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ABSTRACT 

 

 

 

 

The ELAN Event-Related Potential in  

 

Children 5 to 12 Years of Age Across Ear Conditions  

 

 

 

Melissa Crandall 

 

Department of Communication Disorders 

 

Master of Science 

 

 

The examination of Event Related Potentials during language processing tasks provides 

valuable information of how the brain processes language over time. In the current study, the 

development of the early left anterior negativity (ELAN) was analyzed in young children. 

Previous research has described the ELAN as a negative waveform elicited during syntactic 

processing between 200 and 500 ms post linguistic stimuli. Thirty children from 5 to 12 years of 

age listened to sentences that were linguistically correct, syntactically incorrect, or semantically 

incorrect. Sentences were presented for right monaural, left monaural, and binaural ear 

conditions to determine possible differences related to right ear advantage (REA). 

 

An ELAN-like component in regards to latency and amplitude was observed in children 8 

years of age and older; however, comparison between linguistic conditions suggest that the 

ability to differentiate between linguistically correct, syntactically incorrect, and semantically 

incorrect stimuli is not established until 12 years of age. Results suggest that adult-like syntactic 

processing of morphosyntactic errors is not established until after 12 years of age. Comparison 

between ear conditions suggests that the REA effect may exist in older children, a finding that 

has not been reflected in previous behavioral research. 
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Introduction 

Behavioral and electrophysiological research of language processing has promoted a 

greater understanding of language development in children. Although behavioral studies of 

language in children have established language developmental norms for children, only in the 

past decade has the neurophysiologic basis for language processing been investigated. The use of 

event related potentials (ERPs) have allowed for the expansion of understanding of language 

development (Friederici, 2004). 

 ERPs are electroencephalographic measurements of neural activity time-locked to a 

critical stimulus event. These measures are commonly used when studying language processing 

due to their ability to observe language events as they occur in real time (Friederici, 2004).  

Three ERP components have been established as specific language processing components in 

adult populations. These components are the N400, the P600, and the early left anterior 

negativity (ELAN). The current study is directed at investigating the ELAN in young children. 

Current electrophysiological research involving language development has discovered 

subtle differences in child language processing that has not been observed in behavioral data, 

allowing for a more complete picture of the development of language to adult-like processing. 

For example, a recent ERP study found that children may not develop adult-like syntactic 

processing until after 13 years of age (Hahne, Eckstein, & Friederici, 2004). Studies have shown 

that ERP data provides valuable information concerning language processing; however, only few 

studies have investigated the development of language processing in young children. 

The purpose of the present study was to provide a more detailed account of language 

processing development in children from 5;0 to 12;5 years (years;months) of age utilizing 

electrophysiological measures. Specifically, the processing of linguistically correct, syntactically 

incorrect, and semantically incorrect sentences were investigated in relation to the ELAN. This 
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ERP component has been associated with the detection of syntactic errors in adult populations 

(Friederici, 2004).  Additionally, this study investigated electrophysiological findings in relation 

to a possible Right Ear Advantage (REA), a phenomenon that has been observed behaviorally in 

very young children. 
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Review of Literature 

ERPs are electroencephalographic measurements of neural activity, time-locked to a 

critical stimulus event. These measures are especially useful when studying language processing 

due to the ability to observe language events as they occur in real time (Friederici, 2004).  

Several ERP components have been established as specific language processing components in 

adult populations. These components are the ELAN, the N400, and the P600. The research 

investigating each ERP component relating to language processing in adult and child populations 

are reviewed. 

ERPs and ERP Measurement 

Our understanding of the nature of language processing has expanded in recent history 

through electrophysiological research. Early studies investigating the physiology of language 

processing relied on the study of the correlation between language deficits and brain lesions. 

Brain imaging techniques, including functional magnetic resonance imaging (fMRI) and positive 

emission tomography (PET) localize metabolic changes with high spatial resolution. These 

techniques have allowed researchers to identify areas within the brain that are active during 

language processing tasks; however, they are limited in their ability to demonstrate the 

complexity of language processing over time (Canseco-Gonzalez, 2000; Friederici, 2004; Kutas 

& Federmeier, 2000).       

Methods that demonstrate the activity of the brain over time include 

electroencephalography (EEG) and magnetoencephalography (MEG). Both methods measure 

postsynaptic neural activity over time. These measures, in addition to ERPs, are commonly used 

when studying language processing due to the ability to observe language events as they occur in 

real time (Friederici, 1997, 2004; Kotz & Friederici, 2003). Unlike other brain imaging 

techniques, ERP data does not provide the same level of spatial resolution that would allow for 
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definite localization of generating neurostructures (Friederici, 1997). Language is a complex 

system consisting of various levels of processing; nonetheless, ERPs demonstrate a system that 

allows for rapid and effective computation required for the study of the electrophysiology of 

language processing (Canseco-Gonzalez, 2000). 

ERP measurements are made at the level of the scalp, which creates difficulty in 

accurately analyzing data due to the wealth of energy that is produced by the brain at any given 

time. Averaging procedures are necessary to control for brain activity not involved with the 

stimulus activation. Recordings of electrical energy for a specific event are obtained repeatedly 

and mathematically averaged together. During the averaging processes, observed random 

electrical activity is considered background activity and is averaged to near zero while ERPs 

elicited by the language stimuli will in theory remain constant. This allows the researcher to 

observe various ERP components in relation to language processing (Canseco-Gonzalez, 2000; 

Picton & Stuss, 1984).   

For the past 30 years, researchers have utilized ERP data for the study of different 

cognitive processes in regards to language. It is assumed that different cognitive processes are 

reflected by specific brain activity patterns. Under this assumption, researchers have attempted to 

observe ERP patterns associated with specific linguistic processes. Recently, this area of research 

has been investigated by observing ERPs associated with linguistic errors, including semantic, 

phonological, and syntactic errors (Canseco-Gonzalez, 2000). Three different linguistically 

related ERP components have been consistently identified in the research: (a) the N400 is a 

broadly distributed negativity occurring approximately 400 ms after critical stimuli; (b) the P600 

is a centroparietal positivity occurring approximately 600 ms after stimulus presentation, and (c) 
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the ELAN and LAN are early left anterior negativity that occurs between 100 and 500 ms after 

critical stimuli presentation (Friederici, 2004). 

ERPs display different dimensions or components including latency, amplitude, scalp 

distribution, and polarity. The latency is measured in milliseconds and reflects the timing of 

cognitive processing. Amplitude indicates the ease in which the brain integrates and processes 

stimuli. Information concerning scalp distribution allows researchers to differentiate between 

various cognitive processes by observing changes in activated structures. As discussed, ERP data 

is collected at the level of the scalp; therefore, a thorough picture of electrical brain processing 

cannot be provided by ERP data alone. For example, with only ERP data it is difficult to identify 

the source of energy generation for specific stimuli processing (Picton & Stuss, 1984). Analysis 

of each ERP component may allow researchers to more specifically identify areas of deficits in 

regards to language processing; however, a combination of ERPs with tests of higher spatial 

resolution such as fMRI would allow for a more comprehensive depiction of language cognitive 

processing (Friederici, 1997). 

A Temporal Model of Language Processing 

Friederici (1997) has proposed a model of language comprehension in three phases, 

which integrates the three main linguistic ERP components (i.e., N400, P600, and ELAN).  The 

first phase of language analysis involves building an initial syntactic structure using incoming 

auditory or visual information. This first stage is reflected by the ELAN (between 200 and 400 

ms). During the second phase, lexical semantic processing takes place and is reflected by the 

N400 (between 300 and 600ms). In the final phase, lexical-semantic and structural information 

are integrated and reanalysis occurs if a discrepancy is observed during processing. This stage is 

reflected by the P600, which peaks between 500 and 800 ms (Friederici, 1997).  
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Friederici (2004) later expanded her language processing model to specifically address 

syntactic processing. During the initial phase (reflected by the ELAN) phrase structure is 

constructed based on word category information. After phrase structure is assembled, the 

relations between phrases are identified and grammatical roles are formed. The final syntactic 

phase involves integration of language components of the incoming stimuli. Structural, lexical-

semantic, and grammatical information are utilized to achieve comprehension. The integration of 

both syntactic information and semantic information is reflected in the P600 (Friederici, 2004).   

Electrophysiology of Semantic Processing 

The N400 is a negative waveform that peaks at approximately 400 ms after onset of 

critical stimulus and has been found to be correlated with lexical-semantic processing. The N400 

effect has been observed in both adult and child populations (Friederici, 2004).  

MEG studies suggest that the N400 is generated in the superior temporal sulcus and 

frontal areas (Fredierici, 2004).  A study completed by Halgren et al. (2002) used MEG during 

oral reading of semantically correct and incorrect sentences. Semantically incorrect sentences 

elicited a large effect over the left hemisphere, which peaked around 450 ms. At the peak of the 

N400, activity in the left hemisphere was observed to be wide-spread and included anterior 

temporal, perisylvian, orbital, frontopolar, and dorsolateral prefrontal cortices. In addition, 

activation was also observed within the right hemisphere, including orbital and right anterior 

temporal cortical activation. Activity seemed to originate in or near the left superior temporal 

sulcus. Similar results have been reported from fMRI studies (Halgren et al., 2002).   

Initial studies completed by Kutas and Hillyard (1980a, 1980b, 1980c) demonstrated the 

relationship between lexical-semantic processing and the N400. These studies presented visual 

stimuli of semantically deviant sentences. In one study, subjects were required to silently read 

seven-word sentences, each with semantic errors categorized as a (a) moderate error (e.g. He 
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took a sip from the waterfall), (b) strong error (e.g. He took a sip from the transmitter), or (c) 

appropriate sentence with physical deviations. The researchers observed a negative component 

beginning about 250 ms and peaking around 400 ms (N400) for both moderate and strong errors 

with a substantially larger N400 component for stronger errors. A positivity (later described as 

the P300) was elicited by target words with physical deviations but was not observed during 

stimuli with only semantic errors. The P300 was observed to be elicited by surprising events 

related to the task but independent from language processing (Friederici, 1997). The results 

suggest that the N400 may be an indicator of cognitive reprocessing of semantic inconsistencies 

within a sentence (Kutas & Hillyard, 1980c).  

These studies assisted in establishing the lexical-semantic role of the N400.  Kutas and 

Hillyard (1983) further investigated this role using sentences with grammatical errors that had 

little to no effect on the meaning of the sentences in addition to sentences with semantic errors. 

