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Landing Zone Determination for Autonomous Rotorcraft

in Surveillance Applications

Justin Mackay

⇤
Gary Ellingson

†
Timothy W. McLain

‡

Brigham Young University, Provo, UT, USA

This paper presents an approach for finding possible landing sites for a rotorcraft from an

inertially referenced point-cloud model of the environment. To identify potential landing

sites that are suitably flat and level, a grid-based random sample consensus algorithm

separates the terrain map into discrete areas for plane-fitting analysis. Landing sites are

selected that satisfy constraints on flatness and levelness while optimizing the surveillance

target’s visibility. Flight test results are presented from a small multirotor aircraft flying

over a scale-model cityscape. Results from real-time landing-site experiments are presented

and discussed.

I. Introduction

Unmanned air vehicles (UAVs), especially rotorcraft, have the capability to land at any flat location
devoid of hazardous obstacles. Automated landing removes the need for a pilot to control the aircraft,
allowing personnel to focus on other mission critical objectives. Although automated landing of rotorcraft
UAVs has been performed at prepared sites,1–4 the ability to land at unprepared sites o↵ers significant
advantages by fully exploiting a rotorcraft’s versatility to land anywhere that is suitably flat and level.

One example where landing at an unprepared site would be helpful is for delivering military cargo with a
UAV. To deposit the cargo near troops, the UAV needs to recognize landing hazards and navigate to avoid
harming individuals and the cargo. The idea of delivery using UAVs extends to commercial applications as
well. Amazon, DHL, Google, and other companies have publicly expressed interest in using UAVs for rapid
package delivery purposes (e.g., Ref. 5). The ability to land safely and reliably in unprepared locations is a
critical capability to fulfill this vision of UAV-based package delivery.

Landing can also conserve onboard energy and extend the duration of missions. Some applications, such
as surveillance and monitoring (e.g., wildlife or infrastructure), may allow the mission to be performed from
a fixed vantage point. Given that the largest use of energy on small UAVs is for sustaining flight, perching
on a raised structure and conserving energy o↵ers potentially significant advantages for missions of longer
duration.

When a surveillance target remains stationary for a period of time, it is sensible for the UAV to land
in a position where it can continue surveillance without exerting the energy to hover or fly. Perching at a
landing location allows it to conserve energy while continuing to fulfill the surveillance objectives. Thus, the
vehicle can remain in the area for a longer period of time without the need to refuel or recharge. The best
vantage point to continue surveying an area would be from an elevated height above the surveillance target.
It would be ideal for the vehicle, therefore, to land on a raised structure near the area of interest. One area
where this strategy could be utilized is in urban environments. Typically, urban environments have multiple
vantage points due to the variety of structures. Some structures give a better view of the area of interest
than others. This creates the need to choose between multiple landing location possibilities.

This paper presents a method for finding suitable landing sites for small UAVs that take into account
surveillance objectives. A grid-based RANSAC approach is used to identify flat and level areas based on
point-cloud data produced from onboard sensor measurements. Metrics for surveillance target visibility are
used to select the landing locations for optimal target surveillance. The landing site optimization algorithms
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presented are implemented on a small hexacopter aircraft. Flight results over a model cityscape are presented
demonstrating the ability to identify suitable landing sites in real time.

II. Related Work

Automated landing has been used for years in commercial and military aircraft.6 Typical automated
landing with piloted aircraft has been done at prepared sites, such as helicopter landing pads or aircraft
runways. The rotorcraft capability of being able to land at unprepared sites provides more possible landing
locations for a UAV. Landing at unprepared sites requires a three-dimensional (3D) representation of the
environment that is then evaluated for possible landing sites. In Ref. 7, monocular images are used to
identify planar areas for landing. Refs. 8–11 use a stereo camera system to create a point cloud that is
evaluated locally for slope and roughness. Both Refs. 12 and 13 use structure from motion to generate a
point cloud used to evaluate the local slope and roughness of the environment. In Refs. 14, 15 lidar is used
with precise position information on a full-size helicopter to generate a point cloud. Once again, a local slope
and roughness technique is used to find possible landing locations. The work in Ref. 14 further analyzes the
point cloud data by evaluating ground contact, center-of-gravity, wind direction, and helicopter clearance.

Excluding Ref. 7, all of these attempt to create a point cloud of the environment and evaluate the point
cloud based on local slope and roughness. This work follows a similar approach. Two major di↵erences
in this work are the grid-based analysis accounting for noise and gross errors in sensor measurements and
independent analysis of point clouds removing the need to align multiple scans of the environment.

