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ABSTRACT

A HOP BY HOP ARCHITECTURE FOR MULTICAST TRANSPORT IN AD

HOC WIRELESS NETWORKS

Manoj K Pandey

Department of Computer Science

Doctor of Philosophy

Ad hoc wireless networks are increasingly being used to provide connectivity

where a wired networking infrastructure is either unavailable or inaccessible. Many

deployments utilize group communication, where several senders communicate with

several receivers; multicasting has long been seen as an efficient way to provide this

service. While there has been a great deal of research on multicast routing in ad hoc

networks, relatively little attention has been paid to the design of multicast transport

protocols, which provide reliability and congestion control. In this dissertation we

design and implement a complete multicast transport architecture that includes both

routing and transport protocols.

Our multicast transport architecture has three modules: (a) a multicast rout-

ing and state setup protocol, (b) a mobility detection algorithm, and (c) a hop-by-hop

transport protocol.



The multicast routing and state setup protocol, called ASSM, is lightweight

and receiver-oriented, making it both efficient and scalable. A key part of ASSM is

its use of Source Specific Multicast semantics to avoid broadcasting when searching

for sources. ASSM also uses routes provided by the unicast protocol to greatly reduce

routing overhead.

The second module, MDA, solves the problem of determining the cause of

frame loss and reacting properly. Frame loss can occur due to contention, a collision,

or mobility. Many routing protocols make the mistake of interpreting all loss as due

to mobility, resulting in significant overhead when they initiate a repair that is not

required. MDA enables routing protocols to react to frame loss only when necessary.

The third module is a hop-by-hop multicast transport protocol, HCP. A hop-

by-hop algorithm has a faster response time than that of an end-to-end algorithm,

because it invokes congestion control at each hop instead of waiting for an end-to-end

response. An important feature of HCP is that it can send data at different rates to

receivers with different available bandwidth.

We evaluate all three components of this architecture using simulations,

demonstrating the improved performance, efficiency and scalability of our architecture

as compared to other solutions.



ACKNOWLEDGMENTS

I owe my gratitude to a large number of people who have inspired me and

helped me make this dissertation possible. These people have taught me, developed

my research abilities, and assisted me in developing the right temperament to identify

and solve problems.

I would like to begin by thanking my PhD adviser, Professor Daniel Zappala

for supporting my research. Dr. Zappala is someone who has always inspired me and

is one of the smartest people I know. Without an exception, I have always found our

weekly meetings to be stimulating, relevant and motivating.

It is a great opportunity to express my respect and gratitude to Professor

Charles Knutson for all his valuable guidance, inspiring discussions, and overall mo-

tivation during my PhD. He is the second member of my PhD committee and has

always provided me with insightful comments and constructive criticisms.

I would also like to thank Professors Dan Olsen, Parris Egbert, and Kent

Seamons for taking out time to be a part of my PhD committee and going over

my research areas, dissertation proposal, and dissertation drafts to provide valuable

feedback.

I am pleased to thank my manager at Cisco, Siva Yaragalla, and our team’s

Technical Leader, Anantha Ramaiah. In spite of our aggressive work-related dead-

lines, both of them have always stressed that I finish my research. I owe a lot to them

for their sincere encouragement.



I am also grateful to my manager at Cypress Semiconductor, Ryan Woodings,

for all his help and encouragement during my two summer-internships. Ryan and I

worked on several interesting problems related to wireless networking.

I would also like to thank my lab members: Roger Pack, Lei Wang, Daniel

Scofield, Qiuyi Duan, and Daniel Delorey. I cannot thank them enough for all the

meaningful (and occasionally not so meaningful!) discussions; these discussions were

both enjoyful and often provided the much needed food for thought.

Additionally, I would also like to thank our Graduate Program Assistants

Shannon Käll̊aker and Mindy Varkevisser. I have bothered them on a constant ba-

sis and they have tirelessly helped me with all my queries related to course-work,

registration, scheduling of presentations etc.

I would like to dedicate this dissertation to my parents. They have always

valued education and have worked very hard to ensure that I get the best possible

education. I just cannot thank them enough!

Most importantly, I would like to thank my wife and our son. On countless

occasions, when I should have spent time with them, I instead chose to work on my

dissertation! Without their love, understanding and sacrifice, it would not have been

possible for me to complete my dissertation.



Contents

Contents ix

1 Introduction 1

1.1 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview of Research: ASSM, MDA, and HCP . . . . . . . . . . . . 6

2 Related Work 11

2.1 Multicast Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Multicast Routing in Ad Hoc Networks . . . . . . . . . . . . . 12

2.1.2 Multicast Routing in the Internet . . . . . . . . . . . . . . . . 16

2.1.3 Unicast Routing Protocols for Wireless Ad Hoc Networks . . . 18

2.2 Mobility Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Mobility Detection for Routing Protocols . . . . . . . . . . . . 21

2.2.2 Mobility detection for TCP . . . . . . . . . . . . . . . . . . . 22

2.3 Multicast Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Multicast Transport for Ad Hoc Networks . . . . . . . . . . . 25

2.3.2 Multicast Transport in the Internet . . . . . . . . . . . . . . . 27

2.3.3 Application Layer Multicasting . . . . . . . . . . . . . . . . . 31

2.4 Cross Layer Information Sharing . . . . . . . . . . . . . . . . . . . . . 32

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Motivation: Performance Study of Multicast Routing Protocols 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 ODMRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 ADMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Mobility Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Mobility models and connectivity metrics . . . . . . . . . . . . 44

3.5 High Density Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 High Traffic Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Multicast Architecture 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 ASSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 HCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Ad Hoc State Setup Multicast Protocol (ASSM) 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 First-generation Multicast Routing Protocols . . . . . . . . . . 80

5.2.2 Hierarchical Multicast Routing Protocol . . . . . . . . . . . . 82

5.2.3 Peer-to-peer Overlay Multicast Routing Protocol . . . . . . . 83

5.3 ASSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Building a Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Repairing a Tree . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.3 Multicast Forwarding . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4 Additional Sources . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



5.5 Controlled Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Mobile Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.2 Mobile Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Localized Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Co-located Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Evaluation with high mobility, high density, and high traffic . . . . . 106

5.8.1 High mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8.2 High density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8.3 High traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Additional Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Mobility Detection Algorithm (MDA) 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Mobility Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Detecting Congestion-Induced Loss . . . . . . . . . . . . . . . . . . . 123

6.5 Detecting Mobility-Induced Loss . . . . . . . . . . . . . . . . . . . . . 126

6.6 Differentiating Between Congestion and Mobility . . . . . . . . . . . 129

6.7 MDA Timer Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.8 Cross-Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Hop-by-Hop Congestion Protocol (HCP) 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 HCP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xi



7.3.1 State Setup and Forwarding . . . . . . . . . . . . . . . . . . . 144

7.3.2 Scheduling and Fairness . . . . . . . . . . . . . . . . . . . . . 146

7.3.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.4 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Unicast Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.5.1 Throughput for Unicast Scenario . . . . . . . . . . . . . . . . 158

7.5.2 Fairness for Unicast Scenario . . . . . . . . . . . . . . . . . . . 160

7.6 Multicast Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6.2 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . 168

7.7 Limited Application Buffer . . . . . . . . . . . . . . . . . . . . . . . . 171

7.8 Evaluation at High Traffic Load . . . . . . . . . . . . . . . . . . . . . 172

7.8.1 Varying group size . . . . . . . . . . . . . . . . . . . . . . . . 172

7.8.2 Varying number of groups . . . . . . . . . . . . . . . . . . . . 179

7.9 Evaluation with Mobility . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.9.1 Vary Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.9.2 Varying Group Size with ambient mobility . . . . . . . . . . . 186

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Conclusion and Future Work 191

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bibliography 195

xii



Chapter 1

Introduction

The future of communication networks lies in providing reliable and depend-

able access to the Internet anywhere, anytime. Today, the Internet is comprised

mainly of computers connected to each other using wires, which poses an obvious

limitation on the reach of the Internet. To overcome this limitation, wireless access

is increasingly used to connect computers. A wireless access point is a computer si-

multaneously connected to the Internet via wires and to Internet users via a wireless

radio (Figure 1.1). These access points typically allow connection to the Internet in

public places, such as a university campus or inside a bookstore. Although access

points extend the reach of the Internet, wireless devices still need to be within the

radio range of an access point to use the Internet.

Wireless Users

Internet

Figure 1.1: Wireless Access Point
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To extend the reach of the Internet beyond wireless access points, research is

being done on ad hoc networks [1], which consist of a group of mobile wireless nodes

without any fixed infrastructure. Ad hoc devices typically use batteries so that they

can be mobile without depending upon electricity. To overcome the limitations of

a wired infrastructure, they form network connections (or links) among themselves

as they move. In an ad hoc network, the path from a source to a destination often

uses several intermediate nodes, which allows communication even if the source and

destination are not within the radio range of each other (Figure 1.2).

