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ABSTRACT

Using Operator Teams for Supervisory Control

Jonathan Myrup Whetten

Department of Computer Science

Master of Science

Robots and other automated systems have potential use in many different fields. As the
scope of robot applications that robots are used for increases, there is a growing desire to have
human operators manage multiple robots. Typical methods of enabling operators to multi-task in
this way involve some combination of user interfaces that support human cognition and advanced
robot autonomy. Our research explores a complementary method of managing multiple robots by
utilizing operator teams. The evidence suggests that for appropriate task scenarios, two cooperating
operators can be more than twice as effective as one operator working alone.
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Chapter 1

Introduction

Computers are revolutionizing the way we deal with information, and mobile robots hold

the promise of extending this change to our physical world. In this thesis we discuss current

approaches to human-robot interaction (HRI) that allow operators to monitor and control multiple

remote robots. We then explore a method of improving operator performance on a search and

navigation task through the use of operator teams. The benefits of operator teams are applicable

to the general HRI problem of increasing the number of robots that human operators are able to

simultaneously monitor and control.

1.1 Human-in-the-loop with a large number of remote robots

Due to robot autonomy, human operators are able to change roles from robot micro-management to

more of a supervisory role (for a discussion of supervisory control, see [73]). This switch enables

operators to control multiple robots, since their attention is not consumed by managing just one

robot. A significant amount of research into HRI has been to continue to improve supervisory

control in order to help one operator control as many remote robots as possible.

Automating previously manual tasks can change the task from active operation and control

to passive monitoring, which can cause problems. Operators may experience skill degradation

or unevenly distributed workload [3]. Operators have a common problem of calibrating a proper

amount of trust in the automation; too much trust in the automation causes preventable errors, while

too little trust results in reduced efficiency and possible operator errors [50]. Automated systems
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can also “camouflage” a dynamically evolving problem by compensating for it silently until it is

too big of a problem for either the automation or the operator to recover from [3]. Understanding

the capabilities and limitations of various automated modes is a significant issue for operators, as

well as knowing what mode the autonomy is in [71].

Chen et al. [14] point out that a manual mode in which robots take no initiative of their

own and follow only the commands they are given will be a requirement for remote robots in the

foreseeable future. For all but the most mundane tasks, even so-called fully autonomous robot

will require a human-in-the-loop setup, even if only to provide high-level goals and decisions or to

reprogram and maintain. Because there is a human “in the loop,” human shortcomings and frailties

must be addressed to ensure effective human-robot systems. The number of tasks that operators

can perform simultaneously is restricted by cognitive limitations. Finding ways to assist human

cognition in managing robotic systems is an important area of research in the HRI field.

Prior work has focused on interface design and collaboration methods between operators

and robots to improve supervisory control [60, 61, 7, 65, 35, 14]. Instead, we explore a method of

reducing cognitive workload that is overlooked in existing literature: operator teams.

1.2 Perspectives on Operator Teams in Other Problem Domains

Working in teams has significant benefits to many different areas. Throughout human history

whenever a problem is beyond the ability of one person, humans tend to find a way to approach the

problem as a group. We organize ourselves into groups and divide up responsibilities to manage the

complexity of the world around us. Business organizations use teams to brainstorm and evaluate

decisions. Software project managers use teams to break up projects into small enough pieces for

individuals to handle.

Using teams to operate remote robots in real-time is slightly different from these situations

because it imposes strict temporal constraints on decision-making and planning. A better example

of teams under temporal constraints and high workload would be airplane crews and air traffic

control [79]. Air traffic controllers commonly work in teams with one controller dealing with
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communications and radar monitoring tasks, and the other dealing with flight data. Air traffic

controllers can also be viewed as supervising many highly automated robots, and air crews are

called on to jointly monitor the large number of automated systems that now exist on commercial

airplanes.

Teamwork has been recognized as necessary in airplane cockpits to the extent that formal

training procedures have been established for airplane crew interpersonal communication [47].

The task of flying a commercial airplane is too much for one person in an emergency situation,

and cannot be broken down into tasks that can be performed independently. Given the high cost of

error for flying a passenger plane, having at least two people who can fly the plane is also the norm

for the sake of redundancy (the recent death of the captain of a Continental Airlines trans-Atlantic

flight is a good example of the need for this redundancy [4]).

In contrast, robots are considered expendable in comparison to human life, and so some

error may be tolerable from operators, reducing the need for redundancy. The task of controlling

multiple robots can usually be broken down into subtasks (controlling an individual robot, for

example) that can be performed independently of one each other. Because of these differences, it

is not readily apparent that remote robot operation can benefit from teams in the same manner that

piloting commercial aircraft does. This thesis shows that operators working in team can be more

effective than operators working alone.

1.3 Thesis Statement

Given the proper task domain, interface support, and robot autonomy, a team of two operators can

be more than twice as effective as a single operator when controlling remote robots in a navigation

and exploration task. In the absence of these conditions, two operators can be less than twice as

effective as a single operator.
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1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 discusses relevant existing research relating to teams,

cognitive processes, and robot control and management. Chapter 3 presents the experiment that

was performed to validate our hypothesis. Chapter 4 analyzes the experiment and identifies the

improvements gained by operators who worked in teams compared to those who worked alone.

Chapter 5 summarizes findings and examines questions raised by this work and possible future

applications of it.
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Chapter 2

Related Literature

In this chapter we review relevant research in areas relating to robot operator performance

and team dynamics. These topics serve as a backdrop for how operators working in teams are able

to be more effective than operators working alone, and what can be done to exploit the advantages

operator teams provide.

2.1 Cognitive Processes

The effectiveness of remote robots is largely dependent on the mental capabilities of human op-

erators. In order to understand how to improve human operation of remote robots, we must first

understand the limitations imposed by human cognition.

2.1.1 Workload

Intuitively, we know that humans have limitations on the amount of information we are able to

process and the number of tasks we can perform simultaneously. These limitations are generally

framed formally using the related concepts of mental workload, working memory, and attention

resources.

In general, remote robot operation suffers from high workload, though as supervisory con-

trol becomes more widespread, low workload may pose just as significant a problem [3]. In con-

trolling multiple robots, workload is a significant concern because the wrong level of workload

will reduce the benefit of having more robots available.

5



There is little agreement on a formal definition of workload, but it can be intuitively un-

derstood as the mental work someone puts into a given task. For example, solving complex math

equations requires more mental energy, and therefore causes higher workload, than holding a ca-

sual conversation.

The effects of workload on human performance vary greatly between tasks and people de-

pending on the task at hand, the skill and experience of the individual, and external factors. In

addition, humans have shown the ability to dynamically increase workload capacity by focusing

their efforts when faced with increased task load [48, 42]. Because of these factors, efforts to em-

pirically discover the limits of mental workload (the so-called workload “redline”) have generally

come up empty-handed, though for specific domains there has been some success (for example,

see [15]).

Figure 2.1: The Yerkes-Dodson curve.

Human performance declines when attention or arousal is too low, as in cases of exces-

sive boredom, as well as when arousal is too high. These ideas are based on the Yerkes-Dodson

curve (see Figure 2.1), so named for work done by Robert Yerkes and John Dodson in which they

recorded the learning rate of mice in relation to varying amounts of stimuli. Subsequent studies

have consistently shown similar relationships. Hebb [46] found that the Yerkes-Dodson curve re-

lates to arousal and task performance, Cummings and Guerlain [19] found a similar link between
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the frequency of task events and performance, and Cummings and Nehme [20] demonstrated that

the relationship exists between performance and supervisory control of multiple agents.

People generally use one of four strategies to adapt to high workload [78]. 1) People

allow task performance to degrade. 2) People perform tasks more efficiently, either bringing to

bear increased focus and attention, or changing from finding optimal solutions to satisfactory ones

using heuristics. 3) People may shed tasks altogether, eliminating least important tasks first. 4)

People shed tasks in a non-optimal fashion, eliminating tasks that should be performed (commonly

a result of a lack of expertise).

Another strategy to deal with high workload is to have a team perform a task instead of

individuals. In certain situations, people may extend themselves too far, choosing to allow their

task performance to degrade rather than shedding tasks. In the case of operating multiple robots,

this situation can be alleviated by participation in a team, where task demands can be shared among

team members.

2.1.2 Situation Awareness

In order to operate remote robots effectively, the operator needs to know about the environment

around the robot. People filter through an enormous amount of information based on what they per-

ceive from their own environment, and use this information to plan, make decisions, and come up

with contingencies. The planning and decision-making requirements for operating a remote robot

are at least as complex as they are if the operator was physically performing the task themselves

instead of the robot, but the process of gaining the information necessary is severely constrained.

For example, Woods et al. liken operating a remote robot to driving while looking through a ‘soda

straw’ because of the limited field of view available [81].

The result of perceiving and filtering information from the world around us (or in the case

of remote robot operations, the world around the robot) is called situation awareness. Situation

awareness is a concept that seems to defy a simple definition. Though the concept of having a

knowledge of the environment you are working in has an immediate, intuitive meaning [70], a
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clear and concise definition has yet to gain widespread acceptance. Probably the most popular

definition is the one given by Micah Endsley: “The perception of the elements in the environment

within a volume of time and space, the comprehension of their meaning, and the projection of their

status in the near future” [27].

While this is an effective definition for most purposes, it leaves out the cyclical nature of

situation awareness. Dominguez [23] combines the definitions from Endsley and from Carroll

[10] to produce the following definition of situation awareness, which more strongly emphasizes

its process aspect: “Continuous extraction of environmental information, integration of this infor-

mation with previous knowledge to form a coherent mental picture, and the use of that picture in

directing further perception and anticipating future events.”

The difference in viewpoints seems to stem from describing situation awareness as a pro-

cess as opposed to a state. Endsley states that “it is important to distinguish the term situation

awareness, as a state of knowledge, from the processes used to achieve that state. These processes,

which may vary widely among individuals and contexts, will be referred to as situation assessment

or the process of achieving, acquiring, or maintaining SA” [26]. Flach [34] cautions that modeling

situation awareness as an object similar to working memory can lead to circular reasoning where

situation awareness is the cause of itself, which is not helpful in any practical way.

According to Endsley, situation awareness has three levels: 1) perception of the environ-

ment, 2) comprehension of the information available to “derive operationally relevant meaning”

from available information, and 3) projection of the current state of the environment into the future

in order to anticipate future events [29]. She further models situation awareness as having cogni-

tive processes, effects that can interfere or support those cognitive processes, and a memory model

where our perception of the environment is stored and accessed [29]. The relevant cognitive pro-

cesses include perception, attention and pattern matching with previous similar situations, each of

which has been studied extensively in their own right. Factors that can interfere with (or promote)

these processes include stress, workload, interfaces, task complexity, and automation. In Endsley’s
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model, our interpretation of the environment is then colored by our goals, by our expectations, and

by the mental models we have built up in past situations.

