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ABSTRACT

CHARACTERIZING THE STATISTICAL PROPERTIES AND GLOBAL

DISTRIBUTION OF DANSGAARD-OESCHGER EVENTS

Andrea Lundrigan Thomas

Department of Statistics

Master of Science

Ice core records from Greenland have shown times of rapid warming during the

most recent glacial period, called Dansgaard-Oeschger (D-O) events. D-O events are

important to our understanding of both past climate systems and modern climate

volatility. In this paper, we present new approaches for statistically evaluating the

existence of cyclicity in D-O events and the possible lagged correlation between the

Greenland and Antarctica temperature records. Specifically, we consider permutation

testing and bootstrapping methodologies for assessing the cyclicity of D-O events and

the correlation between the Greenland and Antarctica records. We find that there is

not enough evidence to conclude that D-O events are cyclical; however, the Antarc-

tica record leads the Greenland record by 545 years with a statistically significant

correlation of 0.455.
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1. INTRODUCTION

Ice cores from various locations of the world are extremely useful in evaluating

global climate change. The primary ice cores used in this research come from Green-

land and Antarctica. From these ice core records, chemists determine the ratio of

certain isotopes, such as oxygen (δ18O) and deuterium (δD), found at certain depths.

The depths at which the isotopes are extracted indicate at what time in the earth’s

history the isotopes were preserved in the ice. These isotopes are useful because

they are indicative of the temperature at the time they were preserved. The ice core

records from Greenland have shown times of rapid warming during glacial periods,

called Dansgaard-Oeschger (D-O) events (Dansgaard et al. 1993).

The scientific community is divided about certain characterizations of D-O

events. Some have argued that a regular process paces D-O events and that D-O

events are therefore cyclical in nature (Alley and Clark 1999; Schulz 2002; Rahmstorf

2003). It can be inferred from this theory that D-O events have a predictive ele-

ment, which may shed light on the current climate change the earth is experiencing.

Contrary to this theory, others believe that D-O events are random in their timing.

Statistical analyses have not been performed with the newest and highest quality ice

core records in relation to this controversy. As a result, conclusions about the nature

of D-O events and their potential connection to current climate change cannot be

affirmed.

The other disagreement relates to the geographic extent of D-O events. Some

are convinced that occurrences similar to D-O events are discernible in the Antarc-

tica ice core records (Dansgaard et al. 1993; Blunier et al. 1998; EPICA Community

Members 2006; Jouzel et al. 2007; Steffensen et al. 2008). A connection of this

sort between Antarctica and Greenland fosters the hypothesis that the climate in the
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Northern and Southern Hemispheres is linked by some mechanism, oceanic or atmo-

spheric (Dansgaard et al. 1993; Blunier et al. 1998; EPICA Community Members

2006; Steffensen et al. 2008). Others speculate that the events seen in the Antarctica

ice core records have no temporal connection to D-O events (Roe and Steig 2004;

Ackert Jr. et al. 2008). Under this theory, it is suggested that separate regional

forces govern the climate of the Northern and Southern Hemispheres and that occa-

sionally, climate events occur that are large enough to be recorded on a global scale

(Roe and Steig 2004). Despite this difference in theory behind the presence of D-O

events on a global scale, no one in the scientific community has statistically assessed

these arguments using the most recent and highest quality ice core records.

The purpose of this thesis is to evaluate the stochastic nature of D-O events

and whether or not D-O events occur on a global scale. Specifically, we investigate

if D-O events are cyclical or if they occur randomly during the most recent ice age.

Understanding D-O events throughout the earth’s history will shed more light on

the current climate changes we are experiencing. In addition, we explore whether

or not D-O events are evident in the Antarctica ice core record or found just in the

Greenland ice core record. The presence of D-O events in both records may signify

a relationship between climates in the Northern and Southern Hemispheres. The

converse points to independent climate in the North and South that is determined

mostly by regional influences.
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2. LITERATURE REVIEW

The first objective of this thesis is to assess the nature of D-O events; specifically,

we intend to determine if D-O events are cyclical in nature or if they are random

variations of the climate. Establishing the nature of D-O events is significant because

it will provide more insight as to how the climate functions.

Alley and Clark (1999) discuss the speculated stochastic nature of D-O events.

They suggest that the variability of the climate, as demonstrated through D-O events,

is linked to a mechanism driving changes in the circulation of the Atlantic Ocean.

Changes in this circulation have a cyclical nature and thus Alley and Clark (1999)

assert that D-O events are also cyclical. They conclude that their assertions will

require further study and analysis.

Schulz (2002) evaluates the nature of D-O events and determines that D-O

events between 46 to 13 kyr before present (BP, where present is 1950) were driven

by a stochastic process that occurred roughly every 1,470 years. The Greenland record

beyond 50 kyr BP contains uncertainty in dating such that Schulz (2002) cannot make

conclusions regarding the stochastic nature of D-O events found beyond 50 kyr BP.

Schulz (2002) uses a trapezoidal wave model created by D-O events 5 through 7 to

determine the regularity of D-O events. Between 46 to 13 kyr BP, 7 out of 8 D-O

events matched his trapezoidal model. The probability of this happening by chance

is about 1%. Based on this result, Schulz (2002) determines that D-O events from

46 to 13 kyr BP were not random in nature but occurred approximately every 1,470

years.

Rahmstorf (2003) proposes the concept of a cyclical clock that paces D-O events

as opposed to the idea that D-O events are random. D-O events are present approxi-

mately every 1,470 years during the last glacial period. Occasionally, the time between

3



two D-O events is 3,000 or 4,500 years. Rahmstorf (2003) argues that this pacing is

too regular to be considered random. He suggests that a cyclical process takes place

every 1,470 years that triggers D-O events. If a D-O event is not triggered when it

should have been according to this clock, it is because the mechanism that triggers

D-O events failed and not the underlying clock. Although the cause of this pacing

is unknown, because of the regularity of D-O events Rahmstorf (2003) hypothesizes

that it is due to external sources, such as variations in the sun or the orbit of the

earth, rather than internal causes, such as the circulation in the Atlantic Ocean.

Alternatively, Huybers and Curry (2006) suggest that stochastic resonance par-

tially explains climate variability. Specifically, they propose that climate variability

is determined by a stochastic component in addition to a deterministic component.

Huybers and Curry (2006) state that understanding the deterministic element of cli-

mate variability will lead to an improved ability to predict climate volatility.

The second objective of this thesis is to determine if the rapid climate change

of D-O events can be found in the Antarctica ice core records or if these events

are exclusive to Greenland records. Establishing the presence or absence of D-O

events in ice core records from Antarctica is important because it signifies either

a relationship between the climate in the Northern and Southern Hemispheres or

regionally independent climate systems.

Dansgaard et al. (1993) identify and define D-O events as rapid climate changes

during glacial periods found in the Greenland ice core records. They determine that

the presence of D-O events is proof that the North Atlantic region climate can trans-

form quickly, leading to climate variability. They compare these newly defined D-O

events to records from Antarctica and find that similar events occurred in Antarctica

during the last glacial period. The events found in the Antarctica ice core records are

less frequent and less extreme than D-O events. Dansgaard et al. (1993) attribute this

difference to a mechanism that connects the Northern and Southern Hemispheres: the
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rapid ocean and atmospheric circulation changes found in the North Atlantic. Essen-

tially, they argue that this mechanism influences the Southern Hemisphere but with

less intensity than it does the Northern Hemisphere.

Blunier et al. (1998) compare the Greenland ice core records to the Antarctica

ice core records and find that Greenland lagged Antarctica by approximately 1 to

2.5 kyr over the period 37 to 23 kyr BP. They contend that because Antarctica

leads Greenland, the hypothesis that the Northern Hemisphere influences warming

in the Southern Hemisphere can be rejected. Blunier et al. (1998) also assert that

the length of the lag implies that the Northern and Southern Hemispheres cannot

be connected through the atmosphere; instead, they propose that the Northern and

Southern Hemispheres are linked through the Atlantic Ocean.

A new ice core, EDML, was drilled from Antarctica, which rendered better

comparisons between ice core records from Greenland and Antarctica because of the

high quality of this new core. EDML is easier to compare directly to the records from

Greenland and aids in the pursuit of locating D-O events in Antarctica. The EPICA

Community Members (2006) compare Greenland ice core records to EDML and find

that events of a similar magnitude as D-O events are apparent in EDML, but slightly

before D-O events present themselves in the Greenland ice core records. They at-

tribute this to a bipolar seesaw, which is to say: when the Southern Hemisphere cools

the Northern Hemisphere typically warms. Specifically, they assert that temperatures

in the Northern Hemisphere lag temperatures in the Southern Hemisphere and thus

the Southern Hemisphere influences the climate of the Northern Hemisphere through

a mechanism in the Atlantic Ocean.

Steig (2006) discusses the findings of the EPICA Community Members (2006)

in his paper. He indicates the importance of the new ice core from Antarctica and

the benefit of being able to compare this high-quality core to Greenland’s well-dated

records. Steig (2006) also explains briefly the process of how the Southern Hemisphere
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could influence the climate in the Northern Hemisphere through a mechanism in the

Atlantic Ocean, called the deep meridional overturning circulation. Even though he

is enthusiastic about EDML and the potential it has, Steig (2006) is wary of believing

the assertions made by the EPICA Community Members without substantial proof

that the climate in the Northern and Southern Hemispheres are related.

A new technology called continuous flow analysis has been developed that al-

lows a higher resolution of the chemical records from ice cores to be obtained. This

technology was applied to the NGRIP ice core record from Greenland. Steffensen

et al. (2008) consider the transition between the last glacial period and the current

interglacial period using this higher resolution version of NGRIP. From this examina-

tion, they determine that the warming transition occurring at 14.7 kyr BP happened

within three years. Steffensen et al. (2008) hypothesize that this extremely rapid

warming indicates that the climate is sensitive to the Northern Hemisphere atmo-

spheric circulation and the Atlantic meridional overturning circulation and that the

climate between the Northern and Southern Hemispheres is linked.

Supporting the Hemispheric climate connection but on a millennial time scale,

Jouzel et al. (2007) assess the relationship between the Greenland and Antarctica ice

core records and find that these records are connected. They recognize characteristics

in the Antarctica records that are similar to the Greenland records during the glacial

periods, although these events are smoother and less abrupt than D-O events. Jouzel

et al. (2007) determine that both sets of records show large scale millennial variability;

however, the Antarctica records do not necessarily demonstrate all of the climate

variability contained in the Greenland records.

Bond et al. (1993) argue that D-O events are found in locations of the North

Atlantic region other than Greenland. They suggest that D-O events are large enough

that other locations in the Northern Hemisphere would also experience these events.

Bond et al. (1993) compare ice core records from Greenland with ocean sediment
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records from the North Atlantic region and discover the records from the North

Atlantic Ocean contain events correlated to D-O events. Although this thesis does

not directly consider the presence of D-O events in other regions of the Northern

Hemisphere, naturally, if these events are observed in Antarctica they would also be

observed in other areas of the Northern Hemisphere besides Greenland.

Roe and Steig (2004) primarily use the ice core records BYRD and GISP2

from Antarctica and Greenland, respectively, to evaluate the possible presence of D-

O events in Antarctica. Their results yield no substantial relationship between the

climate in the Northern and Southern Hemispheres. This article describes theories

about the relationship between the climate in the Northern and Southern Hemi-

spheres, such as a lag/lead relationship, and then systematically provides evidence

disproving these theories based on the comparison of BYRD and GISP2. Roe and

Steig (2004) conclude that the ice core records from the Northern and Southern

Hemispheres occasionally demonstrate events of similar magnitudes around the same

relative time period, but they attribute this to climate events that were so globally

prevalent they would have inevitably been recorded in both records. They find that

the climate in the Northern and Southern Hemispheres is independent of one another

and is determined primarily by regional influences.

Ackert Jr. et al. (2008) explore the possibility of the Younger Dryas as a

global event. The Younger Dryas is a cooling period that took place during the last

deglaciation identified in North Atlantic paleoclimate records. Although the Southern

Hemisphere experienced a cooling period preceding the Younger Dryas, Acker Jr. et

al. (2008) evaluate if this Southern Hemisphere cooling was the result of a North

Atlantic signal or was caused by regional forces. After studying glacier retreats from

various lakes in the Southern Hemisphere, they find that the cooling experienced in

the South was not due to a North Atlantic signal. Rather, they conclude that the

climate between the Northern and Southern Hemispheres is governed primarily by
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regional influences.

Although the articles just discussed provide good insight into the issues of

interest, some authors failed to provide statistically based conclusions while others

used ice cores that are of a lesser quality than the ones now available. With this

research, we use ice cores that have been widely accepted as being of a higher quality

than other cores, and importantly, we draw all conclusions based on formal statistical

analysis. The statistical methods utilized in this research involve permutation testing

and bootstrapping methodologies.

Pardo-Igúzquiza and Rodŕıguez-Tovar (2000) suggest using a permutation test

to assess the significance of a power spectrum. Specifically, they suggest that a

random permutation of observations within a series should destroy any cyclicity con-

tained in the series. Through simulation, the cyclicity found in the new series can

then be compared to the cyclicity observed in the original series to evaluate if what

was observed could have happened by chance. Similarly, Swanepoel (1986) proposes

applying bootstrapping methods to the power spectrum to obtain confidence inter-

vals. The ideas expressed in this article can be extended to nonparametric hypothesis

testing. Both Pardo-Igúzquiza and Rodŕıguez-Tovar (2000) and Swanepoel (1986)

indicate that their methods are especially appealing because they are nonparametric

and therefore, distributional properties are not assumed. We likewise perform a per-

mutation test and use bootstrapping approaches when assessing the power spectrum.

With our research, we do not perform a traditional bootstrap. Instead of resampling

each observation with replacement, we resample groups of observations dependent

over time with and without replacement. Also, we perform 10 times the number of

simulations than originally proposed by Pardo-Igúzquiza and Rodŕıguez-Tovar (2000).

Block bootstrap methodologies are useful when data contain dependencies over

time (see Hall 1985; Carlstein 1986; Künsch 1989; Politis and Romano 1994; Chris-

tensen and Sain 2002). Specifically, Christensen and Sain (2002) demonstrate that
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using statistical inference tools that do not account for dependencies when dependen-

cies exist in the data can render the results invalid. They develop a methodology for

incorporating dependencies using a nested block bootstrap for multivariate modeling.

Likewise, it is essential that we take into account the dependencies inherent in the

Greenland and Antarctica ice core records. For our research, the blocks created de-

pend on the data; specifically, each D-O event creates a block. Because this method

is not entirely a block bootstrap approach, we refer to it simply as bootstrapping.

Since we account for the dependencies within the data, the inferences presented in

this thesis are valid.
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3. PAPER TO BE SUBMITTED TO NATURE

3.1 Abstract

Ice core records from Greenland have shown times of rapid warming during the

most recent glacial period, called Dansgaard-Oeschger (D-O) events. D-O events are

important to our understanding of both past climate systems and modern climate

volatility. In this paper, we present new approaches for statistically evaluating the

existence of cyclicity in D-O events and the possible lagged correlation between the

Greenland and Antarctica temperature records. Specifically, we consider permutation

testing and bootstrapping methodologies for assessing the cyclicity of D-O events and

the correlation between the Greenland and Antarctica records. We find that there is

not enough evidence to conclude that D-O events are cyclical; however, the Antarc-

tica record leads the Greenland record by 545 years with a statistically significant

correlation of 0.455.

3.2 Introduction

Greenland ice core records show times of rapid warming during glacial periods,

called Dansgaard-Oeschger (D-O) events (Dansgaard et al. 1993). Some argue that

a regular process paces D-O events and D-O events are therefore cyclical in nature

(Alley and Clark 1999; Schulz 2002; Rahmstorf 2003). In this manuscript, we assess

this hypothesis to better understand the appearance of D-O events. It can be inferred

that if D-O events are cyclical in nature, then they contain a deterministic component

(Huybers and Curry 2006). The possibility of cyclicity in D-O events may be further

explored to better understand climate variability in general. If D-O events instead

appear to be randomly distributed throughout time, then the timing of such extreme
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warming events is not easily characterized and is not likely to be associated with

well-documented astronomical or geophysical cycles.

Another characteristic of D-O events that is uncertain relates to the manifes-

tation of D-O events on a global scale. Some suggest that occurrences similar to

D-O events are discernible in the Antarctica ice core records (Dansgaard et al. 1993;

Blunier et al. 1998; EPICA Community Members 2006; Jouzel et al. 2007; Steffensen

et al. 2008). A connection of this sort between Antarctica and Greenland fosters the

hypothesis that the climate in the Northern and Southern Hemispheres is linked by

some mechanism. Others speculate that the events seen in the Antarctica ice core

records have no association with D-O events (Roe and Steig 2004; Ackert Jr. et al.

2008). Under this theory, it is suggested that regional forces govern the climate in

the Northern and Southern Hemispheres and that occasionally, climate events occur

that are large enough to be recorded on a global scale (Roe and Steig 2004).

The purpose of this paper is to evaluate the stochastic nature of D-O events and

whether or not D-O events occur on a global scale. Specifically, we investigate if D-O

events exhibit a statistically significant cyclical component or if they are randomly

distributed events. In addition, we explore if D-O events are evident in the Antarctica

ice core records or found only in Greenland.

3.3 Methods

An initial examination of GISP2 and EDML revealed a quadratic trend in the

data. To eliminate this problem, both records were detrended and the analysis was

performed on the residuals of the detrended data. Because of the nature of ice cores,

GISP2 and EDML contain unevenly spaced observations. In addition to this, GISP2

is of a higher resolution than EDML, presenting difficulties when comparing GISP2 to

EDML. In order to remedy these issues, GISP2 and EDML were linearly interpolated

to be of the same resolution with evenly spaced observations. For our analysis, two
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series were considered. The first series, referred to as the “short series,” ranges from

47,245 to 20,000 year BP and contains D-O events 2 through 13. Because the first

D-O event occurs during the beginning of the transition between the glacial and

interglacial periods, there is not a general consensus as to if this really is a D-O

event. To be thorough, we considered the time frame that included this event as

well, which ranges from 47,245 to 12,500 years BP. This time frame will be called

the “long series.” The short series actually introduces a bias towards causing D-O

events to appear cyclical because we consider this tight window in which D-O events

are consistently appearing, excluding time periods where no D-O events are observed.

Because the long series includes D-O event 1, and thus a stretch of time when no D-O

events are observed, this series does not contain the same bias towards making D-O

events appear cyclical.

The occurrence of D-O events can be viewed from two perspectives, either

non-overlapping or overlapping in nature. These two perspectives are referred to

as the non-overlapping D-O events model (NOM) and the overlapping D-O events

model (OM). The NOM implicitly assumes that a D-O event is characterized by a

sharp increase in temperature followed by a sustained and gradual return to baseline

temperature. Because of this rigid definition of a D-O event, a second D-O event

cannot occur until the first has run its full course. The OM assumes that a D-O event

is characterized by the initial sharp increase in temperature, with the gradual return

to baseline temperature being a natural result of the initial change in temperature.

Thus, the OM allows for a D-O event to occur before a previous D-O event has run

its full course. We consider both characterizations of the D-O event.

Under the OM two perspectives can be taken: (1) D-O events 8 and 12 are not

the result of overlapping D-O events but are simply longer than other D-O events,

or (2) D-O events 8 and 12 may be considered to be periods in which more than

one warming event occurs so closely in time that the temperature does not return
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to baseline between events. The second perspective implies that D-O events 8 and

12 should not be included in the data generation for the analysis. We explored the

potential for cyclicity under both positions and found the conclusions to be the same.

For the purposes of this manuscript, we discuss the findings of the first perspective

when referencing the OM.

3.3.1 Cyclicity Detection

In order to assess the cyclicity of D-O events, permutation testing and boot-

strapping methodologies were applied. Our end goal with these methods is to create

a distribution of temperature records that represent the range of possible records

under the hypothesis of no cyclicity. Specifically, the D-O events within each series

were randomly shuffled (sampled without replacement) or resampled (sampled with

replacement) to destroy any cyclicity among the observed sequence of D-O events.

Although the p-values associated with shuffling D-O events were typically lower, the

conclusions reached when shuffling or resampling D-O events were the same. For

simplicity, the results presented in this manuscript are derived from resampling D-O

events only. D-O events were identified objectively using a piece-wise linear model

algorithm. The observations between D-O events, referred to as the “filler,” were

randomized such that groups of sequential observations also remained together in the

new series. It was important to allow the filler to be randomized such that continuous

segments were retained in order to preserve some of the dependencies inherent to the

time series. These resulting series will be referred to as pseudo-series, which act as

possible realizations of temperature records under the assumption of the hypothe-

sis of no cyclicity. These pseudo-series were linearly interpolated to contain 1,000

observations. As a result, comparisons can be made between the observed, linearly

interpolated series and the pseudo-series without affecting statistical significance.

By the use of periodograms, the maximum periodogram peak of the pseudo-
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series was obtained and compared to the periodogram peaks associated with the

observed series. The periodogram peak of the observed series is the test statistic. The

filler of the observed series was also randomized using an approach that resembles the

block bootstrap (Hall 1985; Carlstein 1986; Swanepoel 1986; Künsch 1989; Politis

and Romano 1994; Christensen and Sain 2002), but ensuring that we have removed

any residual low-frequency cyclicity that may be associated with the filler. For the

evaluation of each model (NOM and OM), periodogram peaks associated with very

low-frequency cycles (i.e., cycles with periods exceeding 2,500 or 3,000 years) were

treated as unrelated to D-O event-like phenomena. We refer to this upper bound

for the length of a cycle of interest as the cycle length threshold. To evaluate the

significance of the observed cyclicity, the test statistic was compared against the

maximum periodogram peak of the pseudo-series and p-values were computed. An α

level of 0.05 was used as the threshold of significance.

3.3.2 Correlation between GISP2 and EDML

The correlation at various lags between GISP2 and EDML was evaluated using

similar methods. After generating pseudo-series from GISP2 using the methods pre-

viously described, these series were compared to EDML and the maximum absolute

value of the lagged correlations was computed, considering 27-year lags in the range

of -2,500 to 2,500 years (Blunier et al. 1998; EPICA Community Members 2006).

The inflated experiment-wise error rate associated with the simultaneous testing of

multiple lagged correlations was corrected for by creating a distribution of the maxi-

mum absolute value of the lagged correlations in the spirit of Tukey’s HSD (Higgins

2004). The correlation of each lag between the original records was then compared

against this null distribution to determine significance. Also considered was the cor-

relation between GISP2 and EDML at a lag of 0 using methods that did not correct

for simultaneous testing. The results associated with this procedure should only be
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Cycle Length Short Series Long Series
Threshold (47 to 20 kyr BP) (47 to 12.5 kyr BP)

NOM
2,500 years 0.229 0.411
3,000 years 0.284 0.502

OM
2,500 years 0.116 0.273
3,000 years 0.154 0.355

Table 3.1: The p-values after considering the short and long series for the non-
overlapping D-O events model (NOM) and the overlapping D-O events model (OM).
Under these specifications and at an α level of 0.05, there are no significant cyclicities
associated with the appearance of D-O events.

considered if we are interested in the correlation of GISP2 and EDML at a lag of 0

and no other lags.

3.4 Results and Discussion

To evaluate the existence of cyclicities in the manifestation of D-O events, the

D-O events in the short and long series were considered under the NOM and OM.

The corresponding p-values are summarized in Table (3.1). It appears that the OM

consistently results in lower p-values when compared to the NOM, indicating that

cyclicity is more plausible under the OM for D-O events. However, there is no combi-

nation of D-O event model, cycle length threshold, and data series length that yields

a statistically significant p-value. Evidence for cyclicity is strongest when using the

OM, the cycle length threshold of 2,500 years, and the shorter series with a p-value

of 0.116. That is, in this setting, the pseudo-series (which randomly distribute D-O

events throughout the 47 to 20 kyr BP time period) yield evidence of cyclicity that

is more compelling than the original data in 11.6% of the replications.

Also evaluated was the number of D-O events that could have occurred during

the short series. Essentially, each D-O event can be considered a Bernoulli trial in

which the event either appears or does not appear at a given time. D-O events have
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been hypothesized to occur every 1,470 years during glacial periods (Grootes and

Stuiver 1997). Based on this information, between 4 and 18 D-O events could have

appeared in the short series with probability greater than 0. Under the NOM and

OM, the number of D-O events in the pseudo-series was allowed to vary between

4 and 18. Even after varying the number of D-O events that could appear in the

short series, at an α level of 0.05, there is no significant evidence of cyclicity in the

appearance of D-O events, as summarized by Figure (3.1).

