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ABSTRACT

A COMPUTATIONALLY-ASSISTED METHODOLOGY FOR RAPID
EXPLORATION OF DESIGN POSSIBILITIES

IN CONCEPTUAL DESIGN

Garrett J. Barnum
Department of Mechanical Engineering

Master of Science

One of the most important decisions in the product development process is the selection of
a promising design concept because of the large influence it has on the final product. A thorough
search for the best design is a significant challenge to designers, who are trying to balance the
objective and subjective performance of the designs they create. In this thesis, a computationally-
assisted design methodology is developed and used in the early stages of design to more thoroughly
search for designs that perform well according to objective physics-based models and subjective
designer-specific preference-based models. The method presented herein uses an initial pool of
user-created designs that is parameterized and used in a numerical search that recombines design
features to form new designs in a semi-automated way. Designs are then evaluated quantitatively
by objective performance calculations and evaluated qualitatively by human designers. Designer
preference is interactively gathered when visual representations of new computer-created designs
are presented to the designer for subjective evaluation. A mathematical model is then formed using
statistical probability methods to approximate the designer’s preference and incrementally updated
after the designer subjectively evaluates a new set of designs at each iteration of the automated
search process. The methodology uses a multiobjective approach to search for optimally perform-
ing designs, treating both the physics-based models and the preference-based models as objectives.
The methodology couples the speed of computational searches with the ability of human design-
ers to subjectively evaluate unmodeled objectives. The method is demonstrated with two product
examples to find optimal designs that designers may not have otherwise discovered among the
vast number of possible combinations of features. The proposed methodology brings the ability to
search for and find numerous, optimal solutions across a wide solution space, in an efficient and
human-centered way, and does so in the early stages of design.

Keywords: conceptual design, concept generation automation, multiobjective optimization, pref-
erence capture, Garrett Barnum
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GLOSSARY

designer A human designer or development engineer who contributes to finding solutions and
developing products [1]

design requirement A condition or customer need that a product, concept, or design must satisfy

functional specification A metric and a value, providing a measurable level of performance cor-
responding to a design requirement [2]

concept A human-generated design; consisting of a partial or complete description of the form,
functions, features, and other attributes which have the intent of meeting the design require-
ments of a product

design A computer-generated design; consisting of a set of features and attributes which have the
intent of meeting the design requirements of a product

function An abstract formulation of the overall task needed to meet the product requirements [1]
subfunction Smaller divisions of the overall function; corresponds to subtasks [1]
feature An embodiment of ideas that accomplishes specific subfunctions

conceptual design One of the early phases of product development that includes identifying target
market needs, generating and evaluating alternative product concepts, and selecting one or
more concepts for further development [2]

detailed design The phase of product development which further develops the concept identified
in previous phases through the use of computational tools which use predictive models to
analyze and incrementally improve a design’s performance in an effort to finalize the the
final geometry, materials, and tolerances [2]

physics-based model A quantitative parametric model, representing natural laws and theories,
however simplified, used to approximate or predict the physical performance of a design
according to specific metrics, calculated as a function of a set of input variables

preference-based model A quantitative model of the qualitative preference of a designer, ap-
proximating his/her like or dislike for a design as described by a set of input variables

Xii
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CHAPTER 1. INTRODUCTION

1.1 Problem Introduction

Among the most important decisions in the product development process is one that marks
the end of the conceptual design phase — the selection of the most promising design concept —
which will be fully developed in the remaining phases of the development process. While there are
various effective methodologies to assist the designer in identifying the best performing concepts
within a given set [1-5], these methods are limited by the quality and quantity of the set of concepts
under consideration. The quality of that set is partially determined by the level of creativity, intu-
ition, and experience of the design team, while the quantity is primarily determined by the amount
of time and effort given to concept generation activities. Unfortunately, the abstract, ambiguous,
and open-ended nature of conceptual design makes it impractical to generate and consider all, or
even a majority of the possible concepts using manual methods.

The methodology presented herein, as well as other conceptual design automation re-
search [6—12], uses computational methods, which are traditionally used in the design embodi-
ment and detailed design phases of the development process, to automatically and rapidly search
through the large conceptual design space in a more thorough and efficient way than can be done
manually. However, quantitative, predictive models are required in order to automatically evaluate
performance of new concepts, and in the early phases of design, there are often subjective deci-
sions made which are difficult to quantify. It would be advantageous to have a way to model these
subjective decisions and use them in a computational search for two main reasons: (1) a signifi-
cantly higher number of concepts could be automatically evaluated in a rapid manner, and (2) by
more fully exploring the design possibilities in an automated way, there is an increased chance to
find better performing, more preferred designs.

Throughout this thesis, all predictive models will be classified as one of two types, physics-

based models or preference-based models, which are defined here.



A Physics-based Model is a quantitative parametric model, representing natural laws and theo-
ries, however simplified, used to approximate or predict the physical performance of a design

according to specific metrics, calculated as a function of a set of input variables.

A Preference-based Model is a quantitative model of the qualitative preference of a designer,

approximating his/her like or dislike for a design as described by a set of input variables.

Traditional physics-based performance can be modeled by equations, calculated using design input
variables, and can be numerically optimized. However, the existence of subjective decisions im-
plies that there are important aspects of performance that are unmodeled by physics-based models,
but are modeled in the mind and intuition of the experienced designer, and these subjective deci-
sions are influential during conceptual design. Completely excluding humans from an automated
evaluation process would ignore the importance of human subjectivity in decisions made during

the conceptual design phase.

1.2 Research Context

The design methodology presented herein is intended to be used as a decision-making as-
sist/tool during conceptual design, after an initial set of manually generated concepts has been
generated, but before the selection of a final concept. The design methodology automates the tra-
ditionally manual process of combining and recombining features from an initial set of concepts,
but also performs statistical parameter studies, uses physics-based models, uses preference-based
models when available, and allows the designer to introduce new, human-generated concept fea-
tures which were not present in the initial set of concepts, all in an effort to guide the search for
better performing combinations of the human-generated ideas/features.

Figure 1.1 compares a conventional conceptual design process, on the left [4], with the
proposed computationally-assisted design methodology in the conceptual design process on the
right [13]. Both begin with a set of manually, human-generated concepts. The conventional pro-
cess gradually converges on the best concepts, using human-based judgment and preferences to
creatively generate, combine, and evaluate the concepts of each subsequent iteration until the final

concept emerges.
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Figure 1.1: A comparison of (a) a conventional conceptual design process [4] and (b) the proposed
computationally-assisted design methodology in a conceptual design process [13].

The proposed design methodology, in the process on the right of Figure 1.1, partially au-
tomates the steps of conceptual design by using a numerical search to automatically form new
combinations of features, automatically evaluate those designs, and find the best performing de-
signs of each iteration, which are then presented to designers for manual evaluation. In this way, the
best concept traits and designer preferences are captured, incorporated into the numerical search,
and used to guide the search for designs in the next iteration. By automating the search, the
computationally-assisted design methodology rapidly explores and evaluates thousands of designs

within minutes, thus expanding the search for the best designs beyond traditional, manual methods.



1.3 Objectives

The main objective of this thesis is to develop a design methodology that uses compu-
tational power to assist designers in the search for optimally performing designs according to
physics-based models and preference-based models. To accomplish the development of this method-

ology, the main objective is broken down into the following sub-objectives:

1. Develop a method that uses numerical representations of human-generated design concepts

to find optimal designs according to physics-based performance models

2. Develop a method to capture designer preferences, form a quantitative preference-based per-

formance model, and use it to find more preferred designs

3. Develop a multiobjective search strategy that concurrently accomplishes the previous sub-
objectives by finding and evaluating significantly more number of designs than could other-

wise be done manually; identifying designs that would not have been found otherwise

The methodology presented in this thesis addresses the following challenges which are associated

with accomplishing these objectives.

Creating numerical representations of design concepts, or partial concepts, that may only be

described with sketches

Evaluating performance of concepts that require completely different models to evaluate

performance

Capturing and representing the subjective preferences of a designer in a mathematical model

Performing a multiobjective search for optimal designs, guided by a constantly changing

model of human preference

The development of the design methodology in this thesis research has resulted in several
contributions relating to the objectives and challenges listed above. Initial research efforts resulted
in a conference publication [13] and the development of the methodology to decompose and repre-
sent numerically, or parameterize, human-generated design concepts to enable the computational

exploration of morphological charts for optimally performing designs according to physics-based

4



performance models. It also resulted in the development of the design methodology and search
strategy to find and evaluate significantly more number of designs, on the order of thousands of
designs in a few minutes, than could be done in a manual conceptual design process. The publica-
tion formed a foundation upon which the next paper was built.

Additional research resulted in a conference paper which has been accepted for publica-
tion on the use of the computationally-assisted design methodology for preference-guided con-
ceptual design [14]. This work developed the portion of the design methodology which captures
designer preferences, forms a quantitative preference-based performance model, and incorporates
the model into a multiobjective search for better designs, including both physics-based objectives

and preference-based objectives.