All of these factors contribute to the final product, which has been described variously as a

“coherent internal world view” [40] and “a holistic picture of the environment” [25]. This “world

view” is then used in decision making and planning, allowing a person to take their surroundings

into account when taking action.

Situation assessment, or the process of gaining situation awareness, can be very time con-

suming, particularly in challenging environments. While individual cognitive processes are often

measured in the sub-second range (for example, see [53]), complete situation assessment can take

much, much longer. In a simulated search and rescue task using a remotely operated robot, Burke

et al. [9] found that 54% of operator statements (which included statements to team members) were

related to gaining or maintaining situation awareness and that the robot was stationary for nearly

50% of the time (compared to actively searching, presumably because operators were consumed

with establishing situation awareness). Similarly, Yanco and Drury [83] found that operators spent

30% of their time solely in activities related to gaining situation awareness in an urban search and

rescue scenario.

Predictably, it seems that greater situation awareness can lead to better performance, es-

pecially if the process of situation assessment is sped up. Chadwick et al. [13] found that robot

operators completed a navigation task significantly faster when presented with a third person view

of the robot and its environment (which allows for more of the scene surrounding the robot to be

viewed and increases situation awareness) when compared to using a first person view. Murphy

[57] goes even further and claims that better mobility and navigation in mobile robots will re-

duce the time spent on a mission by no more than 25%, unless they are also accompanied by an

improvement in situation awareness support.

When controlling multiple robots, the impact of situation assessment increases. Since situ-

ation awareness must be maintained for multiple robots in many different locations, operators are

unable to bring their full mental capabilities to bear on a single robot without completely ignoring
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the rest. An overly simplistic analogy would be trying to use multiple programs on a computer

which is only capable of holding one of the programs at a time in memory. For modern computers,

this state is called thrashing because more time is spent loading information into memory than is

spent doing actual work. Similarly, it is easy to picture an operator spending far more time gaining

situation awareness for multiple robots than they spend giving the robots commands (in fact, this

already happens with single robots).

Operator teams can lower the amount of time needed for situation assessment by allowing

individuals to maintain more information about the state of the robots they are controlling within

working memory. The more state information that is retained from previous interaction with a

robot, the quicker the process of situation assessment.

2.2 Fan-out

Human involvement in robot operation will exist for the forseeable future, but advances in au-

tomation will allow operators to monitor many robots at once. The number of robots that can be

controlled is modeled using fan-out [38]. Fan-out is a metric that represents the number of simple

homogeneous robots a single operator can manage. It is calculated based on how long the au-

tomation can go without intervention (neglect time) and how long it takes an operator to input new

commands or correct problems with the system (interaction time). The formula for fan-out is:

Fan Out = Neglect Time / Interaction Time + 1

While it is fairly simplistic, this model has been empirically validated by Olsen et al. through a

series of user studies [63]. This model of fan-out has significant limitations, including validity for

only simple homogeneous robots and tasks. Further work by Cummings et al. looks at extending

the original fan-out equation to include wait times and performance metrics to try to model the

“optimal” level fan-out for a given set of task constraints [21]. Goodrich et al. look at including

switching costs and extending the model to include heterogeneous robot teams [39]. Based on
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the original formulation, we can seek to increase fan-out by either increasing neglect time or by

decreasing interaction time.

2.2.1 Neglect Time

Neglect time is a measure of how long a robot can be effective on its own without human inter-

vention [38]. It roughly corresponds to the level of autonomy used by a robot, and so increasing

neglect time can usually be achieved by improving the intelligence and capabilities of autonomy.

Many areas of research are being pursued that can increase neglect time, such as swarm

robotics, supervisory control, mixed initiative robots, adaptive autonomy, adaptable autonomy, and

more. Some of these approaches can be used in conjunction with one another in robotic systems,

but none of them solves the problem entirely. Generally speaking, good autonomy is difficult to

design, domain-specific, and often flawed in non-trivial ways.

The interaction between human operators and autonomy can be complex and unpredictable.

Endsley [28] states that automation affects situation awareness in at least three different ways: 1)

operator complacency levels due to a monitoring role, 2) changing an active task to a passive one,

and 3) changes in the feedback given to the human operator. Wiener mentions that automation can

often change the type or timing of errors instead of eliminating them, and that it can also cause an

uneven distribution of workload [80].

Without significant neglect time, control of multiple robots is counterproductive because

only robots which are actively receiving attention will be effective. Because of this, increasing

neglect time through automation is an important goal, but only part of the solution.

2.2.2 Interaction Time

The other way to increase fan-out is by decreasing interaction time. Interaction time varies greatly

between operators and is even more difficult to measure than neglect time (in fact, Olsen et. al.

found it easier to measure fan-out and neglect time and then calculate interaction time [63]). Many

factors contribute to interaction time, including time spent switching between tasks, time to gain
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situation awareness, time to plan, and time to communicate that plan to the robot [38]. Interaction

time can be broken into two basic categories: the system time required to give commands through

the interface and actively retrieve the information that is needed, and the cognitive time required

to mentally process information and make decisions.

Reducing system time is a fairly well understood, if still difficult, task. Factors that affect

system time are primarily executing commands and navigating through menus. Many well-known

principles from user interface design apply here including Fitt’s Law [33], the Steering Law [1],

and others. System time can be minimized through good interface design.

The cognitive aspect of interaction time is much more difficult to quantify and improve, but

there is evidence to suggest that an enormous amount of cognitive processing goes on in the process

of gaining situation awareness [9, 84], and that the process can be assisted by proper interface

design with an eye to improving situation awareness [13, 61]. Other important considerations

include task switching [53, 12] and workload [20, 78].

Interaction time is most likely to be the bottleneck in robotic systems as autonomy con-

tinues to improve. Indeed, Murphy [57] says that the time needed to gain situation awareness is

already a significant hindrance for search and rescue.

Operator teams allow individuals to focus on managing subsets of robots that are somehow

related to each other, either spatially or logically. This relationship can potentially reduce the cost

of interaction time by reducing switching time and speeding the process of situation assessment.

However, working with a teammate requires coordination, which effectively introduces a new

task which requires additional effort and attention from team members. Our work explores the

questions of (a) whether the benefits of operating robots as a team exist, and (b) if these benefits

outweigh the added effort required to coordinate within a team.
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2.3 Teams

In order to create effective operator teams to control multiple robots, some fundamental knowl-

edge is required about how teams operate, how they are organized, and what factors affect their

performance.

Teams and teamwork have been studied extensively for several decades because of the

impressive results that can be obtained by utilizing them effectively. Due to the sheer number

of researchers looking at the problem over the years and the inherent complexity of trying to

understand how human beings work and think, there are many different models of how teams

initially form, how they operate, and what their benefits are. We explore a few of those issues here.

Of particular interest are the types of teams that exist and the types of problems for which they can

effectively be utilized.

2.3.1 Unitary and Divisible Tasks

In his seminal work, Steiner [75] explores team process and limiting factors on productivity. He

separates teams into a taxonomy based on the type of problem they are attempting to solve, rather

than team composition or organization. He primarily focuses on small “task groups” that exist to

achieve a specific goal within an allotted amount of time.

Steiner broadly categorizes teams based on unitary tasks or divisible tasks. Unitary tasks

are those that cannot be profitably divided into smaller subtasks. They will not receive measurable

benefit, and may in fact be hampered, by having additional people join in completing the task. Uni-

tary tasks are mainly classified as disjunctive, conjunctive, or additive [75]. Disjunctive tasks are

ones in which the performance of the group is limited to the ability of the most capable individual

for that task within the group. Performance on conjunctive tasks is limited to the ability of the least

capable member for that task. Additive tasks provide group performance that is a cumulative total

of the performance of each individual member. Unitary tasks in general are not necessarily well

suited for groups, and provide diminishing returns compared to individual effort.
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Divisible tasks are those in which a division of labor can have clear benefits, and therefore

be profitably performed by a groups instead of individuals. A common example of this is assembly

lines, where different portions of the work are done at separate stations and workers become spe-

cialists. Though there is a potential for significant payoffs for doing tasks as a group, there are also

the added nuances of group interaction and other factors which can easily counteract any potential

benefits. Steiner states that most real-world tasks are divisible, and classifies them based on how

tasks are divided into subtasks and how people are assigned to these subtasks.

One of the shortcomings of Steiner’s work is that he focuses mostly on teams dedicated to

doing manufacturing and other types of physical labor. There is mention of certain group mental

tasks, such as brainstorming or solving a logic puzzle together, but the research in groups prior to

1972 had been done primarily in military or industrial settings. Since remotely operating a robot

is primarily a mental task, operator teams do not necessarily fit well into Steiner’s model.

In contrast, Fisher and Fisher [32] discuss teams from a purely knowledge-work perspec-

tive. They provide four basic categories for knowledge-work teams: natural work teams which

form based on the requirements of the job, cross-functional teams which have purposes that cross

multiple natural work teams, small project teams that exist for a specific task and then are dis-

banded, and special purpose teams which are something of a combination of cross-functional teams

and small project teams.

Fisher and Fisher describe the key differences between physical work and knowledge work

(replicated in table 2.1). Looking at the differences, supervisory control falls largely into the

knowledge work category, with the exception that the work outcome is a tangible product; the

physical labor is done by the robot.

Physical Work Knowledge Work
Core task Doing Thinking
Critical skills Physical Mental
Work process Linear Nonlinear
Knowledge used Applied Created
Work outcome Product Information

Table 2.1: Adapted from [32].
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2.3.2 Human-robot Teams

In spite of apparently fitting into the category of knowledge work, operating remote robots seems

in many ways to be more similar to production work roles. In both remote robot operation and

production work, there are specific goals to be accomplished and a relatively small time-frame in

which they can be accomplished, and there is strong temporal pressure since activities are occurring

without regard to the operator.

Within the HRI field there has been significant research into different types of human-robot

team configurations and their benefits. A fairly comprehensive list of possible human-robot team

setups was compiled by Yanco and Drury [82] and is replicated in Figure 2.2. The groupings

in Figure 2.2 imply teams where decisions are explicitly coordinated among all team members.

Human teams in this sense would agree upon a command or task to send to the robot(s) and

robot teams would receive commands as a group and autonomously decompose the command into

specific tasks for individual robots. The arrows between items in Figure 2.2 indicate a relationship

in which some form of communication and/or coordination takes place.