We explored the possibility that the duration of D-O events was a contribu-

tor to these events appearing somewhat cyclic in their manifestation. To test this

hypothesis, a duration multiplier was applied to each D-O event in the short series

to either shrink or expand the events. The scaled D-O events were randomized and

cycles of less than 3,000 years were examined. Because the NOM does not allow

D-O events to overlap, the duration multipliers considered under this model were

mNOM = 0.25, 0.50, 0.75, and 1.00; however, under the OM, the duration multipliers

considered were mOM = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00. Figure (3.2)

confirms the suspicion that the observed D-O event durations are ideal for making

this series appear cyclic. Because D-O events involve evaluated temperatures for a

sustained period of time, the (possibly false) evidence of cyclicity in the time series

will be affected by the duration of the events. These analyses indicate that any per-

ception of cyclicity in D-O events is accentuated by event durations that are optimal

for appearing cyclic—shorter D-O events with more filler or longer D-O events with

less filler each yield less dramatic evidence of cyclicity.

D-O events have been suggested to occur every 1,470 years but may occasion-

ally skip an appearance or two; that is to say, the duration between D-O events could

occasionally be 3,000 or 4,500 years (Rahmstorf 2003). In order to assess this argu-

ment, we considered the periodograms of the pseudo-series differently than previously

described. Instead of identifying the maximum peak of the periodograms, we found
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NOM OM
Short Series 0.258 0.140
Long Series 0.483 0.356

Table 3.2: The p-values after accounting for the possibility of skipping manifestations
of D-O events, where the short series is 47 to 20 kyr BP and the long series is 47
to 12.5 kyr BP. Two models were employed: the non-overlapping D-O events model
(NOM) and the overlapping D-O events model (OM). Under this paradigm and at an
α level of 0.05, there is not enough evidence to conclude that D-O events are cyclical
in nature.

the sum of the two highest peaks within a certain distance of each other at different

periodicities. The value that maximized this procedure was retained to represent the

particular pseudo-series. The same was done to the observed series after randomizing

the filler as previously discussed. This new test statistic was compared to the collec-

tion of maximum sums computed from the pseudo-series to evaluate if the cyclicity

observed from this perspective was statistically significant. Under this scenario, both

the short and long series were considered with the NOM and OM. Table (3.2) con-

tains these p-values. Because these p-values do not exceed an α level of 0.05, there

is not enough evidence to conclude D-O events are cyclical after accounting for the

possibility of D-O events skipping an appearance.

3.4.1 Correlation between Greenland and Antarctica Records

The correlation between GISP2 and EDML from 47 to 20 kyr BP was evaluated

at various lags, as shown in Figure (3.3). The x-axis of this plot represents the lag

in years. A positive value means that GISP2 leads EDML, whereas a negative value

indicates that EDML leads GISP2. It appears that the correlation between these two

records is greatest when Antarctica leads Greenland.

The statistical significance of the correlation between GISP2 and EDML was

assessed under the NOM and OM. Figure (3.4) shows the resulting p-values at vari-
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ous lags under the NOM. The black line represents the p-values computed using an

approach similar to Tukey’s HSD and the black point is the p-value at a lag of 0 when

we did not correct for simultaneous testing. The red dotted line represents an α level

of 0.05. Any observations that fall below this line are significant. The plot similar to

Figure (3.4) was examined for the OM and was almost identical to the plot included

in this manuscript.

As Figure (3.4) demonstrates, under the NOM, the correlations between GISP2

and EDML are significant when EDML leads GISP2 by 382 to 682 years. Similarly,

when the OM is evaluated, significant correlations occur when EDML leads GISP2 by

382 to 682 years. In each of these two scenarios, the maximum significant correlation

between GISP2 and EDML is 0.455 and occurs when EDML leads GISP2 by 545 years.

Thus, it appears that temperatures in Antarctica lead temperatures in Greenland by

545 years, roughly agreeing with an Antarctica lead of 1,000 to 2,500 years (Blunier

et al. 1998).

The evidence for cyclicity in observed D-O events is not compelling enough to

conclude that D-O events are cyclical, regardless of the D-O event model, cycle length

threshold, and data series length imposed. This does not mean that D-O events are

not cyclical; rather, there is a lack of evidence to prove they are cyclical. However, for

there to be a cycle governing the appearance of D-O events, some external force would

have to be involved that causes this regularity. As of yet, an external force that has

the same time scale has not been identified. This, coupled with the lack of evidence

for cyclicity in observed D-O events, may suggest that D-O events are not cyclical

in manifestation. Non-cyclicity of D-O events implies that internal forces govern this

climate variability and that the internal climate system is inherently unstable and

sensitive.

With this research, we explored two definitions of D-O events. The first defi-

nition forces a cooling period between warming events, and thus D-O events are not
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allowed to overlap (NOM), whereas the second definition allows multiple warming

events to occur before the previous warmings return to baseline, allowing D-O events

to overlap (OM). Understanding which of these two definitions represents the ap-

pearance of D-O events will aid our understanding of the mechanism forcing their

manifestation. Specifically, if the NOM describes D-O events, then the mechanism

driving their appearance will have long time scale changes, such as ice sheet, whereas

the OM representation of D-O events would point to mechanisms that can reorganize

quickly.

The length of the lags that resulted in significant correlations between Green-

land and Antarctica suggest that temperature in the Northern and Southern Hemi-

spheres are linked via oceanic teleconnection. In particular, because Antarctica leads

Greenland, it appears that the temperature in the Southern Hemisphere changes first,

and that change is communicated to the Northern Hemisphere through the ocean. Be-

cause of the long length of the lag, an atmospheric teleconnnection is unlikely (Blunier

et al. 1998). Considering this South-North connection and the lack of evidence for

cyclicity in the observed D-O events, small climate changes in the Southern Hemi-

sphere may result in amplified changes in the Northern Hemisphere, as demonstrated

through D-O events. The larger volume of land and ice in the Northern Hemisphere

may cause the amplifications of climate variability in the North. The signal between

hemispheres may be transferred through the ocean. In order to evaluate this possi-

bility, further research in this area must be completed.
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Figure 3.1: The p-values after allowing the number of D-O events in the series to
vary from 4 to 18. Using the short series, the non-overlapping D-O events model
(NOM) and overlapping D-O events model (OM) were considered. Regardless of the
number of D-O events examined, at an α level of 0.05 there is not enough evidence
to conclude that D-O events are cyclical in nature.
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Figure 3.2: The p-values for the non-overlapping D-O events model (NOM, top plot)
and the overlapping D-O events model (OM, bottom plot), where the duration mul-
tiplier is the amount the D-O events were retracted or expanded. The short series
and cycles of less than 3,000 years were considered. The observed duration is ideal
for this series appearing cyclic; however, at an α level of 0.05, there are no significant
cyclicities.
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Figure 3.3: The correlation between the Greenland and Antarctica records at various
lags. The records were considered from 47 to 20 kyr BP. A positive lag in years
indicates that GISP2 leads EDML, and a negative lag in years means that EDML
leads GISP2.
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Figure 3.4: The black line represents the p-values, after correcting for simultaneous
testing, associated with the correlation between GISP2 and EDML at each lag. The
black point shows the p-value at a lag of 0 that has not been corrected for simultaneous
tests, and the red dotted line represents an α level of 0.05. The non-overlapping D-O
events model (NOM) was considered. When EDML leads GISP2 by 545 years, the
correlation is 0.455, the maximum significant correlation.
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4. CONCLUSIONS

The purpose of this thesis was twofold: to evaluate the evidence for cyclicity

in observed D-O events and to assess whether or not the warming events observed

in Greenland are related to the warming events observed in Antarctica. To accom-

plish both objectives, permutation tests and bootstrap approaches were employed.

Specifically, the observations within the Greenland record were randomized by ei-

ther shuffling or resampling D-O events. Statistics were accumulated from these new,

randomized series in order to create null distributions that were used to assess the sig-

nificance of what was observed. Two models were considered in these analyses: the

non-overlapping D-O events model (NOM), which forces a cooling period between

warming events, and the overlapping D-O events model (OM), which allows for a

D-O event to occur before the previous D-O event has run its full course.

In particular, we found that there is not enough evidence to conclude that D-O

events are cyclical in their manifestation. We considered the short and long series

applied to the NOM and OM with shuffled D-O events and found the corresponding

p-values to be non-significant at an α level of 0.05 for cycles less than 2,500 and

3,000 years. Likewise, after varying the number of D-O events that could appear in

the short series, the p-values under the NOM and OM were also non-significant. We

experimented with the duration of D-O events and found the observed length to be

optimal for making D-O events appear cyclical in nature. That is, if the observed D-O

events were any shorter or longer, the statistical evidence for cyclicity would be weaker

still. Lastly, we allowed for the possibility of D-O events appearing approximately

every 1,500 or 3,000 years. This analysis also yielded non-significant p-values. Thus,

however one approaches this issue, there is not enough evidence to conclude that D-O

events are cyclical in nature, regardless of what model is believed to be true.

24



To assess if the Greenland and Antarctica records were related, we considered

the short series, shuffling and resampling D-O events using both the NOM and the

OM. The correlation between the Greenland and the Antarctica record was computed

for a variety of lags, the maximum lag corresponding to 2,500 years. Under each

scenario, we found that a 545-year lagged correlation of 0.455 was significant at an α

level of 0.05. This correlation occurs when the Antarctica record leads the Greenland

record by 545 years and is the maximum significant correlation. When D-O events

were shuffled, correlations with lags within the range of 327 to 736 years and 409 to

654 years were significant and all other lagged correlations were non-significant under

the NOM and OM, respectively. Similarly, when considering D-O events that were

resampled, correlations with lags within the range of 382 to 682 years were significant

under both the NOM and the OM.

The evidence for cyclicity in observed D-O events is not compelling enough to

conclude that D-O events are cyclical, regardless of the D-O event model, cycle length

threshold, and data series length imposed. This does not mean that D-O events are

not cyclical; rather, there is a lack of evidence to prove they are cyclical. However, for

there to be a cycle governing the appearance of D-O events, some external force would

have to be involved that causes this regularity. As of yet, an external force that has

the same time scale has not been identified. This, coupled with the lack of evidence

for cyclicity in observed D-O events, may suggest that D-O events are not cyclical

in manifestation. Non-cyclicity of D-O events implies that internal forces govern this

climate variability and that the internal climate system is inherently unstable and

sensitive.

With this research, we explored two definitions of D-O events, the NOM and

the OM. Understanding which of these two definitions represents the appearance of

D-O events will aid our understanding of the mechanism forcing their manifestation.

Specifically, if the NOM describes D-O events, then the mechanism driving their
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appearance will have long time scale changes, such as ice sheet, whereas the OM

representation of D-O events would point to mechanisms that can reorganize quickly.

The length of the lags that resulted in significant correlations between Green-

land and Antarctica suggest that temperature in the Northern and Southern Hemi-

spheres are linked via oceanic teleconnection. In particular, because Antarctica leads

Greenland, it appears that the temperature in the Southern Hemisphere changes first,

and that change is communicated to the Northern Hemisphere through the ocean. Be-

cause of the long length of the lag, an atmospheric teleconnnection is unlikely (Blunier

et al. 1998). Considering this South-North connection and the lack of evidence for

cyclicity in the observed D-O events, small climate changes in the Southern Hemi-

sphere may result in amplified changes in the Northern Hemisphere, as demonstrated

through D-O events, and this signal between hemispheres may be transferred through

the ocean. In order to evaluate this possibility, further research in this area must be

completed.
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A. STATISTICAL METHODS

The data employed for this thesis come from Greenland and Antarctica. Al-

though many ice cores have been extracted from Greenland and Antarctica, this thesis

uses one ice core from Greenland, GISP2, and one ice core from Antarctica, EDML.

The GISP2 record is well-dated, making it a popular ice core to use in research (Roe

and Steig, 2004). Likewise, EDML is widely considered a high-quality ice core when

compared to other cores from Antarctica (EPICA Community Members, 2006). To

prevent confusion, these ice core records will be referred to as the Greenland and

Antarctica records. The data for Greenland and Antarctica are given in terms of

years before present (BP) where present is considered to be 1950. Isotopes found in

the ice cores act as surrogates for temperature: as temperature decreases, the isotopes

under study become less abundant. The isotopes used for this research include δ18O,

the temperature metric for the Greenland record, and δD, used to represent the tem-

perature from the Antarctica record. An initial examination of the Greenland and

Antarctica records revealed a possible quadratic trend in the data. To eliminate this

problem, both records were detrended and analyses were performed on the residuals

of the detrended data.

Because of the nature of ice cores, the Greenland and Antarctica records con-

tain unevenly spaced observations. Information is difficult to retrieve from ice cores

and measurements are made wherever possible, regardless of the spacing between

measurements. This presents problems when working with time series tools, such as

periodograms. Another feature of these datasets is that the Greenland record is of a

higher resolution than the Antarctica record. This means that there are more mea-

sured values and thus more observations for the same time frame in the Greenland

record than in the Antarctica record. Again, this presents difficulties when com-

paring the Greenland and Antarctica records. Lomb (1976) proposes a method for
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considering the power spectrum of unevenly spaced data. We did not use the proce-

dure suggested by Lomb because the data also needed to be transformed to the same

resolution. Instead, to remedy these issues, the data were linearly interpolated to

contain 1,000 evenly spaced observations. Although this approach works well for the

Greenland record, which contains 234 observations, the Antarctica record is extremely

sparse, containing only 87 observations. This lack of data presents the problem of

perhaps not truly representing the variability of temperature from Antarctica. For

instance, more data may reveal a larger number of peaks or peaks of a higher mag-

nitude in the Antarctica record. In spite of the short-comings associated with this

sparse record, this version is the only one we were able to obtain and may be the

highest resolution available at this time. Thus, although the results associated with

a comparison of the Greenland and Antarctica records are interesting, they are not

conclusive until a better, higher resolution of the Antarctica record can be obtained.

Since D-O events have indisputably occurred during the most recent glacial

period, the window of consideration can be constricted to include this time frame

only. Twelve D-O events, events 2 through 13, occurred between 47,245 to 20,000

year BP. This time frame will be referred to as the short series. The first D-O event

occurs during the beginning of the transition between the glacial and interglacial

periods. Because of its location, there is not a general consensus as to if this really is

a D-O event. To be thorough, we considered the time frame that included this event

as well, which ranges from 47,245 to 12,500 year BP. This window will be called the

long series. The short and long series were used for the cyclicity analysis but only

the short series was used when comparing the Greenland and Antarctica records.

The reason for this is because the Antarctica record clearly moves into the transition

between the glacial and interglacial period earlier than the Greenland record.

The occurrence of D-O events can be viewed from two perspectives: D-O events

are either non-overlapping or overlapping in nature. Under the non-overlapping per-

31



spective, D-O events are formed by separate warming periods that can only begin

after an earlier warming event has entirely concluded with temperatures returning to

baseline. That is, a particular D-O event is considered one warming event and not

a series of warming events that overlap one another. The overlapping view of D-O

events allows for D-O events to be formed by a series of smaller, overlapping warming

events. Both perspectives were explored through this research. For simplicity, the

non-overlapping view is referred to as the non-overlapping D-O events model (NOM)

and the overlapping perspective is referred to as the overlapping D-O events model

(OM).

Under the OM, two positions can be taken: (1) D-O events 8 and 12 are not

the result of overlapping D-O events but are simply longer than other D-O events,

or (2) D-O events 8 and 12 are the result of overlapping D-O events and should not

be considered in the data generation for the analysis. We explored both positions

and found the conclusions from both views to be the same. For the purposes of this

paper, we will discuss the findings of the first perspective when referencing the OM.

A.1 Cyclicity Detection

In order to assess the cyclicity of D-O events, permutation testing and boot-

strapping methodologies were applied. Specifically, the D-O events within the ob-

served series were randomly relocated in the time series to destroy any cyclicity that

may have existed among the actual observed sequence of D-O events. We call this

new series the pseudo-series because it consists solely of data found in the original

series but reordered in such a way that D-O events are observable but not cyclical.

The scale of each pseudo-series was adjusted so that the variance of each pseudo-

series is equal to the variance of the original series. The cyclicity evident in each

pseudo-series was quantified by recording the maximum periodogram peak, where

peaks corresponding to cycles less than 2,500 and 3,000 years were considered. This
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measurement of cyclicity was compared to the cyclicity found in the observed series.

To evaluate the significance of the observed cycle, p-values were computed and an α

level of 0.05 was used as the threshold of significance.

Because observations within the short series are dependent over time, it was

essential to preserve the D-O events in this bootstrapping-type approach. Although

the objective was to create series that were randomized, the structure and dependen-

cies inherently associated with D-O events are important to preserve. Thus, instead

of randomizing each observation, the D-O events themselves were randomized. D-

O events were identified objectively using a piece-wise linear model algorithm. The

observations between the D-O events, referred to as the “filler,” also contain depen-

dencies over time. Because of this, the filler was randomized such that groups of

sequential observations would remain together in the new series. Specifically, a ran-

domly selected value indicated where on the filler to start sampling from. Any filler

before the randomly selected starting value was simply appended to the end of the

filler observations. Consecutive pieces of filler values were then selected and randomly

placed between the rearranged D-O events, preserving some dependencies natural to

this time series. The resulting series shares certain important characteristics with

the short series, such as preserving the actual D-O events and spanning the same

amount of time, but applying this bootstrapping method allowed the resulting series

to be random. These resulting series will be referred to as pseudo-series, which act as

possible realizations of temperature records under the assumption of the hypothesis

of no cyclicity.

Two approaches were taken to randomize the D-O events within the pseudo-

series. The first approach consisted of shuffling the D-O events. This procedure

implies that the D-O events were sampled without replacement and thus D-O events

2 through 13 were allowed to appear only once in the pseudo-series. By shuffling the

D-O events, these 12 D-O events represent all the possible D-O events that could have
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occurred, limiting the null hypothesis. Conversely, the second approach, resampling,

samples the D-O events with replacement. The number of D-O events allowed in the

pseudo-series was constrained to match that of the original, short series. That is, the

pseudo-series was such that it could only contain 12 D-O events; however, the D-O

events that appeared in the pseudo-series were randomly selected with replacement,

allowing the possibility of some D-O events appearing more than once and others not

at all in the pseudo-series. Under this procedure, these 12 D-O events represent a

random sample of D-O events that could have occurred and leads to a broader null

hypothesis. These two methods of randomizing the D-O events were completed under

both the NOM and OM.

The periodogram of the pseudo-series was then examined to evaluate cyclicity.

Periodograms are tools that display any possible cyclicity within a time series as

peaks. The height of the peak indicates whether or not there is strong evidence of

a cycle. Specifically, very short peaks are likely noise and tall peaks indicate strong

evidence of cyclicity. From the periodogram, we collected the height of the tallest peak

that corresponded to cycles less than 2,500, 3,000, and 5,000 years. Although D-O

events have been suggested to occur approximately every 1,470 years, we considered

these three cycles to be thorough (Grootes and Stuiver, 1997). Considering these

higher-frequency peaks accounts for the possibility of D-O events having a different

cyclicity due to noise or D-O events really having two cycles, one of about 1,500 years

and another, less pronounced cycle at 3,000 years. This latter scenario could happen

if a D-O event skips a manifestation but occurs 1,500 years after it failed to appear,

as suggested by Rahmstorf (2003). Because the results from cycles less than 5,000

years provided no new or insightful information, we will only discuss cycles less than

2,500 and 3,000 years. We simulated this entire process using 10,000 repetitions and

collected the maximum height for cycles less than 2,500 and 3,000 years each time.

This collection of statistics formed two null distributions: a null distribution for cycles
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less than 2,500 years and a null distribution for cycles less than 3,000 years.

In order to make inferences on the significance of the observed cyclicity, we

created a test statistic to compare to the null distributions. It was necessary for the

test statistic to represent the observed cyclicity due to the appearance of D-O events

only. To capture this cycle, the filler was randomized to ensure that any cyclicity

associated with it was removed. The filler was sampled using the same approach

discussed with the creation of the pseudo-series. A periodogram of this series was

produced and the maximum height pertaining to cycles less than 2,500 years and

3,000 years were both collected. Because removing the cyclicity associated with the

filler introduces a random component, it was necessary to compute many test statistics

through simulation. As before, 10,000 repetitions were used in this simulation. Each

of these test statistics was compared to the appropriate null distribution and a p-

value was computed, resulting in a p-value associated with each test statistic. Since

we created 10,000 test statistics and thus had 10,000 p-values, we averaged the p-

values such that there was only one p-value associated with each scenario of interest.

For instance, we obtained an average p-value for the NOM when D-O events were

shuffled and we considered cycles of less than 2,500 years. All results related to

cyclicity are given in terms of averaged p-values. The same general method of building

null distributions and test statistics was also implemented for the long series.

Several follow-up analyses were performed to better understand the observed

cyclicity. These follow-up analyses consisted of the same procedure with some slight

modifications. Specifically, when assessing the impact of varying the number of D-O

events that could appear in a series, we considered the short series and the resampling

randomization method. Likewise, when we considered the length, or duration, of a

D-O event, we also used the short series and the resampling randomization method;

however, we only considered cycles less than 3,000 years. A duration multiplier was

applied to each D-O event to either expand or contract the D-O event before D-O
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events were resampled. Lastly, we considered the possibility of D-O events having two

cycles: a cycle of about 1,500 years and a cycle of a higher frequency for the instances

when D-O events skip a manifestation. This required that a new null distribution be

built based on a statistic that could incorporate two peaks in the periodogram. The

statistic we retrieved was the sum of the two highest peaks in the periodogram that

were within a certain distance of each other. This distance was double the given cycle

on the periodogram with a buffer of 15% of that distance to account for any noise. To

clarify, if we considered a cycle of 1,500 years, the distance metric we would compute

would be 3,000 ± 0.15 × 3,000. Because these distributions were built from different

statistics, we also collected the appropriate test statistics to make comparisons under

this paradigm.

A.2 Correlation between the Greenland and Antarctica Records

As mentioned previously, we considered the short series only when assessing the

correlation between the Greenland and Antarctica records. The D-O events in the

Greenland record were randomized using the shuffling and resampling methods and

both the NOM and OM were considered. We evaluated the correlation between the

Greenland and Antarctica record at various lags. We allowed the records to lag each

other by 2,500 years because of the findings and suggestions of Blunier et al. (1998)

and the EPICA Community Members (2006).

The same general procedure discussed in detail in the previous section was em-

ployed. After generating a pseudo-series of the Greenland record, this series was

compared to the Antarctica record and two correlations were computed: the correla-

tion at a lag of 0 and the maximum absolute value of the correlation, regardless of

lag number. A simulation of 10,000 repetitions was performed and these statistics

were gathered with each repetition. This collection of statistics resulted in two null

distributions, a null distribution containing the correlation at a lag of 0 and a distri-
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bution of the maximum absolute value of the correlation. The original Greenland and

Antarctica records were assessed and the appropriate test statistics were retrieved to

compare against the null distributions.

The p-values associated with the correlation at a lag of 0 do not take into account

simultaneous tests. Because of this, the results should not be used unless we are

only interested in describing the correlation between the Greenland and Antarctica

records at a lag of 0. If we are instead interested in the correlation at other lags,

the simultaneous testing must be accounted for to avoid inflating the experiment-

wise error rate. In the spirit of Tukey’s HSD (Higgins, 2004), we corrected for this

inflation by creating a distribution of the maximum absolute value of the correlation.

The correlation of each lag between the original records was then compared against

this null distribution to determine significance.
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B. ADDITIONAL RESULTS

B.1 Cyclicity of D-O events

The first analysis considered was shuffling the D-O events of both the short and

long series under the NOM and OM. Table (B.1) summarizes the p-values from this

analysis. It appears that the OM consistently results in lower p-values when compared

to the NOM, indicating that cyclicity is more plausible under the OM for D-O events.

However, there is no combination of D-O event model, cycle length threshold, and

data series length that yields a statistically significant p-value. Evidence for cyclicity

is strongest when using the OM, the cycle length threshold of 2,500 years, and the

shorter series with a p-value of 0.06. That is, in this setting, the pseudo-series (which

randomly distribute D-O events throughout the 47 to 20 kyr BP time period) yield

evidence of cyclicity that is more compelling than the original data in 6% of the

replications.

Because the first analysis showed that at an α level of 0.05 there is not enough

evidence to prove that D-O events are cyclical in nature, regardless of the model,

series, or amount of cyclicity under consideration, follow-up analyses were performed

to better understand D-O events. The first follow-up analysis dealt with the number

Cycle Length Short Series Long Series
Threshold (47 to 20 kyr BP) (47 to 12.5 kyr BP)

NOM
2,500 years 0.14 0.17
3,000 years 0.20 0.28

OM
2,500 years 0.06 0.09
3,000 years 0.09 0.17

Table B.1: The p-values from shuffling the D-O events for the non-overlapping D-
O events model (NOM) and the overlapping D-O events model (OM). Under these
specifications and at an α level of 0.05, there are no significant cyclicities associated
with the appearance of D-O events.
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of D-O events that could have been observed in the short series. Essentially, each D-O

event can be considered a Bernoulli trial in which the event either appears or does not

appear at a given time. Using the notion that D-O events could occur approximately

every 1,470 years (Schulz, 2002), new series were constructed to contain 4 to 18 D-O

events. The probability of observing 4 to 18 D-O events is greater than 0, which is

why as few as 4 D-O events were considered and as many as 18 D-O events were

included. The resampling approach was applied to the short series under the NOM

and OM and the p-values are summarized in Figure (B.1). It is again apparent that

at an α level of 0.05 there is not enough evidence of cyclicity in D-O events, even

when the number of D-O events is varied. As in Table (B.1), the OM results in lower

p-values than the NOM when considering the same cycles. Likewise, cycles of less

than 2,500 years result in lower p-values than cycles of less than 3,000 years. Note

that these p-values based on resampling D-O events never look as significant as when

we use the 12 actual D-O events. This indicates that these specific events accentuate

the appearance of cyclicity more than sets of resampled D-O events.