Wireless Users

Internet

Figure 1.2: Ad Hoc Wireless Networks

Another motivation for ad hoc networks is the case when a network needs

to be established on the fly, when existing resources are disabled or destroyed, such

as fire or earthquake. In these cases, group communication becomes important as

a means of providing search-and-rescue or other communications. Examples of such

deployments include military situations, disaster management, ad hoc conferences

(e.g., at an airport or in a restaurant), classroom deployments or at social networks

(e.g., a sports event). Group communication is achieved efficiently using a mecha-

nism known as multicast. Consider the case of a person talking to four colleagues

(Figure 1.3). Without multicast (Figure 1.3)(a) this person must send a separate

audio stream to four other computers, which wastes valuable network resources. On

2



Sender

Receiver

Forwarder

(a) Unicast: Packet is replicated at the
sender

Sender

Receiver

Forwarder

(b) Multicast: Packet is replicated by
the network

Figure 1.3: Unicast and Multicast

the first part of the path, the sender must transmit four copies of each packet. With

multicast,(Figure 1.3)(b) this person needs to send only one copy of each packet and

the network replicates it as necessary. Multicasting is especially important in ad hoc

networks because it allows an ad hoc network, which is typically power-constrained,

to be more efficient.

The goal of multicasting in an ad hoc network is to provide services that

are indistinguishable from those available in the wired Internet. From a routing

perspective, the primary challenge is that when nodes move, the links forming the

multicast tree can break. Multicast needs efficient mechanisms that can detect and

repair these route breaks. From a transport perspective, multicast must be reliable,

use congestion control, and provide fairness to all data flows. Reliability is especially

important in wireless networks, which often suffer from a high loss rate due to mobility

and congestion; reliability ensures that when data is lost, then it gets retransmitted.

Congestion control is equally important because of the limited bandwidth of wireless

networks; congestion control ensures that each flow estimates the correct sending

rate and thereby fully utilizes the available bandwidth. Lastly, fairness ensures that

competing flows get equal treatment.

3



1.1 Motivation for Research

The problem we solve in this dissertation is the ability to provide services of relia-

bility and congestion control efficiently for multicast flows in ad hoc networks. In

absence of reliability, group communications like battlefield communication and dis-

aster management may drop critical information that would never get retransmitted.

In absence of congestion control, group communication like multiple co-existing con-

ferences running in the same geographical area, say an airport, may not estimate the

correct sending rate and hence either may not fully utilize the available bandwidth

or may not fairly share the available bandwidth among themselves.

Existing approaches fail to provide reliability and congestion control in an

efficient manner. First, network layer multicast can be used with a transport layer of

reliable and congestion controlled multicast built above it [2, 3]. Using network layer

multicast means that the network provides best-effort delivery of data to all group

members, but packets are not sent reliably. Building a transport protocol on top of

this multicast service is complex because different group members receive different

sets of packets and have different levels of congestion on their multicast branch.

Experience with the Internet has shown that this approach can have a high control

overhead, and typically the source can only send data at the rate of the slowest group

member. Furthermore, such a transport protocol is slow to respond to congestion due

to an end-to-end approach.

Another existing approach is to build an application layer multicast or peer-to-

peer multicast using TCP connections [4, 5]. The advantages of this approach are that

it is easy to deploy and avoids the complexity of the network layer multicast. Further,

this approach uses TCP, which is a proven solution for reliability and congestion

control. However, the downside of this approach is that it suffers from two problems

of stress and stretch. Stress occurs when the same network link is used more than

once for the same packet and stretch occurs when multicast chooses a path that is

4



not the shortest. Because capacity and power are constrained in an ad hoc network,

inefficiencies due to both stress and stretch should be avoided.

Our alternative to these approaches is to build a hop-by-hop multicast trans-

port protocol. Unlike the above schemes, where congestion control is invoked only at

the end node of the flow, a hop-by-hop scheme invokes congestion control at each hop

and adjusts the rate appropriately at each hop. At each node, the rate at which it

receives packets can be different than the rate at which it can send packets. In order

to accommodate this rate differential, each intermediate node also maintains a buffer

to store packets that are waiting to be sent. The size of this buffer limits the rate

differential, since an upstream node must stop transmitting when the downstream

buffer is full.

Our hop-by-hop style congestion control offers several advantages over the

above two approaches of network layer or application layer multicast. The hop-by-

hop approach can overcome the disadvantages of other network-layer solutions by

simplifying reliability and congestion control, since it is invoked at each hop. This

type of congestion control mechanism has a faster response time to congestion as

compared to an end-to-end style congestion control offered by both native multicast

and application layer multicast [6]. Further, unlike a network layer multicast, this

approach also allows members to receive data at different rates rather than enforcing

the entire group to receive data at a single rate, which is often determined by the

slowest member. If different branches of the multicast tree support different rates,

a hop-by-hop scheme can send data at these rates, provided each hop has enough

buffer space. The hop-by-hop approach also overcomes the limitations of peer-to-

peer multicast. Each packet is sent once per link, eliminating stress, and packets

can be sent on the shortest path, eliminating stretch. Thus, a hop-by-hop multicast

transport architecture for ad hoc wireless networks can potentially improve multicast

5



CROSS
LAYER

Module 2:
Mobility
Detection
Algorithm
(MDA)

Module 3:
HCP PROTOCOL

Module 1:
ASSM PROTOCOL

TRANSPORT LAYER
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NETWORK LAYER

PHYSICAL LAYER

APPLICATION LAYER

Figure 1.4: Hop-by-hop Multicast Transport Architecture

application performance. Further, it can also provide fast response to congestion,

allow for bandwidth heterogeneity, and be more efficient than peer-to-peer multicast.

1.2 Overview of Research: ASSM, MDA, and HCP

In this dissertation, we build a hop-by-hop multicast transport architecture, where

several modules sitting at different layers work in tandem to provide routing, relia-

bility, and congestion control. Our research can be divided into four phases.

In the first phase, we begin with a rigorous evaluation of existing ad hoc mul-

ticast routing protocols. This phase motivates our subsequent research by providing

valuable insight into the design of multicast routing protocols; later, we use these

insights as we build our multicast architecture. Further, this chapter provides an

outline of various factors that can affect multicast performance in ad hoc networks

and emphasizes the importance of a sound performance evaluation methodology that

takes into account the unique characteristics of ad hoc networks.

The next three phases of our research design a hop-by-hop multicast transport

architecture, shown in Figure 1.4. The architecture consists of three modules working

together to provide reliability and congestion control for multicast flows.

The first module is a simple multicast state setup protocol; we call this protocol

the Ad hoc State Setup Multicast Protocol (ASSM). A state setup protocol is used to

6



Receiver does 
state-setup by 
sending an ASSM 
message

ASSM message does state
setup for both multicast 
and transport states along
the path

Sender

Receiver

Forwarder

Figure 1.5: State setup using ASSM

setup multicast forwarding and transport states in the multicast tree. As shown in

Figure 1.5, ASSM uses one of its messages to do the state setup. An ASSM receiver

sends this message, which travels towards the multicast sender. As the message

travels, all the routers along the path configure their multicast and transport states.

The multicast state is setup by creating a forwarding entry in the routing table so

that the node can forward future data coming from the sender. The transport state is

setup by adding an entry for the flow at the transport layer and by allocating buffer

to hold data segments.

One of the advantages of ASSM is that it does not do any route discovery of

its own, instead it uses routes provided by the underlying unicast routing protocol.

Traditionally, route discovery is done with the help of a network-wide route discovery

broadcast, where a route discovery packet is sent to each node in the network. Using

existing routes provided by underlying unicast routing protocol reduces the network

overhead. Further, ASSM is designed to be independent of the underlying unicast

routing protocol.

The second module solves one of the difficult problems facing mobile ad hoc

networks, which is determining the cause of frame loss and reacting properly. Most

ad hoc routing protocols assume that any lost frame indicates that the destination

node for the frame has moved, and hence the route is broken. This assumption

7



can be faulty; it is possible that contention or collision may have caused the loss,

rather than mobility. In certain scenarios, routing protocols can incorrectly mark 80%

of contention or collision losses as mobility losses (Section 6.6). Routing protocols

making this mistake suffer from significant overhead when they initiate the repair of

routes that have not been broken, resulting in decreased throughput for affected

applications. Hence, the second module, which is a mobility detection algorithm

(MDA), properly detects the cause of a lost packet. Routing protocols first consult

with MDA and they discover new routes only when MDA confirms that the current

route is truly broken.

MDA is an integral module of our multicast architecture since our architec-

ture consists of a multicast state setup protocol, ASSM, which is dependent upon

underlying unicast routing protocols. Without MDA, these unicast protocols fail

to distinguish congestion based losses from mobility based losses during congestion.

This failure can lead to an inefficient behavior, which is undesirable for our multicast

architecture.