As expected, a large N400 was observed only with semantically incorrect stimuli. Smaller, 

differently distributed and less consistent negativities were observed during syntactic tasks. It 

was concluded from these results that the N400 is exclusively related to semantic processing 

rather than to syntactic processing. Another study investigated the effect of unexpected words 

which were either semantically inappropriate, physically deviant, or both. The ERPs evoked 

from these stimuli produced several different components. An N400 was observed for 

semantically inappropriate words while a late positivity was observed for physical deviations. 

Positive components were not observed during semantic tasks. Both distinct ERPs were observed 

when deviations were presented simultaneously (Kutas & Hillyard, 1980a).  

The N400 has not only been observed in sentence contexts but has also been elicited in 

response to word paring tasks. A semantic priming effect is demonstrated when a target word is 
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recognized faster when proceeded by a semantically related word or prime. The relationship 

between semantic priming and the N400 was observed when a prime word was followed by 

either a semantically related word, a phonologically related word (rhyme), or a semantically 

unrelated word. The N400 was smaller with semantically primed words, intermediate with 

phonologically primed words, and largest with unrelated words (Osterhout & Holcomb, 1995).  

The N400 in relation to semantic priming has been investigated using various modalities. 

One study observed the effects of semantic priming in both visual and auditory modalities. Word 

pairs were presented which consisted of a prime word followed by either a semantically related 

word or a semantically inappropriate word. A larger N400 was observed for semantically 

inappropriate words in both visual and auditory modalities. An auditory presentation elicited an 

earlier N400 in addition to an increase in the component’s duration (Holcomb & Neville, 1990). 

It is concluded that the N400 reflects, through observations of latency and amplitude, the degree 

to which a target word is semantically primed.     

  Topography of the N400 has been shown to be sensitive to stimuli modality. When 

presented with visual stimuli, the N400 often demonstrates increased distribution over the right 

hemisphere. In regards to auditory stimuli, the N400 appears to be earlier and more prolonged 

with an increased distribution over the left hemisphere (Friederici, 2004).  Hagoort, Brown, and 

Swaab (1996) observed a reduced and even absent N400 effect in patients with lesions in 

Wernicke’s area while those classified with Broca’s Aphasia demonstrated a N400 effect. These 

results emphasize that information collected from ERP studies may be utilized for language 

diagnostic purposes (Friederici, 1997). 

As demonstrated in previous studies, the amplitude of the N400 varies according to 

context. In the absence of context (word pair tasks) the amplitude of the N400 increases.  The 



9 

greater predictability or frequency of a word will reduce the amplitude of the N400, thus 

demonstrating increased ease during semantic processing. Within sentential context, the 

amplitude of the N400 varies in regards to semantic expectancy. Additionally, the amplitude of 

the N400 varies according to the word’s frequency within the language (Friederici, 1997, 2004).  

In summary, the N400 reflects lexical-semantic processing, not dependent on stimuli 

modality. Studies have reported observation of the N400 in both sentence and word pairing 

contexts. Canseco-Gonzalez (2000) clarified that “rather than being elicited specifically by 

semantic anomalies, the N400 component is inversely related to the semantic expectation of 

given word in relation to its context” (p. 232).  The N400 has also been observed in several 

languages including English, French, Dutch, and German in both visual and auditory modalities 

(Friederici, 2004). 

Electrophysiology of Syntactic Processing 

Syntactic processing is central to language comprehension. One study demonstrated the 

significance of intact syntactic processing with behavioral observations of Broca’s aphasia 

during syntactic and semantic tasks. Subjects completed tasks with available semantic and 

syntactic information with relative ease but were unable to complete tasks when only syntactic 

information was provided (Caramazza & Zurif, 1976).  

 Syntactic processing is complex, multi-layered, and is utilized at several stages during 

language comprehension. Early studies have found two ERPs associated with syntactic 

processing; the P600 and the ELAN (Friederici, 2004). According to Friederici’s model (1997), 

the ELAN is associated with initial syntactic structure building while the P600 is associated with 

syntactic reanalysis. Both components may be elicited with a single syntactic violation type, 

illustrating a high level of interaction between the two components (Canseco-Gonzalez, 2000).          
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The neural basis for the P600 and ELAN has been investigated in patients with brain 

lesions. Studies found an absent ELAN in patients with lesions in the left anterior cortex and the 

anterior temporal lobe. The P600 was found to be reduced or absent in those with lesions in the 

basal ganglia; however, some have observed a present ELAN in those with lesions in the left 

basal ganglia. These results suggest that early syntactic processing is supported in temporal and 

frontal regions of the cerebral cortex, more specifically involving the left anterior portion of the 

superior temporal gyrus and the left inferior frontal gyri. Later processing appears to involve 

deep structures, such as the basal ganglia (Friederici, 2004). 

The P600. The final stage of syntactic processing is represented by the P600, a large 

positive waveform also termed the syntactic positive shift (Canseco-Gonzalez, 2000). It is 

characterized by a centroparietal distribution beginning around 500ms. The P600 is associated 

with violations of structural preferences, syntactic violations, and difficulty with syntactic 

integration. Based on these findings, it is suggested that the P600 is associated with syntactic 

reanalysis (Friederici, 1997). 

The P600 is a reflection of the revision of sentence structure during linguistic processing. 

Early studies of the P600 considered violations of structural preferences. Osterhout and Holcomb 

(1992) observed the P600 with non preferred or garden path sentences (i.e., The broker 

persuaded to sell the stock). When presented with this type of sentence, the listener typically 

expects a noun phrase after the verb (e.g., The broker persuaded the man to sell the stock). The 

infinitive marker to elicited a centroparietal positivity that peaked at approximately 600 ms. The 

authors suggested that the observed late positivity was apparent when revision was required for 

sentence comprehension (Osterhout & Holcomb, 1992).  
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In addition to structural preference studies, the P600 is also elicited with syntactic 

violations. Within many of these studies both a left anterior negativity (LAN) and later P600 

were observed, reflecting a biphasic ERP response (Canseco-Gonzalez, 2000; Friederici, 2004). 

For example, one study presented auditory sentences with either syntactic structure errors or 

morphological errors. A LAN was observed peaking between 300 and 600 ms followed by the 

P600 for morphosyntactic errors (Friederici, 1993).    

Further studies concluded that the P600 is a function of linguistic processing reanalysis of 

both syntactic and semantic input. Munte, Matzke, and Johannes (1997) investigated agreement 

violations using pseudoword sentences to observe if the P600 was elicited without semantic 

input. During the pseudoword grammatical task a short negative effect between 280 and 500 ms 

was found in the absence of the P600. The P600 was reported for real word grammatical 

violations without the occurrence of a negativity. These results support the concept that the P600 

is a reflection of linguistic reanalysis of both meaning and structure when a syntactic error is 

encountered during processing. A similar study completed in English verified these findings; 

however, an ELAN was observed in addition to the P600 for real word grammatical violations 

(Canseco-Gonzalez, 2000).   

Differences in the latency of the P600 have been observed independent of earlier negative 

components. Mecklinger, Schriefers, Steinhauer, and Friederici (1995) observed an earlier 

centroparietal positivity (around 350 ms) and absence of earlier negativity with garden path 

sentences. The authors concluded that the sentences used in the study were more simplistic and 

hypothesized that the latency of the P600 is dependent on the difficulty of syntactic revision 

process. Findings from another study identified an early positivity occurring at approximately 

300 ms for sentences that were considered easy to revise and a later positivity for more difficult 
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sentences. The authors suggested that the latency of the P600 varies in regard to the level of 

difficulty to recover from sentence structure processing (Friederici & Mecklinger, 1996).  

Some studies have investigated the relationship between the P600 and P300 elicited 

during language tasks.  An initial study completed by Kutas and Hillyard (1980c) considered 

visual linguistic stimuli with physical deviations, such as different font sizes for each word in 

each presented sentence. A positivity (later described as the P300) was elicited by target words 

with physical deviations but was not observed during stimuli with only semantic errors. The 

P300 was observed to be elicited by surprising events related to the task but independent from 

language processing (Friederici, 1997). Osterhout, McKinnon, Bersick, and Corey (1996) 

completed a similar study that included syntactic violations in addition to sentences with 

physical deviations. Syntactically and physically deviant sentences elicited two distinct ERPs, 

which supports the proposal that the two effects are independent.  

Conversely, some studies have argued that the P600 is not a language based process, but 

is instead a reflection of the P300 due to findings of both components elicited by syntactic errors 

(Coulson et al., 1998). A more recent study has defined the P300 and P600 as separate 

components. Frisch, Kotz, Yves von Cramon, and Friederici (2003) observed subjects with basal 

ganglia lesions and temporo-parietal lesions. During syntactic tasks, only those with temporo-

parietal lesions demonstrated a P600 while both groups demonstrated a P300, indicating that the 

basal ganglia may play a role in P600 generation. The difference between groups indicated 

differences in energy generation, supporting the theory that the P300 and P600 are separate 

components. 

In summary, the P600 is elicited by violations of structural preferences, syntactic 

violations, and difficulty with syntactic integration (Friederici, 2004). There is current debate 
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concerning the P600 and its role in language processing; however, evidence has consistently 

found this positivity in relation to syntactic anomalies. 

The ELAN. The ELAN is correlated with early structure construction processing with 

peak latency present between 100 and 200 ms. This component displays an anterior distribution, 

initiating as early as 250 ms and is mainly distributed over the left hemisphere. The ELAN is 

usually only observed with outright syntactic violations or word category violations (Canseco-

Gonzalez, 2000; Frederici, 1997). More specifically, the ELAN represents interruptions in the 

initial phase of syntactic processing or syntactic structure building phase. The LAN usually 

occurs between 300 and 500 ms post stimuli. Syntactic violations involved with the LAN 

component include agreement information and verb-argument structure information (Friederici, 

2004).  

Initial ERP studies investigating the N400 documented negative waveforms with 

components different from the N400. The observed negativities were later attributed to syntactic 

processing. An early study completed by Kutas and Hillyard (1983) presented semantic and 

syntactic errors visually, one word at a time. As expected, a N400 component was observed for 

semantic errors but smaller and less consistent negativities were observed for morphosyntactic 

violations. The authors found these components to be distinctly different from the latency and 

distribution of those observed with the N400.  

Another early study of syntactic processing further explored several types of syntactic 

errors in order to determine the sensitivity of ERP measures for syntactic processing. Utilizing 

rapid visual presentation both an ELAN and LAN were observed with phrase structure 

anomalies, while the N400 was not observed during syntactically incorrect sentences, again 

underlining the division between syntactic and semantic processing.  Word category errors (e.g., 
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Max’s of proof the theorem) evoked an ELAN around 125 ms, which was followed by a left 

temporal parietal negativity (LAN) between 350 and 500 ms (Neville, Nicol, Barss, Forster, & 

Garrett, 1991). A similar study using rapid visual presentations also observed an ELAN between 

100 and 200 ms; however, the ELAN was only observed when stimuli were presented with high 

visual contrast. With low visual contract only a LAN was observed (Gunter, Friederici, & Hahne, 

1999).  