The second follow-up analysis considered the length of D-O events. Specifically,

the duration of D-O events could be a reason why these events appear somewhat cyclic

in their manifestation, the length of D-O events forcing the cyclicity observed in the

short and long series. To test this hypothesis, a duration multiplier was applied to

each D-O event in the short series to either shrink or enlarge the events. The scaled D-

O events were resampled and cycles of less than 3,000 years were examined. Because

the NOM does not allow D-O events to overlap, the duration multipliers considered

under this model were mNOM = 0.25, 0.50, 0.75, and 1.00; however, under the OM,

the duration multipliers considered were mOM = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50,

1.75, and 2.00. Figure (B.2) shows the p-values associated with this analysis where

the top plot contains the p-values corresponding to the NOM and the bottom plot

shows the results of the OM. Figure (B.2) confirms the suspicion that the duration of
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Figure B.1: The p-values corresponding to resampling D-O events, where the number
of D-O events in the series was allowed to vary from 4 to 18. Using the short series,
the non-overlapping D-O events model (NOM) and overlapping D-O events model
(OM) were considered. Regardless of the number of D-O events examined, at an α
level of 0.05 there is no significant cyclical component connected to D-O events.
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NOM OM
Short Series 0.258 0.140
Long Series 0.483 0.356

Table B.2: The p-values after accounting for the possibility of skipping manifestations
of D-O events, where the short series is 47 to 20 kyr BP and the long series is 47
to 12.5 kyr BP. Two models were employed: the non-overlapping D-O events model
(NOM) and the overlapping D-O events model (OM). Under this paradigm and at an
α level of 0.05, there is not enough evidence to conclude that D-O events are cyclical
in nature.

a D-O event makes the series seem more or less cyclic, regardless of when the event

actually appears in the series. In particular, the observed duration is ideal for making

this series appear cyclical. Because D-O events involve evaluated temperatures for a

sustained period of time, the (possibly false) evidence of cyclicity in the time series will

be affected by the duration of the events. These analyses indicate that any perception

of cyclicity in D-O events is accentuated by event durations that are optimal for

appearing cyclic—shorter D-O events with more filler or longer D-O events with less

filler each yield less dramatic evidence of cyclicity.

It has been suggested that D-O events occur approximately every 1,500 years

but may occasionally skip a beat or two; that is to say, the duration between D-O

events could occasionally be 3,000 or 4,500 years (Rahmstorf, 2003). This idea was

assessed through a third follow-up analysis in which the statistic collected to build

the null distribution and the test statistic was modified. Both the short series and the

long series were considered under the NOM and OM. From Table (B.2), it appears

that the p-values associated with the NOM and OM exceed an α level of 0.05, which

means that there is not enough evidence to conclude that D-O events are cyclic in

nature, even if D-O events skip a beat.
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Figure B.2: The p-values for the non-overlapping D-O events model (NOM, top plot)
and the overlapping D-O events model (OM, bottom plot), where the duration mul-
tiplier is the amount the D-O events were retracted or expanded. The short series
and cycles of less than 3,000 years were considered. The observed duration is ideal
for this series appearing cyclic; however, at an α level of 0.05, there are no significant
cyclicities.
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B.2 Correlation between the Greenland and Antarctica Records

The correlation between the Greenland and Antarctica records was found at

various lags. The significance of these correlations was assessed using an approach

similar to Tukey’s HSD. In addition to this, the significance of the correlation between

the Greenland and Antarctica records was evaluated at a lag of 0 using methods that

did not correct for multiple comparisons. The records were compared using the short

series and both the NOM and OM. Figure (B.3) shows the correlation between the

Greenland and Antarctica records at various lags and Figure (B.4) shows the resulting

p-values under the NOM and shuffled D-O events. Plots similar to Figure (B.4) were

examined for each model and randomization method and were almost identical in

appearance.

Figure (B.4) represents the p-values of each correlation under the NOM after

shuffling the D-O events. The black line shows the p-values computed using an

approach similar to Tukey’s HSD. The black point represents the p-value at a lag of

0 using methods that do not account for multiple comparisons. This p-value should

only be used if we are interested in the correlation at a lag of 0. The red dotted

line represents an α level of 0.05 and any observations that fall below this line are

significant. The x-axis in this plot is the lag in years. A positive value means that

the Greenland record leads the Antarctica record and a negative value means the

Antarctica record leads the Greenland record.

As Figure (B.4) shows, when the NOM is considered and D-O events are shuf-

fled, the correlations between the Greenland and Antarctica records are significant

when the Antarctica record leads the Greenland record by 327 to 736 years. When

D-O events are again shuffled but the OM is evaluated, significant correlations occur

when the Antarctica record leads the Greenland record by 409 to 654 years. In both

cases, the maximum correlation between the Greenland and Antarctic records is 0.455

and happens when the Antarctica record leads the Greenland record by 545 years.

43



Lag in Years

C
or
re
la
tio
n

-2,500 -1,250 0 1,250 2,500

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Figure B.3: The correlation between the Greenland and Antarctica records at various
lags. The records were considered from 47 to 20 kyr BP. A positive lag in years
indicates that the Greenland record leads the Antarctica record and a negative lag in
years means that the Antarctica record leads the Greenland record.
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Consider now the situation of resampling D-O events. For the NOM and OM,

significant correlations between the two records occur when the Antarctica record

leads the Greenland record by 382 to 682 years. As before, a correlation of 0.455,

the maximum correlation between the Greenland and Antarctica records for both the

NOM and OM, happens when the Antarctica record leads the Greenland record by

545 years. Thus, it appears that temperatures in Antarctica lead temperatures in

Greenland by 545 years, roughly agreeing with the results of Blunier et al. (1998),

which showed an Antarctica lead of 1,000 to 2,500 years.

Because there is a significant correlation between the Greenland and Antarctica

records, we evaluated the connecting relationship. Specifically, we represented the

Greenland record by x̃(t) = µ(t) + ε(t) and the Antarctica record by ỹ(t) = µ(t +

`) + ξ(t) where t is time, ` is the lag, and µ(t) is the function that connects the

temperatures in Greenland and Antarctica. To assess µ(t), we found the average

between the Greenland and Antarctica records. Specifically, we scaled the detrended

and linearly interpolated Greenland and Antarctica records to each have a variance

of 1. The Antarctica record was shifted 545 years such that the correlation between

the Greenland and shifted Antarctica record was 0.455, the maximum significant

correlation, as shown in Figure (B.5). Using this shifted record of Antarctica, we

found the average of the scaled residuals from the Greenland and Antarctica records

for each available observation. This connecting function, µ(t), is summarized in Figure

(B.6) and is a measure of the shape of this phenomena.
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Figure B.4: The black line represents the p-values, after correcting for simultaneous
testing, associated with the correlation between GISP2 and EDML at each lag. The
black point shows the p-value at a lag of 0 that has not been corrected for simultaneous
tests and the red dotted line represents an α level of 0.05. The non-overlapping D-
O events model (NOM) was considered and the D-O events were shuffled. When
EDML leads GISP2 by 545 years, the correlation is 0.455, the maximum significant
correlation.
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Figure B.5: The Greenland (black line) and Antarctica (blue dotted line) records after
shifting the Antarctica record by 545 years such that the correlation between these
two records is 0.455, the maximum significant correlation. The records are scaled
such that each has a variance of 1.
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Figure B.6: The average between the Greenland and Antarctica record after shifting
Antarctica by 545 years such that the correlation between these two records is 0.455.
This represents the connecting function, µ(t), between the temperatures in Greenland
and Antarctica.
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C. SAMPLE OF CODE

A sample of the R and SAS code used for this thesis is shown in the sections

below. Only a sample is included because much of the code is redundant with minor

changes to adjust for the models and sampling methods. The code included here

shows the analyses when considering the short series under the OM and shuffled D-O

events. Note that GISP2 corresponds to the Greenland record and EDML is the

Antarctica record.

C.1 Data Cleaning

# Detrending GISP2

gisp2new <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect 1/
Permutation Test Code/Window of Consideration/Simulation Datasets/GISP2 from 47 to 20
kyr BP.txt", header = TRUE)

# Retrieving D-O events
do2 <- gisp2new[33:34, ]
do3 <- gisp2new[65:69, ]
do4 <- gisp2new[75:80, ]
do5 <- gisp2new[98:105, ]
do6 <- gisp2new[109:117, ]
do7 <- gisp2new[119:130, ]
do8 <- gisp2new[134:157, ]
do9 <- gisp2new[167:169, ]
do10 <- gisp2new[172:179, ]
do11 <- gisp2new[182:193, ]
do12 <- gisp2new[194:220, ]
do13 <- gisp2new[227:233, ]

# Creating dataset of filler values with NAs where D-O events were

filler.detrend1 <- gisp2new
filler.detrend1[33:34, ] <- NA
filler.detrend1[65:69, ] <- NA
filler.detrend1[75:80, ] <- NA
filler.detrend1[98:105, ] <- NA
filler.detrend1[109:117, ] <- NA
filler.detrend1[119:130, ] <- NA
filler.detrend1[134:157, ] <- NA
filler.detrend1[167:169, ] <- NA
filler.detrend1[172:179, ] <- NA
filler.detrend1[182:193, ] <- NA
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filler.detrend1[194:220, ] <- NA
filler.detrend1[227:233, ] <- NA

# Creating a quadratic model based on filler
mod1 <- lm(filler.detrend1[, 1] ~ filler.detrend1[, 2] + I(filler.detrend1[, 2]^2))

# Residuals of GISP2 (filler and D-O events) using the model above
all.fittedvals1 <- mod1$coeff[1] + mod1$coeff[2]*gisp2new[, 2] +
I(mod1$coeff[3]*(gisp2new[, 2]^2))

res1 <- gisp2new[, 1] - all.fittedvals1

# Checking the assumptions
plot(all.fittedvals1, res1, xlab = "Fitted", ylab = "Residuals")
qqnorm(res1)
qqline(res1)

detrend1 <- cbind(res1, gisp2new[, 2])

# Interpolating the detrended GISP2
detrend.int <- approx(detrend1[, 2], detrend1[, 1], xout = 20000)
end.obs <- cbind(detrend.int$y, detrend.int$x)
detrend.int1 <- detrend1[2:234, ]
detrend.int2 <- rbind(end.obs, detrend.int1)
detrend.int3 <- approx(detrend.int2[ , 2], detrend.int2[ , 1], n = 1000)
detrend.int4 <- cbind(detrend.int3$x, detrend.int3$y)

# Writing data to new file
write.table(detrend.int4, file = "/Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Detrending Data/Simulation Datasets/GISP2
47-20kyr detrend interp.txt", row.names = FALSE, col.names = c("age", "res"))

# Detrending EDML
edml <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect 2/
Detrending Data/Simulation Datasets/edml.txt", header = TRUE)

# Creating quadratic model
mod <- lm(edml$deltaD ~ edml$age + I(edml$age^2))

# Computing the residuals based on this quadratic model
fitted.vals <- mod$coeff[1] + mod$coeff[2] * edml$age + I(mod$coeff[3] * (edml$age)^2)

res.edml <- edml$deltaD - fitted.vals

# Checking assumptions
plot(fitted.vals, res.edml, xlab = "Fitted", ylab = "Residuals")
qqnorm(res.edml)
qqline(res.edml)

detrend.edml <- cbind(res.edml, edml$age)

# Interpolating the detrended EDML
interp.edml <- approx(detrend.edml[, 2], detrend.edml[, 1], xout = c(20000, 47245))
end.obs <- cbind(interp.edml$y, interp.edml$x)
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edml1 <- rbind(end.obs[1, ], detrend.edml[2:86, ], end.obs[2, ])
edml2 <- approx(edml1[, 2], edml1[, 1], n = 1000)
edml3 <- cbind(edml2$x, edml2$y)

# Writing data to new file
write.table(edml3, file = "/Users/andrea/school/research/URGES/Thesis Project/Aspect 2/
Data for Simulations/EDML 47-20 kyr detrend interp.txt", row.names = FALSE, col.names =
c("age", "res"))

C.2 Cyclicity Detection

C.2.1 D-O Event Identification

* Sample SAS code to identify where D-O event 2 starts and stop;
* This code was created by Alan Vaughn.

options formdlim="A";

data d1;
input x y;
cards;
* imput data associated with general range of D-O event 2;

run;

data d2;
set d1;
newx = -x;
drop x;
rename newx=x;

run;

symbol i=join l=1 v=none;

proc gplot data=d2;
plot y*x;

run;

proc nlin data=d2 method=dud;
parms xo1=-22000 xo2=-21500 xo3=-21000 mu=-41 b1=0.02 b2=-.01;
if x < xo1 then yhat=mu;
if x >= xo1 and x < xo2 then yhat=mu + b1*(x-xo1);
if x >= xo2 and x < xo3 then yhat=mu + b1*(xo2-xo1)+b2*(x-xo2);
if x >= xo3 then yhat=mu + b1*(xo2-xo1)+b2*(xo3-xo2);
model y=yhat;
output out=d3 p=phat;

run;

proc gplot data=d3;
plot phat*x;

run;

proc export data=d3
outfile = ’...\DO2 yhat.txt’ dbms=’tab’;
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run;

C.2.2 Null Distribution

# Read in the detrended and interpolated GISP2 from 47 to 20 kyr BP.
gisp2 <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect 1/
Permutation Test Code/Detrending Data/Simulation Datasets/GISP2 47-20kyr detrend
interp.txt", header = TRUE)

# Scaling GISP2
gisp2$res <- gisp2$res/sqrt(var(gisp2$res))

# This function is in preparation of the simulation. In it, we determine where
the filler starts and stops.
getstartstop <- function(j1)
{
j1b <- c(j1[2:(length(j1))],-999999)
j1f <- c(-999999,j1[1:(length(j1)-1)])
starts <- is.na(j1) & !is.na(j1f)
stops <- is.na(j1) & !is.na(j1b)
#cbind(starts,stops) # use this if you want an n by 2 matrix of T’s and F’s
## or ##
cbind( (1:length(j1))[starts] , (1:length(j1))[stops] )

# use this if you want a k by 2 matrix of start and stop locations
}

################################################################
################################################################
################################################################
########################## Simulation ##########################
################################################################
################################################################
################################################################

all.sim.gmax <- NULL
all.sim.lmax <- NULL
DO.stat <- NULL
DO.stat.full <- NULL

numsim <- 10000

for(j in 1:numsim){

###############################################################
################### D-O Event Scattering#######################
###############################################################
# Creating 12 datasets with just 1 D-O event in each. The starting and
stopping values were specified by the piecewise linear model SAS code

do2 <- gisp2[119:129, 2]
do3 <- gisp2[272:292, 2]
do4 <- gisp2[316:337, 2]
do5 <- gisp2[423:455, 2]
do6 <- gisp2[475:516, 2]
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do7 <- gisp2[521:563, 2]
do8 <- gisp2[581:677, 2]
do9 <- gisp2[731:744, 2]
do10 <- gisp2[755:777, 2]
do11 <- gisp2[786:829, 2]
do12 <- gisp2[834:933, 2]
do13 <- gisp2[966:998, 2]

filler <- gisp2[ , 2]
filler[119:129] <- NA
filler[272:292] <- NA
filler[316:337] <- NA
filler[423:455] <- NA
filler[475:516] <- NA
filler[521:563] <- NA
filler[581:677] <- NA
filler[731:744] <- NA
filler[755:777] <- NA
filler[786:829] <- NA
filler[834:933] <- NA
filler[966:998] <- NA

filler <- na.omit(filler)

donum <- 12
filler.num <- length(gisp2$age)

# Randomizing D-O events
do2.1 <- cbind(rand.nums[1], do2)
do3.1 <- cbind(rand.nums[2], do3)
do4.1 <- cbind(rand.nums[3], do4)
do5.1 <- cbind(rand.nums[4], do5)
do6.1 <- cbind(rand.nums[5], do6)
do7.1 <- cbind(rand.nums[6], do7)
do8.1 <- cbind(rand.nums[7], do8)
do9.1 <- cbind(rand.nums[8], do9)
do10.1 <- cbind(rand.nums[9], do10)
do11.1 <- cbind(rand.nums[10], do11)
do12.1 <- cbind(rand.nums[11], do12)
do13.1 <- cbind(rand.nums[12], do13)

rand.ordered <- rand.nums[order(rand.nums)]

obs.do2 <- which(ordered[ , 1] == rand.ordered[1])
obs.do3 <- which(ordered[ , 1] == rand.ordered[2])
obs.do4 <- which(ordered[ , 1] == rand.ordered[3])
obs.do5 <- which(ordered[ , 1] == rand.ordered[4])
obs.do6 <- which(ordered[ , 1] == rand.ordered[5])
obs.do7 <- which(ordered[ , 1] == rand.ordered[6])
obs.do8 <- which(ordered[ , 1] == rand.ordered[7])
obs.do9 <- which(ordered[ , 1] == rand.ordered[8])
obs.do10 <- which(ordered[ , 1] == rand.ordered[9])
obs.do11 <- which(ordered[ , 1] == rand.ordered[10])
obs.do12 <- which(ordered[ , 1] == rand.ordered[11])
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obs.do13 <- which(ordered[ , 1] == rand.ordered[12])

new.do2 <- ordered[min(obs.do2):max(obs.do2), 2]
new.do3 <- ordered[min(obs.do3):max(obs.do3), 2]
new.do4 <- ordered[min(obs.do4):max(obs.do4), 2]
new.do5 <- ordered[min(obs.do5):max(obs.do5), 2]
new.do6 <- ordered[min(obs.do6):max(obs.do6), 2]
new.do7 <- ordered[min(obs.do7):max(obs.do7), 2]
new.do8 <- ordered[min(obs.do8):max(obs.do8), 2]
new.do9 <- ordered[min(obs.do9):max(obs.do9), 2]
new.do10 <- ordered[min(obs.do10):max(obs.do10), 2]
new.do11 <- ordered[min(obs.do11):max(obs.do11), 2]
new.do12 <- ordered[min(obs.do12):max(obs.do12), 2]
new.do13 <- ordered[min(obs.do13):max(obs.do13), 2]

rand1 <- rand.ordered[1]
rand2 <- rand.ordered[2]
rand3 <- rand.ordered[3]
rand4 <- rand.ordered[4]
rand5 <- rand.ordered[5]
rand6 <- rand.ordered[6]
rand7 <- rand.ordered[7]
rand8 <- rand.ordered[8]
rand9 <- rand.ordered[9]
rand10 <- rand.ordered[10]
rand11 <- rand.ordered[11]
rand12 <- rand.ordered[12]

diff1 <- rand2 - rand1
diff2 <- rand3 - rand2
diff3 <- rand4 - rand3
diff4 <- rand5 - rand4
diff5 <- rand6 - rand5
diff6 <- rand7 - rand6
diff7 <- rand8 - rand7
diff8 <- rand9 - rand8
diff9 <- rand10 - rand9
diff10 <- rand11 - rand10
diff11 <- rand12 - rand11

# The location in the empty dataset in which the first D-O event should be
inserted.
start1 <- rand1
end1 <- start1 + length(new.do2) - 1

start2 <- rand2
end2 <- start2 + length(new.do3) - 1

start3 <- rand3
end3 <- start3 + length(new.do4) - 1

start4 <- rand4
end4 <- start4 + length(new.do5) - 1
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start5 <- rand5
end5 <- start5 + length(new.do6) - 1

start6 <- rand6
end6 <- start6 + length(new.do7) - 1

start7 <- rand7
end7 <- start7 + length(new.do8) - 1

start8 <- rand8
end8 <- start8 + length(new.do9) - 1

start9 <- rand9
end9 <- start9 + length(new.do10) - 1

start10 <- rand10
end10 <- start10 + length(new.do11) - 1

start11 <- rand11
end11 <- start11 + length(new.do12) - 1

start12 <- rand12
end12 <- start12 + length(new.do13) - 1

# Creating a dataset for each D-O event that contains just the one D-O
event and then values of -100 everywhere else. These values of -100 are dummy
values and we use them to hold the place of the D-O event. Each D-O event is
placed in its own dataset based on the randomly selected start value. We make
each dataset too large (we make it 2000 observations), so that if a D-O event
spills over 1000 observations it won’t be truncated.

d1 <- c(rep(-100, (rand1 - 1)), new.do2, rep(-100, (2000 - (length(new.do2) +
rand1 - 1))))
d2 <- c(rep(-100, (rand2 - 1)), new.do3, rep(-100, (2000 - (length(new.do3) +
rand2 - 1))))
d3 <- c(rep(-100, (rand3 - 1)), new.do4, rep(-100, (2000 - (length(new.do4) +
rand3 - 1))))
d4 <- c(rep(-100, (rand4 - 1)), new.do5, rep(-100, (2000 - (length(new.do5) +
rand4 - 1))))
d5 <- c(rep(-100, (rand5 - 1)), new.do6, rep(-100, (2000 - (length(new.do6) +
rand5 - 1))))
d6 <- c(rep(-100, (rand6 - 1)), new.do7, rep(-100, (2000 - (length(new.do7) +
rand6 - 1))))
d7 <- c(rep(-100, (rand7 - 1)), new.do8, rep(-100, (2000 - (length(new.do8) +
rand7 - 1))))
d8 <- c(rep(-100, (rand8 - 1)), new.do9, rep(-100, (2000 - (length(new.do9) +
rand8 - 1))))
d9 <- c(rep(-100, (rand9 - 1)), new.do10, rep(-100, (2000 - (length(new.do10) +
rand9 - 1))))
d10 <- c(rep(-100, (rand10 - 1)), new.do11, rep(-100, (2000 - (length(new.do11)
+ rand10 - 1))))
d11 <- c(rep(-100, (rand11 - 1)), new.do12, rep(-100, (2000 - (length(new.do12)
+ rand11 - 1))))
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d12 <- c(rep(-100, (rand12 - 1)), new.do13, rep(-100, (2000 - (length(new.do13)
+ rand12 - 1))))

# Now we create two datasets from each dataset above. We make sure we cut the
datasets at 1000, since this is the length we want test1 to be. Because we had
to go a little over 1000 to make sure we caught all of a D-O event that spills
over 1000, we decided to go to 2000 so that when we chop the datasets at 1000,
we will then have 2 datasets of equal length for each longer dataset. We did
this so that for pmax below.
d1.a <- d1[1:1000]
d1.b <- d1[1001:2000]
d2.a <- d2[1:1000]
d2.b <- d2[1001:2000]
d3.a <- d3[1:1000]
d3.b <- d3[1001:2000]
d4.a <- d4[1:1000]
d4.b <- d4[1001:2000]
d5.a <- d5[1:1000]
d5.b <- d5[1001:2000]
d6.a <- d6[1:1000]
d6.b <- d6[1001:2000]
d7.a <- d7[1:1000]
d7.b <- d7[1001:2000]
d8.a <- d8[1:1000]
d8.b <- d8[1001:2000]
d9.a <- d9[1:1000]
d9.b <- d9[1001:2000]
d10.a <- d10[1:1000]
d10.b <- d10[1001:2000]
d11.a <- d11[1:1000]
d11.b <- d11[1001:2000]
d12.a <- d12[1:1000]
d12.b <- d12[1001:2000]

# Now, using pmax, we can create one dataset that finds the max of the
vectors at each observation. We do this so that if we have any overlapping D-O
events, the max of the D-O events will be selected. We split the datasets in
half above so that if we had a D-O event spill over, it would then wrap to the
beginning, and then be considered for the max.
test1 <- pmax(d1.a, d1.b, d2.a, d2.b, d3.a, d3.b, d4.a, d4.b, d5.a, d5.b, d6.a,
d6.b, d7.a, d7.b, d8.a, d8.b, d9.a, d9.b, d10.a, d10.b, d11.a, d11.b, d12.a,
d12.b)

test1 <- ifelse(test1 == -100, NA, test1)

######################## Filler Points #########################

# This step determines where to start sampling from in the filler data.
filler.rand <- sample(1:length(filler), 1, replace = FALSE)

filler.remain <- filler.rand - 1
if(filler.remain == 0){
filler.obs <- 0
} else

56



{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per <- c(filler.per1, filler.per2)

filler.ss <- getstartstop(test1)

filler.na <- cbind(rep(NA, 20), rep(NA, 20))
filler.ss1 <- rbind(filler.ss, filler.na)
filler.ss2 <- filler.ss1[1:(donum + 1), ]