Outline

The remaining chapters of this thesis are organized as follows: Chapter 2 provides a litera-
ture survey related to conceptual design automation, preference capture, and several other founda-
tional technical topics. Chapter 3 introduces the new computationally-assisted design methodology
graphically and provides a very brief overview of its steps. Chapter 4 explains the first half of the
steps, identified as the Numerical Optimization Search Strategy. Chapter 5 explains the remaining
steps of the methodology, identified as the Preference-guided Search. Chapter 6 demonstrates the
use of the new design methodology with two product examples, a table design problem and a ve-
hicle design problem, and discusses the results. In the final chapter of this work, conclusions are
drawn and recommendations are made for continuing work that could be completed in this area of

research. Potential applications and limitations of the method are also discussed.






CHAPTER 2. LITERATURE SURVEY

The first section of this chapter reviews current research in conceptual design automation,
and the important developments to quantify designs during conceptual design in order to auto-
mate the search and creation of new designs. The second section reviews recent advancements to
capture, model, and incorporate human preference into computational methods. The third section
provides background on several other technical topics which are foundational to the development

of the computationally-assisted design methodology, presented in this thesis.

2.1 Conceptual Design Automation

There are two basic strategies in conceptual design; convergent and divergent [1,3,15]. The
convergent strategy seeks a promising concept as efficiently as possible. That is, in the quickest
amount of time, having spent the least amount of resources. One drawback to the convergent
method is that it may not identify the best performing concepts. The divergent strategy, on the
other hand, seeks to identify the most promising concepts by first exploring numerous, diverse,
possibilities. As such, the divergent strategy is effective at identifying a diversity of solutions
across a wide solution space. A drawback to this strategy is the potentially large amount of time
it can take to generate and evaluate a sufficient range of solutions, resulting in the early rejection
of ideas that are not fully explored and evaluated. One purpose of concept generation automation
research [6—12], is to utilize computational power to generate and search through a large, diverse
population of concepts in a way that is as thorough as the divergent strategy, but as efficiently as

the convergent strategy.

Design Decomposition and Morphological Charts

Decomposition methods and morphological charts are reviewed because they are a means

to form and organize designs. Chapter 4 explains how the new computationally-assisted design



methodology presented in this thesis uses this organization method to create numerical represen-
tations of designs.

Within the discipline of design engineering, it is common practice to divide, or decompose,
large problems into smaller, more manageable problems [2]. The most common decomposition
methodologies map functional requirements to physical design parameters [16]. The foundational
“black box” definition of design decomposition presented by Pahl and Beitz [1] involves decom-
posing the main product function into sub-functions. A function structure is created by determin-
ing the sequence and relationships of sub-functions and identifying their input and output flows
through each sub-function. Pahl and Beitz also suggest five general function types and three types
of flows. The Russian methodology of TRIZ identifies 39 functional descriptions for all mechan-
ical design functions [17]. By using a framework of functional structures, designers can consider
alternative means to accomplish each function of a design. Designers can organize the alternative
functions of a design in a combination table, also called a morphological chart.

Morphological charts are used to organize the parts of a decomposed design problem to
aid in forming alternative combinations of solutions. Figure 2.1 shows a generic morphological
chart. Each row in the chart contains alternative solutions for the functions in each row. Designers
manually select a combination of solutions to form a complete design. When the combination
process is manually performed, the range and diversity of designs formed is limited by the ability
of designers to manage the alternatives in the morphological chart, or by the ability and patience
of designers to enumerate many, or all combinations, which can easily be millions of designs.
The proposed approach in this thesis computationally forms and organizes combinations, thus

increasing the number of combinations that can be considered.

Concept Generation Automation

When considering anything but a small morphological chart it can be overwhelming for a
designer to manually organize the many possible combinations into complete designs, and to man-
age very many alternative designs, in a way that facilitates quick and effective evaluation. Also,
as the number of functions and alternative solutions for the functions increase, it quickly becomes
beyond the capacity of human designers to understand how the overall concept is affected by dif-

ferent combinations of functional solutions within a reasonable amount of time as the number of
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Figure 2.1: A morphological chart showing possible solutions for the decomposed functions of a
design problem. Two combinations of solutions are shown.

unique design combinations N in a morphological chart is N = my - my - m3 - - - m,, where m,, is the
number of possible solutions for the n-th function in each row of a morphological chart [1]. To
handle the vast amount of data, software programs have been developed that use digital morpho-
logical charts [6], allowing designers to visually select options from the chart. This may help in
forming new designs, but does not address the need to manage the vast number of new designs and
the trade-offs in performance that come from selecting different combinations of features.

Design repositories help manage the vast amount of design knowledge embedded in indi-
vidual designs, by digitally archiving solutions from existing products based on the functions they
perform. Archived product information is searched to find similar solutions that are then suggested
for a new product with the same functions [7-9]. Currently, researchers at Missouri University of
Science and Technology, in collaboration with the University of Texas at Austin, have produced
an automated software tool that draws on a design repository with stored design information from
over 100 consumer products to produce new designs [10, 11]. While the use of design reposito-
ries draws on a vast number of archived solutions, a manual screening process is still required by
designers to select the solutions which are applicable to the specific situation at hand.

There exists several major issues that exist when design features are automatically com-
bined to generate a large population of diverse concept variants; one issue is compatibility. Un-
derstanding the interactions between design features in design decomposition are very important

according to Pimmler and Eppinger [18]. This is because of the complexity of the feature in-



teractions and the impact they have on the formation of accurate product architecture. The design
attribute encapsulation (DAE) method groups design attributes according to common compatibility
traits [19]. This results in rules and constraints that only allow the creation of feasible combina-
tions of design attributes. The internet-based ProDefine system can allow a virtual design team
to input “goals”, “means to achieve goals”, and other feasibility rules to generate variants as new
combinations of means and goals [20,21]. Allen and Carlson-Skalak place importance on mod-
ularity in determining which combinations of design features are compatible [22]. They find that
improvements for new products can be found by analyzing the modularity and function structures
of a company’s current products. These important approaches help facilitate the combinations
of solutions, however, new concepts are still limited to the combination of solution options that
designers manually select and evaluate.

Other conceptual design automation research by Hutcheson et al., shows that genetic algo-
rithms can be used to select multiple designs for detailed evaluation based on quantitative objec-
tives formulated during conceptual design [12]. Other work has shown the use of pattern search al-
gorithms for efficient two and three dimensional packaging, layout, and routing problems [23,24].
While these methods form designs automatically and use traditional numerical optimization to find
better performing designs, human subjectivity and preference, which are present and very influ-
ential during conceptual design, are excluded from the search and evaluation process completely.
The designer preference capture and incorporation method developed in this thesis is explained in

Chapter 5.

2.2 Preference Capture

Related to the preference capture methods presented in Chapter 5 of this thesis, recent
advances in computational power have given rise to many practical uses in machine learning tech-
niques, attempting to recognize complex patterns and make intelligent decisions based on data [25],
and in the area of interactive evolutionary computation (IEC), all of which incorporate human eval-

uation into the numerical search process.
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Neural Networks and Machine Learning

Design experience and knowledge are very valuable but difficult to transfer to other design-
ers or from one product to the next. A major focus of research in the areas of neural networks and
machine learning is to automatically learn to recognize complex patterns and make decisions based
on preexisting data [25]. Artificial intelligence methods such as these have been used in creative
and subjective applications, such as in the creation of art [26] and to recommend music [27] based
on prior learning.

Similarly, the decisions that designers make in the early phases of the design process in-
volve a complex and large set of data and variables that are used to make quantitative and qualita-
tive evaluations. While machine learning methods are good at finding patterns in complex data that
would not be recognizable to humans, they generally require large sets of training data to “learn”

from and to develop the algorithms that can make accurate future decisions.

Interactive Computation

Other fields of design research have done work to use interactive human input to help make
decisions. Michalek and Papalambros demonstrate the use of visual representations of architectural
layouts and enable designers to have a level of interactive optimization [28]. This is shown to
be useful in architectural layout design because of the subjectivity related to the performance of
floorplan designs [29].

Recent research to use evolutionary computation (EC) methods in engineering design ac-
knowledges that there are potential gains from using subjective human evaluation to guide opti-
mization towards better solutions, especially when the problem is less well-defined such as during
conceptual design [30]. Takagi [31] provides an excellent survey of Interactive Evolutionary Com-
putation (IEC) research following the definition of IEC as “the technology that EC optimizes the
target systems based on subjective human evaluation as fitness values for system outputs” (See
Figure 2.2). Takagi surveys over 250 papers on IEC research with applications in the fields of
graphic arts and animation, music, editorial design, industrial design, facial image generation,
speech processing and synthesis, hearing aid fitting, virtual reality, media database retrieval, data

mining, image processing, control and robotics, food industry, geophysics, education, entertain-
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Figure 2.2: A general IEC (Interactive Evolutionary Computation) system: system optimization
based on subjective evaluation [31].

ment, social systems, and so on. While initial research was primarily concerned with subjective
improvements of solutions in artistic fields, other researchers have applied IEC to engineering and
other practical fields. The primary challenges of IEC research include human fatigue, prediction
of human preference through fitness values, and the nature of the active human interface used for
intervention.

