0.19
O ₂ (%)	1.51	0.54	0.38	0.50	0.54	0.80	0.73
TI	he following	g were addi	tional speci	es measured	d by the FT	IR	
Acetylene (ppm)	-4	196	1103	1000	75	-7	18
Aldehyde (ppm)	6	19	67	64	12	5	6
Dodecane (ppm)	1	-1	8	8	1	0	1
Ethanol (ppm)	-27	-45	11	11	-27	-27	-29
Ethylene (ppm)	1	16	111	124	7	0	1
Formaldehyde (ppm)	1	0	1	1	1	1	1
HCN (ppm)	18	105	266	209	34	19	16
MeOH (ppm)	0	-2	-4	-5	-1	-1	-1
Methane (ppm)	42	1264	3459	3468	370	17	39
NH ₃ (ppm)	0	0	0	1	1	0	0
NO ₂ (ppm)	5	13	29	26	9	3	5
N ₂ O (ppm)	9	-2	-1	-1	1	11	5
Phosgene (ppm)	0	0	1	2	1	0	0
Propane (ppm)	1	3	7	8	2	1	2
Propylene (ppm)	1	0	1	2	1	0	0
Toluene (ppm)	-21	-70	-43	-27	-50	-11	-4

Table 58: Indiana Coal – Axial Distance 70 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
(*)			ases were n						
CO (ppm)	4902	23211	43284	45719	37715	16096	10154		
CO ₂ (%)	14	13	11	11	11	12	12		
H ₂ O (%)	8	10	11	12	11	9	8		
H ₂ S (ppm)	26	-27	146	135	305	-27	-42		
HCl (ppm)	12	19	46	41	34	16	13		
NO (ppm)	355	226	116	130	162	280	348		
SO ₂ (ppm)	936	1015	674	743	797	1236	1128		
SO ₃ (ppm)	26	23	12	10	15	33	28		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	371	238	121	142	178	294	354		
CO (ppm)	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000	> 5000		
CO ₂ (%)	16.47	16.99	15.14	14.98	15.69	17.35	17.88		
$O_2(\%)$	2.68	0.91	0.82	0.78	0.80	0.85	0.95		
	The follo	owing two g	gases were i	neasured by	y the GC				
$H_2(\%)$	0.04	0.98	2.85	3.01	2.23	0.51	0.19		
O ₂ (%)	2.36	0.71	0.51	0.41	0.51	0.56	0.63		
TI	he following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-7	181	934	1245	798	86	5		
Aldehyde (ppm)	8	17	61	79	48	12	5		
Dodecane (ppm)	1	1	3	8	0	0	1		
Ethanol (ppm)	-23	-30	-19	25	-20	-35	-29		
Ethylene (ppm)	0	8	54	110	46	5	1		
Formaldehyde (ppm)	2	1	2	1	2	1	1		
HCN (ppm)	14	65	193	235	166	46	28		
MeOH (ppm)	-1	-2	-3	-4	-3	-1	-1		
Methane (ppm)	31	672	2545	3527	2181	377	55		
NH ₃ (ppm)	0	0	0	0	0	1	0		
NO ₂ (ppm)	5	10	22	24	19	6	4		
N ₂ O (ppm)	12	0	-1	-1	-1	1	5		
Phosgene (ppm)	0	0	1	2	1	1	0		
Propane (ppm)	1	2	7	7	6	3	2		
Propylene (ppm)	0	0	0	0	0	0	-1		
Toluene (ppm)	-17	-67	-40	-26	-33	-35	-15		

Table 59: Indiana Coal – Axial Distance 250 cm.

D 1: 1D: ()			a Coal – Axi				5 0		
Radial Dist. (cm)	10	20	30	40	50	60	70		
		ving eight g				T			
CO (ppm)	607	465	701	769	750	118	389		
CO ₂ (%)	13	13	13	13	13	13	13		
H ₂ O (%)	8	8	7	7	7	7	7		
H ₂ S (ppm)	-4	-13	-5	-27	35	-47	-5		
HCl (ppm)	7	9	16	19	24	23	26		
NO (ppm)	110	143	154	148	152	153	147		
SO ₂ (ppm)	889	882	870	868	853	813	803		
SO ₃ (ppm)	29	26	28	25	25	25	24		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	108	128	152	148	153	152	142		
CO (ppm)	532	464	566	746	761	144	356		
CO ₂ (%)	16.29	15.93	15.41	15.59	15.48	15.09	14.91		
$O_2(\%)$	2.63	2.99	3.57	3.37	3.49	3.91	4.06		
	The follo	owing two g	gases were i	neasured by	y the GC				
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
O ₂ (%)	2.77	3.12	3.71	3.57	3.60	3.95	3.81		
T	he following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-21	-21	-21	-21	-20	-20	-20		
Aldehyde (ppm)	1	0	1	1	3	2	1		
Dodecane (ppm)	1	1	1	1	0	1	1		
Ethanol (ppm)	-26	-23	-19	-20	-22	-22	-20		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	0	0	1	1	1	1	1		
HCN (ppm)	1	1	2	3	3	1	2		
MeOH (ppm)	-1	-1	-1	-1	-1	-1	-1		
Methane (ppm)	1	1	2	2	3	3	3		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	-2	0	-3	-1	0	-2	-2		
N ₂ O (ppm)	12	8	6	6	6	6	9		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	1	1	0	1	1	1	1		
Propylene (ppm)	0	0	0	0	0	0	0		
Toluene (ppm)	-1	0	3	-2	1	2	1		

Table 60: Indiana Coal – Axial Distance 250 cm.

	1 abie	e ov: maiana	a Coal – Axi	ai Distance	250 cm.		
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	ving eight g	ases were r	neasured by	the FTIR		
CO (ppm)	125	379	123	230	542	780	711
CO ₂ (%)	12	12	14	14	13	13	12
H ₂ O (%)	7	7	7	7	7	7	7
H ₂ S (ppm)	7	-34	17	19	21	-58	-13
HCl (ppm)	29	37	37	41	44	46	51
NO (ppm)	163	157	162	163	173	168	161
SO ₂ (ppm)	754	775	854	870	869	825	793
SO ₃ (ppm)	26	25	25	25	29	24	26
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	166	155	161	163	176	169	164
CO (ppm)	97	394	127	224	517	746	673
CO ₂ (%)	13.95	14.24	15.70	15.88	15.86	15.23	14.79
O ₂ (%)	5.06	4.79	3.42	3.28	3.30	4.02	4.48
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O ₂ (%)	5.01	4.76	3.45	3.16	3.16	3.77	4.19
Ti	ne following	g were addi	tional speci-	es measured	by the FT	IR	
Acetylene (ppm)	-18	-20	-21	-21	-22	-20	-19
Aldehyde (ppm)	2	2	2	3	3	2	3
Dodecane (ppm)	1	1	1	1	1	0	1
Ethanol (ppm)	-21	-21	-22	-25	-20	-22	-25
Ethylene (ppm)	0	0	0	0	0	0	0
Formaldehyde (ppm)	1	1	1	1	1	1	1
HCN (ppm)	1	2	1	1	3	4	4
MeOH (ppm)	-1	-1	-1	-1	-2	-2	-2
Methane (ppm)	1	1	3	3	3	3	1
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	-2	-2	-2	-3	-3	-2	-1
N ₂ O (ppm)	6	5	4	4	6	6	6
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	1	1	1	1	1	2	2
Propylene (ppm)	0	0	0	0	0	0	0
Toluene (ppm)	7	4	1	-2	3	5	5

Table 61: Indiana Coal – Axial Distance 70 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70
			gases were n				
CO (ppm)	652	17225	42635	39253	30262		
CO ₂ (%)	12	12	11	11	11		
H ₂ O (%)	7	9	11	10	10		
H ₂ S (ppm)	-41	93	303	423	318		
HCl (ppm)	44	66	188	184	132		
NO (ppm)	375	212	76	66	80		
SO ₂ (ppm)	800	910	522	436	432		
SO ₃ (ppm)	29	23	8	7	14		
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	370	235	100	71	85		
CO (ppm)	835	> 5000	> 5000	> 5000	> 5000		
CO ₂ (%)	14.30	16.87	15.29	15.17	15.97		
$O_2(\%)$	4.82	0.81	0.65	0.68	0.81		
	The follo	owing two g	gases were i	neasured by	y the GC		
$H_2(\%)$	0.00	0.87	2.56	3.18	2.19		
O ₂ (%)	4.44	0.81	0.59	0.56	0.56		
Tì	ne following	g were addi	tional speci		by the FT	IR	
Acetylene (ppm)	0.00	0.87	2.56	3.18	2.19		
Aldehyde (ppm)	4.44	0.81	0.59	0.56	0.56		
Dodecane (ppm)	0.00	0.87	2.56	3.18	2.19		
Ethanol (ppm)	4.44	0.81	0.59	0.56	0.56		
Ethylene (ppm)	0.00	0.87	2.56	3.18	2.19		
Formaldehyde (ppm)	4.44	0.81	0.59	0.56	0.56		
HCN (ppm)	0.00	0.87	2.56	3.18	2.19		
MeOH (ppm)	4.44	0.81	0.59	0.56	0.56		
Methane (ppm)	0.00	0.87	2.56	3.18	2.19		
NH ₃ (ppm)	4.44	0.81	0.59	0.56	0.56		
NO ₂ (ppm)	0.00	0.87	2.56	3.18	2.19		
N ₂ O (ppm)	4.44	0.81	0.59	0.56	0.56		
Phosgene (ppm)	0.00	0.87	2.56	3.18	2.19		
Propane (ppm)	4.44	0.81	0.59	0.56	0.56		
Propylene (ppm)	0.00	0.87	2.56	3.18	2.19		
Toluene (ppm)	4.44	0.81	0.59	0.56	0.56		

A.6 Illinois #6-2

Table 62: Illinois #6-2 Coal – Axial Distance 83 cm.

		52: Illinois #	6-2 Coal – <i>A</i>	xiai Distan	ce 83 cm.		
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	wing eight g	gases were n	neasured by	the FTIR		
CO (ppm)	810	23760	43424	33651	13403	10010	4807
CO ₂ (%)	12	16	14	15	17	17	17
H ₂ O (%)	6	9	11	10	9	8	8
H ₂ S (ppm)	-110	90	757	930	79	-67	-47
HCl (ppm)	27	81	241	146	144	111	112
NO (ppm)	246	232	81	93	160	233	297
SO ₂ (ppm)	1589	2356	1397	1651	3005	2519	2266
SO ₃ (ppm)	38	50	19	27	54	54	52
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)	246	299	83	96	140	241	300
CO (ppm)	870	4506	4506	4506	4506	4506	3595
CO ₂ (%)	11.81	16.00	14.45	15.44	16.65	17.06	16.72
$O_2(\%)$	6.96	0.61	0.21	0.18	0.68	0.94	2.26
	The follo	owing two g	gases were i	neasured by	y the GC		
H ₂ (%)	0.00	1.11	3.17	2.52	0.30	0.36	0.05
$O_2(\%)$	6.89	0.74	0.52	0.50	0.55	0.59	1.88
TI	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	0	362	1290	979	190	123	47
Aldehyde (ppm)	1	26	66	52	15	11	5
Dodecane (ppm)	1	3	-2	-1	0	0	1
Ethanol (ppm)	-13	-8	70	50	-28	-30	-20
Ethylene (ppm)	1	83	344	354	46	10	7
Formaldehyde (ppm)	1	5	3	3	4	4	3
HCN (ppm)	5	53	161	124	35	26	14
MeOH (ppm)	-1	-4	-9	-7	-3	-2	-1
Methane (ppm)	24	1739	3598	3548	1136	574	227
NH ₃ (ppm)	0	1	2	1	1	0	0
NO ₂ (ppm)	1	9	23	19	4	1	-1
N ₂ O (ppm)	13	-1	-4	-3	-1	0	6
Phosgene (ppm)	0	2	4	3	0	0	0
Propane (ppm)	1	5	12	10	6	6	5
Propylene (ppm)	0	1	4	6	-2	-2	-1
Toluene (ppm)	-7	-62	-14	-1	-40	-17	-9

