
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2010-03-12 

Automatic Identification and Tracking of Retraction Fibers in Automatic Identification and Tracking of Retraction Fibers in 

Time-Lapse Microscopy Time-Lapse Microscopy 

Meher Talat Shaikh 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Shaikh, Meher Talat, "Automatic Identification and Tracking of Retraction Fibers in Time-Lapse 
Microscopy" (2010). Theses and Dissertations. 2093. 
https://scholarsarchive.byu.edu/etd/2093 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2093?utm_source=scholarsarchive.byu.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Automatic Identification and Tracking of Retraction 

Fibers in Time-Lapse Microscopy 

 
 
 
 

Meher Talat Shaikh 
 
 
 
 
 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 
 

Master of Science 
 
 
 
 
 

James K. Archibald, Chair 
Chia-Chi Teng  
Dah-Jye Lee 

 
 
 
 
 

Department of Electrical and Computer Engineering 

Brigham Young University 

April 2010 

 
 

Copyright © 2010 Meher Talat Shaikh 

All Rights Reserved 

  
 
 
 

  
 
 
 





 

ABSTRACT 

 

Automatic Identification and Tracking of Retraction 

Fibers in Time-Lapse Microscopy 

 
 

Meher Talat Shaikh 

Department of Electrical and Computer Engineering 

Master of Science 
 
 

Digital image processing is widely used in the field of time-lapse microscopy and 
biological research to provide statistical data of cellular dynamics. The data can provide more 
comprehensive understanding of the molecular phenomenon. Further, digital image processing 
enables rapid and consistent quantification of qualitative observations. The image processing 
model examined here provides a study to identify structures called retraction fibers (RFs) that are 
formed during epithelial-mesenchymal transition (EMT) [1], an important developmental process 
which also occurs during cancer metastasis. Quantifying RF formation is an important task for 
biologists studying cellular regulation of EMT. This thesis work uses digital image processing 
and computer vision algorithms to detect and track each RF in image sequences of cells 
undergoing EMT that are captured using time-lapse microscopy. The algorithms isolate the RFs 
with reasonable precision. Statistical information is generated about these automatically detected 
RFs, such as the number formed during a particular time window, lifetime of each, and their 
geometric dimension. This information can in turn be used by biologists to quantitatively 
measure the extent of EMT under different test conditions. Biologists feel that the information 
thus obtained may help clarify the molecular interactions of cell migration and will aid in 
developing methods of preventing cancer metastasis. Experimental results show that this 
methodology has significant potential in helping biologists determine RF behavior during EMT. 
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1 INTRODUCTION 

This work describes a computer-based approach to identify and track thin molecular 

structures called retraction fibers (RFs) in a time lapse sequence of microscopic images. The RFs 

are an important phenomenon that occurs during cell metastasis known as epithelial- 

mesenchymal transition (EMT). In this chapter we introduce EMT and describe the significance 

of our work related to the RFs that appear during EMT. 

1.1 Epithelial-mesenchymal transition (EMT) 

Epithelial-mesenchymal transition (EMT) is an important process in cell biology that 

takes place during embryonic development as well as in cancer metastasis. A typical epithelium 

is a sheet of cells where the cell-cell junctions and adhesions between neighboring cells hold 

them together and inhibit the movement of individual cells. During EMT, cells disrupt cell-cell 

junctions because of loss of cell adhesion and leave the epithelium as individual migratory cells. 

As cells separate, retraction fibers (RFs) form as cell membranes are stretched between 

separating cells. Figure 1-1 shows a typical retraction fiber formed during EMT. The cells 

eventually separate and migrate to other locations, thereby assuming the state of migration, and 

thus spreading over larger areas. This EMT process can be regulated by zyxin, a known adherens 

junction protein [2]. Since proteins of this type help in strengthening the attachments between 

adjacent cells, zyxin also changes the rate of EMT [3]. Understanding how EMT is regulated at 

the molecular level is therefore an important question in cell biology. Biologists would like to 
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explore the role of zyxin during separation of cell-cell contacts during EMT. Since RFs appear 

before the cells break and migrate, biologists would like to study their behavior. This study may 

help devise prevention and control of life-threatening diseases such as cancer.  

 

 

Figure 1-1 Retraction fibers formed during EMT 

 

The dynamic EMT process is captured by biologists using time-lapse microscopy at a 2- 

minute interval. Figure 1-2 shows a typical EMT sequence of 3 frames. Currently, to study the 

effect of zyxin on EMT, biologists capture the retraction fiber information manually. The 

researchers then examine the RFs in each of the time-lapse microscopic images. As seen in 

Figure 1-1, retraction fibers appear as thin molecular structures stretched between cells. 
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Figure 1-2 Typical EMT sequence (3 consecutive frames) 

 

1.2 Computer vision 

Computer vision involves the process of obtaining information from images, often in a 

manner that mimics the human vision system. It is used extensively for important applications in 

many fields.  With evolving molecular imaging techniques, computer vision has become 

increasingly attractive to researchers in the field of biomedical analysis. The massive amounts of 

imaging data collected for study call for a computerized methodology of analysis. 

Given an image or sequence of images, computer vision involves isolating critical parts 

of the image under study from other image parts. This is generally referred to as feature 

extraction in image processing terminology. In this work, computer vision is used to detect the 

RFs and to track their lifetimes through a time-lapse microscopic image sequence. Each image 

sequence consists of 300-400 frames captured during EMT. In this time interval, the RFs 

between the cells appear at some time-point and then they may disappear at some other time-

point, exhibiting seemingly random motion. This work focuses on the use of computer vision to 

detect these dynamic RFs and to determine statistics of their lifetimes. The computer vision 

algorithms implemented in this work to detect RFs include image blurring, thresholding, locating 

thin molecular structures that are potential RF fibers, and the Hough transform.  The RF 
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dynamics are determined using the space and time information (generally referred to as 

spatiotemporal statistics) of the RF phenomenon. 

1.3 Significance of computer vision in RF identification and tracking 

Currently, to determine the RF dynamics to study the effect of zyxin on EMT, biologists 

capture the retraction fiber information manually. For example, researchers at BYU examine 

each image in the sequence of the time-lapse microscopic images, and use the Olympus 

SlideBook [4] software package to manually measure the length of each retraction fiber at each 

time-point. After examining the entire EMT image sequence, researchers have statistics such as 

the number of unique RFs that appeared over the EMT sequence and the maximum length 

attained by each RF before it breaks. This manual process is time-consuming and tedious, 

imposing a practical limit on the amount of data that can be collected. The quantification and 

analysis of thousands or more RFs in different EMT sequences would require significant human 

time and effort to determine the RFs behavior. 

There is also variability and inconsistency between researchers in identifying RFs. The 

objective of this thesis is to explore the feasibility of creating a tool that can identify and track 

the lifetime of these RFs automatically, using computer vision algorithms.  With such a tool, 

retraction fiber data for parental cells and cells expressing zyxin mutants during EMT could be 

rapidly and reliably produced by the tool and used by biologists for statistical analysis to 

determine differences in the RF behavior. The tool would thus provide a means to quantify the 

effect of altering zyxin function during EMT, thus leading to greater understanding of the role of 

zyxin in regulation of EMT and cancer metastasis. Ideally, computer vision techniques would 

enable a fast and consistent way of identifying the RFs in these image frames in such a way that 
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the results could easily be reproduced.  The tool would help to decrease reliance on human 

expertise and provide a more cost effective solution for the study of EMT. An improved 

understanding of this phenomenon could potentially result in the prevention and control of 

cancer and other life threatening metastasis. 