III. System Architecture

One objective of this work was to demonstrate the ability to select landing zones in flight in real time.
This was done using a small multirotor aircraft flying over a model cityscape in an indoor lab environment.
The following sections describe the aircraft hardware and sensors used and the software architecture that
was developed to meet this objective.

A. Hardware and Sensors

The aircraft used for testing is the MikroKopter Hexacopter XL. The onboard processor is an Intel Core i7-
2710QE. The weight including the sensors is 3.9 kilograms. The aircraft has a flight time of 15 minutes. When
landed, the motherboard can run for 7 hours with the same batteries. The discrepancy between battery life
flying and landed highlights the possible energy savings when perching during surveillance missions. The
range sensor used was the ASUS Xtion PRO Live. The ASUS Xtion PRO Live gives RGB and range images
at 30 frames per second at a resolution of 640 ⇥ 480 pixels, resulting in a maximum of 307,200 depth
measurements for each image. The precision and accuracy of the Xtion sensor decreases as the distance
to an object increases. In Ref. 16, the precision is shown to change from between 2 mm and 6 mm for an
object 1 meter away to between 4 mm and 12 mm for an object 2 m away. Similarly, the accuracy of the
sensor changes from between 5 mm and -15 mm for an object 1 meter away to between 5 mm and -25 mm
for an object 2 m away. One other important discovery from Ref. 16 is that the accuracy and precision
degradation is proportional to the distance squared. This precision enables laboratory testing with the
miniature cityscape.

One other limitation is the Xtion camera does not work in direct sunlight. For outdoor flights, a di↵erent
sensor, such as lidar, needs to be used. Lidar can produce a dense point cloud similarly to the Xtion camera,
except with better precision at greater distances. Lidar can have a maximum range above 1 km with an
accuracy of 10 mm and precision of 5 mm.17

B. Landing Architecture

The landing zone detection process, displayed in Figure 1, is broken up into four components: data collection,
point cloud modeling, safe landing zone analysis, and landing. Data collection consists of gathering camera
and sensor information about the landing environment. The point cloud modeling components consists of
using the sensor information to calculate 3D point cloud of the environment. This involves processing the
imagery, calculating 3D points relative to the aircraft, and putting the 3D points into an inertial reference
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frame. The point cloud modeling process provides the necessary terrain information for finding areas that are
adequate for landing in safe landing zone analysis. The safe landing zone analysis component fits multiple
planes to the point cloud and determines the slope and roughness of each plane. It can then categorize
areas as possible landing locations. The landing component then selects the optimal landing location for
surveillance based on calculated distance and grazing angle to the target and commands the aircraft to
maneuver to that location.

Figure 1: Safe Landing Process

C. Point Cloud Generation

The cityscape environment was modeled using a 3-dimensional (3D) point cloud. The surfaces of the en-
vironment were represented using points in Euclidean space. Point-cloud models can be created through
a variety of means. Two approaches used in this work are structure from motion using camera imagery
and direct measurement of range. Both methods create a suitable point-cloud model for safe landing area
determination.

Structure from motion utilizes multiple images of a scene from di↵erent perspectives to obtain 3D infor-
mation that is used to create a 3D model of the environment. This reconstruction of the model allows for the
capability to find the optimum landing location over the entire area. Using only the most distinct features in
the image allows for the generation of a sparse point cloud model seen in Figure 2a. A dense model can also
be created, as seen in Figure 2b. The sparse model was created in 13 sec, and the dense model was created
with an additional 92 sec from 20 images with 1600⇥ 1200 resolution using the onboard i7 computer.

(a) Sparse point cloud. (b) Dense point cloud.

Figure 2: Structure from motion point clouds.

Alternatively, a range or depth sensor, such as the ASUS Xtion, can also be used to directly generate
the point cloud. The depth sensor provides information at a faster rate than the stereo options, requiring a
faster processing time if all of the depth image information is to be utilized. Outputs from the Xtion camera
are shown in Figure 3, with the color image shown in Figure 3a and the depth image shown in Figure 3b.
In the depth image, darker shades of gray correspond to shorter depth measurements. The black portions
of the image are areas where the sensor could not determine the distance.

3 of 9

American Institute of Aeronautics and Astronautics



(a) Xtion color image. (b) Xtion depth image.

Figure 3: Images from the Xtion camera.