Table 63: Illinois #6-2 Coal – Axial Distance 83 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
(*)				neasured by					
CO (ppm)	4195	48264	51116	21587	3490	3375	2583		
CO ₂ (%)	12.22	10.68	10.40	12.02	13.56	14.28	13.57		
H ₂ O (%)	7	10	10	9	8	8	7		
H ₂ S (ppm)	-116	871	960	125	-53	-152	-30		
HCl (ppm)	109	210	185	139	129	153	150		
NO (ppm)	346	74	94	169	258	274	294		
SO ₂ (ppm)	2052	1016	1116	3135	2312	2278	2162		
SO ₃ (ppm)	49	17	21	53	54	52	44		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	348	72	101	166	253	282	304		
CO (ppm)	4506	4506	4506	4506	3160	3038	2827		
CO ₂ (%)	14.99	14.33	14.23	15.69	15.72	17.19	17.23		
$O_2(\%)$	3.14	0.32	0.59	1.23	2.95	1.67	1.72		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.13	3.43	0.03	0.01	0.07	0.05			
O ₂ (%)	3.46	0.31	0.59	1.23	2.81	1.38	1.72		
TI	ne following	g were addi	tional speci	es measured	l by the FT	IR			
Acetylene (ppm)	45	927	1077	294	39	14	-11		
Aldehyde (ppm)	11	55	60	28	10	8	10		
Dodecane (ppm)	1	-1	-1	2	0	1	1		
Ethanol (ppm)	-16	35	39	-19	-16	-17	-21		
Ethylene (ppm)	3	93	145	93	6	1	0		
Formaldehyde (ppm)	2	3	3	3	2	1	1		
HCN (ppm)	12	136	148	43	10	8	6		
MeOH (ppm)	-1	-5	-5	-3	-1	-1	-1		
Methane (ppm)	135	3288	3434	1433	150	48	24		
NH ₃ (ppm)	0	1	1	1	0	0	0		
NO ₂ (ppm)	1	17	18	6	-1	-1	1		
N ₂ O (ppm)	8	-4	-4	-2	3	3	5		
Phosgene (ppm)	0	3	3	2	0	0	0		
Propane (ppm)	5	9	8	4	5	5	6		
Propylene (ppm)	0	-1	0	1	0	0	0		
Toluene (ppm)	-12	-26	-14	-48	-19	-4	-5		

Table 64: Illinois #6-2 Coal – Axial Distance 257 cm.

Radial Dist. (cm)	10	20	30 30	40	50	60	70		
				neasured by					
CO (ppm)	172	194	294	200	481	755	613		
CO ₂ (%)	13.47	13.26	12.97	13.30	13.21	12.14	11.23		
H ₂ O (%)	5	6	7	6	6	6	6		
H ₂ S (ppm)	35	-74	-63	-105	-43	-70	-82		
HCl (ppm)	18	18	54	123	131	133	116		
NO (ppm)	191	205	194	164	170	168	141		
SO ₂ (ppm)	2006	1943	1889	1927	1936	1822	1635		
SO ₃ (ppm)	55	51	45	49	46	48	43		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	173	206	196	177	171	144	88		
CO (ppm)	182	187	292	119	457	542	624		
CO ₂ (%)	14.68	15.22	15.55	15.53	15.84	12.13	7.67		
$O_2(\%)$	4.38	3.87	3.49	3.58	3.28	6.80	11.47		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
O ₂ (%)	4.01	3.87	3.49	3.58	3.28	6.80	11.47		
TI	he following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-20	-20	-19	-20	-20	-18	-13		
Aldehyde (ppm)	8	7	8	9	8	10	7		
Dodecane (ppm)	1	1	0	1	0	1	1		
Ethanol (ppm)	-16	-16	-18	-16	-20	-19	-18		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	0	0	1	1	1	1	1		
HCN (ppm)	1	1	2	1	2	3	3		
MeOH (ppm)	-1	-1	-1	-1	-1	-1	-1		
Methane (ppm)	1	0	2	0	0	0	1		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	2	2	0	-1	1	0	2		
N ₂ O (ppm)	2	2	3	4	5	6	6		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	2	2	3	5	5	5	4		
Propylene (ppm)	0	0	0	0	0	1	1		
Toluene (ppm)	1	5	4	3	5	7	3		

Table 65: Illinois #6-2 Coal – Axial Distance 257 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
, ,	The follow	ving eight g	ases were r	neasured by	the FTIR				
CO (ppm)	493	95	152	237	608	464	1300		
CO ₂ (%)	14.01	13.86	13.67	13.55	13.22	14.80	15.13		
H ₂ O (%)	7	6	6	6	7	7	7		
H ₂ S (ppm)	7	-91	28	-11	-33	-15	14		
HCl (ppm)	136	128	146	146	148	134	158		
NO (ppm)	182	154	192	177	174	186	177		
SO ₂ (ppm)	2094	1989	1970	1962	1949	2208	2284		
SO ₃ (ppm)	54	49	46	54	54	46	54		
The following four gases were measured by the Horiba PG-250									
NO (ppm)	170	156	185	165	173	185	175		
CO (ppm)	502	233	129	179	606	592	1030		
CO ₂ (%)	16.45	14.91	15.44	15.30	15.57	16.78	17.49		
$O_2(\%)$	2.63	4.21	3.65	3.84	3.56	2.34	1.70		
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
O ₂ (%)	2.63	3.55	3.62	3.53	3.31	1.88	1.39		
TI	ne following	g were addi	tional speci	es measured	by the FT	R			
Acetylene (ppm)	-14	-21	-21	-20	-20	4	5		
Aldehyde (ppm)	8	10	11	10	10	10	10		
Dodecane (ppm)	1	1	1	1	1	1	1		
Ethanol (ppm)	-22	-19	-21	-17	-21	-22	-21		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	1	1	1	1	1	1	1		
HCN (ppm)	2	1	1	1	2	2	5		
MeOH (ppm)	-1	-2	-2	-2	-2	-2	-2		
Methane (ppm)	0	0	0	0	0	2	2		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	-1	0	1	1	0	-1	-1		
N ₂ O (ppm)	3	4	3	3	4	5	5		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	5	5	6	6	5	5	6		
Propylene (ppm)	0	0	0	0	0	0	0		
Toluene (ppm)	4	0	3	3	3	7	4		

Table 66: Illinois #6-2 Coal – Axial Distance 83 cm.

Radial Dist. (cm)	10	20	30 30	40	50	60	70	
Radiai Dist. (ciii)		ving eight g				00	70	
CO (ppm)	1295	28992	56054	29154	1896	732	522	
CO ₂ (%)	12.05	11.83	10.93	11.50	12.06	12.41	11.80	
H ₂ O (%)	6	10	10	10	7	6	6	
H_2S (ppm)	-99	111	710	380	-65	50	-8	
HCl (ppm)	126	242	338	217	118	128	121	
NO (ppm)	340	238	88	147	298	266	294	
SO ₂ (ppm)	1891	2136	989	2128	2221	2038	1887	
SO ₃ (ppm)	44	40	17	43	54	48	45	
The following four gases were measured by the Horiba PG-250								
NO (ppm)	345	274	94	141	297	270	294	
CO (ppm)	1178	4506	4506	4506	2552	724	584	
CO ₂ (%)	13.77	15.83	13.92	15.55	14.74	14.54	13.98	
$O_2(\%)$	5.04	0.88	0.72	0.76	3.79	4.30	4.93	
	The follo	owing two g	gases were i	neasured by	the GC			
H ₂ (%)	0.01	1.20	3.70	1.39	0.03	0.00	0.00	
O ₂ (%)	4.79	0.63	0.34	0.52	3.66	4.14	4.66	
T	he following	g were addi	tional speci	es measured	d by the FT	IR		
Acetylene (ppm)	-6	308	1080	424	4	-17	-18	
Aldehyde (ppm)	8	29	60	38	8	11	9	
Dodecane (ppm)	1	1	-1	4	1	1	1	
Ethanol (ppm)	-13	-30	39	-8	-19	-25	-17	
Ethylene (ppm)	0	26	137	112	2	0	0	
Formaldehyde (ppm)	1	2	3	4	2	1	1	
HCN (ppm)	3	50	145	52	6	3	2	
MeOH (ppm)	-1	-3	-6	-4	-1	-1	-1	
Methane (ppm)	22	1229	3546	1864	49	5	2	
NH ₃ (ppm)	0	0	1	1	0	0	0	
NO ₂ (ppm)	0	4	18	10	1	1	1	
N ₂ O (ppm)	7	-2	-4	-3	4	4	4	
Phosgene (ppm)	0	1	4	2	0	0	0	
Propane (ppm)	4	7	11	7	5	5	5	
Propylene (ppm)	0	-1	-1	0	0	0	0	
Toluene (ppm)	3	-53	6	-43	5	6	6	

Table 67: Illinois #6-2 Coal – Axial Distance 243 cm.

1 abie o	/: 1111nois #0	0-2 Coai – A	xiai Distanc	e 245 cm.		
10	20	30	40	50	60	70
The follow	ving eight g	ases were r	neasured by	the FTIR		
302	1099	1355	303	346	428	488
16.23	16.54	16.46	15.43	15.48	15.53	15.44
7	7	7	7	7	7	7
50	43	30	66	34	24	-37
24	38	40	42	30	52	52
91	105	111	109	110	117	111
2136	2145	2124	2030	2021	1967	1947
50	48	48	47	55	44	45
e following	four gases	were measu	red by the I	Horiba PG-2	250	
			-			
The follo	owing two g	gases were i	neasured by	the GC		
0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.21	2.30	2.50	3.24	4.24	3.34	3.42
ne following	g were addi	tional speci-	es measured	by the FT	IR	
3	3	2	2	2	2	2
3	3	3	2	7	3	3
1	0	0	1	1	0	0
-21	-18	-20	-21	-19	-16	-18
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	4	4	2	2	2	2
-1	-1	-1	-1	-1	-1	-1
3	3	4	1	1	3	3
0	0	0	0	0	0	0
0	0	1	0	1	1	-2
13	13	12	13	13	14	15
0	0	0	0	0	0	0
2	3	3	4	3	3	4
0	0	0	0	0	0	0
-11	-1	4	5	8	3	8
	The following 3 3 1 -21 0 1 2 -1 3 0 0 0 13 0 2 0 0	The following eight g 302 1099 16.23 16.54 7 7 50 43 24 38 91 105 2136 2145 50 48 e following four gases of the following two g 0.00 0.00 2.21 2.30 ne following were additing a second se	The following eight gases were result of the following four gases were measured by the following four gases were measured by the following four gases were measured by the following were additional specific following followi	10 20 30 40 The following eight gases were measured by 302 1099 1355 303 16.23 16.54 16.46 15.43 7 7 7 7 50 43 30 66 24 38 40 42 91 105 111 109 2136 2145 2124 2030 50 48 48 47 e following four gases were measured by the Following four gases were measured by the Following were additional species measured and an analysis of the Following were additional species measured and an analysis of the Following four gases were measured by the Following four gases wer	The following eight gases were measured by the FTIR 302	10

Table 68: Illinois #6-2 Coal – Axial Distance 97 cm.