Similarly, the subjective decisions that designers make in the early phases of the design
process involve a complex mix of quantitative and qualitative evaluations. Therefore, in an effort
to model the subjective preferences of designers and increase the probability that automatically
formed designs will be more preferred by designers, the method presented in the following chapters
actively builds a quantitative model of a designer’s subjective preference and interactively updates
that model throughout the process. Incorporating preference into the automated numerical search

for better performing designs is one of the major contributions of this thesis.

2.3 Other Foundational Technical Topics

A summary of probability density estimation and data smoothing techniques is also given
as it relates to the methods developed in this thesis to actively capture designer preference and form
quantitative and predictive, preference-based models. Background on multiobjective optimization
is also given as background for the numerical search strategy used in this work. This work does
not present advancements in these topics, but their use is foundational to the development of the

computationally-assisted design methodology in this thesis.
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Statistical Probability Density Estimation

The foundational statistical concept used in this thesis for the creation of a predictive
preference-based model is the probability density function, which is defined as the function f
that gives the probability P that an event X will occur within certain bounds (a,b), as shown below

in Equation 2.1 [32].
b
Pla<X <b)= / f(x)dx for all a < b (2.1)
a

A probability density estimate is an estimate of the probability density function f con-
structed from a set of observed data [32]. A very simple form of a probability density estimate is a
histogram, where the frequency of occurrences within intervals, called bins, are represented by the
height of bars on a bar chart. For a histogram, the probability estimate f for a new point x is the

proportion of the sample X; within the same bin [32], as shown below in Equation 2.2,

A 1
flx)= %(no. of X; in same bin as x) (2.2)

where n is the number of bins and % is the width of the bins. Variable £ is usually called the
smoothing parameter or bandwidth, because of its control over the amount of “smoothing” that is
applied to the data. The histograms in Figure 2.3 show how the same set of data can look very
different when a different bin width, or smoothing parameter, is used [33].

Another type of probability density estimate is the kernel density estimator, which by defi-

nition is

A 1 & —X;
f(xh) = s K <x A ) (2.3)
=1

i
where the kernel K is a distribution satisfying [ K(x)dx =1 (i.e. a normal distribution), and A
is the smoothing parameter [32]. This type of density estimate is illustrated in Figure 2.4 where
the individual kernels (the small distribution curves placed over each data point) are summed up to
form the density estimate f [33]. As with the histogram, the smoothness of the curve is determined
by the bandwidth, or smoothing parameter 4, of the individual kernels. Figure 2.5 shows how
changing the smoothing parameter can introduce unwanted variation in the curve or over-smooth

the curve [33]. The normal optimal smoothing method is one of the most common, and most
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Figure 2.3: Two histograms of the same data with different bin widths, or smoothing parame-
ters [33].
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Figure 2.4: A kernel density estimate [33].

effective methods to choose a smoothing parameter [34]. Assuming the kernel K is a normal

density, the smoothing parameter 4 is calculated as

1/5
he (;‘_n) o (2.4)

where o is the standard deviation of the distribution [34].
It is effective to use methods such as these to empirically form the probability density esti-

mates when the nature of the data is unknown or is not suspected to follow any common continuous
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Figure 2.5: Kernel density estimates with different smoothing parameters [33].

distributions (such as a exponential, lognormal, or Poisson distributions), such as will be shown in

Chapter 5 when building a quantitative model of a human designer’s preference.

Multiobjective Optimization

Many decisions that designers make in the early phases of the design process involve
trade-offs between quantitative and qualitative design aspects. In the context of the conceptual
design methodology of this thesis, there are also trade-offs between physics-based objectives and
preference-based objectives, which are handled through multiobjective optimization methods, as
well as trade-offs made when a designer subjectively evaluates designs. The design objectives
(W, Mo, ..., ,un”) are competing — if one improves, the other gets worse — resulting in not one unique
solution, but a set of solutions with varying degrees of performance in each objective [35—43].
Identifying the best designs requires the identification of a Pareto frontier — a set of nondominated
optimal solutions. Figure 2.6 shows a feasible design space with two objectives, y; and ,, and
a Pareto frontier. All solutions along the frontier are said to be Pareto optimal — no other designs
better satisfy all design objectives [44—47].

A generic multiobjective optimization problem (MOP) formulation yielding a set of opti-
mal solutions — those belonging to the Pareto frontier — is presented as follows:

Problem 1: Generic multiobjective optimization problem statement

min {41 (), 2(x), s, (¥)} (1 2 2) 2.5)
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Figure 2.6: A graphic of a feasible design space and the Pareto Frontier.

subject to:
8q(x) <0 Vge{l,... ng} (2.6)
hy(x) =0 VYve{l,..,n,} (2.7)
xjp <xj<xj, Vjie{l,...,n} (2.8)

where U; denotes the i-th generic design objective; g is a vector of inequality constraints; A is a
vector of equality constraints; x is a vector of design variables; and the design variables are bound

by their lower (/) and upper () limits shown in Equation 2.8.

Maximin Fitness Function

Regarding the numerical search used in the conceptual design methodology of this thesis,
the goal of the search is to find a diverse set of designs that are representative of the entire design
space, finding designs that designers would not have otherwise found through manual methods.
For that reason the Maximin fitness function [35, 48] is introduced. The Maximin fitness function
is derived from the definition of dominance, and is represented mathematically in Equation 2.9.

The Maximin fitness of design i, within the set of all other designs j, is:
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where fﬁn is the value of the u,-th objective for design i, and f‘{n is the value of the u,-th objective
for all other designs within the set j.

The Maximin fitness function penalizes clustering of non-dominated designs, which forces
the designs to spread out across the design space and the Pareto frontier. The Maximin fitness
function is a minimizing function, so the designs with lower fitness values are better, and in fact,

positive values indicate dominated designs and negative values indicate non-dominated designs.

Genetic Algorithms

Evolutionary algorithms, such as genetic algorithms, are well suited for computational
searches performed early in the design process. Evolutionary algorithms generate a population
of individuals/solutions in each iteration, all converging on a single optimum, or potentially con-
verging on multiple optimum solutions [49]. A population of solutions is also helpful to explore the
complex design space of a multi-objective optimization problem when multiple trade-off solutions

are required.
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CHAPTER 3. OVERVIEW OF DESIGN METHODOLOGY

An overview is given of the new computationally-assisted design methodology in this chap-
ter, and further explained in Chapters 4 and 5. In its basic form, the new design methodology can
be described graphically in Figure 3.1. As shown, the methodology has eleven major steps span-
ning from the earliest design activities — Define Problem & Design Requirements — to one of the
final conceptual design activities — Selection of Final Design(s). It is important to note, now, that
the designer using the proposed method would need to carry out Steps 1 through 3 using any tra-
ditional design method. Each of the remaining steps explain methods to overcome the challenges
in accomplishing the objectives outlined in Chapter 1.

Step 4 specifically addresses the objective of representing manually generated designs nu-
merically — a step called parameterization — which enables the designs to be used in the numerical
search of the design methodology. Step 5 addresses the challenge of defining mathematical per-
formance models to calculate physics-based and preference-based design performance. Step 6
addresses the challenge of using a constantly changing preference-based model by the formation
of an optimization problem statement on the first cycle, and updating that problem statement on all
subsequent cycles. Step 7 performs the numerical search for better performing designs according
to the current optimization problem statement. Step 8 selects a subset of designs to present to the
designer, and visually presents the designs for the manual evaluation performed by the designer in
Step 9. Step 10 uses the designs selected in Step 9 to address the objective to form a quantitative
preference-based model. This preference model is then carried forward and used in the optimiza-
tion in Step 7 of the next cycle, as indicated in the figure by the broken line leading into Step 7.
After initial setup, Steps 6 through 10 can be executed automatically. In this way, the operations of
the numerical search can be carried out automatically, periodically pausing for manual evaluation

of designs by the human designer, and continued. This loop is repeated for p number of iterations,
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or until the designer is satisfied with the results of the search, and progresses to Step 12 by selecting
a final design or final set of designs.

Chapter 4 explains Steps 1 through 7, including the Numerical Optimization Search Strat-
egy, encompassed by the dashed line in Figure 3.1. Chapter 5 explains Steps 6 through 11, in-
cluding the Preference-guided Search, which is encompassed by the dotted line in the same figure.
Both of these chapters are also the main subjects of other works, [13] and [14], but are presented

together in this thesis and explained in the context of the entire design methodology.
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CHAPTER 4. NUMERICAL OPTIMIZATION SEARCH STRATEGY

This chapter details Steps 1 through 7 of the computationally-assisted design methodology
presented in this thesis. Steps 1 through 5 are intended to be completed one time by designers.
Steps 3 through 7 are referred to as the Numerical Optimization Search Strategy, as shown in
Figure 3.1. Steps 6 and 7 are completed automatically through computation, and will be repeated
automatically as part of the Preference-guided Search process which will be explained in Chapter 5.