The above studies considered rapid visual stimuli to elicit the ELAN and LAN.   One 

study observed ERPs elicited from word pairs either semantically related or grammatically 

incorrect (e.g., your-write).  Utilizing longer pauses between stimuli (three to six seconds) did 

not elicit an ELAN.  Instead, the authors observed a LAN between 300 and 700 ms (Munte, 

Heinze, & Mangun, 1993). In addition, Munte et al. (1993) attempted to investigate whether the 

LAN and the N400 were a result of similar underlying processes or if they represented separate 

electrophysiological functions. A general similarity of negative waveforms was observed in both 

syntactic and semantic presentations; however, differences were observed in onset latency and 

distribution.  These early studies also seem to report that the ELAN may only be observed when 

visual information is presented quickly with good visual quality (Kotz & Friederici, 2003). 

The ELAN and LAN were later observed with auditory sentences. Friederici, Pfeifer, and 

Hahne (1993) observed an ELAN for violations of phrase structure, peaking around 180 ms with 

an anterior frontal distribution. The ELAN was followed by another negative wave peaking at 

400 ms with a distribution similar to the ELAN.  It is also noted that morphological errors 

evoked a LAN at about 400 ms followed by a weak positivity and a posterior lateral distribution. 

Based on these results, the ELAN was interpreted to reflect highly automatic processing during 

initial structure building.   
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In relation to the P600, a biphasic ERP response has been observed in the form of an 

elicited ELAN or LAN followed by the P600 (Canseco-Gonzalez, 2000). Kutas and Hillyard 

(1983) observed early negativities significantly different from those observed for semantic 

errors. Negativity between 200 and 300 ms was observed for incorrect verb or noun number 

(e.g., All turtles have long leg or When the wind blows we knows). A positive peak was also 

observed for the grammatical errors (Kutas & Hillyard, 1983). In addition, Coulson, King, and 

Kutas (1998) also observed this biphasic pattern with morphosyntactic violations.  

As suggested in the above studies, the range of syntactic violations studied to elicit the 

ELAN and LAN are wide. Canseco-Gonzalez (2000) reported studies involving violations of 

word-category errors, phrase structure, verb agreement, verb subcategorization, and 

grammatically anomalous word-pairs. Specifically, morphosyntactic violations elicit a LAN 

around 400ms, which is then followed by a P600. Both components are elicited independent of 

stimuli modality (Kotz & Friederici, 2003).  

Klunder and Kutas (1993) questioned the role of the ELAN and LAN as a component of 

pure syntactic processing by observing the results of ERPs and filler-gap constructions. The wh-

question Who did John hit ___? contains the filler who, which is moved to the beginning of the 

sentence leaving a gap or vacant position at the end of the sentence. The filler and gap are 

dependent on each other for successful sentence interpretation. While processing the sentence, 

the filler word must remain in working memory until the corresponding gap is located (Canseco-

Gonzalez, 2000). It was concluded that the observed LAN during filler-gap constructions was a 

result of holding the sentence in working memory until syntactic processing and interpretation 

could occur. The authors argue that previous studies observing the LAN may need to be 
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reinterpreted as a reflection of the demands of working memory instead of a pure syntactic 

processing (Klunder & Kutas, 1993).  

Friederici (1997) argued, based on her temporal model of language, that these 

observations reflect working memory in relation to syntactic structure building processes. Waters 

and Caplan (1996) further examined the relationship between working memory and syntactic 

processing. Sentences that are more difficult to process (garden path sentences) and sentences 

that can be processed with relative ease were compared with various serial visual presentation 

rates. In other words, each garden path sentence was presented word by word at different rates. A 

measure of the subject’s working memory capacity was determined. Increased difficulty for 

sentence comprehension was observed as presentation rates increased; however, no significant 

difference was observed for sentence comprehension between working memory capacity and 

level of sentence processing difficulty. In other words, those considered to have low span 

working memory were not found to be less efficient at processing garden path sentences. Based 

on these results, the authors argue that syntactic processing is independent of working memory 

processing (Waters & Caplan, 1996).  Further research utilizing other brain imaging techniques, 

in addition to ERPs, are required to determine the independence of working memory and 

syntactic processes (Friederici, 1997). 

Few studies have investigated syntactic ERP components in populations with language 

impairments. Friederici, Hahne, and Yves von Cramon (1998) observed the effect of 

syntactically incorrect and semantically incorrect sentences in a patient with Wernicke’s Aphasia 

and in a patient with Broca’s Aphasia. The patient classified with Wernicke’s Aphasia 

demonstrated an ELAN with a late positivity during syntactically incorrect stimuli and an absent 

N400 during semantic tasks. The patient with Broca’s Aphasia did not demonstrate an ELAN; 
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however, the P600 and N400 were observed. A later study involved subjects with cortical lesions 

and lesions within the basal ganglia. Those with left frontal cortical lesions demonstrated a P600 

with an absent ELAN. In contrast, those with basal ganglia lesions demonstrated all three 

components (Friederici, Yves von Cramon, & Kotz, 1999). These results reflect the participation 

of the left frontal cortex during early syntactic processing in contrast to the minor role of the 

basal ganglia in early syntactic processing. 

In summary, the ELAN is distributed in the left anterior superior temporal gyrus and the 

left inferior frontal gyrus, occurring approximately 100 to 200 ms post stimuli. The ELAN is 

usually elicited with outright syntactic violations. Conflicting results have questioned the 

linguistic specificity of the ELAN, suggesting that it is a reflection of working memory demands 

(Waters & Caplan, 1996). According to Friederici’s (1997) language processing model, the 

ELAN is thought to reflect interruptions in early structure building processes while the LAN 

suggests discrepancies in the formation of grammatical roles. 

Electrophysiology of Language Development  

Few studies have investigated the development of ERPs in children during language 

processing tasks. Most have investigated the relationship between adult and child populations, 

attempting to identify when children acquire adult-like processing (Atchley et al., 2006; 

Friederici & Hahne, 2001; Hahne et al., 2004). There is sparse research investigating ERPs 

related to the development of semantic and syntactic processing in younger populations.   

Semantic processing. ERPs reflecting semantic processing have been observed in child 

and adult populations. ERP research has indicated that children rely on contextual information 

for semantic processing as evidenced by a larger N400 in childhood (Hahne et al., 2004).  

A large proportion of developmental ERP studies have examined semantic processing 

exclusively. An early study completed by Holcomb, Coffey, and Neville (1992) examined 
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developmental changes of the N400 with 130 participants between 5 and 26 years of age. Each 

age group listened to linguistically correct and semantically incorrect sentences. A decrease in 

amplitude and latency of the N400 was observed with increasing age. An N400 effect was seen 

for both sentence types in younger children. Hahne et al. (2004) reported similar results. 

Children 6 years of age also demonstrated a N400 in both correct and incorrect semantic 

conditions, which may be due to increase in semantic demands for younger populations. By ten 

years of age, the latency of the N400 was adult-like. No variance in amplitude was observed in 

this study, which may be due to short sentences used with this study.   

Atchely et al. (2006) observed differences in distribution, amplitude, and latency of the 

N400 between child and adult groups. The N400 peaked approximately 75 ms earlier in the 

younger population when compared to the adult group. Friederici and Hahne (2001) also 

observed children between 6 and 9 years of age with auditory sentences. A larger amplitude and 

longer latency (extended to 1000 ms) were observed in children 6 years of age while older 

children demonstrated a more adult-like N400.  

The distribution of the N400 was significantly different for younger children when 

compared to adults. The N400 was widely distributed in children and not restricted to posterior 

locations as seen in adults. Holcomb et al. (1992) hypothesized that these patterns reflected a 

second negative component that is unique to children. Atchely et al. (2006) described the N400 

distribution in children centered over frontal areas, while adults displayed distribution over 

centroparietal sites. The authors suggest that the variance observed between these populations 

may be due to physiological immaturity. Other observations of the N400 in child populations 

have included greater displacement in central, parietal, and frontal locations (Friederici & Hahne, 

2001).  
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Generally, the N400 component in children tends to have greater amplitude, is more 

delayed, and more widely distributed when compared to a N400 produced in adult populations 

(Atchley et al., 2006). Variance in the N400 component reflects continuous semantic processing 

development throughout childhood and early adulthood (Holcomb et al., 1992). 

Syntactic processing. There have been few studies investigating the electrophysiological 

development of syntactic language processing in children. Recently, an increasing amount of 

research has addressed the physiology of language development. This trend may be due to 

implications that this research has for identification and treatment of those with language 

disorders.   

Atchley et al. (2006) completed a comparison study involving the P600 in fourteen 

children between 8 to 13 years of age and fifteen adults. This study differed from previous 

developmental studies due to selection of type of syntactic violation. Morphosyntactic errors 

were utilized based on developmental behavioral studies. Specifically, the authors utilized 

sentences with syntactic errors that children 8-10 years of age could judge with adult-like 

accuracy. In addition, judgment of these errors was determined to be independent of the child’s 

semantic knowledge. No significant differences in distribution, amplitude, and latency of the 

P600 were observed between child and adult groups. In contrast, Friederici and Hahne (2001) 

observed ERPs during auditory sentences with structural discrepancies for 32 children from 6 to 

9 years of age. A significantly larger P600 was observed when compared to adult ERP responses. 

The P600 was initiated around 750 ms and extended up to 1500 ms post stimuli for children 6 to 

9 years of age. 

Adult-like biphasic syntactic processing is not established until early adulthood.  Hahne, 

Eckstein, and Friederici (2004) investigated syntactically incorrect sentences in children from 6 
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to 13 years of age. A late positivity around 1250 to 1500 ms was observed in children 6 years of 

age while an adult-like P600 was observed in children 7 to 12 years of age.  The P600 effect 

observed in younger groups was smaller in amplitude and presented with a delayed latency. In 

addition, an ELAN was observed only with children 13 years of age. Based on observations of 

the P600 and ELAN, younger age groups demonstrate increased syntactic demands for language 

processing; however, these observations may be due to complexity of the stimuli.  

Friederici and Hahne (2001) observed an ELAN in children older than 8 years of age, 

peaking between 150 and 350 ms. In addition, a P600 was also observed around 750 ms and 

continued through approximately1500 ms. Unlike adults, the P600 was displaced to the right 

hemisphere indicating that the first stage of syntactic structure building is adult-like by 8 years of 

age; however, more time is required for secondary syntactic processing (structure repair.) 

