
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2010-07-13 

Influence of Material and Geometric Parameters on the Flow-Influence of Material and Geometric Parameters on the Flow-

Induced Vibration of Vocal Folds Models Induced Vibration of Vocal Folds Models 

Brian A. Pickup 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Mechanical Engineering Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Pickup, Brian A., "Influence of Material and Geometric Parameters on the Flow-Induced Vibration of Vocal 
Folds Models" (2010). Theses and Dissertations. 2221. 
https://scholarsarchive.byu.edu/etd/2221 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2221?utm_source=scholarsarchive.byu.edu%2Fetd%2F2221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Influence of Material and Geometric Parameters

on the Flow-Induced Vibration of

Vocal Fold Models

Brian A. Pickup

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Scott L. Thomson, Chair
Steven E. Gorrell

Julie C. Vanderhoff

Department of Mechanical Engineering

Brigham Young University

August 2010

Copyright © 2010 Brian A. Pickup

All Rights Reserved





ABSTRACT

Influence of Material and Geometric Parameters

on the Flow-Induced Vibration of

Vocal Fold Models

Brian A. Pickup

Department of Mechanical Engineering

Master of Science

The vocal folds are an essential component of human speech production and communi-
cation. Advancements in voice research allow for improved voice disorder treatments. Since in
vivo analysis of vocal fold function is limited, models have been developed to simulate vocal fold
motion. In this research, synthetic and computational vocal fold models were used to investigate
various aspects of vocal fold vibratory characteristics. A series of tests were performed to quantify
the effect of varying material and geometric parameters on the models’ flow-induced responses.
First, the influence of asymmetric vocal fold stiffness on voice production was evaluated using
life-sized, self-oscillating vocal fold models with idealized vocal fold geometry. Asymmetry sig-
nificantly influenced glottal jet flow, glottal area, and vibration frequency. Second, flow-induced
responses of simplified and MRI-based synthetic models were compared. The MRI-based models
showed remarkable improvements, including less vertical motion, alternating convergent-divergent
glottal profile patterns, and mucosal wave-like movement. Third, a simplified model was paramet-
rically investigated via computational modeling techniques to determine which geometric features
influenced model motion. This parametric study led to identification and ranking of key geometric
parameters based on their effects on various measures of vocal fold motion (e.g., mucosal wave-
like movement). Incorporation of the results of these studies into the definition of future models
could lead to models with more life-like motion.

Keywords: vocal folds, vocal fold modeling, asymmetry, mucosal wave, high-speed imaging, par-
ticle image velocimetry, PIV, MRI, parameterization, videokymography, VKG, Brian A. Pickup
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CHAPTER 1. INTRODUCTION

For most people, the voice plays an integral role in affecting their quality of life. In particu-

lar, several careers critically depend on the ability to use one’s voice (i.e., singers, actors, coaches,

teachers, etc.) Unfortunately, according to the National Institute on Deafness and other Commu-

nication Disorders (NIDCD), millions of Americans suffer from voice disorders [1]. Diseased or

damaged vocal folds can have a life-long adverse effect on an individual’s voice. While treatments

are good relative to the complexity of the voice production system, they are nonetheless limited in

part by the underlying physics as well as the complex system itself. In order to help advance the

state-of-the-art in voice disorder treatment, engineering principles are applied to increase knowl-

edge of voice production characteristics with the overall goal of improving prevention, diagnosis,

and surgical and other clinical interventions, thereby improving the quality of life for individuals

who suffer from voice disorders. In particular, this thesis aims to advance the knowledge of voice

production through an investigation of material and geometric properties commonly used to define

vocal fold models.

1.1 Background and motivation

1.1.1 Anatomy

A basic overview of the relevant anatomical features within the vocal tract is given. An

illustration of the larynx and vocal tract is provided in Fig. 1.1. The larynx connects the lungs

1



Figure 1.1: Sagittal cross-section depicting the larynx anatomy (adapted from Gray’s Anatomy of
the Human Body, images public domain, www.bartleby.com).

and vocal tract and is situated in the anterior portion of the neck, in front of the esophagus. The

vocal folds are situated within the larynx, behind the laryngeal prominence of the thyroid cartilage

(commonly referred to as the Adam’s apple). The air passage between the vocal folds is referred

to as the glottis (see Fig. 1.2). Voice production begins with the vocal folds being drawn close

2



Figure 1.2: Coronal cross-section of the human larynx. Vocal fold layers (left) and glottal, supra-
glottal, and subglottal areas (right) are denoted (adapted from Gray’s Anatomy of the Human Body,
images public domain, www.bartleby.com).

together. Air pressure from the lungs builds, the vocal folds are forced open and air passes through

the glottis. When the lung pressure reaches a sufficiently high value (termed onset pressure) the

vocal folds undergo self-sustained oscillations. These oscillations will generally continue until the

pressure is decreased to the point where the folds cease vibrating (termed offset pressure). These

oscillations cause pressure differences inside the larynx which propagate up through the vocal tract

and out of the mouth, producing sound.
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The vocal folds are comprised of several tissue layers (see Fig. 1.2). The muscle layer

(thyrovocalis muscle) is the deepest and largest layer. The muscle fibers are activated during speech

to adjust the tension of the folds and to some extent, the pitch of sound produced. The lamina

propria layer surrounds the muscle layer and is comprised of three portions, each differing only

slightly in material property and thickness. The most superficial layer of the vocal folds is the

epithelium, which is a thin, stratified squamous cell layer that aids in protecting the vocal folds

during vibration.

1.1.2 Previous voice research

Through research, a better understanding of voice production mechanics is possible. Areas

of research interest include aerodynamic energy transfer, asymmetric vibration, glottal jet flow,

intraglottal pressure distributions, mucosal wave quantification, laryngeal geometric definitions,

airway surface layer adhesion, tissue properties, abnormal movement, and acoustics. Ideally, re-

searchers and clinicians would acquire measurements in vivo (situated inside the body). While this

is possible for views from a superior perspective, complete laryngeal exploration is not feasible

due to the embedded position of the vocal folds. Models for analyzing flow and tissue dynamical

characteristics have thus been developed that simulate conditions inside the larynx. These mod-

els can be divided into three main groups: excised larynges, computational models, and physical

models. All of these models aid in overcoming limitations of in vivo measurements, but a perfect

replication of the larynx has yet to be achieved. The following is a brief overview of some of these

models. More in-depth discussions of previous work are provided in Chapters 2 through 4.
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Excised larynges

Excised larynges - human, canine, and other mammalian - have been used to simulate air-

flow through the larynx and vocal fold vibration. Excised larynges are geometrically accurate; this

is important because geometry plays an integral role in governing vocal fold vibration. Since the

larynx is somewhat symmetric, a hemilarynx (or half-larynx) can be used together with transpar-

ent materials (e.g., Plexiglas) to allow for visualization of glottal and subglottal surfaces, which is

otherwise not possible via in vivo methods or full excised larynx modeling. Hence, flow velocities

and vocal fold position throughout vibration of actual human vocal folds can be quantified [2, 3].

However, excised larynges are somewhat difficult to procure, and are difficult to work with since

the tissues dehydrate quickly and undergo other changes. They also are very limited in terms of

parametric studies involving geometric and material property changes.

Computational models

There are several types of computational vocal fold models used in voice research (e.g.,

finite-element, continuum-based, high fidelity, etc.) [4–8] These models can yield data regarding

pressure, modal analysis, vibratory movement, acoustics, and other flow and solid characteris-

tics. Current models incorporate the fluid-structure coupling of the air and vocal fold tissue that

is essential for voice production. Two-dimensional and three-dimensional models have been de-

veloped [9, 10]. Much has been discovered using computational models, such as the sensitivity of

model motion to geometric and material parameters [8, 11], as well as other vocal fold vibration

characteristics (e.g., onset frequency and threshold pressure [12]).

5



Physical models

Physical modeling of the vocal folds can be further divided into two groups: static (rigid)

and self-oscillating.

Static models are used to examine flow characteristics in stationary vocal fold models.

Most commonly, these are used to study intraglottal pressure distributions and flow profiles [13,

14]. These models are a convenient way of studying flow separation downstream of the glottis.

Although these models provide control over geometric definitions, they do not self-oscillate and

thus lack the coupled fluid-solid dynamics that are central to vocal fold vibration.

Self-oscillating models are used to capture life-like movement of the vocal folds. Titze et

al. [15] developed a simple stainless steel “body” model (representing the muscle layer of the vocal

folds) with a surrounding silicone “cover” membrane and fluid (representing the lamina propria

and epithelial layers of the vocal folds) to study phonation threshold pressure (i.e., onset pressure).

This model has been used to study the effect of various material and geometric parameters on flow

characteristics, such as the effect of cover membrane thickness and various biomaterials on onset

pressure [16, 17]. However, this model was limited in its movement due to the stiff body layer;

hence, only oscillations of the cover layer could be generated.

Recently, self-oscillating models were developed that incorporated body layer movement

via models fabricated from three-part silicone [7, 18]. A cover layer was added to this model to

provide even more realistic movement [19,20]. These models provide an essential characteristic in

vocal fold movement in that the fluid-structure interaction is manifest, and higher amplitude oscil-

lations are captured. Recently, researchers have used variations of this model to study the effect of

subglottal acoustics [21], explore aerodynamically and acoustically driven modes of vibration [22],
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investigate flow structures immediately downstream of the glottal exit [23], and study the effect of

supraglottal structures on jet flow characteristics [20].

1.1.3 Motivation

Even with the progress that has been made with regards to voice modeling, much has yet

to be understood. This is in part due to limitations of synthetic vocal fold models, but also because

these models have yet to be fully studied. Specifically, while material and geometric parameters of

the models are central to their flow-induced vibratory characteristics, the degree of influence that

these parameters have on model motion characteristics has yet to be quantified. It is the goal of this

research to provide a better understanding of how material and geometric properties of the vocal

folds affect vibratory and flow characteristics. It is anticipated that the results from this research

will provide a greater understanding of voice production, which eventually may lead to improved

quality of life for people who suffer from voice disabilities.

1.2 Thesis overview

This work attempts to further expand the knowledge of voice production by incorporat-

ing material and geometric variations to the model introduced by Thomson et al. [7] using both

experimental and computational modeling techniques. All of the models used in this work were

two-layered, which represented two of the primary layers of the vocal folds: the lamina propria

(cover) and the muscle (body). This is shown in Fig. 1.3, along with an illustration of the test

setup. Further details of the experimental setup, model fabrication methods, and computer models

are provided in subsequent chapters.

7



Figure 1.3: Test setup (left) and geometrically idealized two-layer vocal fold model (right).

1.3 Thesis outline

This work is divided into three main areas:

1) The change in synthetic model response due to material asymmetries (Chapter 2).

2) The dynamic response of synthetic models with idealized vs. magnetic resonance imaging

(MRI)-based geometry (Chapter 3).

3) A parametric investigation of the influence of vocal fold model geometry using computa-

tional models (Chapter 4).

1.3.1 Influence of asymmetric stiffness on synthetic vocal fold model vibration (Chapter 2)

One of the purposes of this thesis was to investigate the influence of asymmetric material

properties on vocal fold dynamics. Numerous studies have used computational and synthetic vocal

folds to investigate vocal fold vibration and glottal airflow for both healthy and diseased vocal fold
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scenarios, specifically aiming to explore asymmetric characteristics [9, 14, 23–25]. Lacking has

been a controlled study of the influence of material-only asymmetry on vocal fold vibration and

glottal aerodynamics. In this research, synthetic models were fabricated, and varying degrees of

left-right material asymmetry were incorporated. Aspects of vocal fold vibration were quantified

by measuring frequency, left-right vocal fold phase-shift, onset pressure, and glottal jet flow.

1.3.2 Idealized vs. MRI-based synthetic vocal fold models (Chapter 3)

Synthetic and computational vocal fold models used by researchers have typically been

defined using simplified geometries, which have proven to exhibit some life-like characteristics of

human vocal folds [21, 23, 26]. These simplified models have made it possible to parametrically

investigate model motion without using expensive and highly sensitive models (i.e., excised laryn-

ges). More life-like motion of synthetic vocal fold models may be achieved if a more geometrically

accurate model is utilized in experimentation. In order to determine whether this is feasible, mod-

els based on magnetic resonance imaging (MRI) data were fabricated and their responses were

compared with those of geometrically idealized models.

1.3.3 Influence of geometric features on vocal fold model vibration (Chapter 4)

As mentioned above, many researchers have used simplified models to simulate vocal fold

flow-induced vibration. It is known that geometry significantly impacts how vocal fold models

vibrate; what is not known, however, is the impact that specific geometric features have on model

motion. This work identifies which geometric features of a computational vocal fold model play

significant roles in governing its movement. The model was geometrically parameterized, and a

screening-type design-of-experiments approach was used to identify the relative effects of 13 geo-
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metric parameters. Five separate measurements were assessed in order to estimate the magnitude

of the effect each geometric parameter had on vibratory motion, including flow-induced vibration

frequency, changes in glottal width, flow rate, and intraglottal angle, and intraglottal phase delay.

Identifying key geometric parameters may lead to improved (yet still simplified) computational

and physical models of the vocal folds that better exhibit true vocal fold vibratory characteristics.
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CHAPTER 2. INFLUENCE OF ASYMMETRIC STIFFNESS ON SYNTHETIC
VOCAL FOLD MODEL VIBRATION 1

The influence of asymmetric vocal fold stiffness on voice production was evaluated using

life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vo-

cal folds. The models were fabricated using flexible, materially-linear silicone compounds with

Young’s modulus values comparable to that of vocal fold tissue. The models included a two-layer

design to simulate the vocal fold layered structure. The respective Young’s moduli of elasticity of

the “left” and “right” vocal fold models were varied to create asymmetric conditions. High-speed

videokymography was used to measure maximum vocal fold excursion, vibration frequency, and

left-right phase shift, all of which were significantly influenced by asymmetry. Onset pressure,

a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analy-

sis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold

model. Potential applications to various clinical conditions are mentioned, and suggestions for

future related studies are presented.

2.1 Introduction of asymmetric modeling

Healthy human vocal folds experience flow-induced vibrations in response to tracheal air-

flow. These vibrations modulate glottal airflow, thus creating pressure fluctuations within the vocal

tract that generate sound for voice production. The vocal folds exhibit natural asymmetry [27],

1This chapter is based on Pickup, B.A., Thomson, S.L. (2009). “Influence of asymmetric stiffness on the structural
and aerodynamic response of synthetic vocal fold models,” Journal of Biomechanics 42: 2219-2225.
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but this is generally asymptomatic. However, voice disorders such as vocal fold scarring [28],

inflammation (e.g., due to reflux or laryngitis [29]), and sulcus vocalis [30] may exhibit sufficient

asymmetry so as to contribute to noticeably irregular vocal fold vibration. Voice quality, and con-

sequently quality of life, is adversely affected. The research described in this chapter is aimed at

studying asymmetric material properties in vocal fold vibration in order to assist in the continued

development of improved clinical care of the human voice.

Studies using computational and synthetic vocal folds have been used to investigate vocal

fold vibration and glottal airflow for both healthy and diseased vocal fold scenarios. The following

summarizes a few studies that have focused on structural and/or aerodynamic asymmetry.

Zhang and Jiang [24] demonstrated that the addition of a unilateral mass (polyp) added

to the commonly-used two-mass vocal fold model [9] would adversely affect vocal fold vibratory

characteristics, and concluded that other conditions that result in added mass to the vocal folds

(e.g., nodules) may produce abnormal vocal fold movements. Using a synthetic rubber vocal fold

model to investigate irregular vocal fold vibration, Berry et al. [31] showed two types of biphona-

tion, one related to asymmetries found between vocal folds (left-right asymmetry), and the other

within vocal folds (anterior-posterior asymmetry). The benefit of using synthetic vocal fold models

to study asymmetric vibration patterns was emphasized. They recommended further studies into

mechanisms of irregular vocal fold vibration across many phonatory conditions involving both

symmetric and asymmetric vocal folds using multilayered synthetic vocal fold models.

Regarding glottal jet aerodynamics, Shinwari et al. [14] used flow visualization to charac-

terize the flow through rigid acrylic vocal fold models with varying degrees of intraglottal asym-

metry, and discussed ways in which aerodynamic driving forces could differ between symmetric

and asymmetric vocal folds. Khosla et al. [25] recently used particle image velocimetry (PIV) to
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investigate the supraglottal flow in excised canine larynges (both normal and asymmetric). They

found that asymmetric stiffness between vocal folds resulted in lateral jet skewing, asymmetric

glottal areas, and periodic asymmetric mucosal waves. Drechsel and Thomson [20] demonstrated

sensitivity of the glottal jet to the lateral position of supraglottal structures (such as a vocal tract

and/or false vocal folds) using a synthetic, self-oscillating vocal fold model. Neubauer et al. [23]

showed that slight unevenness in the mounting of otherwise nominally symmetric self-oscillating

synthetic models could produce a laterally-skewed jet.

These studies have focused on asymmetry resulting largely from geometric factors. Lack-

ing is a controlled study of the influence of material-only asymmetry on vocal fold vibration and

glottal aerodynamics. It is anticipated that through further studies of geometric and material asym-

metry, improved phonosurgical procedures will lead to improved voice preservation and/or restora-

tion. The purpose of this research was to investigate the influence of asymmetric material prop-

erties on vocal fold dynamics. This was done using high-speed videokymography and particle

image velocimetry (PIV) in conjunction with multi-layer synthetic vocal fold models that included

varying degrees of stiffness asymmetry.

2.2 Methods

2.2.1 Synthetic vocal fold model fabrication

Synthetic, one-layer (homogeneous), self-oscillating, continuum vocal fold models have

been the subject of several recent studies (e.g., [7, 21–23, 31]). To reflect the soft cover layer and

stiff body layer composition of the human vocal folds [32], two-layer versions of these synthetic

models have recently been used [20, 33]; see Fig. 2.1), with geometries based on that of Scherer

et al. [13]. These models are of the same size, similar shape, and similar flexibility as the hu-
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Figure 2.1: Diagram of vocal fold model dimensions.

man vocal folds. Simplifications associated with these models have included idealized geometries

with uniform anterior-posterior cross sections, exclusion of physiological mechanisms (e.g., blood

flow, cell response, etc.), as well as elastic, materially-linear, isotropic material properties (in con-

trast with the viscoelastic, materially-nonlinear, anisotropic properties of human vocal fold tissue).

Nevertheless, the models have been shown to vibrate at pressures and frequencies typical of hu-

man phonation. Further, they allow for prolonged testing and parametric studies not feasible with

excised larynges, and are based on relatively simple and inexpensive manufacturing methods.