D 1: 1 D: ()		58: 1111nois #				60	70
Radial Dist. (cm)	10	20	30	40	50	60	70
		ving eight g				T	
CO (ppm)	8259	24045	29357	26958	14617	6749	5469
CO ₂ (%)	17	16	16	16	17	18	18
H ₂ O (%)	9	10	10	10	10	9	8
H ₂ S (ppm)	1	491	578	578	462	37	37
HCl (ppm)	30	262	255	243	184	99	74
NO (ppm)	213	49	36	41	79	168	228
SO ₂ (ppm)	2402	1098	748	770	1925	3338	2840
SO ₃ (ppm)	53	30	22	25	42	75	63
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	1.10	1.04	1.16	1.32	0.61	0.23	0.07
O ₂ (%)	0.53	0.50	0.53	0.52	0.52	0.54	0.74
T	he following	g were addi	tional speci-	es measured	by the FT	IR	
Acetylene (ppm)	90	177	191	192	93	23	10
Aldehyde (ppm)	5	13	14	15	10	4	7
Dodecane (ppm)	0	0	1	1	0	1	0
Ethanol (ppm)	-30	-26	-29	-28	-21	-25	-24
Ethylene (ppm)	6	27	36	63	26	2	0
Formaldehyde (ppm)	2	2	2	2	2	1	1
HCN (ppm)	15	26	28	27	16	9	11
MeOH (ppm)	-1	-2	-2	-2	-1	-1	-1
Methane (ppm)	219	1091	1277	1300	567	74	19
NH ₃ (ppm)	0	0	0	0	0	0	0
NO ₂ (ppm)	2	3	6	7	1	-2	-1
N ₂ O (ppm)	0	-2	-2	-2	-2	0	5
Phosgene (ppm)	0	1	1	1	1	1	0
Propane (ppm)	3	8	7	8	6	5	4
Propylene (ppm)	0	-1	-1	-1	-2	-1	0
Toluene (ppm)	2	-39	-32	-30	5	1	-1

Table 69: Illinois #6-2 Coal – Axial Distance 77 cm.

Dadial Dist (am)	10		30	40	50	60	70	
Radial Dist. (cm)		20				00	70	
CO (******)				neasured by		41.60	220.4	
CO (ppm)	11830	21867	37972	37196	9971	4168	2384	
CO ₂ (%)	17.33	16.72	13.49	13.49	17.29	17.57	17.10	
H ₂ O (%)	9	10	10	11	9	9	8	
H ₂ S (ppm)	46	107	455	631	34	76	70	
HCl (ppm)	49	85	142	158	85	74	77	
NO (ppm)	166	168	68	68	276	211	226	
SO ₂ (ppm)	2316	2077	996	840	3637	2692	2296	
SO ₃ (ppm)	51	47	28	27	72	52	53	
The following four gases were measured by the Horiba PG-250								
NO (ppm)								
CO (ppm)								
CO ₂ (%)								
O ₂ (%)								
	The follo	owing two g	gases were i	neasured by	the GC			
H ₂ (%)	0.33	0.49	1.25	1.73	0.54	0.19	0.02	
$O_2(\%)$	2.15	0.58	0.55	0.13	0.21	0.42	1.27	
T	he following	g were addi	tional speci	es measured	by the FT	IR .		
Acetylene (ppm)	57	134	232	267	96	26	6	
Aldehyde (ppm)	8	10	20	25	10	6	4	
Dodecane (ppm)	1	1	4	4	0	1	0	
Ethanol (ppm)	-31	-29	-28	-19	-30	-25	-26	
Ethylene (ppm)	3	15	52	109	12	1	0	
Formaldehyde (ppm)	1	1	2	2	2	2	2	
HCN (ppm)	12	21	40	42	13	9	7	
MeOH (ppm)	-1	-1	-2	-3	-1	-1	-1	
Methane (ppm)	250	688	1774	1996	283	54	10	
NH ₃ (ppm)	0	0	0	0	0	0	0	
NO ₂ (ppm)	1	6	9	12	0	0	1	
N ₂ O (ppm)	-1	-2	-2	-2	2	4	7	
Phosgene (ppm)	1	1	1	1	1	0	0	
Propane (ppm)	3	4	6	8	6	5	4	
Propylene (ppm)	-1	-1	-1	-1	-1	0	0	
Toluene (ppm)	12	-7	-50	-42	-1	-2	1	

Table 70: Illinois #6-2 Coal – Axial Distance 230 cm.

	rable /	U: Illinois #0	6-2 Coal – A	xiai Distanc	e 250 cm.				
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	gases were r	neasured by	the FTIR				
CO (ppm)	235	370	324	297	822	853	1122		
CO ₂ (%)	13.94	13.96	13.98	13.84	14.49	16.09	16.64		
H ₂ O (%)	6	7	7	7	7	7	7		
H ₂ S (ppm)	34	40	73	12	0	11	85		
HCl (ppm)	29	43	47	47	81	75	75		
NO (ppm)	115	123	127	128	135	131	124		
SO ₂ (ppm)	2080	2008	1985	1973	1939	2018	2151		
SO ₃ (ppm)	53	50	56	55	53	44	56		
The following four gases were measured by the Horiba PG-250									
NO (ppm)				-					
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	y the GC				
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
O ₂ (%)	2.06	3.24	3.47	3.51	3.50	3.22	2.62		
Ti	he following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-27	-27	-27	-27	-27	2	2		
Aldehyde (ppm)	5	4	8	4	6	3	5		
Dodecane (ppm)	0	1	1	1	0	1	0		
Ethanol (ppm)	-18	-19	-20	-19	-12	-19	-21		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	1	1	1	1	1	1	1		
HCN (ppm)	2	2	1	1	3	3	4		
MeOH (ppm)	0	-1	0	-1	-1	-1	-1		
Methane (ppm)	3	2	2	2	2	2	4		
NH ₃ (ppm)	1	0	0	0	0	0	0		
NO ₂ (ppm)	-1	0	1	1	-1	-2	0		
N ₂ O (ppm)	10	11	11	10	11	11	9		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	3	4	3	4	4	4	4		
Propylene (ppm)	0	0	0	0	0	0	0		
Toluene (ppm)	-10	-13	-9	-11	-12	7	3		

Table 71: Illinois #6-2 Coal – Axial Distance 110 cm.

	Table /	1: Illinois #0	5-2 Coai – A	xiai Distanc	e 110 cm.				
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	ases were r	neasured by	the FTIR				
CO (ppm)	8303	2825	1557	1822	3250	8256	2500		
CO ₂ (%)	17.63	17.14	16.58	16.74	17.39	18.01	17.45		
H ₂ O (%)	8	8	8	8	8	8	8		
H ₂ S (ppm)	40	25	115	88	46	22	59		
HCl (ppm)	10	10	10	12	13	22	22		
NO (ppm)	224	242	239	257	286	248	251		
SO ₂ (ppm)	2384	2368	2266	2298	2376	2386	2336		
SO ₃ (ppm)	51	59	52	46	60	51	51		
The following four gases were measured by the Horiba PG-250									
NO (ppm)				-					
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.15	0.13	0.06	0.03	0.03	0.13	0.13		
O ₂ (%)	8.03	1.96	1.80	1.86	1.63	0.81	0.76		
Tì	ne following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	47	24	16	17	27	13	6		
Aldehyde (ppm)	4	5	1	3	3	5	3		
Dodecane (ppm)	6	5	4	3	3	2	2		
Ethanol (ppm)	-31	-28	-23	-20	-20	-16	-18		
Ethylene (ppm)	3	2	1	1	2	1	0		
Formaldehyde (ppm)	2	2	1	1	1	1	1		
HCN (ppm)	9	4	3	3	5	10	4		
MeOH (ppm)	0	0	1	1	1	1	1		
Methane (ppm)	132	50	32	31	51	46	14		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	0	0	-3	1	2	0	1		
N ₂ O (ppm)	0	3	6	6	6	0	4		
Phosgene (ppm)	-1	-1	0	0	0	0	0		
Propane (ppm)	9	8	7	6	5	3	4		
Propylene (ppm)	0	0	0	0	0	0	0		
Toluene (ppm)	2	0	5	4	3	0	4		

Table 72: Illinois #6-2 Coal – Axial Distance 130 cm.

	rable /	2: Illinois #0	6-2 Coal – A	xiai Distanc	e 130 cm.					
Radial Dist. (cm)	10	20	30	40	50	60	70			
	The follow	ving eight g	gases were r	neasured by	the FTIR					
CO (ppm)	2973	1562	1838	10871	21589	19433	7415			
CO ₂ (%)	13	17	17	17	17	17	18			
H ₂ O (%)	6	7	7	7	8	9	9			
H ₂ S (ppm)	71	-64	7	30	335	465	18			
HCl (ppm)	62	42	44	58	143	137	98			
NO (ppm)	188	225	218	100	25	63	124			
SO ₂ (ppm)	2811	2384	2363	2041	622	1024	2775			
SO ₃ (ppm)	71	54	50	54	24	31	60			
The following four gases were measured by the Horiba PG-250										
NO (ppm)										
CO (ppm)										
CO ₂ (%)										
$O_2(\%)$										
	The follo	owing two g	gases were i	neasured by	the GC					
H ₂ (%)	0.34	0.07	0.03	0.15	0.58	0.98	0.61			
$O_2(\%)$	4.68	2.42	2.23	1.66	3.14	0.70	0.60			
TI	ne following	g were addi	tional speci	es measured	d by the FT	IR				
Acetylene (ppm)	-22	3	4	20	71	64	9			
Aldehyde (ppm)	7	1	6	6	5	13	7			
Dodecane (ppm)	1	1	1	0	1	1	1			
Ethanol (ppm)	-19	-24	-23	-31	-33	-36	-26			
Ethylene (ppm)	0	0	0	4	13	3	0			
Formaldehyde (ppm)	1	1	1	1	1	1	1			
HCN (ppm)	3	1	1	8	15	19	8			
MeOH (ppm)	0	0	0	1	0	0	0			
Methane (ppm)	6	4	5	176	668	354	26			
NH ₃ (ppm)	0	0	0	0	0	0	0			
NO ₂ (ppm)	-2	0	2	1	3	4	0			
N ₂ O (ppm)	2	5	4	-2	-2	-2	-1			
Phosgene (ppm)	0	0	0	1	1	1	1			
Propane (ppm)	4	4	3	2	4	3	5			
Propylene (ppm)	1	1	1	0	-1	-1	0			
Toluene (ppm)	-8	7	6	8	8	7	-2			

Table 73: Illinois #6-2 Coal – Axial Distance 150 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
Tuorur 2 isti (tiii)				neasured by		0.0	, ,		
CO (ppm)	854	364	791	628	804	1934	2943		
CO ₂ (%)	13	13	14	17	16	15	17		
H ₂ O (%)	6	5	7	7	8	7	7		
H ₂ S (ppm)	-97	24	-4	-13	-129	-56	-103		
HCl (ppm)	59	39	47	33	43	41	35		
NO (ppm)	153	146	145	152	174	194	213		
SO ₂ (ppm)	2054	2001	2324	2346	2353	2295	2466		
SO ₃ (ppm)	57	58	57	57	55	63	58		
The following four gases were measured by the Horiba PG-250									
NO (ppm)									
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
$H_2(\%)$	0.00	0.00	0.00	0.00	0.00	0.00	0.02		
O ₂ (%)	4.37	5.72	4.57	2.16	1.88	2.72	2.09		
TI	ne following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	-26	-26	-28	2	-1	-26	5		
Aldehyde (ppm)	8	7	8	9	7	11	8		
Dodecane (ppm)	1	1	1	2	1	1	2		
Ethanol (ppm)	-17	-21	-21	-20	-25	-20	-23		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	1	1	1	1	1	1	1		
HCN (ppm)	1	1	2	2	2	3	5		
MeOH (ppm)	-1	0	0	-1	0	0	0		
Methane (ppm)	4	2	4	5	5	8	11		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	2	2	4	3	5	2	0		
N ₂ O (ppm)	6	5	8	5	7	6	6		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	3	2	2	2	2	2	2		
Propylene (ppm)	1	1	1	0	1	1	1		
Toluene (ppm)	-8	-8	-7	2	6	-8	9		

Table 74: Illinois #6-2 Coal – Axial Distance 170 cm.