Children between 7 and 10 years of age demonstrated a later ELAN peaking around 400 ms and 

extended through 1000 ms. 

More recently, Clahsen, Luck, and Hahne (2007) observed a broad negativity with an 

absent positivity in younger children (about 6 years of age) with morphological errors. The 

authors hypothesized that younger children process morphological errors as semantic violations. 

Hahne et al. (2004) also observed a widely distributed negativity between 100 and 300 ms for 

both syntactically correct and incorrect conditions with this age group. The authors described this 

negativity as a combination of both the ELAN and N400. Palolahti, Leino, Jokela, Kopra, and 

Paavilainen (2005) identified a broad negativity for sentences simultaneously containing 

semantic and syntactic errors in adult populations, indicating an interaction between syntactic 

and semantic processing. 
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Overall, children demonstrate syntactically related ERP components similar to adults. 

The P600 tends to display greater amplitude and more delayed latency when compared to the 

P600 observed in adult populations (Atchley et al. 2006). The ELAN has been observed as early 

as 8 years of age and in conjunction with the N400 in younger populations.  

Present Study 

The purpose of the current study was to provide a more complete and thorough 

description of the development of language processing in children 5 to 12 years of age. An 

examination was completed of the ELAN in response to linguistically correct, syntactically 

incorrect, and semantically incorrect stimuli. In addition, differences observed between age 

groups and stimuli presentation condition were addressed.    

Stimuli sentences were presented in monaural left, monaural right, and binaurally, in 

order to investigate differences between ear conditions. The presence of cerebral dominance in 

normal listeners in demanding auditory tasks, such as dichotic listening tasks, is known as the 

REA phenomenon (Bellis, 2003). The left hemisphere is usually considered the language 

dominate hemisphere. Due to contralateral pathways, auditory linguistic information from the 

left ear must cross from the right hemisphere, through the corpus callosum to the left hemisphere 

for language processing. Auditory linguistic information from the right ear is processed more 

efficiently due to absence of interhemispheric processing. In addition, the more complex the 

linguistic stimuli the more pronounced the REA effect. Specifically, the REA is more distinct in 

children than in adults with observable behavioral effects decreasing with age (Bellis, 2003). 

Previous research of the REA consists of only behavioral observations. The current study 

investigated electrophysiological observations of possible differences between linguistic stimuli 

type and ear conditions in relation to the ELAN. 
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Method 

Participants 

The participants consisted of typically developing children between the ages of 5;0 and 

12;5. The participants were divided into five groups. The groups consisted of ages 5;0-6;5 

(Group 1), 6;6-7;11 (Group 2), 8;0-9;5 (Group 3), 9;6-10;11 (Group 4), and 11;0-12;5 (Group 5). 

Each group consisted of six participants. A total of 30 participants were included in the study. 

Each participant met the following criteria: 

1. No known history of neuropsychiatric disorders.  

2. Normal hearing as demonstrated with pure-tone thresholds of ≤ 25 dB HL at 250, 

500, 1000, 2000, 4000, and 8000 Hz. 

3. No evidence of language delay or disorder as determined by a standard score of at 

least 85 on the Comprehensive Assessment of Spoken Language (CASL).  

4. No evidence of an intellectual disability as determined by a standard score of at least 

85 on the Universal Nonverbal Intelligence Test (UNIT).  

Instrumentation 

An electrode cap (Electrocap International) was used to place silver-silver chloride 

electrodes over the scalp at 32 electrode positions according to the 10-20 International System 

(Jasper, 1958). Electrode impedances were kept below 3000 ohms. Eye movements were 

monitored by placing electrodes on the outer cantha on one eye and above the supra-orbital 

foramen of the opposite eye. During post-hoc averaging, trials containing eye movement were 

rejected.  

Hearing screenings were performed using a Grason-Stadler model GSI-61 audiometer. A 

NeuroScan computer using Scan 4.0 software was used to collect the event-related potentials. 

The raw electrical potentials were filtered between DC and 300 Hz. A 1900 ms sample was taken 
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from the onset of the last word of each sentence. Sentences were presented through a forced 

choice procedure in which participants’ responses would trigger the presentation of the following 

sentence. The GSI-61 audiometer was used to present stimuli through insert phones. Each 

participant was seated comfortably in a reclining chair in a sound-treated test room. The ambient 

noise did not exceed ANSI S3.1-1991 maximum permissible levels for air conduction testing 

with ears uncovered when all electronic equipment was operating.  

A female native English speaker produced the sentences. The sentences were digitally 

recorded in a sound-isolated chamber using a low-impedance dynamic microphone (DPA 4011). 

The microphone was positioned approximately six inches from the talker’s mouth. An A/D 

converter (Mini-me) by Apogee Systems was used to convert the stimuli. All recordings were 

made at a sampling rate of 44.1 kHz with 24-bit quantization. The sentences were down-sampled 

to 18-bit quantization and segmented with Adobe Audition Software to interface with NeuroScan 

software. Selections were cut at a zero-crossing and ramped over the initial and ending 25 ms of 

the waveform. In addition, all files were high-pass filtered to eliminate any extraneous noise 

below 65 Hz. To make the tokens relatively equivalent with regard to intensity, the average RMS 

of each token was measured and digitally adjusted to a standard level, taking care to not adjust 

above peak recording levels. Two tokens were digitally edited to eliminate noise artifacts 

produced during recording. As a final step, the sentences were listened to and judged auditorily 

to be clear with no sudden changes in loudness or extraneous noises. The intensity level of each 

sentence was determined to be perceptually equivalent by three judges. 

Stimuli  

Sentences were presented to the participants in three conditions: (a) monaurally to the 

right ear, (b) monaurally to the left ear, and (c) binaurally. The sentences were presented through 

insert phones (ER3-A) at 65 dB HL in a sound-attenuated chamber using the GSI-61 audiometer. 
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Sentences were taken from Houghton Mifflin English Textbooks and were determined to be at 

the comprehension level of a typically developing child 5 years of age (Houghton Mifflin 

English Textbook, 1990; Houghton Mifflin English Textbook, 1995). One hundred and two 

sentences were used to create the stimuli. Three versions of each sentence were used, totaling 

306 sentences. One version of the sentences was correct, one version contained a semantic error, 

and the third version contained a syntactic error. Syntactic errors included one of the following: 

(a) a plural noun syntactic error, (b) a past tense –ed verb syntactic error, (c) a past tense 

irregular verb syntactic error, or (d) a third person verb syntactic error. These syntactic forms are 

used appropriately by typically developing children 5 years of age (Brown, 1973). The errors 

were relative to the participants’ regional dialect. All syntactic and semantic errors occurred in 

the final word of the sentence. The correct and incorrect versions of the same sentence were 

randomized and never occurred consecutively. Three randomized versions from the 306 

sentences were constructed to prevent bias. Each version contained approximately 50 sentences 

with syntactic errors, 50 sentences with semantic errors, and 50 correct sentences.  

Each participant listened to a different version of the sentences in each of the three ear 

conditions. The presentation order of these versions and of ear condition was randomized 

between participants. Each participant listened to a total of 450 sentences. Each participant was 

given a five-minute training period in which they were instructed to listen carefully to each 

sentence, decide if the sentence was correct or incorrect, and push the corresponding response 

button (a smiley-face was attached to the button for a correct or good sentence and a frowny-face 

was attached to the button for an incorrect or bad sentence). After the first and second 

presentations of sentences, each participant was offered a five-minute break. Examples of the 

sentences are listed below (see Appendix C for the complete set):  
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No Syntactic Errors  

1. The sleeves covered both hands.  

2. The girl laughed.  

3. The plane flew.  

4. Trees and flowers grow.  

Four Examples of Semantic Error  

1. The sleeves covered both moons.  

2. The shoe laughed.  

3. The plane cried.  

4. Trees and flowers quack.  

Four Examples of Syntactic Error  

1. The sleeves covered both hand (plurality error).  

2. The girl laugh (past tense regular verb error or omission of auxiliary “be” followed by 

progressive –ing).  

3. The plane flied (past tense irregular verb error).  

4. Trees and flowers grows (third person verb error).  

Analysis 

The auditory evoked potential waveforms obtained for each participant were averaged for 

both linguistically correct and deviant conditions (syntactically and semantically incorrect). The 

latency of the ELAN was defined as a prominent negative peak within the latency range of 150 

to 300 ms at the Fz recording site or at adjacent recording sites. The magnitude of the ELAN was 

obtained by measuring the amplitude of the waveform from the baseline to the peak amplitude of 

the ELAN.  
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From the raw EEG data, epochs were created. A three point baseline correction and 

smooth function was then performed. Averages were taken for the three separate ear conditions 

from -200 to 1700 ms post-stimulus. Visual inspection determined that any significant ERPs did 

not occur after 800 ms. Descriptive statistics, including means and standard deviations, were 

determined for the ELAN latency and amplitude for each age group in all ear and sentence 

conditions. Grand average waveforms were created for each group in all ear and sentence 

conditions. Finally, the percentage of participants who demonstrated an identifiable ELAN was 

determined for each age group. 
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Results 

The purpose of the current study was to provide a more detailed account of the 

development of syntactic processing. Specifically, differences in latency and amplitude of the 

ELAN in relation to language development of children 5;2 to 12;5 years of age were analyzed. 

Within each age group, differences were observed between ear conditions and stimuli type. 

Additionally, developmental differences were observed between each age group, reflecting 

findings from previous research. 

Descriptive Statistics for the ELAN  

Table 1 presents the descriptive statistics for the youngest age group, 5;2 to 6;5 years of 

age. Mean latencies for left ear stimulation for correct, syntactically incorrect, and semantically 

incorrect are similar with values extending between 303.80 ms and 314.10 ms. In the 

linguistically correct condition, right ear mean latency was 284.60 ms while left ear mean latency 

was 314.10 ms. The difference between these two values is more than one standard deviation. 

This same pattern is noted in both the syntactically incorrect and semantically incorrect 

conditions. In the syntactically incorrect condition, the mean latency for the left ear was 303.80 

ms and the mean latency for the right ear was 272.85 ms. In the semantically incorrect condition, 

the mean latency of the left ear was 311.40 ms and the mean latency of the right ear was 247.64 

ms. In general, the right ear mean latency values are consistently lower than left ear mean latency 

values across all sentence conditions.  