1.4 Challenges of tracking 

Although automatic detection and tracking is the solution for a vast amount of 

quantification and analysis, achieving high precision is challenging. Human vision is able to 

perceive and process a significant amount of information from images within seconds. 

Additionally, the human brain has the ability to draw many inferences and apply background 

knowledge to the environment under study. Using training-data, a computer can be made to draw 

inferences and use background knowledge, but the amount of data that can be fed as background 

knowledge still has a limit. Images that appear obvious and straightforward to human vision are 

often very difficult for a computer to process. While human vision can easily delineate the 

desired features from an image, it is an arduous task for the computer to manipulate the image 

pixels and to obtain an approximately equivalent perception. For example, in the image 

sequences used in this thesis, histograms of grayscale values show unimodal distribution, and 

this makes it difficult to isolate the desired features of the image based on intensity of pixels. 

Further, the task to identify the true RFs from the sea of molecular structures that are detected as 

potential RFs is not trivial. In the end, some level of inaccuracy needs to be tolerated to achieve 

the speed, reproducibility and cost effectiveness of a practical computer vision system based on 

these techniques. 
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Meijering et al. [7] note the fundamental problems and limitations in achieving 

robustness and accuracy in tracking and motion analysis in images obtained by light microscopy. 

Accordingly, the performance of computer vision is greatly hampered by the following three 

factors: the limited spatial resolution of the microscope because of diffraction, the signal-to-noise 

ratio, and the large variability of biological image data. They also note that the quality of images 

may differ even in the same experiment. In the work described in this thesis, each of the above 

factors was experienced to a certain degree. The input microscopic images are of variable 

illumination. Further, even the best implementation could not track all the RFs that were detected 

manually, leading to a loss of critical data. Some RFs have almost negligible contrast with the 

background and are lost in image thresholding. Further, in automatic tracking there are examples 

where separate and distinct RFs are identified incorrectly as the same fiber. Thus, it is desirable 

but difficult to minimize these undesired tracking side effects. 

1.5 Problem 

The goal of the current work is to explore the feasibility of developing an image 

processing program that does the following:  

• Identify each retraction fiber as it is formed during EMT, 

• track each fiber through its lifetime (i.e. for each fiber, identify the corresponding 

fiber, if any, across all frames), and 

• provide statistics for the life span of each fiber. 
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1.6 Outline 

The following chapters discuss the details of the implementation of automatic detection 

and tracking of RFs. We begin with background work in automatic detection and tracking of 

molecular structures in cell biology (Chapter 2). Here we discuss the challenges involved in 

molecular tracking and bring to light some important identification and tracking approaches. The 

literature provides a general understanding of the computer vision task that we try to accomplish. 

Chapter 3 covers image preprocessing algorithms that are used to extract the relevant 

information from the microscopic images while suppressing the irrelevant information. In 

Chapter 4 we describe in depth our entire approach towards the solution of the problem 

undertaken. 

Chapter 5 reports the results of our implementation. And finally we conclude our findings 

in Chapter 6 with future work that could be taken up to enhance our system performance. 
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2 BACKGROUND OF MOLECULAR TRACKING 

The study of molecular dynamics using a microscopic time-lapse imaging technique is 

common. The imaging technique produces a huge amount of data that calls for automatic 

quantification of the molecular motion analysis. Automatic quantification involves first locating 

the molecular structures in the images and then linking them across the images using spatial and 

temporal information. This process is generally referred to as tracking. In the past, a significant 

amount of work has been done using computer vision algorithms in the area of tracking cells and 

various other molecular moving structures that are captured using time-lapse microscopy [5] [6] 

[7] [8] [9] [10]. These automatic methods are hampered by typical challenges associated with the 

analysis of molecular dynamics. These include low contrast, noise, variable illumination, and 

random motion in the microscopic images.  These obstacles are also present in our input images. 

In this chapter we briefly summarize molecular tracking literature that provides useful insight 

towards a solution for this current work. 

2.1 Tracking in molecular imaging 

In their survey, Meijering et al. [7] cover the current state of affairs in the field of 

tracking in biological molecular imaging. They describe the basic principles of visualizing 

molecular dynamics in living cells and detail how light microscopy [11] combined with time-

lapse imaging provides powerful tools to study these dynamics. In their work they also provide 

some examples of molecular dynamics studies to emphasize how the studies generate vast 
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amounts of image data, where the dynamics of hundreds or thousands of molecular structures 

need to be analyzed quantitatively and as completely as possible to reveal desired information. 

They describe how the limited spatial resolution of the microscope, noise, and large variability of 

biological image data impose limitations on achieving robustness and high accuracy in tracking. 

They discuss the significance of computer vision in analyzing the biological image data and 

detail a general tracking technique for molecular dynamics. Finally, they point out that any 

successful tracking technique would involve image preprocessing, detecting the desired features, 

linking them together, and analyzing them. Not surprisingly, these general steps also form the 

backbone of our proposed approach. Various alternatives were explored in this thesis work for 

each of these phases. Our approach for each phase is based on the shape, structure, and behavior 

of RFs, the identification of which forms the central focus of this study. 

In most computer vision tracking problems, the effectiveness of an approach largely 

depends on the segmentation process used for molecular structure detection. Segmentation is the 

process of partitioning a digital image into background and foreground objects, where the 

foreground objects are the parts of the image that are under study. The goal of segmentation is to 

simplify a given image into something that is more straightforward to analyze. 

2.2 Cell tracking 

In the field of molecular tracking, the tracking of cells and cell population in time-lapse 

microscopic images has gained tremendous attention in recent years. In the following sections 

we will review some of the automatic detection and tracking systems that have been used for cell 

identification and tracking. While the molecular structures identified in these systems are cells 
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rather than RFs, the tracking systems provide insight into approaches that are feasible for 

molecular tracking. 

Li et al. [5] present a computer vision based system to automatically detect and track the 

behavior of individual stem cells (cells that can reproduce themselves) in expanding populations. 

The system provides the statistics of cell movement, division, quiescence and death of every cell 

in a population in real time. The detection is based on the observation that the cells that undergo 

mitosis have an initial increase in brightness and circularity, accompanied by a decrease in size. 

This approach uses machine-learning to detect spatiotemporal mitosis events. As training data, 

the system identifies both positive and negative examples of mitosis events from an image 

sequence.  

Shi et al. [6] propose using a fast level set implementation for real time tracking of 

moving objects. This is a region-based tracking model that uses tracking results from the last 

frame as the initial curves and then evolves each curve according to an equation that minimizes 

energy to locate the objects in the current frame. The method is well suited to track region 

boundaries that take random shapes. Li et al. [8] use the approach proposed in [6] to successfully 

track cell population. They employ the following modules to achieve this purpose:  

• Cell detector: detects and labels candidate cell regions in input image 

• Cell tracker: propagates cell regions and identities across frames 

• Dynamic filter: performs prediction and filtering of cell motion dynamics using a 

Kalman filter 

• Track arbitrator: manages the tracking task of new cells and dead/departed cells 

and establishes cell lineages 



12 

In our project, since the RFs are rather straight, we employed the well-understood Hough 

transform to detect the lines and to track RFs based on where in image space these lines are. This 

part of our implementation is analogous to the cell detection and cell tracking of Li et al. [8].  