IV. Safe Landing Area Determination

One method to find possible landing locations is to analyze small portions of the point cloud and determine
whether each portion is suitable for landing. Separating the area with a grid map has been used in Refs. 14,
18, 19 to find potential landing sites. These papers used the vertical standard deviation of points and a
least squares fit to estimate horizontal planes. A major assumption of using least-squares and the standard
deviation approach is the range measurements have little noise and no spurious errors. The least-squares
approach assumes that the deviation of the points is proportional to the size of the point cloud, ignoring
uncompensated gross errors.

A. Planar Modeling

The objective of planar modeling is to determine the flat and level portions of the 3D point cloud that are
suitable for landing. A grid-based RANSAC approach is used to divide the depth image into grid elements.
RANSAC is used to fit planes to the data points in each grid element. The result is a discretized map where
each grid element is designated as a possible landing location or not a possible landing location based on
the goodness of fit with the planar model. To form the grid, the horizontal span of the point cloud in the
x and y dimensions is found from the minimum and maximum x and y values of the points in the point
cloud. The grid element width in the x and y dimenstions are chosen to equal the size of the aircraft. This
ensures the landing areas are large enough for the aircraft to land. The point cloud data is then iteratively
analyzed until all grid elements have been evaluated with RANSAC. This gridding method is described in
Algorithm 1.

Algorithm 1 Grid-based RANSAC

Require: Point cloud (X,Y,Z points)
1: Determine the minimum and maximum for the x (x

min

, x
max

) and y (y
min

, y
max

) values of the points
2: Determine increments for values of X (x

inc

) and Y (y
inc

) based on the aircraft size
3: for i = x

min

to x

max

, incremented by x

inc

do
4: for j = y

min

to y

max

, incremented by y

inc

do
5: Select all points with X values between i to i+ x

inc

and Y values between j to j + x

inc

6: Pass these points into RANSAC for plane fitting
7: end for
8: end for

The RANSAC algorithm is used to find the equation of the plane that best models the set of 3D points.
Regular least-squares attempts to minimize the distance from all data points to the planar model. RANSAC
assists by finding the best model for a subset of the points (called the consensus set) and designating the
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remaining points as outliers to the model. The approach for fitting a plane to a set of points using RANSAC
is shown by Algorithm 2. The threshold ⌧ is based on the measurement noise from the sensor. RANSAC
estimates the parameters of the plane that best fit the consensus set, removing the e↵ect of outliers and gross
measurement error from the estimation. This creates a more accurate estimate of the consensus set. The
parameters of the planes fit to the point cloud data for each grid element provide the slope and roughness
of the terrain. Outliers to the consensus set are classified as hazardous landing locations.

Algorithm 2 RANSAC Plane Fitting

Require: Three or more points (p)
1: for i = 1 to ` iterations do
2: Select three di↵erent random points (p

1

, p
2

, p
3

)
3: Fit a plane to these points
4: for j = 1 to number of points do
5: Calculate orthogonal distance " from p

j

to the plane
6: if Threshold ⌧ > " then
7: Add p

j

to temporary consensus set �
i

8: end if
9: end for

10: if Size �

i

> � then
11: � �

i

12: end if
13: end for
14: Use orthogonal regression with � to find the best-fit plane

Figure 4: Grid-based RANSAC result. The left portion of the image is the original color image. The right
portion shows possible landing locations in green. The block-like landing locations can clearly been seen.

Separating the points in this manner is a fast and e�cient process. Unfortunately, this approach also
results in block-like evaluations of good or bad landing locations. This can be seen in Figure 4. This issue
is documented in other literature using grid maps to determine possible landing locations. This loss of
resolution is critical when trying to land on the edge of a building for surveillance. This loss of resolution
can be solved by changing the distance between grid elements.

Grid-based RANSAC can be modified to ensure that each grid element overlaps with the adjacent sections.
Overlapping adjacent grid elements ensures each point is evaluated more than once with a di↵erent portion
of the point cloud. Having overlapping grid elements reduces block-like issues and recognizes more possible
landing locations. The improved result comes at the cost of increased computation time. Results are shown
in Figures 5 and 6. These figures show a significant improvement in finding possible landing sites over the
original grid-based approach. The block-like issues are resolved allowing for a better knowledge of possible
landing sites. This improves the capability to land on the edge of a building for surveillance purposes.
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Figure 5: Modified grid-based RANSAC to reduce block-like results.

Figure 6: Second result of modified grid-based RANSAC.