The third module is a hop-by-hop congestion control (HCP) algorithm. This

module addresses several problems that are present when one attempts to provide

congestion control for ad hoc networks. First, an end-to-end congestion mechanism

can increase the signaling time for indicating congestion occurring at receivers. HCP

uses a hop-by-hop mechanism and selects a rate based on the state of local congestion;

this way, it provides a faster response time to congestion. Second, a network layer

multicast typically does not allow individual members to receive data at rates suitable

to them, instead it enforces the entire group to receive data at a single rate. With

HCP, each intermediate node buffers its packets and selects its own sending rate; this

method does not impose the constraint of maintaining a global sending rate for the

entire group. Third, end-to-end multicast transport often send acknowledgments on

a per-packet basis, which is an inefficient behavior. HCP uses a periodic acknowledg-
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ment and piggybacks this feedback on top of an ASSM message and hence provides

a more efficient behavior.

Our research provides several contributions. First, we conduct evaluation of

existing multicast protocols; this study provides valuable recommendations, which

should be considered in the design of multicast routing protocols. Second, we show

that ASSM greatly simplifies the steps required to establish and maintain a multicast

tree and delivers high throughput with low overhead. Third, we show that a Mobility

Detection Algorithm, MDA, significantly reduces routing overhead and can increase

throughput by 10 to 100%, depending on the routing protocol and the mobility sce-

nario. Finally, we show that HCP delivers high throughput and ensures fairness if

there are multiple co-existing multicast groups. Furthermore, HCP provides better

throughput as compared to an optimal peer-to-peer overlay multicast under condi-

tions of high traffic and mobility.
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Chapter 2

Related Work

In this chapter we present an overview of some of the important research

related to multicast routing and transport in ad hoc networks. Since our dissertation

proposes an architecture that provides multicast transport for ad hoc networks, these

related research provide an important background. We begin by discussing several

multicast routing protocols for ad hoc networks. We supplement this discussion by

presenting overview of the major Internet multicast routing protocols, because more

work has been done on multicasting in the Internet. Since our multicast state setup

protocol uses a unicast routing protocol, we also present a section on the state of the

unicast routing protocols. Next, we examine research related to distinguishing the

nature of packet loss; this discussion is important to our research since one of the

main modules of our architecture is a mobility detection algorithm. We then examine

the state of multicast transport in ad hoc networks. The foundation of this work

lies in unicast congestion control, so we review improvements to TCP in wireless

networks. Finally, since cross-layer information sharing can be a powerful way to

enhance performance of wireless networks, this section concludes by describing several

advances in this area.
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2.1 Multicast Routing

Multicasting enables a group of users to communicate efficiently with each other.

Users belonging to these group are called multicast members; a member can be either

a source or a receiver or both. Since one of the components of our proposed archi-

tecture is a multicast routing protocol for ad hoc networks, we begin by providing

an overview existing multicast routing. In the beginning, multicasting was designed

for the Internet [7]; more recent work involves multicasting in ad hoc networks. Most

of the multicasting in ad hoc networks seems to draw inspiration from that of the

Internet. Hence, in this section, we present a discussion on some of the important

multicast routing protocols not only for ad hoc networks, but also for the Internet.

However, none of the multicast protocols discussed in this section provide any form of

reliability of congestion control; we revisit those protocols that aim to provide these

services in Section 2.3. Lastly, since ASSM runs on top of an ad hoc unicast routing

protocol, we also describe two of the important unicast routing protocols proposed

for ad hoc networks.

2.1.1 Multicast Routing in Ad Hoc Networks

In an ad hoc network, multicast routing protocols can be divided into two categories.

In the first category, multicast members communicate by building a tree structure

for doing routing. In the second category, members communicate by generating a

mesh among them. Both of these approaches need help from intermediate nodes,

often known as forwarding nodes, to provide routes between the members. These

intermediate nodes may or not be a member of the group.

The mechanism of multicast routing can be divided broadly into three phases

– route discovery, data transfer, and route maintenance. In the route discovery phase,

which is usually the beginning phase, sources or receivers (or both) discover routes.

After this phase, a routing structure (tree or mesh) is established. Once this phase is
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successful, multicast sources begin to send data to group members. This leads to the

data transfer phase. However, during the data transfer phase, mobility may cause the

routing structure to break. This is the third phase, called route maintenance phase.

The burden of route maintenance may lie with either the source or the receivers.

For example, a source could periodically send a broadcast message to refresh the

routes (tree or mesh) and to repair any broken links. On the other hand, if the

responsibility of route repair lies with each receiver, a receiver can rejoin if it detects

its disconnection from the other members.

ODMRP: On Demand Multicast Routing Protocol

Gerla et. al. have developed ODMRP, which belongs to the category of mesh based

multicast routing protocols [8]. Like DVMRP [7] (used in the Internet), ODMRP is

a very simple protocol, and avoids excessive control messages. In fact, the onus of

route discovery lies only with the source. When a source has data to send, it sends a

network-wide flood of a Join Query; when receivers listen to this Query, they join

the group by replying to the source. This Join Reply message travels in the reverse

direction of the Query message, a mechanism known as Reverse Path Forwarding [7].

As the reply message travels towards the source, the intermediate nodes establish (or

refresh if it existed already) forwarding states. When an intermediate node receives

multiple requests for the same group, for which it has already established a forwarding

state, it suppresses any further Join Reply forwarding to reduce channel overhead.

Each member (source, receiver, and forwarder) stores information about the multicast

mesh in a soft state and expires it after certain time duration.

With ODMRP, the responsibility of the route maintenance phase also lies with

the source. A source uses the periodic flood of Join Query messages for maintaining

routes as well. This flood refreshes routes and repairs any broken links. Therefore,

if a link breaks in between two Join Query messages, the source does not take any
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action; instead, it merely waits for the next Join Query flood to heal the mesh. In

conditions of high mobility, where a large fraction of nodes are mobile and link breaks

frequently, this can lead to reduced performance [9].

ADMR: Adaptive Demand Driven Multicast Routing

Jorjeta and Johnson designed ADMR, which unlike ODMRP, belongs to the category

of tree based multicast routing protocols [10]. ADMR uses a special type of multicast

tree, known as a source specific tree, in which a separate tree is built for each source,

with the source at the root of the tree. Unlike ODMRP, here the responsibility

of route discovery lies with both the source and the receivers. A source sends a

network-wide flood at regular intervals for discovering receivers that wish to join the

source. Receivers respond by sending a Receiver join message, using Reverse Path

Forwarding. If a new receiver misses these route discovery messages, it can send a

network-wide flood packet, called Multicast Solicitation message, to discover

the source.

As compared to ODMRP, ADMR has a more sophisticated approach during

the route maintenance phase. Each receiver/forwarder monitors the status of the link

to their upstream member by maintaining a counter of recently received packets. If a

certain number of consecutive packets (for example 3) are not received by a member,

then it concludes that the link is broken and initiates a repair process. The nature

of the repair action depends upon the node. If the node is a pure receiver (a receiver

that is not a forwarder for that source/group), it rejoins the group by sending another

multicast solicitation message. If the node is a forwarder, then it rejoins by sending

a Reconnect message to the source. A source replies to the reconnect message

using a Reconnect Reply reply message, informing the forwarder that it is now

reconnected to the tree. The disadvantage to this approach is that it can trigger a

lot of control overhead, making ADMR inefficient [9].
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During the route maintenance phase, ADMR uses an interesting adaptive ap-

proach to handle mobility. If a receiver makes multiple unsuccessful attempts to join

the source, it indicates to the source that the mobility of the system has increased.

ADMR then concludes that instead of doing excessive route repair, it can simply re-

vert to flooding on a temporary basis; every data packet is forwarded to all the nodes

in the network.

MAODV: Multicast Ad hoc On Demand Distance Vector Routing

Royer and Perkins design a novel multicast routing protocol, MAODV, which uses

routes provided by the underlying unicast routing protocol [11]. This protocol, which

is named as Multicast AODV or MAODV, does minimal additional routing efforts of

its own and relies primarily on routes provided by AODV [12]. The unicast protocol,

AODV consists of Rreq and Rrep messages, to broadcast a request for a route and

to send back a route reply to that request respectively [12].

With MAODV, multicast route discovery is done by building a tree with a

group leader, which is the first node to start the group. A new node wishing to join

the group broadcasts a Rreq message to find the group leader. However, if the node

wishing to join the group already has a valid unicast route entry in its AODV routing

table for the group leader, then instead of broadcasting, the node unicasts the Rreq

directly to the group leader. Member nodes of the tree respond by sending Rrep

message, which contains the address of the group leader.

MAODV’s route maintenance mechanism takes into account not only link

breaks but also network partitioning1. Similar to AODV, link break repair is based

on a periodic Hello message sent by the group leader, which is meant to announce

that the members are still connected. If a member forwards a data packet, it does not

need to send a Hello message, since neighbors already know its presence when they

1If one or more nodes become unreachable from the rest of the network, they are referred to as
partitioned.
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receive data packets. If a node on the multicast tree fails to receive any Hello mes-

sages or data packets, it starts link repair by sending a TTL limited local Rreq with

the join flag set; the disconnected node expects to hear an Rrep. If it fails to receive

an Rrep within a certain amount of time, it tries to resend Rreq for an additional

certain number of times. If it still does not receive any Rrep, the disconnected node

concludes that network partitioning has occurred. In that case, a new group leader

is selected for the newly detected partition.