# The code below indicates where the D-O events are contained in the dataset
fstart1 <- filler.ss2[1, 1]
fend1 <- filler.ss2[1, 2]
flen1 <- fend1 - fstart1 + 1

flen1 <- ifelse(is.na(flen1) == TRUE, 0, flen1)

fstart2 <- filler.ss2[2, 1]
fend2 <- filler.ss2[2, 2]
flen2 <- fend2 - fstart2 + 1

flen2 <- ifelse(is.na(flen2) == TRUE, 0, flen2)

fstart3 <- filler.ss2[3, 1]
fend3 <- filler.ss2[3, 2]
flen3 <- fend3 - fstart3 + 1

flen3 <- ifelse(is.na(flen3) == TRUE, 0, flen3)

fstart4 <- filler.ss2[4, 1]
fend4 <- filler.ss2[4, 2]
flen4 <- fend4 - fstart4 + 1

flen4 <- ifelse(is.na(flen4) == TRUE, 0, flen4)

fstart5 <- filler.ss2[5, 1]
fend5 <- filler.ss2[5, 2]
flen5 <- fend5 - fstart5 + 1

flen5 <- ifelse(is.na(flen5) == TRUE, 0, flen5)

fstart6 <- filler.ss2[6, 1]
fend6 <- filler.ss2[6, 2]
flen6 <- fend6 - fstart6 + 1

flen6 <- ifelse(is.na(flen6) == TRUE, 0, flen6)

fstart7 <- filler.ss2[7, 1]
fend7 <- filler.ss2[7, 2]
flen7 <- fend7 - fstart7 + 1
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flen7 <- ifelse(is.na(flen7) == TRUE, 0, flen7)

fstart8 <- filler.ss2[8, 1]
fend8 <- filler.ss2[8, 2]
flen8 <- fend8 - fstart8 + 1

flen8 <- ifelse(is.na(flen8) == TRUE, 0, flen8)

fstart9 <- filler.ss2[9, 1]
fend9 <- filler.ss2[9, 2]
flen9 <- fend9 - fstart9 + 1

flen9 <- ifelse(is.na(flen9) == TRUE, 0, flen9)

fstart10 <- filler.ss2[10, 1]
fend10 <- filler.ss2[10, 2]
flen10 <- fend10 - fstart10 + 1

flen10 <- ifelse(is.na(flen10) == TRUE, 0, flen10)

fstart11 <- filler.ss2[11, 1]
fend11 <- filler.ss2[11, 2]
flen11 <- fend11 - fstart11 + 1

flen11 <- ifelse(is.na(flen11) == TRUE, 0, flen11)

fstart12 <- filler.ss2[12, 1]
fend12 <- filler.ss2[12, 2]
flen12 <- fend12 - fstart12 + 1

flen12 <- ifelse(is.na(flen12) == TRUE, 0, flen12)

fstart13 <- filler.ss2[13, 1]
fend13 <- filler.ss2[13, 2]
flen13 <- fend13 - fstart13 + 1

flen13 <- ifelse(is.na(flen13) == TRUE, 0, flen13)

# Determine the order the filler points should be inserted.
rand.filler <- sample(1:(donum + 1), (donum + 1), replace = FALSE)

# Order the random numbers for the filler points.
frand.ordered <- rand.filler[order(rand.filler)]

flrand1 <- rep(frand.ordered[1], flen1)
flrand2 <- rep(frand.ordered[2], flen2)
flrand3 <- rep(frand.ordered[3], flen3)
flrand4 <- rep(frand.ordered[4], flen4)
flrand5 <- rep(frand.ordered[5], flen5)
flrand6 <- rep(frand.ordered[6], flen6)
flrand7 <- rep(frand.ordered[7], flen7)
flrand8 <- rep(frand.ordered[8], flen8)
flrand9 <- rep(frand.ordered[9], flen9)
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flrand10 <- rep(frand.ordered[10], flen10)
flrand11 <- rep(frand.ordered[11], flen11)
flrand12 <- rep(frand.ordered[12], flen12)
flrand13 <- rep(frand.ordered[13], flen13)

flrand1 <- as.matrix(flrand1)
flrand2 <- as.matrix(flrand2)
flrand3 <- as.matrix(flrand3)
flrand4 <- as.matrix(flrand4)
flrand5 <- as.matrix(flrand5)
flrand6 <- as.matrix(flrand6)
flrand7 <- as.matrix(flrand7)
flrand8 <- as.matrix(flrand8)
flrand9 <- as.matrix(flrand9)
flrand10 <- as.matrix(flrand10)
flrand11 <- as.matrix(flrand11)
flrand12 <- as.matrix(flrand12)
flrand13 <- as.matrix(flrand13)

flrand <- rbind(flrand1, flrand2, flrand3, flrand4, flrand5, flrand6, flrand7,
flrand8, flrand9, flrand10, flrand11, flrand12, flrand13)

# Add the filler to the dataset randomly
obs.frand1 <- which(flrand == rand.filler[1])
obs.frand2 <- which(flrand == rand.filler[2])
obs.frand3 <- which(flrand == rand.filler[3])
obs.frand4 <- which(flrand == rand.filler[4])
obs.frand5 <- which(flrand == rand.filler[5])
obs.frand6 <- which(flrand == rand.filler[6])
obs.frand7 <- which(flrand == rand.filler[7])
obs.frand8 <- which(flrand == rand.filler[8])
obs.frand9 <- which(flrand == rand.filler[9])
obs.frand10 <- which(flrand == rand.filler[10])
obs.frand11 <- which(flrand == rand.filler[11])
obs.frand12 <- which(flrand == rand.filler[12])
obs.frand13 <- which(flrand == rand.filler[13])

if(length(obs.frand1) == 0){
obs.frand1 <- 0
}else
{
obs.frand1 <- min(obs.frand1):max(obs.frand1)
}

if(length(obs.frand2) == 0){
obs.frand2 <- 0
}else
{
obs.frand2 <- min(obs.frand2):max(obs.frand2)
}

if(length(obs.frand3) == 0){
obs.frand3 <- 0
}else
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{
obs.frand3 <- min(obs.frand3):max(obs.frand3)
}

if(length(obs.frand4) == 0){
obs.frand4 <- 0
}else
{
obs.frand4 <- min(obs.frand4):max(obs.frand4)
}

if(length(obs.frand5) == 0){
obs.frand5 <- 0
}else
{
obs.frand5 <- min(obs.frand5):max(obs.frand5)
}

if(length(obs.frand6) == 0){
obs.frand6 <- 0
}else
{
obs.frand6 <- min(obs.frand6):max(obs.frand6)
}

if(length(obs.frand7) == 0){
obs.frand7 <- 0
}else
{
obs.frand7 <- min(obs.frand7):max(obs.frand7)
}

if(length(obs.frand8) == 0){
obs.frand8 <- 0
}else
{
obs.frand8 <- min(obs.frand8):max(obs.frand8)
}

if(length(obs.frand9) == 0){
obs.frand9 <- 0
}else
{
obs.frand9 <- min(obs.frand9):max(obs.frand9)
}

if(length(obs.frand10) == 0){
obs.frand10 <- 0
}else
{
obs.frand10 <- min(obs.frand10):max(obs.frand10)
}

if(length(obs.frand11) == 0){
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obs.frand11 <- 0
}else
{
obs.frand11 <- min(obs.frand11):max(obs.frand11)
}

if(length(obs.frand12) == 0){
obs.frand12 <- 0
}else
{
obs.frand12 <- min(obs.frand12):max(obs.frand12)
}

if(length(obs.frand13) == 0){
obs.frand13 <- 0
}else
{
obs.frand13 <- min(obs.frand13):max(obs.frand13)
}

frand1 <- flrand[obs.frand1, ]
frand2 <- flrand[obs.frand2, ]
frand3 <- flrand[obs.frand3, ]
frand4 <- flrand[obs.frand4, ]
frand5 <- flrand[obs.frand5, ]
frand6 <- flrand[obs.frand6, ]
frand7 <- flrand[obs.frand7, ]
frand8 <- flrand[obs.frand8, ]
frand9 <- flrand[obs.frand9, ]
frand10 <- flrand[obs.frand10, ]
frand11 <- flrand[obs.frand11, ]
frand12 <- flrand[obs.frand12, ]
frand13 <- flrand[obs.frand13, ]

frand1 <- as.matrix(frand1)
frand2 <- as.matrix(frand2)
frand3 <- as.matrix(frand3)
frand4 <- as.matrix(frand4)
frand5 <- as.matrix(frand5)
frand6 <- as.matrix(frand6)
frand7 <- as.matrix(frand7)
frand8 <- as.matrix(frand8)
frand9 <- as.matrix(frand9)
frand10 <- as.matrix(frand10)
frand11 <- as.matrix(frand11)
frand12 <- as.matrix(frand12)
frand13 <- as.matrix(frand13)

frand <- rbind(frand1, frand2, frand3, frand4, frand5, frand6, frand7,
frand8, frand9, frand10, frand11, frand12, frand13)

c.frand <- cbind(frand, filler.per)

fordered <- c.frand[order(c.frand[, 1]), ]
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obs.f1 <- which(fordered[ , 1] == frand.ordered[1])
obs.f2 <- which(fordered[ , 1] == frand.ordered[2])
obs.f3 <- which(fordered[ , 1] == frand.ordered[3])
obs.f4 <- which(fordered[ , 1] == frand.ordered[4])
obs.f5 <- which(fordered[ , 1] == frand.ordered[5])
obs.f6 <- which(fordered[ , 1] == frand.ordered[6])
obs.f7 <- which(fordered[ , 1] == frand.ordered[7])
obs.f8 <- which(fordered[ , 1] == frand.ordered[8])
obs.f9 <- which(fordered[ , 1] == frand.ordered[9])
obs.f10 <- which(fordered[ , 1] == frand.ordered[10])
obs.f11 <- which(fordered[ , 1] == frand.ordered[11])
obs.f12 <- which(fordered[ , 1] == frand.ordered[12])
obs.f13 <- which(fordered[ , 1] == frand.ordered[13])

if(length(obs.f1) == 0){
obs.f1 <- 0
}else
{
obs.f1 <- min(obs.f1):max(obs.f1)
}

if(length(obs.f2) == 0){
obs.f2 <- 0
}else
{
obs.f2 <- min(obs.f2):max(obs.f2)
}

if(length(obs.f3) == 0){
obs.f3 <- 0
}else
{
obs.f3 <- min(obs.f3):max(obs.f3)
}

if(length(obs.f4) == 0){
obs.f4 <- 0
}else
{
obs.f4 <- min(obs.f4):max(obs.f4)
}

if(length(obs.f5) == 0){
obs.f5 <- 0
}else
{
obs.f5 <- min(obs.f5):max(obs.f5)
}

if(length(obs.f6) == 0){
obs.f6 <- 0
}else
{
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obs.f6 <- min(obs.f6):max(obs.f6)
}

if(length(obs.f7) == 0){
obs.f7 <- 0
}else
{
obs.f7 <- min(obs.f7):max(obs.f7)
}

if(length(obs.f8) == 0){
obs.f8 <- 0
}else
{
obs.f8 <- min(obs.f8):max(obs.f8)
}

if(length(obs.f9) == 0){
obs.f9 <- 0
}else
{
obs.f9 <- min(obs.f9):max(obs.f9)
}

if(length(obs.f10) == 0){
obs.f10 <- 0
}else
{
obs.f10 <- min(obs.f10):max(obs.f10)
}

if(length(obs.f11) == 0){
obs.f11 <- 0
}else
{
obs.f11 <- min(obs.f11):max(obs.f11)
}

if(length(obs.f12) == 0){
obs.f12 <- 0
}else
{
obs.f12 <- min(obs.f12):max(obs.f12)
}

if(length(obs.f13) == 0){
obs.frand13 <- 0
}else
{
obs.f13 <- min(obs.f13):max(obs.f13)
}

new.f1 <- fordered[obs.f1, 2]
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new.f2 <- fordered[obs.f2, 2]
new.f3 <- fordered[obs.f3, 2]
new.f4 <- fordered[obs.f4, 2]
new.f5 <- fordered[obs.f5, 2]
new.f6 <- fordered[obs.f6, 2]
new.f7 <- fordered[obs.f7, 2]
new.f8 <- fordered[obs.f8, 2]
new.f9 <- fordered[obs.f9, 2]
new.f10 <- fordered[obs.f10, 2]
new.f11 <- fordered[obs.f11, 2]
new.f12 <- fordered[obs.f12, 2]
new.f13 <- fordered[obs.f13, 2]

if(length(new.f1) == 0){
f1.obs <- 0
}else
{
f1.obs <- fstart1:fend1
}

if(length(new.f2) == 0){
f2.obs <- 0
}else
{
f2.obs <- fstart2:fend2
}

if(length(new.f3) == 0){
f3.obs <- 0
}else
{
f3.obs <- fstart3:fend3
}

if(length(new.f4) == 0){
f4.obs <- 0
}else
{
f4.obs <- fstart4:fend4
}

if(length(new.f5) == 0){
f5.obs <- 0
}else
{
f5.obs <- fstart5:fend5
}

if(length(new.f6) == 0){
f6.obs <- 0
}else
{
f6.obs <- fstart6:fend6
}
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if(length(new.f7) == 0){
f7.obs <- 0
}else
{
f7.obs <- fstart7:fend7
}

if(length(new.f8) == 0){
f8.obs <- 0
}else
{
f8.obs <- fstart8:fend8
}

if(length(new.f9) == 0){
f9.obs <- 0
}else
{
f9.obs <- fstart9:fend9
}

if(length(new.f10) == 0){
f10.obs <- 0
}else
{
f10.obs <- fstart10:fend10
}

if(length(new.f11) == 0){
f11.obs <- 0
}else
{
f11.obs <- fstart11:fend11
}

if(length(new.f12) == 0){
f12.obs <- 0
}else
{
f12.obs <- fstart12:fend12
}

if(length(new.f13) == 0){
f13.obs <- 0
}else
{
f13.obs <- fstart13:fend13
}

test1[f1.obs] <- new.f1
test1[f2.obs] <- new.f2
test1[f3.obs] <- new.f3
test1[f4.obs] <- new.f4
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test1[f5.obs] <- new.f5
test1[f6.obs] <- new.f6
test1[f7.obs] <- new.f7
test1[f8.obs] <- new.f8
test1[f9.obs] <- new.f9
test1[f10.obs] <- new.f10
test1[f11.obs] <- new.f11
test1[f12.obs] <- new.f12
test1[f13.obs] <- new.f13

# Scaling test1
test1 <- (test1 - mean(test1))/(sd(test1))

################# End of D-O Event Scattering ##################

################################################################
########### Periodogram for Block Bootstrap of GISP2 ###########
################################################################

sim.fs <- cbind(sim.p.gram$freq, sim.p.gram$spec)

# Finding the global maximum of spectrum
sim.max.loc <- which.max(sim.fs[ , 2])
sim.gmax <- sim.fs[sim.max.loc, ]
all.sim.gmax <- rbind(all.sim.gmax, sim.gmax)

# Finding local maximum
sim.fshort.loc1 <- which(sim.fs[ , 1] <= 0.1)
sim.fshort.loc2 <- max(sim.fshort.loc1)
sim.fs.short <- sim.fs[1:sim.fshort.loc2, ]

sim.spec <- as.matrix(sim.fs.short[ , 2])
sim.data1 <- rbind(0, sim.spec, 0) # Necessary to find a local max that may occur
at the end points
sim.data1 <- as.numeric(sim.data1)
sim.lmax.spec <- rep(NA, length(sim.data1))
for(i in 1:length(sim.data1)){
if(sim.data1[i] >= sim.data1[i+1] && sim.data1[i] >= sim.data1[i-1])
{sim.lmax.spec[i] = sim.data1[i]}
}

sim.loc.na <- is.na(sim.lmax.spec)
sim.non.na <- which(sim.loc.na == "FALSE")
sim.loc.non.na <- sim.non.na - 1

sim.lmax <- sim.fs.short[sim.loc.non.na, ]
all.sim.lmax <- rbind(all.sim.lmax, cbind(j, sim.lmax))

ordered <- all.sim.lmax[order(all.sim.lmax[ , 3], decreasing = TRUE), ]

####### End of Periodogram for Block Bootstrap of GISP2 ########
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################################################################
##################### Statistic of Interest ####################
################################################################

order.freq <- sim.lmax[order(sim.lmax[, 1]), ]
DO.data <- matrix(order.freq, byrow = FALSE, ncol = 2)
DO.data <- cbind(j, DO.data)
DO.stat.full <- rbind(DO.stat.full, DO.data)

################## End of Statistic of Interest ################

}

####################### End of Simulation ######################

write.table(DO.stat.full, file = "/Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/
DOstat full for 47 to 20 kyr BP.txt", row.names = FALSE, col.names = c("simnum"
, "freq", "spec"))

###############################################################
###### Future Analysis without having to run simulation #######
###############################################################

dostat <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect
1/Permutation Test Code/Final Product/Simulations2/Results/DOstat full
for 47 to 20 kyr BP.txt", header = TRUE)

# Cycle less than 2500 (> 0.010908), 3000 (> 0.00909), and 5000 (> 0.005454)

DO.stat <- NULL
numsim <- 10000
for(i in 1:numsim){

obs.num <- which(dostat$simnum == i)

chunk <- dostat[min(obs.num):max(obs.num), ]

chunk <- chunk[, -1]

stat.wind <- which(chunk$freq > 0.05)
dostat.data <- chunk[min(stat.wind):max(stat.wind), ]
dostat.data <- as.matrix(dostat.data)

chunk.max <- which.max(dostat.data[, 2])

part.max <- dostat.data[chunk.max, ]
DO.stat <- rbind(DO.stat, part.max)

}

write.table(DO.stat, file = "/Users/andrea/school/research/URGES/Thesis Project/
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Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/DOstat part
for 47 to 20 kyr BP.txt", row.names = FALSE, col.names = c("freq", "spec"))

C.2.3 Test Statistic

gisp2 <- read.table(".../GISP2 47-20kyr detrend interp.txt", header = TRUE)

################################################################
################################################################
################################################################
########################## Simulation ##########################
################################################################
################################################################
################################################################

all.sim.gmax <- NULL
all.sim.lmax <- NULL
DO.stat <- NULL
DO.stat.full <- NULL

numsim <- 10000

for(j in 1:numsim){

###############################################################
################### D-O Event Scattering#######################
###############################################################

do2 <- gisp2[119:129, 2]
do3 <- gisp2[272:292, 2]
do4 <- gisp2[316:337, 2]
do5 <- gisp2[423:455, 2]
do6 <- gisp2[475:516, 2]
do7 <- gisp2[521:563, 2]
do8 <- gisp2[581:677, 2]
do9 <- gisp2[731:744, 2]
do10 <- gisp2[755:777, 2]
do11 <- gisp2[786:829, 2]
do12 <- gisp2[834:933, 2]
do13 <- gisp2[966:998, 2]

filler <- gisp2[ , 2]
filler[119:129] <- NA
filler[272:292] <- NA
filler[316:337] <- NA
filler[423:455] <- NA
filler[475:516] <- NA
filler[521:563] <- NA
filler[581:677] <- NA
filler[731:744] <- NA
filler[755:777] <- NA
filler[786:829] <- NA
filler[834:933] <- NA
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filler[966:998] <- NA

filler <- na.omit(filler)

donum <- 12

start1 <- 119
end1 <- start1 + length(do2) - 1

start2 <- 272
end2 <- start2 + length(do3) - 1

start3 <- 316
end3 <- start3 + length(do4) - 1

start4 <- 423
end4 <- start4 + length(do5) - 1

start5 <- 475
end5 <- start5 + length(do6) - 1

start6 <- 521
end6 <- start6 + length(do7) - 1

start7 <- 581
end7 <- start7 + length(do8) - 1

start8 <- 731
end8 <- start8 + length(do9) - 1

start9 <- 755
end9 <- start9 + length(do10) - 1

start10 <- 786
end10 <- start10 + length(do11) - 1

start11 <- 834
end11 <- start11 + length(do12) - 1

start12 <- 966
end12 <- start12 + length(do13) - 1

test1 <- rep(NA, length(gisp2$age))

test1[start1:end1] <- do2
test1[start2:end2] <- do3
test1[start3:end3] <- do4
test1[start4:end4] <- do5
test1[start5:end5] <- do6
test1[start6:end6] <- do7
test1[start7:end7] <- do8
test1[start8:end8] <- do9
test1[start9:end9] <- do10
test1[start10:end10] <- do11
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test1[start11:end11] <- do12
test1[start12:end12] <- do13

######################## Filler Points #########################

filler.rand <- sample(1:length(filler), 1, replace = FALSE)

filler.remain <- filler.rand - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per <- c(filler.per1, filler.per2)

fstart1 <- 1
fend1 <- start1 - 1
flen1 <- fend1 - fstart1 + 1

fstart2 <- end1 + 1
fend2 <- start2 - 1
flen2 <- fend2 - fstart2 + 1

fstart3 <- end2 + 1
fend3 <- start3 - 1
flen3 <- fend3 - fstart3 + 1

fstart4 <- end3 + 1
fend4 <- start4 - 1
flen4 <- fend4 - fstart4 + 1

fstart5 <- end4 + 1
fend5 <- start5 - 1
flen5 <- fend5 - fstart5 + 1

fstart6 <- end5 + 1
fend6 <- start6 - 1
flen6 <- fend6 - fstart6 + 1

fstart7 <- end6 + 1
fend7 <- start7 - 1
flen7 <- fend7 - fstart7 + 1

fstart8 <- end7 + 1
fend8 <- start8 - 1
flen8 <- fend8 - fstart8 + 1

fstart9 <- end8 + 1
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fend9 <- start9 - 1
flen9 <- fend9 - fstart9 + 1

fstart10 <- end9 + 1
fend10 <- start10 - 1
flen10 <- fend10 - fstart10 + 1

fstart11 <- end10 + 1
fend11 <- start11 - 1
flen11 <- fend11 - fstart11 + 1

fstart12 <- end11 + 1
fend12 <- start12 - 1
flen12 <- fend12 - fstart12 + 1

fstart13 <- end12 + 1
fend13 <- length(test1)
flen13 <- fend13 - fstart13 + 1

rand.filler <- sample(1:(donum + 1), (donum + 1), replace = FALSE)

frand.ordered <- rand.filler[order(rand.filler)]

flrand1 <- rep(frand.ordered[1], flen1)
flrand2 <- rep(frand.ordered[2], flen2)
flrand3 <- rep(frand.ordered[3], flen3)
flrand4 <- rep(frand.ordered[4], flen4)
flrand5 <- rep(frand.ordered[5], flen5)
flrand6 <- rep(frand.ordered[6], flen6)
flrand7 <- rep(frand.ordered[7], flen7)
flrand8 <- rep(frand.ordered[8], flen8)
flrand9 <- rep(frand.ordered[9], flen9)
flrand10 <- rep(frand.ordered[10], flen10)
flrand11 <- rep(frand.ordered[11], flen11)
flrand12 <- rep(frand.ordered[12], flen12)
flrand13 <- rep(frand.ordered[13], flen13)

flrand1 <- as.matrix(flrand1)
flrand2 <- as.matrix(flrand2)
flrand3 <- as.matrix(flrand3)
flrand4 <- as.matrix(flrand4)
flrand5 <- as.matrix(flrand5)
flrand6 <- as.matrix(flrand6)
flrand7 <- as.matrix(flrand7)
flrand8 <- as.matrix(flrand8)
flrand9 <- as.matrix(flrand9)
flrand10 <- as.matrix(flrand10)
flrand11 <- as.matrix(flrand11)
flrand12 <- as.matrix(flrand12)
flrand13 <- as.matrix(flrand13)

flrand <- rbind(flrand1, flrand2, flrand3, flrand4, flrand5, flrand6, flrand7,
flrand8, flrand9, flrand10, flrand11, flrand12, flrand13)
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obs.frand1 <- which(flrand == rand.filler[1])
obs.frand2 <- which(flrand == rand.filler[2])
obs.frand3 <- which(flrand == rand.filler[3])
obs.frand4 <- which(flrand == rand.filler[4])
obs.frand5 <- which(flrand == rand.filler[5])
obs.frand6 <- which(flrand == rand.filler[6])
obs.frand7 <- which(flrand == rand.filler[7])
obs.frand8 <- which(flrand == rand.filler[8])
obs.frand9 <- which(flrand == rand.filler[9])
obs.frand10 <- which(flrand == rand.filler[10])
obs.frand11 <- which(flrand == rand.filler[11])
obs.frand12 <- which(flrand == rand.filler[12])
obs.frand13 <- which(flrand == rand.filler[13])

if(length(obs.frand1) == 0){
obs.frand1 <- 0
}else
{
obs.frand1 <- min(obs.frand1):max(obs.frand1)
}

if(length(obs.frand2) == 0){
obs.frand2 <- 0
}else
{
obs.frand2 <- min(obs.frand2):max(obs.frand2)
}

if(length(obs.frand3) == 0){
obs.frand3 <- 0
}else
{
obs.frand3 <- min(obs.frand3):max(obs.frand3)
}

if(length(obs.frand4) == 0){
obs.frand4 <- 0
}else
{
obs.frand4 <- min(obs.frand4):max(obs.frand4)
}

if(length(obs.frand5) == 0){
obs.frand5 <- 0
}else
{
obs.frand5 <- min(obs.frand5):max(obs.frand5)
}