House et al. [9] propose another approach for tracking cell populations. It uses Bayesian 

algorithms to detect and track large numbers of cells in the presence of clutter and to identify cell 

division. In its first step it uses an adaptive threshold to produce a binary image in which cells 

and clutter are segmented from the background. In this binary image, groups of pixels under a 

certain threshold are classified as clutter and disregarded in further processing. We have 

implemented a similar technique (discussed later) that uses an adaptive threshold to segment the 

cells and RFs from the background. 

Most methods in molecular tracking start by completely segmenting the desired 

molecular structures in each frame and then attempting to track these molecular structures from 

one image to the next.  This approach helps to reduce the complexity of tracking. Intermediate 

results can be checked and used to improve each step separately. Some recent approaches 

establish the task of detection and tracking in a single step to improve segmentation 

performances [12] [13]. Primet [10] combines the advantages of both approaches by using a two-

step process so that intermediate results can be checked, while retaining the idea of simultaneous 

segmentation and detection. In the first step it uses “over-segmentation”, a process to partition 

the image domain into background domain and small regions called blobs, such that any cell of 

the image is a union of connected blobs where any blob belongs to exactly one cell.   

The major differences between the above implementations and our approach are that the 

retraction fiber we hope to identify is not circular and does not divide, although it appears at 

some time-point, extends during EMT and disappears at another time-point. Hence our statistics 
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are different than the approaches mentioned above. In our implementation we do not have 

trained classifiers for machine learning because the RFs we process may attain random lengths in 

random directions in variable intensities during the EMT process. This is in contrast to the cell 

mitosis event that may divide at any orientation but does not attain random length. In our case, 

we found it was not feasible to collect positive and negative samples of RFs to discriminate them 

from the remaining structures. Further, the RFs do not reproduce. In a given colony of cells, the 

number of RFs that may appear are not as numerous as cells that are reproduced whose lineage 

needs to be tracked, hence we employ simpler methods to capture RF statistics. 
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3 IMAGE PRE-PROCESSING 

Images that are processed for certain feature analysis often contain more details than the 

features that are being analyzed. Further, the images may contain noise, artifacts, and other 

undesired features. Image pre-processing is an operation generally carried out in many computer 

vision applications to enhance important image features while suppressing image information 

and features that are irrelevant to the analysis task. In other words, the result of image pre-

processing is an image with information content that will be further processed while disregarding 

the unwanted features. In our implementation, the features that we focus on and analyze are RFs, 

and the time-lapse microscopic images that we process are of cell colonies (group of cells) that 

undergo EMT. The images contain cells and, depending on the time-point, may also contain RFs. 

The goal of pre-processing in our approach is to suppress noise, disregard the cells, and obtain 

images that could show potential RFs. It involves Gaussian blurring, thresholding, extracting 

image regions that represent connecting areas between cells, and disregarding the cell regions. 

The following sections illustrate each of these steps in detail. 

3.1 Smoothing 

A smoothing operation is applied to an image to reduce noise. Smoothing is often 

referred to as blurring. Noise in an image is generally characterized as any high frequency 

component. Hence, the effect of smoothing is to filter out the high frequency components in an 

image. The filters for noise removal are classified as linear filters and non-linear filters [14]. 
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Both are widely used based on the nature of the application. In each category there are many 

techniques that are frequently used. Gaussian smoothing is one example of a linear filter, while 

the median filter is an example of a non-linear filter. In our project we are dealing with grayscale 

images, and we would like to retain the thin lines that correspond to RFs during noise removal. 

We experimented with different filters before deciding to use a Gaussian filter which provided 

the best results for our task. For example, the median filter damages thin lines in the image, so it 

was not used.  

3.2 Gaussian smoothing 

The Gaussian filter performs a weighted average of surrounding pixels based on the 

Gaussian distribution function. For a 2D image the Gaussian function is given by 

2
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πσ

σyxeyxG
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= ,        (3.1) 

where x is the distance from the image origin in the horizontal axis, y is the distance from the 

image origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution. The 

Gaussian filtering is done by convolving each point in the input image with a Gaussian function 

to produce the output image. To smooth the image frames of our time-lapse microscopic images 

we use the cvSmooth function in OpenCV with smooth type CV_GAUSSIAN [15]. A Gaussian 

kernel of filter window size 3x3 (neighborhood pixel window size) is used in our current 

approach. 

3.3 Thresholding 

Thresholding is an image segmentation technique by which we categorically accept or 

reject the pixels in an image based on the information that we desire to retain. It transforms the 
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input image to a simpler form for analysis. Thresholding is a process of transforming the input 

image f to an output image g such that  

Tyxf
Tyxf

yxg
<
≥

=
),(0
),(1

),( ,        (3.2) 

where T is the threshold for pixel grayscale value. In image g, the pixel at location (x, y) is 

assigned either value 0 or a 1 depending on the grayscale value at location (x, y) in the image f. 

However, this assumes a single, fixed threshold is used for the entire image. The microscopic 

images, as described earlier, suffer from variable illumination and low contrast; hence, a single 

global threshold for the entire image is not the best approach for extracting features present in the 

images. Figure 3-1 shows the result of using a global threshold for a sample image. 

 

  

Figure 3-1 Global thresholding 

 

The undesired effects of global thresholding are obvious in the bottom left corner of the 

image on the right of Figure 3-1. (The approach has identified features where no real features 

exist.) Therefore, we use thresholding techniques where the threshold T is position dependent 

and is given as: 
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),( cffTT = ,          (3.3) 

where f is the image, and fc is a distinct portion of f over which a given threshold value is used.  

Segmentation using such variable thresholds across the image is called variable 

thresholding or adaptive thresholding. For thresholding the microscopic images, we used a 

simple and fast adaptive thresholding algorithm proposed by Bradley and Roth [16] that takes 

into account spatial variations in illumination. The algorithm uses integral images to compute a 

different threshold value for each pixel in the image; an integral image is a tool to compute the 

sum of a particular image function over a rectangular region of the image. To compute the 

integral image, the approach suggested by Bradley and Roth [16] stores at each integral image 

location, I(x,y), the sum of all f(x,y) terms to the left and above the pixel (x,y). This is 

accomplished in linear time using the following equation for each pixel: 

)1,1()1,(),1(),(),( −−−−+−+= yxIyxIyxIyxfyxI .    (3.4) 

In the next step, for each pixel location of an image array, the approach then uses the 

integral image and computes the sum function for a specified rectangle with upper left corner 

(x1,y1), and lower right corner (x2, y2) using the following equation: 
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The grayscale pixel value in the original smoothed image is checked against the value 

generated by this sum and the output image pixel for a thresholded image is set to 0 or 1 

depending on whether this sum is greater or smaller than the value of the corresponding pixel in 

the input image.  This algorithm has proven effective for the images that we deal with. 
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Figure 3-2 Left: Original image, Right: Image after applying adaptive threshold 

 

To summarize the operation so far, given original two dimensional image frame f, binary 

thresholded image IT is obtained as follows: 

))(( fGAIT = ,          (3.6) 

where A and G are the adaptive thresholding and Gaussian functions respectively. Figure 3-2 

shows the effect of applying an adaptive threshold to an input image f on which Gaussian 

smoothing is applied. The cells and RFs appear as areas of black pixels, while the background 

appears as white pixels. Once we have thresholded the input image, our next step is to eliminate 

the regions corresponding to cell structures. The next section elaborates the step of discarding the 

cell structure regions. 