2.1.2 Multicast Routing in the Internet

Multicast routing was originally designed for the Internet and has been developed for

a long time and thus is more mature than multicasting in ad hoc networks. Research

for multicasting in ad hoc networks has often borrowed mechanisms from those of the

Internet-based multicast routing protocols and adapted them for ad hoc networks.

In this section, we describe three of the popular Internet-based multicast routing

protocols and aim to highlight some of their important mechanisms: DVMRP, PIM,

and SSM. However, all of these protocols are not designed to provide any form of

reliability of congestion control and hence, cannot be used for our proposed multicast

transport architecture.

Distance-Vector Multicast Routing Protocol (DVMRP)

DVMRP is the Internet’s first multicast routing protocol [7]. In DVMRP, a multicast

source periodically broadcasts data to the network. Nodes receiving the broadcast

forward only those packets that arrive from the shortest path to the source; data

coming from other interfaces is considered duplicate and hence dropped. When a

router does not need the multicast data, it prunes itself from the tree, provided all

of its children in the tree also do not want to be a part of the group. Thus, if all the

children of a node send a prune message, the parent node prunes itself. The prune
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requests travel upstream to the source till all the nodes that have no child members

are pruned. In the pruned state, if a node wishes to (re)join the group, it does so by

sending a graft message, which cancels the previous prune request.

Core Based Trees (CBT)

CBT addresses one of the central problems of multicasting in the Internet – source

discovery - by creating a special tree that has a common rendezvous point (RP) or core

for all the members belonging to a group. All branches leading to various members

emanate from this core. Unlike DVMRP, CBT is a member-driven protocol, where

the onus of joining the tree lies with the sender or receiver. A member joins the tree by

sending a Join-Request message towards the RP. When the RP or a node already

on the tree receives this Join-Request, it sends a Join-Ack message back to the

requesting node. Reception of a Join-Ack message indicates that the member is now

connected to the group. To forward data, a member sends packets to its neighbors

on the tree and this process repeats until everyone has the data.

Protocol-Independent Multicast (PIM)

PIM is another widely used multicast routing protocol in the Internet. PIM is called

so because it is not dependent upon the underlying unicast routing protocol. Unlike

DVMRP, PIM works in two modes – dense and sparse, depending upon the mul-

ticast application model. The dense mode application model assumes that most of

the routers in the network belong to the multicast group [13]. In this mode, data

forwarding is done using a protocol similar to DVMRP. The sparse-mode application

model is applicable to scenarios where members are sparsely distributed in the Inter-

net, but members are not necessarily small in number. Like CBT, this mode uses a

rendezvous point (RP) [14]. The RP is used for learning about sources; after that a

member joins using the shortest path tree for each source.
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Source Specific Multicast (SSM)

In the IP multicast model, any sender can send at any time. This causes the source

discovery problem, where members must constantly locate new sources. This also

causes a shortage of multicast addresses, since the group address must be globally

unique. SSM solves both of these problems by using a combination of the source and

group address to identify the multicast group. This eliminates the source discovery

problem and provides each host with its own multicast address space. SSM allows

permanent multicast addresses, which is useful for applications like Internet TV, and

distance learning where a single sender serves numerous receivers.

2.1.3 Unicast Routing Protocols for Wireless Ad Hoc Networks

Our multicast transport architecture uses a multicast state setup protocol, ASSM,

which uses routes provided by a unicast routing protocol; hence, we present a section

on the state of the art for unicast routing protocols in ad hoc networks.

Dynamic Source Routing (DSR)

Dynamic Source Routing (DSR) is an on-demand source routing protocol [15]. Each

node stores routes to several destination nodes in its route cache. When a node needs

to send data, it uses these routes to forward data; however, if it does not have a route

for a destination, then it broadcasts a network-wide Route Request broadcast. Each

of the nodes that receive this Route Request, broadcasts it further; this forwarding

is done until the request flood reaches the destination node or an intermediate node

that has a route for that destination.

Each Route Request carries with it a unique identifier created by the initiator

of the request, which is stored by all the nodes that process the request. Nodes

that hear the broadcast for the second time discard it to avoid excessive overhead.

If a node fails to hear a Route Reply within the expected time, it sends the request
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again. This behavior is limited to a minimum interval between two consecutive Route

Requests; this interval increases with each request.

All source routes learned by nodes are kept in a route cache, which decreases

the overhead of the route discovery step. In route maintenance, broken links are

detected and the routes containing them are removed from use. All the forwarding

nodes in the route must verify that the data has been received by the next node in

the route; if the subsequent next hop fails to receive the data packet successfully, the

node generates a Route Error packet and sends it back to the source. Further, DSR

can also use promiscuous listening to overhear the Route Reply messages from other

nodes and add these routes in its cache.

Ad hoc On Demand Distance Vector (AODV)

Ad hoc On Demand Distance Vector (AODV) is a distance vector routing proto-

col. Like DSR, the source first generates a network-wide Route Request (RREQ)

broadcast. The RREQ propagates till it reaches the destination or an intermediate

node, which has ‘fresh enough’ route for the destination. In either case, they attach

the destination route to the header and send a Route Reply (RREP) message back

to the source. After broadcasting a RREQ, the node starts its timer and waits for

RREP-WAIT-TIME. If the timer expires before it gets a RREP, it sends another

RREQ, upto a maximum of RREQ-RETRIES. However, unlike DSR, AODV em-

ploys a ring search algorithm to find a route (while sending RREQ), where the ring

keeps expanding until it reaches a threshold. The intermediate nodes that forward

the RREQ packet also insert the address of their previous node, thereby building the

reverse path which might be used ultimately when the RREP is to be sent back to

the source.

Each route in the routing table has a lifetime after which it is expunged from

the table. AODV may broadcast HELLO messages every HELLO-INTERVAL
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to ensure that the neighbors are still alive. If a node in the neighborhood fails to

broadcast a HELLO message in the expected time interval, then others conclude that

its link is down. Each forwarding node also watches its active next hops (those nodes

which have been used by the node to send packets recently) using link layer or network

layer mechanisms. Hence, the detection of a link breakage is done regularly in AODV.

2.2 Mobility Detection

One of the difficult problems in mobile ad hoc networks involves finding if a frame

loss has occurred because of mobility or congestion, and then having the transport

and routing protocols react properly. Traditional transport protocols, like TCP and

many of its variants, assume all packet loss is a sign of congestion, and they needlessly

decrease the sending rate when mobility causes loss. Similarly, if the routing proto-

col assumes all packet loss is a sign of mobility, it may initiate an expensive route

discovery or repair process when it should instead do nothing and let the transport

protocol adjust its rate.

An ad hoc network can loose a frame primarily due to two reasons. First,

when the forwarding queue at a node overflows. In this case, the loss is clearly

due to congestion, so there is no ambiguity as to the appropriate response. Second,

when transmission of a frame fails at the MAC layer, in which case, the cause for a

failed transmission could be due to mobility, contention, or interference. Loss due to

mobility occurs when a node moves, so that the packet cannot possibly be delivered.

Loss due to contention may occur when two or more wireless nodes are transmitting

at the same time, causing collisions. Interference also causes loss due to collisions,

but the competing source uses a different technology in the same spectrum, such

as a microwave oven or cordless phone [16, 17]. In this dissertation, we focus on

distinguishing between mobility and contention.
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2.2.1 Mobility Detection for Routing Protocols

It is necessary for routing protocols to determine the nature of frame loss and react

only when the loss is due to mobility. If routing protocols initiate the repair of

routes that have not been broken, it can result in excessive overhead and can lead

to decreased throughput for affected applications. In this section, we outline two of

the solutions suggested for enabling routing protocols to determine the true nature

of frame loss.

Preemptive Routing in Ad Hoc Networks

In this approach, the signal strengths are monitored for existing links. When neigh-

bors move, the signal strength fades and this fading can be taken as a sign of an

impending link break. Intermediate nodes monitor the signal strength and in the

case of a likely route break, they inform the source by sending a warning message to

it. The source can then trigger a new route selection or use other existing routes that

it might have.

Using an early warning before the link break occurs enables the protocols to

achieve a faster response time for broken links. However, temporary signal fading

can occur due to several reasons, even if two nodes are within the radio range of each

other. For example, if one of the users walks and temporarily goes behind a physical

obstacle, like a wall or tree, this triggers a false warning. Care must be taken to avoid

such false warnings. Thus, the mechanism must compensate for variations in signal

strength due to fading, multi-path effects, or power conservation mechanisms.

Using Signal Strength for Detecting Link Breaks

Klemm et al. propose another approach that uses signal strength for determining

the nature of packet loss. If the received signal strength from a neighbor drops,

they prompt the routing layer to trigger a route discovery process. In the meantime,
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they ramp up the transmit power of the device to communicate with the neighbor.

Like the earlier approach, this approach can also trigger false warnings. Further, it

also requires that the power level of the received signal be monitored continuously.