Figure 2.2(A) specifies the classic one-to-one relationship between human and robot, which

is still the most common configuration. The automation support for many common tasks like

explosive ordinance disposal is not enough to allow operators to control two robots at the same

time. In fact, often the task is complex enough or the risks and costs of failure high enough

that human teams control one robot by agreeing together on commands before they are sent to

the robot(s) as in 2.2(B). This is what is done currently with Mars rovers, and two-person teams

controlling one robot seem to be far more effective than a single operator in search and rescue tasks

[58, 9]. Multiple individuals controlling one robot (as in 2.2(C)) was demonstrated by Goldberg

et al. by allowing distributed, collaborative control over a robot arm by anonymous individuals

connected through the Internet [37].

Robot teams shown in Figures 2.2.(D)-(F) imply coordination on the part of the robots

to execute commands given to the team as a whole. This is used in the field of swarm robotics
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Figure 2.2: Shows various configurations for human-robot teams, with the boxes indicating coor-
dinating teams. Adapted from Yanco and Drury [82], with the notable exception of Fig. I., which
they intentionally excluded.

[5, 11, 51], but is also implemented at the interface level through the use of “playbook” commands

that result in more specific behaviors being implemented in different robots [65].

The holy grail of supervisory control is to form human-robot teams modeled after Figure

2.2(G), where one operator controls a large number of remote robot. This has not yet happened

primarily because sufficient levels of autonomy have not been developed to allow swarms to be

effective with high-level commands, and sufficient support for reducing interaction time has not

been developed to allow many different robots to be controlled by one person working alone.

Figure 2.2(I) is the model used for our experiment. There is no enforced coordination

between robots or operators and they task the robots separately. The dashed lines represent the fact
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that communication occurs between operators, unlike the Internet connected robot in Goldberg et

al. [37]. In a real system there would be communication and coordination between robots as well,

even if they are individually tasked. This model was disregarded in Yanco and Drury’s taxonomy

as being unworkable. Nickerson and Skiena [59] describe a model similar to this that they liken to

“call centers,” suggesting that this could be a way that the robot-to-operator ratio can be increased.

Lewis et al. took this suggestion further and simulated a three-tiered system in which a commander

gives high-level goals to a group of operators (similar to the call-center approach) who then send

commands to robots under their command [52]. Their experiment only simulates human decision-

making, but their finding indicate that this is a workable implementation.

2.3.3 Benefits and Limitations of Multiple Robots

Dudek et al. [24] discuss models of robot teams, and the types of tasks robot teams might perform.

They claim that there are tasks that use multiple agents, similar to the requirement of two people

turning two keys at the same time some distance apart in order to launch a missile, and that there

are other tasks that use a single agent, meaning that one robot performing one task in one location

would not likely benefit from having additional robots to assist. In between these two extremes are

tasks which might benefit from using multiple robots.

Dudek et al. state that the draw for multiple robots is two-fold. First, having a collection of

robots working on the same task can improve reliability of the robotic system as a whole. If one

robot is incapacitated, others can fill in for it. Second, the task may be performed more efficiently

if there are multiple robots present. Dudek at al. state that at best using multiple homogeneous

robots will improve efficiency in a linear fashion based on the number of robots, but that in practice

this theoretical limit will not be reached due to efficiency lost by the need to coordinate effort.

While it may be true that linear growth in efficiency with increasing group membership is

the most we can expect from robot teams (though this claim may be suspect), the same argument

cannot be made for human teams. In their book, Fisher and Fisher [32] share many anecdotes of

how teams improved the performance of various companies and organizations, and more applicable
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to our discussion, Murphy and Burke [58] showed a ninefold increase in effectiveness over one

operator by using two operators to control one robot.

2.3.4 Productivity and Team Synergy

In order to exploit the benefits of working in teams in order to achieve greater than linear growth in

performance, we first need to understand what performance gains are available to teams to begin

with.

In 1972, Steiner [75] provided a formula to calculate the productivity of groups:

Actual Productivity = Potential Productivity - Losses Due to Faulty Process

where potential productivity is calculated from a combination of task demands and resources avail-

able. This formula represented significant progress for the study of teams and team process at the

time. Steiner’s model focuses on a maximum (potential) productivity which he says can theoreti-

cally be calculated before a group actually starts work. Any mismatch between actual performance

and this maximum is caused by “losses due to faulty process,” or the costs of working in a group.

Many costs have been associated with groups over the years, but several stand out as unique

and common (summarized in Table 2.2). Production blocking occurs when the group organization

requires that some groups members stop contributing. For example, when one person is speaking

to the group, the rest of the group needs to listen and cannot (productively) talk simultaneously

[62]. Group members often suffer from evaluation apprehension in which contributions are not

made for fear of a negative reaction from other group members [69]. Social loafing or social im-

pairment is a significant phenomenon where members of a group give as much as 50% less effort

than they would working as individuals [66]. The effort seems to decrease as individual account-

ability decreases and as group size increases [49]. Cognitive interference occurs when the ideas

or contributions from other group members interrupt cognitive processes for individuals, lessening

their contribution [67]. Communication speed affects coordination time and can increase the effort

needed to communicate. This increased communication effort can hamper team coordination and

adversely impact performance [54].
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Production Blocking Organization overhead, or the need to “take turns” in a group.
Evaluation Apprehension Individuals fear judgment from other group members and so

withhold their own contribution, or are overly conservative.
Social Loafing Also called the “free rider problem” [77]. People have a ten-

dency to “hide” in groups and put forth less effort.
Cognitive Interference The actions or statements of others cause an individual to

forget or be less effective with their own contribution.
Communication Speed How long does it take to coordinate? This is affected by the

communication modality, whether it be speech or typing or
something else entirely.

Table 2.2: Potential causes of loss in efficiency in groups.

While the insight into process loss is significant, the difficulty with Steiner’s formulation is

that he does not provide a way to model the gains from working in a group. This is complicated

by the fact that process gains have been notoriously hard to reproduce and measure in laboratory

settings, and so proof of their existence is sometimes no more than an intuitive understanding of

how groups operate. At least two specific group process gains have been noted in the literature:

the social facilitation effect and the assembly bonus effect.

The social facilitation effect is based on the observation that performing a task in the pres-

ence of others can cause performance to significantly increase [86]. This is not a universal effect,

however, and it seems to directly contradict social loafing. It appears that the deciding factors of

whether individual performance will increase or decrease within a group include group size, con-

sequences of performance (greater reward corresponds with greater effort), task complexity, and

individual performance identifiability [43, 66].

The assembly bonus effect occurs when group interaction combines members’ knowledge

in such a way that higher quality decisions are made by the group than could be done by the group’s

best member [16]. Though this has largely been accepted as conventional wisdom, the effect has

been disputed many times due to the difficulty in satisfactorily recreating it in a laboratory setting

(see for example Michaelson et al. [55], whose work was challenged by Tindale and Larson [76],

whose assertions were in turn challenged by Michaelson et al. [56]). It seems that the exact nature

of the assembly bonus effect is still an open question [68].
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Such positive gains from using groups generally fall under the umbrella term of “synergy.”

Synergy can be loosely defined as the benefits received through cooperation that exceed the con-

tributions of individuals. Though synergy has been equated with the assembly bonus effect [22],

positive group effects like assembly bonus and social facilitation are a subset of synergistic gains

available to groups. It is a mistake to use the terms interchangeably.

In the rush to realize the benefits of synergy, some organizations have misused teams [41],

causing synergy to be disparaged as a “buzz word” and mocked in popular media such as Scott

Adams’ comic strip Dilbert [2]. Such sentiments notwithstanding, as Corning [17] states:

“Synergy is real. Its effects are measurable or quantifiable: e.g., economies of scale,

increased efficiencies, reduced costs, higher yields, lower mortality rates, a larger num-

ber of viable offspring, etc. More subtle measuring rods include enhanced stability

properties, greater stress tolerance, increased fidelity in reproduction, the melding of

functional complementarities to achieve new properties, and so forth.”

Synergy is used in the medical field to describe positive drug interactions, such as combi-

nations of antibiotics that perform better together than any individual drug on its own [6]. Synergy

exists within colonies of bacteria that allow them to secrete enzymes in sufficient quantities to

be able to digest food [17]. It is even applicable to evolutionary fitness and the development of

altruism as described by John Maynard Smith’s “Haystack” model [74].

We have discussed two forms of synergy in relation to group benefits, but there are many

different types of synergy mentioned in the literature. Steiner [75] focuses on the division of la-

bor and its associated benefits. Goold and Campbell [41] suggest that the benefits of synergy to

business units include shared knowledge, coordinating strategies, shared resources, vertical inte-

gration, and economies of scale. Felin and Knudson argue that it is for these types of benefits that

organizations exist at all [31].

Corning defines synergy slightly different than we have, saying that “The term is frequently

associated with the slogan ‘the whole is greater than the sum of its parts’... We prefer to say that the

effects produced by wholes are different from what the parts can produce alone” [17]. Using this
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more liberal definition, Corning provides many different types of synergy. “Additive phenomena”

has benefits that grow linearly with the number of parts. “Emergent phenomena” are exhibited

when many parts combine to form something different from any individual component, as is seen

quite often in metallic alloys like stainless steel. Division of labor is an important class as well, as

there are many examples of specialization in both humans and animals. Corning goes on to find

examples of synergy in fields ranging from quantum physics to neurobiology.

Our main interest in synergy is restricted to our operational definition in which systems can

achieve greater than linear gains as the number of members is increased. These synergistic rela-

tionships exist and can be exploited. Our goal is to use synergy to increase the number of remote

robots that can be controlled by a team of operators working together instead of as individuals.
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Chapter 3

Methods

In order to show empirically that two operators working together can be more than twice as

effective as one operator working alone, we conducted a 2x2 experiment using novice operators.

The independent variables we used are the number of operators and the number of tasks operators

were given to complete. We gathered data from human test subjects with eight test runs in each of

the four conditions.

3.1 Independent Variables

For each of the two independent variables there were two conditions (see Table 3.1). Subjects were

asked to do one or two primary tasks, and they either completed the tasks by themselves or with

a teammate. Following our hypothesis, we expected to see significantly improved performance in

tests with two tasks and two operators compared to tests with two tasks and one operator.

Experiment Conditions

One Operator Two Operators
One Task One Task

One Operator Two Operators
Two (sub)Tasks Two (sub)Tasks

Table 3.1: Independent variables.
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3.1.1 Number of Operators

Our experiment setup allowed a team of two operators to see the same virtual workspace, as well

as the results of each other’s commands. Beyond this, there was no coordination enforced, but

communication was allowed through a chat window. Robots acted independently of each other,

and the operators did not have to agree upon commands to go to the robot, and in fact could issue

opposing commands which were resolved by having the robot simply following the last command

received.