The models for the present research were fabricated using a three-component addition-cure

silicone compound, consisting of two-part Ecoflex 0030® silicone rubber and single-part Silicone

Thinner® (Smooth-On, Inc.) Variation in stiffness between vocal fold models was achieved by

using varying amounts of thinner (more thinner reduces the modulus of elasticity of the cured

material). Symmetric and asymmetric models were fabricated and tested. Table 2.1 lists Young’s

modulus values for the body and cover layers of the different models. The notation LBCRBC is

used as follows. L and R denote the position of the vocal fold models from the anterior perspective

(left and right, respectively). B and C represent the volume ratio of silicone thinner for the body

and cover layers, respectively; for example, a value of B = 2 corresponds to a 1:1:2 mixing ratio,
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or one part of each Ecoflex compound to two parts Silicone Thinner. For a baseline measure, a

model representing a healthy vocal fold was kept on the left side (L24) during the experiments for

both asymmetric and symmetric cases, and only the right vocal fold model was changed.

Table 2.1: Young’s modulus of elasticity (kPa) of vocal fold models.

Case Left cover Right cover Left body Right body
L24R24 3.3 2.9 8.9 8.6
L24R23 3.3 5.2 8.9 9.0
L24R22 3.3 8.7 8.9 8.8

The cover layer thickness for each model was approximately 2 mm. The models were

attached to acrylic plates using a silicone rubber adhesive as previously described [19]. An ap-

proximately 3 mm base at the lateral edge of each vocal fold model was used to position the model

laterally. The base was made of two-part silicone compound DragonSkin™ (also by Smooth-On,

Inc.); it was much stiffer than the other vocal fold model material, and thus did not vibrate signifi-

cantly during model oscillation.

2.2.2 Test setup

The test setup is shown in Fig. 2.2. An approximately 4.0 m long, 0.95 cm diameter

flexible PVC tube connected a compressed air supply to a rigid plenum. Air flow was regulated

via a manual valve and monitored using an in-line rotameter (only in place during onset pressure

measurements) and a differential pressure transducer (Omega PX138-001D5V). Upstream of the

plenum was a LaVision aerosol generator (not shown) used to create seed particles from DEHS

oil (di-ethyl-hexyl sebacate, CAS#122-62-3) for PIV data collection. The section immediately

upstream of the vocal folds (“trachea”) was a 1.27 cm diameter, 7.6 cm long rigid PVC pipe
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Figure 2.2: Synthetic vocal fold model setup.

mounted to the plates holding the synthetic vocal fold models. A 1.27 cm diameter, 30 cm long

flexible PVC tube connected the subglottal area to the plenum. As is commonly the case with

excised larynx studies, no downstream test section (“vocal tract”) was used.

2.2.3 Data acquisition

A National Instruments data acquisition system (PXI-1042Q) with LabVIEW software was

used to collect frequency data obtained from the pressure transducer. The PIV system was used

to acquire two-dimensional velocity data of the supraglottal jet in what would be the equivalent of

a coronal cross section at the approximate anterior-posterior midplane of the vocal fold models.

The PIV camera (LaVision VC-Imager Intense, 1376×1045 pixels) was positioned approximately

25 cm from the vocal folds; a sample image of raw data is shown in Fig. 2.3. The differential

pressure transducer provided a trigger input to synchronize the PIV laser (New Wave Research
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Figure 2.3: Sample raw PIV image showing instantaneous particles and vocal fold model position.
Shown is a symmetric model opening at low pressure (1.0 kPa).

Solo II Nd:YAG laser) with the vocal fold vibration. Software-adjustable PIV time delay allowed

for imaging at various phases.

PIV images were acquired at 30 different phases. The time delay between image pairs was

2 µs. A multi-pass 64×64 to 32×32 cross-correlation search window with 50% overlap was used

to calculate velocity. Since the vocal folds vibrated at a frequency much greater than the maximum

sampling frequency of the PIV system, ensemble averaging was performed over 100 image pairs

at each phase. For asymmetric models, PIV data was obtained for low (1.0 kPa) and high (2.0 kPa)

pressures. PIV data for the symmetric case (L24R24) were obtained at 1.0 kPa and 1.5 kPa, since

the high vibration amplitude at 2.0 kPa made these models overly susceptible to damage.

A high-speed camera (Photron APS-RX) was used to examine medial-lateral model motion

in the transverse plane. It was located approximately 20 cm above the model. The camera frame

rate and resolution were 3000 fps and 1024×1024 pixels, respectively. Four high-intensity LED

lights and controller (Visual Instrumentation Corporation #900415, #200900) were used for model

illumination. High-speed images were acquired at 1.0 kPa and 2.0 kPa upstream pressures for
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all models. (Because short phonation periods were adequate for high-speed data acquisition, the

symmetric models were able to be imaged at an upstream pressure of 2.0 kPa.)

Using custom MATLAB codes (see Appendix A), image sequences were analyzed for fre-

quency, glottal width, and phase shift measurements. The glottis boundary in each high-speed

image was identified using grayscale intensity thresholding, from which the glottal area and half

width values were directly computed. Videokymography (VKG), a method used to visualize high

frequency vocal fold movement (e.g., [34,35]), was used to track the opening and closing of the vo-

cal folds. This was done by constructing a time-sequenced compilation (kymogram) of grayscale

intensity values of images of the models at the anterior-posterior center of the vocal folds through

multiple cycles.

Onset pressure (the minimum pressure to initiate vibration from rest) and offset pressure

(the minimum pressure to sustain vibration once initiated) were recorded, with vibration onset and

offset determined by monitoring the pressure signal in LabVIEW.

An Instron tensile testing apparatus (Instron 3342) was used to measure the Young’s mod-

ulus of the materials fabricated with varying silicone mixing ratios. Cylindrical test specimens

measuring approximately 17 cm long and 0.9 cm diameter were manufactured. Stress was mea-

sured for a periodic strain input from 0 to 40% strain at a rate of 1000 mm/min over 10 cycles for

each specimen.

2.2.4 Repeatability and uncertainty

Measurements of the symmetric model were compared to previously quantified values of

similar models. Uncertainty was limited for each measurement by taking multiple measurements

and averaging. For PIV analysis, uncertainty was limited by using high resolution, as well as en-
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semble averaging. For Young’s modulus measurements, uncertainty was minimized by averaging

measurements from multiple samples.

2.3 Results and discussion

2.3.1 Young’s modulus of model materials

Young’s modulus values for the different layers of the different models are shown in Table

2.1. These values are similar to values used by others in both synthetic and computational vocal

fold modeling (e.g., [6, 7, 20]), and the magnitude of the Young’s modulus is similar to that of

human vocal fold tissue in the small-strain range (approximately 10 kPa for the body layer, 3 kPa

for the cover layer; e.g., [36]).

Table 2.2: Phonation onset and offset threshold pressures (kPa) and maximum glottal area (mm2)
at low (1.0 kPa) and high (2.0 kPa) pressures.

Case Ponset Po f f set Plow area Phigh area
L24R24 0.48 0.41 30.18 67.69
L24R23 1.35 0.94 12.58 42.48
L24R22 1.23 0.94 12.05 37.12

2.3.2 Onset and offset pressure

The symmetric model had the lowest frequency of vibration (approximately 103 Hz at 2.0

kPa) and the lowest onset and offset pressures, as shown in Table 2.2. Interestingly, the onset

pressure significantly increased as asymmetry was introduced (L24R23 model) but did not increase

further as asymmetry was enhanced (L24R22 model). Increased pressure required to induce self-
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oscillation can be correlated to increased effort necessary to speak. Thus, lower onset pressures

are preferable.

2.3.3 Kinematic variables

Asymmetry significantly affected the maximum glottal area, as shown in Table 2.2, causing

an over 50% decrease for the low pressure cases and an approximately 30% decrease for the high

pressure cases. This decreased area could cause either reduced mass flow through the glottis and/or

increased flow velocity. However, since the coupling between glottal flow and radiated sound is

complex and not yet fully understood (e.g., [37, 38]), further studies would need to be performed

to determine the effect of the decreased area on radiated sound amplitude and quality.

High-speed images for selected symmetric and asymmetric cases are shown in Fig. 2.4.

High-speed VKG images for all cases are shown in Fig. 2.5. As is evident in Figs. 2.4 and 2.5, in

some cases the mid-region of the stiff vocal fold model was overlapped by the opposing less-stiff

vocal fold model.

In Fig. 2.4, the differences in glottal area over one cycle are shown. In the symmetric case,

the glottal area stays primarily symmetric throughout the cycle, whereas for the asymmetric case,

the glottal area does not stay symmetric. Also, phase delays between the left and right model are

also evident.

In Fig. 2.5, differences in glottal area are shown between the symmetric and asymmetric

cases. Furthermore, phase differences between the left and right model are shown. No evidence of

mucosal wave-like motion can be seen from any of the VKG images.

Data derived from the high-speed images include glottal area (Fig. 2.6), glottal half-width

(Fig. 2.7), and phase shift (Fig. 2.8). The two asymmetric models had similar glottal half-widths
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Figure 2.4: Sample high-speed images over one cycle for symmetric (top) and asymmetric (bot-
tom) cases.

that were both significantly smaller than that of the symmetric model. Reduced vibration amplitude

is consistent with a clinically observed “weak” or “hoarse” voice characteristic. It is also important

to note that the orifice between the asymmetric models (the “glottis”) did not close completely

during the glottal cycle (see Fig. 2.6); this would contribute to a “breathy” voice.

These results show that increasing the stiffness of one vocal fold significantly reduces the

amplitude of both vocal folds, and not just that of the stiff vocal fold. In treating conditions in which

asymmetric vocal fold stiffness is a concern, a close match between Young’s modulus values for

21



Figure 2.5: High-speed videokymographic images for asymmetric and symmetric models at low
and high pressures. The top model is L24 (baseline symmetric model) in every case.
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Figure 2.6: Glottal area derived from VKG images for (a) low (1.0 kPa) pressure and (b) high (2.0
kPa) pressure. Vertical scales area adjusted. Data for asymmetric (short dashes - L24R22, long
dashes - L24R23, solid - L24R24) models are compared.

both covers is highly preferable. In the L24R23 case, the right cover modulus was relatively close

to that of the left cover, but nevertheless yielded a reduction of approximately 50% in vibration

amplitude at the 1 kPa pressure. Given the high variability of tissue stiffness between individuals

(e.g., [36]), precise stiffness matching may be difficult and would require a method for in vivo

measurement of the healthy fold’s Young’s modulus.

The left and right models appeared to oscillate at the same frequency, although longer

recordings would be required to confirm this. The phase between the two sides differed signifi-

cantly in the presence of asymmetry. As asymmetry increased, the phase difference also increased

up to 90◦ for the 2 kPa, highest asymmetry case (see Fig. 2.8). The phase difference alters the

shape of the glottal area, in turn influencing the flow rate waveform and hence quality of generated

sound. It is speculated that this out-of-phase asymmetry could possibly result in a qualitatively
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Figure 2.7: Maximum glottal half-width measured (clear bar - left vocal fold, solid bar - right
vocal fold) using high-speed VKG images, for symmetric and asymmetric models at high and low
pressures.

Figure 2.8: Phase shift derived from high-speed VKG images for symmetric and asymmetric mod-
els at high and low pressures.
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Figure 2.9: Velocity magnitude from PIV data for asymmetric and symmetric cases at low and high
pressures. Images were obtained at 30 phases over the cycle and velocity fields were ensemble
averaged; only every-other-phase is shown here.

“unnatural” sounding voice, although further studies with a vocal tract would be necessary to in-

vestigate this.

2.3.4 Glottal jet

PIV velocity contours are shown in Fig. 2.9; every-other recorded phase is displayed.

From left to right (a to o), each model completes one cycle. The model is closed at a and o, and

completely open around h and i. The contours show velocity profiles throughout the cycle. The top

three sequences are for high pressure cases, and the bottom three sequences are for low pressure

cases. The top line for both pressure cases is the symmetric model (L24R24).
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Except for during immediate opening and closing, the symmetric model yielded a relatively

symmetric jet near the glottal exit; asymmetry in the jet further from the glottal exit is evident,

likely due to flow instability associated with free jets. In contrast, the two asymmetric models

yielded skewed velocity profiles, generally towards the stiffer model (right side), for both pressures.

At the low pressure, the jet was generally skewed towards the stiffer model throughout the cycle,

with the exception of the immediate opening and closing. At the high pressure, the jet straightened

out during most of the open phase. This behavior was likely due to the angle of the medial surface

of the models with respect to the vertical plane. At immediate opening and closing, the models

were at roughly the same elevation vertically and likely were of similar instantaneous geometry.

During the bulk of the open phase, however, the stiffer model was lower in elevation than the

flexible model; consequently, the flexible model medial surface would be expected to have a greater

divergence angle than the stiffer model. The flow thus remained attached to the wall with a lower

divergence angle. At the higher pressure, however, the stiffer model angle was sufficiently large

that the flow separated from the inferior glottal margin and did not skew significantly. As skewing

of the glottal jet may adversely influence sound production, for example, by potential impinging

the glottal jet on the ventricular folds causing broadband sound generation, it is generally thought

to be desirable that the jet be as symmetric as possible.

Such glottal jet skewing has been seen in other vocal fold models, including synthetic

rigid [14], self-oscillating [23] and excised canine [25] models. In the case of the nominally

symmetric rigid model of Shinwari et al. [14], skewing was attributed to the Coanda effect (the

tendency of a fluid jet to be attracted to a nearby surface). In the case of the self-oscillating

synthetic model of Neubauer et al. [23], skewing was attributed to uneven mounting of the left

and right models. In the case of the canine models of Khosla et al. [25], skewing was attributed
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to differences in stiffness between the vocal folds. Skewing has also been shown to occur due to

lateral offsetting of a supraglottal duct [20]. These studies highlight the sensitivity of the glottal

jet to its surroundings. In the present study, since introduction of asymmetric materials strongly

influenced the instantaneous glottal geometry, and since the asymmetric models all demonstrated

more skewing than the symmetric models, it is reasonable to conclude that material asymmetry

played a significant role in causing glottal jet skewing. This is consistent with the findings of

Khosla et al. [25]. However, contribution due to potential slight unevenness in mounting cannot be

ruled out. The role of the Coanda effect in influencing the dynamics of a jet through a time-varying

glottis is currently an open question in voice research, and no speculation is made here regarding

its potential role in the jet skewing observed in these studies.

2.4 Conclusions and future research

Asymmetry in the stiffness of synthetic vocal folds is shown to reduce glottal width by as

much as 1.25 mm, introduce phase differences between the left and right folds up to 90◦, increase

onset pressure by almost 300%, and contribute to asymmetric glottal velocity profiles. These

suggest that from a phonatory perspective, close matching of left-right stiffness is desired, since

increased stiffness of one fold (that is, a greater degree of asymmetry) appears to result in: (1)

smaller glottal area; (2) higher onset pressure resulting in greater required phonatory effort; (3)

incomplete glottal closure, resulting in breathy voice; and (4) jet skewing, potentially contributing

to broadband sound production.

Several areas of future work are suggested. Firstly, comparison should be made of these

results with those obtained with a supraglottal vocal tract and false vocal folds. While numerous

synthetic and excised larynx studies have been performed without a vocal tract - usually for in-
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strumentation access - it has been shown (e.g., [20,39]) that a vocal tract can directly influence the

glottal jet. The vocal tract can also present an acoustic loading, thus potentially forming strong

acoustic coupling between the vocal folds and the vocal tract [39]. Other areas of suggested work

include: similar studies using computational models for more precise control over stiffness and

geometry; further investigation into the effects of increased phase difference in asymmetric vocal

fold vibration, including the presence or absence of irregular phonation as evidenced by slightly

different frequencies; and development and testing of improved models (e.g., with nonlinear stress-

strain characteristics and less idealized geometry) to more closely mimic human vocal folds.
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CHAPTER 3. IDEALIZED VS. MRI-BASED SYNTHETIC VOCAL FOLD MODELS 1

Recent vocal fold vibration studies have used models that were defined by idealized ge-

ometry. Although these models exhibit important similarities with human vocal fold vibration,

some aspects of their motion are less than realistic. In this chapter it is demonstrated that more

realistic motion may be obtained when using models with geometry derived from magnetic res-

onance imaging (MRI) data. The dynamic response of both idealized and MRI-based synthetic

vocal fold models are presented. MRI-based model improvements include evidence of mucosal

wave-like motion and less vertical movement. Limitations of the MRI-based model are discussed

and suggestions for further synthetic model development are offered.

3.1 Introduction

Synthetic and computational vocal fold models described in the literature have typically

been defined using simplified geometries. One example is the so-called “M5” model of Scherer

et al. [13]. Self-oscillating models based on this geometry exhibit some life-like characteristics

and have thus been used to simulate human vocal folds in research, for example: to study acous-

tically and aerodynamically-driven vibration modes [21], characterize supraglottic vortices [23],

develop in vivo measurement devices [26], study acoustical effects of non-human mammalian air

1This chapter was published as Pickup, B.A., Thomson, S.L. (In Press). “Flow-induced vibratory response of
idealized vs. magnetic resonance imaging-based synthetic vocal fold models,” Journal of the Acoustical Society of
America Express Letters
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sacs on voice quality [33], estimate the sensitivity of vocal fold response to lateral material stiffness

asymmetry [40], and investigate fluid-structure and acoustic-structure interactions [12].

M5-based studies such as these allow for parametric physical modeling and detailed exper-

imentation without using excised larynges, and they present several advantages and disadvantages.

Advantages include low cost, low maintenance, durability, control over geometric and material

property parameters, and relatively good agreement with human vocal fold characteristics, such

as true self-oscillation capability and similar phonation threshold pressures. Disadvantages in-

clude (a) idealized geometry, including a uniform anterior-posterior cross section profile, and (b)

some dissimilarity with true vocal fold motion, including a generally more divergent glottal pro-

file during the entire vibratory cycle, the lack of mucosal wave-like motion, and large vertical

(inferior-superior) motion.

Considering recent studies [41–43] that have highlighted the role of geometry in vocal

fold response, it is likely that the differences between the responses of the M5-based models and

the true vocal folds are due to geometric as well as material property differences. The purpose

of this chapter is to show that more life-like motion can indeed be achieved when using more

realistic geometry. This is done by comparing the flow-induced responses of two synthetic, self-

oscillating models of matching material properties but differing geometries. One model was based

on the idealized M5 geometry. The other was based on geometry derived from magnetic resonance

imaging (MRI) data [44]. It is hoped that these findings will stimulate and provide direction for

research efforts aimed towards developing improved synthetic vocal fold models for human voice

production research.
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3.2 Methods

3.2.1 Geometry definition

The M5 model geometry was based on the definition given by Scherer et al. [13] with a

2 mm cover layer [40]. The shape of the MRI-based model was obtained as follows (see Fig. 3.1):

1) Vocal fold tissues were outlined from each MRI image via commercial segmentation soft-

ware (Velocity2™);

2) Segmented regions were exported as three-dimensional stereolithography (STL) files;

3) STL files were imported into commercial computer-aided design (CAD) software

(Pro/ENGINEER), scaled to approximately match typical laryngeal size [45,46] and cropped;

4) Cropped STL files (one for the cover layer, one for the body layer) were exported from

Pro/ENGINEER, from which solid models were fabricated using rapid prototyping hard-

ware; and

5) Negative molds were fabricated from rapid prototyped solid models, from which final models

were fabricated as described in the next section.