Received signal strength is usually a hardware property and hence would involve

additional interactions for porting the signal strength output from a specific neighbor

and informing the routing layer about it when the signal drops.

2.2.2 Mobility detection for TCP

While our work focuses on routing protocols, there has also been a great deal of work

on helping TCP react properly to lost frames. In TCP, reliability is implemented with

the use of Acks, which are sent by a receiver upon successful reception of a packet.

If a sender fails to receive an Ack or receives duplicate ACKs, it retransmits the lost

packets. If an Ack is lost or is received with information about packet loss, it reflects

that some part of the network has become congested. Most versions of TCP assume

that in the Internet losses (or delay) are primarily due to congestion, and this leads

TCP to cut down its sending rate. This behavior makes TCP send data at a much

slower rate than what can be sent.

In this section, we present work for wireless ad hoc networks that describe this

problem and provide a solution for TCP to work well. We organize this review into

two sections. First, we discuss solutions that enable TCP to determine the nature of

packet loss before reacting to the loss. Second, we discuss solutions that enable TCP

to react to mobility based packet loss.

Enabling TCP to Determine Nature of Packet Loss

Research in this area has focused an end-to-end mechanism for distinguishing between

congestion-based losses from mobility-based losses. When a loss occurs, TCP invokes
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the differentiating algorithm to verify that the loss is due to congestion and not due

to mobility; TCP reacts only when the loss is due to congestion.

For wireless ac hoc networks, Wang and Zhang propose a scheme where out

of order packet delivery is used to differentiate packet losses [18]. For a network

with little mobility and no congestion, data packets and Acks arrive in order at the

receiver and sender respectively. Hence, the authors assume that any out of order

packet delivery is an indication of mobility based route change. Upon detecting that

the route has changed, TCP avoids invoking its congestion control algorithm if it sees

a packet reordering.

However, like TCP, routing protocols also need to differentiate mobility losses

from congestion losses; in this case, the routing protocols should react only when the

loss is due to mobility. Both of the above approaches are limited to TCP and do not

provide this service of loss differentiation to routing protocols.

Enabling TCP to react to mobility based Packet Loss

Besides enabling TCP to distinguish congestion based losses from mobility losses

before reacting to it, TCP has also been modified to mitigate mobility based link

loss.

Sundaresan et al. propose ATP, which is a rate based transport protocol

[19]. Every node tracks the average of the queuing delay and transmission delay.

Whenever a data packet is forwarded, the information about average delay is passed

to the downstream node. This way it reaches the receiver, which in turn maintains

an average of all the delays received. At regular intervals, the receiver uses this

information to estimate the sending rate for the sender and sends it back to the

sender. When a mobility induced link break happens, the routing layer informs ATP.

ATP temporarily pauses sending new data and instead sends a probe message to the

receiver to get an estimate of the bandwidth available on the new route.
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Chandran et al. propose TCP-F, where intermediate nodes send information

whenever a link failure occurs[20], using a Route Failure Notification (RFN) message.

When a TCP sender receives an RFN, it enters into a snooze mode, where it freezes

all its timers and stops sending any packets. This is done till it receives a Route

Re-establishment Notification (RRN) message. However, the source does not remain

in the snooze mode forever and runs a timer to get out of this mode. RRN can be

forwarded by any intermediate node that has previously forwarded the RFN, once it

discovers that a new route has been established.

Similar to TCP-F, Holland and Vaidya also propose to send an Explicit Link

Failure Notification (ELFN) to the TCP sender when a link failure occurs [21]. The

authors suggest sending ELFN in two ways. First, it can be sent using an ICMP “host

unreachable” message. Second, it can be piggybacked with a route error message (if

generated by the routing algorithm). TCP’s response to ELFN is to disable the

congestion control mechanism and to wait for the route to get repaired before re-

invoking congestion control.

2.3 Multicast Transport

Multicasting in ad hoc networks needs to be supported by two services – reliability and

congestion control. Wireless networks incur significant packet loss due to collisions,

mobility, and interference. Reliability must be built for multicasting to recover these

losses. Besides significant packet loss, an ad hoc network also has limited bandwidth.

If a node receives data at a faster rate than the rate at which it can forward, it

drops packets from its buffer; congestion control is required to avoid this loss. In

this section, we discuss approaches that address the problem of providing reliable

multicast, both with and without congestion control.

We first examine multicast transport protocols developed for ad hoc networks.

Because this area is new, we also review earlier work on multicast transport for
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the Internet. Finally, we explore work on application layer multicast as a realistic

alternative to network-layer multicast.

2.3.1 Multicast Transport for Ad Hoc Networks

Reliable Multicast

Chandra et al. use a gossip-based approach to provide multicast reliability in an

ad hoc network [22]. In gossiping, each node propagates a message by forwarding

it to a randomly-selected neighbor. The neighbor, in turn, selects another random

neighbor for forwarding; thus, the message is propagated recursively. Anonymous

Gossiping (AG) is built on top of a network-layer multicast routing protocol. It is

called anonymous since a gossiping node does not need to know about the group

membership. Member nodes implement a bounded buffer to store packets; they can

retransmit these packets upon a request from any downstream node.

AG proceeds in two phases. The first phase does regular multicasting of data

packets. The second phase provides reliability by recovering packets lost in the first

phase. For reliability, each receiver node maintains a list of sequence numbers of

lost packets. This node randomly selects a neighbor to gossip and sends a gossip

message. Upon receiving this gossip message, if the neighbor is a member of the

group (forwarder, receiver, or source) and has those lost packets, it sends back a

gossip reply and also the lost packets. Else, it propagates this gossip message further,

till lost packets are recovered.

Gossiping provides inspiration to another protocol for providing multicast reli-

ability. Luo et. al. propose Route Driven Gossiping (RDG), which also uses gossiping

to propagate information about lost packets [23]. Unlike AG, RDG maintains current

routes and gossiping is done only with those members for which routes are available.

A node joining a group broadcasts a Group-Request message, and group members

respond by sending a Group-Reply message. These messages help RDG establish
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views of the multicast members of the group. Based on this member information,

a node sends out a gossip periodically with information about the missed packets.

Using gossiping, this message is retransmitted to the receiver that missed the pack-

ets. RDG uses two parameters to modify the gossip behavior, namely fanout and

quiescence threshold. Fanout refers to the number of neighbors that are selected for

gossiping. The quiescence threshold refers to the number of times a particular packet

is sent out as a gossip by the same node.

Both of the above approaches address only the problem of reliability but do

not determine the appropriate sending rate. In the next section, we discuss two

approaches that address both of these problems together.

Congestion Control

Tang et. al. design the Reliable Adaptive Lightweight Multicast (RALM) protocol to

provide both reliability and congestion control for ad hoc networks [2]. In RALM a

source maintains a Receiver List to store information about all the receivers. For each

window worth of data, the source provides reliability and congestion control by picking

a receiver, called the feedback receiver, from the Receiver List. Each feedback receiver

also sees if it has missed any previous data besides the current data. The feedback

receiver replies with an ACK if it receives the current window worth of data and all

the previously missed data successfully, otherwise it sends a NACK. When the source

receives a NACK, RALM adjusts its sending rate and multicasts the lost packets

again. If an ACK is received from a feedback receiver, the transmission is considered

complete for that receiver. For the next window worth of data, RALM selects a new

feedback receiver for receiving ACK. Since the source specifies the address of the

feedback receiver in the packet header, other receivers need not respond.

In addition to reliability, RALM also provides congestion control. Like TCP,

RALM uses a window based congestion control scheme. However, the congestion
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control for RALM differs from that of TCP in two ways. First, a global window

is maintained for all the receivers. Thus, RALM assumes that all the receivers are

experiencing identical levels of congestion. Second, only the last packet from the

current window needs to be acknowledged.

Rajendran et. al. design another protocol, Reliable, Adaptive, Congestion

Controlled multicasT (ReACT), which also provides reliability and congestion control

[3]. ReACT works by providing reliability at two levels – local and global. The decision

to mark a loss as global or local is done by a receiver, which analyzes the loss pattern.

If the loss is persistent, it is considered due to congestion or global otherwise it is

considered local. If the loss is considered local, a local recovery is initiated and the

source is not informed about it. For recovering lost packets, each receiver maintains

a list of upstream nodes from whom local retransmission of lost packets can be made.

However, if the loss pattern is global, the receiver informs the source by sending

a NACK. The source maintains a list of all the receivers, who have sent a NACK and

their packets have not been transmitted yet. This phase is referred to as congestion

control phase. During this phase, ReACT uses a stop-and-wait algorithm to adjust

the sending rate; when congestion occurs, the source does not send any new data.

Instead, it attempts to deliver lost data to receivers present in the above mentioned

list. Once the source leaves the congestion control phase, it reverts to its original

sending rate.