if(length(obs.frand6) == 0){
obs.frand6 <- 0
}else
{
obs.frand6 <- min(obs.frand6):max(obs.frand6)
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}

if(length(obs.frand7) == 0){
obs.frand7 <- 0
}else
{
obs.frand7 <- min(obs.frand7):max(obs.frand7)
}

if(length(obs.frand8) == 0){
obs.frand8 <- 0
}else
{
obs.frand8 <- min(obs.frand8):max(obs.frand8)
}

if(length(obs.frand9) == 0){
obs.frand9 <- 0
}else
{
obs.frand9 <- min(obs.frand9):max(obs.frand9)
}

if(length(obs.frand10) == 0){
obs.frand10 <- 0
}else
{
obs.frand10 <- min(obs.frand10):max(obs.frand10)
}

if(length(obs.frand11) == 0){
obs.frand11 <- 0
}else
{
obs.frand11 <- min(obs.frand11):max(obs.frand11)
}

if(length(obs.frand12) == 0){
obs.frand12 <- 0
}else
{
obs.frand12 <- min(obs.frand12):max(obs.frand12)
}

if(length(obs.frand13) == 0){
obs.frand13 <- 0
}else
{
obs.frand13 <- min(obs.frand13):max(obs.frand13)
}

frand1 <- flrand[obs.frand1, ]
frand2 <- flrand[obs.frand2, ]
frand3 <- flrand[obs.frand3, ]
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frand4 <- flrand[obs.frand4, ]
frand5 <- flrand[obs.frand5, ]
frand6 <- flrand[obs.frand6, ]
frand7 <- flrand[obs.frand7, ]
frand8 <- flrand[obs.frand8, ]
frand9 <- flrand[obs.frand9, ]
frand10 <- flrand[obs.frand10, ]
frand11 <- flrand[obs.frand11, ]
frand12 <- flrand[obs.frand12, ]
frand13 <- flrand[obs.frand13, ]

frand1 <- as.matrix(frand1)
frand2 <- as.matrix(frand2)
frand3 <- as.matrix(frand3)
frand4 <- as.matrix(frand4)
frand5 <- as.matrix(frand5)
frand6 <- as.matrix(frand6)
frand7 <- as.matrix(frand7)
frand8 <- as.matrix(frand8)
frand9 <- as.matrix(frand9)
frand10 <- as.matrix(frand10)
frand11 <- as.matrix(frand11)
frand12 <- as.matrix(frand12)
frand13 <- as.matrix(frand13)

frand <- rbind(frand1, frand2, frand3, frand4, frand5, frand6, frand7,frand8,
frand9, frand10, frand11, frand12, frand13)

c.frand <- cbind(frand, filler.per)

fordered <- c.frand[order(c.frand[, 1]), ]

obs.f1 <- which(fordered[ , 1] == frand.ordered[1])
obs.f2 <- which(fordered[ , 1] == frand.ordered[2])
obs.f3 <- which(fordered[ , 1] == frand.ordered[3])
obs.f4 <- which(fordered[ , 1] == frand.ordered[4])
obs.f5 <- which(fordered[ , 1] == frand.ordered[5])
obs.f6 <- which(fordered[ , 1] == frand.ordered[6])
obs.f7 <- which(fordered[ , 1] == frand.ordered[7])
obs.f8 <- which(fordered[ , 1] == frand.ordered[8])
obs.f9 <- which(fordered[ , 1] == frand.ordered[9])
obs.f10 <- which(fordered[ , 1] == frand.ordered[10])
obs.f11 <- which(fordered[ , 1] == frand.ordered[11])
obs.f12 <- which(fordered[ , 1] == frand.ordered[12])
obs.f13 <- which(fordered[ , 1] == frand.ordered[13])

if(length(obs.f1) == 0){
obs.f1 <- 0
}else
{
obs.f1 <- min(obs.f1):max(obs.f1)
}

if(length(obs.f13) == 0){
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obs.frand13 <- 0
}else
{
obs.f13 <- min(obs.f13):max(obs.f13)
}

new.f1 <- fordered[obs.f1, 2]
new.f2 <- fordered[min(obs.f2):max(obs.f2), 2]
new.f3 <- fordered[min(obs.f3):max(obs.f3), 2]
new.f4 <- fordered[min(obs.f4):max(obs.f4), 2]
new.f5 <- fordered[min(obs.f5):max(obs.f5), 2]
new.f6 <- fordered[min(obs.f6):max(obs.f6), 2]
new.f7 <- fordered[min(obs.f7):max(obs.f7), 2]
new.f8 <- fordered[min(obs.f8):max(obs.f8), 2]
new.f9 <- fordered[min(obs.f9):max(obs.f9), 2]
new.f10 <- fordered[min(obs.f10):max(obs.f10), 2]
new.f11 <- fordered[min(obs.f11):max(obs.f11), 2]
new.f12 <- fordered[min(obs.f12):max(obs.f12), 2]
new.f13 <- fordered[obs.f13, 2]

if(length(new.f1) == 0){
f1.obs <- 0
}else
{
f1.obs <- fstart1:fend1
}

if(length(new.f13) == 0){
f13.obs <- 0
}else
{
f13.obs <- fstart13:fend13
}

test1[f1.obs] <- new.f1
test1[fstart2:fend2] <- new.f2
test1[fstart3:fend3] <- new.f3
test1[fstart4:fend4] <- new.f4
test1[fstart5:fend5] <- new.f5
test1[fstart6:fend6] <- new.f6
test1[fstart7:fend7] <- new.f7
test1[fstart8:fend8] <- new.f8
test1[fstart9:fend9] <- new.f9
test1[fstart10:fend10] <- new.f10
test1[fstart11:fend11] <- new.f11
test1[fstart12:fend12] <- new.f12
test1[f13.obs] <- new.f13

test1 <- na.omit(test1)
test1 <- test1/sqrt(var(test1))
################# End of D-O Event Scattering ##################

################################################################
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########### Periodogram for Block Bootstrap of GISP2 ###########
################################################################

sim.p.gram <- spec.pgram(test1, spans = c(2, 2), log = "no", taper = 0, plot =
FALSE)
sim.fs <- cbind(sim.p.gram$freq, sim.p.gram$spec)

sim.max.loc <- which.max(sim.fs[ , 2])
sim.gmax <- sim.fs[sim.max.loc, ]
all.sim.gmax <- rbind(all.sim.gmax, sim.gmax)

sim.fshort.loc1 <- which(sim.fs[ , 1] <= 0.1)
sim.fshort.loc2 <- max(sim.fshort.loc1)
sim.fs.short <- sim.fs[1:sim.fshort.loc2, ]

sim.spec <- as.matrix(sim.fs.short[ , 2])
sim.data1 <- rbind(0, sim.spec, 0)
sim.data1 <- as.numeric(sim.data1)
sim.lmax.spec <- rep(NA, length(sim.data1))
for(i in 1:length(sim.data1)){
if(sim.data1[i] >= sim.data1[i+1] && sim.data1[i] >= sim.data1[i-1])
{sim.lmax.spec[i] = sim.data1[i]}
}

sim.loc.na <- is.na(sim.lmax.spec)
sim.non.na <- which(sim.loc.na == "FALSE")
sim.loc.non.na <- sim.non.na - 1

sim.lmax <- sim.fs.short[sim.loc.non.na, ]
all.sim.lmax <- rbind(all.sim.lmax, cbind(j, sim.lmax))

ordered <- all.sim.lmax[order(all.sim.lmax[ , 3], decreasing = TRUE), ]

####### End of Periodogram for Block Bootstrap of GISP2 ########

################################################################
##################### Statistic of Interest ####################
################################################################

order.freq <- sim.lmax[order(sim.lmax[, 1]), ]
DO.data <- matrix(order.freq, byrow = FALSE, ncol = 2)
DO.data <- cbind(j, DO.data)
DO.stat.full <- rbind(DO.stat.full, DO.data)

################## End of Statistic of Interest ################

}

####################### End of Simulation ######################

write.table(DO.stat.full, file = "/Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/
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DOstat full for 47 to 20 kyr BP.txt", row.names = FALSE, col.names = c("simnum",
"freq", "spec"))

###############################################################
###### Future Analysis without having to run simulation #######
###############################################################

dostat <- read.table(".../DOstat full
for 47 to 20 kyr BP.txt", header = TRUE)

# Cycle less than 2500 (> 0.010908), 3000 (> 0.00909), and 5000 (> 0.005454)

DO.stat <- NULL
numsim <- 10000
for(i in 1:numsim){

obs.num <- which(dostat$simnum == i)

chunk <- dostat[min(obs.num):max(obs.num), ]

chunk <- chunk[, -1]

stat.wind <- which(chunk$freq > 0.05)
dostat.data <- chunk[min(stat.wind):max(stat.wind), ]
dostat.data <- as.matrix(dostat.data)

chunk.max <- which.max(dostat.data[, 2])

part.max <- dostat.data[chunk.max, ]
DO.stat <- rbind(DO.stat, part.max)

}

write.table(DO.stat, file = "/Users/andrea/school/research/URGES/Thesis Project/
Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/DOstat part
for 47 to 20 kyr BP.txt", row.names = FALSE, col.names = c("freq", "spec"))

C.2.4 Follow-Up Analyses

##########################################################################
##########################################################################
##########################################################################
# Number of D-O events sample code - only 4 D-O events considered
##########################################################################
##########################################################################
##########################################################################

gisp2 <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect 1
/Permutation Test Code/Detrending Data/Simulation Datasets/GISP2 47-20kyr
detrend interp.txt", header = TRUE)

# This function is in preparation of the simulation. In it, we figure out where
the filler starts and stops.
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getstartstop <- function(j1)
{
j1b <- c(j1[2:(length(j1))],-999999)
j1f <- c(-999999,j1[1:(length(j1)-1)])
starts <- is.na(j1) & !is.na(j1f)
stops <- is.na(j1) & !is.na(j1b)
#cbind(starts,stops) # use this if you want an n by 2 matrix of T’s and F’s
## or ##
cbind( (1:length(j1))[starts] , (1:length(j1))[stops] )

# use this if you want a k by 2 matrix of start and stop locations
}

################################################################
################################################################
################################################################
########################## Simulation ##########################
################################################################
################################################################
################################################################

all.sim.gmax <- NULL
all.sim.lmax <- NULL
DO.stat <- NULL
DO.stat.full <- NULL

numsim <- 10000

for(j in 1:numsim){

###############################################################
################### D-O Event Scattering#######################
###############################################################

do2 <- gisp2[119:129, 2]
do3 <- gisp2[272:292, 2]
do4 <- gisp2[316:337, 2]
do5 <- gisp2[423:455, 2]
do6 <- gisp2[475:516, 2]
do7 <- gisp2[521:563, 2]
do8 <- gisp2[581:677, 2]
do9 <- gisp2[731:744, 2]
do10 <- gisp2[755:777, 2]
do11 <- gisp2[786:829, 2]
do12 <- gisp2[834:933, 2]
do13 <- gisp2[966:998, 2]

filler <- gisp2[ , 2]
filler[119:129] <- NA
filler[272:292] <- NA
filler[316:337] <- NA
filler[423:455] <- NA
filler[475:516] <- NA
filler[521:563] <- NA
filler[581:677] <- NA
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filler[731:744] <- NA
filler[755:777] <- NA
filler[786:829] <- NA
filler[834:933] <- NA
filler[966:998] <- NA

filler <- na.omit(filler)

rand.do <- sample(2:13, 4, replace = TRUE)

do2.rand <- cbind(do2, 2)
do3.rand <- cbind(do3, 3)
do4.rand <- cbind(do4, 4)
do5.rand <- cbind(do5, 5)
do6.rand <- cbind(do6, 6)
do7.rand <- cbind(do7, 7)
do8.rand <- cbind(do8, 8)
do9.rand <- cbind(do9, 9)
do10.rand <- cbind(do10, 10)
do11.rand <- cbind(do11, 11)
do12.rand <- cbind(do12, 12)
do13.rand <- cbind(do13, 13)

do.rand <- rbind(do2.rand, do3.rand, do4.rand, do5.rand, do6.rand, do7.rand,
do8.rand, do9.rand, do10.rand, do11.rand, do12.rand, do13.rand)

obs.do1.rand <- which(do.rand[ , 2] == rand.do[1])
obs.do2.rand <- which(do.rand[ , 2] == rand.do[2])
obs.do3.rand <- which(do.rand[ , 2] == rand.do[3])
obs.do4.rand <- which(do.rand[ , 2] == rand.do[4])

new.do1.rand <- do.rand[min(obs.do1.rand):max(obs.do1.rand), 1]
new.do2.rand <- do.rand[min(obs.do2.rand):max(obs.do2.rand), 1]
new.do3.rand <- do.rand[min(obs.do3.rand):max(obs.do3.rand), 1]
new.do4.rand <- do.rand[min(obs.do4.rand):max(obs.do4.rand), 1]

donum <- 4

do.obs <- sum(length(new.do1.rand), length(new.do2.rand), length(new.do3.rand),
length(new.do4.rand))

filler.num <- length(gisp2$age)
rand.nums <- sample(1:filler.num, donum, replace = FALSE)

do1.1 <- cbind(rand.nums[1], new.do1.rand)
do2.1 <- cbind(rand.nums[2], new.do2.rand)
do3.1 <- cbind(rand.nums[3], new.do3.rand)
do4.1 <- cbind(rand.nums[4], new.do4.rand)

doevents <- rbind(do1.1, do2.1, do3.1, do4.1)

ordered <- doevents[order(doevents[, 1]), ]
rand.ordered <- rand.nums[order(rand.nums)]
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obs.do1 <- which(ordered[ , 1] == rand.ordered[1])
obs.do2 <- which(ordered[ , 1] == rand.ordered[2])
obs.do3 <- which(ordered[ , 1] == rand.ordered[3])
obs.do4 <- which(ordered[ , 1] == rand.ordered[4])

new.do1 <- ordered[min(obs.do1):max(obs.do1), 2]
new.do2 <- ordered[min(obs.do2):max(obs.do2), 2]
new.do3 <- ordered[min(obs.do3):max(obs.do3), 2]
new.do4 <- ordered[min(obs.do4):max(obs.do4), 2]

rand1 <- rand.ordered[1]
rand2 <- rand.ordered[2]
rand3 <- rand.ordered[3]
rand4 <- rand.ordered[4]

diff1 <- rand2 - rand1
diff2 <- rand3 - rand2
diff3 <- rand4 - rand3

start1 <- rand1
end1 <- start1 + length(new.do1) - 1

start2 <- rand2
end2 <- start2 + length(new.do2) - 1

start3 <- rand3
end3 <- start3 + length(new.do3) - 1

start4 <- rand4
end4 <- start4 + length(new.do4) - 1

d1 <- c(rep(-100, (rand1 - 1)), new.do1, rep(-100, (2000 - (length(new.do1) +
rand1 - 1))))
d2 <- c(rep(-100, (rand2 - 1)), new.do2, rep(-100, (2000 - (length(new.do2) +
rand2 - 1))))
d3 <- c(rep(-100, (rand3 - 1)), new.do3, rep(-100, (2000 - (length(new.do3) +
rand3 - 1))))
d4 <- c(rep(-100, (rand4 - 1)), new.do4, rep(-100, (2000 - (length(new.do4) +
rand4 - 1))))

d1.a <- d1[1:1000]
d1.b <- d1[1001:2000]
d2.a <- d2[1:1000]
d2.b <- d2[1001:2000]
d3.a <- d3[1:1000]
d3.b <- d3[1001:2000]
d4.a <- d4[1:1000]
d4.b <- d4[1001:2000]

test1 <- pmax(d1.a, d1.b, d2.a, d2.b, d3.a, d3.b, d4.a, d4.b)
test1 <- ifelse(test1 == -100, NA, test1)

######################## Filler Points #########################
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filler.rand <- sample(1:length(filler), (donum + 1), replace = TRUE)

filler.remain <- filler.rand[1] - 1
if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[1]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.1 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[2] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[2]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.2 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[3] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[3]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.3 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[4] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[4]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.4 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[5] - 1
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if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[5]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.5 <- c(filler.per1, filler.per2)

filler.ss <- getstartstop(test1)
filler.na <- cbind(rep(NA, 20), rep(NA, 20))
filler.ss1 <- rbind(filler.ss, filler.na)
filler.ss2 <- filler.ss1[1:(donum + 1), ]

fstart1 <- filler.ss2[1, 1]
fend1 <- filler.ss2[1, 2]
flen1 <- fend1 - fstart1 + 1

flen1 <- ifelse(is.na(flen1) == TRUE, 0, flen1)

fstart2 <- filler.ss2[2, 1]
fend2 <- filler.ss2[2, 2]
flen2 <- fend2 - fstart2 + 1

flen2 <- ifelse(is.na(flen2) == TRUE, 0, flen2)

fstart3 <- filler.ss2[3, 1]
fend3 <- filler.ss2[3, 2]
flen3 <- fend3 - fstart3 + 1

flen3 <- ifelse(is.na(flen3) == TRUE, 0, flen3)

fstart4 <- filler.ss2[4, 1]
fend4 <- filler.ss2[4, 2]
flen4 <- fend4 - fstart4 + 1

flen4 <- ifelse(is.na(flen4) == TRUE, 0, flen4)

fstart5 <- filler.ss2[5, 1]
fend5 <- filler.ss2[5, 2]
flen5 <- fend5 - fstart5 + 1

flen5 <- ifelse(is.na(flen5) == TRUE, 0, flen5)

rand.filler <- sample(1:(donum + 1), (donum + 1), replace = FALSE)
frand.ordered <- rand.filler[order(rand.filler)]

flrand1 <- rep(frand.ordered[1], flen1)
flrand2 <- rep(frand.ordered[2], flen2)
flrand3 <- rep(frand.ordered[3], flen3)
flrand4 <- rep(frand.ordered[4], flen4)
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flrand5 <- rep(frand.ordered[5], flen5)

flrand1 <- as.matrix(flrand1)
flrand2 <- as.matrix(flrand2)
flrand3 <- as.matrix(flrand3)
flrand4 <- as.matrix(flrand4)
flrand5 <- as.matrix(flrand5)

flrand <- rbind(flrand1, flrand2, flrand3, flrand4, flrand5)

obs.frand1 <- which(flrand == rand.filler[1])
obs.frand2 <- which(flrand == rand.filler[2])
obs.frand3 <- which(flrand == rand.filler[3])
obs.frand4 <- which(flrand == rand.filler[4])
obs.frand5 <- which(flrand == rand.filler[5])

if(length(obs.frand1) == 0){
obs.frand1 <- 0
}else
{
obs.frand1 <- min(obs.frand1):max(obs.frand1)
}

if(length(obs.frand2) == 0){
obs.frand2 <- 0
}else
{
obs.frand2 <- min(obs.frand2):max(obs.frand2)
}

if(length(obs.frand3) == 0){
obs.frand3 <- 0
}else
{
obs.frand3 <- min(obs.frand3):max(obs.frand3)
}

if(length(obs.frand4) == 0){
obs.frand4 <- 0
}else
{
obs.frand4 <- min(obs.frand4):max(obs.frand4)
}

if(length(obs.frand5) == 0){
obs.frand5 <- 0
}else
{
obs.frand5 <- min(obs.frand5):max(obs.frand5)
}

frand1 <- flrand[obs.frand1, ]
frand2 <- flrand[obs.frand2, ]
frand3 <- flrand[obs.frand3, ]
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frand4 <- flrand[obs.frand4, ]
frand5 <- flrand[obs.frand5, ]

frand1 <- as.matrix(frand1)
frand2 <- as.matrix(frand2)
frand3 <- as.matrix(frand3)
frand4 <- as.matrix(frand4)
frand5 <- as.matrix(frand5)

frand <- rbind(frand1, frand2, frand3, frand4, frand5)

c.frand <- cbind(frand, filler.per.1, filler.per.2, filler.per.3, filler.per.4,
filler.per.5)

fordered <- c.frand[order(c.frand[, 1]), ]

obs.f1 <- which(fordered[ , 1] == frand.ordered[1])
obs.f2 <- which(fordered[ , 1] == frand.ordered[2])
obs.f3 <- which(fordered[ , 1] == frand.ordered[3])
obs.f4 <- which(fordered[ , 1] == frand.ordered[4])
obs.f5 <- which(fordered[ , 1] == frand.ordered[5])

if(length(obs.f1) == 0){
obs.f1 <- 0
}else
{
obs.f1 <- min(obs.f1):max(obs.f1)
}

if(length(obs.f2) == 0){
obs.f2 <- 0
}else
{
obs.f2 <- min(obs.f2):max(obs.f2)
}

if(length(obs.f3) == 0){
obs.f3 <- 0
}else
{
obs.f3 <- min(obs.f3):max(obs.f3)
}

if(length(obs.f4) == 0){
obs.f4 <- 0
}else
{
obs.f4 <- min(obs.f4):max(obs.f4)
}

if(length(obs.f5) == 0){
obs.frand5 <- 0
}else
{
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obs.f5 <- min(obs.f5):max(obs.f5)
}

new.f1 <- fordered[obs.f1, 2]
new.f2 <- fordered[obs.f2, 3]
new.f3 <- fordered[obs.f3, 4]
new.f4 <- fordered[obs.f4, 5]
new.f5 <- fordered[obs.f5, 6]

if(length(new.f1) == 0){
f1.obs <- 0
}else
{
f1.obs <- fstart1:fend1
}

if(length(new.f2) == 0){
f2.obs <- 0
}else
{
f2.obs <- fstart2:fend2
}

if(length(new.f3) == 0){
f3.obs <- 0
}else
{
f3.obs <- fstart3:fend3
}

if(length(new.f4) == 0){
f4.obs <- 0
}else
{
f4.obs <- fstart4:fend4
}

if(length(new.f5) == 0){
f5.obs <- 0
}else
{
f5.obs <- fstart5:fend5
}

test1[f1.obs] <- new.f1
test1[f2.obs] <- new.f2
test1[f3.obs] <- new.f3
test1[f4.obs] <- new.f4
test1[f5.obs] <- new.f5

#Scaling test1
test1 <- test1/sqrt(var(test1))
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################# End of D-O Event Scattering ##################

################################################################
########### Periodogram for Block Bootstrap of GISP2 ###########
################################################################

sim.p.gram <- spec.pgram(test1, spans = c(2, 2), log = "no", taper = 0, plot =
FALSE)
sim.fs <- cbind(sim.p.gram$freq, sim.p.gram$spec)

sim.max.loc <- which.max(sim.fs[ , 2])
sim.gmax <- sim.fs[sim.max.loc, ]
all.sim.gmax <- rbind(all.sim.gmax, sim.gmax)

sim.fshort.loc1 <- which(sim.fs[ , 1] <= 0.1)
sim.fshort.loc2 <- max(sim.fshort.loc1)
sim.fs.short <- sim.fs[1:sim.fshort.loc2, ]

sim.spec <- as.matrix(sim.fs.short[ , 2])
sim.data1 <- rbind(0, sim.spec, 0)
sim.data1 <- as.numeric(sim.data1)
sim.lmax.spec <- rep(NA, length(sim.data1))
for(i in 1:length(sim.data1)){
if(sim.data1[i] >= sim.data1[i+1] && sim.data1[i] >= sim.data1[i-1])
{sim.lmax.spec[i] = sim.data1[i]}
}

sim.loc.na <- is.na(sim.lmax.spec)
sim.non.na <- which(sim.loc.na == "FALSE")
sim.loc.non.na <- sim.non.na - 1

sim.lmax <- sim.fs.short[sim.loc.non.na, ]
all.sim.lmax <- rbind(all.sim.lmax, cbind(j, sim.lmax))
ordered <- all.sim.lmax[order(all.sim.lmax[ , 3], decreasing = TRUE), ]

####### End of Periodogram for Block Bootstrap of GISP2 ########

################################################################
##################### Statistic of Interest ####################
################################################################

order.freq <- sim.lmax[order(sim.lmax[, 1]), ]
DO.data <- matrix(order.freq, byrow = FALSE, ncol = 2)
DO.data <- cbind(j, DO.data)
DO.stat.full <- rbind(DO.stat.full, DO.data)

################## End of Statistic of Interest ################

}
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####################### End of Simulation ######################

write.table(DO.stat.full, file = "Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/DOstat
full for 4 D-O events.txt", row.names = FALSE, col.names = c("simnum","freq",
"spec"))

###############################################################
###### Future Analysis without having to run simulation #######
###############################################################

dostat <- read.table("Users/andrea/school/research/URGES/Thesis Project/Aspect 1
/Permutation Test Code/Final Product/Simulations2/Results/DOstat full for 4 D-O
events.txt", header = TRUE)

# Want peaks less than 2500 (> 0.010908), 3000 (> 0.00909), and 5000 (> 0.005454)

DO.stat <- NULL
numsim <- 10000
for(i in 1:numsim){

obs.num <- which(dostat$simnum == i)

chunk <- dostat[min(obs.num):max(obs.num), ]

chunk <- chunk[, -1]

stat.wind <- which(chunk$freq > 0.005454)
dostat.data <- chunk[min(stat.wind):max(stat.wind), ]
dostat.data <- as.matrix(dostat.data)

chunk.max <- which.max(dostat.data[, 2])

part.max <- dostat.data[chunk.max, ]
DO.stat <- rbind(DO.stat, part.max)