The M5 and MRI-based model geometries are shown in Fig. 3.1. The M5 model was

a simplified geometry, whereas the MRI-based model had a complicated surface geometry that

was more realistic to human vocal folds. Both models contained a convergent portion and were

relatively the same size.
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Figure 3.1: Top row: MRI geometry extraction sequence showing, from left to right, representative
sagittal images, Pro/ENGINEER CAD models, cropped CAD model, and models of body and
cover layers for rapid prototyping. Bottom row: Isometric views of M5 (left) and MRI (right)
models. The x-, y-, and z-coordinates are aligned with the vertical (inferior-superior), anterior-
posterior, and medial-lateral directions, respectively. All dimensions are in mm.

3.2.2 Model fabrication

Similar to previous studies [33, 40] and as previously described in Chapter 2, all models

were made using two-part Ecoflex 0030 addition-cure silicone, combined with a Silicone Thin-

ner (Smooth-On, Inc.) Increased amounts of thinner yielded lower Young’s moduli of the cured

material. Different ratios of thinner were used for the body and the cover layers. Models with

a compound mixing ratio of 1:1:2 (i.e., one part each of Ecoflex compounds A and B to 2 parts

Silicone Thinner) for the body and 1:1:4 for the cover were fabricated, as well as models with

1:1:3 and 1:1:5 mixing ratios for the body and cover layers, respectively. Four different models

were tested, here referred to by their geometry and body-cover thinner-to-silicone ratios: M524,

M535, MRI24, and MRI35. To ensure material consistency, models with identical modulus values

were created simultaneously (i.e., the M524 and MRI24 body layers were made at the same time
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using the same material batch, as were the cover layers, and so on). The models were mounted to

38×70×6.35 mm acrylic plates using silicone adhesive (Sil-Poxy©, Smooth-On, Inc.) applied to

the lateral, anterior, and posterior surfaces. The plates were then mounted on an air flow supply

tube that was connected upstream to a compressed air source.

To measure the Young’s modulus, a cylindrical test specimen of each material was fabri-

cated concurrently with model fabrication and tested using an Instron tensile testing apparatus (In-

stron 3342). The Young’s modulus values (1.5 kPa for 1:1:5, 2.94 kPa for 1:1:4, 5.2 kPa for 1:1:3,

and 8.5 kPa for 1:1:2 mixing ratios) were similar to those reported in previous synthetic model

studies and are generally agreeable with approximate values for human vocal fold tissue [36].

3.2.3 Experimental setup and methods

The experimental setup was the same as that described in Chapter 2, with additional high-

speed camera positions for different views of the models. The only aspects of the setup that

changed during the data acquisition process (described below) were the exchange of acrylic plates

containing the different models and the high-speed camera positioning. The acrylic plates used

for the MRI and M5 models were machined such that the medial surfaces of opposing vocal fold

models were approximately in contact when there was no flow.

Data acquired for all models during flow-induced vibration included onset and offset pres-

sures, glottal area, model motion, and vertical (inferior-superior) displacement. Onset pressure

was measured using a pressure sensor (Omega PX138-001D5V) mounted approximately 3 cm up-

stream of the model. The sensor fed information into a custom National Instruments LabVIEW

software program that displayed pressure fluctuations during vibration. Onset pressure was iden-

tified by slowly increasing the upstream pressure until self-oscillation was induced (i.e., a steady
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Figure 3.2: High-speed camera positioning (left) and corresponding images (right) of the M524
model at 133% Ponset .

sinusoidal wave was visible on the LabVIEW screen). Offset pressure was measured by decreasing

the pressure until vibration ceased (i.e., the sinusoidal wave stopped). This process was repeated

five times, and averages are here reported. The measurements had a maximum standard deviation

of 0.05 kPa.

A high-speed camera (Photron APX-RS) was used to image glottal area and model mo-

tion from anterior, angled (approximately 45◦ in the sagittal plane), and superior perspectives (Fig.

3.2). Images were recorded at 9000 frames per second at resolutions ranging from 400×800 to

1024×1024 pixels. Glottal area and vertical displacement measurements were obtained for each

model at two pressures corresponding to 110% and 133.3% of each model’s onset pressure. Cus-

tom MATLAB subroutines were used to quantify glottal area, vertical displacement and to create

videokymographic (VKG) images from the coronal midplane of the model (Appendix A); the latter

were used to support the determination of whether mucosal wave-like motion was present.
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3.3 Results and discussion

3.3.1 Threshold pressures

Onset and offset pressure data are listed in Table 3.1. The M5 models exhibited lower onset

pressures than the MRI models, and were closer to human vocal fold onset phonation threshold

pressures (around 0.30 kPa [47, 48]). MRI model onset pressures were closer to values measured

for canine vocal folds (around 1.0 kPa [49]). Both models operated within ranges typical of human

phonation (around 0.3 kPa to 4.0 kPa [50]). The MRI model onset pressure may be able to be

reduced (and thus improved to be more life-like) using other modeling methods, such as lowering

the modulus cover layer materials and/or implementing further geometric changes. In terms of

threshold pressure, the M5 model functions more similarly to human vocal folds than the MRI-

based model.

Table 3.1: Threshold pressure and maximum glottal area data for M5 and MRI models.

M524 M535 MRI24 MRI35

Threshold Pressure (kPa)
Onset 0.65 0.91 2.25 1.86
Offset 0.52 0.33 2.06 1.68

Maximum Glottal Area (mm2)
110% 7.06 33.27 5.83 6.29
133% 15.38 47.23 11.97 11.17

3.3.2 Glottal area

Also shown in Table 3.1 are maximum glottal areas from the high-speed images taken from

the superior perspective. Area was calculated using a custom MATLAB subroutine to identify the

glottis based on pixel intensity. This was done by setting a threshold pixel intensity for the glottis

(close to 0 since the area was darker than the vocal fold model) and tracking that area through time;
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the uncertainty was estimated to be ± 1.53 mm2 (detailed description of the uncertainty analysis

is provided in section 3.3.6). The maximum glottal areas increased with increased pressure for

all models at all pressures. The M5 models had significantly larger areas than the MRI models,

despite the MRI models operating at significantly higher pressures. This was attributed to reduced

body layer deformation and vertical displacement (discussed below) of the MRI models. In terms

of glottal area, the MRI-based models behaved more life-like than the M5 models.

3.3.3 Vertical displacement

A significant drawback of the M5 models has been its large, unnatural vertical displacement

during vibration. The MRI-based models did not exhibit this behavior. This can be seen in Fig.

3.3, which shows high-speed images from anterior and angled perspectives of the M5 and MRI

models during vibration. By comparing the images for the M5 and MRI models, it is evident that

the M5 model vibrated with excessive vertical (seen in anterior view images ) and vertical-lateral

displacement (seen in angled view images) of the superior and medial surfaces, whereas that of the

MRI model was much more realistic.

As a quantitative measure illustrating this behavior, Table 3.2 lists the vertical displacement

data for each case. The data correspond to the height, H, of the highest point on the vocal fold

model as seen in the images acquired from the anterior view (Fig. 3.2). Hmax and Hmin denote

the maximum and minimum model height, respectively, over the oscillation cycle. Especially

noteworthy is the net displacement, Hnet = Hmax - Hmin. For the M5 models, Hnet varied from 0.57

to 2.31 mm, indicating significant vertical displacement during vibration. For the MRI models,

Hnet varied from 0.12 to 0.54 mm, which is much smaller than for the M5 models. Thus, in terms

of vertical displacement, the MRI models behaved more life-like than the M5 models.
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Figure 3.3: Anterior (above) and angled (below) images from high-speed camera of the M5 (top)
and MRI-based (bottom) models through one oscillation.
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Table 3.2: Vertical displacement (height) data for M5 and MRI models.

M524 M535 MRI24 MRI24
110% 133.3% 110% 133.3% 110% 133.3% 110% 133.3%

Hmax(mm) 3.28 3.96 5.13 6.25 4.59 5.25 4.34 4.23
Hmin(mm) 2.71 2.83 3.33 3.94 4.47 4.89 3.80 3.68
Hnet(mm) 0.57 1.13 1.79 2.31 0.12 0.36 0.54 0.54

3.3.4 Model motion

Other evidence of improved MRI-based model motion is in the glottal profile, also seen

in Fig. 3.3. While not entirely visible, the M5 model glottis profile in the anterior view images

was divergent over a significant portion of the oscillation cycle (this was particularly apparent at

low oscillating pressures). By contrast, the MRI model glottis profile in the anterior view images

appeared to feature an alternating convergent-divergent pattern that is more typical of human vocal

fold vibration. Other imaging methods (e.g., using a hemilarynx arrangement) would be necessary

to verify this observation, as well as to quantify convergent-divergent and other aspects of the

models’ motion. It is possible that an M5 model with a convergent prephonatory shape may yield

improved convergent-divergent self-oscillating motion, and this prospect is discussed further in

Chapter 4.

The difference in deformation between the models can be seen in Fig. 3.3. Again, the

M5 model has much more vertical and vertical-lateral displacement. Also, evidence of anterior-

posterior mucosal wave-like motion, as well as anterior-posterior asymmetries in vibration, are

evident in the MRI model videos, both of which are absent in the M5 model videos.

Further evidence of mucosal wave-like motion can be seen in the VKG images in Fig. 3.4.

With the M5 model, the deformation curves above and below the glottis (in Fig. 3.4; anatomically,

these curves are in the medial-lateral direction) are in-phase; however, with the MRI model, these
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Figure 3.4: VKG images showing mucosal wave-like motion produced by the MRI models (right),
but not by the M5 models (left). Red arrows indicate direction of wave motion.

curves are slightly out-of-phase, providing evidence of a traveling “mucosal” wave-like feature.

This improvement is significant given the important role that the mucosal wave plays in human

vocal fold function and clinical observation.

3.3.5 Medial surface equation

For reference, an equation approximating the medial surface of the MRI-based model, cal-

culated using a 5th-order surface fit to the STL file data in MATLAB, is given below (all units are

in µm, and a coordinate system is provided in Fig. 3.1). The R2 value was 0.989, and the equation

is for the domain 0 < x < 10 mm, 0 < y < 17.22 mm.

z(x,y) = −3.33×10−1x5 +8.92×10−2x4y+6.18x4 +2.56×10−1x3y2 − (3.1)

6.89y−25.31x3 −1.88×10−2x2y3 −2.53x2y2 +69.29x2y−149.75x2 −

3.54×10−2xy4 +1.39xy3 −8.97xy2 −169.74xy+1572.76x+

2.39×10−2y5 −9.94×10−1y4 +14.56y3 −88.12y2 +434.90y+13.129×103
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3.3.6 Uncertainty analysis

The uncertainty of the glottal area measurements, uarea, was estimated using a combination

of zero-order (uo), threshold (uth), and calibration (uc) uncertainties, as follows:

uarea =±
√

u2
o +u2

th +u2
c . (3.2)

Uncertainty due to the resolution of the high-speed camera was calculated using

u2
o =±1

2

[(
1pixel

pixels/mm

)2
]2

. (3.3)

An average of each of the model cases’ resolution (pixels/mm) for the camera in the superior

position was calculated and used in Eq. 3.3. The value for the MRI35 model’s uncertainty was

found to be the highest (1.3×10−6 mm2) and was thus used as the uo value in Eq. 3.2.

The threshold uncertainty was due to differences in measured glottal area based on the

threshold for calculating pixel intensity differences between the physical vocal fold model and the

airway, and was calculated using

u2
th =

(
dA

dT h
cth

)2

, (3.4)

where A represents the glottal area, Th represents the assigned threshold value (from 10 to 80, based

on a maximum value of 255 for 8-bit grayscale intensity values in MATLAB), and cth represents

the difference of threshold values per case that yielded reasonable area measurements. Values of

cth ranged from 20 to 40. The maximum glottal area was calculated at the range of threshold

values. The difference of area based on changing threshold values was calculated for each case
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(i.e., the slope dA
dT h ). Each model’s uncertainty based on threshold was calculated, and the worst

case was from the MRI24 133% onset pressure case (uth = 1.49 mm2).

The calibration uncertainty was due to differences in location selection when calibrating

the high-speed videos, and was calculated using

u2
c =

(
dA
dy

yp

)2

. (3.5)

The sensitivity of the glottal area to the user-selected calibration points, dA
dy , was calculated by

varying the selection of the calibration ruler provided in the calibration images for each model

at the superior view. A position of 2 pixels in either direction of the user selected position was

used to adjust the pixels/mm calibration. Areas corresponding to these varying calibration points

were calculated, and the differences between largest and smallest areas were used to calculate dA.

The overall difference in y-position for the expected mis-selected calibration points was used to

calculate dy. The uncertainty in selecting calibration points was estimated to be yp = ±4 pixels.

The highest uncertainty was found in the M535 model (uc = 0.36 mm2).

Substituting uo = 1.3 × 10−6 mm2, uth = 1.49 mm2, and uc = 0.36 mm2 into Eq. 3.2

yielded a total uncertainty for the glottal area calculations of uarea = 1.53 mm2.

3.4 Conclusions and future work

The flow-induced responses of the MRI-based synthetic models showed remarkable differ-

ences compared with those of the M5 models. Improvements include:

1) less vertical motion (by 1.77 mm);

2) apparently more typical alternating convergent-divergent glottal profile pattern; and
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3) evidence of mucosal wave-like motion.

The primary disadvantage of the MRI models was the higher onset pressure, and techniques to

lower the onset pressure are currently being researched. It is interesting to note that the MRI

model exhibited asymmetric anterior-posterior vibrations and some irregularities in glottal area

waveforms at higher pressures; these observations are not necessarily perceived as being advanta-

geous or disadvantageous.

Since fabrication methods for both the M5 and MRI models were similar, the differences

between the two models’ motions are primarily attributable to differences in geometry. It is, of

course, expected that different geometries will yield different vibration patterns. What is signifi-

cant, however, is that the MRI model showed important improvements in yielding more life-like

motion than the M5 model while using the same materials.

It is emphasized that further developments are still needed to create truly life-like synthetic

self-oscillating models. Additionally, research into understanding synthetic vocal fold model re-

sponse is needed. For example, this research does not address the issue of which geometric features

governed the various aspects of the vibratory responses of the M5 and MRI models. It is possible

that the M5 model may be geometrically altered to improve its response. Systematic, parametric

investigations of geometric features of the M5 and other vocal fold models, similar to the recent

work by Zhang [12] and Cook et al. [11], is discussed in Chapter 4.

The role of material properties in governing vocal fold model response must also continue

to be explored; synthetic model materials reported in the literature (including the present ones) have

typically been isotropic and linearly elastic, in contrast with the anisotropic, nonlinear material
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properties of vocal fold tissue. The development of more realistic synthetic materials will be an

important step towards creating more life-like vocal fold models.
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CHAPTER 4. INFLUENCE OF GEOMETRIC FEATURES ON VOCAL FOLD MODEL
VIBRATION

Many researchers have used simplified models to simulate and study the flow-induced vi-

brations of the human vocal folds. While it is clear that the models’ responses are sensitive to

geometry, what is not clear is how and to what extent specific geometric features influence model

motion. In this study a computation vocal fold model was used to identify which geometric features

play significant roles in governing vocal fold movement. The model was geometrically parameter-

ized, and a screening-type design-of-experiments approach was used to identify the relative effect

of 13 geometric parameters. Five output measures were analyzed to assess the magnitude of each

geometric parameter’s effect on vocal fold motion, including flow-induced vibration frequency,

changes in glottal width, flow rate, and intraglottal angle, and intraglottal phase delay. It is shown

that the geometric parameters that most significantly influence model motion are the cover layer

geometries - primarily the prephonatory intraglottal angle - and the body layer inferior angle. Sim-

plified models with altered geometries are shown to feature evidence of improved model motion,

including mucosal wave-like motion and alternating convergent-divergent glottal profiles during

vibration.

4.1 Introduction

Voice production is the result of the flow-induced vibration of the vocal folds. Simplified,

self-oscillating synthetic models of the vocal folds have been used to study various aspects of this
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system, such as: aerodynamic energy transfer [7], coupling of subglottal acoustics with vocal fold

models [21], acoustically and aerodynamically driven modes of vibration [22, 39], glottal airflow

[20, 23], material asymmetries [40], flow-structure-acoustic interactions [51], and subglottal flow

[52]. Synthetic models such as these are inexpensive, durable, relatively easy to fabricate, and can

be conveniently parameterized. These features allow for detailed parametric investigations of the

underlying flow-induced vibration physics.

While these models have demonstrated some vibratory similarities with those of the human

vocal folds, such as with regards to onset pressure, frequency, and amplitude, the models have also

exhibited some less-than-life-like motion-related behavior. Examples include the lack of mucosal

wave-like motion (a key feature of phonation [53]), excessive inferior-superior motion [20], and a

generally divergent profile during vibration (as opposed to the more realistic convergent-divergent

profile) [54].

Researchers have studied how geometric parameters and material properties influence the

resulting fluid, solid, and/or coupled fluid-solid dynamics of vocal fold models. For example, static

models have been used to study intraglottal pressure and flow characteristics. One example is the

“M5” static vocal fold model of Scherer et al. [13], used to investigate the effect of asymmetric

intraglottal profiles on intraglottal pressure distributions. Using the same model, Scherer et al. [55]

found that the intraglottal pressure distribution was highly dependent upon the exit radius in mod-

els with convergent intraglottal profiles. Li et al. [41] conducted numerical investigations of the

influence of inferior and superior surface angles of these static vocal fold models. They showed

that intraglottal pressures are relatively insensitive to inferior and superior vocal fold surface an-

gles, although they emphasized the need to study the degree of influence these angles might have

on vocal fold motion.
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Studies on the effects of vocal fold thickness, epithelial membrane thickness, prephonatory

glottal geometry, and cover layer material properties on phonation threshold pressure have been

investigated. Titze et al. [15] studied the effects of cover layer material properties and prephonatory

glottal width on phonation threshold pressure of a physical model. They showed that phonation

threshold pressure increases with increasing prephonatory glottal width. Using a similar model,

Chan et al. [56] showed that phonation threshold pressure increases with non-zero prephonatory

glottal convergence angles, increased epithelial membrane thickness, and decreased vertical model

thickness. These studies did not include analysis of the model motion.

Continuum-based numerical vocal fold models have also been studied in order to under-

stand model response characteristics. Cook and Mongeau [8] investigated the role of lateral depth,

anterior-posterior length, and vertical thickness of a single-layer, three-dimensional vocal fold

model on modal frequencies. They showed that modal frequencies were most sensitive to varia-

tions in anterior-posterior length and least sensitive to changes in vertical thickness. Subsequently,

Cook et al. [11] extended this study to consider how other geometric and material parameters in-

fluence the modal response of a three-dimensional body-cover layer computational model. These

two studies focused on in vacuo modal analysis, absent flow-induced vibration. Zhang [12] used

a two-layer body-cover continuum-based vocal fold model with a reduced-order flow model to

study mechanical and geometric properties on model response at phonation onset. It was shown

that significant changes in phonation onset frequency can be induced by slight changes in body

layer stiffness, and that similar changes in phonation onset frequency may also be induced by

geometric changes.