Using multiple operators is not a new idea. Murphy and Burke [58] found a ninefold

improvement in effectiveness using two operators to control one robot. Yanco and Drury [82]

discuss a range of human-robot team structures, many of which involve operator teams. The Mars

rover is controlled by a team who carefully decides what commands to send to the robot. In spite

of this, our team organization differs in a few significant ways.

In spite of being thorough in their discussion of possible human-robot teams, Yanco and

Drury [82] intentionally left out the condition in which multiple operators controlled multiple

robots without explicit coordination on either side, since they felt that some explicit coordination

was required. On the other hand, Nickerson and Skiena [59] suggest a “call center” approach which

ends up being quite similar to our setup, though with slightly more coordination on the operator

side.

3.1.2 Number of Tasks

Some tasks benefit from being divided up and performed in parallel, while others do not. As

discussed in Chapter 2, Steiner [75] calls these unitary and divisible tasks. He explains that unitary

tasks will not significantly benefit from additional people working on the task. At best, unitary

tasks are additive, meaning that the work done by individuals is cumulative and grows linearly

with the number of group members. At worst, communication overhead and other issues related

to the complexity of teams will negatively impact performance, resulting in poorer performance as

more team members are added.
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Given that tasks may or may not benefit from being divided up and performed in parallel,

the benefit from assigning tasks to groups manifests itself in situations where a true division of

labor is possible [75].

To that end, we tested the capabilities of multiple operators by using an apparently additive

unitary task as well as a divisible task that can be divided into subtasks as defined by Steiner’s

taxonomy [75]. Since divisible tasks have the potential to show greater than linear growth in

productivity as the number of group members increases, we hoped to see such improvement in the

performance of operator teams in divisible tasks.

3.2 Experiment Design

Our experiment was designed to exploit the nature of group dynamics to see if greater performance

could be gained from having operator teams work together on certain types of tasks. At the same

time, we hoped to test the validity of Steiner’s framework, meaning that we expected to see little

or no improvement using teams in the case of an apparent unitary task, while seeing greater than

linear growth in performance measurements in the case of a divisible task.

3.2.1 Test Scenario

The testing scenario simulated an exercise in which subjects took on the role of explosive ordinance

disposal (EOD) workers. Using a simulation in which they had robots equipped with explosives-

detecting sensors, the subjects had to search through a set of buildings searching for explosive

devices. There were two different types of robots, each designed to find different types of explo-

sives. “Bomb-sniffing” robots searched for bombs inside of buildings by following the “chemical

plume” surrounding the bombs. “Mine-sweeping” robots were used to search for mines buried

outdoors by sweeping an operator-designated search area. This was a 2x2 experiment design (see

Table 3.2.1 with the number of operators and the number of tasks as the independent variables.

Each test subject participated in only one condition, making this a between-subjects design. We
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Figure 3.1: Up close view of the robot 3D models.

compared the results of participants working on their own and two participants working together

in teams.

Due to the different way in which the “bomb-sniffing” and “mine-sweeping” robots are

operated, they constitute two logically separate tasks, with a limited amount of overlap. The mine-

sweeping robots generally require much less input since they are automated while searching for

mines, whereas the bomb-sniffers require significant operator control while searching for a bomb

since there is no automated behavior for support.

We designed these differences to create situations in which we could compare (a) teams

performing (what we presumed to be) a unitary task to (b) a divisible task in which operators could

assign themselves specific, complementary roles. The complementary nature of mine-sweeping

and bomb-sniffing was increased by placing mines only on the exterior of buildings, and bombs

only on the interior. This forced operators to clear the mines from entrances to buildings before

they could enter to look for bombs.

Mines were cleared by having a mine-sweeper pass over them while in search mode (a

mode initiated by the user). Bombs were cleared by a user placing an icon on top of the bombs. In

order to find the bomb’s location, the operator had to follow a colored gradient, shown in Figure

3.2.
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Figure 3.2: When zoomed out, robots appear as red or blue polygons, depending on the type of
robot. The areas searched by the mine-sweepers are represented by the blue squares on the map,
and the readings from the bomb-sniffing robot are shown as a colored gradient, going from green
to yellow to red, getting darker when getting closer to the bomb.

3.2.2 Participants

A total of 64 paid subjects participated in the study. Of those, 16 were not included in the final

results because of either (a) technical problems (interface or simulator locking up or having other

issues) or (b) having their data invalidated by changes to the experiment design early on (in the

case of a few early participants the bombs-only condition was modified slightly part-way into the

study to include more bombs, invalidating data collected under the earlier conditions that has fewer

bombs).

Of the remaining 48 individuals, there were 28 male and 20 female participants. Their ages

ranged from 19 to 27, with a median age of 22. Of the 16 teams, 9 were married couples and the

remaining 7 were friends who signed up together (3 were all-male, 2 were all-female, and 2 were

male/female pairings).
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Experiment Conditions

One Operator Two Operators
Bombs-Only Bombs-Only

One Operator Two Operators
Bombs-and-Mines Bombs-and-Mines

Table 3.2: Experiment conditions

41 out of 48 participants responded that they were “Experienced” or “Very Experienced”

with using a keyboard and mouse, and 23 out of 48 reported being “Experienced” or “Very Expe-

rienced” with playing video games.

3.3 Software Environment

In an effort to increase the real-world applicability of our results, we chose tasks that are very

similar to those currently being researched at the Idaho National Lab (INL). Because of this sim-

ilarity, we could use the augmented virtuality interface developed at the INL [8]. This allowed us

to leverage the framework in the interface for visualizing and controlling multiple robots and their

sensor readings.

A back-end to the interface was also required to simulate multiple robots and their inter-

actions with the environment. Since no existing software met the requirements imposed by the

experiment design and interface, we opted to create our own robot simulator. It supports dynami-

cally created maps which are explored by “range sensors” on the robots, waypoint following and

automated path planning. The simulator also acts as a server and coordinates communication be-

tween the interfaces when there are multiple operators. For design and implementation details, see

Appendix 5.2.
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3.3.1 Maps

Two different maps were used for testing and one map was used for training. Each map was used

an equal number of times for each condition (four times). The participants were only told how

many buildings there were, and that there could be more than one bomb per building. They were

not told how many bombs or mines there were to find, just that the experiment would end once they

found them all or time ran out (they were told the entire experiment would last no more than 75

minutes, including training time). Figure 3.3 shows the two maps used from both the user interface

view (only a satellite image) and the simulator view (shows floor plans for each building, as well

as positions of bombs and mines).

Each robot had a virtual sensor which detected obstacles in front of it. When an obstacle

was detected, it was automatically added to a global map shared by all robots, and displayed in

the interface as bright blue lines. Figure 3.2 shows the outlines of a building being discovered by

robots and dynamically updated in the interface.

Figure 3.3: The maps used in the experiment. The red areas represent the chemical plume put out
by the bombs which is detected by the bomb-sniffing robots, the blue dots represent mines, and the
blue area immediately around the robot represents their scanner range in which obstacles can be
detected.
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3.3.2 Robot Autonomy

To support some degree of fan-out, we provided some limited autonomy to the robots to assist

operators in performing their task. Without this basic autonomy, Neglect time would be close to

zero, meaning that an operator would be consumed with controlling just one robot. Some level of

autonomy is required in order to allow operators to spend a significant portion of their time making

higher-level cognitive and planning decisions, which is where we believe the benefit of teams can

be manifested.

To that end, each robot had the ability to follow paths set by the operator manually or

to automatically generate their own path to a user-specified go-to point. Manually created paths

were generally shorter and more direct than automatic paths, but could not be responsive to new

obstacles being revealed in a dynamic environment. Automatic paths were less efficient, but would

automatically re-plan to avoid obstacles discovered en route. Users also had the option of manually

controlling the robots through the use of arrow keys on the keyboard. These trade-offs created an

environment where users had to decide for themselves what level of autonomy was appropriate

for a given situation (called adjustable autonomy [18]), requiring frequent planning and decision

making.

Additionally, mine-sweeping robots had a “search mode” in which the user could indicate

an area to be searched for mines, and the robot would create a search path that attempted to fit the

area the user specified. In search mode, just as in following a manually created path, robots could

easily get stuck on obstacles. This was a significant source of frustration for participants, since

they could not trust mine-sweepers to complete a search area without becoming stuck. Also, the

search path generated by the robots often did not match what the user intended, forcing them to

recreate the search area until they were satisfied. Bomb-sniffing robots had no equivalent behavior

to the mine-sweeper’s search mode.

Another significant difference between mine-sweepers and bomb-sniffers was that mine-

sweepers discovered and disarmed mines automatically while in search mode, while bomb-sniffers

merely indicated how close the robot was to the bomb in a “warmer/colder” fashion (see Figure
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3.2). This meant that operators had to pay much closer attention to robots getting close to a bomb,

and most chose to drive them manually at the point. Any robot that drove over an explosive (mine

or bomb) exploded if the explosive was not disarmed, forcing operators to use caution.

3.3.3 Communication

In addition to the primary task of finding explosives, we created a secondary task in which partici-

pants had to respond to a “commander” who would ask them questions about the environment such

as how many explosives had been found, how many robots had exploded, how long they had been

searching, and so on. These questions were picked at random from a predefined list, and would

appear in a chat window located at the bottom left of the interface (see Figure 3.4) every 12-13

seconds. When a question was not answered, it was repeated instead of asking a new question.

The accuracy of the answers was also recorded.

Between questions, meaningless messages would appear coming from “channel chatter”.

Four to five “distractor” messages were sent between every question from the commander. These

forced participants to monitor the chat window more closely for relevant communication.

Teams also used this chat window to communicate. Participants were told not to talk,

gesture, or communicate in any way except through the chat window provided. Because of this,

those in teams not only had to monitor the window for commander questions, but for messages

from their teammate as well. Distractor, teammate, and commander messages were each displayed

in a unique color to give some assistance in distinguishing between them.

3.3.4 Scoring

As a method of simple motivation, participants were shown a running score that was based on their

performance. Positive points were awarded for successfully disarming bombs and mines. Points

were taken away for 1) losing a robot, 2) incorrectly marking a bomb, and 3) the length of time

taken to complete the task (one point per second). The score was not affected by participants’

answers to questions from the “commander”, though in hindsight this may have been useful.
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Figure 3.4: The interface with the chat window showing in the bottom left.

The point of scoring was to have a simple incentive to make participants challenge them-

selves and take the task more seriously. Even though the score was mostly meaningless and men-

tioned only briefly during the training, after completing the experiment nearly all the participants

asked how their score was in comparison to others that had done it. This indicates that they were

at least conscious of their score (and by extension, their overall performance) throughout the ex-

periment.