Table 2 presents the descriptive statistics for 6;8 to 7;11 years of age, Group 2. Mean 

latencies for the left ear in the correct (299.67 ms), syntactic error (299.84 ms), and semantic 

error (213.80 ms) conditions are similar and range within 14 ms of each other.  
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Table 1 

Descriptive Statistics for the ELAN in Participants 5;2 to 6;5 Years of Age (Group 1) 

 

 

Condition 

 

M 

 

SD 

 

Minimum 

 

Maximum 

 

Correct 

    

Left Ear (n=6)     

Latency (ms) 314.10 55.69 245.00 399.00 

Amplitude (µV) -5.16 6.40 -15.70 3.08 

Right Ear (n=4)     

Latency (ms) 284.60 92.21 219.40 349.80 

Amplitude (µV) 8.99 10.64 1.47 16.52 

Binaural Ear (n=3)     

Latency (ms) 341.32 86.06 221.60 439.80 

Amplitude (µV) -3.41 6.75 -14.15 3.44 

     

Syntactic Error     

Left Ear (n=4)     

Latency (ms) 303.80 78.89 251.40 418.20 

Amplitude (µV) -3.80 5.34 -9.12 3.21 

Right Ear (n=4)     

Latency (ms) 272.85 60.57 217.20 358.40 

Amplitude (µV) -6.29 13.23 -18.23 11.22 

Binaural Ear (n=4)     

Latency (ms) 302.85 106.95 225.80 461.20 

Amplitude (µV) -3.57 4.41 -10.05 -0.16 

     

Semantic Error     

Left Ear (n=5)     

Latency (ms) 311.40 81.94 213.00 403.40 

Amplitude (µV) -7.09 5.59 -14.63 -2.17 

Right Ear (n=5)     

Latency (ms) 247.64 47.14 204.40 305.00 

Amplitude (µV) -7.12 8.18 -19.08 00.95 

Binaural Ear (n=3)     

Latency (ms) 246.47 44.01 200.20 287.80 

Amplitude (µV) -5.53 2.50 -8.31 -3.49 
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Table 2 

Descriptive Statistics for the ELAN in Participants 6;8 to 7;11 Years of Age (Group 2) 

 

 

Condition 

 

M 

 

SD 

 

Minimum 

 

Maximum 

 

Correct 

    

Left Ear (n=3)     

Latency (ms) 299.67 52.89 238.60 330.60 

Amplitude (µV) -0.55 6.30 -7.55 4.68 

Right Ear (n=3)     

Latency (ms) 282.07 20.53 260.00 300.60 

Amplitude (µV) 2.98 5.47 -0.78 9.26 

Binaural Ear (n=4)     

Latency (ms) 235.90 34.97 215.00 287.80 

Amplitude (µV) -3.59 8.19 -11.88 7.21 

     

Syntactic Error     

Left Ear (n=5)     

Latency (ms) 299.84 77.97 213.00 384.20 

Amplitude (µV) -4.84 6.84 -14.29 2.73 

Right Ear (n=5)     

Latency (ms) 262.88 34.44 225.80 302.80 

Amplitude (µV) -5.39 4.38 -9.51 1.84 

Binaural Ear (n=6)     

Latency (ms) 325.73 66.31 249.40 407.60 

Amplitude (µV) -5.54 2.67 -10.49 -3.33 

     

Semantic Error     

Left Ear (n=3)     

Latency (ms) 312.80 36.48 275.00 347.80 

Amplitude (µV) -8.30 7.34 -14.51 -0.20 

Right Ear (n=2)     

Latency (ms) 237.60 65.05 191.60 283.60 

Amplitude (µV) -0.91 11.24 -8.86 7.04 

Binaural Ear (n=5)     

Latency (ms) 277.96 62.15 195.80 352.00 

Amplitude (µV) -10.41 5.13 -14.94 -1.76 
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Mean latencies for right ear simulation in correct (282.07 ms), syntactic error (262.88 ms), and 

semantic error (237.60 ms) conditions are consistently less than mean latency values for left ear 

stimulation for all sentence presentation types.  

In the syntactically incorrect condition the left ear mean latency was 299.84 ms, right ear 

mean latency was 262.88 ms, and the binaural mean latency was 325.73 ms. Mean latency for 

the right ear stimulation is lower than the mean latencies for left and binaural stimulation, with a 

difference greater than one standard deviation. Mean latencies for binaural stimulation in the 

correct condition was 235.90 ms and 325.73 ms in the syntactically incorrect condition. The 

difference between the mean latencies for binaural stimulation in the correct and the syntactically 

incorrect conditions is greater than one standard deviation  

Table 3 displays the descriptive statistics for participants between 8;3 and 9;3 years of 

age, Group 3. Mean latencies for the left ear (280.35 ms) and right ear (286.20 ms) stimulation in 

the correct condition are similar, being less than 6 ms apart. The mean latency for binaural 

stimulation for the linguistically correct presentation was 246.47 ms. The difference between left 

and right ear stimulation compared to the binaural presentation in the correct condition is greater 

than one standard deviation. 

Mean latencies for left ear stimulation in the correct condition (280.35 ms) and 

semantically incorrect condition (291.40 ms) are similar being less than 12 ms apart. Mean 

latencies for binaural simulation in the correct condition (246.47 ms) and in the syntactically 

incorrect condition (267.76 ms) are greater than one standard deviation. Additionally, mean 

latencies for the right ear in the correct condition (286.20 ms) and the syntactically incorrect 

condition (362.28 ms) are greater than one standard deviation. 
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Table 3  

Descriptive Statistics for the ELAN in Participants 8;3 to 9;3 Years of Age (Group 3) 

 

 

Condition 

 

M 

 

SD 

 

Minimum 

 

Maximum 

 

Correct 

    

Left Ear (n=4)     

Latency (ms) 280.35 47.73 217.20 324.20 

Amplitude (µV) -8.15 8.14 -16.17 2.79 

Right Ear (n=4)     

Latency (ms) 286.20 31.30 257.80 322.00 

Amplitude (µV) -6.52 5.31 -11.56 -1.58 

Binaural Ear (n=3)     

Latency (ms) 246.47 13.04 232.20 257.80 

Amplitude (µV) -7.79 0.92 -8.59 -6.78 

     

Syntactic Error     

Left Ear (n=4)     

Latency (ms) 251.40 50.01 208.60 315.60 

Amplitude (µV) -11.10 8.45 -22.41 -3.27 

Right Ear (n=5)     

Latency (ms) 362.28 76.43 266.40 439.80 

Amplitude (µV) -3.99 4.23 -10.09 0.99 

Binaural Ear (n=5)     

Latency (ms) 267.76 55.71 200.20 352.00 

Amplitude (µV) -5.25 4.83 -9.66 3.05 

     

Semantic Error     

Left Ear (n=3)     

Latency (ms) 291.40 22.29 266.40 309.20 

Amplitude (µV) -5.46 3.79 -8.82 -1.35 

Right Ear (n=1)     

Latency (ms) 221.60  221.60 221.60 

Amplitude (µV) -0.80  -0.80 -0.80 

Binaural Ear (n=1)     

Latency (ms) 260.00  260.00 260.00 

Amplitude (µV) -11.05  -11.05 -11.05 
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Table 4 displays the descriptive statistics for children between 9;6 and 10;6 years of age, 

Group 4. Mean latencies for left ear presentation (287.85 ms) and binaural presentation (282.87 

ms) in the linguistically correct condition are similar. The difference between these two mean 

latencies is less than 5 ms. Additionally, the difference between the mean latencies for the right 

ear presentation (271.25 ms) and binaural presentation (282.87 ms) in the linguistically correct 

sentence condition is less than 12 ms. The difference between the mean latency for the right ear 

presentation in the correct condition (271.25 ms) and the right ear presentation in the 

syntactically incorrect condition (346.65 ms) is greater than one standard deviation. The 

difference between the mean latency for the binaural presentation in the correct condition 

(282.87 ms) and the syntactically incorrect condition (330.30 ms) is also greater than one 

standard deviation. Finally, the mean latency for binaural presentation in the syntactically 

incorrect condition (330.30 ms) and the semantically incorrect condition (241.80) is greater than 

one standard deviation. 

Table 5 presents the descriptive statistics for 11;0 to 12;5 years of age, the oldest age 

group. In the syntactically incorrect condition, the mean latency for the left ear presentation 

(263.85 ms) is similar to the mean latency for the right ear presentation (259.60 ms), being only 

5 ms apart. Additionally, mean latencies for left ear stimulation (263.85 ms) and binaural 

stimulation (279.10 ms) are 16 ms apart in the syntactically incorrect condition. The difference 

between the mean latencies for the left ear presentations in the linguistically correct condition 

(232.93 ms) and the syntactically incorrect condition (263.85 ms) are greater than one standard 

deviation. 
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Table 4 

Descriptive Statistics for the ELAN in Participants 9;6 to 10;6 Years of Age (Group 4) 

 

 

Condition 

 

M 

 

SD 

 

Minimum 

 

Maximum 

 

Correct 

    

Left Ear (n=4)     

Latency (ms) 287.85 57.89 232.20 369.20 

Amplitude (µV) -5.71 12.34 -21.43 6.38 

Right Ear (n=4)     

Latency (ms) 271.25 20.91 251.40 294.20 

Amplitude (µV) -6.96 1.67 -8.70 -5.47 

Binaural Ear (n=3)     

Latency (ms) 282.87 38.87 238.60 311.40 

Amplitude (µV) -4.01 3.49 -7.84 -1.01 

     

Syntactic Error     

Left Ear (n=4)     

Latency (ms) 250.40 62.16 206.60 341.40 

Amplitude (µV) -5.45 2.29 -8.84 -3.93 

Right Ear (n=4)     

Latency (ms) 346.65 73.90 247.20 422.60 

Amplitude (µV) -1.41 6.14 -5.41 7.74 

Binaural Ear (n=4)     

Latency (ms) 330.30 71.83 265.00 429.00 

Amplitude (µV) -5.17 2.99 -7.13 -0.82 

     

Semantic Error     

Left Ear (n=1)     

Latency (ms) 281.40  281.40 281.40 

Amplitude (µV) 2.96  2.96 2.96 

Right Ear (n=3)     

Latency (ms) 282.60 71.62 233.60 364.80 

Amplitude (µV) -9.06 4.53 -14.29 -6.24 

Binaural Ear (n=2)     

Latency (ms) 241.80 16.69 230.00 253.60 

Amplitude (µV) -4.58 2.88 -6.62 -2.54 
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Table 5 

Descriptive Statistics for the ELAN in Participants 11;0 to 12;5 Years of Age (Group 5) 

 

 

Condition 

 

M 

 

SD 

 

Minimum 

 