}

write.table(DO.stat, file = "Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final
Product/Simulations2/Results/DOstat 5000 for 4 D-O events.txt", row.names =
FALSE, col.names = c("freq", "spec"))

##########################################################################
##########################################################################
##########################################################################
# Duration of D-O events
##########################################################################
##########################################################################
##########################################################################

gisp2 <- read.table(".../GISP2 47-20kyr detrend interp.txt", header = TRUE)

87



################################################################
###### Beginning of Expanding or Contracting D-O Events ########
################################################################

my.mult <- function(do2, do3, do4, do5, do6, do7, do8, do9, do10, do11, do12,
do13, m){

m2 <- length(do2$age) * m + 0.001
m3 <- length(do3$age) * m + 0.001
m4 <- length(do4$age) * m + 0.001
m5 <- length(do5$age) * m + 0.001
m6 <- length(do6$age) * m + 0.001
m7 <- length(do7$age) * m + 0.001
m8 <- length(do8$age) * m + 0.001
m9 <- length(do9$age) * m + 0.001
m10 <- length(do10$age) * m + 0.001
m11 <- length(do11$age) * m + 0.001
m12 <- length(do12$age) * m + 0.001
m13 <- length(do13$age) * m + 0.001

do2.m <- approx(do2$age, do2$res, n = round(m2, digits = 0))
do3.m <- approx(do3$age, do3$res, n = round(m3, digits = 0))
do4.m <- approx(do4$age, do4$res, n = round(m4, digits = 0))
do5.m <- approx(do5$age, do5$res, n = round(m5, digits = 0))
do6.m <- approx(do6$age, do6$res, n = round(m6, digits = 0))
do7.m <- approx(do7$age, do7$res, n = round(m7, digits = 0))
do8.m <- approx(do8$age, do8$res, n = round(m8, digits = 0))
do9.m <- approx(do9$age, do9$res, n = round(m9, digits = 0))
do10.m <- approx(do10$age, do10$res, n = round(m10, digits = 0))
do11.m <- approx(do11$age, do11$res, n = round(m11, digits = 0))
do12.m <- approx(do12$age, do12$res, n = round(m12, digits = 0))
do13.m <- approx(do13$age, do13$res, n = round(m13, digits = 0))

do2.m <- cbind(do2.m$y, 2)
do3.m <- cbind(do3.m$y, 3)
do4.m <- cbind(do4.m$y, 4)
do5.m <- cbind(do5.m$y, 5)
do6.m <- cbind(do6.m$y, 6)
do7.m <- cbind(do7.m$y, 7)
do8.m <- cbind(do8.m$y, 8)
do9.m <- cbind(do9.m$y, 9)
do10.m <- cbind(do10.m$y, 10)
do11.m <- cbind(do11.m$y, 11)
do12.m <- cbind(do12.m$y, 12)
do13.m <- cbind(do13.m$y, 13)

do.m <- rbind(do2.m, do3.m, do4.m, do5.m, do6.m, do7.m, do8.m,
do9.m, do10.m, do11.m, do12.m, do13.m)

do.m

}

do2.f <- gisp2[119:129, ]
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do3.f <- gisp2[272:292, ]
do4.f <- gisp2[316:337, ]
do5.f <- gisp2[423:455, ]
do6.f <- gisp2[475:516, ]
do7.f <- gisp2[521:563, ]
do8.f <- gisp2[581:677, ]
do9.f <- gisp2[731:744, ]
do10.f <- gisp2[755:777, ]
do11.f <- gisp2[786:829, ]
do12.f <- gisp2[834:933, ]
do13.f <- gisp2[966:998, ]

m <- 0.25

###############################################################

do.m <- my.mult(do2.f, do3.f, do4.f, do5.f, do6.f, do7.f, do8.f, do9.f, do10.f,
do11.f, do12.f, do13.f, m)

###############################################################

do2.mobs <- which(do.m[, 2] == 2)
do3.mobs <- which(do.m[, 2] == 3)
do4.mobs <- which(do.m[, 2] == 4)
do5.mobs <- which(do.m[, 2] == 5)
do6.mobs <- which(do.m[, 2] == 6)
do7.mobs <- which(do.m[, 2] == 7)
do8.mobs <- which(do.m[, 2] == 8)
do9.mobs <- which(do.m[, 2] == 9)
do10.mobs <- which(do.m[, 2] == 10)
do11.mobs <- which(do.m[, 2] == 11)
do12.mobs <- which(do.m[, 2] == 12)
do13.mobs <- which(do.m[, 2] == 13)

do2.mnew <- do.m[min(do2.mobs):max(do2.mobs), 1]
do3.mnew <- do.m[min(do3.mobs):max(do3.mobs), 1]
do4.mnew <- do.m[min(do4.mobs):max(do4.mobs), 1]
do5.mnew <- do.m[min(do5.mobs):max(do5.mobs), 1]
do6.mnew <- do.m[min(do6.mobs):max(do6.mobs), 1]
do7.mnew <- do.m[min(do7.mobs):max(do7.mobs), 1]
do8.mnew <- do.m[min(do8.mobs):max(do8.mobs), 1]
do9.mnew <- do.m[min(do9.mobs):max(do9.mobs), 1]
do10.mnew <- do.m[min(do10.mobs):max(do10.mobs), 1]
do11.mnew <- do.m[min(do11.mobs):max(do11.mobs), 1]
do12.mnew <- do.m[min(do12.mobs):max(do12.mobs), 1]
do13.mnew <- do.m[min(do13.mobs):max(do13.mobs), 1]

########## End of Expanding or Contracting D-O Events ##########

getstartstop <- function(j1)
{
j1b <- c(j1[2:(length(j1))],-999999)
j1f <- c(-999999,j1[1:(length(j1)-1)])
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starts <- is.na(j1) & !is.na(j1f)
stops <- is.na(j1) & !is.na(j1b)
#cbind(starts,stops) # use this if you want an n by 2 matrix of T’s and F’s
## or ##
cbind( (1:length(j1))[starts] , (1:length(j1))[stops] )

# use this if you want a k by 2 matrix of start and stop locations
}

################################################################
################################################################
################################################################
########################## Simulation ##########################
################################################################
################################################################
################################################################

all.sim.gmax <- NULL
all.sim.lmax <- NULL
DO.stat <- NULL
DO.stat.full <- NULL

numsim <- 10000

for(j in 1:numsim){

###############################################################
################### D-O Event Scattering#######################
###############################################################

do2 <- do2.mnew
do3 <- do3.mnew
do4 <- do4.mnew
do5 <- do5.mnew
do6 <- do6.mnew
do7 <- do7.mnew
do8 <- do8.mnew
do9 <- do9.mnew
do10 <- do10.mnew
do11 <- do11.mnew
do12 <- do12.mnew
do13 <- do13.mnew

filler <- gisp2[ , 2]
filler[119:129] <- NA
filler[272:292] <- NA
filler[316:337] <- NA
filler[423:455] <- NA
filler[475:516] <- NA
filler[521:563] <- NA
filler[581:677] <- NA
filler[731:744] <- NA
filler[755:777] <- NA
filler[786:829] <- NA
filler[834:933] <- NA
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filler[966:998] <- NA

filler <- na.omit(filler)

rand.do <- sample(2:13, 12, replace = TRUE)

do2.rand <- cbind(do2, 2)
do3.rand <- cbind(do3, 3)
do4.rand <- cbind(do4, 4)
do5.rand <- cbind(do5, 5)
do6.rand <- cbind(do6, 6)
do7.rand <- cbind(do7, 7)
do8.rand <- cbind(do8, 8)
do9.rand <- cbind(do9, 9)
do10.rand <- cbind(do10, 10)
do11.rand <- cbind(do11, 11)
do12.rand <- cbind(do12, 12)
do13.rand <- cbind(do13, 13)

do.rand <- rbind(do2.rand, do3.rand, do4.rand, do5.rand, do6.rand, do7.rand,
do8.rand, do9.rand, do10.rand, do11.rand, do12.rand, do13.rand)

obs.do1.rand <- which(do.rand[ , 2] == rand.do[1])
obs.do2.rand <- which(do.rand[ , 2] == rand.do[2])
obs.do3.rand <- which(do.rand[ , 2] == rand.do[3])
obs.do4.rand <- which(do.rand[ , 2] == rand.do[4])
obs.do5.rand <- which(do.rand[ , 2] == rand.do[5])
obs.do6.rand <- which(do.rand[ , 2] == rand.do[6])
obs.do7.rand <- which(do.rand[ , 2] == rand.do[7])
obs.do8.rand <- which(do.rand[ , 2] == rand.do[8])
obs.do9.rand <- which(do.rand[ , 2] == rand.do[9])
obs.do10.rand <- which(do.rand[ , 2] == rand.do[10])
obs.do11.rand <- which(do.rand[ , 2] == rand.do[11])
obs.do12.rand <- which(do.rand[ , 2] == rand.do[12])

new.do1.rand <- do.rand[min(obs.do1.rand):max(obs.do1.rand), 1]
new.do2.rand <- do.rand[min(obs.do2.rand):max(obs.do2.rand), 1]
new.do3.rand <- do.rand[min(obs.do3.rand):max(obs.do3.rand), 1]
new.do4.rand <- do.rand[min(obs.do4.rand):max(obs.do4.rand), 1]
new.do5.rand <- do.rand[min(obs.do5.rand):max(obs.do5.rand), 1]
new.do6.rand <- do.rand[min(obs.do6.rand):max(obs.do6.rand), 1]
new.do7.rand <- do.rand[min(obs.do7.rand):max(obs.do7.rand), 1]
new.do8.rand <- do.rand[min(obs.do8.rand):max(obs.do8.rand), 1]
new.do9.rand <- do.rand[min(obs.do9.rand):max(obs.do9.rand), 1]
new.do10.rand <- do.rand[min(obs.do10.rand):max(obs.do10.rand), 1]
new.do11.rand <- do.rand[min(obs.do11.rand):max(obs.do11.rand), 1]
new.do12.rand <- do.rand[min(obs.do12.rand):max(obs.do12.rand), 1]

donum <- 12

do.obs <- sum(length(new.do1.rand), length(new.do2.rand), length(new.do3.rand),
length(new.do4.rand), length(new.do5.rand), length(new.do6.rand),
length(new.do7.rand), length(new.do8.rand), length(new.do9.rand),
length(new.do10.rand), length(new.do11.rand), length(new.do12.rand))
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filler.num <- length(gisp2$age)

do1.1 <- cbind(rand.nums[1], new.do1.rand)
do2.1 <- cbind(rand.nums[2], new.do2.rand)
do3.1 <- cbind(rand.nums[3], new.do3.rand)
do4.1 <- cbind(rand.nums[4], new.do4.rand)
do5.1 <- cbind(rand.nums[5], new.do5.rand)
do6.1 <- cbind(rand.nums[6], new.do6.rand)
do7.1 <- cbind(rand.nums[7], new.do7.rand)
do8.1 <- cbind(rand.nums[8], new.do8.rand)
do9.1 <- cbind(rand.nums[9], new.do9.rand)
do10.1 <- cbind(rand.nums[10], new.do10.rand)
do11.1 <- cbind(rand.nums[11], new.do11.rand)
do12.1 <- cbind(rand.nums[12], new.do12.rand)

doevents <- rbind(do1.1, do2.1, do3.1, do4.1, do5.1, do6.1, do7.1,do8.1, do9.1,
do10.1, do11.1, do12.1)

ordered <- doevents[order(doevents[, 1]), ]
rand.ordered <- rand.nums[order(rand.nums)]

obs.do1 <- which(ordered[ , 1] == rand.ordered[1])
obs.do2 <- which(ordered[ , 1] == rand.ordered[2])
obs.do3 <- which(ordered[ , 1] == rand.ordered[3])
obs.do4 <- which(ordered[ , 1] == rand.ordered[4])
obs.do5 <- which(ordered[ , 1] == rand.ordered[5])
obs.do6 <- which(ordered[ , 1] == rand.ordered[6])
obs.do7 <- which(ordered[ , 1] == rand.ordered[7])
obs.do8 <- which(ordered[ , 1] == rand.ordered[8])
obs.do9 <- which(ordered[ , 1] == rand.ordered[9])
obs.do10 <- which(ordered[ , 1] == rand.ordered[10])
obs.do11 <- which(ordered[ , 1] == rand.ordered[11])
obs.do12 <- which(ordered[ , 1] == rand.ordered[12])

new.do1 <- ordered[min(obs.do1):max(obs.do1), 2]
new.do2 <- ordered[min(obs.do2):max(obs.do2), 2]
new.do3 <- ordered[min(obs.do3):max(obs.do3), 2]
new.do4 <- ordered[min(obs.do4):max(obs.do4), 2]
new.do5 <- ordered[min(obs.do5):max(obs.do5), 2]
new.do6 <- ordered[min(obs.do6):max(obs.do6), 2]
new.do7 <- ordered[min(obs.do7):max(obs.do7), 2]
new.do8 <- ordered[min(obs.do8):max(obs.do8), 2]
new.do9 <- ordered[min(obs.do9):max(obs.do9), 2]
new.do10 <- ordered[min(obs.do10):max(obs.do10), 2]
new.do11 <- ordered[min(obs.do11):max(obs.do11), 2]
new.do12 <- ordered[min(obs.do12):max(obs.do12), 2]

rand1 <- rand.ordered[1]
rand2 <- rand.ordered[2]
rand3 <- rand.ordered[3]
rand4 <- rand.ordered[4]
rand5 <- rand.ordered[5]
rand6 <- rand.ordered[6]
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rand7 <- rand.ordered[7]
rand8 <- rand.ordered[8]
rand9 <- rand.ordered[9]
rand10 <- rand.ordered[10]
rand11 <- rand.ordered[11]
rand12 <- rand.ordered[12]

diff1 <- rand2 - rand1
diff2 <- rand3 - rand2
diff3 <- rand4 - rand3
diff4 <- rand5 - rand4
diff5 <- rand6 - rand5
diff6 <- rand7 - rand6
diff7 <- rand8 - rand7
diff8 <- rand9 - rand8
diff9 <- rand10 - rand9
diff10 <- rand11 - rand10
diff11 <- rand12 - rand11

start1 <- rand1
end1 <- start1 + length(new.do1) - 1

start2 <- rand2
end2 <- start2 + length(new.do2) - 1

start3 <- rand3
end3 <- start3 + length(new.do3) - 1

start4 <- rand4
end4 <- start4 + length(new.do4) - 1

start5 <- rand5
end5 <- start5 + length(new.do5) - 1

start6 <- rand6
end6 <- start6 + length(new.do6) - 1

start7 <- rand7
end7 <- start7 + length(new.do7) - 1

start8 <- rand8
end8 <- start8 + length(new.do8) - 1

start9 <- rand9
end9 <- start9 + length(new.do9) - 1

start10 <- rand10
end10 <- start10 + length(new.do10) - 1

start11 <- rand11
end11 <- start11 + length(new.do11) - 1

start12 <- rand12
end12 <- start12 + length(new.do12) - 1
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d1 <- c(rep(-100, (rand1 - 1)), new.do1, rep(-100, (2000 - (length(new.do1) +
rand1 - 1))))
d2 <- c(rep(-100, (rand2 - 1)), new.do2, rep(-100, (2000 - (length(new.do2) +
rand2 - 1))))
d3 <- c(rep(-100, (rand3 - 1)), new.do3, rep(-100, (2000 - (length(new.do3) +
rand3 - 1))))
d4 <- c(rep(-100, (rand4 - 1)), new.do4, rep(-100, (2000 - (length(new.do4) +
rand4 - 1))))
d5 <- c(rep(-100, (rand5 - 1)), new.do5, rep(-100, (2000 - (length(new.do5) +
rand5 - 1))))
d6 <- c(rep(-100, (rand6 - 1)), new.do6, rep(-100, (2000 - (length(new.do6) +
rand6 - 1))))
d7 <- c(rep(-100, (rand7 - 1)), new.do7, rep(-100, (2000 - (length(new.do7) +
rand7 - 1))))
d8 <- c(rep(-100, (rand8 - 1)), new.do8, rep(-100, (2000 - (length(new.do8) +
rand8 - 1))))
d9 <- c(rep(-100, (rand9 - 1)), new.do9, rep(-100, (2000 - (length(new.do9) +
rand9 - 1))))
d10 <- c(rep(-100, (rand10 - 1)), new.do10, rep(-100, (2000 - (length(new.do10)
+ rand10 - 1))))
d11 <- c(rep(-100, (rand11 - 1)), new.do11, rep(-100, (2000 - (length(new.do11)
+ rand11 - 1))))
d12 <- c(rep(-100, (rand12 - 1)), new.do12, rep(-100, (2000 - (length(new.do12)
+ rand12 - 1))))

d1.a <- d1[1:1000]
d1.b <- d1[1001:2000]
d2.a <- d2[1:1000]
d2.b <- d2[1001:2000]
d3.a <- d3[1:1000]
d3.b <- d3[1001:2000]
d4.a <- d4[1:1000]
d4.b <- d4[1001:2000]
d5.a <- d5[1:1000]
d5.b <- d5[1001:2000]
d6.a <- d6[1:1000]
d6.b <- d6[1001:2000]
d7.a <- d7[1:1000]
d7.b <- d7[1001:2000]
d8.a <- d8[1:1000]
d8.b <- d8[1001:2000]
d9.a <- d9[1:1000]
d9.b <- d9[1001:2000]
d10.a <- d10[1:1000]
d10.b <- d10[1001:2000]
d11.a <- d11[1:1000]
d11.b <- d11[1001:2000]
d12.a <- d12[1:1000]
d12.b <- d12[1001:2000]

test1 <- pmax(d1.a, d1.b, d2.a, d2.b, d3.a, d3.b, d4.a, d4.b, d5.a, d5.b, d6.a,
d6.b, d7.a, d7.b, d8.a, d8.b, d9.a, d9.b, d10.a, d10.b, d11.a, d11.b, d12.a,
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d12.b)

test1 <- ifelse(test1 == -100, NA, test1)

######################## Filler Points #########################

filler.rand <- sample(1:length(filler), (donum + 1), replace = TRUE)
filler.remain <- filler.rand[1] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[1]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.1 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[2] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[2]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.2 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[3] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[3]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.3 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[4] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}
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filler.per1 <- filler[filler.rand[4]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.4 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[5] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[5]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.5 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[6] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[6]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.6 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[7] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[7]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.7 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[8] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[8]:length(filler)]
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filler.per2 <- filler[filler.obs]
filler.per.8 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[9] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[9]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.9 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[10] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[10]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.10 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[11] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[11]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.11 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[12] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[12]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.12 <- c(filler.per1, filler.per2)
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filler.remain <- filler.rand[13] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[13]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.13 <- c(filler.per1, filler.per2)

filler.ss <- getstartstop(test1)
filler.na <- cbind(rep(NA, 20), rep(NA, 20))
filler.ss1 <- rbind(filler.ss, filler.na)
filler.ss2 <- filler.ss1[1:(donum + 1), ]

fstart1 <- filler.ss2[1, 1]
fend1 <- filler.ss2[1, 2]
flen1 <- fend1 - fstart1 + 1

flen1 <- ifelse(is.na(flen1) == TRUE, 0, flen1)

fstart2 <- filler.ss2[2, 1]
fend2 <- filler.ss2[2, 2]
flen2 <- fend2 - fstart2 + 1

flen2 <- ifelse(is.na(flen2) == TRUE, 0, flen2)

fstart3 <- filler.ss2[3, 1]
fend3 <- filler.ss2[3, 2]
flen3 <- fend3 - fstart3 + 1

flen3 <- ifelse(is.na(flen3) == TRUE, 0, flen3)

fstart4 <- filler.ss2[4, 1]
fend4 <- filler.ss2[4, 2]
flen4 <- fend4 - fstart4 + 1

flen4 <- ifelse(is.na(flen4) == TRUE, 0, flen4)

fstart5 <- filler.ss2[5, 1]
fend5 <- filler.ss2[5, 2]
flen5 <- fend5 - fstart5 + 1

flen5 <- ifelse(is.na(flen5) == TRUE, 0, flen5)

fstart6 <- filler.ss2[6, 1]
fend6 <- filler.ss2[6, 2]
flen6 <- fend6 - fstart6 + 1
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flen6 <- ifelse(is.na(flen6) == TRUE, 0, flen6)

fstart7 <- filler.ss2[7, 1]
fend7 <- filler.ss2[7, 2]
flen7 <- fend7 - fstart7 + 1

flen7 <- ifelse(is.na(flen7) == TRUE, 0, flen7)

fstart8 <- filler.ss2[8, 1]
fend8 <- filler.ss2[8, 2]
flen8 <- fend8 - fstart8 + 1

flen8 <- ifelse(is.na(flen8) == TRUE, 0, flen8)

fstart9 <- filler.ss2[9, 1]
fend9 <- filler.ss2[9, 2]
flen9 <- fend9 - fstart9 + 1

flen9 <- ifelse(is.na(flen9) == TRUE, 0, flen9)

fstart10 <- filler.ss2[10, 1]
fend10 <- filler.ss2[10, 2]
flen10 <- fend10 - fstart10 + 1

flen10 <- ifelse(is.na(flen10) == TRUE, 0, flen10)

fstart11 <- filler.ss2[11, 1]
fend11 <- filler.ss2[11, 2]
flen11 <- fend11 - fstart11 + 1

flen11 <- ifelse(is.na(flen11) == TRUE, 0, flen11)

fstart12 <- filler.ss2[12, 1]
fend12 <- filler.ss2[12, 2]
flen12 <- fend12 - fstart12 + 1

flen12 <- ifelse(is.na(flen12) == TRUE, 0, flen12)

fstart13 <- filler.ss2[13, 1]
fend13 <- filler.ss2[13, 2]
flen13 <- fend13 - fstart13 + 1

flen13 <- ifelse(is.na(flen13) == TRUE, 0, flen13)

rand.filler <- sample(1:(donum + 1), (donum + 1), replace = FALSE)

frand.ordered <- rand.filler[order(rand.filler)]

flrand1 <- rep(frand.ordered[1], flen1)
flrand2 <- rep(frand.ordered[2], flen2)
flrand3 <- rep(frand.ordered[3], flen3)
flrand4 <- rep(frand.ordered[4], flen4)
flrand5 <- rep(frand.ordered[5], flen5)
flrand6 <- rep(frand.ordered[6], flen6)
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flrand7 <- rep(frand.ordered[7], flen7)
flrand8 <- rep(frand.ordered[8], flen8)
flrand9 <- rep(frand.ordered[9], flen9)
flrand10 <- rep(frand.ordered[10], flen10)
flrand11 <- rep(frand.ordered[11], flen11)
flrand12 <- rep(frand.ordered[12], flen12)
flrand13 <- rep(frand.ordered[13], flen13)

flrand1 <- as.matrix(flrand1)
flrand2 <- as.matrix(flrand2)
flrand3 <- as.matrix(flrand3)
flrand4 <- as.matrix(flrand4)
flrand5 <- as.matrix(flrand5)
flrand6 <- as.matrix(flrand6)
flrand7 <- as.matrix(flrand7)
flrand8 <- as.matrix(flrand8)
flrand9 <- as.matrix(flrand9)
flrand10 <- as.matrix(flrand10)
flrand11 <- as.matrix(flrand11)
flrand12 <- as.matrix(flrand12)
flrand13 <- as.matrix(flrand13)

flrand <- rbind(flrand1, flrand2, flrand3, flrand4, flrand5, flrand6, flrand7,
flrand8, flrand9, flrand10, flrand11, flrand12, flrand13)

obs.frand1 <- which(flrand == rand.filler[1])
obs.frand2 <- which(flrand == rand.filler[2])
obs.frand3 <- which(flrand == rand.filler[3])
obs.frand4 <- which(flrand == rand.filler[4])
obs.frand5 <- which(flrand == rand.filler[5])
obs.frand6 <- which(flrand == rand.filler[6])
obs.frand7 <- which(flrand == rand.filler[7])
obs.frand8 <- which(flrand == rand.filler[8])
obs.frand9 <- which(flrand == rand.filler[9])
obs.frand10 <- which(flrand == rand.filler[10])
obs.frand11 <- which(flrand == rand.filler[11])
obs.frand12 <- which(flrand == rand.filler[12])
obs.frand13 <- which(flrand == rand.filler[13])

if(length(obs.frand1) == 0){
obs.frand1 <- 0
}else
{
obs.frand1 <- min(obs.frand1):max(obs.frand1)
}

if(length(obs.frand2) == 0){
obs.frand2 <- 0
}else
{
obs.frand2 <- min(obs.frand2):max(obs.frand2)
}

if(length(obs.frand3) == 0){
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obs.frand3 <- 0
}else
{
obs.frand3 <- min(obs.frand3):max(obs.frand3)
}

if(length(obs.frand4) == 0){
obs.frand4 <- 0
}else
{
obs.frand4 <- min(obs.frand4):max(obs.frand4)
}