Chapter 3 showed a comparison of the flow-induced responses of synthetic models with

geometries based on magnetic resonance imaging (MRI) data with the responses of models based
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on the more geometrically simplified M5 model. The MRI-based models showed evidence of

mucosal wave-like motion, a feature absent in the M5-based physical models. The M5-based

models also showed primarily divergent motion, whereas convergent-divergent motion was evident

in the MRI-based models. The M5 prephonatory intraglottal profiles were straight and it was

hypothesized that convergent profiles may have improved the convergent-divergent behavior of the

MRI-based models. It was concluded that parametric studies investigating the role of the effect of

the various geometric features on the flow-induced vibratory response was necessary.

The research in this chapter was undertaken to determine which geometric features signifi-

cantly influenced a vocal fold model’s flow-induced vibratory response. The work was intended to

extend the work of Cook and Mongeau [8], Cook et al. [11], and Zhang [12] by using a similarly-

defined two-dimensional computational vocal fold model, only with motion fully-coupled with an

unsteady, viscous, slightly-compressible flow solver. The vocal fold model (see Fig. 4.1) was a

modification of the M5 model of Scherer et al. [13]. It generally consisted of linear subglottal

and supraglottal profiles of varying angles, a linear intraglottal profile of varying angle and length,

and rounded glottal inlet and exit regions of varying radii. A body-cover representation was used,

with body and cover geometries independently defined. In order to accommodate the significant

computation times required for model simulation, the geometric parameters were defined and the

simulation results were analyzed based on a screening-type design-of-experiments methodology.

The simulation results were analyzed to estimate the relative significance of different geometric

parameters on the model’s response.

In the following sections, the computational approach is described, including model param-

eterization, screening design, computational simulation methods, and data analysis. The results,

including rankings of the influence of model parameters on various aspects of model response, are
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Figure 4.1: Parametric two-layer vocal fold model.

presented and discussed. Finally, suggestions for further studies of specific model parameters and

development of improved models are provided.

4.2 Methods

4.2.1 Model definition and parameterization

The model body and cover layer geometries were defined using 14 parameters (Fig. 4.1).

Of these the vocal fold depth, D, was constant and the other 13 were variable. The variable param-

eters were each given a low, baseline, and high value (see Table 4.1), according to similar values

found in previous reports [13, 42, 57–60].

4.2.2 Screening design

In order to determine which geometric parameters were significant in terms of influencing

model response, a twenty-run Plackett-Burman screening design-of-experiment was used to ana-

lyze the effect of the 13 variable parameters on various measurements of vocal fold motion. This

approach, as opposed to a full-factorial design-of-experiment or sensitivity analysis, was taken be-
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Table 4.1: Vocal fold model geometric parameter values and descriptions.

Parameter Baseline Low, High Values Description
θ1c, θ1b 50◦ 49.35, 50.65◦ Inferior glottal angle (cover, body)
θ2c, θ2b 0◦ -2.75, 2.75◦ Intraglottal angle (- divergent, + convergent)(cover, body)
θ3c, θ3b 90◦ 88.85, 91.15 Superior glottal angle (cover, body)

r1c 1.5 mm 1.18, 1.82 mm Entrance radius (cover)
r1b 1.12 mm 0.80, 1.45 mm Entrance radius (body)
r2c 0.987 mm 0.837, 1.137 mm Exit radius (cover)
r2b 0.513 mm 0.36, 0.66 mm Exit radius (body)
T 2.0 mm 1.85, 2.15 mm Glottal thickness (vertical)
δ 1.15 mm 1.0, 1.3 mm Maximum medial cover layer thickness
t 1.15 mm 1.075, 1.225 mm Inferior and superior cover layer thickness
D 8.4 mm 8.4 mm Lateral depth

cause of the computational cost of the model simulations (approximately 19 hours per simulation

on a 2.8 GHz quad-core Intel Nehalem CPU; time to complete all cases was reduced by running

simulations simultaneously on a supercomputer). The combinations of high-low parameter values

for each simulation were adapted from Lawson and Erjavec [61] and are given in Table 4.2. Since

13 geometric attributes were analyzed but twenty runs were performed, six unassigned factors

(X14-X19 in Table 4.2) represent unknown combinations of 2nd, 3rd, and higher-order interactions

of the 13 assigned factors. In addition to the twenty high-low runs, an additional run with all

parameters set to baseline values was executed.

The benefit of using a Plackett-Burman design is that the influence of each parameter on

the measured output can be estimated using relatively few runs. The tradeoff is that interactions

between parameters are confounded with the main effect of each parameter. It is therefore intended

to serve as a screening design to be followed up with focused, more detailed studies on the param-

eters found to be significant. In this study, analysis of the magnitude of each parameter’s effect

was used to determine which parameters are recommended for such future detailed studies.
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The levels of the high and low parameter values were chosen such that changing each

parameter from high to low resulted in a similar overall change (in terms of magnitude) in the

model’s shape. For example, the inferior surface angle (θ1c) levels were determined as follows.

First, all parameters were set to their baseline values. Then, keeping all other parameters at their

baseline values, high and low θ1c values that yielded 0.15 mm displacement of a point on the glottal

entrance radius position from its original position were determined (yielding a total displacement

of 0.3 mm of the point position when alternating between high and low settings of parameter θ1c).

This was repeated for all parameters. The total displacement value of 0.3 mm was selected due to

geometric restrictions (i.e., higher displacement values resulted in geometrically infeasible body

layer definitions).

The profile of the model was defined using basic geometric and linear algebra principles.

An Excel spreadsheet was used to draw each model based on input parameters. The shape of the

vocal fold was checked to make sure that no parameters were being violated (e.g., excessive length

and height, tangency between radii and straight surfaces, etc.). All 20 run profiles were compiled in

Excel and proved to be accurate. (One exception to this was Run 4, for which the high value of r2b

= 0.66 mm was not feasible, and was thus reduced to 0.56 mm. For this run, proper weighting of the

value was taken into consideration when calculating the effects. This modification was deemed to

be acceptable since the results showed that overall, r2b was insignificant in the measured effects.)

Profiles of various geometrically defined models, including the baseline model, are provided in

Fig. 4.2.
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Figure 4.2: Illustration of two-layer (cover - gray; body - black) models used in select runs.

4.2.3 Computational model

A computational model was used to simulate the flow-induced vibratory motion of a two-

dimensional representation of a previously described experimental setup [19, 40] (see Fig. 4.3;

note the use of symmetry for computational efficiency). The experimental setup consisted of a

compressed air source supplying air into a plenum-tube-synthetic vocal fold model series. No

vocal tract was included; the supraglottal flow was thus a free jet.

Figure 4.3: Computational fluid domain (not to scale). See Table 4.1 for geometric and other
boundary condition settings. Model is symmetric about line AB.
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Table 4.3: Computational fluid domain line lengths and boundary conditions.

Line Segment Length (m) Boundary Type
AB 0.9767 Slip Wall
BC 0.1524 Zero Pressure
CD 0.1000 Zero Pressure
DE 0.1439 Wall
EF 0.0084 FSI
FG 0.0021 FSI
GH 0.0114 FSI
HI 0.0042 FSI
IJ 0.5588 Wall
JK 0.1397 Wall
KL 0.3080 Wall
AK 0.1524 Fixed pressure (900 Pa)

The commercial finite element software ADINA, designed specifically for systems that

exhibit fluid-structure interactions and that has been used previously in voice research [7], was

used. The computational model consisted of distinct but fully-coupled solid and fluid domains,

each of which is described below.

The solid domain included different materials for the model body and cover layers (see

Fig. 4.4). A hyperelastic Ogden material allowed for large strain. The Young’s modulus values

for the body and cover layers were approximately 15 kPa and 5 kPa, respectively. The density was

1070 kg/m3 for each layer. The Rayleigh damping scheme was used, with damping coefficients of

α = 1.948 and β = 2.866×10−4. These correspond to damping ratios of approximately 0.018 and

0.029 at frequencies of 120 and 200 Hz, respectively. A zero displacement boundary condition was

applied to the lateral edge of the solid domain. A fluid-structure interaction boundary condition

was applied to the remaining borders of the solid domain (i.e., those that were in contact with the

fluid domain). This boundary condition enforced consistent displacement and stress in both fluid

and solid domains along the interface.
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Figure 4.4: Meshed solid and fluid domains.

The fluid (airflow) domain (see Figs. 4.3 and 4.4) was governed using the unsteady, viscous,

incompressible Navier-Stokes momentum equations coupled with a slightly compressible form

of the continuity equation. The air density, viscosity, and bulk modulus values were 1.2 kg/m3,

1.8×10−5 Pa·s, and 1.41×105 Pa, respectively. The fluid domain dimensions and boundary condi-

tions are given in Table 4.3. The initial glottal gap width was 0.2 mm.

The slightly compressible fluid model was used to enable modeling of acoustic feedback

in the subglottic section. In the slightly compressible algorithm [62], a compressible density, ρm,

is defined as the incompressible density ρ at a pressure of p = 0, modified by the ratio of pressure,

p, to bulk modulus, κ:

ρm = ρ

(
1+

p
κ

)
(4.1)

This compressible density replaces the incompressible density in the continuity equation:

ρ

κ

(
∂ p
∂ t

+ v ·∇p
)
+ρm∇ · v = 0 (4.2)

where t and v denote time and velocity, respectively.
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In this formulation there is no need to use the energy equation. Compared with a fully-

compressible algorithm, this approach is more computationally efficient [63], and convergence

may be more easily obtained for the low Mach numbers typical of voice production. It is noted

that this approach is valid only for p
κ
<< 1. For these simulations, maximum pressure values were

around 3 kPa, for maximum p
κ

ratios of around 0.02, thus satisfying the p
κ
<< 1 condition.

Figure 4.4 shows the meshes in both domains. Model verification was performed to ensure

that the solution was reasonably independent of time step size and mesh density. The time step was

decreased from 2.5×10−5 s to 6.25×10−6 s; the solution converged at 1.25×10−5 s. The element

mesh density around the vocal folds ranged from 20 by 40 up to 80 by 160 (these numbers represent

a ratio of lateral versus vertical elements around the FSI boundary); the solution converged at a

mesh density of 40 by 80. Thus, a time step of 1.25×10−5 s and a mesh density of 40 by 80 was

used in this study.

The fluid domain utilized primarily four-node quadrilateral elements, and consisted of ap-

proximately 19,000 nodes. The solid domain used three-node triangular elements, and contained

approximately 3,000 nodes. As has been done previously [7], a contact line was used to prevent

complete mesh collapse as the solid domain moved medially. This contact line was placed such

that the minimum allowable glottal gap width was 0.05 mm. An example of the script files used to

define the geometry, fluid and solid domain of one of the models is provided in Appendix B.

4.2.4 Yield calculation

To estimate the effect of each of the 13 geometric parameters on the model’s response,

various output measures, denoted here as yields, were obtained. These included the following

(described in detail below; see also Table 4.4): flow-induced vibration frequency ( fFIV ), changes
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in lateral glottal width (∆d), flow rate (∆q), and intraglottal angle (∆α), and lateral phase delay

(∆φ/T , where T is the vertical glottal thickness). Similar measures of lateral phase delay have

been used by Titze et al. [64] and Boessenecker et al. [3] to quantify mucosal wave-like motion.

Table 4.4: Nomenclature of measured yields.

Yield Definition
fFIV (Hz) Flow-induced vibration frequency
∆d (mm) Difference between min/max glottal width
∆q (m3/s) Difference between min/max flow rate

∆α (◦) Difference between min/max intraglottal angle
∆φ/T (◦/mm) Lateral phase delay between points near entrance and exit radii

fMOD (Hz) Second in vacuo modal frequency

These five measures were calculated for each case using Excel and Ensight (Appendix

C) after steady-state oscillation was reached. The flow-induced vibration frequency ( fFIV ) was

measured by tracking the “entrance point” position (see Fig. 4.1). Measures of ∆d, ∆q, ∆α , and

∆φ/T are visually portrayed in Fig. 4.5, in which three different simulation results (comparing the

baseline model to a “good” and “bad” model) are shown. The difference in minimal glottal width

(∆d) was measured by taking the net difference between high and low values of the minimum

glottal gap (z-direction; see coordinate system in Fig. 4.4) over time. The change in flow rate (∆q)

was measured by integrating the velocity profile just downstream of the model, multiplying by

0.017 cm (around the length of the average adult male’s vocal folds [65]), and taking the difference

between high and low flow rates over time. The change in intraglottal angle (∆α) was measured by

tracking the y- and z-locations of the entrance and exit points and taking the net difference between

the low and high angle between them. The phase delay (∆φ/T ) was measured by tracking the

57



Figure 4.5: Predicted yields for the baseline (solid), Run 13 (short dashes), and Run 18 (long
dashes) models. In the lower right plot, black and gray colors denote entrance and exit point
positions, respectively (see Fig. 1).

entrance and exit z-locations over time, taking the difference in time between peak values, dividing

by the period, multiplying by 360◦, and dividing by the vertical glottal thickness (T).

The effect of each parameter was calculated as follows. Each parameter’s yields from runs

with a specified ‘high’ value were averaged. Each parameter’s yields from runs with a specified

‘low’ value were also averaged, subtracted from the ‘high’ yield average, and then normalized. A

resulting value relatively close to zero indicated that even though the parameter levels may have
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been changing, the overall yield did not vary; i.e., the parameter had a minimal effect on model

response. A value close to +1 or -1 meant that a particular parameter had a high impact on the

measured yield. A positive effect meant that increasing that parameter’s value increased the yield,

while a negative effect meant the opposite.

Statistical p-values were estimated for each parameter at each measured yield. A standard

α = 0.5 value was used. Since there was no anticipated variation in the calculated yields (due to

the use of computational analysis), a Monte Carlo technique (implemented by the commercial sta-

tistical software package JMP) was used to provide a pseudo-standard error (PSE) which allowed

for calculated p-values. p-values less than 0.05 were considered to be significant; p-values less

than 0.10 but greater than 0.05 were considered to be marginally significant.

In addition to these yields, animations of the simulated model motion were created for

visual inspection. Finally, in vacuo modal analysis was performed on each vocal fold model (also

using ADINA). These modal analysis results were not used to estimate which parameters were

important in governing the model motion, but were used to assist in interpreting the results. As

discussed below, the second modal frequency, fMOD, was of particular interest.

4.3 Results and discussion

Table 4.5 lists the six calculated yields from each of the 20 runs; Fig. 4.6 contains plots

of the normalized effects of each parameter per yield, with significant and marginally significant

p-values denoted.
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Figure 4.6: Normalized yield effects: flow-induced vibration frequency ( fFIV ), change in glottal
width (∆d), change in flow rate (∆q), change in intraglottal angle (∆α), lateral phase delay (∆φ/T ),
and second in vacuo modal vibration frequency ( fMOD). Filled bars represent positive effects;
empty bars represent negative effects. Numbers above bars represent individual p-values.
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Table 4.5: Yield values for each run.

Run fFIV (Hz) ∆d (mm) ∆q (m3/s) ∆α (◦) ∆φ/T (◦/mm) fMOD (Hz)
0 117.8 0.829 1.53E-04 10.5 18.5 116.8
1 119.2 1.045 1.89E-04 15.2 24.9 120.4
2 115.9 1.264 2.40E-04 20.0 26.2 114.9
3 121.3 0.724 1.17E-04 7.1 14.4 122.6
4 114.5 1.120 2.01E-04 10.5 17.5 115.1
5 118.2 0.715 1.31E-04 10.4 16.7 119.1
6 118.8 1.023 2.01E-04 16.7 28.6 117.0
7 119.1 0.757 1.53E-04 13.2 21.2 119.9
8 121.5 0.503 0.92E-04 7.3 18.0 120.7
9 116.2 0.732 1.01E-04 4.5 8.5 114.1

10 117.8 0.694 1.96E-04 12.7 21.7 117.0
11 120.0 1.061 1.96E-04 16.0 26.6 121.1
12 113.8 1.223 2.17E-04 16.3 20.8 114.6
13 115.2 0.712 0.98E-04 4.1 8.1 112.1
14 115.9 1.040 1.91E-04 11.0 19.4 115.6
15 122.3 1.099 2.48E-04 19.7 32.5 119.4
16 118.6 0.861 1.62E-04 9.7 16.2 118.4
17 117.5 0.733 1.29E-04 7.3 13.0 115.2
18 118.8 1.202 2.38E-04 20.6 30.3 117.5
19 116.1 1.253 2.54E-04 20.0 28.7 114.1
20 119.3 0.711 1.07E-04 6.0 9.3 119.4

4.3.1 Flow-induced vibration frequency

Flow-induced vibration frequency ( fFIV ) of the ranged from 113 to 122 Hz, all of which are

within the acceptable range of male phonation. The parameter that had the largest effect was the

cover layer superior angle (θ3c), which had a negative effect. Other significant parameters were the

body layer superior angle (θ3b) and the cover exit radius (r2c), both of which had positive effects.

Marginally significant parameters were θ2c, T, and X18 (an unknown interaction).

The flow-induced vibration profiles from three runs through one cycle of vibration are

showed in Fig. 4.7. Cases displayed include the baseline model (Run 0) and Runs 13 (bad

model) and 18 (good model). For the baseline model, the cover and body layer prephonatory

intraglottal angles were 0◦. Its movement was similar to previous similarly-defined synthetic mod-
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els (e.g., [54]). The vibration frequency was 117 Hz. There was minimal presence of mucosal

wave-like motion, and the glottal profile stayed primarily divergent throughout the cycle. Run 13

produced similar results as the baseline model, with no evidence of mucosal wave-like motion and

consistently divergent glottal profile throughout the cycle. Its cover layer intraglottal angle (θ2c)

was set at its low value of -2.75◦ (divergent). As seen in Fig. 4.7, Run 18 showed improvement

in motion over that of both the Run 0 and Run 13 models. The intraglottal angle altered between

convergent during opening (t/T = 4/6 to 5/6 ) and divergent during closing (t/T = 1/6 to 3/6). This

attribute was nonexistent in the Run 0 and Run 13 models (see also Fig. 4.5), and is also a charac-

teristic of true vocal fold motion. A common feature between Run 18 and other cases with similar

convergent-divergent motion was that the cover layer intraglottal angle (θ2c) was set to its high

value of 2.75◦ (convergent).

Figure 4.7: Profiles of different parametric models of the vocal folds over one oscillation cycle.
The baseline model (Run 0, top), Run 13 (middle) and Run 18 (bottom) are all shown. Gray
profiles represent each model’s original position.
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The significance of the cover superior angle in influencing fFIV is related to its role in

governing model stiffness. The first and second mode shapes for Run 18 are shown in Fig. 4.8.