	Table /	4: 1111nois #0	6-2 Coal – A	xiai Distanc	e 170 cm.				
Radial Dist. (cm)	10	20	30	40	50	60	70		
	The follow	ving eight g	ases were r	neasured by	the FTIR				
CO (ppm)	1912	1573	1065	973	1035	1199	1216		
CO ₂ (%)	19	19	16	16	14	14	14		
H ₂ O (%)	8	8	7	7	7	7	7		
H ₂ S (ppm)	-98	-54	-38	-24	-29	-98	-111		
HCl (ppm)	10	41	54	61	61	63	62		
NO (ppm)	150	143	146	148	154	158	160		
SO ₂ (ppm)	2364	2273	2100	2032	1985	1936	1940		
SO ₃ (ppm)	44	40	33	33	39	37	40		
The following four gases were measured by the Horiba PG-250									
NO (ppm)				-					
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.01	0.00	0.00	0.00	0.00	0.00	0.00		
O ₂ (%)	1.22	1.74	3.15	3.65	4.08	4.53	4.71		
Ti	ne following	g were addi	tional speci-	es measured	by the FT	IR			
Acetylene (ppm)	1756	1461	973	879	926	1084	1094		
Aldehyde (ppm)	111	89	53	41	50	83	81		
Dodecane (ppm)	2	1	1	1	2	1	1		
Ethanol (ppm)	-18	-14	-14	-17	-17	-13	-16		
Ethylene (ppm)	0	0	0	0	0	0	0		
Formaldehyde (ppm)	0	1	1	1	1	1	1		
HCN (ppm)	3	5	4	4	4	4	4		
MeOH (ppm)	0	-1	-1	0	0	0	0		
Methane (ppm)	4	4	4	2	2	2	3		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	2	2	2	4	1	4	2		
N ₂ O (ppm)	5	8	9	9	9	10	11		
Phosgene (ppm)	0	0	0	0	0	0	0		
Propane (ppm)	3	3	3	3	2	2	2		
Propylene (ppm)	0	0	0	0	0	0	0		
Toluene (ppm)	5	6	5	10	-9	-5	-8		

Table 75: Illinois #6-2 Coal – Axial Distance 30 cm.

Radial Dist. (cm)	10	20	30	35	40	50	60	70
	The fo	llowing ei	ght gases v	vere measu	red by the	FTIR		
CO (ppm)	168	235	1499	10742	66414	1876	618	633
CO ₂ (%)	15	14	8	3	10	8	11	14
H ₂ O (%)	7	7	6	5	11	5	6	7
H ₂ S (ppm)	-61	-86	-163	-263	522	-89	-49	-104
HCl (ppm)	59	64	69	46	63	80	94	108
NO (ppm)	264	228	254	129	211	251	215	226
SO ₂ (ppm)	1924	1766	1135	589	2020	1078	1640	2128
SO ₃ (ppm)	36	32	16	2	17	16	28	51
7	The follow	ing four ga	ases were r	neasured b	y the Horib	oa PG-250		
NO (ppm)								
CO (ppm)								
CO ₂ (%)								
O ₂ (%)								
	The	following t	wo gases v	were meast	ired by the	GC		
H ₂ (%)	0.00	0.00	0.00	0.42	2.71	0.22	0.00	0.00
O ₂ (%)	4.19	5.31	11.82	14.30	2.55	11.16	7.18	2.53
	The follow	wing were	additional	species me	asured by	the FTIR		
Acetylene (ppm)	173	235	1417	9586	85960	1838	624	625
Aldehyde (ppm)	3	6	107	5044	60119	148	18	23
Dodecane (ppm)	1	1	1	4	-12	2	2	2
Ethanol (ppm)	-13	-13	-13	11	276	-12	-16	-19
Ethylene (ppm)	0	0	7	243	828	4	1	0
Formaldehyde (ppm)	1	1	5	22	56	8	2	2
HCN (ppm)	1	1	4	31	157	9	4	3
MeOH (ppm)	-1	-1	0	2	-6	0	0	0
Methane (ppm)	4	4	21	792	4250	10	2	2
NH ₃ (ppm)	0	0	0	0	2	1	0	0
NO ₂ (ppm)	2	1	1	-6	7	3	3	2
N ₂ O (ppm)	5	6	7	2	-1	9	10	10
Phosgene (ppm)	0	0	0	-2	2	0	0	0
Propane (ppm)	2	3	3	20	36	4	4	4
Propylene (ppm)	0	0	2	54	178	2	0	0
Toluene (ppm)	2	4	-32	13	26	-12	-9	-7

Table 76: Illinois #6-2 Coal – Axial Distance 50 cm.

.		I	6-2 Coal – A				= -		
Radial Dist. (cm)	10	20	30	40	50	60	70		
		wing eight g				1			
CO (ppm)	278	484	13856	70952	1327	514	1271		
CO ₂ (%)	10	12	15	12	11	13	16		
H ₂ O (%)	6	6	9	12	6	7	7		
H ₂ S (ppm)	-59	-97	-262	533	-124	-19	-58		
HCl (ppm)	85	128	143	133	113	119	122		
NO (ppm)	289	246	537	241	243	226	230		
SO ₂ (ppm)	1288	1576	2269	2131	1472	1942	2041		
SO ₃ (ppm)	22	32	37	7	26	40	39		
The following four gases were measured by the Horiba PG-250									
NO (ppm)									
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.00	0.00	0.38	3.88	0.01	0.00	0.00		
O ₂ (%)	9.35	7.58	3.67	0.67	8.33	4.47	3.26		
Ti	he following	g were addi	tional speci-	es measured	by the FT	ĪR			
Acetylene (ppm)	268	469	12704	102216	1291	513	1131		
Aldehyde (ppm)	15	20	6721	71748	95	17	117		
Dodecane (ppm)	1	2	1	-9	2	1	2		
Ethanol (ppm)	-12	-14	-22	397	-9	-17	-14		
Ethylene (ppm)	0	0	72	-1377	3	1	0		
Formaldehyde (ppm)	1	1	9	49	4	2	2		
HCN (ppm)	1	2	41	208	8	4	3		
MeOH (ppm)	0	0	0	-13	-1	0	0		
Methane (ppm)	3	3	615	5055	12	2	5		
NH ₃ (ppm)	0	0	0	3	1	0	0		
NO ₂ (ppm)	1	1	4	7	4	3	1		
N ₂ O (ppm)	7	16	10	-2	13	10	7		
Phosgene (ppm)	0	0	1	9	0	0	0		
Propane (ppm)	3	4	7	35	3	4	4		
Propylene (ppm)	1	0	2	213	2	1	1		
Toluene (ppm)	-20	-7	-41	116	-6	-4	-11		

Table 77: Illinois #6-2 Coal – Axial Distance 190 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70			
Radiai Dist. (Cili)				neasured by		00	70			
CO (ppm)		0 0 0	854			1102	1202			
	552	701		860	964	1182	1203			
CO ₂ (%) H ₂ O (%)	16 7	16 7	15 7	13 7	13 7	14 7	15 7			
H ₂ S (ppm)	-56	-121	-35	-30	-70	-68	-180			
HCl (ppm)	103	112	109	105	100	100	102			
NO (ppm)	144	151	152	154	165	184	192			
SO ₂ (ppm)	2034	1976	1895	1825	1779	1931	2129			
SO ₃ (ppm)	41	36	41	41	36	37	47			
The following four gases were measured by the Horiba PG-250										
NO (ppm)										
CO (ppm)										
CO ₂ (%)										
$O_2(\%)$										
	The follo	owing two g	gases were i	neasured by	the GC					
$H_2(\%)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
O ₂ (%)	3.02	2.99	3.59	4.43	4.89	4.18	2.69			
TI	ne following	g were addi	tional speci	es measured	d by the FT	IR				
Acetylene (ppm)	523	654	778	781	870	1067	1091			
Aldehyde (ppm)	14	22	45	46	55	82	100			
Dodecane (ppm)	1	1	2	1	1	1	1			
Ethanol (ppm)	-19	-21	-25	-17	-19	-19	-17			
Ethylene (ppm)	0	0	0	0	0	0	0			
Formaldehyde (ppm)	1	1	1	1	1	1	1			
HCN (ppm)	2	2	3	3	3	3	3			
MeOH (ppm)	0	0	0	0	0	0	0			
Methane (ppm)	2	2	2	2	3	3	3			
NH ₃ (ppm)	0	0	0	0	0	0	0			
NO ₂ (ppm)	3	0	3	3	2	3	4			
N ₂ O (ppm)	7	7	6	5	6	7	7			
Phosgene (ppm)	0	0	0	0	0	0	0			
Propane (ppm)	4	4	4	4	3	3	4			
Propylene (ppm)	0	0	0	1	1	1	1			
Toluene (ppm)	2	8	5	-6	-6	-10	-9			
VI /					<u> </u>	- 0				

Table 78: Illinois #6-2 Coal – Axial Distance 210 cm.

rabie /	8: Illinois #0	5-2 Coai – A	xiai Distanc	e 210 cm.						
10	20	30	40	50	60	70				
The follow	ving eight g	gases were n	neasured by	the FTIR						
82	131	197	546	762	908	1055				
14	15	14	15	17	16	17				
7	7	7	7	7	7	7				
-108	-42	-96	-47	-55	-46	-185				
94	106	111	117	121	120	119				
141	142	149	157	171	178	182				
2088	2121	2102	2058	2078	2083	2091				
45	41	46	43	38	40	42				
SO ₃ (ppm) 45 41 46 43 38 40 42 The following four gases were measured by the Horiba PG-250										
The follo	owing two g	gases were i	neasured by	the GC						
0.00	0.00	0.00	0.00	0.00	0.00	0.00				
2.93	2.51	2.61	2.80	2.72	2.66	2.61				
ne following	g were addi	tional speci	es measured	by the FT	IR					
84	135	197	514	702	826	958				
2	3	5	18	34	42	64				
1	1	2	1	1	1	1				
-16	-18	-21	-18	-11	-15	-17				
0	0	0	0	0	0	0				
1	1	1	1	1	1	1				
0	1	1	2	3	3	3				
0	0	0	0	0	0	-1				
3	3	4	3	3	2	3				
0	0	0	0	0	0	0				
1	1	1	1	1	1	0				
3	3	3	5	6	6	7				
0	0	0	0	0	0	0				
3	4	4	4	3	4	4				
0	0	0	0	0	0	0				
-13	-13	-12	-13	6	6	7				
	The following The following 14 7 -108 94 141 2088 45 e following The following 84 2 1 -16 0 1 0 0 3 0 1 3 0 3 0 3	The following eight g 82	10 20 30 The following eight gases were reads 82 131 197 14 15 14 7 7 7 -108 -42 -96 94 106 111 141 142 149 2088 2121 2102 45 41 46 <t< td=""><td>10 20 30 40 The following eight gases were measured by 82 131 197 546 14 15 14 15 7 7 7 7 -108 -42 -96 -47 94 106 111 117 141 142 149 157 2088 2121 2102 2058 45 41 46 43 e following four gases were measured by the Following four gases were measured by the Following were additional species measured 84 135 197 514 2 3 5 18 1 1 2 1 1 1 1 2 1 -18 -21 -18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>The following eight gases were measured by the FTIR 82</td><td> 10</td></t<>	10 20 30 40 The following eight gases were measured by 82 131 197 546 14 15 14 15 7 7 7 7 -108 -42 -96 -47 94 106 111 117 141 142 149 157 2088 2121 2102 2058 45 41 46 43 e following four gases were measured by the Following four gases were measured by the Following were additional species measured 84 135 197 514 2 3 5 18 1 1 2 1 1 1 1 2 1 -18 -21 -18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The following eight gases were measured by the FTIR 82	10				

A.7 Gatling

Table 79: Gatling Coal – Axial Distance 97 cm.