Maximum 

 

Correct 

    

Left Ear (n=3)     

Latency (ms) 232.93 6.52 225.80 238.60 

Amplitude (µV) -5.44 10.33 -17.16 2.36 

Right Ear (n=2)     

Latency (ms) 270.40 79.20 214.40 326.40 

Amplitude (µV) -5.20 7.78 -10.70 0.30 

Binaural Ear (n=1)     

Latency (ms) 292.20  292.20 292.20 

Amplitude (µV) -0.95  -0.95 -0.95 

     

Syntactic Error     

Left Ear (n=4)     

Latency (ms) 263.85 46.30 223.80 320.00 

Amplitude (µV) -3.93 4.66 -7.54 2.52 

Right Ear (n=5)     

Latency (ms) 259.60 35.58 223.60 309.20 

Amplitude (µV) -5.07 4.54 -12.02 0.31 

Binaural Ear (n=4)     

Latency (ms) 279.10 43.30 222.80 320.00 

Amplitude (µV) -4.00 1.26 -5.72 -3.03 

     

Semantic Error     

Left Ear (n=1)     

Latency (ms) 307.00  307.00 307.00 

Amplitude (µV) -0.75  -0.75 -0.75 

Right Ear (n=2)     

Latency (ms) 226.90 10.61 219.40 234.40 

Amplitude (µV) -6.50 5.68 -10.51 -2.48 

Binaural Ear (n=3)     

Latency (ms) 334.20 93.79 225.80 392.60 

Amplitude (µV) -11.63 10.19 -23.39 -5.44 
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The mean latency for the right ear stimulation for the syntactically incorrect condition 

was 259. 60 ms and the mean latency for the right ear stimulation for the semantically incorrect 

condition was 226.90 ms. The difference between these two mean latencies is greater than one 

standard deviation.  Finally, the difference in the mean latencies for binaural presentations in the 

syntactically incorrect condition (279.10 ms) and the semantically incorrect condition (334.20 

ms) is greater than one standard deviation. 

Developmental ERP Waveforms of the ELAN  

Figure 1 presents the ERP waveforms for the ELAN. For each age group, the waveforms 

for all three linguistic conditions (linguistically correct, syntactically incorrect, and semantically 

incorrect) are shown. Each linguistic condition displays the waveforms for right ear, left ear, and 

binaural presentations. Arrows marking the ELAN indicate the peak amplitude of the ERP.  

For Group 1, the ELAN waveform was present in the left and right ear for the 

linguistically correct condition. For both syntactically and semantically incorrect conditions, the 

ELAN was present for right ear and binaural presentations and was absent for the left ear 

presentation. In Group 2 the ELAN waveform was present in all conditions. For linguistically 

correct and syntactically incorrect conditions, the ELAN was present for both right ear and 

binaural presentations. The ELAN was present for all presentation types in the semantically 

incorrect condition. In Group 3, the ELAN was present only in linguistically incorrect 

conditions. Specifically, the ELAN was present for left and binaural presentations for the 

syntactically incorrect condition and it was present for right and left ear presentations for the 

semantically incorrect condition. In Group 4, the ELAN was present for all stimulation types in 

the correct condition.  
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Figure 1. Grand average ELANs for each age group across all conditions. 
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In syntactically and semantically incorrect conditions, the ELAN was only seen in left 

and binaural stimulation. In Group 5, the ELAN was observed for the right ear stimulation in the 

linguistically correct condition. Additionally, the ELAN was present in left and binaural 

presentations for the syntactically incorrect condition and was present for all stimulation types in 

the semantically incorrect condition. 

Percent of an Identifiable ELAN Component  

Table 6 shows the percent of identifiable ELAN waveforms for the three stimulus 

conditions across each age group. For the correct condition, there was a reduction in the percent 

of identifiable components with the lowest percentage for 11;0 to 12;5 years of age. Similarly, a 

more dramatic percentage decrease was observed for the semantically incorrect condition, 

starting at 83.3% for children 5;2 to 6;5 years of age and decreasing to 25.3% for children 11;0 to 

12;5 years of age. There does not appear to be any consistency for the presence of the ELAN in 

the syntactically incorrect condition, with the highest percentage occurring in age Group 2 

(83.3%) and the lowest percentage for Groups 1 and 2 (66.7%). 

Table 6 

Percentage Identifiable ELAN Component for the Three Stimulus Conditions Across Age Groups 

 

Age (years;months)    Correct Syntactic Error Semantic Error 

5;2 to 6;5 

  

66.7 66.7 83.3 

6;8 to 7;11 

 

50.0 83.3 41.7 

8;3 to 9;3 

 

66.7 75.0 33.3 

9;6 to 10;6 

 

66.7 66.7 33.3 

11;1 to 12;6 41.7 75.0 25.3 
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Discussion 

Data from the current study indicated that children between 5;2 year and 12;0 years are 

developing the ability to process and identify syntactic anomalies with adult-like syntactic 

processing apparent after 12 years of age. The following section compares results from the 

current study with previous research, including findings related to the REA phenomenon.  

The mean latencies for binaural stimulation from Tables 1 through 3 are similar to results 

reported by Friederici and Hahne (2001) and Hahne et al. (2004). In Figure 1, the ELAN 

waveform is present in all linguistic conditions in the first two age groups, indicating that these 

groups were unable to correctly discriminate between linguistically correct and incorrect stimuli. 

These findings also indicate high processing expenses for language comprehension, even for 

linguistically correct sentences (Hahne et al., 2004).  

The amplitude of the ERP is a marker for linguistic processing demands. Smaller 

amplitudes indicate lower processing demands while larger amplitudes suggest higher processing 

demands. The highest mean amplitude for binaural stimulation in the syntactically incorrect 

condition was -5.54 µV for Group 2, decreasing to -5.24 µV for Group 3, and -5.17 µV for 

Group 4. The smallest mean amplitude for syntactically incorrect stimuli with binaural 

stimulation occurred in Group 1 (-3.57 µV) and Group 5 (-4.00 µV). These results are consistent 

with findings from Friederici and Hahne (2001), who identified decreasing ELAN amplitudes 

with increasing age. Smaller amplitude values suggest fewer processing demands for language 

comprehension. Smaller mean amplitudes observed in Group 1 may demonstrate lower levels of 

linguistic comprehension and should be addressed in further study.  

In the current study, Group 3 and Group 5 demonstrated the earliest and most adult-like 

mean latencies for binaural stimulation with syntactically incorrect stimuli. Group 3 did not 

demonstrate an ELAN waveform in the linguistically correct condition, indicating that these 
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children recognized a linguistic error but were unable to distinguish between semantic and 

syntactic errors.  Results from Friederici and Hahne (2001) indicate that an ELAN-like 

component is evident by 7 years for syntactically incorrect stimuli, however, latency and 

amplitude values are not adult-like. These results may indicate that adult-like syntactic 

processing for subtle syntactic errors begins to develop as early as 7 years, with mature 

processing after 12 years of age. Supporting behavioral child language studies indicate that the 

ability to judge the correctness of linguistic stimuli occurs after the child correctly produces the 

syntactic form (De Villiers & De Villiers, 1978).  

Similar to younger age groups, in Group 4 and Group 5 the ELAN is identified for all 

linguistic conditions. Figure 2 from Tree (2009) shows P600 recordings from the same group of 

participants as in the current study (the data was obtained simultaneously).  As discussed, the 

P600 component is an indicator of syntactic processing (Friederici, 2004). The P600 component 

is apparent in the syntactically incorrect conditions for all age Groups. Additionally, the P600 is 

absent for semantically incorrect conditions in Group 4 and 5 indicating that older participants 

are able to distinguish between syntactic and semantic errors. These observations demonstrate 

that children between 9;6 and 12;5 years of age perceive syntactic errors even though the ELAN 

component is observed for all three conditions during this age span.  

As discussed, Palolahti et al. (2005) identified a negative component in the left 

hemisphere in adults with latencies similar to both the ELAN and the N400 when processing 

sentences with combined morphosyntactic and semantic violations. The authors suggest that this 

negativity is a reflection of the interaction between syntactic and semantic processing.  
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Figure 2. Developmental waveforms of the P600 for all conditions from Tree (2009) with 

permission. 
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The current study identified a negative waveform for all linguistic conditions in older age 

groups. As described, the presence of the P600 establishes that children in Groups 4 and 5 can 

discriminate between syntactic and semantic errors.  

Supported by previous research from Palolahti et al. (2005), the similarities between 

Groups 4 and 5 may be an indication of the interaction between semantic and syntactic 

processing for all linguistic types due to language development and sentence stimuli complexity. 

These conclusions are in disagreement with Friederici’s three phase model of language 

comprehension, which describes the ELAN and N400 as independent processes with syntactic 

and semantic integration reflected only by the P600 component. The evidence from the current 

study indicate a need for further research to determine a distinction between ERP components for 

syntactic and semantic processing as linguistic complexity increases with increasing age.  

Figure 1 demonstrates several inconsistencies between each ear condition for all 

linguistic stimuli types. Previous research concerning the REA indicates that there are no 

behavioral differences during processing of monaural linguistic stimuli (Bellis, 2003). For 

syntactically incorrect stimuli the ELAN was present in right and binaural conditions but not in 

the left ear condition for younger participants (Groups 1 to 3), while the waveform was present 

in left and binaural conditions and not for right ear conditions in older ages (Groups 4 and 5). As 

described, the ELAN waveform was present for syntactically incorrect stimuli in all age groups; 

however, it was not present in all ear conditions. These differences in ear conditions may 

demonstrate the brain’s ability to recognize certain errors at earlier ages, depending on the 

development of neural linguistic connections. This observation warrants further exploration.         

As illustrated in Table 6, there is variability in the presence of the ELAN between 

linguistic conditions. This is consistent with previous research by Hahne et al. (2004) who 
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identified an adult-like ELAN component for syntactically incorrect stimuli after 13 years of age. 

It is evident that the presence of the ELAN decreases with increasing age for both semantically 

incorrect and correct linguistic stimuli. Specifically, there was a decrease in 25% of an 

identifiable ELAN component for correct sentences between the youngest and oldest age groups. 

A more dramatic decrease of 53.3% of an identifiable ELAN occurred for semantically incorrect 

sentences between Group 1 and Group 5. Since the ELAN component is thought to be associated 

with syntactic errors and not semantic errors, this decrease may indicate that children are 

developing the ability to differentiate between semantic and syntactic errors as early as 6;8 years 

of age; however, this strong differentiation is not observed between linguistically correct and 

syntactically incorrect sentences. The largest difference for percent of identifiable ELAN 

component between linguistic conditions is found in the oldest age group. In summary, the 

results indicate that younger children have not acquired the linguistic ability to differentiate 

between syntactic and semantic errors. Additionally, the ELAN was less identifiable in correct 

and semantically incorrect conditions for the oldest age group due to higher levels of linguistic 

processing abilities, allowing for the capability to distinguish between syntactic and semantic 

errors. 