if(length(obs.frand5) == 0){
obs.frand5 <- 0
}else
{
obs.frand5 <- min(obs.frand5):max(obs.frand5)
}

if(length(obs.frand6) == 0){
obs.frand6 <- 0
}else
{
obs.frand6 <- min(obs.frand6):max(obs.frand6)
}

if(length(obs.frand7) == 0){
obs.frand7 <- 0
}else
{
obs.frand7 <- min(obs.frand7):max(obs.frand7)
}

if(length(obs.frand8) == 0){
obs.frand8 <- 0
}else
{
obs.frand8 <- min(obs.frand8):max(obs.frand8)
}

if(length(obs.frand9) == 0){
obs.frand9 <- 0
}else
{
obs.frand9 <- min(obs.frand9):max(obs.frand9)
}

if(length(obs.frand10) == 0){
obs.frand10 <- 0
}else
{
obs.frand10 <- min(obs.frand10):max(obs.frand10)
}
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if(length(obs.frand11) == 0){
obs.frand11 <- 0
}else
{
obs.frand11 <- min(obs.frand11):max(obs.frand11)
}

if(length(obs.frand12) == 0){
obs.frand12 <- 0
}else
{
obs.frand12 <- min(obs.frand12):max(obs.frand12)
}

if(length(obs.frand13) == 0){
obs.frand13 <- 0
}else
{
obs.frand13 <- min(obs.frand13):max(obs.frand13)
}

frand1 <- flrand[obs.frand1, ]
frand2 <- flrand[obs.frand2, ]
frand3 <- flrand[obs.frand3, ]
frand4 <- flrand[obs.frand4, ]
frand5 <- flrand[obs.frand5, ]
frand6 <- flrand[obs.frand6, ]
frand7 <- flrand[obs.frand7, ]
frand8 <- flrand[obs.frand8, ]
frand9 <- flrand[obs.frand9, ]
frand10 <- flrand[obs.frand10, ]
frand11 <- flrand[obs.frand11, ]
frand12 <- flrand[obs.frand12, ]
frand13 <- flrand[obs.frand13, ]

frand1 <- as.matrix(frand1)
frand2 <- as.matrix(frand2)
frand3 <- as.matrix(frand3)
frand4 <- as.matrix(frand4)
frand5 <- as.matrix(frand5)
frand6 <- as.matrix(frand6)
frand7 <- as.matrix(frand7)
frand8 <- as.matrix(frand8)
frand9 <- as.matrix(frand9)
frand10 <- as.matrix(frand10)
frand11 <- as.matrix(frand11)
frand12 <- as.matrix(frand12)
frand13 <- as.matrix(frand13)

frand <- rbind(frand1, frand2, frand3, frand4, frand5, frand6, frand7,frand8,
frand9, frand10, frand11, frand12, frand13)
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c.frand <- cbind(frand, filler.per.1, filler.per.2, filler.per.3, filler.per.4,
filler.per.5, filler.per.6, filler.per.7, filler.per.8, filler.per.9,
filler.per.10, filler.per.11, filler.per.12, filler.per.13)

fordered <- c.frand[order(c.frand[, 1]), ]

obs.f1 <- which(fordered[ , 1] == frand.ordered[1])
obs.f2 <- which(fordered[ , 1] == frand.ordered[2])
obs.f3 <- which(fordered[ , 1] == frand.ordered[3])
obs.f4 <- which(fordered[ , 1] == frand.ordered[4])
obs.f5 <- which(fordered[ , 1] == frand.ordered[5])
obs.f6 <- which(fordered[ , 1] == frand.ordered[6])
obs.f7 <- which(fordered[ , 1] == frand.ordered[7])
obs.f8 <- which(fordered[ , 1] == frand.ordered[8])
obs.f9 <- which(fordered[ , 1] == frand.ordered[9])
obs.f10 <- which(fordered[ , 1] == frand.ordered[10])
obs.f11 <- which(fordered[ , 1] == frand.ordered[11])
obs.f12 <- which(fordered[ , 1] == frand.ordered[12])
obs.f13 <- which(fordered[ , 1] == frand.ordered[13])

if(length(obs.f1) == 0){
obs.f1 <- 0
}else
{
obs.f1 <- min(obs.f1):max(obs.f1)
}

if(length(obs.f2) == 0){
obs.f2 <- 0
}else
{
obs.f2 <- min(obs.f2):max(obs.f2)
}

if(length(obs.f3) == 0){
obs.f3 <- 0
}else
{
obs.f3 <- min(obs.f3):max(obs.f3)
}

if(length(obs.f4) == 0){
obs.f4 <- 0
}else
{
obs.f4 <- min(obs.f4):max(obs.f4)
}

if(length(obs.f5) == 0){
obs.f5 <- 0
}else
{
obs.f5 <- min(obs.f5):max(obs.f5)
}
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if(length(obs.f6) == 0){
obs.f6 <- 0
}else
{
obs.f6 <- min(obs.f6):max(obs.f6)
}

if(length(obs.f7) == 0){
obs.f7 <- 0
}else
{
obs.f7 <- min(obs.f7):max(obs.f7)
}

if(length(obs.f8) == 0){
obs.f8 <- 0
}else
{
obs.f8 <- min(obs.f8):max(obs.f8)
}

if(length(obs.f9) == 0){
obs.f9 <- 0
}else
{
obs.f9 <- min(obs.f9):max(obs.f9)
}

if(length(obs.f10) == 0){
obs.f10 <- 0
}else
{
obs.f10 <- min(obs.f10):max(obs.f10)
}

if(length(obs.f11) == 0){
obs.f11 <- 0
}else
{
obs.f11 <- min(obs.f11):max(obs.f11)
}

if(length(obs.f12) == 0){
obs.f12 <- 0
}else
{
obs.f12 <- min(obs.f12):max(obs.f12)
}

if(length(obs.f13) == 0){
obs.frand13 <- 0
}else
{
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obs.f13 <- min(obs.f13):max(obs.f13)
}

new.f1 <- fordered[obs.f1, 2]
new.f2 <- fordered[obs.f2, 3]
new.f3 <- fordered[obs.f3, 4]
new.f4 <- fordered[obs.f4, 5]
new.f5 <- fordered[obs.f5, 6]
new.f6 <- fordered[obs.f6, 7]
new.f7 <- fordered[obs.f7, 8]
new.f8 <- fordered[obs.f8, 9]
new.f9 <- fordered[obs.f9, 10]
new.f10 <- fordered[obs.f10, 11]
new.f11 <- fordered[obs.f11, 12]
new.f12 <- fordered[obs.f12, 13]
new.f13 <- fordered[obs.f13, 14]

if(length(new.f1) == 0){
f1.obs <- 0
}else
{
f1.obs <- fstart1:fend1
}

if(length(new.f2) == 0){
f2.obs <- 0
}else
{
f2.obs <- fstart2:fend2
}

if(length(new.f3) == 0){
f3.obs <- 0
}else
{
f3.obs <- fstart3:fend3
}

if(length(new.f4) == 0){
f4.obs <- 0
}else
{
f4.obs <- fstart4:fend4
}

if(length(new.f5) == 0){
f5.obs <- 0
}else
{
f5.obs <- fstart5:fend5
}

if(length(new.f6) == 0){
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f6.obs <- 0
}else
{
f6.obs <- fstart6:fend6
}

if(length(new.f7) == 0){
f7.obs <- 0
}else
{
f7.obs <- fstart7:fend7
}

if(length(new.f8) == 0){
f8.obs <- 0
}else
{
f8.obs <- fstart8:fend8
}

if(length(new.f9) == 0){
f9.obs <- 0
}else
{
f9.obs <- fstart9:fend9
}

if(length(new.f10) == 0){
f10.obs <- 0
}else
{
f10.obs <- fstart10:fend10
}

if(length(new.f11) == 0){
f11.obs <- 0
}else
{
f11.obs <- fstart11:fend11
}

if(length(new.f12) == 0){
f12.obs <- 0
}else
{
f12.obs <- fstart12:fend12
}

if(length(new.f13) == 0){
f13.obs <- 0
}else
{
f13.obs <- fstart13:fend13
}
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test1[f1.obs] <- new.f1
test1[f2.obs] <- new.f2
test1[f3.obs] <- new.f3
test1[f4.obs] <- new.f4
test1[f5.obs] <- new.f5
test1[f6.obs] <- new.f6
test1[f7.obs] <- new.f7
test1[f8.obs] <- new.f8
test1[f9.obs] <- new.f9
test1[f10.obs] <- new.f10
test1[f11.obs] <- new.f11
test1[f12.obs] <- new.f12
test1[f13.obs] <- new.f13

# Scaling test1
test1 <- test1/sqrt(var(test1))

################# End of D-O Event Scattering ##################

################################################################
########### Periodogram for Block Bootstrap of GISP2 ###########
################################################################

sim.fs <- cbind(sim.p.gram$freq, sim.p.gram$spec)
sim.max.loc <- which.max(sim.fs[ , 2])

sim.gmax <- sim.fs[sim.max.loc, ]
all.sim.gmax <- rbind(all.sim.gmax, sim.gmax)

sim.fshort.loc1 <- which(sim.fs[ , 1] <= 0.1)
sim.fshort.loc2 <- max(sim.fshort.loc1)
sim.fs.short <- sim.fs[1:sim.fshort.loc2, ]

sim.spec <- as.matrix(sim.fs.short[ , 2])
sim.data1 <- rbind(0, sim.spec, 0)
sim.data1 <- as.numeric(sim.data1)
sim.lmax.spec <- rep(NA, length(sim.data1))
for(i in 1:length(sim.data1)){
if(sim.data1[i] >= sim.data1[i+1] && sim.data1[i] >= sim.data1[i-1])
{sim.lmax.spec[i] = sim.data1[i]}
}

sim.loc.na <- is.na(sim.lmax.spec)
sim.non.na <- which(sim.loc.na == "FALSE")
sim.loc.non.na <- sim.non.na - 1

sim.lmax <- sim.fs.short[sim.loc.non.na, ]
all.sim.lmax <- rbind(all.sim.lmax, cbind(j, sim.lmax))

ordered <- all.sim.lmax[order(all.sim.lmax[ , 3], decreasing = TRUE), ]

####### End of Periodogram for Block Bootstrap of GISP2 ########
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################################################################
##################### Statistic of Interest ####################
################################################################

order.freq <- sim.lmax[order(sim.lmax[, 1]), ]
DO.data <- matrix(order.freq, byrow = FALSE, ncol = 2)
DO.data <- cbind(j, DO.data)
DO.stat.full <- rbind(DO.stat.full, DO.data)

################## End of Statistic of Interest ################

}

####################### End of Simulation ######################

write.table(DO.stat.full, file = "/Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/
Duration/Null Distribution/DOstat full for duration 0.25.txt", row.names =
FALSE, col.names = c("simnum", "freq", "spec"))

###############################################################
###### Future Analysis without having to run simulation #######
###############################################################

dostat <- read.table("/Users/andrea/school/research/URGES/Thesis Project/Aspect
1/Permutation Test Code/Final Product/Simulations2/Results/Duration/Null
Distribution/DOstat full for duration 0.25.txt", header = TRUE)

# Cyclicity less than 3000 (> 0.00909)

DO.stat <- NULL
numsim <- 10000
for(i in 1:numsim){

obs.num <- which(dostat$simnum == i)

chunk <- dostat[min(obs.num):max(obs.num), ]

chunk <- chunk[, -1]

stat.wind <- which(chunk$freq > 0.00909)
dostat.data <- chunk[min(stat.wind):max(stat.wind), ]
dostat.data <- as.matrix(dostat.data)

chunk.max <- which.max(dostat.data[, 2])

part.max <- dostat.data[chunk.max, ]
DO.stat <- rbind(DO.stat, part.max)

}

write.table(DO.stat, file = "/Users/andrea/school/research/URGES/Thesis Project/
Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/Duration/Null
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Distribution/DOstat 3000 for duration 0.25.txt", row.names = FALSE, col.names =
c("freq", "spec"))

##########################################################################
##########################################################################
##########################################################################
# Skipped Manifestations of D-O events
##########################################################################
##########################################################################
##########################################################################
# To be used after creating pseudo-series, which are called full.per.t
in this code

full.per.t <- matrix(scan("/Users/andrea/Desktop/full periodograms for
duration 0.25.txt", sep = " "), nrow = 500, ncol = 10000, byrow = TRUE)

full.per <- t(full.per.t)

##############################################################

my.freq <- function(ip.dist, cyc){

freq <- ip.dist/cyc
freq

}

my.cyc <- function(ip.dist, freq.inc){

cyc <- (1/freq.inc)*ip.dist
cyc

}

ip.dist <- 27.27
d <- 0.15
x <- 0:100

freq.inc <- 0.109 - x * 0.001
freq.inc <- as.numeric(as.character(freq.inc))
freq.inc.1000 <- freq.inc * 1000

freq2cyc <- my.cyc(ip.dist, freq.inc)

l <- 2 * freq2cyc - d * 2 * freq2cyc
u <- 2 * freq2cyc + d * 2 * freq2cyc

cyc2freq.u <- my.freq(ip.dist, u) * 1000
cyc2freq.l <- my.freq(ip.dist, l) * 1000

numsim <- 10000
full.sd <- NULL
full.max.sd <- NULL
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for(i in 1:numsim){

sum.duple <- NULL
for(j in 1:101){

p1 <- full.per[i, freq.inc.1000[j]]
col.obs <- ceiling(cyc2freq.u[j]):floor(cyc2freq.l[j])

part.per <- full.per[i, col.obs]
max.obs <- which.max(part.per)
p2 <- part.per[max.obs]

sum.p1p2 <- sum(p1, p2)
sum.duple1 <- cbind(freq.inc[j], (col.obs[max.obs]/1000), sum.p1p2)
sum.duple <- rbind(sum.duple, sum.duple1)

}

max.sd <- max(sum.duple[, 3])
full.sd <- rbind(full.sd, sum.duple)
full.max.sd <- rbind(full.max.sd, max.sd)

}

write.table(full.max.sd, file = "/Users/andrea/school/research/URGES/Thesis
Project/Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/
Duration/Ideal D-O event/max sd for duration 0.25.txt", row.names = FALSE,
col.name = "Max")

write.table(full.sd, file = "/Users/andrea/school/research/URGES/Thesis Project/
Aspect 1/Permutation Test Code/Final Product/Simulations2/Results/Duration/Ideal
D-O event/sd for duration 0.25.txt", row.names = FALSE, col.names = TRUE)

C.2.5 Averaged p-values

# Sample code of finding the averaged p-values

ave.pval <- function(do.event, do.ts){
p.val <- NULL
for(i in 1:numsim){

num.obs <- which(do.event$Max >= do.ts[i, ])
num <- length(num.obs) + 1

p.val.part <- num/(numsim + 1)

p.val <- rbind(p.val, p.val.part)

}
mean(p.val)
}

numsim <- 10000
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# Pseudo GISP2
# cycles < 2,500 years
g20 <- read.table("./scaled DOstat 2500 for 47 to 20 kyr BP.txt", header = TRUE)

# cycles < 3,000 years
g20 <- read.table("./scaled DOstat 3000 for 47 to 20 kyr BP.txt", header = TRUE)

# cycles < 5,000 years
g20 <- read.table("./scaled DOstat 5000 for 47 to 20 kyr BP.txt", header = TRUE)

# duple
g20 <- read.table("./ll max sd for 47 to 20 kyr BP.txt", header = TRUE)

# Test statistic datasets
do.ts2500.20 <- read.table("./scaled DOstat 2500 for duration 1.00.txt", header
= TRUE)
do.ts3000.20 <- read.table("./scaled DOstat 3000 for duration 1.00.txt", header
= TRUE)
do.ts5000.20 <- read.table("./scaled DOstat 5000 for duration 1.00.txt", header
= TRUE)

do.ts.20 <- read.table("./ll max sd for duration 1.00.txt", header = TRUE)

ave.pval(g20, do.ts2500.20)
ave.pval(g20, do.ts3000.20)
ave.pval(g20, do.ts5000.20)
ave.pval(g20, do.ts.20)

C.3 Correlation Between the Greenland and Antarctica Records

C.3.1 Null Distribution and Test Statistic

gisp2 <- read.table(".../GISP2 47-20 kyr detrend interp.txt", header = TRUE)

edml <- read.table(".../EDML 47-20 kyr detrend interp.txt", header = TRUE)

################################################################
#################### Corr for GISP2 and EDML ###################
################################################################

all.cor <- ccf(gisp2$res, edml$res, type = "correlation", plot =FALSE, lag.max
= 92)
orig.cor <- cbind(all.cor$lag, all.cor$acf)

################# End of Corr for GISP2 and EDML ###############

getstartstop <- function(j1)
{
j1b <- c(j1[2:(length(j1))],-999999)
j1f <- c(-999999,j1[1:(length(j1)-1)])
starts <- is.na(j1) & !is.na(j1f)
stops <- is.na(j1) & !is.na(j1b)
#cbind(starts,stops) # use this if you want an n by 2 matrix of T’s and F’s
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## or ##
cbind( (1:length(j1))[starts] , (1:length(j1))[stops] )

# use this if you want a k by 2 matrix of start and stop locations
}

################################################################
################################################################
################################################################
########################## Simulation ##########################
################################################################
################################################################
################################################################

numsim <- 10000
numrows <- length(all.cor$acf)
sim.cor <- matrix(NA, numrows, numsim)
#sim.cor <- NULL
max.lag <- NULL
max.abs <- NULL
cor.0 <- NULL

for(j in 1:numsim){

###############################################################
################### D-O Event Scattering#######################
###############################################################

do2 <- gisp2[119:129, 2]
do3 <- gisp2[272:292, 2]
do4 <- gisp2[316:337, 2]
do5 <- gisp2[423:455, 2]
do6 <- gisp2[475:516, 2]
do7 <- gisp2[521:563, 2]
do8 <- gisp2[581:677, 2]
do9 <- gisp2[731:744, 2]
do10 <- gisp2[755:777, 2]
do11 <- gisp2[786:829, 2]
do12 <- gisp2[834:933, 2]
do13 <- gisp2[966:998, 2]

filler <- gisp2[ , 2]
filler[119:129] <- NA
filler[272:292] <- NA
filler[316:337] <- NA
filler[423:455] <- NA
filler[475:516] <- NA
filler[521:563] <- NA
filler[581:677] <- NA
filler[731:744] <- NA
filler[755:777] <- NA
filler[786:829] <- NA
filler[834:933] <- NA
filler[966:998] <- NA
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filler <- na.omit(filler)

rand.do <- sample(2:13, 12, replace = FALSE)

do2.rand <- cbind(do2, 2)
do3.rand <- cbind(do3, 3)
do4.rand <- cbind(do4, 4)
do5.rand <- cbind(do5, 5)
do6.rand <- cbind(do6, 6)
do7.rand <- cbind(do7, 7)
do8.rand <- cbind(do8, 8)
do9.rand <- cbind(do9, 9)
do10.rand <- cbind(do10, 10)
do11.rand <- cbind(do11, 11)
do12.rand <- cbind(do12, 12)
do13.rand <- cbind(do13, 13)

do.rand <- rbind(do2.rand, do3.rand, do4.rand, do5.rand, do6.rand, do7.rand,
do8.rand, do9.rand, do10.rand, do11.rand, do12.rand, do13.rand)

obs.do1.rand <- which(do.rand[ , 2] == rand.do[1])
obs.do2.rand <- which(do.rand[ , 2] == rand.do[2])
obs.do3.rand <- which(do.rand[ , 2] == rand.do[3])
obs.do4.rand <- which(do.rand[ , 2] == rand.do[4])
obs.do5.rand <- which(do.rand[ , 2] == rand.do[5])
obs.do6.rand <- which(do.rand[ , 2] == rand.do[6])
obs.do7.rand <- which(do.rand[ , 2] == rand.do[7])
obs.do8.rand <- which(do.rand[ , 2] == rand.do[8])
obs.do9.rand <- which(do.rand[ , 2] == rand.do[9])
obs.do10.rand <- which(do.rand[ , 2] == rand.do[10])
obs.do11.rand <- which(do.rand[ , 2] == rand.do[11])
obs.do12.rand <- which(do.rand[ , 2] == rand.do[12])

new.do1.rand <- do.rand[min(obs.do1.rand):max(obs.do1.rand), 1]
new.do2.rand <- do.rand[min(obs.do2.rand):max(obs.do2.rand), 1]
new.do3.rand <- do.rand[min(obs.do3.rand):max(obs.do3.rand), 1]
new.do4.rand <- do.rand[min(obs.do4.rand):max(obs.do4.rand), 1]
new.do5.rand <- do.rand[min(obs.do5.rand):max(obs.do5.rand), 1]
new.do6.rand <- do.rand[min(obs.do6.rand):max(obs.do6.rand), 1]
new.do7.rand <- do.rand[min(obs.do7.rand):max(obs.do7.rand), 1]
new.do8.rand <- do.rand[min(obs.do8.rand):max(obs.do8.rand), 1]
new.do9.rand <- do.rand[min(obs.do9.rand):max(obs.do9.rand), 1]
new.do10.rand <- do.rand[min(obs.do10.rand):max(obs.do10.rand), 1]
new.do11.rand <- do.rand[min(obs.do11.rand):max(obs.do11.rand), 1]
new.do12.rand <- do.rand[min(obs.do12.rand):max(obs.do12.rand), 1]

donum <- 12

do.obs <- sum(length(new.do1.rand), length(new.do2.rand), length(new.do3.rand),
length(new.do4.rand), length(new.do5.rand), length(new.do6.rand),
length(new.do7.rand), length(new.do8.rand), length(new.do9.rand),
length(new.do10.rand), length(new.do11.rand), length(new.do12.rand))

filler.num <- length(gisp2$age)
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rand.nums <- sample(1:filler.num, donum, replace = FALSE)

do1.1 <- cbind(rand.nums[1], new.do1.rand)
do2.1 <- cbind(rand.nums[2], new.do2.rand)
do3.1 <- cbind(rand.nums[3], new.do3.rand)
do4.1 <- cbind(rand.nums[4], new.do4.rand)
do5.1 <- cbind(rand.nums[5], new.do5.rand)
do6.1 <- cbind(rand.nums[6], new.do6.rand)
do7.1 <- cbind(rand.nums[7], new.do7.rand)
do8.1 <- cbind(rand.nums[8], new.do8.rand)
do9.1 <- cbind(rand.nums[9], new.do9.rand)
do10.1 <- cbind(rand.nums[10], new.do10.rand)
do11.1 <- cbind(rand.nums[11], new.do11.rand)
do12.1 <- cbind(rand.nums[12], new.do12.rand)

doevents <- rbind(do1.1, do2.1, do3.1, do4.1, do5.1, do6.1, do7.1, do8.1, do9.1,
do10.1, do11.1, do12.1)

ordered <- doevents[order(doevents[, 1]), ]
rand.ordered <- rand.nums[order(rand.nums)]

obs.do1 <- which(ordered[ , 1] == rand.ordered[1])
obs.do2 <- which(ordered[ , 1] == rand.ordered[2])
obs.do3 <- which(ordered[ , 1] == rand.ordered[3])
obs.do4 <- which(ordered[ , 1] == rand.ordered[4])
obs.do5 <- which(ordered[ , 1] == rand.ordered[5])
obs.do6 <- which(ordered[ , 1] == rand.ordered[6])
obs.do7 <- which(ordered[ , 1] == rand.ordered[7])
obs.do8 <- which(ordered[ , 1] == rand.ordered[8])
obs.do9 <- which(ordered[ , 1] == rand.ordered[9])
obs.do10 <- which(ordered[ , 1] == rand.ordered[10])
obs.do11 <- which(ordered[ , 1] == rand.ordered[11])
obs.do12 <- which(ordered[ , 1] == rand.ordered[12])

new.do1 <- ordered[min(obs.do1):max(obs.do1), 2]
new.do2 <- ordered[min(obs.do2):max(obs.do2), 2]
new.do3 <- ordered[min(obs.do3):max(obs.do3), 2]
new.do4 <- ordered[min(obs.do4):max(obs.do4), 2]
new.do5 <- ordered[min(obs.do5):max(obs.do5), 2]
new.do6 <- ordered[min(obs.do6):max(obs.do6), 2]
new.do7 <- ordered[min(obs.do7):max(obs.do7), 2]
new.do8 <- ordered[min(obs.do8):max(obs.do8), 2]
new.do9 <- ordered[min(obs.do9):max(obs.do9), 2]
new.do10 <- ordered[min(obs.do10):max(obs.do10), 2]
new.do11 <- ordered[min(obs.do11):max(obs.do11), 2]
new.do12 <- ordered[min(obs.do12):max(obs.do12), 2]

rand1 <- rand.ordered[1]
rand2 <- rand.ordered[2]
rand3 <- rand.ordered[3]
rand4 <- rand.ordered[4]
rand5 <- rand.ordered[5]
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rand6 <- rand.ordered[6]
rand7 <- rand.ordered[7]
rand8 <- rand.ordered[8]
rand9 <- rand.ordered[9]
rand10 <- rand.ordered[10]
rand11 <- rand.ordered[11]
rand12 <- rand.ordered[12]