Incentivising performance has implications for teams as well. Zaccaro et al. [85] found that

giving an incentive for team performance in a timed situation did in fact improve team performance

and coordination. Giving a score was a simple method of achieving at least a portion of this effect

and preventing apathy in the test subjects.

3.3.5 Training

In order to help prevent a learning effect from confounding the data, each subject completed a

short training course (20-30 minutes). The course consisted of a series of on-screen videos which

explained the tasks, the interface, and the controls they would use to complete the tasks. They were
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given two to three opportunities to practice what was explained in the videos, depending on what

condition they were participating in (those using only bomb-sniffers did not have the opportunity

to practice with mine-sweeper robots, for example). Teams received an additional practice of three

to four minutes to experience how coordination and communication would be handled (the rest of

the training was conducted individually).

Subjects practiced on a different, smaller map than they ran the experiment on (see Figure

3.5).

Figure 3.5: The map used for training and practice.

3.4 Dependent Variables

In this experiment, we expected to see improvement in two basic areas: task performance and

workload. In order to show an overall benefit to using two-person teams over an individual, we

expected the results to show a greater than linear improvement gained by using teams. Anything

less would have indicated that there is little or no benefit to having operators work together. In

order to look at task performance, we measured many different variables including the number of
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Dependent Variables
Bombs Found Bomb-sniffer Fan-out
Mines Found Mine-sweeper Fan-out

Robot Utilization Total Fan-out
Unused Robots Commands sent to Robots

Table 3.3: Dependent variables measured in the experiment.

“Commander” Questions

“How many mines have been found?”

“How many bombs have been found?”

“How many robots have exploded?”

“How many robots are currently following a path, including search areas?”

“How many bomb icons have been placed incorrectly?”

“How many robots are not being used right now?”

“How many minutes have you been searching the area?”

“What is your current score?”

Table 3.4: Questions asked by the “commander” in 12 second intervals. Questions about mines
were only asked when mines were actually present.

bombs found, the number of mines found, the amount of time robots were utilized, and several

others (see Table 3.3).

Workload was measured indirectly by measuring subjects’ performance on a secondary

task (answering questions from the commander), and by a subjective survey based on NASA TLX

[45] (see Appendix B).
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Chapter 4

Experimental Analysis

Once we began to analyze the data, we were faced with how to make fair comparisons

between individual operators and teams of operators. In order to make it worthwhile to consider

using operator teams, the results need to show greater than linear growth in effectiveness as oper-

ators are added to the team. For our experiment, that implies that teams of two operators would

need to be more than twice as effective as an individual working alone. For statistical purposes, we

measured individuals’ performance separate from their teammates. Measuring in this way allowed

for simpler comparisons between individuals working alone and individuals working as part of a

team.

An important factor to consider is the added obstacles that teams have to overcome in order

to be productive when compared with individuals. The costs of participating in a group (outlined

in Chapter 2) can be a significant drain on the cognitive resources of operators, effectively acting

as a hidden task. The requirements these costs placed on operators can be collectively thought of

as a coordination task that only those operators in teams were required to perform.

A confounding factor was that the task was significant enough that very few subjects com-

pleted the entire experiment (i.e., found all of the explosives) because we told them we would not

keep them beyond 75 minutes. Subjects were allowed to practice during the training until they

decided that they were comfortable with the interface and tasks, which resulted in variable training

time. These factors taken together mean that no two experimental runs can be compared side by

side. Taking the number of explosives found in one experimental run cannot be compared to the

number from another run when the running time of the experiment is very different.
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To resolve this issue, we limited our examination to the first 20 minutes of each experimen-

tal run. Since the shortest completion time was slightly more than 20 minutes, this gave us equal

footing to compare performance. For statistical analysis of means, we used the results recorded

at the 20 minute mark; however we corroborated those results by looking at trends over a the en-

tire 20 minute time period. All significance values (p-values) reported were calculated using an

independent two-tailed T-test.

4.1 Primary Task Performance

In this section we present the results of the primary task(s) and discuss other measures related to

this performance. Unless otherwise noted, results are presented at a per-operator level for compar-

ison purposes, meaning that the total performance of teams is twice what is listed in the tables and

charts below.

4.1.1 Bombs Only

In the bombs-only condition, both individual operators and operator teams had twelve bombs to

find in one of two similar maps, each of which contained five buildings.

In this condition, there was only a single task which required considerable attention from

operators, because the process of searching an area for bombs could not be automated like it

could with mines. Thus, we expected that having a team of operators would show at best linear

improvement over a single operator. Under Steiner’s framework [75], the bombs-only condition is

called an additive unitary task.

This turned out to be a fairly accurate prediction. Figure 4.1 shows the cumulative total of

bombs found over a 20 minute period. Eight operators working alone found an average of 5 bombs,

while operators working in teams found an average of 3.56 bombs per operator. The difference was

not statistically significant (see Table 4.1 for significance values). In fact, very few of the measures

were significant between single operators and operators on teams, which corresponds with how

Steiner defined an additive unitary task.
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Notable Results for One Task
Measure (per op-
erator)

Operators Work-
ing Alone

Operators on
Teams

Significance
(p-values)

Bombs Found 5.00 3.56 p = .192
Fan-Out 3.47 2.19 p = .0004
Total Commands
Sent To Bomb-
sniffers

1819 1103 p = .018

Table 4.1: The most significant results from operators working alone and as teams for the bombs-
only condition.

These results show linear growth for primary task performance using teams of operators.

Fan-out, however, dropped by about one-third when operators were in teams, meaning there was

not completely linear improvement with operator teams. We will further discuss fan-out in a later

section.

4.1.2 Bombs and Mines

Following Steiner’s framework, we also tested a divisible task where operators had to search for

bombs-and-mines, with each type of search requiring different approaches. Searching for bombs

is more of a manual task requiring close supervision of the robots, while searching for mines is

more or less automatic once a search area is designated. Our setup follows Steiner’s definition of

a divisible task.

Operators had 6 bomb-sniffer robots and 8 mine-sweeper robots at their disposal to com-

plete this task. This meant that there were 14 robots to monitor and command compared to only

6 in the bombs-only condition. Operators searched 5 buildings to find 6 bombs, and searched the

area around those buildings to try to find 65 hidden mines. Based on subjective and objective

workload evaluations, this condition was significantly more taxing than the bombs-only condition.

The performance of operator teams for finding bombs grew linearly. Individuals working

alone averaged 1.25 bombs while those working in teams found 1.44 bombs per person. The

difference was not statistically significant (see Table 4.2), however there was a strong trend toward

greater than linear growth (see Figure 4.2).

36



Figure 4.1: Cumulative total of bombs found over a 20 minute period in the bombs-only condition.
Team results are reported as the average both team members’ individual results.

We were somewhat surprised by the teams’ performance in finding mines. The average

number of mines fell from 28 per individual working alone to 15.25 per individual working on a

team. The cumulative trend is shown in Figure 4.3. We we would have expected the number of

mines found to grow at least linearly, just as the number of bombs found did. It was especially sur-

prising since mine-sweepers are heavily automated and therefore have a larger neglect time when

compared to bomb-sniffers. These factors should have made the task easier, not more difficult.

This discrepancy might be explained by two factors. First, in order to search for mines a

significant amount of ground had to be covered by the mine-sweepers. Thus, performance was

severely limited by physical constraints (e.g., travel time) and not cognitive constraints (e.g., time

taken to plan an optimal route to search a building for a bomb). Many mines were located on

the opposite side of the map from where the robots started, a large distance from the robots’ start

position. We believe that if we would have more evenly distributed the robots across the map to

start with, that travel time would have been mitigated, and the number of mines found by teams

would have increased at least linearly.
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Figure 4.2: Cumulative total of bombs found over a 20 minute period in the bombs-and-mines
condition. Team results are reported as the average sum of both team members’ individual results.

Second, there were some mines that were much more difficult to find than the rest. The

mines were primarily clustered around entrances to the buildings (which the subjects were told),

but a portion of them were hidden elsewhere. In addition, some of the entrances were on the far

side of buildings, and there was no need to clear them for the bomb-sniffing robots to get inside;

This made searching those areas a low priority. In essence, the more mines that were found, the

more difficult the task became.

These explanations are supported by looking at individual results. Within the operator

teams, it was common (but not universal) for one member to focus on searching for mines, while

the other team member focused on searching inside of buildings for bombs. If we look at the num-

ber of mines found by individuals in a team, and then separate the operators into two groups based

on which operator found more mines than their teammate, the average number of mines found by

the “specialist” teammates is 26.13, compared to an average of 4.38 for the “non-specialist” team-

mates. This number is much closer to the number of mines found by operators working alone, and
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Notable Results for Two Tasks
Measure Operators Work-

ing Alone
Operators on
Teams

Significance
(p-values)

Bombs Found 1.25 1.44 p = .665
Mines Found 28.00 15.25 p = .04
Fan Out for Bomb-
sniffers

1.95 1.33 p = .1

Fan Out for Mine-
sweepers

4.77 2.82 p = .03

Total Fan Out 6.71 4.14 p = .015
Total Commands
Sent To Bomb-
sniffers

857 865 p = .97

Total Commands
Sent To Mine-
sweepers

4382 2378 p = .052

Unused Bomb-
sniffers

1.0 .25 p = .059

Unused Mine-
sweepers

.375 .125 p = .49

Waypoints given
to Mine-sweepers

4303 2317 p = .051

Table 4.2: The most significant results from operators working alone and as teams for the bombs-
and-mines condition.

is consistent with the explanation that there was a performance “cap” for mine-sweeping robots

due to the experimental setup.

4.1.3 Summary

These results show that for small operator teams, there appears to be linear growth in performance.

The number of explosives found grew approximately linearly for both the bombs-only and bombs-

and-mines conditions. This means that while there was no benefit on the primary task(s) to having

operator teams, there was little or no cost associated with the “coordination task” the teams had to

deal with.
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Figure 4.3: Cumulative total of mines found over a 20 minute period in the bombs-and-mines
condition. Team results are reported as twice the reported value in Table 4.2.

4.2 Workload

Workload was measured in two ways: through performance on a secondary task of answering

questions posed by a “commander” through a chat window, and a subjective survey based on

NASA TLX [45] given at the end of the experiment. These are both commonly used methods for

measuring for workload [78]. The full text of the subjective workload survey is in Appendix B.

The accuracy of the answers was measured as well, but was found to have no significant different

between experiment conditions.

4.2.1 Bombs Only

As shown in Table 4.3, in the case of both secondary task performance and the subjective survey

results, there is no statistically significant difference between individuals who worked alone and

individuals working on teams. The linear growth trend is especially apparent in Figure 4.4. This

again validates what we expected to see for the bombs-only condition. It reflects the capacity
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for linear growth in performance for teams, with the potential for only small overhead due to the

hidden coordination task.