Radial Dist. (cm)	10	20	g Coal – Ax 30	40	50	60	70		
Radiai Dist. (cm)						00	70		
GO ()		0 0 0	ases were r			10501			
CO (ppm)	18168	20853	27136	21515	13377	10594	6111		
CO ₂ (%)	17	17	15	17	17	17	18		
H ₂ O (%)	10	10	10	10	10	10	9		
H ₂ S (ppm)	353	404	760	680	307	305	-69		
HCl (ppm)	15	53	15	10	5	4	3		
NO (ppm)	164	115	92	107	125	127	190		
SO ₂ (ppm)	2861	2614	2154	2606	3112	3146	3643		
SO ₃ (ppm)	54	58	52	57	62	64	80		
The following four gases were measured by the Horiba PG-250									
NO (ppm)									
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.62	0.81	1.21	0.74	0.47	0.31	0.12		
$O_2(\%)$	0.01	0.02	0.01	0.04	0.05	0.04	0.13		
TI	ne following	g were addi	tional speci	es measured	by the FT	IR			
Acetylene (ppm)	264	305	323	351	228	128	45		
Aldehyde (ppm)	14	21	26	22	12	7	2		
Dodecane (ppm)	1	1	2	1	1	1	0		
Ethanol (ppm)	-26	-31	-31	-26	-28	-25	-27		
Ethylene (ppm)	15	33	55	116	79	15	2		
Formaldehyde (ppm)	1	2	1	1	2	2	1		
HCN (ppm)	40	44	56	44	28	19	12		
MeOH (ppm)	-1	-1	-1	-1	-1	0	0		
Methane (ppm)	669	1025	1314	1264	860	417	116		
NH ₃ (ppm)	0	0	0	0	0	0	0		
NO ₂ (ppm)	7	6	8	8	8	4	2		
N ₂ O (ppm)	-3	-4	-4	-4	-2	-2	0		
Phosgene (ppm)	1	1	1	1	1	1	0		
Propane (ppm)	-2	1	-1	-1	0	-1	0		
Propylene (ppm)	-1	-1	0	4	2	-1	0		
Toluene (ppm)	-33	-43	-74	-43	-27	-8	1		

Table 80: Gatling Coal – Axial Distance 97 cm.

Radial Dist. (cm)	10	20	g Coal – Ax 30	40	50	60	70
Tuorur 21sti (Ciri)		ving eight g		=		00	, ,
CO (ppm)	16838	24856	29883	27280	13410	4236	3778
CO ₂ (%)	17	16	15	16	17	17	17
H ₂ O (%)	5	5	11	11	10	10	9
H ₂ S (ppm)	134	249	693	801	280	70	45
HCl (ppm)	15	16	8	1	1	0	0
NO (ppm)	170	144	103	107	141	178	237
SO ₂ (ppm)	2763	2405	2344	2342	3374	4250	3532
SO ₃ (ppm)	64	61	48	54	58	81	70
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
$H_2(\%)$	0.55	0.94	1.25	1.19	0.40	0.07	0.08
O ₂ (%)	0.06	0.02`	0.01	0.00	0.05	0.29	0.63
TI	he following	g were addi	tional specie	es measured	l by the FT	IR	
Acetylene (ppm)	253	532	691	562	208	31	29
Aldehyde (ppm)	17	34	38	31	9	1	4
Dodecane (ppm)	1	2	3	2	0	1	1
Ethanol (ppm)	-31	-39	-25	-22	-22	-21	-25
Ethylene (ppm)	11	52	60	86	42	3	1
Formaldehyde (ppm)	6	1	1	1	1	1	1
HCN (ppm)	40	74	85	64	25	8	7
MeOH (ppm)	0	0	-2	-2	-1	-1	-1
Methane (ppm)	622	1331	1627	1372	606	77	54
NH ₃ (ppm)	0	0	1	4	4	2	1
NO ₂ (ppm)	2	5	10	8	6	2	0
N ₂ O (ppm)	-3	-4	-5	-5	-2	1	2
Phosgene (ppm)	1	1	1	1	1	0	0
Propane (ppm)	-2	-2	0	0	-1	0	0
Propylene (ppm)	-1	1	0	1	0	0	0
Toluene (ppm)	-38	-66	-32	-53	-31	1	-1

Table 81: Gatling Coal – Axial Distance 83 cm.

Radial Dist. (cm)	10	20	30	40	50	60	70		
radial Dist. (ciii)			gases were n			00	7.0		
CO (ppm)	25735	33539	37024	32014	11207	3866	7775		
CO ₂ (%)	16	14	14	14	17	17	18		
H ₂ O (%)	10	11	11	10	9	9	10		
H ₂ S (ppm)	417	527	833	661	6	-47	72		
HCl (ppm)	1	0	1	0	0	0	19		
NO (ppm)	174	139	103	134	212	225	185		
SO ₂ (ppm)	2873	2520	2132	2595	4403	4055	3483		
SO ₃ (ppm)	57	54	46	59	82	77	68		
The following four gases were measured by the Horiba PG-250									
NO (ppm)									
CO (ppm)									
CO ₂ (%)									
$O_2(\%)$									
	The follo	owing two g	gases were i	neasured by	the GC				
H ₂ (%)	0.80	1.48	1.59	1.24	0.25	0.02	0.25		
O ₂ (%)	0.04	0.02	0.01	0.04	0.12	1.12	0.12		
TI	he following	g were addi	tional speci	es measured	l by the FT	IR			
Acetylene (ppm)	347	529	758	550	134	35	60		
Aldehyde (ppm)	22	35	42	35	10	2	3		
Dodecane (ppm)	1	2	3	2	1	1	1		
Ethanol (ppm)	-37	-29	-25	-27	-33	-28	-17		
Ethylene (ppm)	13	36	64	79	13	2	2		
Formaldehyde (ppm)	2	2	2	2	1	1	1		
HCN (ppm)	51	69	83	58	18	9	12		
MeOH (ppm)	-2	-2	-3	-2	-1	0	-1		
Methane (ppm)	1037	1463	1811	1531	331	71	170		
NH ₃ (ppm)	3	22	34	36	30	22	4		
NO ₂ (ppm)	6	10	11	9	2	1	3		
N ₂ O (ppm)	-4	-5	-5	-4	-1	3	0		
Phosgene (ppm)	1	1	1	1	1	0	1		
Propane (ppm)	-2	-3	-2	-2	0	0	-1		
Propylene (ppm)	0	-1	0	0	0	0	-1		
Toluene (ppm)	-47	-57	-38	-61	-4	1	6		

Table 82: Gatling Coal – Axial Distance 243 cm.

		e 82: Gatting				ı	
Radial Dist. (cm)	10	20	30	40	50	60	70
	The follow	ving eight g	ases were r	neasured by	the FTIR		
CO (ppm)	366	229	185	152	141	108	73
CO ₂ (%)	16	16	14	13	13	13	13
H ₂ O (%)	8	8	7	7	7	7	8
H ₂ S (ppm)	-61	65	52	43	49	-85	-98
HCl (ppm)	5	4	3	2	3	4	6
NO (ppm)	106	103	112	123	109	111	97
SO ₂ (ppm)	3439	3228	2966	2794	2825	2794	2832
SO ₃ (ppm)	71	74	69	67	67	67	63
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$O_2(\%)$	1.25	2.15	3.40	4.23	4.04	4.03	3.85
Ti	he following	g were addi	tional speci-	es measured	by the FT	IR	
Acetylene (ppm)	3	2	-27	-26	-27	-27	-26
Aldehyde (ppm)	4	2	-1	0	3	1	1
Dodecane (ppm)	1	0	1	2	2	1	1
Ethanol (ppm)	-24	-19	-16	-20	-20	-17	-18
Ethylene (ppm)	0	0	0	0	0	0	0
Formaldehyde (ppm)	0	0	1	0	0	0	1
HCN (ppm)	1	1	1	1	0	0	0
MeOH (ppm)	-1	-1	-1	0	-1	-1	-1
Methane (ppm)	5	5	5	2	2	2	5
NH ₃ (ppm)	7	4	2	1	1	1	0
NO ₂ (ppm)	1	1	0	2	1	1	-1
N ₂ O (ppm)	8	10	11	11	14	15	10
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	0	0	0	0	0	0	0
Propylene (ppm)	0	0	0	0	0	0	1
Toluene (ppm)	6	10	-8	-8	-7	-9	-7

Table 83: Gatling Coal – Axial Distance 243 cm.

<u> </u>	Table 83: Gatling Coal – Axial Distance 243 cm.								
10	20	30	40	50	60	70			
The follow	ving eight g	gases were n	neasured by	the FTIR					
74	74	106	74	73	93	71			
15	15	15	14	14	15	14			
7	7	7	7	7	7	7			
59	59	52	26	36	97	58			
-2	1	5	6	6	6	7			
113	108	112	118	115	109	116			
2788	2823	2828	2650	2497	2711	2574			
54	60	56	53	46	50	52			
e following	four gases	were measu	red by the I	Horiba PG-2	250				
			-						
The follo	owing two g	gases were i	neasured by	y the GC					
0.00	0.00	0.00	0.00	0.00	0.00	0.00			
3.79	3.68	3.86	4.83	5.42	4.22	4.67			
ne following	g were addi	tional speci	es measured	by the FT	IR				
2	2	2	2	1	2	1			
2	7	4	5	4	5	2			
0	0	1	0	0	1	0			
-13	-16	-15	-16	-13	-15	-14			
0	0	0	0	0	0	0			
1	0	0	0	0	0	1			
0	0	0	0	0	0	0			
-2	-1	-1	-1	-1	-1	-1			
3	4	4	4	4	4	4			
0	-2	-3	-3	-3	-3	-3			
3	3	2	3	2	3	3			
12	12	9	10	11	13	12			
0	0	0	0	0	0	0			
1	0	1	1	1	0	1			
-1	-1	0	0	0	-1	0			
-6	-4	-3	5	7	0	4			
	The following 74 15 7 59 -2 113 2788 54 e following The following 2 2 0 -13 0 1 0 -2 3 0 3 12 0 1 -1	The following eight g 74 74 15 15 7 7 59 59 -2 1 113 108 2788 2823 54 60 e following four gases of the following were addited as following were addi	The following eight gases were respectively state of the following four gases were measured by the following four gases were measured by the following were additional specific control of	10 20 30 40 The following eight gases were measured by 74 74 106 74 15 15 15 14 7 7 7 7 7 7 7 7 7 7 7 7 59 59 52 26 26 22 1 5 6 6 113 108 112 118 2788 2823 2828 2650 54 60 56 53 53 6 6 6 53 6 6 6 53 6 6 6 53 6 6 6 53 6 6 60 56 53 6 6 6 53 6 6 6 53 6 6 6 50 53 8 6 6 53 8 6 6 50 53 8 6 6 50 9 7 7 7 7 <td>The following eight gases were measured by the FTIR 74</td> <td> The following eight gases were measured by the FTIR</td>	The following eight gases were measured by the FTIR 74	The following eight gases were measured by the FTIR			

Table 84: Gatling Coal – Axial Distance 63 cm.

Radial Dist. (cm)	10	20	g Coal – Ax 30	40	50	60	70
radia Dist. (em)			gases were n			00	70
CO (ppm)	14087	13645	54466	51700	10791	3871	2647
CO ₂ (%)	18	17	15	15	18	19	18
H ₂ O (%)	9	9	10	10	8	8	8
H ₂ S (ppm)	62	166	659	707	74	81	6
HCl (ppm)	11	8	17	5	0	-2	-3
NO (ppm)	276	361	163	163	269	209	235
SO ₂ (ppm)	3229	3249	2443	2636	4610	3601	3365
SO ₃ (ppm)	61	65	37	43	67	73	62
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.30	0.40	2.24	2.32	0.23	0.07	0.03
O ₂ (%)	0.77	1.62	0.02	0.02	0.34	0.92	1.59
Ti	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	112	284	1191	1270	70	22	8
Aldehyde (ppm)	9	20	62	68	9	4	2
Dodecane (ppm)	0	0	0	-1	0	0	0
Ethanol (ppm)	-16	-17	8	32	-22	-17	-20
Ethylene (ppm)	2	12	150	345	7	1	1
Formaldehyde (ppm)	1	4	4	5	2	1	1
HCN (ppm)	19	32	108	103	16	7	4
MeOH (ppm)	-1	0	-3	-4	-1	-1	-1
Methane (ppm)	260	466	2569	3253	138	40	18
NH ₃ (ppm)	-3	-3	-3	-2	-2	-3	-3
NO ₂ (ppm)	6	8	19	23	4	3	2
N ₂ O (ppm)	1	5	-4	-4	4	4	4
Phosgene (ppm)	1	1	3	4	1	1	1
Propane (ppm)	1	2	5	6	1	1	1
Propylene (ppm)	-1	-1	-2	2	-1	-1	0
Toluene (ppm)	10	-46	-25	7	36	15	10

Table 85: Gatling Coal – Axial Distance 230 cm.