2.3.2 Multicast Transport in the Internet

Having discussed multicast protocols for ad hoc networks, in this section, we discuss

some of the important Internet based multicast routing protocols.
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Reliable Multicast

Scalable Reliable Multicasting (SRM) is one of the leading solutions for a reliable

multicast protocol [24]. One of the main strengths of SRM lies in its scalability, which

enables it to scale to large networks and large sessions. SRM provides reliability by

retransmitting lost packets. If a member fails to receive a multicast packet, it sends

a negative acknowledgment (nack) to the group. The sender or any other member

can re-send the lost packet.

Since there can be many multicast members that can request and retransmit

the lost packets, SRM uses request and repair timers to achieve scalability. When a

member loses a packet, it sets a repair timer and listens for nacks for that packet.

If another member sends a nack before the timer expires, other members suppress

their own. This nack message is sent by the node for which the request timer expires

first. The retransmission is done as a multicast and all the receivers will receive the

retransmitted packet. Similar to the request timer, SRM also supports a repair timer.

When members receive a nack request timer and have the packet requested, they

set a repair timer. The packet is sent by the node for which the repair timer expires

first; the rest of the nodes hear this repair and suppress their own repair timers.

Besides SRM, RMTP is another approach for providing reliability in the Inter-

net [25]. Unlike SRM, RMTP uses a hierarchical approach to provide scalability. A

receiver sends a selective ACK with a bitmap, which contains information for missed

packets. The problem of ACK implosion2 is avoided by the hierarchical design. Each

group of receivers is divided into a region, which is headed by a Designated Receiver

(DR). The ACKs are sent periodically to the respective DR, which can in turn, send

these ACKs to its own DR; the source being the root DR. DRs buffer received data

2When a lot of nodes send ACK at the same time, this can overwhelm the receiver of the ACK.
This is referred as an ACK implosion

28



and can respond to retransmission requests of the receivers in their corresponding

local regions. This decreases the end-to-end latency and improves resource usage.

Congestion Control

Providing congestion control for multicasting in the Internet can be both source-

based and receiver-based. In a source-based approach, the responsibility of providing

congestion control lies with the source. However, source based rate-adaption schemes

can scale poorly when the number of receivers increases. Hence, these schemes must

solicit feedback from the multicast receivers in a scalable fashion [26, 27, 28]. In

receiver-based approaches, it is the receiver that is responsible for adjusting the rate.

These approaches may not require a sender to maintain per-receiver information,

making them more scalable [29].

Bhattacharya et. al. use a source-based approach for providing congestion

control [27]. They argue that as the number of receivers increases, the likelihood of

a receiver reporting a loss increases. If the source were to reduce its rate for all such

loss notifications, the performance would severely degrade. Further, it is important

that all the receivers should get a fair share of the bandwidth. Hence, they propose

that the source should regulate its rate according to the receiver that has the smallest

bandwidth.

Rhee et al. propose Multicast TCP (MTCP), a scalable approach for providing

congestion control and reliability when there is large number of receivers [28]. Like

RMTP, they use a hierarchical style of congestion control, where designated multicast

tree members take the responsibility of providing reliability to their local downstream

members. Each of these designated intermediate routers store the packets that they

receive from the upstream sender. Once it receives an ACK from all the downstream

receives, the designated node deletes the copy from its buffer. On the other hand, if

it receives a NACK, then it unicasts the packet to that receiver. Thus, the source
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is relieved from the burden of retransmitting lost packets. Further, this information

is also used for congestion control. These designated nodes keep track of how many

packets are outstanding and send this count along with the size of their congestion

window as a congestion report. The source compares all of these congestion reports

and uses the minimum rate to transmit data.

Receiver-driven Layered Multicast (RLM) is one of the novel solutions for

congestion control for multicast [30]. RLM is designed for applications using layered

encoding for a video source, and each layer is sent to a separate group. Congestion

control is achieved by having receivers add and drop layers. The basic idea for con-

gestion control is that on congestion, drop a layer and when there is spare capacity,

add the next layer. Congestion control is also facilitated by the use of join exper-

iments. Each member maintains a separate join timer for each layer. If the timer

expires without congestion, that layer is added. If congestion happens, that layer is

dropped and the duration of the timer is doubled. When other members observe that

a particular member has dropped a layer due to congestion, they use this information

rather than joining themselves and noticing the congestion. Thus, everyone learns

from the outcome of join experiments of their neighbors.

Like RLM, Vicisano et. al. also propose another receiver based layered en-

coding solution for multicasting. Receivers join and leave groups, which represent

each layer, as congestion decreases and increases respectively. However, each receiver

anonymously takes its decision to join or leave groups; authors provide techniques so

that all receivers that are facing the same bandwidth bottleneck in any subtree re-

gion, can use synchronization among themselves for joining and leaving a layer. This

approach differs from RLM in that receivers do synchronization without any explicit

group membership protocols and their congestion control mechanism is more fair to

nearby TCP flows.
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2.3.3 Application Layer Multicasting

An alternative approach to providing reliability and congestion control is to use ap-

plication layer multicast. The key idea of application layer multicast is to build a

virtual network of TCP connections between members. By using TCP, this solution

provides reliability and congestion control without any additional cost. Application

layer multicast is also a necessity since IP Multicast has not been deployed fully.

However, application layer multicasting pays a price for the benefit of using

underlying TCP connections. Since connections are setup at application layer, mem-

bers often do not use the shortest path, which is usually available when one uses

network layer routing. Thus, with relative to network layer multicasting, application

layer multicast can have longer paths; this inefficiency is referred to as stress. Further,

due to longer path, application layer also incurs higher delay, an inefficiency referred

to as stretch.

Narada

Narada is the first proposed protocol for application layer multicasting [4]. Narada

is a self-organizing overlay structure connecting all the multicast members in the

Internet. The overlay nature comes from the fact that each of the members belonging

to the group are connected using a unicast path. In Narada, the construction of the

overlay is achieved in two steps. In the first step, a mesh is generated, which connects

all the members of the group. In the second step, a variant of a standard distance

vector routing protocol is used to construct a shortest-path tree on the top of this

mesh.

Bayeux

Zhuang et. al. built Bayeux, which is a large-scale application layer multicast proto-

col for streaming multimedia applications [31]. Bayeux is built using the peer-to-peer
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architecture provided by Tapestry [32]. Bayeux scales well to a large number of re-

ceivers, incurs minimum delay and bandwidth overhead, and gracefully handles faults

due to routing changes. Multicast members become nodes in the Tapestry overlay and

Bayeux builds a multicast distribution tree on top of this Tapestry overlay. Tapestry

uses longest prefix match for routing messages from the sender to the destination

node. Furthermore, the design of Bayeux incorporates load-balancing into it so that

network bandwidth is used efficiently. However, because Bayeux is an application

layer multicast, it still suffers from the problems of stress and stretch.

Multicast Overlay using CAN

Similar to Bayeux, Ratnasamy et. al. propose a multicast application layer overlay

using the peer-to-peer structure, Content-Addressable Networks, CAN [33, 34]. As is

the case with Bayeux, building a multicast application on top of an existing overlay

amounts to minimum additional effort, a trend usually true for application layer over-

lays. However, unlike Bayeux, which builds a source-specific tree for each multicast

sender, this approach builds a single tree for all members to share.

2.4 Cross Layer Information Sharing

Ad hoc networks must cope with mobility and limited battery life. One of the likely

ways to overcome these limitations is to exploit cross-layer feedback mechanisms. In

the Internet, with ossification of the networks at the core, more and more emphasis is

being given to designing application layer protocols; it is difficult to build mechanisms

that would help various layers interact in the Internet. Because wireless networks

are still in the deployment phase, exploring cross-layer mechanisms presents a good

opportunity to optimize their performance. In this section, we present some of this

work, which aims to use cross-layer information sharing.
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Raisinghani and Iyer describe an architecture for cross-layer sharing [35]. They

list information at each layer that can potentially prove advantageous for other lay-

ers. They consider the user to be the top-most layer and other layers benefit from

information provided by the user. Besides user constraints, they believe that battery

life is another most important motivation for building a cross-layer scheme. The au-

thors discuss a preliminary architecture where each device has a Device Management

Entity, DME (similar to a vertical cross-layer spanning across all the layers). Each

layer has its own Layer Management Entity, LME, storing all the relevant information

about that layer.

Akyildiz et al. design Adaptnet, which consists of protocol solutions at dif-

ferent layers of the protocol stack addressing several problems like rate adaptation,

congestion control, and mobility support [36]. At the transport layer, Adaptnet uses

a transport layer protocol, Radial Reception Control Protocol, R2CP that has an

adaptive congestion control mechanism. R2CP monitors the network loss rate and

delay at lower layers and adjusts its sending rate at the transport layer. At the link

layer, they design an A-MAC [adaptive-MAC], which integrates seamlessly over het-

erogeneous networks (TDMA/CDMA/widebandCDMA/CSMA). A-MAC is capable

of providing various flows with different QoS requirements on various links simultane-

ously. The link layer also has an adaptive error correcting system. At the application

layer, the sending of the video rate is adapted according to the data rate available by

different (heterogeneous) technologies at the MAC layer.