3.4 Discarding cell structure regions from the binary image 

In the binary image of Figure 3-2, we are interested only in the fibers. Therefore, we 

remove the black pixels corresponding to cell structures by eliminating the thicker regions and 

retaining the thinner sections of the foreground image. The final preprocessed image IP can be 

obtained by applying the following function to IT,  
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where pixel value 0 stands for black and 1 for white. 

The function operates in the following way: All the white pixels in adaptive thresholded image IT 

are stored as white pixels in the output image IP, at their corresponding locations. Each black 

pixel in IT is examined to determine if it is surrounded by white pixels on any of its opposite 

sides in a 7x7 pixel window neighborhood. If there exists any such pair of white pixels then the 

black pixel is stored as a black pixel in the output image IP else it is stored as white in the output 

image. An example pair of white pixels at opposite sides of a black pixel is shown in Figure 3-3. 

 

 

Figure 3-3 Processing example for maintaining thinner regions 

 

For the black pixels corresponding to cells, such a pair of opposite white pixels is usually not 

found as the black area generally extends beyond the 7x7 area. Therefore these black pixels get 

stored as white pixels. In contrast, for the black pixels corresponding to fiber, one or more pairs 

of opposite white pixels is generally found, and therefore these black pixels get stored as black in 
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the output image. As a result we see in IP black pixels corresponding to thinner black regions of 

IT.  

Figure 3-4 shows the preprocessed image IP obtained from image IT in Figure 3-2. Note 

the removal of most cell pixels at this step in processing. The long connected regions correspond 

to thin structures in the original image of Figure 3-2. The image areas corresponding to these thin 

structures can be used to identify RFs. 

 

 

Figure 3-4 Binary image of Figure 3-2 with cell pixels removed 
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4 DETECTION AND TRACKING OF RFS 

Image pre-processing produces images with features corresponding to thin long structures 

in the original image. The binary image obtained from pre-processing includes groups of black 

pixels that are background noise. We remove these undesired groups of black pixels by using a 

connected components algorithm. This chapter details the strategy used to remove noise regions 

with a size less than a threshold ρ, and it details the information that is stored for the desired 

image regions as well as details of detecting and tracking RFs. 

4.1 Connected components 

Connected components in an image are discrete regions of similar pixel intensity. In a 

binary image as shown in Figure 3-4, connected components are the discrete regions of black 

pixels. Not all these discrete regions represent potential locations of RFs, let alone actual 

locations of RFs. From chapter 1 we see that RFs are generally straight long structures stretched 

between cells. Hence, in this step, we filter the connected components that are considerably 

smaller in size (having fewer total pixels) using a threshold ρ. The ρ selection is very critical in 

this implementation. Selecting a high value for this threshold causes RFs that are short to be 

ignored, whereas selecting a low value causes many cell regions to be identified as potential RFs. 

After experimenting with different values, ρ was assigned the constant value 13 in this 

implementation. That is, connected components with at least 13 pixels are processed further to 

detect RFs.  
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In image processing terminology, an algorithm that finds connected components is called 

a connected component labeling algorithm. This algorithm scans the image having discrete 

regions and groups its pixels into components based on pixels that share similar intensity values 

and that are adjacent in the image.  It further labels each component with a unique identity to 

distinguish the regions. For our purpose it is sufficient to identify the components to check the 

number of pixels in each. We do not label these components. In implementing the connected 

component labeling algorithm, we determined that it was not working efficiently and rather 

cumbersome for images with distinct regions very close to each other. Therefore, we resorted to 

using the cvFindContours function in OpenCV to find all the connected components [15]. To 

satisfy the function call pre-requisites, we first find the edges in the binary image (see Figure 

3-4) using a Canny edge detector. The connected components are referred to as ‘contours’ by the 

function call, and each contour area is checked for number of pixels. As mentioned earlier, 

contour areas 13 pixels or larger are considered for further processing and analysis. We define IR 

as the new image consisting of these contours. Figure 4-1 shows the contours of the regions in 

the resulting IR given the IP in Figure 3-4. As can be seen, it has less clutter than the original 

image in Figure 3-4. 

4.2 RFs extraction 

We assume that the counters extracted in earlier image processing steps serve as areas of 

potential RFs. In other words, these contours act as pointers to areas in the microscopic image 

that may contain one or more RFs. The contours returned by cvFindContours function are not 

themselves processed further; instead they provide the location and dimensions of the contours in 

the image as shown in Figure 4-1. 
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Figure 4-1 Contours of size 13 

 

Recall that biologists define RFs as thin structures that are stretched between two cells, 

indicating regions of tension caused by cells pulling apart. These tension areas appear as lines in 

the microscopic images.  Our strategy involves seeking ‘lines’ in the microscopic images at 

locations pointed out by the contours supplied by the above image processing step. Seeking lines 

in limited areas (only the contour areas) instead of over the entire image has two advantages. 

First, it is computationally inexpensive, and second, the dimensions of a line can be more easily 

determined.  

While the structure of these RFs is well defined, the microscopic images do not always 

show sufficient contrast of RFs relative to the background, and it is therefore difficult to identify 

the lines reliably in all cases. Figure 4-2 summarizes the image processing operations done so far 

and indicates the steps taken towards RF extraction. (Processing steps not yet addressed will be 

discussed shortly.) 
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Figure 4-2 RFs extraction in an image 

 

4.3 Black Hat transform 

To extract RFs at the potential locations, we perform a morphological gradient on the 

original smoothed microscopic image using Black Hat Transformation [15], also referred to as 

bottom-hat transformation [17]. A morphological gradient is the difference between the 

morphological dilation and morphological erosion of a given image. Dilation is an image 
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processing operation to grow or thicken the foreground regions. Erosion is an image processing 

operation to shrink or thin the foreground regions. Various combinations of dilation and erosion 

operations are used to capture the contrast intensity in images as well as to isolate parts of an 

object that exhibit brightness changes relative to the object to which they are attached. One such 

combination is the bottom-hat transform operator. Bottom-hat transformation is often used to 

detect dark objects on a light background. It is represented mathematically as: 

Bottom hat (Image) = (Erosion (Dilation (Original Image))) – Original Image,   (4.1) 

where the original image undergoes dilation followed by erosion, and the resulting image  is 

subtracted from the original image to give the bottom-hat transformed image. 

In this application, we wish to detect darker objects in the image that include the RFs. 

The resulting image becomes 

))(( fGBI hatB = ,         (4.2) 

where Bhat and G is the bottom-hat transformation and Gaussian function respectively, and f is 

the original image. 

At this point of processing we have a list of contours which are shown for convenience 

and debugging purpose in the contour image IR, and the morphologically transformed image IB. 