Comparison of ear conditions and mean latencies revealed consistent differences between 

Groups 1 and  2 and older age Groups. For Group 1, right ear presentations had the shortest mean 

latencies in both correct and syntactically incorrect conditions. Similarly, right ear mean 

latencies were consistently earlier than left ear mean latencies in all conditions for Group 2. 

Trends or differences in mean latencies in Groups 3-5 for each ear condition were not apparent. 

Overall, right ear mean latencies for Groups 1-5 occurred earlier than mean latencies for left or 
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binaural stimulation 53% of the time (8/15); indicating the presence of the REA phenomenon in 

children up to 7;11 years of age.  

As discussed, syntactic and semantic information is typically processed in the left, 

language dominant hemisphere. Due to contralateral pathways in the brain, auditory linguistic 

information from the left ear generally must cross from the right hemisphere, through the corpus 

callosum to language processing regions within the left hemisphere. Consequently, auditory 

linguistic information from the right ear is processed more efficiently due to the absence of 

interhemispheric left-to-right transference of information. Behaviorally, the REA is more distinct 

in very young children than in adults, with observable effects decreasing with age (Bellis, 2003). 

Results from the present study indicate that the REA phenomenon is likely present in children up 

to 7;11 years of age. The presence of the REA in the current study may reflect increased 

syntactic processing demands due to more complex and subtle syntactic errors. The difference 

between behavioral and electrophysicological data for processing linguistic stimuli with 

increasing complexity warrants further investigation. 
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Conclusion 

The results of the current study are similar to those of Hahne et al. (2004) in that younger 

children demonstrate ELAN components with later latencies and higher amplitudes when 

compared to adults; however, these differences are slight. Results from Friederici and Hahne 

(2001) suggest that children may begin to acquire adult-like syntactic processing by 8 years of 

age. The current study suggests that these processes may begin to develop around 8 years of age; 

however, the ability to differentiate between linguistically correct, semantically incorrect, and 

syntactically incorrect is not established until 11 or 12 years of age. Therefore, younger ages may 

be able to process at a low level of syntactic complexity but more adult-like processing of 

morphological errors at the sentence level is not established until later years, after 12 years of 

age. Based on these findings, further exploration into the development of each ERP language 

component, including variance in the complexity of linguistic stimuli, over a broad age span is 

warranted. 

Results further indicate that the ear condition takes part in the processing of syntactic 

information. The purpose of the current study was to investigate the relationship between 

linguistic ERPs and different ear conditions. Findings from this study did not reflect past 

behavioral data concerning the REA, suggesting that the REA effect may exist in older children. 

Since behavioral studies utilize lower levels of linguistic stimuli (i.e. dichotic digits), while the 

current study used higher levels of linguistic information, placing greater demands on the neural 

system, the current findings indicate that the REA varies as a function of processing demands 

and not necessarily the development of neural pathways, per se.  The relationship between 

electrophysiological processing and behavioral ear conditions needs further and more in-depth 

exploration in an attempt to separate the contributions of the crossed neural pathways and the 

demands of linguistic processing on REA. 
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Contrasting data was noted in regards to the mean latency of the ELAN across age 

groups. Friederici and Hahne (2001) identified an adult-like ELAN component by 8;3 years of 

age, while Hahne et al. (2004) did not identify an adult-like ELAN component until 13 years of 

age. The current study discovered a difference in ELAN waveforms between linguistic 

conditions for Group 3 (age 8;0 to 9;5 years); however, the differences between percentage of 

identifiable ELAN waveforms were most apparent in the oldest age group. These results indicate 

that children are more able to discriminate between correct, syntactically incorrect, and 

semantically incorrect stimuli by 12 years of age, which is more consistent with known 

neurophysiological development of higher cognitive processing (Buchwald & Guthrie, 1994; 

McPherson, 1996). Furthermore, various factors may affect these contrasting results, including 

population sample, regional area, or limited research into the development of the ELAN. Further 

research of the development of the ELAN component in regards to various linguistic errors and 

ear condition types would provide greater insight into the rapid development of language 

processing in children.  Additionally, research including young children less than 5 years of age 

and children over 13 years of age may allow a better comparison of the ELAN as it develops. 

The usefulness of continued electrophysiological research is apparent when clinical 

application is considered (Friederici, 1997). An ERP measurement does not require a conscious 

response to stimuli; therefore it presents potential for the diagnosis of language disorders, 

especially in young children with diminished verbal ability. For example, Byrne et al. (1999) 

recorded ERPs from typical developing children in conjunction with a standardized receptive 

vocabulary test. Based on their results, the authors reported that certain ERP components could 

be tools for determining receptive vocabulary ability. By increasing the understanding of 

linguistic development associated with differences in latency, amplitude, and distribution of 
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ERPs will assist in further understanding of neurological language development and language 

developmental disorders. 
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Appendix A 

Parental Informed Consent for Child to Act as a Human Research Subject 

David L. McPherson, Ph.D. 

Department of Audiology and Speech Language Pathology 

Brigham Young University 

(801) 422-6458 

 

 

Name of Participant:  Date of Birth:   

Purpose of Study 

This research is designed to examine the syntactic processing of language by the brain in 

children using electrophysiological measures known as event-related potentials. Participation in 

this study will help teachers and scientists better understand the brain’s ability to process 

language. 

Procedures 

Your child has been asked to participate in a research study conducted by Dr. David L. 

McPherson and / or such assistants as may be selected by him.  

 

The study will be conducted at your child’s school and in room 111 of the John Taylor Building 

on the campus of Brigham Young University. The testing at the school will consist of two 

sessions. One session will test your child’s IQ and the second session will test your child’s 

language. Each session at the school will take approximately 1 hour. Testing at Brigham Young 

University, including orientation and testing, requires one 2-3 hour session. Your child may ask 

for a break at any time during testing. Basic hearing tests will be administered during the first 

half-hour of the session. 

 

Surface electrodes (metal discs about the size of a dime) will be used to record electrical activity 

of your child’s brain. These discs will be applied to the surface of the skin with a cream or gel 

and are easily removed with water. Blunt needles will be used as a part of this study to help 

apply the electrode gel. They will never be used to puncture the skin. Your child may feel 

uncomfortable using the cap and having gel on his or her face and head. If your child is 

uncomfortable, he or she will be assured that they will only have the electrodes on for a short 

period of time. If your child has a negative reaction to the electrodes, the electrodes and gel will 

be removed. The gel is easily removed with warm, but not hot water. Discomfort from the 

electrode cap immediately dissipates upon removal of the cap. This is similar to a “sports cap” 

that adds slight pressure to the scalp.  

 

Language processing will be measured using an electrode cap, which simply measures the 

electrical activity of my child’s brain and does not emit electricity, and no electrical impulses 

will be applied to the brain. These measurements of the electrical activity are similar to what is 

known as an “EEG” or brain wave test. These measurements are of normal, continuous electrical 

activity in the brain.  
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Your child will wear the electrode cap while he/she listens to 648 sentences, during which time 

the electrical activity of his/her brain will be recorded on a computer. Your child will be asked to 

give responses during the hearing test, standardized language test, and the electrophysiological 

recording. 

 

The procedures used to record the electrophysiological responses of the brain are standardized 

and have been used without incident in many previous investigations. The combination of 

sentences presented is experimental, but the recording procedure is not.  

 

Risks 

There are very few potential risks from this procedure, and these risks are minimal. The risks of 

this study include possible allergic reactions to the conductive gel or to the skin prepping gel. 

Allergic reactions to the gel are extremely rare. There is also a possibility for an allergic reaction 

to the electrodes. If any of these reactions occur, a rash would appear. Treatment would include 

removing the electrodes and gel and exposing the site to air, resulting in alleviation of the 

irritation. If there is an allergic reaction, testing procedures would be discontinued. Another 

unlikely risk is a small abrasion on the scalp when the blunt needle is used to place electrode gel. 

Treatment would also include removing the electrode and gel, exposing the site to air and testing 

procedures would be discontinued. 

 

There are no other known risks with this procedure. It is understood that participation in this 

study is voluntary and the participant may withdraw during any part of the testing without any 

negative consequences now or in the future. 

Benefits 

Benefits from participating in this study include an assessment of hearing, language and IQ. I 

will be notified if any clinical deficits are found in these areas. I also understand that there may 

be no direct benefit to me or my child. However, the information obtained will help to further the 

understanding of language processing, which will be beneficial to professionals involved in 

treating speech and hearing disorders. 

Confidentiality 

Participation in this study is voluntary and your child has the right to refuse to participate or 

withdraw at any time. All information obtained from testing is strictly confidential and is 

protected under the laws governing privacy. No information specifically pertaining to your child, 

other than reporting of test results without identifying information may be released without your 

signature. All identifying references will be removed and replaced by control numbers which 

will identify any disclosed or published data. Data collected in this study will be stored in a 

secured area accessible only to personnel associated with the study.  

Other Considerations 

There are no charges incurred by you or your child for participation in this study. There is no 

treatment or intervention involved in this study.  

 

The procedures listed above have been explained to me and my child by: ___________________ 

in a satisfactory manner and any questions relating to such risks have been answered. If there are 
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any further questions or concerns regarding this study, I may ask any of the investigators or 

contact David McPherson, Ph.D., Audiology and Speech-Language Pathology, 129 Taylor 

Building, Provo, Utah 84602; phone (801) 422-6458; email: david_mcpherson@byu.edu. 

 

If there are any questions regarding my rights as a participant in this research project, we may 

contact Renea Beckstrand, PhD, Chair of Institutional Review Board, 422 SWKT, Brigham 

Young University, Provo, Utah 84602; phone (801) 422-3873; email: 

renea_beckstrand@byu.edu. 

 

I give permission for my child to participate in the study explained above.  

 

    

             

Signature of Parent/Guardian    Date  

 

 

          

Signature of Witness     Date 
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Appendix B 

 

Child Informed Consent to Act as a Human Research Subject 

 

David L. McPherson, Ph.D. 

Department of Audiology and Speech Language Pathology 

Brigham Young University 

(801) 422-6458 

 

This study is to look at how the brain processes words that we hear. Being part of this study will 

help teachers and scientists better understand how the brain reacts to speech. What we learn will 

be useful to people who help children with speech problems. My parents have agreed that I can 

help with this research. 