W. Yuen et al. use information at the radio layer to enhance the route discovery

mechanism in DSR [37]. At the core of their solution lies the fact that SNR (signal to

noise ratio) information provided by the radio layer can be used to estimate achievable

transmission rate in the physical medium. When a station receives an RTS (Request

To Send), it sends the value of this transmission rate along with the CTS (Clear To

Send) packet. The (data) sending station, instead of transmitting at a standard rate,
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transmits data packets at the rate provided by the CTS header. Other nodes, by

looking at the CTS packet become aware that the transmission rate for data packets

is different. They use the new transmission rate provided in the CTS header in order

to adjust their NAV3. In DSR, when a node sends RREQ to find new routes, nodes

that have routes, send back RREP. Based on the transmission rate at each hop,

message delay is successively appended in the RREP message. At the node, which

originated RREQ messages, all the RREP messages are gathered and the one with

the least delay is selected rather than the one with the shortest path.

2.5 Conclusion

In this chapter, we present important research related to providing routing, reliability

and congestion control for multicasting in ad hoc networks. Most of the research

related to multicasting in ad hoc networks seems to draw inspiration from the Internet.

Hence, to gain more insight, we present similar work done for the case of Internet.

TCP has been extensively used to provide the services of reliability and congestion

control.

In spite of previous work done in ad hoc networks, the problem of providing an

efficient transport architecture for multicast is still an open problem. Given the nature

of ad hoc networks, where each node can be in a heterogeneous neighborhood, it is

advantageous to design a transport protocol that can adjust the rate for each group

member. To make this work, we also need to design a state-setup protocol to establish

transport connections at each hop and an algorithm for distinguishing mobility losses

from congestion losses. We believe that these components can work together to

provide efficient multicast routing and transport for ad hoc wireless networks.

3NAV stands for Network Allocation Vector. NAV is the time for which other nodes that do not
participate in the transmission must wait (in addition to their current back-offs) before they can
access the medium again
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Chapter 3

Motivation: Performance Study of Multicast Routing

Protocols

This chapter was published as “A Scenario-Based Performance Evaluation of

Multicast Routing Protocols for Ad Hoc Networks”, by Manoj Pandey and Daniel Zap-

pala, IEEE International Symposium on World of Wireless, Mobile and Multimedia

Networks (WoWMoM), June 2005,Italy, Pages 31-41.

Current ad hoc multicast routing protocols have been designed to build and

maintain a tree or mesh in the face of a mobile environment, with fast reaction

to network changes in order to minimize packet loss. However, the performance of

these protocols has not been adequately examined under realistic scenarios. Existing

performance studies generally use a single, simple mobility model, with low density

and often very low traffic rates. In this paper we explore the performance of ad hoc

multicast routing protocols under scenarios that include realistic mobility patterns,

high density and high traffic load. We use these scenarios to identify cases where

existing protocols can improve their performance. Based on our observations, we

make a series of recommendations for designers of multicast protocols.

3.1 Introduction

Mobile ad hoc networks have numerous practical applications, such as emergency and

relief operations, military exercises and combat situations, and conference or class-
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room meetings. Each of these applications can potentially involve different scenarios,

with movement pattern, density and traffic rate dependent on the environment and

the nature of the interactions among the participants. For example, in a search-

and-rescue operation, individuals may fan out to search a wide area, resulting in a

fairly regular pattern of movement, low density, and low traffic rate. In a battlefield

scenario, the movement of soldiers may be heavily influenced by the movements of

their commander, with higher density and a higher traffic rate. In other cases, the

environment itself may give rise to movement patterns and density, such as patrons

visiting an exhibit hall and moving among a selected group of displays. In addi-

tion, depending upon the communication need, applications can be very demanding,

requiring the system to support very high traffic rates.

To enable group communication in these scenarios, a number of ad hoc multi-

cast routing protocols have been proposed [8, 10, 11, 38, 39, 40, 23, 41, 42]. In making

the transition from wired to wireless networking, protocol designers have focused on

the obvious challenge of designing a multicast routing protocol that can cope with a

mobile environment. As a result, the main goal of most ad hoc multicast protocols is

to build and maintain a multicast tree or mesh in the face of a mobile environment,

with a fast reaction to network changes so that packet loss is minimized.

While most ad hoc multicast protocols have met this basic design goal, their

performance has not been adequately examined under realistic scenarios. Existing

performance studies in this area suffer from three common flaws:

• Simplistic mobility models. Existing studies use either a Uniform mobility model

[43] or the Random Waypoint model [10, 11, 38]. It is well known that because

these models utilize random, independent movements they do not reflect real-

istic usage patterns. A number of researchers have evaluated unicast routing

performance under a variety of mobility patterns [44, 45, 46], using more elab-

orate models and metrics to capture their effect on routing performance. Our
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study is the first to apply this methodology to examine multicast routing per-

formance.

• Low density. Many evaluations use only 50 mobile nodes in a 1000m2 square

field and a 250m radio range, which often leads to a density of less than 10

nodes within radio range [43, 38, 39, 40]. However, there are many common

scenarios in which a network may have many more users in a small area –

any situation in which there is a planned gathering or a crowd. This density

will likely result in congestion and packet loss; because some protocols use

packet loss as an indicator for mobility they may react in precisely the wrong

way. Moreover, multicast protocols are often built on top of broadcast, such as

for source discovery or tree repair, and these mechanisms will cause excessive

overhead in high density scenarios.

• Low traffic load. Current evaluations generally employ a very low data rate of

2 to 20 Kbps [10, 39, 23, 41, 42], with only a few using rates as high as 80 to

200 Kbps [38, 47, 8]. Clearly, a protocol that performs very well at lower traffic

rates may not be able to handle higher traffic rates efficiently. In addition, while

some theoretical work has examined the capacity of ad hoc networks [48, 49],

no one has examined the fundamental question of whether multicast routing

protocols can actually reach these limits.

In our study, we try to rectify these shortcomings by examining the perfor-

mance of two common multicast routing protocols – ODMRP [8] and ADMR [10] –

under scenarios that include realistic mobility patterns, high density, and high traffic

load. We use a simulation-based performance evaluation so that we can thoroughly

examine protocol behavior in a controlled environment. Our goal in this work is

to impact how future multicast routing protocols are designed by identifying gen-

eral cases where existing protocols can improve their performance. Accordingly, we
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identify specific mechanisms that cause performance bottlenecks, then generalize our

experiences into a set of recommendations for multicast protocol designers.

We first explore multicast routing performance using realistic mobility models,

similar to those described in the IMPORTANT framework [46] and other unicast

evaluations. To the best of our knowledge, this is the first time that multicast routing

protocols have been examined over a wide range of mobility patterns. Our goal is to

sort through the overwhelming number of models and metrics and identify the key

areas where protocol designers should focus their attention.

In studying this scenario, we show that multicast performance is largely pre-

dicted by two key mobility metrics – the frequency of link breaks and the density

of the mobility pattern. This enables protocol designers to focus on optimizing per-

formance with respect to these metrics, regardless of the particular usage scenario.

We find that ODMRP does not react quickly to link breaks because it must rely

on a periodic broadcast from the source in order to find members that have moved.

ADMR reacts more quickly, but at the cost of much higher transmission and control

overhead. There is certainly room for a protocol that achieves better tradeoffs.

Our second scenario examines multicast performance under high density, which

we believe will be a common case for ad hoc networks. While ODMRP handles this

scenario very well, ADMR throughput is severely impacted by density. In this sce-

nario, ADMR experiences congestion collapse at about 25 Kbps, performing even

worse than flooding, while ODMRP can achieve rates in excess of 200 Kbps. We

analyze ADMR’s poor performance and show that it is due to its use of explicit ac-

knowledgments and its assumption that all packet loss is a sign of mobility. We design

several modifications of ADMR that correct this problem and dramatically increase

throughput in this scenario without affecting its performance in other situations.

Our last scenario examines multicast performance under high traffic load. We

find that ODMRP performs significantly better than ADMR, but both experience
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high packet loss as the traffic rate increases. Packet size plays an important role in

reaching high capacity – sending fewer large packets is generally better than sending

many small packets. We then extend recent theoretical results for the capacity of

ad hoc networks to the case where multicast traffic is transmitted, and find that

the number of hops in the multicast tree is a critical factor. We argue that for this

scenario it is better to use a multicast tree rather than a mesh.

3.2 Background

We have chosen to study the performance of ODMRP and ADMR in these scenarios

because they operate on-demand rather than proactively maintaining routes. Several

performance studies indicate that these protocols perform well [43, 10]. In addition,

ODMRP is mesh-based whereas ADMR is tree-based, providing us a perspective on

both types of protocols.

3.2.1 ODMRP

ODMRP is a mesh-based demand-driven multicast protocol, similar to DVMRP [7]

for wired networks. A source periodically builds a multicast tree for a group by

flooding a control packet throughout the network. Nodes that are members of the

group respond to the flood and join the tree. Nodes that are on the tree use soft

state, meaning their status as forwarders for a given group times out if not refreshed.