Each contour in the list has its image location and rectangular dimensions determined. The 

rectangular section of image IB corresponding to this information is sought, and in this sub-image 

lines are detected. The rectangular region of IB may or may not have lines. The process of 

finding lines in IB is repeated for all the contours in the list. The algorithm for line detection is 

detailed in next section describing the Hough transform. 

Besides bottom-hat image transformation, we experimented with other image 

transformations in pursuit of better results for RF extraction: 
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• Edge image using Canny edge detector: In this case, we found the edges in the 

original microscopic images using Canny edge detection [14] with the observation 

that lines indicate abrupt changes in intensity and edges have similar 

characteristics. In the edge image we attempted to find lines in areas specified by 

the contours as described earlier. Using this approach it was possible to detect 

50% of RFs in one of the available image sequences.  

• Laplacian of an Image: The Laplacian operation in image processing is another 

well-studied and frequently applied edge detection mechanism. It provides the 

second-order derivative of the image. Edges are represented by the second-

derivative values in the image where the zero-crossings appear. We used this 

approach to identify lines in edge images in the specified areas and it provided 

results similar to those provided by the bottom-hat transformation. Hence 

additional analysis was not done using this approach. However, Laplacian edge 

detection is used in post-processing for reasons that will be addressed. 

We report results using the above two approaches for one of the available image 

sequences in the ‘Result’ chapter of this thesis.  

4.4 Hough transform 

The Hough transform [18] is a popular feature extraction technique used when simple 

shapes such as lines, circles or ellipses need to be detected in an image. It involves a voting 

procedure that uses a parametric description of the shape to detect instances of the shape in the 

image. The Hough transform is a vital part of the approach we propose for the detection of 

fibers. It was selected based on published studies that show its effectiveness in detecting simple 
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geometric shapes. In [19], Candamo et al. discuss the detection of thin lines in low quality 

videos. They propose an algorithm for use in low altitude aerial vehicles to detect obstacles such 

as cables, power lines and wires. Using the Hough transform for line detection to detect these 

obstacles, their work shows that the Hough transform is robust even when the contrast between 

object and background is low.  Iisaka et al. [20] detect V-shaped features from SAR images, 

which generally suffer from low resolution. Line detection using the Hough transform was the 

core element of their process to detect V-shaped features. As a possible area of improvement, 

they suggest that a localized Hough transform would improve the efficiency of detection. 

Likewise, in our implementation we do not detect lines in the entire image plane but at certain 

candidate areas of the image, using the Hough line transform [14] [15].  Ren et al. [21] used the 

Hough transform for lane detection on the iPhone due to the transform’s robustness to noise and 

occlusion, and also due to the method’s simplicity and computational efficiency. 

4.4.1 Hough line transform 

We use an OpenCV Hough transform algorithm to detect lines [15]. The algorithm uses a 

parametric description of a line in polar coordinates (r, θ) which is represented as: 

θθ sincos yxr += ,         (4.3) 

where r is the distance of the line from the origin and θ is the angle formed by the normal of the 

line to the horizontal.  

Local maxima in the parameter space (r, θ), called the Hough accumulator space, reflect 

good candidates for lines in the image [17]. The OpenCV Hough transform function call 

therefore simply returns the local maxima in the (r, θ) space. The function call allows a user to 
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specify a threshold value that must be reached in Hough accumulator space to report a line. This 

threshold λ has been set to 20 pixels in our implementation.  

As stated earlier, in each transformed image IB, we use the Hough transform to find lines 

at every geometric location corresponding to contours in IR. Lines with a length greater than a 

certain threshold λ are considered to be RFs when they are located within rectangles 

corresponding to bounding boxes for the regions in IR. Figure 4-3 shows the RFs detected by this 

method given the contours of IR in Figure 4-1.  

 

 

Figure 4-3 RF extraction 

 

We store the RF statistics of each frame, including the number of fibers in each frame 

and the length and location of each. For example, in Figure 4-3, ten fibers are detected and their 

length and location information is stored. This serves as raw fiber information. The information 

is processed further to drop fibers that are false positives (FPs). 
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4.4.2 Post-processing of the detected lines 

The above detection method provides a significant number of false positives in addition 

to correctly detected RFs. Therefore, we added a post-processing step to reduce the number of 

FPs. Figure 4-4 shows the strategy that reduces FPs.  

According to this strategy, if a line is found at a contour location of the transformed 

image of IB, the location is reprocessed to see if a line can be found in another transformation of 

the given image. The following steps are employed to achieve this purpose: 

• The Laplacian operator is applied to the contour location to get an edge image.  

• The edge image is thresholded using an iterative optimal thresholding technique, 

another variable thresholding technique described in Sonka et al. [14] 

• The Hough line algorithm is applied to the thresholded image to check for lines, 

and line information is stored for tracking if a line is found. 

Figure 4-5 shows an image frame in which eight RFs are detected in the bottom-hat 

transformed image. If the above strategy is employed, two of the RFs get dropped where a line 

could not be found. Figure 4-6 shows this effect. Thus, using this approach the number of false 

positives drop; however, this improvement comes at the cost of decreasing the detection of true 

RFs. Hence, there is a tradeoff between a higher RF detection with a higher number of false 

positives, and a lower RF detection with a lower number of false positives. If the false positive 

rate is uniform with the higher RF detection between different experiments (with different image 

sequences), then there is a possibility of providing useful information with a known degree of 

error. It will be shown in the Results chapter of this thesis that a careful selection of important 

threshold parameters such as line length plays a critical role in the RF detection rate. 
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Figure 4-4 Strategy to reduce FPs 

 

4.5 Tracking RFs 

Using the RF statistics collected for all individual frames of the EMT image sequence, 

we track the number of unique RFs in the sequence by linking fibers in close proximity in 

adjacent frames. Each linked retraction fiber is given a globally unique identification number 

(fiber ID or Fiber ID) across the frames in the sequence. 
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Figure 4-5 Eight RFs detected in bottom-hat image 

 

 

Figure 4-6 Six RFs detected as a result of post-processing step 
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Figure 4-7 illustrates RFs being tracked and linked across a three-frame sequence. At the 

end of all such processing for all frames, we obtain the total number of RFs present in the EMT 

image sequence, each of which has a unique fiber ID. For each retraction fiber, its lifetime is 

calculated by the number of frames in which it is present multiplied by the time interval between 

frames. 

 

 

Figure 4-7 Example of two RFs tracked in a three-frame sequence 

 

4.5.1 Tracking methodology 

In the tracking phase, we link fibers in close proximity in adjacent frames using an 

approach involving overlapping rectangles. The rectangle used is the bounding box of a fiber in a 

frame (Figure 4-3). If a particular rectangle overlaps another rectangle in an adjacent frame at the 

same location, we assume that those two rectangles are correlated and the fibers they bound are 

the same retraction fiber. We perform this operation starting from the first frame, considering all 

the fibers in this frame one by one, and then proceeding to the next frame. If a fiber in an 
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adjacent frame is correlated, it is marked as processed, and is not considered for tracking again 

when the fibers of this adjacent frame are processed for tracking. Tracking this way, if a fiber 

exists for two or more frames, we provide it a unique fiber ID. In other words, if no correlation is 

found for a certain fiber in a frame, then that fiber is considered a false positive and is not further 

considered in the analysis. 