 

I will be pulled out of class twice for testing. During this time, if I get tired I can ask for a break 

from testing. I will visit BYU one time. During my visit, my hearing will be checked. Also, I will 

wear a silly hat that has connections attached to the computer. The hat looks like a shower cap 

with holes. In the holes, the clinician will put some sticky, clear gel. When the gel is put on my 

head, it may tickle for a moment. It may also feel gooey. If I don’t like the feel of the gel and 

cap, I can ask the clinician to take it off at any time. I will hear some sentences through the ear 

probes. I will press a button to tell the researcher if the sentence I heard was “good” or “bad.” If I 

get tired, I can ask for a rest. 

 

I understand that I do not have to do any part of this study. If I change my mind, I can quit the 

study at any time. 

 

 

I would like to be part of this study. 

 

    

Signature of Participant  Date 
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 Appendix C 

 

Stimulus Sentences 

A. Correct Sentences 

Houghton Mifflin English: Teacher’s Edition, Level 2. (1995). Boston: Houghton Mifflin 

Company. (pp. 95–187) 

 

1. The mother smiles.  

2. A boy looks.  

3. A baby laughs.  

4. The wind blows.  

5. The boats sail.  

6. The dog digs.  

7. The whale swims.  

8. Two children run.  

9. One girl swings.  

10. They run.  

11. The kite flies.  

12. The ballerina dances.  

13. They sing.  

14. The teacher reads.  

15. The girls cheer.  

16. The rollercoaster shakes.  

17. The class sits.  

18. The bus driver waits.  

19. My sister plays.  

20. The nurse helps.  

21. The author writes.  

22. I wonder what he thinks.  

23. Trees and flowers grow.  

24. The truck driver waves.  

25. The people leave.  

26. The bread bakes.  

27. The duck quacks.  

28. The washing machine washes.  

29. Sally likes to walk.  

30. The figure skater ice skates.  

31. The lion escapes.  

32. The ranger hikes.  

33. The athlete drinks.  

34. Charlie paints.  

35. The girl laughed.  

36. The train moved.  

37. My friend smiled.  

38. The balloon popped.  

39. The horse kicked.  
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40. The plane flew.  

41. The doorbell rang.  

42. Uncle Ed ran.  

43. Santa Claus came.  

44. The guests left.  

45. The librarian whispered.  

46. We started.  

47. The runner rested.  

48. The patient coughed.  

49. The little boy fell.  

50. The mailman drove.  

51. Andy threw.  

52. Jeff swung.  

53. The tiger slept.  

54. We watched.  

55. The star twinkled.  

56. The worm crawled.  

57. The ball bounced.  

58. The student learned.  

59. The car turned.  

60. The hippo splashed.  

61. The horn honked.  

62. The kitten meowed.  

63. The water boiled.  

64. The woman sang.  

65. The artist drew.  

66. The dolphin swam.  

67. The ship sunk.  

68. The cowboy rode.  

69. The sleeves covered both hands.  

70. The coat had two big pockets.  

71. She found a key in one pocket.  

72. The key will open many doors.  

73. Dennis saw three blue belts.  

74. Kerry wore a striped skirt.  

75. Baby dogs are called puppies. 

76. Some animals like to eat berries. 

77. One child hopped on both feet.  

78. A cat chased three mice.  

79. The bus passed some geese.  

80. A baby was playing with a toy mouse.  

81. He fell and hit his two front teeth.  

82. Grandma picked corn.  

83. My father drives a truck.  

84. His truck has sixteen wheels.  

85. Dad drives the truck to a dock.  
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86. They drove to a store.  

87. Uncle Henry is a cook.  

88. He works at a school.  

89. Mr. Lee ate three beans.  

90. My cousins own a huge pool.  

91. My sister is having a party.  

92. Two boys are swimming in the water.  

93. Many foods come from plants.  

94.  A king lived in a huge castle.  

95.  The queen showed the guests each room.  

96. Food was served on long tables.  

97.  The children played in a box.  

98.  Some horses waited by a gate.  

99.  The tree had many branches.  

100.  Some people build houses.  

101.  Farmers grow fruit and vegetables.  

102.  Drivers take packages to cities.  
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B. Semantic Errors 

Houghton Mifflin English: Teacher’s Edition, Level 2. (1995). Boston: Houghton Mifflin 

Company. (p. 95–187) 

 

1. The block smiles.  

2. A mountain sees.  

3. A bottle laughs.  

4. The wind jumps.  

5. The boats run.  

6. The tree digs.  

7. The rock swims.  

8. Two thumbs run.  

9. The sky swings.  

10. The papers run.  

11. The kite kisses.  

12. The door dances.  

13. Sticks sing.  

14. The fish reads.  

15. The grass cheers.  

16. The rollercoaster swims.  

17. The lightning sits.  

18. The light waits.  

19. My kitchen plays.  

20. The chalk helps.  

21. The shirt writes.  

22. I wonder what he walks.  

23. Trees and flowers quack.  

24. The truck driver flies.  

25. The ground leaves.  

26. The bread jumps.  

27. The duck drives.  

28. The washing machine giggles.  

29. The boat walks.  

30. The sock ice skates.  

31. The window escapes.  

32. The pen hikes.  

33. The ear drinks.  

34. The fan paints.  

35. The shoe laughed.  

36. The train eats.  

37. My foot smiled.  

38. The balloon ate.  

39. The pencil kicked.  

40. The plane cried.  

41. The doorbell danced.  

42. The picture ran.  
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43. The nose came.  

44. The finger left.  

45. The cup whispered.  

46. We cracked.  

47. The clock rested.  

48. The toe coughed.  

49. The little cloud fell.  

50. The dog drove.  

51. The phone threw.  

52. The dirt swung.  

53. The tiger barked.  

54. We twinkled.  

55. The star swallowed.  

56. The worm mooed.  

57. The waterfall bounced.  

58. The soap learned.  

59. The house turned.  

60. The hippo meowed.  

61. The horn winked.  

62. The kitten oinked.  

63. The water yelled.  

64. The can sang.  

65. The garbage drew.  

66. The dolphin jogged.  

67. The ship walked.  

68. The tooth rode.  

69. The sleeves covered both moons.  

70. The coat had two big legs.  

71. She found a key in one ear.  

72. The key will open many hangers.  

73. Dennis saw three blue hugs.  

74. Kerry wore a striped banana.  

75. Baby dogs are called worms 

76. The animals like to eat pianos. 

77. One child hopped on both eyes.  

78. A cat chased three pickles.  

79. The bus passed some earthquakes.  

80. A baby was playing with a toy word.  

81. He fell and hit his two front apples.  

82. Grandma picked robots.  

83. My father drives a hair.  

84. His truck has sixteen fingers.  

85. Dad drives the truck to a duck.  

86. They drove to a grape.  

87. Uncle Henry is a steak.  

88. He works at a cloud.  



62 

89. Mr. Lee ate three fires.  

90. My cousins own a huge leg.  

91. My sister is having a party.  

92. Two boys are swimming in the peanut butter.  

93. Many foods come from stars.  

94. A king lived in a huge hotdog.  

95. The queen showed the guests each sneeze.  

96. Food was served on long ceilings.  

97. The children played in a marshmallow.  

98. Some horses waited by a smile.  

99. The tree had many chickens.  

100. Some people build oranges.  

101. Farmers grow fruit and monkeys.  

102. Drivers take packages to ants.  
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C. Syntactic Errors 

Houghton Mifflin English: Teacher’s Edition, Level 3. (1990). Boston: Houghton Mifflin   

Company. (pp. 26, 74–89)  

 

1. The mother smile.  

2. A boy look.  

3. A baby laugh.  

4. The wind blow.  

5. The boats sails.  

6. The dog dig.  

7. The whale swim.  

8. Two children runs.  

9. One girl swing.  

10. They runs.  

11. The kite fly.  

12. The ballerina dance.  

13. They sings.  

14. The teacher read.  

15. The girls cheers.  

16. The rollercoaster shake.  

17. The class sit.  

18. The bus driver wait.  

19. My sister play.  

20. The nurse help.  

21. The author write.  

22. I wonder what he think.  

23. Trees and flowers grows.  

24. The truck driver wave.  

25. The people leaves.  

26. The bread bake.  

27. The duck quack.  

28. The washing machine wash.  

29. Sally likes to walks.  

30. The figure skater ice skate.  

31. The lion escape.  

32. The ranger hike.  

33. The athlete drink.  

34. Charlie paint. 

35. The girl laugh.  

36. The train move.  

37. My friend smile.  

38. The balloon pop.  

39. The horse kick.  

40. The plane flied.  

41. The doorbell ringed.  

42. Uncle Ed runned.  
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43. Santa Claus comed.  

44. The guests leaved.  

45. The librarian whisper.  

46. We starts.  

47. The runner rest.  

48. The patient cough.  

49. The little boy falled.  

50. The mailman drived.  

51. Andy throwed.  

52. Jeff swinged.  

53. The tiger sleeped.  

54. We watches.  

55. The star twinkle.  

56. The worm crawl.  

57. The ball bounce.  

58. The student learn.  

59. The car turn.  

60. The hippo splash.  

61. The horn honk.  

62. The kitten meow.  

63. The water boil.  

64. The woman singed.  

65. The artist drawed.  

66. The dolphin swimed.  

67. The ship sinked.  

68. The cowboy rided.  

69. The sleeves covered both hand.  

70. The coat had two big pocket.  

71. She found keys in one pockets.  

72. The key will open many door.  

73. Dennis saw three blue belt.  

74. Kerry wore a striped skirts.  

75. Baby dogs are called puppy. 

76. The animals like to eat berry.  

77. One child hopped on both feets.  

78. A cat chased three mouses.  

79. The bus passes some gooses.  

80. A baby was playing with a toy mouses.  

81. He fell and hit his two front tooths.  

82. Grandma picked corns.  

83. My father drives a trucks.  

84. His truck has sixteen wheel.  

85. Dad drives the truck to a docks.  

86. They drove to a stores.  

87. Uncle Henry is a cooks.  

88. He works at a schools.  
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89. Mr. Lee ate three bean.  

90. My cousins own a huge pools.  

91. My sister is having a parties.  

92. Two boys are swimming in the waters.  

93. Many foods come from plant.  

94. A king lived in a huge castles.  

95. The king showed the guests each rooms.  

96. Food was served on long table.  

97. The children played in a boxes.  

98. Some horses waited by a gates.  

99. The tree had many branch.  

100. Some people build house. 

101. Farmers grow fruit and vegetable. 

102. Drivers take packages to city.  
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