The first mode features primarily inferior-superior motion, whereas the second mode also features

alternating convergent-divergent motion. The first modal frequencies were around 50 Hz, whereas

the second modal frequencies ( fMOD) were very close to those of the flow-induced vibration fre-

quency. This is evident in Fig. 4.9, where a strong correlation between fFIV and fMOD is seen.

This is likely due to acoustic coupling of the subglottic system with the model’s second mode of

vibration (Zhang et al., 2006b; 2009). As seen in Fig. 4.6, the second mode of vibration ( fMOD)

was most influenced by θ3c, the same parameter that most significantly influenced fFIV . Decreas-

ing θ3c led to a larger inferior-superior base length, which in turn increased the model stiffness.

This caused fMOD to increase, and by virtue of the acoustic coupling, fFIV .

Figure 4.8: Mode shapes 1 (left) and 2 (right). Light gray lines denote undeformed shapes.
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Figure 4.9: Relationship between flow-induced vibration frequency ( fFIV ) and the second modal
frequency ( fMOD) of the solid models. Hypothetical one-to-one relationship (solid line) and actual
data trend line (dashed line, R2 = 0.75) are shown.

4.3.2 Glottal width, flow rate, intraglottal angle, and phase delay

The other four measured yields (change in glottal width, ∆d; change in flow rate, ∆q;

change in intraglottal angle, ∆α; and phase delay, ∆φ/T ) all exhibited somewhat similar trends in

terms of significant parameters and were more strongly influenced by the cover intraglottal angle

(θ2c) than by any other yield.

The glottal width (∆d) was mainly influenced by θ2c, which had a positive effect. The

largest differences in the glottal width were around 1.4 mm, which is similar to previous values

measured using excised human hemilarynges [2, 3]. Only one body layer geometry (θ1b) had a

significant effect on ∆d. Other significant and marginally significant parameters include θ3c, X17,

and θ1c.

Unknown interactions of parameters appear to be somewhat significant only in ∆d and

fFIV yields (see Fig. 4.6). As mentioned above, the Plackett-Burman design has interactions con-
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founded in the main effects. In order to understand the magnitude of the effect that interactions play

in governing fFIV and ∆d, further parametric studies considering the most influential parameters

and their interactions would be necessary.

The change in flow rate (∆q) was mainly influenced by θ2c (positive effect). Other parame-

ters that affected ∆q were T, θ1c, and r2c. This is important since changes in flow rate are strongly

correlated with sound production. The change in intraglottal angle (∆α) was also most strongly

influenced by θ2c, which had a positive effect. Other parameters that effected ∆α include r1c, θ1c,

T, θ1b, and r2c. Adjusting these parameters for large ∆α is desirable for generating alternating

convergent-divergent motion. For phase delay (∆φ/T ), other significant and marginally signifi-

cant parameters included r2c, T, and r1c. All of these geometries had a positive effect. Relative

to the baseline model, increased phase delays are desirable; hence, increased values of θ2c (more

convergent profile), r2c, T, and r1c are recommended for improving the phase delay.

4.3.3 Overall parameter significance

To quantify the overall effect of each parameter on vocal fold movement, the geometric

parameters for ∆d, ∆q, ∆α , and ∆φ/T were ranked for each yield (i.e., assigned a number 1-19),

summed, and normalized. These overall rankings are shown in Fig. 4.10, and provide a graphi-

cal representation of the parameters that exerted the greatest overall effect on vocal fold motion.

The cover medial angle profile θ2c is clearly the most significant factor overall. It had the greatest

effect (positive) on all calculated yields, except for the flow-induced vibration and second modal

frequencies. Altering the intraglottal angle to have a convergent prephonatory profile significantly

improves model motion in terms of generating alternating convergent-divergent motion and mu-

cosal wave-like motion (phase delay). The influence of θ2c is followed by θ1c, θ1b, r1c, θ3c, T, r2c

65



(all of which, except for θ1b, govern the cover layer profile ), δ and t (which govern cover layer

thickness), and other interactions and body layer geometries.

Figure 4.10: Normalized summed effects for ∆d, ∆q, ∆α , and ∆φ/T .

The other two model cover layer angles (θ1c and θ3c) also had an effect on model motion,

though not nearly as profound as θ2c. θ1c had a negative effect on calculated yields, including ∆q,

∆α , and ∆φ/T . θ3c had a positive effect on ∆d and a negative effect on fFIV and fMOD.

The entrance and exit radii (r1c and r2c) showed similar effects on all six yields. Increasing

either would provide an increase in ∆q, ∆α , and ∆φ/T . Since large glottal angle differences

and changes in flow rate are desirable for improving the motion and increasing sound production,

relatively larger entrance and exit edge radii may be advisable.

Another somewhat influential geometric feature was the glottal thickness (T), which had

a significant or marginally significant positive effect on ∆q, ∆α , and ∆φ/T . Increasing T had

a significant impact on the phase difference between the inferior-superior portions of the glottis
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(similar to θ2c), suggesting that increasing T may provide improved mucosal wave-like motion for

physical modeling.

It is interesting to note that the body dimensions did not have a major effect on any of

the measured yields, with the exception of θ1b, which had a positive effect on ∆d and ∆α . Some

of the unknown interactions had higher significance than the body parameters. Therefore, the

interactions of the cover layer geometries and θ1b may prove to be important to model motion and

should therefore be investigated.

4.4 Conclusions

In this chapter, the influence of geometric parameters on the flow-induced vibration of a

simplified vocal fold model was discussed. It was shown that simplified models have the potential

to be altered geometrically for more favorable (realistic) vocal fold model movement.

Prior research has shown that the intraglottal angle, vocal fold depth, and vocal fold length

significantly influence vocal fold motion [8, 12]. The present work considered more geometric

attributes of a simplified model and showed that the geometric parameters that play the most im-

portant role in affecting the flow-induced vibration frequency, glottal area, flow rate, change in

glottal angle during phonation, phase delay, and second modal frequency were the cover layer ge-

ometries (foremost, the intraglottal cover layer angle, θ2c, followed by θ1c, r1c, θ3c, T, r2c, and t),

and the inferior glottal angle of the body (θ1b).

A key aspect of vocal fold movement is the mucosal wave. Previous geometrically-simplified

synthetic models have not displayed this type of motion. The phase delay measurement provided a

quantitative assessment of mucosal wave-like motion; the phase delays calculated in this work are

similar to data obtained using excised human larynges [3]. Although an optimized model was not

67



created in this study, the results show the potential for creating a model that has at least a 34.5◦/mm

phase delay (lateral ∆φ values calculated by Boessenecker et al. reached a maximum of 89◦, which

correspond to a ∆φ/T value of approximately 44.5◦/mm [3]). Therefore, previously limited mu-

cosal wave-like features on simplified models may be obtainable if these geometric definitions of

the cover layer are incorporated. Further, the present work shows that using a convergent profile

will increase intraglottal phase delays and alternating convergent-divergent glottal angles that may

more accurately simulate human vocal fold movement.

The results from this design-of-experiment do not reflect the level of influence of each

parameter in its entirety. Therefore, recommended future work includes a full factorial statisti-

cal analysis, which will provide information on the interaction of substantial parameters. Also, it

would prove beneficial to perform physical tests on these simplified models with improved geomet-

ric features suggested above to validate the computational data provided. Such analysis and testing

is suggested so that specific geometric values for each parameter may be recommended. Further

studies over a wider range of parameter values, including three-dimensional geometric parameters,

and development of anisotropic modeling materials are also strongly recommended.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Knowledge of vocal fold vibratory characteristics is pivotal in assessing voice disorders.

In order to contribute to an improved understanding of voice production, this thesis research has

been conducted, which included investigations into the role of material and geometric parameters

on the vibratory response of vocal fold models. An extension of the vocal fold model introduced

by Thomson et al. [7] was used for physical and computational testing of vocal fold functionality,

and various output parameters (such as pressure, frequency, flow rate, glottal area, etc.) were used

to quantify differences in model motion.

5.1 Influence of asymmetric stiffness on synthetic vocal fold model vibration (Chapter 2)

5.1.1 Conclusions

Asymmetry was introduced into synthetic models of the vocal folds by varying the rela-

tive stiffness between the paired models, thus allowing for a controlled study of the influence of

material-only asymmetry on vocal fold vibration and glottal aerodynamics. This was done using

high-speed videokymography and particle image velocimetry (PIV).

It was shown that asymmetry in the models’ stiffness reduced glottal width by 1.25 mm,

introduced phase differences between the left and right folds up to 90◦, increased onset pressure

by almost 300%, and contributed to asymmetric glottal velocity profiles. These suggest that from

69



a phonatory perspective, close matching of left-right stiffness is desired, since increased stiffness

of one fold (that is, a greater degree of asymmetry) appears to result in:

(1) smaller glottal area;

(2) higher onset pressure resulting in greater required phonatory effort;

(3) incomplete glottal closure, resulting in a breathy voice; and

(4) jet skewing, potentially contributing to broadband sound production.

5.1.2 Future work

Several areas of future work on asymmetric modeling are here suggested. Firstly, com-

parison should be made between these results and those obtained using a model with a supra-

glottal vocal tract and false vocal folds. While numerous synthetic and excised larynx studies

have been performed without a vocal tract - usually for instrumentation access - it has been shown

(e.g., [20, 39]) that a vocal tract can directly influence the glottal jet. The vocal tract can also

present an acoustic loading, thus potentially forming strong acoustic coupling between the vocal

folds and the vocal tract [39]. Other areas of suggested work include: similar studies using com-

putational models for more precise control over stiffness and geometry; further investigation into

the effects of increased phase difference in asymmetric vocal fold vibration, including the presence

or absence of irregular phonation as evidenced by slightly different frequencies; and development

and testing of improved models (e.g., with nonlinear stress-strain characteristics and less idealized

geometry) that more closely mimic human vocal folds.
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5.2 Idealized vs. MRI-based synthetic vocal fold models (Chapter 3)

5.2.1 Conclusions

The flow-induced responses of two models of differing geometries were characterized in

order to show that more life-like motion can be achieved when using more realistic geometry.

This was done by comparing the flow-induced responses of two synthetic, self-oscillating models

of matching material properties but differing geometries. One model was based on an idealized

geometry (the so-called “M5” geometry commonly used by voice researchers). The other was

based on geometry derived from magnetic resonance imaging (MRI) data [44].

The flow-induced responses of the MRI-based synthetic models showed remarkable differ-

ences compared with those of the M5 models. Improvements include:

(1) less vertical motion (by 1.77 mm);

(2) apparently more typical alternating convergent-divergent glottal profile pattern; and

(3) evidence of mucosal wave-like motion.

Since fabrication methods for both the M5 and MRI models were similar, the differences

between the two models’ motions were primarily attributable to differences in geometry. It is, of

course, expected that different geometries will yield different vibration patterns. What is signifi-

cant, however, is that the MRI model showed important improvements in yielding more life-like

motion than the M5 model while using the same materials. It is hoped that these findings will

stimulate and provide direction for research efforts aimed towards developing improved synthetic

vocal fold models for human voice production research.
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5.2.2 Future work

The role of material properties in governing vocal fold model response must also continue

to be explored; synthetic model materials reported in the literature have typically been isotropic

and linearly elastic, in contrast with the anisotropic, nonlinear material properties of vocal fold

tissue. The development of more realistic synthetic materials will be an important step towards

creating more life-like vocal fold models.

5.3 Influence of geometric features on vocal fold model vibration (Chapter 4)

5.3.1 Conclusions

The influence of geometric parameters on the flow-induced vibration of a simplified vocal

fold model was analyzed. It was shown that simplified models have the potential to be altered

geometrically for more favorable (realistic) vocal fold model movement. The geometric parame-

ters that exerted the most significant influence on vibratory parameters (change in glottal width,

change in flow rate, change in glottal angle during phonation, and phase delay) were the cover layer

geometries (primarily that of the intraglottal cover layer angle, θ2c) and the inferior glottal angle

of the body (θ1b). It was shown that previously limited mucosal wave-like features on simplified

models may be obtainable using proper cover layer geometric definitions. Furthermore, increasing

the glottal convergence angle also provides alternating convergent-divergent glottal angles during

model oscillation.

5.3.2 Future work

A full factorial statistical analysis will provide information on the interaction of significant

parameters, as well as provide a newly “idealized,” yet still geometrically simple model to be used
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in future vocal fold modeling research. Also, physical tests on simplified models with improved

geometric features should be performed to validate these results. Also, a study investigating single

variables and their influence on model motion is suggested so that specific geometric definitions of

each parameter may be assigned.

5.4 Additional work

There remain significant open questions in the general area of voice research. Below are

a few suggestions for future work that may prove to be beneficial in advancing the community’s

understanding of voice production mechanics:

• The vocal folds are generally comprised of three major tissue layers, and yet the models used

in this study (both computational and physical) and many other published studies use only

two layers. The most neglected layers are the epithelial (or outer) and ligament layers. The

epithelial layer is difficult to manufacture and implement due to its small thickness (around

0.05 to 0.1 mm). However, if these layers could be incorporated, synthetic models may yield

more life-like characteristics of vocal fold movement.

• The vocal folds have a surface liquid that seems to affect vocal fold movement. Incorporating

this liquid into synthetic models may also prove to be beneficial.

• Current MRI data does not provide sufficiently high resolution images for voice research.

Methods to provide higher resolution upon MRI image capture (such as coils designed to

provide better focus on the area of the vocal tract) may result in overall better models of the

vocal folds, and may also provide more detailed information about the entire vocal tract.
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• The MRI-based model developed in this work showed promise in vibrating similar to true

vocal folds. However, the MRI-based model’s primary shortcoming was the high onset

pressure. Methods to decrease this onset pressure should be explored. It is conceivable that

in the future, a patient diagnosed with a voice disorder could have an MRI scan of their

vocal folds, and corresponding models could be built and tested to observe dissimilarities

with healthy vocal folds.

• Two-dimensional computational models were used in this research. Expanding to a third di-

mension would allow for investigations of models that do not have uniform anterior-posterior

(coronal) cross-sections.

• Since geometric features of the larynx are central to the vocal fold’s flow-induced response,

development of a dynamic model that uses all supporting cartilage around the vocal folds, as

well as muscle contraction techniques, may provide more realistic modeling conditions.
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APPENDIX A. MATLAB

MATLAB was utilized to efficiently solve for various factors of model motion, including

frequency, glottal area, phase shift, vertical displacement, and glottal width. Also, MATLAB

was used to compile videokymographic images (defined in Chapter 2). The following appendices

provide the computer code used in this research.
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A.1 Calculating frequency, glottal area, phase shift, glottal width, and VKG

% Program to read high-speed images and calculate glottal area vs. time and

% position of left & right vocal fold models. Also, data about frequency

% and phase shift can be derived

% Modified by Brian Pickup, 07 Aug 2009. Read movie files

clear all

clf; close all

clc

fps= 9000;

ep = 1/2; %Edge Position. 1/2 for midpoint

NFrames = 4000; %Number of frames kymographed. Change as necessary

MinTime = 0/fps;

MaxTime = (NFrames-1)/fps;

Time=0:1/fps:MaxTime;

extension = ’M5_35_1_00kPa_superior_60fps’; %Change per movie

folder = [’F:\BrianP\HS Camera Videos for M5 MRI comparison\’ extension];

filename = [folder ’\’ extension ’.avi’];

%% Calibration

calibfile = [’C:\Documents and Settings\bapickup\My Documents\Research...

\Thesis\M5 MRI\HS Camera\Calibration\M5_35_superior.tif’];

%Change per model

calibimage = imshow(calibfile);

calibpixel = ginput(2);

title(’Select two points exactly 17 mm apart’)

ppmm = sqrt((calibpixel(1,1)-calibpixel(2,1))^2+(calibpixel(1,2)...

-calibpixel(2,2))^2)/17;

for i=1:NFrames

% Read images; change path & filename as necessary

mov = aviread(filename,i);

Picture = frame2im(mov);

% Convert image to type double

C=double(Picture);

% Select top & bottom of orifice

if i==1

figure(1)
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NonDimTime=0:1/NFrames:(NFrames-1)/NFrames;

subplot(111)

image(C/3); axis xy; colormap(gray)

title([’Select top of orifice’])

[xtop,ytop]=ginput(1);

xtop=round(xtop);

ytop=round(ytop);

title([’Select bottom of orifice’])

[xbottom,ybottom]=ginput(1);

xbottom=round(xbottom);

ybottom=round(ybottom);

end

% Display original image with top as well as bottom orifice lines

figure(1)

subplot(311)

set(gca,’FontSize’,10,’FontName’,’Times’);

image(C/3); axis xy

shading interp

colormap gray

hold on

plot([0 size(C,2)],[ytop ytop],[0 size(C,2)],[ybottom ybottom])

plot([xtop,xbottom],[ytop,ybottom],’r--’);

hold off

title([’’ num2str(i) ’’])

% Choose where to perform VKG and measure left/right edge

H = round((ytop-ybottom)*ep);

% if i == 1 %For Arbitrary Point

% imshow(Picture);

TITLE(’Choose point for Kymographic construction’);

% H = ginput(1);

% H = round(H(2));

% else

% end

GrayProfile(i,:)=Picture(H,:);

% Plot intensity vs. horizontal location along row y= H

subplot(312)

set(gca,’FontSize’,10,’FontName’,’Times’);

y=H;

plot(C(y,:))

xlim([0 1024]); ylim([0 255])

% Crop C by removing top & bottom
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C(ytop:size(C,1),:)=[];

C(1:ybottom,:)=[];

% Identify all pixels with intensity > Thresh by coloring them green

Thresh=80;

D=im2bw(C/255,Thresh/255); % Convert grayscale image to binary image

E(:,:,1)=C/255; % Red channel

E(:,:,2)=1-D; % Green channel

E(:,:,3)=C/255; % Blue channel

% Find distance to left edge at midpoint

% Find left & right model displacements from centerline at midpoint

% between top & bottom

yMid=H; % Change # for MRI imaging at max glottal position

xMid=round(0.5*(xbottom+xtop));

if D(yMid,xMid)==0

Edge1=1; % xMid,yMid coordinate is in glottis

elseif D(yMid,xMid)==1

Edge1=0; % Either closed or Right VF is to left of midplane

end

Edge1=0;

Edge2=0;

for j=1:size(D,2)

if Edge1==0

if D(yMid,j)==0

LeftEdge(i)=j;

Edge1=1;

end

end

if Edge1==1

if D(yMid,j)==1

RightEdge(i)=j;

Edge2=1;

Edge1=0;

end

end

end

if Edge2==0

LeftEdge(i)=nan;

RightEdge(i)=nan;

end

% Plot orifice, midline, and lines to left & right vocal folds

subplot(313)
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set(gca,’FontSize’,10,’FontName’,’Times’);

image(E); axis xy; % All pixels with intensity > Thresh are now green

hold on

plot([xtop,xbottom],[ytop,ybottom],’r--’);