The Numerical Optimization Search Strategy is now explained in Steps 1 through 7.

4.1 Step 1: Define Problem & Design Requirements

Defining the design problem and the design requirements — conditions that a concept must
satisfy — involves understanding the customer needs and translating them into functional product
specifications and design objectives (up, Uz, ..., »“"u)' Design requirements may be quantitative,
requiring calculated performance levels, as well as qualitative in nature, using subjective judgment
and intuition to evaluate performance. Traditional methods, such as customer surveys, lead users,
and Quality Function Deployment, can help the designer discover the latent needs, create technical

specifications, and create a product requirements list [1-4].

4.2 Step 2: Generate Concepts Manually

After defining the design requirements, designers generate concepts that are intended to
meet one or more design requirements. Note that this step calls for manual generation and feature
recombination methods, as opposed to automatic methods, which are described in Step 7. To
manually generate concepts, the designer may use any effective method at his/her disposal — many
such methods are discussed in the literature [1-4]. The initial pool of concepts generated can
be comprehensive or focused. Concepts should, however, be sufficiently described to make it

clear what the important features are and how they meet one or more design requirements. This
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Figure 4.1: Manually generated concept sketches of a disposable camera product.

could be as simple as a descriptive list of concepts and their features, or as complex as detailed,
dimensioned sketches with key features emphasized. Figure 4.1 shows sketches of three concepts
that were manually generated by designers for a disposable camera product, including detailed
notes describing the features and their intent to meet design requirements. While there are common
features in this set of concepts (i.e. buttons, film advancement wheels, viewfinder) and several
unique features on each concept (i.e. two handle grip, finger loop, tethered clip), it can be seen that
each concept is unique because of the specific combination of features and parameters present in

each one.

4.3 Step 3: Decompose Concepts & Organize into Morphological Chart

This step involves decomposing each initial concept into its basic features and subfunc-
tions, and organizing them into a morphological chart. Chapter 2 reviews several decomposition
strategies, any of which could be used. Here, the purpose of the decomposition in this step is to

categorize concept features or attributes according to their intent so that interchangeable features
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Table 4.1: Morphological chart example for a bicycle-like vehicle design problem.

Functions Possible Solutions

Power source Human powered | Gas motor | Electric motor | Human-electric hybrid
Support rider Small seat Banana seat | Bucket seat Suspended hammock
Contact ground One wheel Two wheels | Three wheels Four wheels
Paint color Red Yellow Blue

can be placed on the same row of a morphological chart and new concepts can be formed with
combinations of features from the chart.

The decomposition method used by the new design methodology presented in this thesis,
organizes the concept features based on function, form, or aesthetics. Form and aesthetics have
been included to demonstrate the application of the new design methodology to early conceptual
design work, when creative, non-numerical design features and attributes are present. The new
design methodology is also applicable to design embodiment work, when features and parameter
values are more refined. Generically, the features of the decomposed concepts can be organized
into the morphological chart following the format previously shown in Fig. 2.1. Table 4.1 shows
an example of how the decomposed functions of a bicycle-like vehicle could be organized into a
morphological chart. It is also possible at this time, to include additional function solutions that
were not present in the initial set of design concepts, but would be interchangeable with those
already present.

It is well known that there is more than one way to decompose each concept [50]. No
exception is found here. The list of concept features decomposed by one designer may be slightly
different than another — resulting in a different morphological chart. At any time, designers may
return to the decomposition step to redefine the design features as they recognize better ways to
represent the intent of the initial set of concepts. The important point to remember is that the
degree of detail to which designers decompose the concepts will be the degree of detail found in

new designs that are formed automatically in Step 7 and on.

25



4.4 Step 4: Parameterize Designs

The features in the morphological chart produced in Step 3 and any other design variables
now need to be parameterized, or represented numerically, to enable their use in the numerical
search of the design methodology.

For computational purposes, the morphological chart is embodied in a two-dimensional
matrix. Consequently, the feature descriptions are replaced with numerical values in a mathe-
matical matrix. A generic example of a morphological chart put in matrix format is shown in
Equation 4.1 as matrix F;,, along with its numerical equivalent, which will be referred to as a

morphological matrix.

FM F12 Fl (nFM) 1 2 mp
Fn  F By, | "
F, 21 22 2(ngy,) _ ) @
i F(nR)l F("R)Z e F(”R)(”FM) i i 1 2 3 e m}’lR |

The size of the matrix F, is ng by nr,,, where ng, is the number of function rows in the morpho-
logical chart, and np,,, is the maximum number of features in any of the rows.

Continuing with the bicycle-like vehicle example in the morphological chart in Table 4.1,
Figure 4.2 shows how the information in the morphological chart transfers into a morphological
matrix, with numbers representing the design features that were decomposed from the initial set of
concepts.

In addition to the features in the morphological chart, a set of continuous variables may be
needed to fully describe designs numerically. Equation 4.2 shows matrix F. which contains the

lower and upper bounds for each continuous variable.

Fey, e,

F.=| F., FE 4.2)

2 €2y

The method of parameterization presented herein uses a chromosome-like numerical rep-
resentation of designs — a column vector of discrete values from each row of F,, and continuous

values from within the bounds in each row of F, — which is called the design chromosome. Gener-
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Function Possible Solutions

Power source Human powered | Gas motor | Electric motor | Human-electric hybrid

Support rider Small seat Banana seat | Bucket seat Suspended hammock

Contact ground One wheel Two wheels | Three wheels Four wheels * = empty index
Paint Color Red Yellow Blue ES

Human powered Gas motor  Electric motor Human-electric hybrid 1 2 3 4

Small seat Banana seat  Bucket seat Suspended hammock 1 2 3 4

Fy= One wheel Two wheels Three wheels Four wheels =1 2 3 4
Red Yellow Blue * 1 2 3 %

| . I O

Figure 4.2: A morphological chart of features is parameterized into a numerical morphological
matrix.

ically, the design chromosome is shown here

xdl

xd2

c=| - 4.3)

The numerical values contained within the design chromosome which represent each discrete vari-

able and continuous variable, will be defined as the genes of a design chromosome.

4.5 Step 5: Define Performance Models

The purpose of this step is to define the quantitative performance models, which can each
be physics-based or preference-based, that will be used to automatically evaluate new designs that
are found by the numerical search and optimization in Step 7. The output of the performance
models should be a measure of how well designs meet the design requirements defined in Step 1.

Each performance model u is defined as

= f(xa,x) (4.4)
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For clarity, a physics-based model is defined as ,u,ghys within the set of all physics-based models

used, as

,uphys _ (u{)hys,ughys phys ) 4.5)

oo M
and define a preference-based model as pir" within the set of all preference-based models used, as

P = (g ) (4.6)

’ Mityret

Initially, the known performance models will likely include only the physics-based mod-
els that are applicable to the design problem at hand. If there is already a known quantitative
preference-based model, it can be used immediately. However, this scenario will not be discussed
further, but rather focus on the scenario of having an unmodeled preference-based design require-
ment and use the preference capture methods presented in Steps 9 through 10 to interactively form
a quantitative preference-based model for use in the numerical search and optimization explained
in Step 7. Some, or all of the performance models within the set g = (uP™s, uP) will become

the design objectives in the optimization problem statement defined in Step 6.

The discrete nature of Morphological Charts

The discrete nature of the morphological chart can make it difficult to use one single perfor-
mance model for all possible combinations of features. In fact, some combinations of features may
form concepts that use very different physics-based models, parameters, and assumptions to cal-
culate performance. This results in a more complex series of equations to calculate performance,
but is permitted as long as any performance model that is used produces comparable performance
values according to the common design objectives (,ul,,uz,...,uny). Using the example of the
bicycle-like vehicle design problem, the physics-based performance of a gas motor and the electric
motor are calculated using very different physics-based models and parameters, but can be com-
pared because they both produce equivalent measures according to the physics-based objective to

produce power for the vehicle.
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4.6 Step 6: Form/Update Optimization Problem Statement

The purpose of this step is to form, or update, an optimization problem statement that will
be used in Step 7 to search for the best performing designs. This step refers back to the generic
multiobjective optimization problem statement introduced in Equation 2.5, which is subject to
Equations 2.6, 2.7, and 2.8.