Workload Measures for One Task
Measure Operators Work-

ing Alone
Operators on
Teams

Significance
(p-values)

Questions An-
swered

29.75 30.31 p = .92

Subjective Workload Measures
Mental Activity 3.25 2.88 p = .461
Time Pressure Felt 3.25 2.88 p = .409
Mental Work Re-
quired

3.0 2.75 p = .56

How Successful 3.13 3.07 p = .89
How Satisfied 3.38 3.07 p = .52
How Relaxed 3.0 3.06 p = .871

Table 4.3: Results from workload assessments of operators working alone and as teams for the
bombs-only condition.

4.2.2 Bombs and Mines

Table 4.4 summarizes the workload measures for operators working on two tasks. These results

are striking when compared to the primary task performance of the two groups. Individuals oper-

ating together answered 42% more questions from the “commander” than operators working alone

(see also Figure 4.5). Additionally, reported mental activity and mental work fell by 36% and

20% respectively, and time pressure felt was reduced by 27%. Again according to the subjective

survey, 75% of subjects working alone thought they were either “Unsuccessful” or “Somewhat

Unsuccessful” in accomplishing the tasks while nearly 69% of subjects working together reported

at least “Satisfactory” success.

4.2.3 Summary

There was a significant increase in workload when operators were asked to complete a second task

(see table 4.5). These differences in workload completely disappeared when the subjects were
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Figure 4.4: Cumulative total of questions answered in the bombs-only condition. Team results are
reported as twice the reported value in Table 4.3.

working in teams. Statistically, there is no significant difference in the workload measures for

operators working on one task alone and for operators working on two tasks as part of a team.

4.3 Fan-out

Another point of interest is the fan-out metric, with the results shown in Tables 4.1 and 4.2. We

measured fan-out by counting the number of robots actively being controlled by each individual at

30 second intervals, and then averaged over the first 20 minutes of experiment time. We defined

an active robot as one that moved within the last second. It is important to note that our direct

measurement of fan-out for the heterogeneous bombs-and-mines condition differs from the model

in Chapter 2, which indirectly predicts the maximum fan-out for homogeneous robots performing

identical tasks.
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Workload Measures for Two Tasks
Measure Operators Work-

ing Alone
Operators on
Teams

Significance
(p-values)

Questions An-
swered

19.88 28.38 p = .042

Subjective Workload Measures
Mental Activity
Required

4.63 2.94 p = .0009

Time Pressure Felt 4.25 3.06 p = .0126
Mental Work Re-
quired

3.63 2.88 p = .052

How Successful 2.0 2.94 p = .037
How Satisfied 2.38 3.0 p = .229
How Relaxed 2.13 2.75 p = .124

Table 4.4: Results from workload assessments of operators working alone and as teams for the
bombs-and-mines condition.

4.3.1 Fan-out Results

The fan-out measures show a decline of more than 35% in the number of robots controlled by

individuals that worked in teams compared to those who worked alone (for both the bombs-only

condition and the bombs-and-mines condition). However, as our data shows, a decrease in fan-out

does not always correspond to a decrease in performance.

It is important to point out that overall fan-out for teams did not actually decrease, it just

did not grow linearly (see Figure 4.6). However, the total number of active robots was still well

below the maximum possible. For the bombs-only condition (6 robots available), individuals had

an average fan-out of 3.47 and teams had a combined average fan-out of 4.38. For the bombs-and-

mines condition (14 robots available) individuals averaged a fan-out of 6.71 and teams averaged

8.28.

It is not apparent from the data whether the lower individual fan-out contributed to lower

workload for operator teams, but we suspect this is the case. If this is true, team members had

additional capacity and were limited by the constraints the experiment imposed (e.g., travel time

for the robots). Future experiments might be able to take advantage of this “spare capacity” and
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Figure 4.5: Cumulative total of questions answered in the bombs-and-mines condition. Team
results are reported as the average of the sum of both team members’ individual results.

allow operators to increase their performance further, thus definitively showing greater than linear

growth in performance on primary tasks for operator teams, rather than just workload reduction.

4.3.2 Fan-out and Performance

One trouble with focusing on fan-out is that increasing the number of robots controlled does not

guarantee improved performance. Olsen and Wood give two reasons for this: task saturation and

the fan-out plateau [63]. Task saturation occurs when a task will not benefit from having more

robots assigned to it. A simple example is a task to transport a small item from one location to

another. Two robots would not allow the task to be completed any faster than one would. The

fan-out plateau is a point at which increasing fan-out will not improve performance due to less

effective utilization of individual robots.

Task saturation explains the disparity between the upward trend for fan-out in bomb-sniffer

robots shown in Figure 4.6(B) and the relatively steady rate of finding bombs shown in Figure 4.2

under the bombs-and-mines condition. Mine-sweepers demonstrate this trend as well in Figures
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Workload measures for Operators Working Alone
Measure Operators Per-

forming One
Task

Operators Per-
forming Two
Tasks

Significance
(p-values)

Questions An-
swered

29.75 19.88 p = .128

Subjective Workload Measures
Mental Activity
Required

3.25 4.63 p = .020

Time Pressure Felt 3.25 4.25 p = .040
Mental Work Re-
quired

3.0 3.63 p = .230

How Successful 3.13 2.0 p = .100
How Satisfied 3.38 2.38 p = .131
How Relaxed 3.0 3.625 p = .045

Table 4.5: Results from workload assessments of operators working alone and as teams for the
bombs-and-mines condition.

4.2 and 4.6(C). The graphs show that although an average of 20% more mine-sweeper robots were

being used, the number of mines found only increased by 8.9%. In the absence of task saturation,

we would expect to see at least a linear improvement with the number of robots. Since there were

two operators present, this discrepancy is not explained by the fan-out plateau.

The graph also shows a cycle for the bomb-sniffing robots related to fan-out. Bomb-sniffers

differed from mine-sweepers in that they did not have an automated behavior that could be used

to search for explosives. Because of this, mine-sweepers could be effective in finding explosives

without continuous operator direction, while bomb-sniffers could not. This led to a common oper-

ating strategy to send a few bomb-sniffers on a path to an unexplored location so that the operator

could focus on manually controlling just one bomb-sniffer. Dips in the fan-out graphs show the

points at which robots were arriving at their destination before the operator was done manually

searching (shown in Figure 4.7). Once finished searching, the operator would again give bomb-

sniffers new paths and select one robot to focus on for manual control, and the cycle would start

again. Three of these cycles are apparent from Figure 4.7 for operators working alone. These

cycles occur with operator teams as well, but are less apparent, probably due to operators sharing

task load.
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Figure 4.6: (A) Fan-out for bomb-sniffers in the bombs-only condition, (B) Fan-out for bomb-
sniffers in the bombs-and-mines condition, and (C) Fan-out for mine-sweepers in the bombs-and-
mines condition. Team results are shown as combined totals from both team members.

Figure 4.8 shows the fan-out for bomb-sniffers and the number of bombs found over time.

There is a stair-step appearance to the graph of bombs found over time, with performance plateaus

where no bombs were found for one or more minutes. This appears to be a period of time in which

operators were not able to effectively search for bombs due to waiting for travelling bomb-sniffers

to arrive at new locations or for mines to be cleared near building entrances. Individual operators

had longer plateaus, indicating that they were busy performing other tasks besides searching for

bombs, presumably because they were searching for mines. These plateaus were shorter for teams

compared to individuals.
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Figure 4.7: Cycles over time in bomb-sniffer fan-out in the bombs-only condition. Team results
are shown as combined totals.

4.3.3 Summary

Task saturation appeared to play a significant role in the performance of operators and seems to

explain the relationships observed between fan-out and performance. Operator teams did have a

higher combined fan-out than operators working alone, but individual team members’ fan-out was

lower. This was probably caused by the constraints of the task environment rather than the effects

of the hidden coordination task.

Regardless of the causes of lower fan-out for the operator teams, the data shows that it did

not negatively impact performance on the primary task(s), and that operators in teams experienced

reduced workload and perhaps more spare capacity to increase fan-out if the task allowed. Thus,

lower fan-out correlates with lower workload without decreasing performance.

4.4 Training

Training was an important part of our experiment. Training allowed subjects to know what would

be expected of them and how to accomplish the tasks they were required to do. Due to inexperience
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Figure 4.8: Bomb-sniffer fan-out and bombs found over time in the bombs-and-mines condition.
Team results are shown as combined totals.

in performing the tasks in the experiment, unequal training can skew the results. This danger exists

in our experiment, since we allowed users to practice as long as they felt comfortable, resulting

in highly varied training times. Subjects that were part of a team also received additional training

time to practice coordinating with their teammate.

Because of these factors, the average training time for operators working alone in the

bombs-only condition was 7.17 minutes, while operators on teams averaged 12.65 minutes (p

= .007). Operators working alone in the bombs-and-mines condition spent an average of 13.43

minutes in training, while operators on teams spent 19.41 minutes in training (p = .012).

This is important to look at since the additional practice time for those in teams has the po-

tential to significantly bias the results. To see what biases, if any, training time had on performance

in the experiment, we measured the correlation between training time and various performance

metrics for every condition.
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4.4.1 Bombs Only

Table 4.6 shows the correlation relationship between training time and performance for the bombs-

only condition. As training time increased for individuals in the bombs-only condition, they found

fewer bombs and answered more questions. This implies that more training leads to worse perfor-

Training Time Correlations for the Bombs-Only Condition
Comparison Correlation Value

Individual Operators
Training Time vs. Bombs Found -.426

Training Time vs. Questions Answered .60
Operator Teams

Training Time vs. Bombs Found .099
Training Time vs. Questions Answered .096

Table 4.6: Effects of training time on performance for the bombs-only condition.

mance on the primary task, which seems illogical. A more likely explanation is that those who felt

less comfortable with performing the task chose to practice for longer periods of time. Those who

trained longer were probably less skilled at the task and the increased training time did not signifi-

cantly help them. Those who were not as skilled either (a) focused more on answering questions,

or (b) allowed the secondary task to interfere with their primary task performance.

For teams, this pattern disappeared. The correlation between training time and the number

of bombs found, and training time and questions answered is very weak ( .09). One explanation

is that the increased training time for operator teams overcame the weaknesses for the less skilled

operators, but the data does not support that conclusion. If we take the 8 operators who worked in

teams with the most training time and compare their performance to the 8 operators who worked

alone, we find that in spite of having more than twice the average training time of operators working

alone (16.45 minutes vs. 7.17 minutes), the number of bombs found by those on teams drops to an

average of 3, compared to 5 for operators working alone (p = .145).
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4.4.2 Bombs and Mines

For the bombs-and-mines condition, there is a similar pattern for the effect of training time to that

found in the bombs-only condition. Table 4.7 shows the correlations between training time and

performance metrics for the bombs-and-mines condition. Here again, as training time increased

for operators working alone, the number of bombs found went down, and the number of questions

answered went up.