% plot([xMid,LeftEdge(i)],[yMid,yMid],’r:’);

plot([LeftEdge(i),RightEdge(i)],[yMid,yMid],’b:’);

hold off

% Calculate orifice area in pixels

% Note: 1 = outside orifice, 0 = inside orifice

DArea(i)=size(D,1)*size(D,2)-bwarea(D);

% Command to update images

drawnow

end

% Convert area from pixel to mm^2

DArea=DArea/ppmm^2;

% Convert edge locations to mm relative to midplane

LeftEdge=(LeftEdge-xMid)/ppmm;

RightEdge=(RightEdge-xMid)/ppmm;

% Plot area & edge position vs. t/T

figure(2)

subplot(211)

set(gca,’FontSize’,10,’FontName’,’Times’);

plot(NonDimTime,DArea)

xlabel(’Nondimensional time (t/T)’)

ylabel(’Glottal area (mm^2)’)

% Convert edge locations to mm

subplot(212)

set(gca,’FontSize’,10,’FontName’,’Times’);

plot(NonDimTime,LeftEdge,NonDimTime,RightEdge);

xlabel(’Nondimensional time (t/T)’)

ylabel(’Edge position (mm)’)

% Format for plotting

figure(1)

set(gcf,’PaperPosition’,[1 1 3 3])

hold(gca,’all’);

print(’-dtiff’,’-r200’,’figure1.tif’);

figure(2)

set(gca,’FontSize’,10,’FontName’,’Times’);

subplot(211)

set(gcf,’PaperPosition’,[1 1 3 3])
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hold(gca,’all’);

print(’-dtiff’,’-r200’,’figure2.tif’);

%% Reference

[ht,wd] = size(GrayProfile’);

minx = 0/fps;

maxx=NFrames/fps;

y0 = (xtop+xbottom)/2;

maxy = -(y0-ht)/ppmm;

miny = -y0/ppmm;

rangex = maxx-minx;

rangey = maxy-miny;

dx = rangex/wd;

dy = rangey/ht;

x=minx:dx:maxx;

y=miny:dy:maxy;

%% Plot Kymogram

figure(3)

image(x,y,GrayProfile’); colormap gray(256);

set(gca,’YTick’,-10:2:10,’YMinorTick’,’on’,’XTickLabel’,’ ’);

set(3,’units’,’inches’); set(3,’position’,[1 1 3 3])

ylabel(’Displacement (mm)’,’fontsize’,10);

% xlabel(’Time (s)’,’fontsize’,10);

Title(’Low Pressure (1.0 kPa)’)

%% Glottal Area Plot

figure(4)

set(gca,’FontSize’,10,’FontName’,’Times’);

plot(NonDimTime,DArea)

xlabel(’Nondimensional time (t/T)’)

ylabel(’Glottal area (mm^2)’)

set(gca,’YTick’,0:2:24);

TITLE(’M5 24 (P = 0.85 kPa)’)

% Transpose Wanted Values

LeftEdge = LeftEdge’;

RightEdge = RightEdge’;

NonDimTime = NonDimTime’;

DArea = DArea’;

OUTPUT(:,1:4) = [NonDimTime, LeftEdge, RightEdge, DArea];

x = x’; y = y’;

OUTPUT(:,5) = x(1:i); OUTPUT(1:ht+1,6) = y;
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A.2 Vertical Displacement

% Program to measure the height of the vocal folds from videos taken at the

% anterior perspective

% Modified by Brian Pickup, 07 Aug 2009.

clear all

clf; close all

clc

fps= 9000;

Start = 5000;

Finish = 6000;

NFrames = Finish-Start; %Number of frames kymographed. Change as necessary

extension = ’M5_35_1_00kPa_anterior_60fps’; %Change per movie

folder = [’F:\BrianP\HS Camera Videos for M5 MRI comparison\’ extension];

filename = [folder ’\’ extension ’.avi’];

%% Calibration

calibfile = [’F:\BrianP\System Back Up\Research\Thesis\M5_MRI\HS Camera\...

Calibration\M5_35_Anterior.tif’]; %Change per model

calibimage = imshow(calibfile);

calibpixel = ginput(2);

title(’Select two points exactly 17 mm apart’)

ppmm = sqrt((calibpixel(1,1)-calibpixel(2,1))^2+(calibpixel(1,2)-...

calibpixel(2,2))^2)/17;

for i=Start:Finish

% Read images; change path & filename as necessary

mov = aviread(filename,i);

Picture = frame2im(mov);

% Convert image to type double

C=double(Picture);

% Select display area corners

if i==Start

figure(1)

NonDimTime=0:1/NFrames:(NFrames-1)/NFrames;

subplot(111)

image(C/3); axis xy; colormap(gray)

title([’Select top left corner of display area’])
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pos1 = ginput(1); xleft = pos1(1); ytop = pos1(2);

title([’Select bottom right of display area, flush ...

with top of acrylic plates’])

pos2 = ginput(1); xright = pos2(1); ybottom = pos2(2);

xleft=round(xleft); xright = round(xright);

ytop = round(ytop); ybottom = round(ybottom);

end

% Display original image with top as well as display area lines

figure(1)

subplot(121)

set(gca,’FontSize’,10,’FontName’,’Times’);

image(C/3); axis xy

shading interp

colormap gray

hold on

rectangle(’Position’,[xleft,ybottom,(xright-xleft),(ytop-ybottom)],...

’LineStyle’,’--’,’EdgeColor’,’r’);

hold off

title([’Image #’ num2str(i) ’’])

% Crop C by removing top & bottom

C(ytop:size(C,1),:)=[];

C(1:ybottom,:)=[];

% Identify all pixels with intensity > Thresh by coloring them green

Thresh=100;

D=im2bw(C/255,Thresh/255); % Convert grayscale image to binary image

E(:,:,1)=C/255; % Red channel

E(:,:,2)=1-D; % Green channel

E(:,:,3)=C/255; % Blue channel

% Plot orifice, midline, and lines to left & right vocal folds

subplot(122)

set(gca,’FontSize’,10,’FontName’,’Times’);

image(E); axis xy; % All pixels with intensity > Thresh are now green

%Find edge of vocal fold

Edge(i-Start+1) = find(min(E(:,:,2))==0,1,’first’);

%Finds the first column where there is a zero

% i.e. left edge of vocal folds

% Command to update images

drawnow
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end

%Convert heights to mm

heightgross = (max(Edge)-min(Edge))/ppmm;

heightmin = (xright-max(Edge))/ppmm;

heightmax = (xright-min(Edge))/ppmm;

OUTPUT(1:3,1) = [heightmax, heightmin, heightgross]

% Plot position of top of vocal fold

x = [0:(NFrames)];

y = (xright-Edge)/ppmm;

figure(2)

plot(x,y)
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APPENDIX B. SCRIPT FILES

For computational modeling, three files for each geometrically defined model were devel-

oped: (1) the parameter file to define geometric properties of the vocal fold models, as well as time

step size, inlet conditions, material properties, and domain geometries; (2) the solid domain file

to mesh the different layers of the models; and (3) the fluid domain file to mesh the test domain,

as well as define properties of the fluid (air) and dictate numerical method settings. These files

allowed for communication with the supercomputers, which provided reasonable computational

time for each run. The efforts of Dr. Scott Thomson and Jesse Daily in developing these script

files are gratefully acknowledged.
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B.1 Parameter File

*** SUBGLOTTAL DUCT LENGTH

PARAMETER DuctLength ’.5588’

*** TIME STEPS

PARAMETER NSteps ’12000’

PARAMETER dt ’0.0000125’

PARAMETER MaxATS ’20’

*** INLET PRESSURE BC

PARAMETER Pressure ’-900’

*** ALPHA, BETA: RAYLEIGH DAMPING CONSTANTS

PARAMETER ALPHA ’1.948193502’

PARAMETER BETA ’0.000286578’

*** COVER MODULUS & POISSON’S RATIO

PARAMETER Ec ’5000’

PARAMETER Nuc ’0.49’

*** BODY MODULUS & POISSON’S RATIO

PARAMETER Eb ’15000’

PARAMETER Nub ’0.49’

*** EPITHELIUM MODULUS & POISSON’S RATIO

PARAMETER Ee ’5000’

PARAMETER Nue ’0.49’

*** ASL MODULUS & POISSON’S RATIO

PARAMETER Ea ’300’

PARAMETER Na ’0.49’

*** CALCULATIONS FOR STRESS_STRAIN CURVES

PARAMETER EcNeg ’-$Ec/10’

PARAMETER EcNegS ’-$Ec/2’

PARAMETER EcPos ’$Ec/10’

PARAMETER EcPosS ’$Ec/2’

PARAMETER EbNeg ’-$Eb/10’

PARAMETER EbNegS ’-$Eb/2’

PARAMETER EbPos ’$Eb/10’

PARAMETER EbPosS ’$Eb/2’

PARAMETER EaNeg ’-$Ea/12’

PARAMETER EaNegS ’-$Ea/1.5’
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PARAMETER EaPos ’$Ea/12’

PARAMETER EaPosS ’$Ea/1.5’

*** BULK MODULI

*PARAMETER Kappac ’$Ec/(3*(1-2*$Nuc))’

*PARAMETER Kappab ’$Eb/(3*(1-2*$Nub))’

PARAMETER Kappac ’1E5’

PARAMETER Kappab ’1E5’

*** INLET DISPLACEMENT BC

PARAMETER TFTime ’0.2’

PARAMETER TFdisp ’0.01’

*** SOLID GRID DEFINITIONS

PARAMETER GridS ’0.00005’

PARAMETER GridS2 ’0.0002’

*** FLUID GRID DEFINITIONS

PARAMETER Grid1 ’0.005’

PARAMETER Grid2 ’8’

***Grid Modify

PARAMETER NDIV1v ’40’

PARAMETER NDIV2v ’20’

PARAMETER NDIV3v ’80’

PARAMETER NDIV4v ’3’

PARAMETER NDIV1h ’8’

***Grid Modify

PARAMETER NDIV2h ’80’

PARAMETER NDIV3h ’40’

PARAMETER NDIV4h ’4’

PARAMETER NDIV5h ’20’

PARAMETER NDIVTube ’120’

*** SYMMETRY PLANE

PARAMETER zt ’0.0084’

PARAMETER dg ’0.0001’

PARAMETER zc ’$zt+$dg’

PARAMETER zContact ’$zt+.000075’

*** Set Variables

PARAMETER D ’.0084’

*** User Defined Variables

PARAMETER r1 ’.00182’
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PARAMETER r1B ’.00145’

PARAMETER r2 ’.000837’

PARAMETER r2B ’.000360’

PARAMETER theta1 ’50.65*3.14159/180’

PARAMETER theta1B ’50.65*3.14159/180’

PARAMETER theta2 ’2.75*3.14159/180’

PARAMETER theta2B ’2.75*3.14159/180’

PARAMETER theta3 ’88.85*3.14159/180’

PARAMETER theta3B ’91.15*3.14159/180’

PARAMETER T ’.00185’

PARAMETER delta ’.00130’

PARAMETER Tt ’.001075’

***Point definitions

*Cover Layer

PARAMETER L12 ’($D-$r2*(1-cos($theta2))-$T*tan($theta2)...

-$r1*(cos($theta2)-cos($theta1)))/sin($theta1)’

PARAMETER L1 ’$L12*cos($theta1)+$r1*(sin($theta1)-sin($theta2))’

PARAMETER L2 ’$T+$r2*(sin($theta2)+sin($theta3))’

PARAMETER L3 ’1/tan($theta3)*($D-$r2*(1-cos($theta3)))’

PARAMETER L ’$L1+$L2+$L3’

PARAMETER z7 ’0’

PARAMETER y7 ’$L’

PARAMETER z6 ’$D-$r2*(1-cos($theta3))’

PARAMETER y6 ’$y7-$z6/tan($theta3)’

PARAMETER z5 ’$r2*(cos($theta3-($theta2+$theta3)/2)-cos($theta3))+$z6’

PARAMETER y5 ’$r2*(sin(-($theta2-($theta2+$theta3)/2))-sin($theta3))+$y6’

PARAMETER z4 ’$D-$r2*(1-cos($theta2))’

PARAMETER y4 ’$y6-$r2*(sin($theta3)+sin($theta2))’

PARAMETER z3 ’$z4-$T*tan($theta2)’

PARAMETER y3 ’$y4-$T’

PARAMETER z2 ’$L12*sin($theta1)’

PARAMETER y2 ’$y3-$r1*(sin($theta1)-sin($theta2))’

PARAMETER z1 ’0’

PARAMETER y1 ’0’

PARAMETER z8 ’$z2-$r1*cos($theta1)’

PARAMETER y8 ’$y2+$r1*sin($theta1)’

PARAMETER z9 ’$z6-$r2*cos($theta3)’

PARAMETER y9 ’$y6-$r2*sin($theta3)’

*

*Body Layer

PARAMETER Lb ’$L-$Tt-$Tt/sin($theta1)’

PARAMETER Tb1 ’$Lb-$r1b*(sin($theta1b)-sin($theta2b))...

-$r2b*(sin($theta2b)+sin($theta3b))’
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PARAMETER Tb2 ’-1/tan($theta3b)*($D-$delta-$r2b*(1-cos($theta3b)))’

PARAMETER Tb3 ’-1/tan($theta1b)*($D-$delta-$r1b*(cos($theta2b)...

-cos($theta1b))-$r2b*(1-cos($theta2b)))’

PARAMETER Tb4 ’(1-tan($theta2b)/tan($theta1b))’

PARAMETER Tb ’($Tb1+$Tb2+$Tb3)/$Tb4’

PARAMETER L12b ’1/sin($theta1b)*($D-$delta-$r1b*(cos($theta2b)...

-cos($theta1b))-$Tb*tan($theta2b)-$r2b*(1-cos($theta2b)))’

PARAMETER z14 ’0’

PARAMETER y14 ’$y7-$Tt’

PARAMETER z13 ’$D-$delta-$r2b*(1-cos($theta3b))’

PARAMETER y13 ’$y14-$z13/tan($theta3b)’

PARAMETER z12 ’$D-$delta-$r2b*(1-cos($theta2b))’

PARAMETER y12 ’$y13-$r2b*(sin($theta3b)+sin($theta2b))’

PARAMETER z11 ’$z12-$Tb*tan($theta2b)’

PARAMETER y11 ’$y12-$Tb’

PARAMETER z10 ’$L12b*sin($theta1b)’

PARAMETER y10 ’$y11-$r1b*(sin($theta1b)-sin($theta2b))’

PARAMETER z7a ’0’

PARAMETER y7a ’$Tt/sin($theta1)’

PARAMETER z15 ’$z10-$r1b*cos($theta1b)’

PARAMETER y15 ’$y10+$r1b*sin($theta1b)’

PARAMETER z16 ’$z13-$r2b*cos($theta3b)’

PARAMETER y16 ’$y13-$r2b*sin($theta3b)’

*

*Dr T Parameters

PARAMETER y17 ’0.006’

PARAMETER z17 ’$zContact’

PARAMETER y18 ’0.012’

PARAMETER z18 ’$zContact’

PARAMETER yf10 ’-$DuctLength-0.308’

PARAMETER zf10 ’$zc-10*0.01524’

PARAMETER yf11 ’$yf10’

PARAMETER zf11 ’-0.0731063’

PARAMETER yf12 ’$yf10’

PARAMETER zf12 ’ -0.0604063’

PARAMETER yf13 ’$yf10’

PARAMETER zf13 ’$zc-0.0127’

PARAMETER yf14 ’$yf10’

PARAMETER zf14 ’$zc’

PARAMETER yf15 ’-$DuctLength’

PARAMETER zf15 ’$zf10’

PARAMETER yf16 ’$yf15’

PARAMETER zf16 ’$zf11’

PARAMETER yf17 ’$yf15’

PARAMETER zf17 ’$zf12’
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PARAMETER yf18 ’$yf15’

PARAMETER zf18 ’$zf13’

PARAMETER yf19 ’$yf15’

PARAMETER zf19 ’$zf14’

PARAMETER yf20 ’-0.0032625’

PARAMETER zf20 ’$zf13’

PARAMETER yf21 ’$yf20’

PARAMETER zf21 ’$zf14’

PARAMETER yf22 ’0’

PARAMETER zf22 ’$zf13’

PARAMETER yf23 ’0’

PARAMETER zf23 ’$zf14’

PARAMETER yf24 ’$y3’

PARAMETER zf24 ’$zf14’

PARAMETER yf25 ’$y4’

PARAMETER zf25 ’$zf14’

PARAMETER yf26 ’$y6’

PARAMETER zf26 ’$zf10’

PARAMETER yf27 ’$y6+0.001’

PARAMETER zf27 ’$zf10’

PARAMETER yf28 ’$yf27’

PARAMETER zf28 ’$z6’

PARAMETER yf29 ’$yf27’

PARAMETER zf29 ’$zf14’

PARAMETER yf30 ’$y6+0.002’

PARAMETER zf30 ’$zf10’

PARAMETER yf31 ’$yf30’

PARAMETER zf31 ’$z6’

PARAMETER yf32 ’$yf30’

PARAMETER zf32 ’$zf14’

PARAMETER yf33 ’$y6+0.1’

PARAMETER zf33 ’$zf10’

PARAMETER yf34 ’$yf33’

PARAMETER zf34 ’$z6’

PARAMETER yf35 ’$yf33’

PARAMETER zf35 ’$zf14’

PARAMETER yf36 ’$yf27’

PARAMETER zf36 ’$z7-0.001’

PARAMETER yf37 ’$yf30’

PARAMETER zf37 ’$zf36’

PARAMETER yf38 ’$yf33’

PARAMETER zf38 ’$zf36’

PARAMETER y39 ’$y3+1/3*$T’

PARAMETER z39 ’$z3+1/3*($z4-$z3)’

PARAMETER yf49 ’$y39’
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PARAMETER zf49 ’$zf24’

PARAMETER y40 ’$y3+2/3*$T’

PARAMETER z40 ’$z3+2/3*($z4-$z3)’

PARAMETER yf50 ’$y40’

PARAMETER zf50 ’$zf24’

*** How many steps to save

PARAMETER NodeStepSkip ’1’

PARAMETER ElementStepSkip ’10’
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B.2 Solid Domain File