If, for a particular rectangle, we do not find an overlapping rectangle in three consecutive 

frames, then we terminate the tracking of that particular fiber. This termination coincides with 

the end of the fiber’s lifetime.  

4.6 Detection and tracking example 

Figure 4-8 shows an excerpt from program output files that reflect detection and tracking 

of RFs as described above. The left portion of the figure indicates the number of RFs detected in 

individual image frames of an example 20-frame sequence, and the right portion of the figure 

indicates the tracking of RFs across these image frames. Detection information suggests that the 

image frame 181 includes five detected RFs, while image frame 182 has seven RFs, and so on. 

The columns X-coor and Y-coor indicate spatial coordinates of the retraction fiber (line). The 

Length indicates an approximate length of the fiber. Note that the length information is very 

sensitive to illumination, pre-processing operations, and the transformed image on which line 

detection is performed. Therefore, in this study the length information does not reflect accurate 

information.  

The tracking on the right side of the figure illustrates that fiber 1 exists from image frame 

181 through image frame 186. Similarly, fiber 2 extends from image frame 181 through 184. 

Retraction fiber lifetime is calculated by determining the difference between the first frame and 
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the last frame in which it is present multiplied by the time interval between frames. Therefore, if 

we assume that the time interval between frames is two minutes, then the lifetime of fiber 2 is 

calculated as ((184-181)+1) * 2 = 8 minutes. 

 

 

Figure 4-8 RFs detection and tracking 
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5 RESULTS 

This chapter discusses the performance of our system in the automatic identification and 

tracking of RFs. Our system is implemented under Microsoft Windows in C using image 

processing functions provided in the OpenCV library [22]. Three different EMT image 

sequences were provided by the Cancer Research Center in the Department of Physiology and 

Developmental Biology at Brigham Young University. Representative windows of frames in 

each of the three sequences were selected and processed with the proposed method. Each image 

sequence was reviewed by biologists, who manually identified the fibers and their lengths in 

each image. The statistics provided by the biologists are used as ground truth to evaluate our 

results.  

As noted earlier, the system effectiveness – maintaining a high RF detection rate – 

depends on multiple factors. These include the quality of the image sequence, performance of 

adaptive thresholding, the ρ-threshold used for connected component algorithm to eliminate 

noise, the edge image for Hough line detection, the λ-threshold value to be reached in the Hough 

accumulator plane to be reported as a line, and the performance of post-processing. To evaluate 

our system effectiveness, we define the terminology to be used as follows: 

For a given image sequence, let x be the number of unique RFs identified in the 

benchmark across the image sequence, and n be the number of unique RFs (fiber IDs) detected 

automatically by our method for the same. Each of these n identified fibers can be classified 

within one of the following categories: 
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• True Positives (TP): The number of actual, unique RFs that are correctly detected  

• False Positive (FP): The number of objects that are not RFs but incorrectly 

identified as such 

• Multiple Identities (MI): In this implementation, there are certain “true” RFs that 

do not have one to one correspondence between them and the detected fiber IDs. 

In other words, a single “true” fiber is identified as multiple distinct RFs over 

time. Such a true fiber is said to have multiple identities. Therefore, MI represents 

the total number of RFs occurring in multiple identities of TP while tracking. 

Furthermore, those RFs identified manually in the benchmark (part of the ground truth) 

which are not detected by the system are referred to as false negatives (FN). 

For example, consider an image sequence of 100 frames and let x be 20 and n be 30. The 

30 detected fibers are the sum of TP, FP and MI. Let us say that the system has correctly 

identified 15 RFs, and that 13 of the identified fibers are not actually RFs. Then TP is 15, FP is 

13, and we can conclude that MI is 2, meaning that two detected fibers correspond to one or 

more detected true positives. That is, there is a possibility that one true fiber of the example is 

detected by 3 RFs (one considered in TP and 2 in MI), but it is also possible that there are 2 

“true” fibers, each of which corresponds to 2 detected RFs (one considered in TP and one in MI) 

Since 5 true RFs are not detected in this example, FN is 5. 

The RF detection rate is calculated as the ratio of TP to x. It is also referred to as the 

statistical overall sensitivity Soverall of the automatically generated output. The RF detection rate 

for the above example is 15/20 = 75%.  

We also define the FP detection rate as follows. From the tracking results (see right side 

of Figure 4-8), we first determine the correctly detected fiber IDs of the sequence (TP and MI), 
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and sum up the detected fibers for each of these fiber IDs. False positives are then computed as 

the difference between this sum and the total detected fibers in the tracking results. The FP 

detection rate is the ratio of these false positives to the total detected fibers. To illustrate, let us 

assume that n, the total number of actual fibers (one instance per frame) over a given image 

sequence, is 1000, and that the sum of detected fibers matching the actual fibers is 600. Then the 

FP detection rate = (1000-600)/1000 = 40%. It is highly desirable to have a high RF detection 

rate and low FP detection rate. 

The following sections present the results of various experiments in which algorithms and 

parameter values are modified and the resulting performance are reported. The bottom-hat 

approach is employed for the results unless otherwise specified. 

5.1 Edge image for line detection 

We conducted experiments with three different approaches, bottom-hat, Laplacian, and 

Canny. The bottom-hat column in Table 5-1 indicates our main approach that is discussed in this 

thesis work. We slightly modified this approach by replacing the bottom-hat edge image with the 

Laplacian edge image and recorded the results. In the next variation of our approach, we 

replaced the bottom-hat image with a Canny edge image and noted the results. The number of 

RFs detected over the given image sequences varied using the three approaches, as shown in 

Table 5-1 for one of the image sequences. The image sequence considered for this experiment 

has 160 image frames, and x, the number of unique RFs identified, is 48.  

As can be seen from the table, the maximum number of RFs was detected using the 

bottom-hat approach. Further, it is important to note that the 30 RFs detected in the image 

sequence by the Laplacian are a subset of the 32 RFs detected by the bottom-hat approach. This 
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is true with the Canny approach as well, where the 27 RFs detected are a subset of the 32 RFs 

detected by bottom-hat. Therefore, all results that follow employ the bottom-hat approach, unless 

otherwise specified. If the FP detection rate does not vary significantly between different 

experiments (image sequences), then we can consider using the bottom-hat approach to estimate 

the number of RFs formed during EMT. However, if it varies significantly between sequences, 

then the system will fail to provide the necessary accuracy. The Canny approach provides the 

lowest FP detection rate, but it is accompanied by a failure to detect certain RFs. The RFs 

detected by Laplacian approach are the same as those detected by bottom-hat with a loss of just 

two RFs for the image sequence considered. 

 

Table 5-1 RFs detection and tracking using the 3 approaches 

 Bottom-hat Laplacian Canny 
n 137 138 74 
TP 32 30 27 
MI 4 3 4 
Soverall 66.7% 62.5% 56% 
FP detection rate 62.35% 65.3% 56.2% 

 

Table 5-1 also shows the FP detection rate. This rate is high for the following reasons: 

• Our approach detects RFs at places wherever it finds darker pixels that satisfy the 

λ-threshold. There are many locations in the cell colonies that are dark and thin 

that get detected and tracked, and hence difficult to delineate. 