Training Time Correlations for the Bombs-and-Mines Condition
Comparison Correlation Value

Individual Operators
Training Time vs. Bombs Found -.727
Training Time vs. Mines Found .251

Training Time vs. Questions Answered .808
Operator Teams

Training Time vs. Bombs Found -.026
Training Time vs. Mines Found -.240

Training Time vs. Questions Answered .253

Table 4.7: Effects of training time on performance for the bombs-and-mines condition.

For teams, the trend again reversed itself. An increase in training time for operators on

teams resulted in virtually no change for the number of bombs found, and an increase in the number

of questions answered. None of these correlations are very strong for teams.

4.4.3 Summary

There are several reasons why the trends observed for individuals with regards to training time are

not reflected for teams. Probably the most likely explanation is that there is just not enough data to

establish a strong trend. With only 8 data points for individuals, just one or two outliers can form a

trend. The increased number of data point for teams probably gives a more accurate picture of the

relationship between training and performance.

If the trend is not just a statistical anomaly, then there are other interesting possibilities.

One factor may be that operators on teams were able to specialize somewhat, allowing them to

avoid their weaknesses and focus on tasks they were more effective with (even in the bombs-only

50



condition, operators could focus on just answering questions). Another possibility is that operators

on teams learn from each other, allowing less skilled individuals to see superior strategies from

their teammate which they can then implement themselves.

In any case, the length of training time does not seem to be a factor in explaining the

performance of teams compared to individual operators.

4.5 Environmental Factors

To help establish greater validity for our results, we randomly assigned participants to run the

experiment using one of two different maps. The maps both had the same number of buildings, but

the buildings had different floor plans and explosives were placed in different locations.

Performance comparisons for the different maps are shown in Table 4.8. The only statis-

tically significant difference is that Map 2 appears more difficult for individual operators in the

bombs-only condition. Since teams in that same condition showed almost identical results for the

two maps, this is most likely a chance occurrence. None of the other conditions showed any sig-

nificant differences. This implies that the map type had very little impact on the results of this

experiment.

Metric Map 1 Map 2 Significance (p-values)
Individuals With Bombs-Only

Bombs Found 7.0 3.0 p = .049
Questions Answered 25.75 33.75 p = .468

Teams With Bombs-Only
Bombs Found 3.5 3.6 p = .932

Questions Answered 28.16 31.60 p = .334
Individuals With Bombs-and-Mines

Bombs Found 1.5 1.0 p = .866
Mines Found 24 32 p = .269

Questions Answered 18.75 21 p = .772
Teams With Bombs-and-Mines

Bombs Found 1.5 1.375 p = .818
Mines Found 12.875 17.625 p = .545

Questions Answered 26.875 29.875 p = .512

Table 4.8: Performance comparison for different world maps.
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4.6 Team Dynamics

An interesting aspect of this experiment comes when looking at how individual actions and perfor-

mance differed between teammates. Understanding the dynamics of team interaction is important

for any system designer looking to utilize operators teams. In this section, we discuss some obser-

vations from our experiment regarding these dynamics.

4.6.1 Division of Labor

The biggest reason that divisible tasks can benefit from groups is that they can be divided into

logically separate subtasks that can be efficiently done in parallel. This is the benefit of a division

of labor. By having two tasks, searching for bombs and searching for mines, we expected that

most teams would have members which specialized into performing one task or the other. Test

subjects were instructed that they would be more effective if they cooperated together, but were

not assigned a specific role. In Steiner’s framework, it is called self-matching when team members

decide among themselves who will take on a given role. There were no definite roles given, and

subjects were free to (and frequently did) switch roles from searching for bombs to searching for

mines and back again. This most closely matches Steiner’s description of unspecified subtasks.

In order to see how this division of labor took place and what its effect was, we correlated

combined performance data for teams with the amount of specialization that took place within the

team. We calculated a “specialization score” using the following formula:

Specialization = | Teammate(A) Fan-out − Teammate(B) Fan-out |

A higher value indicates that there was more specialization among the team (since there is a greater

disparity in the number of robots of one type they controlled), and hence a greater division of labor

occurring. These scores were calculated separately for bomb-sniffers and mine-sweepers. We also

calculated a specialization score for questions answered, though this is not very insightful because

team members were unable to coordinate performance on this task, and did not know what the
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other was doing in this regard (only the subject answering the commander’s questions received

any feedback).

Given these measurements, we found no correlation (coefficient = -.04) between bomb spe-

cialization and the number of bombs teams found (Figure 4.9), and a slightly negative correlation

(coefficient = -.43) between question specialization and the number of questions teams answered

(Figure 4.10). There was, however, a strong positive correlation (coefficient = .89) between mine

specialization and the number of mines teams found (Figure 4.11).

Figure 4.9: Scatter plot correlating bombs found with bomb-sniffer specialization with a correla-
tion coefficient of -.04.

Specialization did not follow any clear trends that are discernible from this small of a data

set. Prior to analyzing the data, we predicted that team members who focused primarily on mine-

sweeper robots would also tend to answer more questions, since we supposed that directing the

search areas for mine-sweepers has a lower workload than searching for bombs. This turned out

to be the case in only one team out of eight. Other team members who answered more questions

focused more on bomb-sniffing robots, or seemed to answer questions instead of working on the

primary tasks, allowing their teammate to control more robots of both types. Several other teams

had fairly even splits in terms of how many questions they answered and how many of each type

of robot they controlled.
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Figure 4.10: Scatter plot correlating questions answered with question specialization with a corre-
lation coefficient of .89.

There is too little data to determine if one of these divisions of labor are more effective than

others. This would be an interesting topic for future research.

4.6.2 Coordination

The primary mechanism we provided to communicate was a chat window that was open throughout

the experiment. Though subjects were trained on using the chat window, few made very extensive

use of it to communicate with their teammate. Subjects exchanged approximately 9 messages

during the experiment, most of which were during the first few minutes. These initial conversations

generally established a basic strategy for the tasks, as in this example between two subjects:

Subject A: so do you wanna divide bldgs

Subject B: do you want to do building b and I’ll do A

Subject A: cool

Out of the 16 teams that participated in the experiment (8 performing one task, 8 performing two

tasks), 11 had similar initial periods of coordination. Two of the teams in the bombs-only condition
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Figure 4.11: Scatter plot correlating mines found with mine-sweeper specialization with a correla-
tion coefficient of .89.

did not communicate at all through chat messages, and two of the teams in the bombs-and-mines

condition did not communicate initially, but did use the chat window later.

The relatively low volume of messages was likely due to the frequency of other messages

being displayed in the same window, making it difficult for subjects to see when they were re-

ceiving messages from their teammate. Several subjects felt like their messages were not being

received by their teammate at all, as in this one-sided conversation excerpt:

Subject: hello?

Subject: Hello?

Subject: HEY we need to work together can you see this?

A significant number of subjects complained after the experiment that there must have been some

sort of technical difficulties preventing their messages from getting through. The messages were

indeed sent, but were often missed due to the distractor messages and commander questions in the

chat window.

In spite of these communication difficulties, teams seemed to have a fair bit of coordina-

tion taking place. Even though there was no consistent way in which tasks were divided among
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team members, most teams did exhibit a significant amount of specialization. This is somewhat

remarkable due to the sparse communication that took place.

An explanation lies in the existence of what is called implicit communication. Implicit

communication is where team members communicate without words (written or verbal) and can

be a combination of body language, actions, and other factors. The existence of implicit commu-

nication can be a sign of effective team coordination, and has been found to increase performance

if the shared understanding between team members is accurate [72].

Orasanu examined implicit communication in cockpit air crews, and found that team mem-

bers will often alternate between implicit and explicit communication [64]. Explicit communica-

tion typically takes place in times of low-workload and often facilitates implicit communication

later in times of high-workload. Explicit communication is often used to plan and coordinate fu-

ture actions, or to communicate when an exceptional situation arises and implicit coordination is

no longer sufficient.

This explanation from Orasanu fits our observations well. Teams generally coordinated

at the beginning through explicit communication, and used implicit communication to coordinate

otherwise. Occasionally subjects felt the need for explicit communication later on, usually for one

of several reasons. First, subjects sometimes felt the need for a status “refresher” just to make

sure they were still on the same page, by asking something such as “how are things going?” or by

making a statement like “good job”. Other times there was an expression of frustration resulting

from some sort of misunderstanding such as “you’re stealing my robots” or “hey you took my

guy”. This showed a lack of shared understanding between team members, prompting explicit

communication. Finally, subjects would sometimes feel a need to coordinate again and lay more

plans together, resulting in statements like “you finish building B” and “will you start searching

building a?”. This type of communication apparently took place when a member of the team felt

like their effectiveness was in jeopardy and wanted to make plans once again.

An important aspect of implicit coordination is having team members give required infor-

mation to teammates before it is explicitly requested, thus anticipating their teammates’ needs [30].

56



This aspect of implicit communication is missing from our data. This is probably because 1) the

task did not impose a situation where one operator was dependent on the other, reducing the need

to share information and 2) any information that was needed was probably gained from the shared

workspace provided by the interface.

We feel that the interface afforded significant implicit communication as well. The robot

that was currently selected by a subject’s teammate was shown on the interface, so they could

know at all times what their teammate was doing. Subjects could also quickly see the effects of

their teammate’s actions, which is a form of implicit communication. The interface likely reduced

the need for explicit communication and made implicit communication easier.

4.7 Confounding Factors

In spite of all the thought and planning that went into the experiment design, there are always

factors beyond control or improvements that can be made with the benefit of hindsight. We discuss

a few of those here.

Significant actions in the experiment were tied to a score in order to motivate participants

to focus on the things we were measuring. Therefore finding bombs and mines, completing the

experiment quickly, and not allowing robots to explode all had scores attached to them. However,

we failed to tie subjects’ performance on answering questions to their scores, providing them with

very little motivation to actually answer questions. In the end, some participants chose to ignore

the questions altogether, and it leaves the possibility open that operators ignored the questions

because they were focused on the score, not because they were under high workload. However,

since all subjects received the same instruction on answering questions, any adverse effects were

probably evenly spread between all groups, keeping this a valid measure for workload.

A significant problem with the communication setup manifested itself part-way into the

study when several participants believed that their messages to their teammate were not being sent.