As mentioned in the previous section, in this work it is assumed that the physics-based
models are known and it is desirable to form a quantitative preference-based model. To accomplish
this, initially the physics-based models are left out of the optimization problem statement for a
specified number of learning cycles. This learning period gives time for the numerical search to
explore the design space and allow the designer to manually evaluate designs from the entire design
space, unrestricted by the feasible design space defined by the physics-based models. During the
learning period, the multiobjective optimization problem statement reduces to a single objective

optimization problem statement, shown here:

X

min {—/.Lpref(xd,xc)} 4.7)

When the learning period ends, a decision which will be discussed in Chapter 5, the opti-
mization problem statement is updated to to be a multiobjective optimization problem statement,
incorporating the physics-based models and the newly formed preference-based models, as shown

here:

min { =™ (g, ), — P () | (4.8)
X

subject to constraints listed in Equations 2.6, 2.7, and 2.8.

During the learning period, or after the learning period, the purpose of the optimization
problem statement is to direct the numerical search and optimization in Step 7 to find the best
performing designs according to those performance models included within the current form of
the optimization problem statement. The creation of the preference-based model is explained in
detail in Step 10, but here, it is sufficient to say that once it is formed, it is used in an equivalent

manner as any of the physics-based models all contained in the complete set of design objectives

U= (‘uphys’“pref).
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4.7 Step 7: Perform Numerical Search and Optimization

Guided by the current optimization problem statement, a numerical search and optimization
is now performed to find designs that will be presented to designers in Step 8. For reasons discussed
at the end of Section 2.3, genetic algorithms are used as the numerical search method used in
this thesis, although alternative search strategies and optimization methods could be used such as
particle swarm [51, 52], other evolutionary methods [53, 54], or various others that can handle a
mixed set of discrete and continuous variables.

The numerical search begins by creating an initial population of designs, in the form of
concept chromosomes. On the initial iteration of the search, the population is created in a random
manner. On subsequent iterations, a portion, or all, of the designs present at the end of the pre-
vious iteration can be used in this step. This replicates the inheritance principle of evolutionary
algorithms, with the intention of carrying over the best design traits into successive iterations in
order to continue to improve the performance of the designs generated by the methodology. When
created randomly, the discrete genes in the design chromosome, such as those corresponding to dis-
crete values from F,, are randomly chosen from the integer values in each row of F;,. The genes
that correspond to continuous variables are selected randomly from values within their allowable
ranges.

Next, the physics-based models and/or preference-based models which are included in cur-
rent optimization problem statement are used to evaluate the performance of the current population
of designs. These performance values are used to calculate a Maximin fitness value for each de-
sign. The Maximin fitness function was introduced in Section 2.3, and is used because of the way
it directs genetic algorithms to find a diverse set of pareto-optimal solutions [48]. The Maximin
fitness value of each design will be what determines the probability that a design will be selected
to be a parent design for reproduction.

After fitness values have been calculated for the entire population of designs, tournament
selection is used to select parents for reproduction. A number of individuals equal to a specified
tournament size are selected randomly from the population. Since the Maximin fitness function is
a minimizing function the design with the lowest fitness value is selected to be a parent. This is
repeated to select a second parent for reproduction. This is repeated until the number of parents is

equal to the number of individuals in the current population.
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Next, children designs are produced through a uniform, gene by gene crossover method
for all discrete genes. Blend crossover [49] is used on genes that represent continuous variables,
making it possible for children designs to receive random values anywhere in between the mother
value and father value. Mutation is an operation that introduces a random change to each gene of a
design in the chance that it will improve as a result of that change [49]. Mutation occurs to a gene
if a randomly generated probability is less than a specified probability of mutation.

After reproduction has been completed, fitness values are recalculated considering the en-
tire group of parents and children. The designs with the best fitness values are selected to form
the next generation of designs. This form of elitism ensures that the best of both groups survive,
helping the search to more quickly converge on the best designs. Again, because the Maximin
fitness function is a minimizing function, the designs that have better (lower) fitness values have
more probability of being selected as parents and more probability of continuing on to the next
generation. Note, that this does not ensure that the children will always perform better than the
parents, but does ensure that if designs improve they will have a better chance of survival than
those that don’t improve.

This genetic algorithm evolution optimization process repeats until a termination condition
is met, which can be a specified number of generations or until a convergence criteria has been
met, such as a minimum amount of change in objective values from one generation to the next.
In the case of the Maximin fitness function, the progression of fitness scores from more negative
to less negative indicates that the Pareto designs are becoming less clustered. In other words, the

Pareto designs are more evenly spread out over the Pareto frontier.

Output of the Numerical Optimization Search Strategy

At this point, the numerical optimization search strategy identified in Steps 2 through 7
of Figure 3.1 is complete. A set of randomly created designs were used as starting points for the
optimization to explore the design space and converge on a set of optimally performing designs.
New combinations of features have been automatically formed and evaluated. Genetic algorithm
optimization methods have evolved a set of designs to be optimally performing according to the
performance models included in the current optimization problem statement, and produced a set

of designs which is ready for manual, subjective evaluation by human designers. The capture and
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incorporation of designer preferences into the design methodology will now be explained in the

next chapter.
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CHAPTERS. PREFERENCE-GUIDED SEARCH

This chapter details Steps 8 through 11 of the computationally-assisted design methodol-
ogy, and is identified on Figure 3.1 as the Preference-guided Search. This is an iterative process,
using the designs which were automatically formed, evaluated, and optimized in Steps 6 and 7
to capture designer preferences and incorporate those preferences into successive iterations of the
same process. This phase is completed when a final design, or set of designs, is selected for further

development. The Preference-guided Search in Steps 8 through 11 is now explained.

5.1 Step 8: Visualize Designs for Manual Evaluation

After the stopping criteria for the numerical search and optimization in Step 7 has been met,
a subset of designs from the final generation/population, ny number of designs, is presented to the
human designers for subjective evaluation. The features present in this subset should representative
of the population, allowing the designers to consider a diverse set of feature combinations. A
smart-Pareto filter [39, 55] is one way to eliminate designs that are too similar to other designs
based on the relative closeness of their objective values. It may also be advantageous to present
the set of designs with the best performance according to the preference-based models, or any of
the physics-based models.

In addition to the designs selected through a filtering strategy, a percentage of the designs
presented to the designer, rg, should be randomly selected. This helps maintain a level of diversity
within the set of designs presented, especially during the learning period as the population of
designs gradually converges on similar designs that match the designers preference.

To help designers quickly comprehend the make-up of the designs being evaluated, the
calculated performance values of the physics-based models and preference-based models are pre-
sented visually along side graphical representations of designs. The graphical representations can

be created through CAD or other parametric software that can quickly generate the visual images.
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Having the performance data and the images of the designs shown together helps designers make
trade-offs between the quantitative performance and qualitative aspects of the designs as they select

their preferred designs.

5.2 Step 9: Capture Designer Preferences

With the visual representations of the designs presented along with the performance levels,
designers now select the designs that he/she prefers. One purpose for having human designers
manually evaluate designs is to attempt to capture any unmodeled objectives. Also, humans can
very quickly make mental trade-offs of competing objectives, resulting in subjective decisions.
Evaluation methods such as rating, ranking, or scoring of the designs could be used to indicate
preference. However, the minimum level of rating is to select or not select individual designs as
preferred, which is the rating/evaluation method used in this work. In each successive round of
manual evaluation, the design chromosomes of the designs which are selected as preferred are
recorded. The feature frequency count and variable values for each preferred design will be used

next, in Step 10, to form a quantitative preference-based model.

5.3 Step 10: Form Preference-based Model

In order to automatically evaluate a designer’s preference for designs which were formed in
Step 7, a mathematical model is now formed to predict the designer’s preference for certain features
and parameter values. In order to quickly form a preference model, statistical probability is used
as the underlying theory to predict the probability that a design will be preferred by the designer.
These statistical methods were introduced in Section 2.3. For both discrete and continuous genes
in the design chromosome, the gathered preference data is used to estimate the probability density
functions.

When creating an individual preference model for the discrete genes, a discrete probability
density estimate, also called the probability mass estimate, is created. Figure 5.1 (a) shows an
example of a histogram of the number of times that each value was present in the preferred designs

from Step 9. The histogram is actually a graphical estimate of the real probability density function.
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Figure 5.1: Examples of (a) an estimated probability mass function for a discrete variable and (b)
an estimated probability density function for a continuous variable, used to model and predict a
designer’s preference for the variables.

The probability estimate f for a specific gene value is calculated using Equation 2.2, which is equal
to the proportion of previously recorded genes with the same value.

When creating an individual preference model for the continuous genes, density estimation
and smoothing techniques [32, 34] are used, which empirically form a distribution through the
summation of normal distributions around each data point. The gene values present in the preferred
designs from Step 9 are used in Equation 2.4 to form the probability density estimate. Figure 5.1
(b) shows an example of a probability density estimate for a continuous variable and the points
used to create it. This empirical approach to creating the preference function, allows the model to
be updated each time evaluations are completed by the designer, thus continually improving the
accuracy of the model.