• During the EMT process, as cells tend to separate from each other, the cell 

membranes stretch and become darker with respect to background. Sometimes the 

entire cell changes shape and gets elongated such that it resembles an RF by being 
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thin, straight and dark. These are not straight RFs, but there are enough pixels to 

satisfy the λ-threshold and get incorrectly detected as RFs. 

The results presented in Table 5-1 were obtained using the overall approach, including 

the steps of both identification and tracking. To know the detection accuracy of computer vision 

algorithms in the detection phase, we took a representative window of 11 frames from the image 

sequence and determined the precision. This gives an idea of the number of false positives 

detected in each of the frames and hence the detection accuracy. We discuss the precision of the 

representative window in the following paragraph. 

We define precision P for individual frame as the ratio of the sum of TP and MI to N, 

where N is the total number of RFs detected in an individual frame; note that TP and MI 

represent true RFs in a single frame in this context. Figure 5-1 shows the precision of our 

approach in individual frames within the selected 11-frame window from image sequence 1. It 

can be seen from the graph that the detected RFs are mostly true RFs. The average precision for 

this window is 61.1% which indicates that the false positives are about 39%. This graph 

illustrates RF detection at the frame level. Time constraints prevented the computation of results 

over a larger window from this sequence, or computing results over windows of the other two 

image sequences. 

The graph of Figure 5-1 reveals that FP detection is not as unsatisfactory as the FP 

detection rate shown by Table 5-1 if frames that are representative of RFs are considered. During 

the EMT process the RFs do not start to appear immediately. If the biologists could provide input 

as to when in the image sequence the RFs start forming in a significant way, then the initial 

frames of the sequence could receive special processing, which would in turn result in the 

elimination of a significant number of FPs in the overall image sequence. 
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Figure 5-1 Precision of RF detection in individual frames of an image sequence 

 

5.2 Effect of post processing 

An option of post processing is employed in this implementation as described in Section 

4.4.2. Table 5-2 summarizes the effect of the post processing strategy. Column 2 indicates the 

results of the bottom-hat approach that we discussed in Table 5-1 above, and column 3 shows the 

result of the approach if the optional strategy is employed. While we could reduce the FP 

detection rate across the image sequence using this optional step by 22.5%, it is accompanied by 

the undesirable effect of lowering the overall sensitivity of the system by 31.3%. Therefore, 

although the post-processing strategy has been discussed as part of this thesis work, it does not 

appear to be an advantage to employ it, particularly since biologists indicate that they would 

prefer a high overall sensitivity to a low FP detection rate. 
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Table 5-2 Effect of post processing strategy for RFs 

 Without post 
processing 

With post 
processing 

n 137 40 
TP 32 22 
Soverall 66.7% 45.8% 
FP detection rate 62.35% 48.3% 

 

5.3 λ selection 

The λ-threshold that is used to report a line by Hough transform is a critical parameter 

determining performance. As stated earlier, the value of this parameter was chosen to be 20, 

meaning that at least 20 pixels must satisfy the line equation given by equation 4.3 to be detected 

as a retraction fiber. Figure 5-2 and Figure 5-3 illustrate the effect of setting this threshold value 

to 20 and 15 respectively for an image frame transformed using the bottom-hat approach. While 

eight RFs are detected in Figure 5-2, 14 are detected for the same image frame in Figure 5-3. It 

can be seen that number of false positives increased from two in the first figure to eight in the 

later figure. Thus, while selecting a low value for λ increases the likelihood of detecting smaller 

fibers, it also increases the false positives to a significant level. 

For one of the image sequences, where the number of true fibers was 48, using a 

threshold of 15 resulted in the detection of 257 fiber IDs, where 186 were false positives and the 

remaining 71 fibers reflected the detection of 32 true fibers using multiple identities. High MI 

values are an additional undesired effect of using lower threshold values. Apart from a 

significant number of false positives, lower thresholds may also reduce the accuracy of tracking. 

This occurs because multiple small fibers may get detected in areas close to true fibers and the 

overlapping bounding boxes tend to contribute to increased tracking errors.  
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Figure 5-2 RFs detected with line threshold 20 

 

 

Figure 5-3 RFs detected with line threshold 15 
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Figure 5-4 RFs detected with line threshold 20 in Laplacian transformed image 

 

 

Figure 5-5 RFs detected with line threshold 15 in Laplacian threshold image 
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Figure 5-6 Effect of line threshold on precision 

 

The λ effect can also be seen in Figure 5-4 and Figure 5-5, which employ the Laplacian 

approach. In this example frame, using a low threshold is beneficial as the system is able to 

detect one extra true fiber using a low threshold. Another example of the λ effect is found in the 

precision graph of Figure 5-6. The results show that using a higher λ-threshold improves 

precision. 

5.4 System performance across different experiments 

So far, in the above sections all experiments used the same image sequence to illustrate 

various significant factors affecting system performance. We need to evaluate our approach 

using the other two available EMT image sequences. Table 5-3 shows the system performance 

for the three image sequences, obtained using identical algorithms and parameter values. 

Table 5-3 indicates that the performance is best for the second image sequence and worst 

for the third image sequence. In image sequence 3, contrast in the frames was not sufficient for 

the adaptive threshold to retain the image regions corresponding to ten RF areas. Figure 5-7 
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shows an example of how one RF was lost in adaptive thresholding and thus could not be 

detected by the system. The thresholded image (B) has no content corresponding to the fiber 

area. Almost ten RFs are lost due to two factors impacting either individually or in combination. 

These factors are poor illumination near an RF, and a short fiber length that failed to satisfy the 

threshold λ required to be considered an RF. 

 

Table 5-3 System performance for the three image sequences 

 Image 
Sequence 1 

Image 
Sequence 2 

Image 
Sequence 3 

Number of frames 
in the sequence 

160 140 120 

n 137 128 189 
x 48 40 44 
TP 32 29 24 
Soverall 66.7% 72.5% 54.5% 
FP detection rate 62.35% 63.8% 81.7% 

 

While the other two image sequences also suffered from poor illumination, low contrast, and 

the limited length for certain fibers, the results were better because there were a significant 

number of fibers whose life spans were long enough to allow the system to detect them. In image 

sequence 3, 35% of the 20 undetected fibers had life spans of 5 frames or less. Moreover, many 

RFs do not stretch enough to reach the threshold λ. This effect is less severe in the other two 

sequences. 

5.5 Tracking results 

Figure 5-8 shows examples of successful tracking using the bounding box approach in a 

window of six frames, in cropped spatial dimensions of image sequence 1 (upper) and image 

sequence 2 (lower) respectively. In the upper portion of the figure, two RFs are tracked. The 
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termination of one of the fibers at the far right is accompanied by the absence of its 

accompanying bounding box. Likewise, the lower cropped image frames show tracking of one 

RF using bounding boxes. The common feature in the accurate tracking of these RFs over all 

images in the figure is that the fibers formed are at a significant distance from one another, 

resulting in the correct assignment of a unique ID to each fiber. The third row of Table 5-4 

shows the number of true fibers in each image sequence that are tracked using a unique ID. 