In some cases this was true: if the “commander” asked them a question, subjects were unable to

send messages to their teammate until they gave a proper answer (“proper” means that their answer
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contained only digits, and they were told this during training). This presented difficulties when,

for example, subjects were in the middle of typing a long message and the commander would ask

a question. When the message was sent, it would be interpreted as an improper answer to the

commander’s question, forcing the subject to answer the commander’s question and then re-type

their message if they so chose. This particular situation was actually somewhat rare, though it

seemed to significantly reduce future communication when it did occur.

Another reason subjects believed messages were getting lost was that they were simply

missing them among all of the other messages because there was only one chat window. This

meant that messages between teammates would often get lost within the distractor messages and

commander questions. It was never the intent of this study to artificially make communication

more challenging than it had to be, and if given the chance to run the experiment again, we would

opt to have a separate chat window to send messages to a teammate.

Due to the way in which the study was advertised and subjects signed up, there was an

unintentional bias toward married couples. Out of 16 teams that participated, 9 were married

couples. While every team member that participated reported knowing their teammate very well,

married couples bring unique dynamics into play that the experiment was not designed to control

for. While any performance differences are most likely insignificant, communication might be an

area that was impacted more than others.

Perhaps most importantly, travel time for the robots became a significant issue in limiting

performance since the maps were fairly large and the robots all started in one location. The speed of

the robots could have been increased, but this probably would have adversely affected the cognitive

load on the operators due to the greatly increased pace of the experiment. A better approach would

have been to more evenly distribute the robots around the maps, giving operators robots that were

already close to every building and could be put to work immediately. This would have been

a better measure of the capabilities of operators than our experimental setup allowed, but less

ecologically valid.
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Chapter 5

Conclusions and Future Work

This thesis describes the potential benefits of utilizing operator teams to control multiple

remote robots, including a discussion of an experiment in which we empirically demonstrated the

benefits of operator teams. This chapter summarizes our conclusions and discusses areas of future

research related to our findings.

5.1 Conclusions

Our goal has been to demonstrate that two operators working together as a team can be more

effective than two operators working separately. We conducted an experiment to find out if we

would be able to see synergistic gains for operator teams controlling multiple robots that would

outweigh the costs of coordination among team members.

We found that for a single task controlling homogeneous robots there was approximately

linear improvement in performance, as predicted by Steiner’s framework. Workload for team

members stayed at the same level as workload for operators acting alone.

For operators performing two tasks using heterogeneous robots, effectiveness on the two

primary tasks grew approximately linearly. Individual operators saw a significant increase in work-

load compared to performing one task (an increase of between 25% and 50%), but those working

in teams showed no increase in workload over individuals performing one task.

While the constraints of the experiment (task saturation, number of robots, etc.) prevented

teams from showing greater than linear improvement in primary task performance, the lower work-
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load while performing two tasks indicates spare capacity that could be utilized to improve primary

task performance within a proper environment.

Clearly, not every situation justifies operator teams. However, our results show that if the

remote robots can perform sub-tasks independently of one another and the interface supports good

situation awareness then there was little impact on primary task performance. This suggests that

the potential payoff for using operator teams can be significant, and the impact of coordination on

team performance can be low.

Based on the coordination that took place among team members in spite of only a handful

of messages sent between team members, it appears that an interface that provides sufficient shared

awareness between members of a team can reduce the need for explicit communication; though

more targeted experimentation is required to show this empirically. This may be due to the fact

that both team members could see what the other team member was doing, and therefore did not

need to spend time communicating and getting as many status updates from each other. Previous

work has shown that reducing explicit communication can reduce workload and therefore increase

performance [54]. However, we are unable to conclude for certain whether the low level of explicit

communication was due to effective team behavior or to the coordination afforded by the interface.

Another possibility is that the small team size made explicit communication largely unnecessary.

The results are consistent with prior work suggesting that increasing fan-out should not be

the only concern when designing human-robot systems (for example, see the arguments posed by

Hancock et al. [44]). Workload increases as fan-out increases, which reduces task performance

[20]. In our experiment, operators working as a team had lower individual fan-out but similar

performance levels than operators working alone. Human-robot system designers should account

for this relationship in the systems they build.

Most important, our experiment demonstrates that two people working as a team can gain

measurable benefits over two people working as individuals. On average, individuals in teams

experienced a greater than 40% reduction in workload while maintaining similar levels of perfor-

mance on primary tasks.
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5.2 Future Work

After analyzing the results from the experiment, there are many questions remaining that we are

not able to address using our data.

An important area of future work would be to test if more evenly distributing robots around

the map would show even more benefit to operator teams. We feel that the conditions of the

experiment artificially limited operator performance due to significant travel time required for the

robots, especially the mine-sweepers, resulting in task saturation.

In our experiment, operators in the bombs-and-mines condition were free to switch back

and forth between specialization roles, looking for both types of explosives as they pleased. We

theorize that this was a benefit to team coordination and performance, as there was less pressure on

one individual to perform the entire task (e.g., find all of the bombs or mines themselves), and they

could focus on a smaller portion of the task (such as finding all of the mines around a particular

building). A question remains as to whether or not operator workload would have been reduced

as much if tasks had been strictly assigned, meaning that operators who were searching for bombs

could not control mine-sweeper robots and vice-versa.

We also concluded that the reduction in fan-out measurements for individuals on teams

contributed to their reduction in workload. Future studies might examine whether or not the reduc-

tion in fan-out was due to operators feeling less pressured to complete the task on their own, or if

the task could be completed easier if more robots were used. If more robots were available, would

operators on teams still push themselves far enough that their workload would increase again? This

questions might be answered by providing significantly more robots than can be controlled by both

operators, and then looking at how this affects fan-out for individuals on teams.

Future studies might examine whether the reduction in fan-out for team members was due

to a lower robot-to-operator ratio, or if it was a self-imposed limitation manifesting as a result of

team dynamics. If more robots were available to teams (so that the same robot-to-operator ratio

was maintained), would operators increase their workload by trying to control more robots?
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Appendix A

Design and Implementation of the Robot Simulator and Interface

In order to run an experiment in which multiple operators could collaboratively control
multiple robots as a team, we first needed a software system capable of simulating a large number
of robots. Any robot simulator needed to be able to dynamically update world maps and share them
across more than a dozen simulated robots. We also wanted the simulator to have some basic robot
autonomy available, including moving between waypoints and planning new paths. In addition to
all of this, the simulator needed to be fast enough to run on modest hardware while still providing
two operators with real-time updates.

Commercial options were quickly discarded due to concerns about complexity and lack of
customization capability. The Player Project [36] was seriously considered because it is an open-
source implementation of a robot simulator that includes several built-in automated behaviors.
After spending considerable time and effort attempting to make the needed adjustments to make
the simulator meet our needs, we determined that the basic design of the software did not fit with
our needs. Faced with compromising on the scope of our experiment or significant customization
difficulties, we decided it would be easier to design and build a new simulator from scratch that
was customized to our needs.

A.1 Overview

In order to meet our particular needs, we designed and developed an entirely new 2D robotic sim-
ulator that uses simple physics to represent robots and the environment around them. We used
this simulator to run a low-fidelity simulation of a large number of robots in a shared environ-
ment (robots were simply treated as rectangles, greatly reducing the computational requirements).
Running a low-fidelity simulation makes it possible to simulate dozens of robots in a shared envi-
ronment while still running on modest hardware.

The interface we used to connect to the simulator is based on an interface developed pri-
marily at the Idaho National Lab (INL). The INL’s interface displays a robot in a 3D virtual envi-
ronment that allows for better situation awareness than the more typical camera-based interfaces
[61]. We expanded the capabilities of the interface to allow for command and control of an arbi-
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trary number of robots, allow multiple interfaces to share the same virtual environment through a
network connection, and added numerous other minor features to fit our needs.

Both the simulator and the interface were written in C# using OpenGL to render most of the
graphics. We implemented a client-server architecture to allow multiple instances of the interface
to be run on multiple machines and still be synchronized with each other. The simulator acts as the
server, pushing out state information about the robots while receiving and executing commands
from the client interfaces. A basic overview is shown in Figure A.1.

Figure A.1: Basic system outline for interface and simulator.
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A.2 Implementation

The client interface contains approximately 27,000 lines of code (LOC), and the simulator has
nearly 10,000 LOC.

The system has a built-in chat capability where each interface has a chat window that
receives individualized messages generated by the server as well as messages from other client
interfaces (routed through the server). This feature was used in our experiment to allow commu-
nication between team members as well as provide a secondary task (answering questions via the
chat window).

The server/client connection is made using TCP, with an initial auto-discovery enabled by a
UDP broadcast from the server. The client interfaces never connect directly to each other, meaning
all data goes through the server (even though some messages are directed at another interface and
not the server). Bandwidth requirements are fairly low, with most of the data consisting of either
coordinates or ASCII plain-text messages.

Another important feature to our experiment is the logging feature. Every action, com-
mand, and status update is written to one of several log files. For our experiment, these logs were
used to obtain measurements using a Python script. The script parses through the logs, extracts
data, creates charts, and calculates significance and correlation values.

The simulator implements some basic automation for the robots, including path planning,
collision avoidance, and waypoint following. Our simulator plans paths using a simple A* al-
gorithm that searches through nodes generated by the probabilistic roadmaps method (nodes are
placed randomly on the map within simple constraints). The robots replan paths every few sec-
onds so that they can dynamically respond to newly discovered obstacles (obstacles are revealed
in front of the robots as they move around the map). Collision avoidance and waypoint following
are achieved by using potential fields to either attract or repel robots.
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Appendix B

Subjective Workload Assessment Survey

Survey Given to Measure Subjective Workload
1) How much mental activity was required? Was the task easy or demanding?
1 Easy 4 Somewhat Demanding
2 Somewhat Easy 5 Very Demanding
3 Undecided

2) How much time pressure did you feel due to the rate or pace at which the task elements occurred? Was the pace slow and leisurely or
rapid and frantic?
1 Very Slow/Leisurely 4 Somewhat Fast-paced
2 Somewhat Slow/Leisurely 5 Very Fast-paced
3 Undecided

3) How hard did you have to work mentally to accomplish your level of performance?
1 Not very hard
2
3 Somewhat hard
4
5 Very Hard

4) How successful do you think you were in accomplishing the goals of the task set by the experimenter (or yourself)?
1 Unsuccessful 4 Somewhat Successful
2 Somewhat Unsuccessful 5 Very Successful
3 Satisfactory

5) How satisfied were you with your performance in accomplishing the goals of the task?
1 Unsatisfied
2
3 Somewhat Satisfied
4
5 Very Satisfied

6) How irritated and stressed versus content and relaxed did you feel during the task?
1 Irritated/Stressed most of the time
2
3
4
5 Content/Relaxed most of the time
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