The individual preference models for each gene in the design chromosome can be combined

into a single preference model used to predict preference for an entire design, as defined here:

rl:zref - (fxdl (xd1) e 'fxd,- (xdi) 'fxq (xcl) o .fx”f <xcj)> G-

where f, 4 is the probability density estimate for the i-th discrete variable/gene in a design chromo-
some, and fxcj is the probability density estimate for the j-th continuous variable/gene in a design
chromosome. This combined preference model /,L,I,’,ref, after being sufficiently developed, can be

used as a preference-based objective in the optimization problem statement when it is updated in
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Step 6, to guide the numerical search towards designs with a higher probability of being preferred

by designers.

5.4 Step 11: Selection of Final Design(s)

As with a conventional conceptual design process (See Figure 1.1 (a)), the use of the
computationally-assisted design methodology in the conceptual design process (See Figure 1.1
(b)) produces multiple iterations of designs until the designer is satisfied with the results. Each
iteration of the Preference-guided Search in Steps 6 through 10 gathers more data with which it
can update the preference-based model, gradually improving the ability of the numerical search
to find designs that will be preferred by the designer. It is generally accepted in the field of In-
teractive Evolutionary Computation (IEC) research that when subjective human preference is in-
volved there is not a global optimum represented by a single design [31]. For this reason, the new
computationally-assisted design methodology attempts to thoroughly search for a set of designs in
a global optimum area. When a designer is satisfied with the final set of designs, any number of
designs from that set can be used as a starting point for the next phase of the product development

process or as a spark for further conceptual design efforts.

Stopping Criteria for Iterations

During the learning period, the preference-based model will be updated and improved with
each iteration of Steps 6 through 10, and the search will gradually converge on a set of similar
designs that match the preference of the designer. The decision to end the learning period can
be made by the designer when he/she feels that the individual gene preference models have been
accurately captured, or a stopping criteria has been met, such as when all of the designs selected
for visualization (See Step 8) which are not random selected, nr = ny (1 — rg), have preference-
based performance scores above a designer specified amount, such as 60%. In iterations after the
learning period, a stopping criteria could be determined in a similar fashion as an alternative to

stopping at the discretion of the designer.
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CHAPTER 6. PRODUCT EXAMPLES

In this chapter, the computationally-assisted design methodology developed in the previous
chapters is applied to two product design scenarios to demonstrate the ability to accomplish the
objectives of this thesis, as outlined in Chapter 1. The first example is the design of a table, which
has very basic functional requirements, but also has a large aesthetic component to its design.
The table example is demonstrated on Steps 1 through 8 of the design methodology. The second
example is the design of a vehicle platform, which also has functional and aesthetic components
to the design. The vehicle platform example is demonstrated on the entire methodology, Steps 1
through 11. This includes the use of the Preference-guided Search, demonstrating the ability of the
design methodology to handle more complex engineering systems that are very time consuming

and challenging to optimize through manual processes.

6.1 Example 1: Table Design

Consider the design of a table with a single work surface at a fixed height. The table must
be free standing and be made of common table materials. The main customer need and functional
purpose of the table is to provide a usable working surface in a small room. The table must be

stable to work on and should not cost too much.

Example 1: Step 1

The functional design requirements of the table are captured in two physics-based perfor-
mance models: (1) surface area of the table top and (2) the cost of materials. The qualitative
requirement for the table could be captured in a preference-based model to evaluate (3) aesthetic
appeal. However, in this section, only the physics-based models will be used in the numerical
search and optimization. The preference capture and incorporation methods of the Preference-

guided Search will be demonstrated in the next example. Table 6.1 shows these design objectives
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Table 6.1: Design Objectives for table concept example.

Objective units direction range
1 Surface Area, u; cm” Maximize 0 < p; <wg-Ig
2 Cost, W $ Minimize 0<up
3 Aesthetics, U3 n/a  Maximize n/a

Table 6.2: Design parameters for table design example.

Parameter Possible Values

Top Thickness, t7 1-10cm
spanl, wy 0-300 cm
span2, w; 0-400 cm

leg diam/width, d 1-20cm
base radius, rp 0-200cm
base thickness, g 1-20cm
base width, wg 1-200cm

and their units of measure. Additionally, other design parameters and constants needed in the

performance calculations for the table are shown in Table 6.2 and Table 6.3, respectively.

Example 1: Step 2

Figure 6.1 shows several sketches of manually generated table concepts, with notes in-
dicating distinguishing features and details such as the material of the top, and the shape of the

legs.

Example 1: Step 3

The manually generated concepts are decomposed by features of function and form, and

then organized into the morphological chart, shown in Table 6.4.
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Table 6.3: Fixed parameters for table concept example.

Constant Value units
Room width, wg 300 cm
Room length, /g 400 cm

Wood price, C,,  0.002745  $/cm?
Acrylic price, C,,  0.016000  $/cm?
Glass price, C,,  0.015000  $/cm?
Steel price, C,,  0.024000  $/cm’
Wood density, p,,  0.000750 kg/cm?
Acrylic density, p, 0.001190 kg/cm?
Glass density, p,  0.002600 kg/cm?
Steel density, p;  0.007850 kg/cm’
height of table, hr 100 cm

A

e

Heav base
(%)

5?1«‘/‘(_ /7;

Rosd /?S © OVA(/Ca'ro(c op

Figure 6.1: Sketches of manually generated table concepts.
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Table 6.4: Morphological chart for table concept example.

Feature Possible Solutions

Top Shape circle oval square | rectangle

Top Material Wood Acrylic | Steel Glass

Leg Style square leg | round leg

Leg Quantity 1 2 3 4

Leg & Base Material Wood Acrylic | Steel

Base Style circular base | 2 feet 3 feet 4 feet | square base | none

Example 1: Step 4

To parameterize the designs for use in the numerical search, first, the numerical form of the

morphological chart is created, which is shown in Equation 6.1 as matrix F;,.

| Fii Fio Fi3 Fus ] [ 1 2 3 4 ]
F Fn F3 Fa 1 2 3 4
Fo F5 Fx _ 1 2 ©.1)
Fy1 Fyp Fyz Fyg 1 2 3 4
F51 Fsp Fs3 1 23
| F61 F62 F63 F64 F65 F66 ] i 1 23 456 ]

Next, the set of variables x from the morphological matrix in Equation 6.1, and the set
of parameters p from Table 6.2, are combined to form the design chromosome ¢, following the
generic design chromosome set forth in Equation 4.3. The complete design chromosome for the

table is defined as
T
cae=|F F F F, Fs Fs tr wi wy, d rg iz WB] 6.2)

Table 6.5 shows the complete list of the variables and parameters that make up the genes of
the design chromosome. Also shown are the possible values for the genes, and an example design

chromosome.
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Table 6.5: A list of variables and parameters that make up the genes of the design chromosome
for the table design example

Gene Possible Values Example Chromosome
Top Shape, Fi 1,2,3,4 1
Top Material, F> 1,2,3,4 2
Leg Style, F3 1,2 1
Leg Quantity, Fy 1,2,3,4 4
Leg & Base Material, F5 1,2,3 2
Base Style, Fg 1,2,3,4,5,6 4
Top Thickness, t7 1-10cm 0.050
spanl, wy 0-300 cm 1.1
span2, wy 0 -400 cm 2.0
leg diam/width, d 1-20cm 0.110
base radius, rp 0-200cm 0.2
base thickness, 1-20cm 0.010
base width, wg 1-200cm 1.900

Example 1: Step 5

The two physics-based performance models, table surface area (i), and material cost (L),

along with the unmodeled preference-based performance model for aesthetics (u3), are defined as

= A, 6.3)
p

m=Y¢ (6.4)
p=1

H3 = faesthetic (xdaxc) (6.5)

where x; is a set of discrete variables/genes and x. is a set of continuous variables/genes to describe

a design.

Example 1: Step 6

The single objective optimization problem statement used during the learning period of the
Preference-guided Search uses only the preference-based model, 3, equivalent to Equation 4.7.

The multiobjective optimization problem statement used after the learning period uses both physics-
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based models and the newly formed preference-based model, resulting in the following form of

Equation 4.8, as shown here

rrgn{_“l (Xd,xc),‘LQ(Xd,XC),—I.L3(Xd,xc)}- (66)
subject to:
0<pu <wg-lg (6.7)
0< (6.8)
subject to:
1 &
Finin < @ Y M, < Fnax (6.9)
p=1

where wg is the usable width of the room, I is the length of the room, Fuj, is the minimum
downward tipping force, Fnax 1s the maximum downward tipping force, dy is the distance from the
outer edge of the table top to the tipping point on the closest point of the feet or legs, M), is the
moment of the p-th table part, A, is the area of the table work surface, and C, is the cost of the p-th
table part. Figure 6.2 shows additional details of the model used to calculate the stability constraint

for two generalized cases of table design.

Example 1: Step 7

The genetic algorithm used as the numerical search method used a generation size of
N = 50, a crossover probability of pcrogsover = 0.6, @ mutation probability of ppytation = 0.01, a
tournament ratio of 7ioymament = 0.1, and number of generations G = 100. These conditions for the
numerical search result in the automatic evaluations of 5,000 designs/combinations of features and
parameters.