Radial Dist. (cm)	10	20	30 30	40	50	60	70
Radiai Dist. (Cili)			gases were n			00	70
CO (mm)						246	207
CO (ppm)	1148	824	492	342	356	346	307
CO ₂ (%)	17	16	15	13	13	13	13
H ₂ O (%)	7	7	7	6	6	6	6
H ₂ S (ppm)	92	122	24	72	100	20	97
HCl (ppm)	-4	-4	-4	-4	-4	-4	-3
NO (ppm)	116	117	115	125	115	116	125
SO ₂ (ppm)	3293	3220	3031	2846	2770	2712	2583
SO ₃ (ppm)	64	65	61	67	61	57	54
The	e following	four gases	were measu	red by the I	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
H ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O ₂ (%)	2.32	2.15	2.94	3.94	4.18	4.42	4.57
	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	3	3	2	-26	-26	-26	-26
Aldehyde (ppm)	3	5	4	4	3	2	6
Dodecane (ppm)	1	0	0	0	0	1	0
Ethanol (ppm)	-14	-17	-14	-16	-14	-12	-16
Ethylene (ppm)	1	1	0	0	0	0	0
Formaldehyde (ppm)	1	0	0	0	0	0	0
HCN (ppm)	2	1	1	1	1	1	1
MeOH (ppm)	-1	0	0	0	0	0	0
Methane (ppm)	5	3	4	4	4	3	4
NH ₃ (ppm)	-3	-3	-3	-3	-3	-3	-3
NO ₂ (ppm)	4	5	3	4	2	3	5
N ₂ O (ppm)	8	7	8	9	12	12	12
Phosgene (ppm)	0	0	0	0	0	0	0
Propane (ppm)	1	1	0	1	0	1	1
Propylene (ppm)	4	3	2	2	2	2	2
Toluene (ppm)	6	9	12	-7	-8	-7	-5

Table 86: Gatling Coal – Axial Distance 83 cm.

Radial Dist. (cm)	10	20	g Coal – Ax 30	40	50	60	70
rtadiai Dist. (ciii)			gases were n			00	70
CO (ppm)	23141	34153	36695	24555	6994	5879	2265
CO ₂ (%)	17	16	15	16	18	17	19
H ₂ O (%)	9	9	10	9	8	8	9
H ₂ S (ppm)	423	699	809	159	27	12	57
HCl (ppm)	6	0	-2	-4	-6	-6	-6
NO (ppm)	163	140	121	183	220	193	205
SO ₂ (ppm)	2671	2354	2150	3062	3823	3423	3430
SO ₃ (ppm)	49	43	38	52	66	75	71
The	e following	four gases	were measu	red by the H	Horiba PG-2	250	
NO (ppm)							
CO (ppm)							
CO ₂ (%)							
$O_2(\%)$							
	The follo	owing two g	gases were i	neasured by	the GC		
$H_2(\%)$	0.73	1.27	1.74	0.74	0.09	0.04	0.04
O ₂ (%)	0.03	0.02	0.02	0.05	0.30	0.59	0.50
Ti	he following	g were addi	tional speci	es measured	by the FT	IR	
Acetylene (ppm)	133	356	750	315	39	11	6
Aldehyde (ppm)	11	25	47	22	4	2	4
Dodecane (ppm)	0	0	2	0	0	0	0
Ethanol (ppm)	-21	-32	-20	-36	-20	-15	-22
Ethylene (ppm)	4	17	49	35	5	3	1
Formaldehyde (ppm)	1	1	1	1	0	0	0
HCN (ppm)	25	48	81	36	11	7	4
MeOH (ppm)	0	0	-1	0	0	1	0
Methane (ppm)	449	1156	1784	904	79	104	10
NH ₃ (ppm)	-3	-3	-3	-3	-2	-3	-3
NO ₂ (ppm)	7	13	16	8	5	5	4
N ₂ O (ppm)	-3	-4	-5	-2	2	2	3
Phosgene (ppm)	1	2	2	1	1	2	0
Propane (ppm)	-3	-4	-3	-3	0	0	1
Propylene (ppm)	-2	-3	-4	-2	0	11	3
Toluene (ppm)	-30	-49	-42	-44	4	14	11

APPENDIX B: ORIGINAL ULTIMATE, PROXIMATE, AND ASH ANALYSES

The original coal analyses are all labeled except for the PRB-1 coal. This is the second coal analysis reported. For reference, the analyses appear in the following order:

- 1. Illinois #6-1 (2 pages)
- 2. PRB-1 (2 pages)
- 3. Beulah Zap (2 pages)
- 4. Mahoning (named Kensington on the analysis, 2 pages)
- 5. Indiana, Gibson (1 page)
- 6. Illinois #6-2 (1 page)
- 7. Gatling (2 pages)
- 8. Kentucky #11 (1 page)
- 9. Pittsburgh #8 (1 page)
- 10. PRB-2 (1 page)

Todd Reeder/Dr. Dale Tree BYU Mechanical Engineering Dept. 435 CTB Provo, UT 84602 Date: September 29, 2008 Request Number: 25929 Date Received: 9-19-08

Matrix: Coal

REPORT OF ANALYSIS

Lab Number	L5968		
Sample ID	Illinois #6 Puverized		
Proximate Analysis	As Received	Moisture Free	MAF Basis
Method: ASTM D-5142	wt%	wt%	wt%
Moisture	5.40	*****	*****
Ash	8.65	9.14	*****
Volatile Matter	35.68	37.72	41.51
Fixed Carbon	50.27	53.14	58.49
Total	100.00	100.00	100.00

Ultimate Analysis			
Method: ASTM D5142/5373			
Moisture	5.40	*****	*****
Hydrogen	3.74	3.95	4.35
Carbon	70.16	74.16	81.62
Nitrogen	1.04	1.10	1.21
Sulfur	2.69	2.84	3.13
Oxygen	8.32	8.81	9.69
Ash	8.65	9.14	*****
Total	100.00	100.00	100.00

Heating Value, Btu/lb			
Method: ASTM D-5865	12,575	13,293	14,630

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

Method: ASTM D-4326 Modified (XRF)

Chloride, wt% dry basis	0.3892

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Andrew Mackrory BYU Mechanical Engineering Dept. 435 CTB Provo, UT 84602 Date: September 29, 2008 Request Number: 25929 Date Received: 9-19-08

Matrix: Coal Lab Number: 5968 Sample ID: Illinois #6 Puverized

COAL ASH ANALYSIS

wt% as Ignited Basis

Method: ASTM D-4326 (XRF)

	Melliou. ASTM D-4320 (AINT)
Silicon Dioxide, % as SiO2	48.12
Aluminum Oxide, % as Al2O3	19.65
Iron Oxide, % as Fe2O3	17.64
Calcium Oxide, % as CaO	4.28
Magnesium Oxide, % as MgO	0.95
Sodium Oxide, % as Na2O	1.08
Potassium Oxide, % as K2O	2.59
Titanium Dioxide, % as TiO2	1.05
Manganese Dioxide, % as MnO2	0.07
Phosphorus Pentoxide, % as P2O5	0.08
Strontium Oxide, % as SrO	0.03
Barium Oxide, % as BaO	0.05
Sulfur Trioxide, % as SO3	4.41

Alkalies as Na20	2.79
Base to Acid Ratio	0.39
Silic Ratio	0.68
T250, ⁰ F	2429

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070

Wallaramie@wal-lab.com

Todd Reeder/Dr. Dale Tree BYU Mechanical Engineering Dept. 435 CTB

Provo, UT 84602

Date: February 5, 2009 Request Number: 26346 Date Received: 1-27-09

Matrix: Coal

REPORT OF ANALYSIS

Lab Number	L7595		
Sample ID	Puverized Coal		
Proximate Analysis	As Received	Moisture Free	MAF Basis
Method: ASTM D-5142	wt%	wt%	wt%
Moisture	24.59	*****	*****
Ash	5.14	6.82	*****
Volatile Matter	37.00	49.07	52.66
Fixed Carbon	33.27	44.11	47.34
Total	100.00	100.00	100.00

Ultimate Analysis			
Method: ASTM D5142/5373			
Moisture	24.59	*****	*****
Hydrogen	2.55	3.38	3.63
Carbon	54.75	72.60	77.91
Nitrogen	0.83	1.10	1.18
Sulfur	0.25	0.33	0.35
Oxygen	11.89	15.77	16.93
Ash	5.14	6.82	*****
Total	100.00	100.00	100.00

Heating Value, Btu/lb			
Method: ASTM D-5865	9,156	12,142	13,031

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

Method: ASTM D-4326 Modified (XRF)

Chloride, wt% dry basis	0.0012

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Andrew Mackrory BYU Mechanical Engineering Dept. 435 CTB Provo, UT 84602 Date: February 5, 2009 Request Number: 26346 Date Received: 1-27-09

Matrix: Coal

Lab Number: L7595

Sample ID:Puverized Coal

COAL ASH ANALYSIS

wt% as Ignited Basis

Method: ASTM D-4326 (XRF)

	Melilou. AS I M D-4320 (AIXI)
Silicon Dioxide, % as SiO2	36.04
Aluminum Oxide, % as Al2O3	16.84
Iron Oxide, % as Fe2O3	5.86
Calcium Oxide, % as CaO	21.61
Magnesium Oxide, % as MgO	5.06
Sodium Oxide, % as Na2O	1.69
Potassium Oxide, % as K2O	0.50
Titanium Dioxide, % as TiO2	1.32
Manganese Dioxide, % as MnO2	0.02
Phosphorus Pentoxide, % as P2O5	1.00
Strontium Oxide, % as SrO	0.35
Barium Oxide, % as BaO	0.62
Sulfur Trioxide, % as SO3	9.09

Alkalies as Na20	2.02
Base to Acid Ratio	0.64
Silic Ratio	0.53
T250, ⁰ F	2228

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070

Wallaramie@wal-lab.com

Todd Reeder/Dr. Dale Tree BYU Mechanical Engineering Dept. 435 CTB Provo, UT 84602 Date: April 16, 2009 Request Number: 26560 Date Received: 4-2-09

Matrix: Coal

REPORT OF ANALYSIS

L8440		
Bevlah Pulverized c	oal	
As Received	Moisture Free wt%	MAF Basis
wt%		wt%
27.33	*****	*****
8.66	11.92	*****
33.77	46.47	52.76
30.24	41.61	47.24
100.00	100.00	100.00
	As Received wt% 27.33 8.66 33.77 30.24	Bevlah Pulverized coal As Received wt% Moisture Free wt% 27.33 ******* 8.66 11.92 33.77 46.47 30.24 41.61

Ultimate Analysis			
Method: ASTM D5142/5373			
Moisture	27.33	****	****
Hydrogen	2.03	2.79	3.17
Carbon	46.56	64.07	72.74
Nitrogen	0.86	1.18	1.34
Sulfur	0.67	0.92	1.04
Oxygen	13.89	19.12	21.71
Ash	8.66	11.92	*****
Total	100.00	100.00	100.00

Heating Value, Btu/lb			
Method: ASTM D-5865	7,792	10,722	12,173

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

Chloride, wt% dry basis	0.001

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING

ANALYTICAL

LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Todd Reeder/Dr. Dale Tree BYU Mechanical Engineering Dept. 435 CTB Provo, UT 84602 Date: April 16, 2009 Request Number: 26560 Date Received: 4-2-09

Matrix: Coal

Lab Number: L8440 Sample ID: Bevlah

Pulverized coal

COAL ASH ANALYSIS

wt% Ignited Basis

Method: ASTM D-4326 (XRF)

	Method: ASTM D-4326 (XRF)
Silicon Dioxide, % as SiO2	32.25
Aluminum Oxide, % as Al2O3	12.23
Iron Oxide, % as Fe2O3	7.45
Calcium Oxide, % as CaO	19.91
Magnesium Oxide, % as MgO	6.47
Sodium Oxide, % as Na2O	3.29
Potassium Oxide, % as K2O	0.82
Titanium Dioxide, % as TiO2	0.65
Manganese Dioxide, % as MnO2	0.08
Phosphorus Pentoxide, % as P2O5	0.27
Strontium Oxide, % as SrO	0.64
Barium Oxide, % as BaO	0.73
Sulfur Trioxide, % as SO3	15.21
Alledias as NaOO	2.02

Alkalies as Na20	3.83
Base to Acid Ratio	0.84
Silic Ratio	0.49
T250, ⁰ F	2130

MLE:tab

Monte L. Ellis Laboratory Manager

Wyoming Analytical Laboratories, inc.