*s.in

*

DATABASE NEW SAVE=NO PROMPT=NO

FEPROGRAM ADINA

CONTROL FILEVERSION=V84

*

MASTER ANALYSIS=DYNAMIC-DIRECT-INTEGRATION MODEX=EXECUTE,

TSTART=0.00000000000000 IDOF=100011 OVALIZAT=NONE,

FLUIDPOT=AUTOMATIC CYCLICPA=1 IPOSIT=STOP REACTION=YES,

INITIALS=NO FSINTERA=YES IRINT=DEFAULT CMASS=NO,

SHELLNDO=AUTOMATIC AUTOMATI=ATS SOLVER=SPARSE,

CONTACT-=CONSTRAINT-FUNCTION TRELEASE=0.00000000000000,

RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO MAXSOLME=0,

MTOTM=2 RECL=3000 SINGULAR=YES STIFFNES=1.00000000000000E-09,

MAP-OUTP=NONE MAP-FORM=NO NODAL-DE=’’ POROUS-C=NO ADAPTIVE=0,

ZOOM-LAB=1 AXIS-CYC=0 PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO,

STABILIZ=NO STABFACT=1.00000000000000E-12 RESULTS=PORTHOLE

*

READ parameter01.in

*

COORDINATES POINT SYSTEM=0

@CLEAR

1 0.0 $y1 $z1 0

2 0.0 $y2 $z2 0

3 0.0 $y3 $z3 0

4 0.0 $y4 $z4 0

5 0.0 $y6 $z6 0

6 0.0 $y7 $z7 0

7 0.0 $y8 $z8 0

8 0.0 $y9 $z9 0

9 0.0 $y7a $z7a 0

10 0.0 $y10 $z10 0

11 0.0 $y11 $z11 0

12 0.0 $y12 $z12 0

13 0.0 $y13 $z13 0

14 0.0 $y14 $z14 0

15 0.0 $y15 $z15 0

16 0.0 $y16 $z16 0

17 0.0 $y17 $z17 0

18 0.0 $y18 $z18 0

@

*
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LINE STRAIGHT NAME=1 P1=1 P2=2

LINE ARC NAME=2 MODE=1 P1=2 P2=3 CENTER=7 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE STRAIGHT NAME=3 P1=3 P2=4

LINE ARC NAME=4 MODE=1 P1=4 P2=5 CENTER=8 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE STRAIGHT NAME=5 P1=5 P2=6

LINE STRAIGHT NAME=6 P1=9 P2=10

LINE ARC NAME=7 MODE=1 P1=10 P2=11 CENTER=15 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE STRAIGHT NAME=8 P1=11 P2=12

LINE ARC NAME=9 MODE=1 P1=12 P2=13 CENTER=16 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE STRAIGHT NAME=10 P1=13 P2=14

LINE STRAIGHT NAME=11 P1=1 P2=9

LINE STRAIGHT NAME=12 P1=6 P2=14

LINE STRAIGHT NAME=13 P1=14 P2=9

LINE STRAIGHT NAME=14 P1=17 P2=18

LINE COMBINED NAME=15 COUPLED=YES RESTRICT=NO

@CLEAR

1 2 3 4 5 12 10 9 8 7 6 11

@

LINE COMBINED NAME=16 COUPLED=YES RESTRICT=NO

@CLEAR

6 7 8 9 10 13

@

*

BODY SHEET NAME=1 LINE=15 DELETE-L=YES

BODY SHEET NAME=2 LINE=16 DELETE-L=YES

*

SUBDIVIDE FACE NAME=1 BODY=1 MODE=LENGTH SIZE=$GridS

SUBDIVIDE EDGE NAME=12 BODY=1 MODE=LENGTH SIZE=$GridS2

@CLEAR

11 10 9 8 7 6

@

SUBDIVIDE EDGE NAME=1 BODY=2 MODE=LENGTH SIZE=$GridS2

@CLEAR

2 3 4 5 6

@

*

SUBDIVIDE EDGE NAME=3 BODY=1 MODE=DIVISIONS NDIV=75,

RATIO=1 PROGRESS=ARITHMETIC

SUBDIVIDE EDGE NAME=4 BODY=1 MODE=DIVISIONS NDIV=80,

RATIO=1 PROGRESS=ARITHMETIC

*
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FIXBOUNDARY EDGES FIXITY=ALL BODY=1

@CLEAR

6 ’ALL’

12 ’ALL’

@

FIXBOUNDARY EDGES FIXITY=ALL BODY=2

@CLEAR

6 ’ALL’

@

*

FSBOUNDARY TWO-D NAME=1

@CLEAR

1 1

2 1

3 1

4 1

5 1

@

*

KINEMATICS DISPLACE=LARGE STRAINS=LARGE PRESSURE=NO INCOMPAT=NO

*

* Cover stress-strain curve

SSCURVE NAME=1 CONSTANT=YES NU=0.495

@CLEAR

-0.5 $EcNegS 0

-0.1 $EcNeg 0

0 0 0

0.1 $EcPos 0

0.5 $EcPosS 0

1.0 $Ec 0

@

*

* Body stress-strain curve

SSCURVE NAME=2 CONSTANT=YES NU=0.495

@CLEAR

-0.5 $EbNegS 0

-0.1 $EbNeg 0

0 0 0

0.1 $EbPos 0

0.5 $EbPosS 0

1.0 $Eb 0

@

*

CURVE-FITTIN NAME=1 TENSION-=1 SHEAR-CU=0 EQUIBIAX=0 ORDER=6,

WEIGHTIN=NO CURVE-TY=STRAIN METHOD=SVD NSINGULA=AUTOMATIC,

100



ECHO=ALL

*

MATERIAL OGDEN NAME=1 MU1=0 ALPHA1=0, MU2=0 ALPHA2=0, MU3=0 ALPHA3=0,

MU4=0 ALPHA4=0, MU5=0 ALPHA5=0, MU6=0 ALPHA6=0, MU7=0 ALPHA7=0,

MU8=0 ALPHA8=0, MU9=0 ALPHA9=0, KAPPA=$Kappac DENSITY=1070 FITTING-=1,

VISCOELA=0 TEMPERAT=NO TREF=0.00000000000000 RUBBER-T=0,

RUBBER-V=0 RUBBER-M=0 RUBBER-O=0 MDESCRIP=’Cover’

*

CURVE-FITTIN NAME=2 TENSION-=2 SHEAR-CU=0 EQUIBIAX=0 ORDER=6,

WEIGHTIN=NO CURVE-TY=STRAIN METHOD=SVD NSINGULA=AUTOMATIC,

ECHO=ALL

*

MATERIAL OGDEN NAME=2 MU1=0 ALPHA1=0, MU2=0 ALPHA2=0, MU3=0 ALPHA3=0,

MU4=0 ALPHA4=0, MU5=0 ALPHA5=0, MU6=0 ALPHA6=0, MU7=0 ALPHA7=0,

MU8=0 ALPHA8=0, MU9=0 ALPHA9=0, KAPPA=$Kappab DENSITY=1070 FITTING-=2,

VISCOELA=0 TEMPERAT=NO TREF=0.00000000000000 RUBBER-T=0,

RUBBER-V=0 RUBBER-M=0 RUBBER-O=0 MDESCRIP=’Body’

EGROUP TWODSOLID NAME=1 SUBTYPE=STRAIN DISPLACE=DEFAULT,

STRAINS=DEFAULT MATERIAL=1 INT=DEFAULT RESULTS=STRESSES DEGEN=NO,

FORMULAT=0 STRESSRE=GLOBAL INITIALS=NONE FRACTUR=NO,

CMASS=DEFAULT STRAIN-F=0 UL-FORMU=DEFAULT PNTGPS=0 NODGPS=0,

LVUS1=0 LVUS2=0 SED=NO RUPTURE=ADINA INCOMPAT=DEFAULT,

TIME-OFF=0.00000000000000 POROUS=NO WTMC=1.00000000000000,

OPTION=NONE DESCRIPT=’Cover’

*

EGROUP TWODSOLID NAME=2 SUBTYPE=STRAIN DISPLACE=DEFAULT,

STRAINS=DEFAULT MATERIAL=2 INT=DEFAULT RESULTS=STRESSES DEGEN=NO,

FORMULAT=0 STRESSRE=GLOBAL INITIALS=NONE FRACTUR=NO,

CMASS=DEFAULT STRAIN-F=0 UL-FORMU=DEFAULT PNTGPS=0 NODGPS=0,

LVUS1=0 LVUS2=0 SED=NO RUPTURE=ADINA INCOMPAT=DEFAULT,

TIME-OFF=0.00000000000000 POROUS=NO WTMC=1.00000000000000,

OPTION=NONE DESCRIPT=’Body’

*

GFACE NODES=3 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=1 PREFSHAP=TRIANGULAR BODY=1 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=ADVFRONT NLAYER=1 NLTABL=0

@CLEAR

1

@

*

GFACE NODES=3 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=2 PREFSHAP=TRIANGULAR BODY=2 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=ADVFRONT NLAYER=1 NLTABL=0

@CLEAR
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1

GEDGE NODES=2 NCOINCID=ALL NCTOLERA=1E-05 SUBSTRUC=0,

GROUP=4 BODY=1 MIDNODES=CURVED

@CLEAR

1 2 3 4 5

@

*

PPROCESS NPROC=1 MINEL=0 MAXEL=999999

*

EGCONTROL MAXELG=999999

*

ELEMSAVE-STE NODESAVE=NO

@CLEAR

1 1 $NSteps $ElementStepSkip

@

NODESAVE-STE ELEMSAVE=NO

@CLEAR

1 1 $NSteps $NodeStepSkip

@

*

RAYLEIGH-DAM

@CLEAR

1 $ALPHA $BETA

2 $ALPHA $BETA

3 $ALPHA $BETA

@

CGROUP CONTACT2 NAME=1 SUBTYPE=STRAIN FORCES=YES TRACTION=YES,

NODETONO=NO FRICTION=0.00000000000000 EPSN=1.00000000000000E-12,

EPST=0.00000000000000 DIRECTIO=NORMAL CONTINUO=YES,

INITIAL-=ALLOWED PENETRAT=ONE DEPTH=0.00000000000000,

OFFSET=0.00000000000000 OFFSET-T=CONSTANT CORNER-C=NO,

TBIRTH=0.00000000000000 TDEATH=0.00000000000000 TIED=NO,

TIED-OFF=0.00000000000000 HHATTMC=0.00000000000000,

FCTMC=0.500000000000000 FTTMC=0.500000000000000 RIGID-TA=NO,

NORMAL-S=1.00000000000000E+11 TANGENTI=0.00000000000000,

PTOLERAN=1.00000000000000E-08 RESIDUAL=0.00100000000000000,

LIMIT-FO=1.00000000000000 ITERATIO=2 TIME-PEN=0.00000000000000,

CONSISTE=DEFAULT USER-FRI=NO DESCRIPT=’NONE’,

CFACTOR1=0.00000000000000 CS-EXTEN=0.00100000000000000,

ALGORITH=DEFAULT RTP-CHEC=NO RTP-MAX=0.00100000000000000,

XDAMP=NO XNDAMP=0.100000000000000 DISPLACE=DEFAULT FRIC-DEL=NO,

GAP-VALU=0.00000000000000 EKTMC=0.00000000000000

*
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CONTACTSURFA NAME=1 PRINT=DEFAULT SAVE=DEFAULT SOLID=YES BODY=1,

ORIENTAT=AUTOMATIC MARQUEEB=0 DESCRIPT=’NONE’

@CLEAR

2 1 0

3 1 0

4 1 0

@

*

CONTACTSURFA NAME=2 PRINT=DEFAULT SAVE=DEFAULT SOLID=NO BODY=1,

ORIENTAT=AUTOMATIC MARQUEEB=0 DESCRIPT=’NONE’

@CLEAR

14 1 0

@

*

CONTACTPAIR NAME=1 TARGET=2 CONTACTO=1 FRICTION=0.00000000000000,

TBIRTH=0.00000000000000 TDEATH=0.00000000000000,

HHATTMC=0.00000000000000 FCTMC=0.00000000000000,

FTTMC=0.00000000000000 NX=0 NY=0 NZ=0 OFFSETCO=BOTH,

EKTMC=0.00000000000000

*

SUBDIVIDE LINE NAME=14 MODE=DIVISIONS NDIV=100 RATIO=1,

PROGRESS=GEOMETRIC CBIAS=NO

*

CSURFACE NAME=2 NODES=2 NCOINCID=SURFACE,

NCTOLERA=1.00000000000000E-05 SUBSTRUC=0 GROUP=1

****

ADINA OPTIMIZE=SOLVER FILE=’s.dat’,

FIXBOUND=YES MIDNODE=NO OVERWRIT=YES

DATABASE SAVE PERMFILE=’s.idb’ PROMPT=NO

*END SAVE=NO IMMEDIATE = NO

*

*

*THE FOLLOWING LINES ARE FOR MODAL ANALYSIS

*

*CSDELETE LINE GROUP=1 CONTACTS=2 NODE-DEL=YES BODY=0

*@CLEAR

*14

*@

*COORDINATES POINT SYSTEM=0

*17 0.0 $y17 0.009 0

*18 0.0 $y18 0.009 0

*@

*CSURFACE NAME=2 NODES=2 NCOINCID=SURFACE,

* NCTOLERA=1.00000000000000E-05 SUBSTRUC=0 GROUP=1

*MASTER ANALYSIS=FREQUENCIES MODEX=EXECUTE TSTART=0.00000000000000,
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* IDOF=100011 OVALIZAT=NONE FLUIDPOT=AUTOMATIC CYCLICPA=1,

* IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO IRINT=DEFAULT,

* CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=ATS SOLVER=SPARSE,

* CONTACT-=CONSTRAINT-FUNCTION TRELEASE=0.00000000000000,

* RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO MAXSOLME=0,

* MTOTM=2 RECL=3000 SINGULAR=YES STIFFNES=1.00000000000000E-09,

* MAP-OUTP=NONE MAP-FORM=NO NODAL-DE=’’ POROUS-C=NO ADAPTIVE=0,

* ZOOM-LAB=1 AXIS-CYC=0 PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO,

* STABILIZ=NO STABFACT=1.00000000000000E-12 RESULTS=PORTHOLE,

* FEFCORR=NO BOLTSTEP=1

**

*FREQUENCIES METHOD=SUBSPACE-ITERATION NEIGEN=6 NMODE=3 IPRINT=NO,

* RIGID-BO=NO RSHIFT=0.00000000000000 CUTOFF=1.00000000000000E+08,

* NITEMM=DEFAULT NVECTOR=DEFAULT STURM-CH=NO ACCELERA=NO,

* TOLERANC=DEFAULT STARTTYP=LANCZOS NSTVECTO=0 INTERVAL=NO,

* FMIN=0.00000000000000 FMAX=DEFAULT MODALSTR=NO STATIC=NO,

* NSHIFT=AUTO NSHIFT-B=50

*ADINA OPTIMIZE=SOLVER FILE=’sMod.dat’,

* FIXBOUND=YES MIDNODE=NO OVERWRIT=YES

*DATABASE SAVE PERMFILE=’sMod.idb’ PROMPT=NO
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B.3 Fluid Domain File

*** f.in

*

DATABASE NEW SAVE=NO PROMPT=NO

FEPROGRAM ADINA-F

CONTROL FILEVERSION=V84

*

MASTER ANALYSIS=TRANSIENT MODEX=EXECUTE TSTART=0.00000000000000,

IDOF=10001 TURBULEN=NO HYDRO=YES STREAM=YES TRACTB=YES,

IRINT=DEFAULT AUTOMATI=YES SOLVER=SPARSE COMPRESS=SLI,

FSINTERA=YES NMASS=0 MASSCOUP=NO MAP-OUTP=NONE MAP-FORM=NO,

NONDIMEN=NO MAXSOLME=0 MTOTM=2 RECL=3000 ALE=NO THERMAL-=NO,

UPWINDIN=FINITE-ELEMENT MESHUPDA=ORIGINAL MESHADAP=NO,

COUPLING=DIRECT POROUS-C=NO CELL-BCD=YES VOF=NO FCBI=NO,

TURB-ITE=COUPLED EM-MODEL=NO ALE-CURV=YES ADAPTIVE=’’ ENSIGHT-=FORMATTED

*

READ parameter01.in

*

COORDINATES POINT SYSTEM=0

@CLEAR

1 0.0 $y1 $z1 0

2 0.0 $y2 $z2 0

3 0.0 $y3 $z3 0

4 0.0 $y4 $z4 0

5 0.0 $y5 $z5 0

6 0.0 $y6 $z6 0

7 0.0 $y7 $z7 0

8 0.0 $y8 $z8 0

9 0.0 $y9 $z9 0

10 0.0 $yf10 $zf10 0

11 0.0 $yf11 $zf11 0

12 0.0 $yf12 $zf12 0

13 0.0 $yf13 $zf13 0

14 0.0 $yf14 $zf14 0

15 0.0 $yf15 $zf15 0

16 0.0 $yf16 $zf16 0

17 0.0 $yf17 $zf17 0

18 0.0 $yf18 $zf18 0

19 0.0 $yf19 $zf19 0

20 0.0 $yf20 $zf20 0

21 0.0 $yf21 $zf21 0

22 0.0 $yf22 $zf22 0

23 0.0 $yf23 $zf23 0
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24 0.0 $yf24 $zf24 0

25 0.0 $yf25 $zf25 0

26 0.0 $yf26 $zf26 0

27 0.0 $yf27 $zf27 0

28 0.0 $yf28 $zf28 0

29 0.0 $yf29 $zf29 0

30 0.0 $yf30 $zf30 0

31 0.0 $yf31 $zf31 0

32 0.0 $yf32 $zf32 0

33 0.0 $yf33 $zf33 0

34 0.0 $yf34 $zf34 0

35 0.0 $yf35 $zf35 0

36 0.0 $yf36 $zf36 0

37 0.0 $yf37 $zf37 0

38 0.0 $yf38 $zf38 0

39 0.0 $y39 $z39 0

40 0.0 $y40 $z40 0

49 0.0 $yf49 $zf49 0

50 0.0 $yf50 $zf50 0

@

*

LINE STRAIGHT NAME=1 P1=1 P2=2

LINE ARC NAME=2 MODE=1 P1=2 P2=3 CENTER=8 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE ARC NAME=4 MODE=1 P1=4 P2=5 CENTER=9 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE ARC NAME=5 MODE=1 P1=5 P2=6 CENTER=9 PCOINCID=YES,