Figure 6.3 shows the progression of the numerical search by plotting the average fitness
score of each generation. A negative maximin fitness represents a non-dominated design, while
a positive fitness represents a dominated design. Note that the average maximin fitness gradually
approaches zero; when the maximin fitness approaches zero the designs in the population are more

evenly distributed over the objective space. Figure 6.4 contains several representative generations
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Figure 6.2: Dimensions used to calculate the stability for table designs with (a) one leg and (b) two
legs

Avg. Maximin Fitness

Generation

Figure 6.3: The progression of the average fitness value of each generation.

of designs, showing improving physics-based performance through the generations. Therefore, it
can be seen that the numerical search and genetic algorithm optimization has found a population
that is non-dominated and well distributed. The search is carried out over 100 generations to show

convergence when the fitness score and objective values have little significant change.
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Figure 6.4: The progression of the performance of the designs through the generations.

After the genetic algorithm has completed its search, the concepts in the final generation
are ready to present to the designer. The lower right plot in Figure 6.4 shows the designs of the
final generation plotted in the two dimensions of the physics-based performance objectives. It
should be noted that all 50 individuals of the final generation are Pareto-optimal designs. The
designs represented by filled circles are the smart Pareto filtered designs that will be presented to

the designers for manual, subjective evaluation.

Example 1: Step 8

Figure 6.5 shows visual representations of several table designs that were automatically
formed. In these samples it can be seen that the table features are recognizable from the initial
concept sketches (See Figure 6.1), however some of the combinations of features are new and
were not previously considered by designers. After designers manually evaluate these results, their
preferences will be captured and used to guide the numerical search and optimization in Step 7 of

subsequent iterations of the Preference-guided Search.
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Figure 6.5: Table designs automatically formed consisting of new combinations of table features.

Table 6.6 shows numerical representations of three sample designs from the final genera-

tion, showing their physics-based performance values and design chromosome values.

Example 1: Results

An initial set of creatively produced table concepts was decomposed and organized into a
morphological chart. The numerical representation of the features in the morphological chart was
successfully used in the numerical optimization search strategy to quickly search through 5,000
feature and parameter combinations to find new combinations to form new design concepts, all of
which satisfy Pareto optimality conditions. Genetic algorithms were used to numerically search
and form populations of new table designs that evolved toward better performing and more diverse

designs. This is shown in Figure 6.3 by the trend of the average maximin fitness approaching zero.

45



Table 6.6: Three representative designs of the final generation, showing their physics-based
performance values and design chromosome values.

Objective Design 1 Design 2 Design3 units
Surface Area, 8.7651 8.3501 0.7699 m?
Cost, Uy 204.3240 1569177  87.867 $
Gene
Top Shape, Fi rectangle rectangle oval
Top Material, F; Wood Wood Wood
Leg Style, F3 square leg round leg round leg
Leg Quantity, Fy 1 4 4
Leg & Base Material, F5 Wood Wood Wood
Base Style, Fg none none none
Top Thickness, t7 0.84 0.68 0.57 cm
spanl, w 221.35 221.51 28.41 cm
span2, wp 395.98 387.46 345.06 cm
leg diam/width, d 2.97 1.56 1.87 cm
base radius, rp 26.86 65.03 9.28 cm
base thickness, tp 14.71 14.71 6.11 cm
base width, wg 175.68 175.68 80.50 cm

The final population of designs is the result of one pass through the Numerical Optimiza-
tion Search Strategy, identified in Steps 1 through 8 in the design methodology. The quantitative
performance values and visual representations of the new designs are presented to designers for
manual evaluation. All the designs presented are Pareto-optimal designs according to the physics-
based performance objectives, and now, human designers can make preference-based trade offs in

their evaluation of the designs.

6.2 Example 2: Vehicle Platform Design

Periodically, automobile manufacturers will produce a new type of vehicle that is con-
sidered innovative, by changing the form and/or function to a new look or use. Several modern
examples like this are vehicles types such as the mini-van, the station wagon, the sport utility
vehicle, and the crossover. Realistically, these vehicles are simply different combinations of ex-
isting features and parameters of other vehicles, but there was a market need for those type of

new vehicles regardless if the need was based on functionality, aesthetic appeal, or some combi-
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Table 6.7: Design Objectives for vehicle design example.

Objective units direction range
1 Price, $ Minimize 0<
2 Weight, Ibs  Minimize 0<
3 Seating, us n/a  Maximize 0<u3
4 Towing, U4 Ibs  Maximize 0 <y
5 Cargo Space, s ft®  Maximize 0<us
6  Preference, g n/a Maximize 0< pug<1

nation. While outwardly fairly simple, automobiles are very complex systems on the inside, using
multiple, high-tech, integrated mechanical and electrical systems to produce a vehicle that func-
tionally performs as specified. In this section the computationally-assisted design methodology is
applied to a vehicle platform design example, and will demonstrate the ability of the methodology
to capture designer preference for features and parameters of vehicle design, form and incorporate
quantitative preference-based models with physics-based performance models into the search for,
and evaluation of, significantly more designs and novel designs than could be done by manual

methods.

Example 2: Step 1

A list of the vehicle platform design requirements and their boundary conditions is shown in
Table 6.7. The requirements for this example are common criteria used when evaluating a vehicle
to purchase. For reference, Figure 6.6 shows an image of a vehicle filtering tool with very similar

vehicle selection criteria on the Ford Motor Company web site [56].

Example 2: Step 2

Figure 6.7 shows examples of the human-generated concept sketches for current vehicle

types such as compact car, mid-size sedan, pick-up truck, passenger vans, and so forth.

47



FORD SHOWROOM
PRICE

TWRLS SR SR

$25,170%

MUSTANG
$23,145%

§13,3207

BRQSSM\‘ES SUvs
EDGE HEX 1A AL EXPEDITION
TRUCKS
RANGER TRANSIT CONNECT F-150 _ = SUPER| " SUPERT "~ SUPERDUTY 450
$17,820* $21,185% $21,820* g ¥ . $48,350*%

Figure 6.6: A vehicle filtering tool on the Ford Motor Company web site [56]

Figure 6.7: Human-generated concept sketches of vehicles.

Example 2: Step 3

The functions of these vehicle concepts, along with other common vehicle features and
components, have been decomposed into the morphological chart, shown in Table 6.8. Additional
design parameters are shown in Table 6.9, and design constants are shown in Table 6.10. The de-
sign features and other design parameters can be seen in in Figure 6.8, which contains a schematic

of the vehicle platform design.



Table 6.8: Morphological chart for vehicle platform design example.

Feature Possible Solutions

Doors, Fj 2 doors 4 doors

Chassis, F; compact | mid-size | full-size | heavy duty | super duty

Engine, F3 4-cylinder V6 V8 V8 Diesel electric | hybrid
Drive type, Fy FWD RWD AWD 4WD

Cargo style, F5 || rear hatch | truck bed | trunk

Table 6.9: Design parameters for vehicle platform design example.

Parameter Possible Values
Wheel base, wpg 72 -1751n
nose length, ny 25-501n
tire diameter, tp 20 - 36 in
cab height, sy, 36-1201n

# of seat rows, n, 1,2,3,4
tire aspect ratio, t, 0.20-0.85
ground clearance, g¢ 6-201n

Table 6.10: Design constants for vehicle platform design example.

Constant Value units
2-seat width threshold, wr 79 in
seat depth, ds 40 in

material cost, C,, 0.002745 $/cm?3

sAL

H siHpp

Figure 6.8: A schematic of the vehicle platform design example
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Example 2: Step 4

The numerical form of the morphological chart is shown in Equation 6.10 as the morpho-

logical matrix, Fy,.

Fii Fi2 1 2
F Fn F Fy Fs 1 2345
Fp= 3 Fy Fy3 Fiy F35 F36 - 1 2 3 45 6 (610)
Fy1 Fyp Fyz Fyg I 23 4
The complete design chromosome is defined as
T
Ctable = [ W F, i3 F4, F5 wg np tp sgp n, t gc ] (6.11)

Example 2: Step 5

The five physics-based performance models, Price (1), Weight (i), Seating (3), Towing
Capacity (u4), and Cargo Space (Us), along with the unmodeled preference-based performance

model for aesthetics (lg), are defined as

p1 = mp-Cp+C; +Cra 4 Cr3; (6.12)
Uy = mp+m; +mpy +mpg3 (6.13)

s =3n, (6.14)

s =1000-(F—1)- /B (F5 — 1) (6.15)
Hs =cr-Ve (6.16)

U6 = faesthetic (Xd,Xc) (6.17)

where x; is a set of discrete variables/genes and x. is a set of continuous variables/genes to describe

a design.
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Example 2: Step 6

The single objective optimization problem statement used during the learning period of the
Preference-guided Search uses only the preference-based model, ug, equivalent to Equation 4.7.
The multiobjective optimization problem statement used after the learning period uses both physics-
based models and the newly formed preference-based model, resulting in the following form of

Equation 4.8, as shown here

min {4 (Xa, Xc), Mo (Xas Xe), = Ha (Xas Xe), —Ha (X, % ), = Hs (X, Xe ), — Mo (Xa, Xe) } - (6.18)
subject to:

0 < w1 < 100,000 (6.19)

0 < > < 50,000 (6.20)

2<u3 <15 (6.21)

0 < s < 26,000 (6.22)

20 < us <200 (6.23)

where x; 1s a set of discrete variables/genes and x, is a set of continuous variables/genes to describe

a design.