1660 Harrison St. Laramie, WY 82070

Wallaramie@wal-lab.com

Date: September 22, 2009 Request Number: 27145 Date Received: 9-8-09

Matrix: Coal

REPORT OF ANALYSIS

Lab Number	M0265		
Sample ID	Kensington Coal		
Proximate Analysis	As Received	Moisture Free wt%	MAF Basis
Method: ASTM D-5142	wt%		wt%
Moisture	2.22	*****	*****
Ash	9.92	10.15	*****
Volatile Matter	40.79	41.72	46.43
Fixed Carbon	47.07	48.13	53.57
Total	100.00	100.00	100.00
Ultimate Analysis			

Ultimate Analysis			
Method: ASTM D5142/5373			
Moisture	2.22	*****	****
Hydrogen	4.18	4.27	4.75
Carbon	74.67	76.37	85.00
Nitrogen	0.93	0.95	1.06
Sulfur	1.96	2.00	2.23
Oxygen	6.12	6.26	6.96
Ash	9.92	10.15	****
Total	100.00	100.00	100.00

Heating Value, Btu/lb			
Method: ASTM D-5865	13,404	13,708	15,257

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

Chloride, wt% dry basis	0.1989

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING

ANALYTICAL

LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Date: September 22, 2009 Request Number: 27145 Date Received: 9-8-09

Matrix: Coal

Lab Number:M0265

Sample ID: Kensington Coal

COAL ASH ANALYSIS

wt% Ignited Basis

Method: ASTM D-4326 (XRF)

	Method: ASTM D-4326 (XRF)
Silicon Dioxide, % as SiO2	42.65
Aluminum Oxide, % as Al2O3	29.07
Iron Oxide, % as Fe2O3	20.45
Calcium Oxide, % as CaO	1.76
Magnesium Oxide, % as MgO	0.52
Sodium Oxide, % as Na2O	0.34
Potassium Oxide, % as K2O	1.61
Titanium Dioxide, % as TiO2	1.41
Manganese Dioxide, % as MnO2	0.00
Phosphorus Pentoxide, % as P2O5	0.76
Strontium Oxide, % as SrO	0.12
Barium Oxide, % as BaO	0.07
Sulfur Trioxide, % as SO3	1.24
Alkalies as Na20	1.40

Alkalies as Na20	1.40
Base to Acid Ratio	0.34
Silic Ratio	0.65
T250, ⁰ F	2497

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 8207 Wallaramie@wal-lab.com

Dr. Dale Tree BYU Mechanical Engineering 0 435 CTB Provo, UT 84602 Request: 27400

Analytical Report

Lab ID : M1017 Client Id Indiana #6 Gibson Coal Date: November 24, 2009

Proximate / Ultimate	As Rec.	Moisture Free	<u>MAF</u>
Total Moisture Wt%:	7.25		
Ash Wt%:	7.20	7.76	
Volatile Wt%:	30.87	33.28	36.08
Fixed	54.68	58.95	63.92
Sulfur Wt%:	1.14	1.23	1.33
Carbon Wt%:	69.48	74.91	81.22
Hydrogen	4.02	4.33	4.70
Nitrogen Wt%:	1.36	1.47	1.59
Oxygen Wt%:	9.55	10.30	11.16
Heating Value Btu/Lbs	12400	13369	14494

Hydrogen and Oxygen values DO NOT include free moisture from sample..

Coal Ash Analysis, wt.% Ignited

Silicon Dioxide, as SiO2 wt %	55.14	Chloride, mg/kg	2121
Aluminum Oxide, asAl2O3 wt %	21.10		
Iron Oxide, as Fe2O3 wt %	12.93		
Calcium Oxide, asCaO wt %	2.48		
Magnesium Oxide, asMgo wt %	0.86		
Sodium Oxide, asNa2O wt %	1.25		
Potassium Oxide, asK2O wt %	2.40		
Titanium Dioxide, as TiO2 wt %	1.30		
Manganese Dioxide, as MnO2 wt %	0.03		
Phosphorus Pentoxide, as P2O5	0.35		
Strontium Oxide, as SrO wt %	0.08		
Barium Oxide, as BaO wt %	0.06		
Sulfur Trioxide, as SO3 wt %	2.02		
Alkalies as Na2O	2.83		
Base/Acid	0.26		
Silica ratio	0.77		
T250 F	2624		

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 8207 Wallaramie@wal-lab.com

Date: December 21, 2009 Request Number: 27539 Date Received: 12-11-09

Matrix: Coal

REPORT OF ANALYSIS

Lab Number: M1482 Sample ID: Illinois Galatia

	As	Moisture	MAF
Proximate Analysis:	Received	Free	Basis
Moisture, wt%	3.68	*****	*****
Ash, wt%	10.45	10.85	*****
Volatile Matter, wt%	33.70	34.99	39.25
Fixed Carbon, wt%	52.17	54.16	60.75
Total	100.00	100.00	100.00

Ultimate Analysis:			
Moisture, wt%	3.68	*****	*****
Hydrogen, wt%	3.14	3.26	3.66
Carbon, wt%	67.66	70.25	78.80
Nitrogen, wt%	0.95	0.99	1.11
Sulfur, wt%	2.96	3.07	3.44
Oxygen, wt%	11.16	11.58	12.99
Ash, wt%	10.45	10.85	*****
Total	100.00	100.00	100.00

12,464

Coal Ash Analysis,	
wt% Ignited Basis	
Silicon Dioxide, % as SiO2	49.13
Aluminum Oxide, % as Al2O3	18.55
Iron Oxide, % as Fe2O3	16.38
Calcium Oxide, % as CaO	5.49
Magnesium Oxide, % as MgO	1.07
Sodium Oxide, % as Na2O	0.66
Potassium Oxide, % as K2O	2.34
Titanium Dioxide, % as TiO2	0.93
Manganese Dioxide, % as MnO2	0.04
Phosphorus Pentoxide, % as P2O5	0.09
Strontium Oxide, % as SrO	0.03
Barium Oxide, % as BaO	0.05
Sulfur Trioxide, % as SO3	5.24

Alkalies as Na20	2.20
Base to Acid Ratio	0.38
Silic Ratio	0.68
T250, ^O F	2439

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

12,940

Monte L. Ellis Laboratory Manager

Heating Value, Btu/lb

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

14,515

(307) 742-7995

Fax: (307) 721-8956

Date: September 22, 2009 Request Number: 27145 Date Received: 9-8-09

Matrix: Coal

REPORT OF ANALYSIS

Lab Number	M0264		
Sample ID	Gatling Coal		
Proximate Analysis	As Received	Moisture Free wt%	MAF Basis
Method: ASTM D-5142	wt%		wt%
Moisture	3.77	*****	*****
Ash	11.34	11.78	*****
Volatile Matter	40.73	42.33	47.98
Fixed Carbon	44.16	45.89	52.02
Total	100.00	100.00	100.00
Ultimate Analysis			

Ultimate Analysis			
Method: ASTM D5142/5373			
Moisture	3.77	*****	****
Hydrogen	4.07	4.23	4.79
Carbon	67.11	69.74	79.05
Nitrogen	0.94	0.98	1.11
Sulfur	4.31	4.48	5.08
Oxygen	8.46	8.79	9.97
Ash	11.34	11.78	****
Total	100.00	100.00	100.00

Heating Value, Btu/lb			
Method: ASTM D-5865	12,191	12,669	14,361

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

Chloride, wt% dry basis	0.0387

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING

ANALYTICAL

LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Date: September 22, 2009 Request Number: 27145 Date Received: 9-8-09

Matrix: Coal

Lab Number:M0264 Sample ID: Gatling Coal

COAL ASH ANALYSIS

wt% Ignited Basis

Method: ASTM D-4326 (XRF)

	Method. AS HVI D-4326 (ARF)
Silicon Dioxide, % as SiO2	40.35
Aluminum Oxide, % as Al2O3	22.56
Iron Oxide, % as Fe2O3	28.33
Calcium Oxide, % as CaO	2.62
Magnesium Oxide, % as MgO	0.69
Sodium Oxide, % as Na2O	0.41
Potassium Oxide, % as K2O	1.28
Titanium Dioxide, % as TiO2	1.04
Manganese Dioxide, % as MnO2	0.05
Phosphorus Pentoxide, % as P2O5	0.22
Strontium Oxide, % as SrO	0.09
Barium Oxide, % as BaO	0.11
Sulfur Trioxide, % as SO3	2.25

Alkalies as Na20	1.25
Base to Acid Ratio	0.52
Silic Ratio	0.56
T250, ⁰ F	2295

MLE:tab

Monte L. Ellis Laboratory Manager

WYOMING ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070

Wallaramie@wal-lab.com

Dr. Dale Tree BYU Mechanical Engineering 435 CTB Provo, UT 84602

Analytical Report

Lab ID : M1019 Client Id: Kentucky #11 Warrior Coal Date: November 24, 2009

Proximate / Ultimate	As Rec.	Moisture Free	MAF
Total Moisture Wt%:	3.39		
Ash Wt%:	8.46	8.76	
Volatile Wt%:	36.97	38.27	41.94
Fixed	51.18	52.98	58.06
Sulfur Wt%:	3.64	3.77	4.13
Carbon Wt%:	70.89	73.38	80.42
Hydrogen	4.34	4.49	4.92
Nitrogen Wt%:	1.23	1.27	1.40
Oxygen Wt%:	8.05	8.33	9.13
Heating Value Btu/Lbs	12905	13358	14640

Hydrogen and Oxygen values DO NOT include free moisture from sample.

Coal Ash Analysis, wt.% Ignited

Silicon Dioxide, as SiO2 wt %	41.70	Chloride, mg/kg	2057
Silicon Dioxide, as SIO2 wt 70	41.70	Chloride, mg/kg	2001
Aluminum Oxide, asAl2O3 wt %	18.40		
Iron Oxide, as Fe2O3 wt %	26.09		
Calcium Oxide, asCaO wt %	4.80		
Magnesium Oxide, asMgo wt %	0.90		
Sodium Oxide, asNa2O wt %	0.53		
Potassium Oxide, asK2O wt %	2.43		
Titanium Dioxide, as TiO2 wt %	0.96		
Manganese Dioxide, as MnO2 wt %	0.03		
Phosphorus Pentoxide, as P2O5	0.31		
Strontium Oxide, as SrO wt %	0.05		
Barium Oxide, as BaO wt %	0.18		
Sulfur Trioxide, as SO3 wt %	3.62		
Alkalies as Na2O	2.13		
Base/Acid	0.57		
Silica ratio	0.57		
T250 F	2263		
			Mo

Monte L. Ellis Laboratory Manager

Request: 27400

Wyoming Analytical Laboratories, inc.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

Dr. Dale Tree BYU Mechanical Engineering 435 CTB Provo, UT 84602

Analytical Report

Lab ID : M1018 Client Id: Pittsburg #8 Coal Date: November 24, 2009

Proximate / Ultimate	As Rec.	Moisture Free	MAF
Total Moisture Wt%:	1.05		
Ash Wt%:	10.45	10.56	
Volatile Wt%:	18.61	18.81	21.03
Fixed	69.89	70.63	78.97
Sulfur Wt%:	1.03	1.04	1.16
Carbon Wt%:	77.37	78.19	87.42
Hydrogen	3.86	3.90	4.36
Nitrogen Wt%:	1.44	1.46	1.63
Oxygen Wt%:	4.80	4.85	5.42
Heating Value Btu/Lbs	13715	13861	15497

Hydrogen and Oxygen values DO NOT include free moisture from sample.