B. Surveillance Landing Selection

Plane fitting results in many potential landing planes, but each position within the plane must be further
evaluated to be classified as a possible landing location to produce a safe landing map. The map is determined
by first selecting the planes that have an appropriate slope for landing. Points within the plane are then
given boundary areas around landing hazards to classify points as possible landing locations. The size of the
boundary area depends on the size of the aircraft. Having boundary areas prevents the aircraft from landing
too close to an obstacle. The boundary areas are computed by iterating through the bad landing selection
points and checking for points within the distance to the aircraft.

In our approach, the aircraft must also determine the optimal landing location to perform surveillance
by evaluating the landing locations. This optimization is based on metrics describing the distance to the
desired surveillance area, the height above the target, the grazing angle to the target, and the absence of
occlusions. Some of these characteristics are more critical than others. For example, an occlusion would
completely prevent viewing the object of interest, while grazing angle, distance to the area, and height above
the target all a↵ect how well the target can be seen. The height above ground a↵ects how much additional
area around the object is in the viewing field. This is helpful when observing a large area. The distance to
the area also a↵ects how much additional area around the object is in the viewing field. Being too close to
the object of interest causes the surveillance to be more overt. It also increases the amount of detail in the
image.
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The first step after finding possible landing locations is to evaluate the grazing angle to the target. This
is done by calculating the angle � from each possible landing site to the target using the expression

� = tan�1

0

@ p

z

� t

zq
(p

x

� t

x

)2 + (p
y
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are the position of the point and t

x

, t
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z

are the position of the surveillance
target. The grazing angle is limited by 20 deg for the lower bound and 80 deg for the upper bound. The
lower bound removes the majority of ground points since they have a grazing angle close to 0 deg. The
upper bound removes possible landing sites on structures that are too close to permit viewing the target.
The sites outside the grazing angle window are still safe landing sites and can be used during landings when
surveillance is not an objective.

The landing sites left after boundary checking and between the grazing threshold are those that can
provide surveillance of the target. To choose between these sites, the distance to the target is used. The site
with the shortest distance to the target is then chosen as the optimal landing location.

Figure 7: Surveillance selection showing di↵erent classifications of points based on their suitability for landing.

A result from surveillance landing selection is shown in Figure 7 where points are classified by color. The
green dots are possible landing locations. Red dots show poor or unfeasible landing locations. Blue dots
are boundary areas around poor landing locations. Yellow dots show possible landing locations with a poor
grazing angle, in this case, along the ground. The black square is the surveillance target location, and the
magenta square shows the selected landing location.

V. Testing

Safe landing determination was performed indoors using the hexacopter and Xtion camera. The hexa-
copter initially starts flying a spiral pattern around the target area. This allows the Xtion camera to obtain
depth images from multiple perspectives. The depth images are used to create a point cloud model of the
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environment. Suitable landing sites are calculated and analyzed to determine the optimal landing site for
surveillance of the target area. After a predetermined amount of time, the hexacopter stops spiraling and
hovers over the selected landing site.

The safe landing zone determination execution time for each Xtion depth image is 9.5 msec in C++.
This allows for real-time landing zone analysis for each depth image. Performing landing zone analysis on
each image removes the necessity to correlate each depth image to align the point cloud. Instead, the cost
value of the landing site selection from each depth image is compared to find the optimal landing choice
from all acquired data.

A flight path of the hexacopter performing real-time landing analysis is shown in Figure 8. The black
points are the 3D reconstruction result of the city model. The red points show the spiral path of the
hexacopter as it searches for a landing location. The blue dots show the position of the hexacopter hovering
over the selected landing location. In this scenario, the hexacopter chose to land on the corner of the flat roof
without trees. Multiple flight tests were performed finding the optimal landing location for di↵erent target
positions. The UAV successfully selected flat-portions of rooftops that were clear of obstacles for landing.

Figure 8: Flight pattern. Red dots show the position of the aircraft. Blue dots are where it hovered for
performing a simulated landing.

VI. Conclusion

Grid-based RANSAC rapidly finds portions of an urban environment point cloud model that represent
suitable landing sites using a RANSAC plane-fitting technique. The low computational requirements enable
this approach to be used on embedded systems on board UAVs. Tests on a simulated city environment were
performed demonstrating optimal landing site selection for a surveillance task. The results were obtained
from point clouds generated using structure from motion and an ASUS Xtion depth sensor. This landing zone
determination approach can be extended to other range sensors and algorithms that generate point-cloud
models.
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