Example 2: Step 7

The genetic algorithm used as the numerical search method used a generation size of N =
540, a crossover probability of pcrossover = 0.2, @ mutation probability of ppytation = 0.0001, a
tournament ratio of rioumament = 0.2, and number of generations G = 20. These conditions for the
numerical search result in the automatic evaluations of 10,800 designs/combinations of features
and parameters, per execution of the numerical search in each iteration of the design methodology.
Figure 6.9 shows the progression and convergence of the objectives in the numerical search

over 10 iterations. The first 3 iterations were the learning period, when only the preference-based
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Figure 6.9: The progression of the design objectives through the Preference-guided Search, chang-
ing from single objective optimization to multiobjective optimization after iteration 3.

objective was used. After the preference-based model was developed, the physics-based objectives
were included in the numerical search for designs, changing to a multiobjective search and causing
trade-offs to be made between the competing objectives. After 10 iterations, all the designs were
non-dominated, Pareto-optimal designs, and the objectives had converged, having found a set of

designs that best met the objectives.

Example 2: Step 8

Figure 6.10 shows visual representations of a set of vehicle designs that were automatically
formed, through random selection methods during the learning period of the design methodology
when no optimization has taken place. The visual representations of the vehicles also presents each
design’s physics-based performance, preference-based performance, and several critical features

descriptions, such as engine, chassis, and rear cargo style.

Example 2: Steps 9 & 10

After designers subjectively evaluate the designs which are displayed, the features and
parameters present in the preferred designs are captured and used to form the preference-based
models, using the methods explained in Chapter 5. An example of the preference models formed

is shown in Figure 6.11.
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Loop 1, Design #1

Price= 10949119
Weight= 4344 4006

Seating=5 Seating= B Seating=12 Seating= 3
Towing= 10392 3048 Towing= 0 Towing= 0 Towing= 0
Cargo Space= 1195236  Cargo Space= 61,7221 Cargo 5 = 331644 Cargo Space= 161.1542
Pref=10 Pret=0 Pref= Pref=
hateh trunk trunk hatch
wWE Diesel 2 Diegel yhrid
heawy duty super duty super duty super duty
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Figure 6.10: Non-optimized vehicle designs automatically formed and presented to human design-
ers for subjective evaluation.
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Figure 6.11: The preference-based models for each design gene, formed from subjective evaluation
of a human designer.
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Figure 6.12: A set of vehicle designs that has converged using the preference-based models and
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physics-based models of performance.

Example 2: Step 11

After the Preference-guided Search has used the new preference-based model along with
the physics-based models, the set of designs formed will begin to converge on designs with com-

monalities in some areas, but differences in others.

elactric

Loop 4, Design #291

Price=12515.0417
Seating= 8

Towing= 34641016
Cargo Space= 45104
Pref= 0.86013

hatch
B

full size

Loop 4, Design #2473

Price= 17805.6756
Seating= 9

Towing= 15491,9334
Cargo Space 1292273
Pref= 0.8729

uper duty

Loop 4, Design #51
Price= 22535.68726
Seating=12
Towing= 15491 9334
Carge Space= 43,6047

Fref=0 92

hatch

super duty

truck
8 Diesel

8 Diesel

Loop 4, Design #92
Price= 12561.4152
Seating= 8
Towing= 0
Cargo Space= 31,6709
Pref= 0.92917

trunk
-yl
ull size

Loop 4, Design #271

Price= 18358.3133

Seating= 9

Towing= 15491.9334

Carge Space 184 65299
Pref= 0.6724

Loop 4, Design #B69
Price= 23152.0428
Seating= 12
Towing= 15491 9334
Carge Space= 436047

Fref=0 92

hatch

super duty

Loop 4, Design #275

Price= 13231.3203
Seating= 8

Towing= 34641016
Cargo Space= 709353
Pref= 095337

truck

Il size

Loop 4, Design #283

Price= 18526.7031
Seating= 9

Towing= 0

Cargo Space= 1781686
Pref= 0.

hatch

%S Digsel -yl

Super duty

super duty

Loop 4, Design #70

Price= 23152.0428

Seating=12

Towing= 15491 9334

Carge Space= 436047
Fref=10 92

hatch
8 Diesel

super duty

Figure 6.12 shows a set of designs that is

generally similar in appearance, but has different trade-offs of physics-based performance.

Example 2: Results

For quantitative validation purposes, an automated test was performed to measure the abil-
ity of the numerical search methods of the new design methodology to find more preferred designs.
The test ran through the steps of the methodology, automatically selecting designs in Step 9 ac-
cording to a certain criteria in order to simulate the choices that a human designer would make.

The upper plot in Figure 6.13 shows an improvement in the average preference-based performance
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Figure 6.13: Test data showing the preference model improvements during the learning period,
and a higher quantity of preferred designs being found.

through 10 iterations of the learning period. The bar chart shows that during the learning period,
there is progressively more preferred designs in a numerical search that incorporates a preference-
based model (part 1), as compared to a parallel search that does not incorporate preference at all
(part 2).

This example, and test results, successfully demonstrated the use of all the steps of the
design methodology to search through the vast number of possible combinations of design features
and parameters (10,800 per iteration), and converge on a set of preferred designs, as shown in
Figure 6.14. The vehicle features present in these designs are recognizable from the initial concept
sketches (See Figure 6.7), however some of the combinations of features are new and were not

previously considered by designers.
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Figure 6.14: New, optimized vehicle designs automatically formed, consisting of new combina-

tions of features and parameter values.

56



CHAPTER 7. CONCLUSIONS

This thesis has focused on improving the quality and quantity in the set of designs that is
considered during conceptual design, by rapidly exploring for design possibilities and by incorpo-
rating human-based subjective evaluation into a computational search. To do this, a computationally-
assisted design methodology was developed and formally organized into 11 steps, which was able
to rapidly evaluate tens of thousands of designs per minute. Also, human-based subjective evalua-
tion was captured to incorporate designer preference into the automated search.

The design examples began with initial sets of human-based manually-generated designs.
The decomposed features of those designs were parameterized and used in a numerical search
to find optimally performing designs according to physics-based models and preference-based
models. It was shown how the new design methodology uses a statistics-based preference capture
method to form a quantitative model of the subjective design decisions of a designer made during
the manual evaluation of designs. This preference-based model, along with the physics-based
models, was used in multiobjective optimization to guide the numerical search for designs that are
Fareto-optimal, match the preference of the designer, and are new combinations of features and
parameter values that may not have been found through manual methods.

The new computationally-assisted design methodology is able to harness computational
power to evaluate fens of thousands of designs per minute, and still take advantage of the expe-
rience, intuition, and subjectivity of human designers. The relatively simple preference capture
method used in this work parallels much of the learning methods being developed in the area of
interactive evolutionary computing (IEC) research [31]. Future work related to this thesis could
cross-functionally incorporate the newest IEC methods into the conceptual design process. Ef-
forts to improve the effectiveness of the subjective evaluation done by designers could include

improvements in the visualization of design composition and performance. The preference cap-
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ture methods in this work also do not account for combinatorial effects or unequal weighting of
preferred features and performance levels.

There exists the challenge of how to model performance of designs when unfamiliar com-
binations of features occur that are not covered by the existing models. These new combinations
can either be treated as infeasible designs, or as an opportunity to develop new performance mod-
els potentially leading to the discovery of innovative products. It is likely that the application
of this methodology will be most successful for design teams that repeatedly redesign the same
type of products because they will have access to well developed physics-based models, or for the
design of modular products. The methodology could also assist these same teams to more fully
explore the design space and find designs that accomplish their existing design requirements, but
with new combinations of features that had not previously been considered. Considering this, it
seems that this methodology could be a useful conceptual design tool in industries such as con-
sumer products, automotive, consumer electronics, recreational products, or any product that has
the combination of qualitative design requirements and quantitative, engineered performance re-
quirements. It would be more challenging to use this methodology when the design requirements
are abstract and the goal is to redefine the overall functions of a product, rather than finding better
performance through new features and subfunctions.

It was demonstrated that the design methodology can be used to more thoroughly search
through an initial set of concepts for the best combination of features and parameters by using
optimization methods. However, the contradiction of convergence upon a single design during a
time in the design process that is intended for discovery and innovation, is one that must seriously
be considered. If great products come from truly innovative ideas, then future work related to this
thesis could include the development of methods to automatically inject new ideas and the models

to evaluate the new ideas.
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