diff1 <- rand2 - rand1
diff2 <- rand3 - rand2
diff3 <- rand4 - rand3
diff4 <- rand5 - rand4
diff5 <- rand6 - rand5
diff6 <- rand7 - rand6
diff7 <- rand8 - rand7
diff8 <- rand9 - rand8
diff9 <- rand10 - rand9
diff10 <- rand11 - rand10
diff11 <- rand12 - rand11

start1 <- rand1
end1 <- start1 + length(new.do1) - 1

start2 <- rand2
end2 <- start2 + length(new.do2) - 1

start3 <- rand3
end3 <- start3 + length(new.do3) - 1

start4 <- rand4
end4 <- start4 + length(new.do4) - 1

start5 <- rand5
end5 <- start5 + length(new.do5) - 1

start6 <- rand6
end6 <- start6 + length(new.do6) - 1

start7 <- rand7
end7 <- start7 + length(new.do7) - 1

start8 <- rand8
end8 <- start8 + length(new.do8) - 1

start9 <- rand9
end9 <- start9 + length(new.do9) - 1

start10 <- rand10
end10 <- start10 + length(new.do10) - 1

start11 <- rand11
end11 <- start11 + length(new.do11) - 1

start12 <- rand12
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end12 <- start12 + length(new.do12) - 1

d1 <- c(rep(-100, (rand1 - 1)), new.do1, rep(-100, (2000 - (length(new.do1) +
rand1 - 1))))

d2 <- c(rep(-100, (rand2 - 1)), new.do2, rep(-100, (2000 - (length(new.do2) +
rand2 - 1))))

d3 <- c(rep(-100, (rand3 - 1)), new.do3, rep(-100, (2000 - (length(new.do3) +
rand3 - 1))))

d4 <- c(rep(-100, (rand4 - 1)), new.do4, rep(-100, (2000 - (length(new.do4) +
rand4 - 1))))

d5 <- c(rep(-100, (rand5 - 1)), new.do5, rep(-100, (2000 - (length(new.do5) +
rand5 - 1))))

d6 <- c(rep(-100, (rand6 - 1)), new.do6, rep(-100, (2000 - (length(new.do6) +
rand6 - 1))))

d7 <- c(rep(-100, (rand7 - 1)), new.do7, rep(-100, (2000 - (length(new.do7) +
rand7 - 1))))

d8 <- c(rep(-100, (rand8 - 1)), new.do8, rep(-100, (2000 - (length(new.do8) +
rand8 - 1))))

d9 <- c(rep(-100, (rand9 - 1)), new.do9, rep(-100, (2000 - (length(new.do9) +
rand9 - 1))))

d10 <- c(rep(-100, (rand10 - 1)), new.do10, rep(-100, (2000 - (length(new.do10)
+ rand10 - 1))))

d11 <- c(rep(-100, (rand11 - 1)), new.do11, rep(-100, (2000 - (length(new.do11)
+ rand11 - 1))))

d12 <- c(rep(-100, (rand12 - 1)), new.do12, rep(-100, (2000 - (length(new.do12)
+ rand12 - 1))))

d1.a <- d1[1:1000]
d1.b <- d1[1001:2000]
d2.a <- d2[1:1000]
d2.b <- d2[1001:2000]
d3.a <- d3[1:1000]
d3.b <- d3[1001:2000]
d4.a <- d4[1:1000]
d4.b <- d4[1001:2000]
d5.a <- d5[1:1000]
d5.b <- d5[1001:2000]
d6.a <- d6[1:1000]
d6.b <- d6[1001:2000]
d7.a <- d7[1:1000]
d7.b <- d7[1001:2000]
d8.a <- d8[1:1000]
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d8.b <- d8[1001:2000]
d9.a <- d9[1:1000]
d9.b <- d9[1001:2000]
d10.a <- d10[1:1000]
d10.b <- d10[1001:2000]
d11.a <- d11[1:1000]
d11.b <- d11[1001:2000]
d12.a <- d12[1:1000]
d12.b <- d12[1001:2000]

test1 <- pmax(d1.a, d1.b, d2.a, d2.b, d3.a, d3.b, d4.a, d4.b, d5.a, d5.b, d6.a,
d6.b, d7.a, d7.b, d8.a, d8.b, d9.a, d9.b, d10.a, d10.b, d11.a, d11.b, d12.a,
d12.b)

test1 <- ifelse(test1 == -100, NA, test1)

######################## Filler Points #########################

filler.rand <- sample(1:length(filler), (donum + 1), replace = TRUE)

filler.remain <- filler.rand[1] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[1]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.1 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[2] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[2]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.2 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[3] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
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}

filler.per1 <- filler[filler.rand[3]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.3 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[4] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[4]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.4 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[5] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[5]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.5 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[6] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[6]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.6 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[7] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}
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filler.per1 <- filler[filler.rand[7]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.7 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[8] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[8]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.8 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[9] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[9]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.9 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[10] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[10]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.10 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[11] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[11]:length(filler)]
filler.per2 <- filler[filler.obs]
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filler.per.11 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[12] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[12]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.12 <- c(filler.per1, filler.per2)

filler.remain <- filler.rand[13] - 1

if(filler.remain == 0){
filler.obs <- 0
} else
{
filler.obs <- 1:filler.remain
}

filler.per1 <- filler[filler.rand[13]:length(filler)]
filler.per2 <- filler[filler.obs]
filler.per.13 <- c(filler.per1, filler.per2)

filler.ss <- getstartstop(test1)
filler.na <- cbind(rep(NA, 20), rep(NA, 20))
filler.ss1 <- rbind(filler.ss, filler.na)
filler.ss2 <- filler.ss1[1:(donum + 1), ]

fstart1 <- filler.ss2[1, 1]
fend1 <- filler.ss2[1, 2]
flen1 <- fend1 - fstart1 + 1

flen1 <- ifelse(is.na(flen1) == TRUE, 0, flen1)

fstart2 <- filler.ss2[2, 1]
fend2 <- filler.ss2[2, 2]
flen2 <- fend2 - fstart2 + 1

flen2 <- ifelse(is.na(flen2) == TRUE, 0, flen2)

fstart3 <- filler.ss2[3, 1]
fend3 <- filler.ss2[3, 2]
flen3 <- fend3 - fstart3 + 1

flen3 <- ifelse(is.na(flen3) == TRUE, 0, flen3)

fstart4 <- filler.ss2[4, 1]
fend4 <- filler.ss2[4, 2]
flen4 <- fend4 - fstart4 + 1
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flen4 <- ifelse(is.na(flen4) == TRUE, 0, flen4)

fstart5 <- filler.ss2[5, 1]
fend5 <- filler.ss2[5, 2]
flen5 <- fend5 - fstart5 + 1

flen5 <- ifelse(is.na(flen5) == TRUE, 0, flen5)

fstart6 <- filler.ss2[6, 1]
fend6 <- filler.ss2[6, 2]
flen6 <- fend6 - fstart6 + 1

flen6 <- ifelse(is.na(flen6) == TRUE, 0, flen6)

fstart7 <- filler.ss2[7, 1]
fend7 <- filler.ss2[7, 2]
flen7 <- fend7 - fstart7 + 1

flen7 <- ifelse(is.na(flen7) == TRUE, 0, flen7)

fstart8 <- filler.ss2[8, 1]
fend8 <- filler.ss2[8, 2]
flen8 <- fend8 - fstart8 + 1

flen8 <- ifelse(is.na(flen8) == TRUE, 0, flen8)

fstart9 <- filler.ss2[9, 1]
fend9 <- filler.ss2[9, 2]
flen9 <- fend9 - fstart9 + 1

flen9 <- ifelse(is.na(flen9) == TRUE, 0, flen9)

fstart10 <- filler.ss2[10, 1]
fend10 <- filler.ss2[10, 2]
flen10 <- fend10 - fstart10 + 1

flen10 <- ifelse(is.na(flen10) == TRUE, 0, flen10)

fstart11 <- filler.ss2[11, 1]
fend11 <- filler.ss2[11, 2]
flen11 <- fend11 - fstart11 + 1

flen11 <- ifelse(is.na(flen11) == TRUE, 0, flen11)

fstart12 <- filler.ss2[12, 1]
fend12 <- filler.ss2[12, 2]
flen12 <- fend12 - fstart12 + 1

flen12 <- ifelse(is.na(flen12) == TRUE, 0, flen12)

fstart13 <- filler.ss2[13, 1]
fend13 <- filler.ss2[13, 2]
flen13 <- fend13 - fstart13 + 1
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flen13 <- ifelse(is.na(flen13) == TRUE, 0, flen13)

rand.filler <- sample(1:(donum + 1), (donum + 1), replace = FALSE)

frand.ordered <- rand.filler[order(rand.filler)]

flrand1 <- rep(frand.ordered[1], flen1)
flrand2 <- rep(frand.ordered[2], flen2)
flrand3 <- rep(frand.ordered[3], flen3)
flrand4 <- rep(frand.ordered[4], flen4)
flrand5 <- rep(frand.ordered[5], flen5)
flrand6 <- rep(frand.ordered[6], flen6)
flrand7 <- rep(frand.ordered[7], flen7)
flrand8 <- rep(frand.ordered[8], flen8)
flrand9 <- rep(frand.ordered[9], flen9)
flrand10 <- rep(frand.ordered[10], flen10)
flrand11 <- rep(frand.ordered[11], flen11)
flrand12 <- rep(frand.ordered[12], flen12)
flrand13 <- rep(frand.ordered[13], flen13)

flrand1 <- as.matrix(flrand1)
flrand2 <- as.matrix(flrand2)
flrand3 <- as.matrix(flrand3)
flrand4 <- as.matrix(flrand4)
flrand5 <- as.matrix(flrand5)
flrand6 <- as.matrix(flrand6)
flrand7 <- as.matrix(flrand7)
flrand8 <- as.matrix(flrand8)
flrand9 <- as.matrix(flrand9)
flrand10 <- as.matrix(flrand10)
flrand11 <- as.matrix(flrand11)
flrand12 <- as.matrix(flrand12)
flrand13 <- as.matrix(flrand13)

flrand <- rbind(flrand1, flrand2, flrand3, flrand4, flrand5, flrand6, flrand7,
flrand8, flrand9, flrand10, flrand11, flrand12, flrand13)

obs.frand1 <- which(flrand == rand.filler[1])
obs.frand2 <- which(flrand == rand.filler[2])
obs.frand3 <- which(flrand == rand.filler[3])
obs.frand4 <- which(flrand == rand.filler[4])
obs.frand5 <- which(flrand == rand.filler[5])
obs.frand6 <- which(flrand == rand.filler[6])
obs.frand7 <- which(flrand == rand.filler[7])
obs.frand8 <- which(flrand == rand.filler[8])
obs.frand9 <- which(flrand == rand.filler[9])
obs.frand10 <- which(flrand == rand.filler[10])
obs.frand11 <- which(flrand == rand.filler[11])
obs.frand12 <- which(flrand == rand.filler[12])
obs.frand13 <- which(flrand == rand.filler[13])

if(length(obs.frand1) == 0){
obs.frand1 <- 0
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}else
{
obs.frand1 <- min(obs.frand1):max(obs.frand1)
}

if(length(obs.frand2) == 0){
obs.frand2 <- 0
}else
{
obs.frand2 <- min(obs.frand2):max(obs.frand2)
}

if(length(obs.frand3) == 0){
obs.frand3 <- 0
}else
{
obs.frand3 <- min(obs.frand3):max(obs.frand3)
}

if(length(obs.frand4) == 0){
obs.frand4 <- 0
}else
{
obs.frand4 <- min(obs.frand4):max(obs.frand4)
}

if(length(obs.frand5) == 0){
obs.frand5 <- 0
}else
{
obs.frand5 <- min(obs.frand5):max(obs.frand5)
}

if(length(obs.frand6) == 0){
obs.frand6 <- 0
}else
{
obs.frand6 <- min(obs.frand6):max(obs.frand6)
}

if(length(obs.frand7) == 0){
obs.frand7 <- 0
}else
{
obs.frand7 <- min(obs.frand7):max(obs.frand7)
}

if(length(obs.frand8) == 0){
obs.frand8 <- 0
}else
{
obs.frand8 <- min(obs.frand8):max(obs.frand8)
}
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if(length(obs.frand9) == 0){
obs.frand9 <- 0
}else
{
obs.frand9 <- min(obs.frand9):max(obs.frand9)
}

if(length(obs.frand10) == 0){
obs.frand10 <- 0
}else
{
obs.frand10 <- min(obs.frand10):max(obs.frand10)
}

if(length(obs.frand11) == 0){
obs.frand11 <- 0
}else
{
obs.frand11 <- min(obs.frand11):max(obs.frand11)
}

if(length(obs.frand12) == 0){
obs.frand12 <- 0
}else
{
obs.frand12 <- min(obs.frand12):max(obs.frand12)
}

if(length(obs.frand13) == 0){
obs.frand13 <- 0
}else
{
obs.frand13 <- min(obs.frand13):max(obs.frand13)
}

frand1 <- flrand[obs.frand1, ]
frand2 <- flrand[obs.frand2, ]
frand3 <- flrand[obs.frand3, ]
frand4 <- flrand[obs.frand4, ]
frand5 <- flrand[obs.frand5, ]
frand6 <- flrand[obs.frand6, ]
frand7 <- flrand[obs.frand7, ]
frand8 <- flrand[obs.frand8, ]
frand9 <- flrand[obs.frand9, ]
frand10 <- flrand[obs.frand10, ]
frand11 <- flrand[obs.frand11, ]
frand12 <- flrand[obs.frand12, ]
frand13 <- flrand[obs.frand13, ]

frand1 <- as.matrix(frand1)
frand2 <- as.matrix(frand2)
frand3 <- as.matrix(frand3)
frand4 <- as.matrix(frand4)
frand5 <- as.matrix(frand5)
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frand6 <- as.matrix(frand6)
frand7 <- as.matrix(frand7)
frand8 <- as.matrix(frand8)
frand9 <- as.matrix(frand9)
frand10 <- as.matrix(frand10)
frand11 <- as.matrix(frand11)
frand12 <- as.matrix(frand12)
frand13 <- as.matrix(frand13)

frand <- rbind(frand1, frand2, frand3, frand4, frand5, frand6, frand7,frand8,
frand9, frand10, frand11, frand12, frand13)

c.frand <- cbind(frand, filler.per.1, filler.per.2, filler.per.3, filler.per.4,
filler.per.5, filler.per.6, filler.per.7, filler.per.8, filler.per.9,
filler.per.10, filler.per.11, filler.per.12, filler.per.13)

fordered <- c.frand[order(c.frand[, 1]), ]

obs.f1 <- which(fordered[ , 1] == frand.ordered[1])
obs.f2 <- which(fordered[ , 1] == frand.ordered[2])
obs.f3 <- which(fordered[ , 1] == frand.ordered[3])
obs.f4 <- which(fordered[ , 1] == frand.ordered[4])
obs.f5 <- which(fordered[ , 1] == frand.ordered[5])
obs.f6 <- which(fordered[ , 1] == frand.ordered[6])
obs.f7 <- which(fordered[ , 1] == frand.ordered[7])
obs.f8 <- which(fordered[ , 1] == frand.ordered[8])
obs.f9 <- which(fordered[ , 1] == frand.ordered[9])
obs.f10 <- which(fordered[ , 1] == frand.ordered[10])
obs.f11 <- which(fordered[ , 1] == frand.ordered[11])
obs.f12 <- which(fordered[ , 1] == frand.ordered[12])
obs.f13 <- which(fordered[ , 1] == frand.ordered[13])

if(length(obs.f1) == 0){
obs.f1 <- 0
}else
{
obs.f1 <- min(obs.f1):max(obs.f1)
}

if(length(obs.f2) == 0){
obs.f2 <- 0
}else
{
obs.f2 <- min(obs.f2):max(obs.f2)
}

if(length(obs.f3) == 0){
obs.f3 <- 0
}else
{
obs.f3 <- min(obs.f3):max(obs.f3)
}

if(length(obs.f4) == 0){
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obs.f4 <- 0
}else
{
obs.f4 <- min(obs.f4):max(obs.f4)
}

if(length(obs.f5) == 0){
obs.f5 <- 0
}else
{
obs.f5 <- min(obs.f5):max(obs.f5)
}

if(length(obs.f6) == 0){
obs.f6 <- 0
}else
{
obs.f6 <- min(obs.f6):max(obs.f6)
}

if(length(obs.f7) == 0){
obs.f7 <- 0
}else
{
obs.f7 <- min(obs.f7):max(obs.f7)
}

if(length(obs.f8) == 0){
obs.f8 <- 0
}else
{
obs.f8 <- min(obs.f8):max(obs.f8)
}

if(length(obs.f9) == 0){
obs.f9 <- 0
}else
{
obs.f9 <- min(obs.f9):max(obs.f9)
}

if(length(obs.f10) == 0){
obs.f10 <- 0
}else
{
obs.f10 <- min(obs.f10):max(obs.f10)
}

if(length(obs.f11) == 0){
obs.f11 <- 0
}else
{
obs.f11 <- min(obs.f11):max(obs.f11)
}
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if(length(obs.f12) == 0){
obs.f12 <- 0
}else
{
obs.f12 <- min(obs.f12):max(obs.f12)
}

if(length(obs.f13) == 0){
obs.frand13 <- 0
}else
{
obs.f13 <- min(obs.f13):max(obs.f13)
}

new.f1 <- fordered[obs.f1, 2]
new.f2 <- fordered[obs.f2, 3]
new.f3 <- fordered[obs.f3, 4]
new.f4 <- fordered[obs.f4, 5]
new.f5 <- fordered[obs.f5, 6]
new.f6 <- fordered[obs.f6, 7]
new.f7 <- fordered[obs.f7, 8]
new.f8 <- fordered[obs.f8, 9]
new.f9 <- fordered[obs.f9, 10]
new.f10 <- fordered[obs.f10, 11]
new.f11 <- fordered[obs.f11, 12]
new.f12 <- fordered[obs.f12, 13]
new.f13 <- fordered[obs.f13, 14]

if(length(new.f1) == 0){
f1.obs <- 0
}else
{
f1.obs <- fstart1:fend1
}

if(length(new.f2) == 0){
f2.obs <- 0
}else
{
f2.obs <- fstart2:fend2
}

if(length(new.f3) == 0){
f3.obs <- 0
}else
{
f3.obs <- fstart3:fend3
}

if(length(new.f4) == 0){
f4.obs <- 0
}else
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{
f4.obs <- fstart4:fend4
}

if(length(new.f5) == 0){
f5.obs <- 0
}else
{
f5.obs <- fstart5:fend5
}

if(length(new.f6) == 0){
f6.obs <- 0
}else
{
f6.obs <- fstart6:fend6
}

if(length(new.f7) == 0){
f7.obs <- 0
}else
{
f7.obs <- fstart7:fend7
}

if(length(new.f8) == 0){
f8.obs <- 0
}else
{
f8.obs <- fstart8:fend8
}

if(length(new.f9) == 0){
f9.obs <- 0
}else
{
f9.obs <- fstart9:fend9
}

if(length(new.f10) == 0){
f10.obs <- 0
}else
{
f10.obs <- fstart10:fend10
}

if(length(new.f11) == 0){
f11.obs <- 0
}else
{
f11.obs <- fstart11:fend11
}

if(length(new.f12) == 0){
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f12.obs <- 0
}else
{
f12.obs <- fstart12:fend12
}

if(length(new.f13) == 0){
f13.obs <- 0
}else
{
f13.obs <- fstart13:fend13
}

test1[f1.obs] <- new.f1
test1[f2.obs] <- new.f2
test1[f3.obs] <- new.f3
test1[f4.obs] <- new.f4
test1[f5.obs] <- new.f5
test1[f6.obs] <- new.f6
test1[f7.obs] <- new.f7
test1[f8.obs] <- new.f8
test1[f9.obs] <- new.f9
test1[f10.obs] <- new.f10
test1[f11.obs] <- new.f11
test1[f12.obs] <- new.f12
test1[f13.obs] <- new.f13

################# End of D-O Event Scattering ##################

################################################################
########### Cor for Block Bootstrap of GISP2 and EDML ##########
################################################################

all.cor.sim <- ccf(test1, edml$res, type = "correlation", plot = FALSE, lag.max
= 92)

sim.cor[, j] <- all.cor.sim$acf

######### Cor for Block Bootstrap of GISP2 and EDML ###########

################################################################
##################### Statistic of Interest ####################
################################################################

max.lag.num <- which.max(sim.cor[, j])
max.lag <- rbind(max.lag, cbind(max.lag.num, sim.cor[max.lag.num, j]))

max.abs.num <- which.max(abs(sim.cor[, j]))
max.abs <- rbind(max.abs, cbind(max.abs.num, sim.cor[max.abs.num, j]))

cor.0 <- rbind(cor.0, sim.cor[93, j])
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################## End of Statistic of Interest ################
cat("iteration",j,"\n")
}

write.table(sim.cor, file = ".../all correlations.txt", row.names = FALSE,
col.names = FALSE)

write.table(max.lag, file = ".../max lag correlations.txt", row.names = FALSE,
col.names = c("lag", "corr"))

write.table(max.abs, file = ".../max abs correlations.txt", row.names = FALSE,
col.names = c("lag", "corr"))

write.table(cor.0, file = ".../cor 0 correlations.txt", row.names = FALSE,
col.names = FALSE)

C.3.2 Computing p-values

# Reading data in
gisp2 <- read.table(".../GISP2 47-20 kyr detrend interp.txt", header = TRUE)

edml <- read.table(".../EDML 47-20 kyr detrend interp.txt", header = TRUE)

all.cor <- ccf(gisp2$res, edml$res, type = "correlation", plot = FALSE, lag.max
= 92)
orig.cor <- cbind(all.cor$lag, all.cor$acf)
cor.0 <- orig.cor[93, 2]

numsim <- 10000

##################### Correlation of 0 ##########################

pval.0 <- function(sim.data){

num.obs <- which(sim.data >= cor.0)
num <- length(num.obs) + 1
p.val <- num/(numsim + 1)
p.val
}

# Resampled D-O events
bm1.r.0 <- read.table(".../cor 0 correlations.txt")

p.bm1.r.0 <- pval.0(bm1.r.0)

# Shuffled D-O events
bm.s.0 <- read.table(".../Shuffled D-O events/BM/Results/cor 0 correlations.txt")

p.bm.s.0 <- pval.0(bm.s.0)

##################### Correlation at lags #######################
numlags <- length(all.cor$acf)

130



cors <- all.cor$acf
pval.lag <- function(sim.data){
p.val <- NULL
for(i in 1:numlags){

num.obs <- which(abs(sim.data$corr) >= abs(cors[i]))
num <- length(num.obs) + 1
p.val.part <- num/(numsim + 1)
p.val <- rbind(p.val, p.val.part)
}
p.val
}

# Resampled D-O events
bm1.r.l <- read.table(".../max abs correlations.txt", header = TRUE)

pbm1.r.l <- pval.lag(bm1.r.l)

# Shuffled D-O events
bm.s.l <- read.table(".../Shuffled D-O events/BM/Results/max abs correlations.
txt", header = TRUE)

pbm.s.l <- pval.lag(bm.s.l)

# Graphically summarizing results
# Making a plot of the correlation and showing significance
cor.plot <- function(sim.data){

plot(1:185, orig.cor[, 2], type = "l", xlab = "Lag in Years", ylab =
"Correlation", axes = FALSE)
axis(1, at= c(1, 47, 93, 139, 185), lab = c("-2,500","-1,250", "0",
"1,250", "2,500"))
axis(2, at = c(-0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4), lab = c("-0.2",
"-0.1", "0.0", "0.1", "0.2", "0.3", "0.4"))
box(which = "plot", lty = "solid")

sig.pts <- which(sim.data <= 0.05)
polygon(c(sig.pts[1], sig.pts[length(sig.pts)], sig.pts[length(sig.pts)],
sig.pts[1]), c(-0.3, -0.3, 0.5, 0.5), col = "grey", border = "grey")

lines(1:185, orig.cor[, 2], lwd = 3)

}

cor.plot(pbm1.r.l)
cor.plot(pbm.s.l)

# Making a plot of the p-values
pval.plot <- function(sim.data, sim.cor0){
plot(1:185, sim.data, type = "l", lwd = 3, xlab = "Lag in Years", ylab =
"p-value", axes = FALSE)
axis(1, at= c(1, 47, 93, 139, 185), lab = c("-2,500", "-1,250", "0",
"1,250", "2,500"))
axis(2, at = c(0.0, 0.2, 0.4, 0.6, 0.8, 1.0), lab = c("0.0", "0.2",
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"0.4", "0.6", "0.8", "1.0"))
box(which = "plot", lty = "solid")

abline(h = 0.05, lwd = 3, col = "red", lty = 2)
points(93, sim.cor0, lwd = 2, pch = 19)
}

pval.plot(pbm1.r.l, p.bm1.r.0)
pval.plot(pbm.s.l, p.bm.s.0)
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