Coal Ash Analysis, wt.% Ignited

Silicon Dioxide, as SiO2 wt %	56.77	Chloride, mg/kg	45
Aluminum Oxide, asAl2O3 wt %	29.28		
Iron Oxide, as Fe2O3 wt %	6.63		
Calcium Oxide, asCaO wt %	0.90		
Magnesium Oxide, asMgo wt %	0.56		
Sodium Oxide, asNa2O wt %	0.65		
Potassium Oxide, asK2O wt %	2.30		
Titanium Dioxide, as TiO2 wt %	1.53		
Manganese Dioxide, as MnO2 wt %	0.05		
Phosphorus Pentoxide, as P2O5	0.56		
Strontium Oxide, as SrO wt %	0.12		
Barium Oxide, as BaO wt %	0.12		
Sulfur Trioxide, as SO3 wt %	0.53		
Alkalies as Na2O	2.17		
Base/Acid	0.13		
Silica ratio	0.88		
T250 F	> 2900		

Wyoming Analytical Laboratories, inc.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

(307) 742-7995 Fax: (307) 721-8956

Request: 27400

Date: December 21, 2009 Request Number: 27539 Date Received: 12-11-09

Matrix: Coal

REPORT OF ANALYSIS

MAF

Lab Number: M1483

Heating Value, Btu/lb

Sample ID: PBR Black Thunder

Proximate Analysis:	Received	Free	Basis
Moisture, wt%	21.23	*****	*****
Ash, wt%	5.53	7.02	*****
Volatile Matter, wt%	33.76	42.86	46.10
Fixed Carbon, wt%	39.48	50.12	53.90
Total	100.00	100.00	100.00
Ultimate Analysis: Moisture, wt%	21.23	*****	*****
I II d'anne de la Anne Inne d'a	\neg		
Hydrogen, wt%	2.06	2.62	2.82
Carbon, wt%	54.39	69.05	74.26
Nitrogen, wt%	0.86	1.09	1.17
Sulfur, wt%	0.26	0.33	0.35
Oxygen, wt%	15.67	19.89	21.40
Ash, wt%	5.53	7.02	*****
Total	100.00	100.00	100.00

9,479

As

Coal Ash Analysis,	
wt% Ignited Basis	
Silicon Dioxide, % as SiO2	37.42
Aluminum Oxide, % as Al2O3	17.18
Iron Oxide, % as Fe2O3	5.50
Calcium Oxide, % as CaO	17.41
Magnesium Oxide, % as MgO	3.94
Sodium Oxide, % as Na2O	1.08
Potassium Oxide, % as K2O	0.57
Titanium Dioxide, % as TiO2	1.20
Manganese Dioxide, % as MnO2	0.02
Phosphorus Pentoxide, % as P2O5	0.54
Strontium Oxide, % as SrO	0.25
Barium Oxide, % as BaO	0.43
Sulfur Trioxide, % as SO3	14.46

Alkalies as Na20	1.46
Base to Acid Ratio	0.51
Silic Ratio	0.58
T250, ^O F	2302

Hydrogen and Oxygen values reported do not include hydrogen and oxygen in the free moisture associated with the sample.

12,034

Moisture

Chloride, wt% di	y basis	0.001
------------------	---------	-------

Monte L. Ellis Laboratory Manager

ANALYTICAL LABORATORIES, INC.

1660 Harrison St. Laramie, WY 82070 Wallaramie@wal-lab.com

12,943

(307) 742-7995

Fax: (307) 721-8956

APPENDIX C: DEPOSITION SLEEVE MANUFACTURING

C.1 Ordering Parts

The first step to making sleeves is to order the material. Previously I have ordered the stainless steel tubing from onlinemetals.com. I have ordered 3 different sizes of metal tubing depending on the temperature ranges I wanted. If I wanted the sleeves to be directly on the water cooled probe I ordered: 1" OD X 0.065" Wall X 0.87" ID stainless steel 304/304L seamless round tube. If I wanted the sleeves to rest on the 1.12" OD X 0.874" ID turned down spacers, than I ordered: 1.25" OD X 0.065" Wall X 1.12" ID stainless steel 304/304L seamless round tube. If I wanted the sleeves to rest on 1.25" OD X .874" ID spacers than I ordered: 1.375"OD X 0.065" wall 304/304L stainless steel seamless round tube. To order sleeve material for the air cooled probe, again I used onlinemetals.com and ordered: 0.625" OD X 0.065" Wall 304/304L stainless steel seamless round tube.

For all other equipment needed to assemble both probes I have been ordering from McMaster-Carr (www.mcmaster.com). I order two different size hose clamps (part #5011T241 and part #5011T171), one for the water cooled probe and one for the air cooled probe. I also order stainless steel wire part #9495K82.

To order thermocouples I have gone through omega.com. I order 3 different sizes for the 1/3, 1/2, and 2/3 positions on the probes. The part numbers are: KMQXL-040G-36, KMQXL-040G-40, and KMQXL-040G-44.

C.2 Manufacturing Sleeves

C.2.1 Slotting

For 3 of the 3 inch pieces a slot needs to be cut to provide a place for the thermocouple to sit level with the outside diameter. To do this first ask Ken for his slotting tool. Place it in the mill with a 3/4" collate. Use 2 V-blocks to insure the metal stays stationary on the mill. Use the low speed gear at 60 and insert the slotting tool into the metal 0.038". Than using conventional cutting techniques, cut the slot. After one pass has been made, repeat this same process but move the metal in the z direction a ¼ turn. This will guarantee that the thermocouple will fit in the slot (the thermocouple's outside diameter is thicker than the thickness of the slotting tool). After both passes are completed there will be a small burr at the end of the slot so just grind it off with a grinder. Next cut these 3, 3 inch pieces in half.

C.2.2 Chop Saw

I have been using Ken's shop to do all of the manufacturing. I start by using the chop saw and measure 3 inches, make a mark, and then line the blade up just past that mark and cut. Repeat this 6 times for each probe. Once you have the 3 inch sections cut, use the grinder to grind the edges to make the ends nice and clean. I do this by placing the end of a 3 inch piece up against the grinder and spin it around until the pieces start falling off. I then continue to grind until the inside of the end is soft enough to use a de-burring tool and clean out the inside.

C.2.3 Band Saw

Now that the 3 inch pieces are cleaned up I switch out the band saw blade (to cut stainless steel) to cut the 3 inch pieces into 3 inch halves. If you have never changed the band saw blade,

you MUST ask Ken for help. He is happy to give it and, after watching you do it a couple times, he will trust you enough that you can do it on your own. If you ruin his tools, however, he will NOT be happy. Going very slow I set the band saw to low gear and about 100 as the saw speed. Lining the guide up that is provided I cut the 3 inch pieces exactly in half. Using 2 pieces of wood (one to push through the saw and one to keep the metal tube butted up against the guide) I gently push the sleeves through the blade. This should take about 5-8 minutes per piece. GO SLOW! Make sure you cut the slotted sleeves such that the slot is in the middle of a sleeve half. In other words, cut 90 degrees off from the slot cut so that when the sleeve is sitting on the probe, the slot is centered on top.

C.2.4 Hand filing

I now have all of the 3 inch pieces cut in half and there are small burrs on the inside and outside edges of the half pieces. To remove these burrs, use a pair of vice grips and a hand file and hold onto the metal with the vice grips and file the burrs down. This takes time and may not be the fastest way but it will insure a smooth finish and it is important to have a smooth finish so the metal sits flush onto the probes (heat transfer problems).

C.2.5 Silver Soldering

Ken now assists in silver soldering the thermocouples into the slots. Using the three different size thermocouples (1/3, 1/2, 2/3) place one of each kind in a slot. After they are soldered I clean the flux off by running them under warm water and scrubbing them gentle. It would be helpful if you learned how to silver solder so we don't have to wait for Ken to get around to it.

C.3 Probe Assembly

Now that everything is manufactured and all parts have been shipped probe assembly can begin. It is important to place the sleeves in the correct position in the boiler. The boiler is 30 inches inside diameter. First slide all the hose clamps (you need 9 of them) onto the probe. Than measure the placement of the 2/3 sleeves, you should have 2 inches in-between each set of sleeves. Clamp the sleeves in place. Run the thermocouples along the side of each set of sleeves being mindful not to pinch the thermocouples. After all three sets of sleeves are placed and the thermocouples are run use the stainless steel wire to keep the thermocouples tight against the probe. Wrap the wire around the thermocouples, making sure they don't cross over each other, from the 1/3 set to the end where the door is attached. Now mount the door on the end of the probe based upon your measurements. The door should be placed at 41.25".

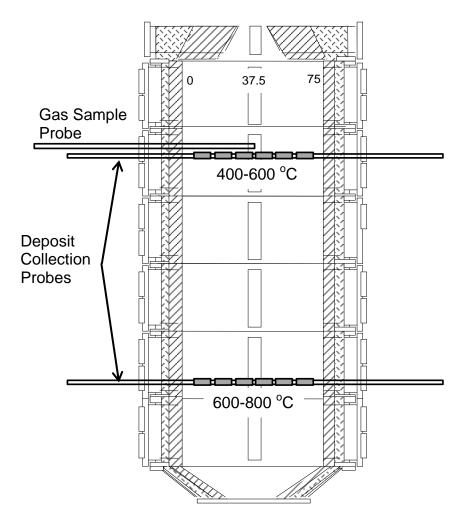


Figure 42: Location of Deposition Sleeves in the BFR.

APPENDIX D: LOCAL STOICHIOMETRIC RATIO DERIVATION

To calculate the local stoichiometric ratio at each sampling location, the stoichiometric ratio is first defined as

$$SR = \frac{\left(\frac{m_{air}}{m_f}\right)_{act}}{\left(\frac{m_{air}}{m_f}\right)_{stoich}}$$
(12)

where m is mass, f is fuel, act is the measured, or actual, mass flows, and stoich is the stoichiometric amounts of air and fuel. Rearranging the terms in Equation 12, we get

$$\left(\frac{m_{air}}{m_f}\right)_{act} = SR\left(\frac{m_{air}}{m_f}\right)_{stoich}.$$
 (13)

Now we introduce the mixture fraction, f, defined as the mass of the fuel divided by the total mass. Expressed mathematically,

$$f = \frac{m_f}{m_f + m_{air}}. ag{14}$$

Subbing Equation (13) into Equation (14),

$$f = \frac{1}{1 + SR\left(\frac{m_{air}}{m_f}\right)_{stoich}}.$$
(15)

Since f is defined as the mass of the fuel over the total mass, it can be rewritten as

$$f = \frac{m_f}{m_{tot}}. ag{16}$$

We now introduce three more equations that will substitute together to rewrite Equation (16):

$$y_c = \frac{m_c}{m_f} \Rightarrow m_f = \frac{m_c}{y_c},\tag{17}$$

$$MW_c = \frac{m_c}{N_c} \Rightarrow m_c = N_c MW_c, \tag{18}$$

and

$$N_c = \sum X_i C_i N_{tot} \tag{19}$$

where y is the mass fraction, subscript c is 'carbon,' N is number of moles, and MW is the molecular weight. X is the mole fraction, subscript i is for the ith gas specie, C is the number of carbon atoms in the ith specie, and subscript 'tot' stands for 'total.' Substituting (19) into (18), (18) into (17), and (17) into (16), Equation (16) can be rewritten as

$$f = \frac{N_{tot}MW_c \sum X_i C_i}{y_c m_{tot}}$$
 (20)

but

$$\frac{N_{tot}}{m_{tot}} = \frac{1}{MW_{mix}} \tag{21}$$

and Equation (20) can be rewritten as

$$f = \frac{MW_c \sum X_i C_i}{Y_c MW_{mix}}. (22)$$

Equating (22) with (15) and rearranging, we get our final result:

$$SR = \frac{\left[\frac{Y_c M W_{mix}}{M W_c \sum X_i C_i} - 1\right]}{\left(\frac{m_{air}}{m_f}\right)_{stoich}}.$$
(23)