PTOLERAN=1.0E-05

LINE STRAIGHT NAME=6 P1=6 P2=7

LINE STRAIGHT NAME=7 P1=10 P2=11

LINE STRAIGHT NAME=8 P1=11 P2=12

LINE STRAIGHT NAME=9 P1=12 P2=13

LINE STRAIGHT NAME=10 P1=13 P2=14

LINE STRAIGHT NAME=11 P1=10 P2=15

LINE STRAIGHT NAME=12 P1=11 P2=16

LINE STRAIGHT NAME=13 P1=12 P2=17

LINE STRAIGHT NAME=14 P1=13 P2=18

LINE STRAIGHT NAME=15 P1=14 P2=19

LINE STRAIGHT NAME=16 P1=15 P2=16

LINE STRAIGHT NAME=17 P1=16 P2=17

LINE STRAIGHT NAME=18 P1=17 P2=18

LINE STRAIGHT NAME=19 P1=18 P2=19

LINE STRAIGHT NAME=20 P1=18 P2=20

LINE STRAIGHT NAME=21 P1=19 P2=21

LINE STRAIGHT NAME=22 P1=20 P2=21
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LINE STRAIGHT NAME=23 P1=20 P2=22

LINE STRAIGHT NAME=24 P1=20 P2=1

LINE STRAIGHT NAME=25 P1=21 P2=23

LINE STRAIGHT NAME=26 P1=22 P2=1

LINE STRAIGHT NAME=27 P1=1 P2=23

LINE STRAIGHT NAME=28 P1=23 P2=24

LINE STRAIGHT NAME=29 P1=3 P2=24

LINE STRAIGHT NAME=31 P1=4 P2=25

LINE STRAIGHT NAME=32 P1=25 P2=29

LINE STRAIGHT NAME=33 P1=5 P2=29

LINE STRAIGHT NAME=34 P1=6 P2=28

LINE STRAIGHT NAME=35 P1=7 P2=36

LINE STRAIGHT NAME=36 P1=26 P2=7

LINE STRAIGHT NAME=37 P1=26 P2=27

LINE STRAIGHT NAME=38 P1=27 P2=36

LINE STRAIGHT NAME=39 P1=28 P2=29

LINE STRAIGHT NAME=40 P1=27 P2=30

LINE STRAIGHT NAME=41 P1=28 P2=31

LINE STRAIGHT NAME=42 P1=29 P2=32

LINE STRAIGHT NAME=43 P1=30 P2=37

LINE STRAIGHT NAME=44 P1=31 P2=32

LINE STRAIGHT NAME=45 P1=30 P2=33

LINE STRAIGHT NAME=46 P1=31 P2=34

LINE STRAIGHT NAME=47 P1=32 P2=35

LINE STRAIGHT NAME=48 P1=33 P2=38

LINE STRAIGHT NAME=49 P1=34 P2=35

LINE COMBINED NAME=50 COUPLED=YES RESTRICT=YES

@CLEAR

1 2

@

LINE STRAIGHT NAME=51 P1=36 P2=37

LINE STRAIGHT NAME=52 P1=37 P2=38

LINE STRAIGHT NAME=53 P1=36 P2=28

LINE STRAIGHT NAME=54 P1=37 P2=31

LINE STRAIGHT NAME=55 P1=38 P2=34

LINE STRAIGHT NAME=56 P1=3 P2=39

LINE STRAIGHT NAME=57 P1=39 P2=40

LINE STRAIGHT NAME=58 P1=40 P2=4

LINE STRAIGHT NAME=59 P1=24 P2=49

LINE STRAIGHT NAME=60 P1=49 P2=50

LINE STRAIGHT NAME=61 P1=50 P2=25

LINE STRAIGHT NAME=62 P1=39 P2=49

LINE STRAIGHT NAME=63 P1=40 P2=50

*

SURFACE PATCH NAME=1 EDGE1=7 EDGE2=12 EDGE3=16 EDGE4=11
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SURFACE PATCH NAME=2 EDGE1=8 EDGE2=13 EDGE3=17 EDGE4=12

SURFACE PATCH NAME=3 EDGE1=9 EDGE2=14 EDGE3=18 EDGE4=13

SURFACE PATCH NAME=4 EDGE1=10 EDGE2=15 EDGE3=19 EDGE4=14

SURFACE PATCH NAME=5 EDGE1=19 EDGE2=21 EDGE3=22 EDGE4=20

SURFACE PATCH NAME=6 EDGE1=23 EDGE2=24 EDGE3=26 EDGE4=0

SURFACE PATCH NAME=7 EDGE1=22 EDGE2=25 EDGE3=27 EDGE4=24

SURFACE PATCH NAME=8 EDGE1=27 EDGE2=28 EDGE3=29 EDGE4=50

SURFACE PATCH NAME=9 EDGE1=29 EDGE2=59 EDGE3=62 EDGE4=56

SURFACE PATCH NAME=10 EDGE1=31 EDGE2=32 EDGE3=33 EDGE4=4

SURFACE PATCH NAME=11 EDGE1=33 EDGE2=39 EDGE3=34 EDGE4=5

SURFACE PATCH NAME=12 EDGE1=6 EDGE2=34 EDGE3=53 EDGE4=35

SURFACE PATCH NAME=13 EDGE1=35 EDGE2=38 EDGE3=37 EDGE4=36

SURFACE PATCH NAME=14 EDGE1=39 EDGE2=42 EDGE3=44 EDGE4=41

SURFACE PATCH NAME=15 EDGE1=41 EDGE2=43 EDGE3=40 EDGE4=38

SURFACE PATCH NAME=16 EDGE1=44 EDGE2=47 EDGE3=49 EDGE4=46

SURFACE PATCH NAME=17 EDGE1=43 EDGE2=46 EDGE3=48 EDGE4=45

SURFACE PATCH NAME=18 EDGE1=53 EDGE2=41 EDGE3=54 EDGE4=51

SURFACE PATCH NAME=19 EDGE1=38 EDGE2=51 EDGE3=43 EDGE4=40

SURFACE PATCH NAME=20 EDGE1=54 EDGE2=46 EDGE3=55 EDGE4=52

SURFACE PATCH NAME=21 EDGE1=43 EDGE2=52 EDGE3=48 EDGE4=45

SURFACE PATCH NAME=22 EDGE1=62 EDGE2=60 EDGE3=63 EDGE4=57

SURFACE PATCH NAME=23 EDGE1=63 EDGE2=61 EDGE3=31 EDGE4=58

*

BOUNDARY-CON WALL NAME=1 GTYPE=LINES SLIPC=0 MOVING=NO,

VTYPE=CONVENTIONAL VT=0 NCURVT=0 DX=1 DY=0 DZ=0 X0=0,

Y0=0 Z0=0 ALL-EXT=NO THERMAL=HEAT-FLUX TVALUE=0 NCURT=0

@CLEAR

*7 0

*9 0

*10 0

11 0

16 0

17 0

18 0

20 0

23 0

26 0

36 0

@

*

BOUNDARY-CON WALL NAME=2 GTYPE=LINES SLIPC=1 MOVING=NO,

VTYPE=CONVENTIONAL VT=0 NCURVT=0 DX=1 DY=0 DZ=0 X0=0,

Y0=0 Z0=0 ALL-EXT=NO THERMAL=HEAT-FLUX TVALUE=0 NCURT=0

@CLEAR

15 0
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21 0

25 0

28 0

59 0

60 0

61 0

32 0

42 0

47 0

@

*

BOUNDARY-CON FLUID-STRUCTURE NAME=3 GTYPE=LINES SLIPC=0,

FSBOUNDA=1 VTYPE=CONVENTIONAL VT=0 NCURVT=0 DX=0 DY=0,

DZ=0 X0=1 Y0=0 Z0=0 ALL-EXT=NO THERMAL=HEAT-FLUX TVALUE=0 NCURT=0

@CLEAR

50 0

56 0

57 0

58 0

4 0

5 0

6 0

@

* For this area ratio, 0.001 m / 0.005 s is good

TIMEFUNCTION NAME=2

@CLEAR

0 0

$TFTime $TFDisp

1.E+20 $TFDisp

@

zBOUNDARY-CON WALL NAME=4 GTYPE=LINES SLIPC=0,

MOVING=YES NCURX=0 NCURY=2 NCURZ=0 START=0,

STOP=1.0E+12 VTYPE=CONVENTIONAL VT=0.0,

NCURVT=0 DX=1.0 DY=0.0 DZ=0.0 X0=0.0 Y0=0.0,

Z0=0.0 ALL-EXT=NO THERMAL=HEAT-FLUX TVALUE=0.0 NCURT=0

@CLEAR

8 0

@

*

LEADER-FOLLO

@CLEAR

1 3 24 1 0

2 4 25 1 0

3 5 29 1 0

4 5 32 1 0
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5 6 28 1 0

6 6 31 1 0

7 39 49 1 0

8 40 50 1 0

@

*

LOAD NORMAL-TRACTION NAME=1 MAGNITUD=$Pressure

*

APPLY-LOAD BODY=0

@CLEAR

1 ’NORMAL-TRACTION’ 1 ’LINE’ 8 0 1 0 0 0 0 0

2 ’NORMAL-TRACTION’ 1 ’LINE’ 9 0 1 0 0 0 0 0

3 ’NORMAL-TRACTION’ 1 ’LINE’ 10 0 1 0 0 0 0 0

4 ’NORMAL-TRACTION’ 1 ’LINE’ 7 0 1 0 0 0 0 0

@

*

FIXITY NAME=ZEROPRES

@CLEAR

’X-VELOCITY’

’PRESSURE’

’TEMPERATURE’

’TURBULENT-K’

’TURBULENT-E’

@

FIXBOUNDARY LINES FIXITY=ALL

@CLEAR

37 ’ZEROPRES’

40 ’ZEROPRES’

45 ’ZEROPRES’

48 ’ZEROPRES’

49 ’ZEROPRES’

55 ’ZEROPRES’

@

MATERIAL CONSTF NAME=1 XMU=1.8E-05 CP=0,

XKCON=0.0 BETA=0.0 QB=0.0 RHO=1.2 TREF=0.0,

GRAV-X=0.0 GRAV-Y=0.0 GRAV-Z=0.0 SIGMA=0.0,

KAPPA=141000 CV=0.0 MDESCRIP=’Air’

*

SUBDIVIDE SURFACE NAME=1 MODE=LENGTH SIZE=$Grid1

@CLEAR

2 3 4 5

@

SUBDIVIDE SURFACE NAME=6 MODE=DIVISIONS NDIV1=$NDIV1h NDIV2=$NDIV1h,

RATIO1=1 RATIO2=1 PROGRESS=GEOMETRIC EXTEND=NONE CBIAS1=NO CBIAS2=NO

SUBDIVIDE SURFACE NAME=7 MODE=DIVISIONS NDIV1=$NDIV1v NDIV2=$NDIV1h,
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RATIO1=1 RATIO2=1 PROGRESS=GEOMETRIC EXTEND=NONE CBIAS1=NO CBIAS2=NO

SUBDIVIDE LINE NAME=20 MODE=DIVISIONS NDIV=$NDIVTube RATIO=0.05,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

21

@

SUBDIVIDE LINE NAME=29 MODE=DIVISIONS NDIV=$NDIV1v RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

31 33 34 63 62

@

SUBDIVIDE LINE NAME=50 MODE=DIVISIONS NDIV=$NDIV1v RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

4 5 39 41 42 44

@

SUBDIVIDE LINE NAME=56 MODE=DIVISIONS NDIV=25 RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

57 58 59 60 61

@

SUBDIVIDE LINE NAME=32 MODE=DIVISIONS NDIV=$NDIV1v RATIO=4,

PROGRESS=ARITHMETIC CBIAS=NO

SUBDIVIDE LINE NAME=28 MODE=DIVISIONS NDIV=$NDIV2h RATIO=0.4,

PROGRESS=ARITHMETIC CBIAS=NO

SUBDIVIDE LINE NAME=50 MODE=DIVISIONS NDIV=$NDIV2h RATIO=0.25,

PROGRESS=ARITHMETIC CBIAS=NO

SUBDIVIDE LINE NAME=6 MODE=DIVISIONS NDIV=$NDIV1v RATIO=10,

PROGRESS=ARITHMETIC CBIAS=NO

SUBDIVIDE LINE NAME=53 MODE=DIVISIONS NDIV=$NDIV1v RATIO=0.1,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

54

@

SUBDIVIDE LINE NAME=35 MODE=DIVISIONS NDIV=$NDIV4h RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

51

@

SUBDIVIDE LINE NAME=36 MODE=DIVISIONS NDIV=$NDIV2v RATIO=0.05,

PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

38 43 48

@

SUBDIVIDE LINE NAME=46 MODE=DIVISIONS NDIV=$NDIV3v RATIO=50,
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PROGRESS=ARITHMETIC CBIAS=NO

@CLEAR

47 52

SUBDIVIDE LINE NAME=45 MODE=DIVISIONS NDIV=$NDIV5h RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

SUBDIVIDE LINE NAME=55 MODE=DIVISIONS NDIV=$NDIV4v RATIO=1,

PROGRESS=ARITHMETIC CBIAS=NO

*

EGROUP TWODFLUID NAME=1 SUBTYPE=PLANAR MATERIAL=1 INT=3,

RESULTS=STRESSES DEGEN=NO DISSP=NO SOLID=NO UPWINDIN=DEFAULT,

OPTION=NONE FLOWTYPE=DEFAULT VOF-MATE=1 DESCRIPT=’NONE’

*

GSURFACE NODES=4 PATTERN=AUTOMATIC NCOINCID=BOUNDARIES NCEDGE=1234,

NCVERTEX=1234 NCTOLERA=1.00000000000000E-05 SUBSTRUC=0 GROUP=1,

PREFSHAP=AUTOMATIC MESHING=MAPPED SMOOTHIN=NO DEGENERA=NO,

COLLAPSE=NO MIDNODES=CURVED METHOD=ADVFRONT FLIP=NO

@CLEAR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19 20 21 22 23

@

ANALYSIS TRANSIENT ALPHA=0.707106781186547 METHOD=COMPOSI

*

TIMESTEP NAME=DEFAULT

@CLEAR

$NSteps $dt

@

*

AUTOMATIC TIME-STEPPING MAXSUBD=$MaxATS ICOUR=ATS,

COURAN=1.0E+20 ITMAXC=100000

*

ITERATION METHOD=NEWTON MAX-ITER=300 ITM-SPEC=1

*

ANALYSIS TRANSIENT ALPHA=1.00000000000000 METHOD=EULER

*

TOLERANCES FLUID-STRUCTURE CONVERGE=FD ITLIM=300,

DTOTD=0.01 DTOTF=0.01 RLXFORCE=1 RLXDISPL=1,

COUPLING=DIRECT

*

ELEMSAVE-STE NODESAVE=NO

@CLEAR

1 1 $NSteps $ElementStepSkip

@

NODESAVE-STE ELEMSAVE=NO

@CLEAR

1 1 $NSteps $NodeStepSkip

@
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*** WRITE OUTPUT FILES

ADINA-F OPTIMIZE=SOLVER FILE=’f.dat’ FIXBOUND=YES,

MIDNODE=NO OVERWRIT=YES FORMATTE=YES

*

DATABASE SAVE PERMFILE=’f.idb’ PROMPT=NO

*END SAVE=NO IMMEDIATE = NO
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APPENDIX C. ENSIGHT COMMAND FILE

Ensight was used to measure glottal width and flow rate, as well as create animations of

all computational models. The assistance of Simeon Smith in developing these command files is

gratefully acknowledged.
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VERSION 9.03

#

part: select_default

part: modify_begin

part: elt_representation 3D_feature_2D_full

part: modify_end

data: binary_files_are big_endian

data: format case

data: shift_time 1.000000 0.000000 0.000000

data: replace f.case

#

# Zoom To Correct Location

view_transf: axis y

view_transf: rotate 0.000000e+00 -9.000000e+01 0.000000e+00

view_transf: axis z

view_transf: rotate 0.000000e+00 0.000000e+00 -9.000000e+01

view_transf: action band_zoom

view_transf: look_at 3.891592e-01 -3.125907e-01 -6.769991e-02

view_transf: look_from 3.891592e-01 -3.125907e-01 2.607852e-03

view_transf: center_of_transform 0.000000e+00 0.000000e+00 0.000000e+00

view_transf: zclip_front 1.000000e-03

view_transf: action translate

view_transf: translate 3.201771e-03 1.242475e-03 0.000000e+00

view_transf: zoom 8.389896e-01

view_transf: zoom 8.376800e-01

view_transf: translate -2.812764e-05 -4.442018e-03 0.000000e+00

view_transf: zoom 8.292564e-01

view_transf: translate 6.997522e-04 9.130202e-04 0.000000e+00

view_transf: zoom 9.112983e-01

view_transf: translate 0.000000e+00 -1.147635e-04 0.000000e+00

#

# Calculate Variables

part: select_begin

20

part: select_end

variables: evaluate zcoord = Coordinates[Z]

variables: evaluate zmax = Max(plist,zcoord)

variables: evaluate gap = 2*(8.5e-03-zmax)

viewport: select_begin

1

viewport: select_end

part: select_begin

1

part: select_end

tools: line ON
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view_transf: function line

view_transf: line 1 0.000000e+00 1.700000e-02 0.000000e-03

view_transf: line 2 0.000000e+00 1.700000e-02 8.500000e-03

clip: begin

clip: domain intersect

clip: plane_extents infinite

clip: tool line

clip: line 1 0.0 0.017 0

clip: line 2 0.0 0.017 0.00850000046194

clip: end

clip: create

variables: activate velocity

part: select_begin

21

part: select_end

variables: evaluate LineIntegral = IntegralLine(plist,velocity,[Y])

variables: evaluate FlowRate = LineIntegral*.017

tools: line OFF

part: modify_begin

part: visible OFF

part: modify_end

#

#Load data for Glottal Gap and Flowrate

query_ent_var: begin

query_ent_var: description

query_ent_var: query_type generated

query_ent_var: #_of_sample_pts 12000

query_ent_var: begin_simtime 0.000000e+00

query_ent_var: end_simtime 1.500e-01

query_ent_var: constrain min

query_ent_var: sample_by value

query_ent_var: variable_1 gap

query_ent_var: generate_over time

query_ent_var: variable_2 TIME

query_ent_var: end

query_ent_var: query

query_ent_var: begin

query_ent_var: description

query_ent_var: query_type generated

query_ent_var: #_of_sample_pts 12000

query_ent_var: begin_simtime 0.000000e+00

query_ent_var: end_simtime 1.500e-01

query_ent_var: constrain max

query_ent_var: sample_by value
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query_ent_var: variable_1 FlowRate

query_ent_var: generate_over time

query_ent_var: variable_2 TIME

query_ent_var: end

query_ent_var: query

#

#Save Data Files for Glottal Gap and Flowrate

curve: select_begin

1

curve: select_end

curve: save xy_data FlowRate.txt

curve: select_begin

0

curve: select_end

curve: save xy_data MinGlotGap.txt

#

#Create Animation

solution_time: begin_step 8000

anim_flipbook: begin_time_step 8000

anim_flipbook: end_time_step 12000

anim_flipbook: specify_time_as step

anim_flipbook: begin_simtime 1.000e-01

anim_flipbook: step_by 1.0000000e+01

anim_flipbook: load

anim_flipbook: play_forward

file: image_format avi

file: image_format_options Compression RAW BitRate 8000

anim_recorders: render_offscreen ON

file: image_numpasses 4

file: image_stereo current

file: image_screen_tiling 1 1

file: animation_file Animation

file: animation_window_size NTSC

file: animation_window_xy 704 480

file: animation_frames 400

file: animation_multiple_images OFF

file: animation_play_flipbook ON

file: animation_play_time OFF

file: animation_reset_flipbook ON

file: animation_reset_traces OFF

file: animation_reset_time OFF

file: save_animation

anim_flipbook: stop
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