 

 

Figure 5-7 Example of adaptive thresholding contributing to missing RFs 
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Figure 5-8 Examples of overlapping rectangles providing unique IDs for RFs 

 

Table 5-4 Number of RFs tracked with a unique/multiple ID 

 Image 
Sequence 1 

Image 
Sequence 2 

Image 
Sequence 3 

TP 32 29 24 
RFs with unique ID 28 20 20 
RFs with multiple ID 4 9 4 

 

The bounding box approach works reasonably well if not hampered by any of the 

following conditions: 

• A single RF is detected at a different spatial location. 

• RFs are formed in close proximity, thereby making it difficult to distinguish 

between them. 

• RFs and false positives are detected in close proximity. 
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Figure 5-9 shows two example cropped images that illustrate the first problem stated above. In 

the upper portion of the figure, for the single RF the system generates two fiber IDs. In such a 

case we say that the RF has been identified by multiple IDs. Similarly, in the lower portion of the 

figure, the right fiber has been identified by multiple IDs. Further, in this case if a line is 

identified for one fiber and the adjacent fiber’s bounding box overlaps, then the adjacent fiber 

information is not stored during the fiber identification stage. In the next frame, the adjacent 

fiber may be identified first and stored, and the former fiber may not be stored. This may result 

in ineffective tracking (not shown here), further contributing to the second condition mentioned 

above. 

 

 

Figure 5-9 Examples of overlapping rectangles providing multiple IDs for RFs 

 

The fourth row of Table 5-4 shows the number of RFs that used multiple IDs in each of 

the image sequences. This number is determined by the contour information available during the 
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RF detection stage. If the RF considered does not have uniform grayscale value then there is 

possibility of the single true fiber get broken into different contours. A line may be detected in 

each of the broken contours, thereby contributing to multiple IDs for a single RF. Broken 

contours may also result if the contrast available in the spatial neighborhood of a fiber is very 

low. The results in the table show that the undesirable phenomenon of having multiple IDs is 

more severe in image sequence 2 for the reasons stated. 

5.6 RFs lifetime information 

Table 5-5 shows the lifetime information of RFs formed during EMT. To determine how 

much the system lifetime information of RFs deviates from true lifetime information, we 

summed up the lifetimes of all the RFs detected by our system and compared it with the sum of 

the lifetimes of the RFs in the ground truth data. For example, our system detects 32 RFs in 

image sequence 1. Therefore, we summed up the lifetimes of these 32 RFs from the ground truth 

and compared it with the sum of the lifetimes of the 32 RFs detected by our system. We then 

calculated the average lifetime of the (true) benchmark RFs and system detected RFs by taking 

the respective sum and dividing it by the number of system detected RFs. 

 

Table 5-5 Lifetime information statistics of RFs 

 Total lifetime 
of 
benchmark 
RFs 

Average 
lifetime of 
benchmark 
RFs 

Total lifetime 
of system 
detected 
RFs 

Average 
lifetime of 
detected 
RFs  

Image Sequence 1 945 29.5 562 17.6 
Image Sequence 2 834 28.8 464 16 
Image Sequence 3 358 15 301 12.5 
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As seen from Table 5-5 the average lifetime of the RFs is shorter than the benchmark 

RFs. The reason for this reduced lifetime is because most of the RFs could not be tracked until 

the end of their lifetime. Here again, the dominating factor hampering lifetime information is the 

contrast in the spatial neighborhood of the RF. Figure 5-10 illustrates this effect. The fiber on the 

left side in the first frame gets tracked to a point where there is enough contrast for the system to 

pick up the line information for the fiber. However, from the third frame onwards, the system 

could not track the fiber and this led to an incorrect measurement of its lifetime. Another 

example of reduced contrast can be seen in the first frame of the figure. Ideally, the first frame 

should have shown two RFs. There exists another RF on the right hand side of the first frame 

that actually disappears in the next frame. However, the system terminated its tracking before it 

actually disappeared. 

 

 

Figure 5-10 Example tracking of reduced lifetime of RFs 
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6 CONCLUSION 

We have presented a method which shows potential for automatic identification of RFs 

during EMT in time-lapse microscopic image sequences. Our system was able to detect 72.5% of 

RFs for one of the three image sequences available. In the worst case, RF detection was 54.5% 

for another image sequence. In addition to identifying RFs, we also provided results for average 

lifetime information of the RFs in each of the test image sequences and discussed the reasons for 

the reduced accuracy lifetime statistics. 

6.1 Identification of RFs 

In this thesis work, we explored three alternative approaches for identification of RFs: 

bottom-hat transformation, Laplacian and Canny edge detection. We included results for each of 

these approaches for one of the image sequences (see Table 5-1). Further, we experimented with 

a post processing strategy for the candidate RF areas to reduce the number of false positives. The 

post processing results reveal that reducing false positive also reduces the number of true RFs 

detected (see Table 5-2). Hence, we conclude that achieving a high RF detection rate while 

maintaining a low FP detection rate is a difficult problem. 

6.2 Tracking of RFs 

For tracking, correlation between RFs in adjacent frames was achieved using overlapping 

rectangles that bounded the RFs. This strategy was computationally inexpensive and relatively 



54 

straightforward to implement. Problems of RF identity and ambiguity occur only when more 

than one RF moves to the same position or in close proximity in the adjacent frame. However, 

the effect is negligible in all the three image sequences that we studied. 

6.3 Future work 

Our approach utilizes digital image processing algorithms which are well studied and 

widely implemented. Therefore, taking this thesis as background work, further effort could be 

expended to find variations in the algorithm or algorithm parameters to see if the system 

performance can be improved. For example, we used the Hough transform implementation of 

OpenCV. Computer vision literature describes many variations of this algorithm for the voting 

procedure for detecting desired shapes. These variations could be explored to determine if the 

identification accuracy could be improved. Another example is the adaptive thresholding 

technique that we employed in our approach to address the challenge of variable illumination.  It 

provided good segmentation results, but a significant number of fibers are missed because 

relevant information is lost in the adaptive thresholding step due to low contrast (see Figure 6-1). 

Hence, the thresholding technique could be explored further or perhaps replaced with more 

advanced techniques that could capture the fiber areas which are not captured by the current 

adaptive thresholding mechanism. Image contrast enhancement techniques such as histogram 

equalization could also be studied to find out if the low contrast near the retraction fiber can be 

enhanced. 

Currently, during the identification phase, our approach assumes that in a candidate area 

there can be just one fiber, and we reserve this area for the fiber using a rectangle to exclude the 

rectangular area for further fiber identification. In other words, if two RFs are in the same 
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rectangular region, only one of these RFs is recorded during identification (depending on which 

contour is processed first). However, there can be another fiber in the same rectangular region. 

Hence, better fiber reserving technique can be utilized. The identification stage can be modified 

to allow multiple fibers under a threshold of two or three lines that can be considered in a 

rectangular region. And subsequently, the tracking approach needs to consider multiple fibers 

that may appear within the same region. This may be done by considering additional statistics 

such as the slope of the line, or gray-level statistics of line boundaries that may help distinguish 

multiple lines in the same rectangular region. 

One of the steps that can be taken to reduce false positives in RF detection stage is 

measuring the RF width so that only very thin lines are accepted as RFs. In the tracking stage, 

the problem of multiple identities can be remedied by using information from consecutive frames 

to connect the broken segments or to enhance the contrast locally. 

 

 

Figure 6-1 RFs lost at adaptive thresholding stage 
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