Because the forwarding state is shared among all sources for a given group, the set of

forwarders for a group forms a mesh, providing robustness for the mobile receivers.

In particular, an active ODMRP source periodically floods a Join Query

message throughout the entire network. Each node receiving this message stores the

previous hop from which it received the message. When a group member receives

the Join Query, it responds by sending a Join Reply to the source, following the

previous hop stored at each node. Nodes that forward a Join Reply create soft
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forwarding state for the group, which must be renewed by subsequent Join Reply

messages. If the node is already an established forwarding member for that group,

then it suppresses any further Join Reply forwarding in order to reduce channel

overhead.

The basic trade-off in ODMRP is between throughput and overhead. A source

can increase throughput by sending more frequent Join Query messages. Each

message rebuilds the multicast mesh, repairing any breaks that have occurred since

the last query, thus increasing the chance for subsequent packets to be delivered

correctly. However, because each query is flooded, increasing the query rate also

increases the overhead of the protocol. ODMRP can also control redundancy via the

soft-state timer for node forwarding state. A longer timer will increase the size of the

mesh and hence provide more redundant paths for packets to be delivered. Of course,

increasing the soft-state timer also increases overhead since many of the links in the

mesh will result in duplicate packets being delivered.

3.2.2 ADMR

ADMR creates source-specific multicast trees, using an on-demand mechanism that

only creates a tree if there is at least one source and one receiver active for the

group. Unlike ODMRP, receivers must explicitly join a multicast group. Sources

periodically send a network-wide flood, but only at a very low rate in order to recover

from network partitions. In addition, forwarding nodes in the multicast tree may

monitor the packet forwarding rate to determine when the tree has broken or the

source has become silent. If a link has broken, a node can initiate a repair on its own,

and if the source has stopped sending then any forwarding state is silently removed.

Receivers likewise monitor the packet reception rate and can re-join the multicast

tree if intermediate nodes have been unable to reconnect the tree.
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To join a multicast group, an ADMR receiver floods a Multicast Solic-

itation message throughout the network. When a source receives this message,

it responds by sending a unicast Keep-Alive message to that receiver, confirming

that the receiver can join that source. The receiver responds to the Keep-Alive by

sending a Receiver Join along the reverse path.

In addition to the receiver’s join mechanism, a source periodically sends a

network-wide flood of a Receiver Discovery message. Receivers that get this

message respond to it with a Receiver Join if they are not already connected to

the multicast tree.

Each node begins a repair process if it misses a defined threshold of consec-

utive packets (2 for our simulations). Receivers do a repair by broadcasting a new

Multicast Solicitation message. Nodes on the multicast tree send a Repair

Notification message down its subtree to cancel the repair of downstream nodes.

The most upstream node transmits a hop-limited flood of a Reconnect message.

Any forwarder receiving this message forwards the Reconnect up the multicast

tree to the source. The source in return responds to the Reconnect by sending a

Reconnect Reply as a unicast message that follows the path of the Reconnect

back to the repairing node.

Nodes on the multicast tree also maintain their forwarding state. They expect

to receive either passive acknowledgments (if a downstream node forwards the packet)

or an Explicit Acknowledgment if it is a last hop router in the tree. If a defined

threshold of consecutive acks are missed (15 for our simulations), then the forwarding

node expires its state.

Finally, a receiver keeps track of how many times it has had to initiate a repair

due to a disconnection timeout. If this number reaches a certain threshold then the

receiver asks the source to switch to flooding in its next Receiver Join message. If

enough receivers ask, then the source switches to flooding for a limited time. During
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flooding, all the data packets are sent as network-wide flood and all repair messages

are suppressed.

3.3 Simulation Methodology

For our simulations we use GloMoSim-2.03 [50]. We fixed the ODMRP implemen-

tation provided in the GloMoSim distribution because it contained several major

bugs that prevented packets from being delivered. Since GloMoSim did not include

ADMR, we wrote our own implementation based on the original ADMR publication

[10] and a specification published as an Internet draft [51]. We did not implement

source pruning (where the source stops sending data if there are no receivers) so that

we could study the effects of partitioning on packet loss. We also wrote a simple

flooding protocol for GloMoSim.

One important implementation detail for multicast routing protocols is the

use of randomization (or jitter) to avoid collisions due to protocol synchronization.

Each node that forwards a multicast message adds a random delay between 0 and 10

ms before forwarding the packet. Likewise, at the application layer, we avoid starting

sources at the same time, since they use CBR and would thus remain synchronized

for the duration of the simulation. Finally, for ADMR we exclude any startup delay

caused by buffering packets before sufficient receivers have joined the group.

To verify our protocol implementations, we ran simulations identical to those

reported in [10] that compare ADMR and ODMRP. Our results are very close, with

slightly higher delay due to the jitter we have added at each node. The results reported

in this paper differ more substantially from [10] because we are using a different field

size.

In our simulations we collect the following metrics:
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• Throughput (%): The ratio of the number of packets received to the number

of packets sent.

• Throughput (rate): The rate at which group members receive data, in kilobits

per second.

• Transmission Overhead: The ratio of the number of data messages trans-

mitted (originated or forwarded) and the number of data messages received.

This metric is a measure of the efficiency of a routing protocol – a lower value

for transmission overhead indicates that fewer forwarders were needed.

• Control Overhead: The ratio of the number of control messages originated or

forwarded over the combined total of data and control messages originated or

forwarded. This metric indicates the percentage of all messages that are control

messages.

• Delay: The difference between the time when the packet is sent by the source

and when it is received.

Note that previous studies have combined transmission overhead and control

overhead into a single metric called normalized overhead, but this can obscure the

differences between the two.

For ODMRP, control packets consist of Join Query, Join Reply, and Ac-

knowledgments. For ADMR, control packets consist of Receiver Discovery,

Multicast Solicitation, Keep-Alive, Receiver Join, Repair Notifica-

tion, Reconnect, Reconnect Reply, and also Acknowledgments sent by

the end receivers in order to maintain the tree. Since ODMRP Join Queries and

ADMR Receiver Discovery messages have data piggybacked with them, we count

these packets as both data and control messages.

Except where noted, our simulations use 50 nodes, randomly placed over a

square field whose size is 1000m2. Nodes communicate using IEEE 802.11 for the
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MAC protocol, with a 250m radio range, free-space radio signal propagation, and a

maximum data rate of 2 Mbps.

3.4 Mobility Scenarios

Our first scenario explores the effects of realistic mobility patterns on multicast rout-

ing performance. We use mobility models similar to the IMPORTANT framework

[46], but apply this methodology for the first time to multicast. We consider a wide

range of mobility models and explain how they impact multicast routing performance.

As a result, we are able to identify two key mobility metrics that predict multicast

performance. This enables protocol designers to focus on optimizing performance

with respect to these metrics, regardless of the particular usage scenario.

3.4.1 Mobility models and connectivity metrics

A number of researchers have developed mobility models to capture the movement

patterns of wireless network users. We have chosen a set of models from three different

classes of motion – random, path-based, and group-based movements:

• Uniform: Each node starts at a random position and moves in a random di-

rection with a constant velocity [43]. This models independent movement with

high temporal dependency.

• Random Waypoint: Each node chooses a random destination within the sim-

ulated field, moves to the destination at a randomly chosen speed, pauses for

a fixed period of time, and then chooses a new destination. This model has

been widely used in the literature, allowing us to validate our results with other

research.

• Manhattan: Each node moves along a set of pre-defined streets, which are ar-

ranged in a grid pattern. All nodes use the same speed, and each node may
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Model Parameters

Random speed: between max and max − 5m/s
Waypoint pause time: 30 seconds
Manhattan grid size: 150 meters
Exhibition centers: 10

minimum distance to center: 20 meters
pause time: 30 seconds

Battlefield leaders: 16
minimum distance to leader: 20 meters
pause time for leader: 30 seconds

Table 3.1: Parameters used in Mobility Models

choose any direction when reaching an intersection. This models path-based

motion with low spatial dependence [46, 52].

• Exhibition: Each node chooses a destination from among a fixed set of exhibition

centers and then moves toward that center with a fixed speed. Once a node

is within a certain distance of the center it pauses for a given time and then

chooses a new center. This model is similar to the event scenario described by

Johansson et al. [44] and represents independent movement but with high node

density.

• Battlefield: Each node follows a group leader by choosing a destination close to

where the leader is currently located and then moving there. The group leader

uses the Random Waypoint model. This is similar to the RPGM model [45]

and represents group-based mobility with high spatial dependence.

Table 3.1 lists the default parameters we use for each of these models. For

each of these models we vary the speed at which nodes move. For all models we avoid

sharp turns and sudden changes in velocity by using acceleration and deceleration

vectors [53]. As part of this work we extended GloMoSim to include the Uniform,

Manhattan, Exhibition, and Battlefield mobility models.

To differentiate among these models, we use a set of mobility and connectiv-

ity metrics. Of the mobility metrics defined in the IMPORTANT framework [46],
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we found that spatial dependency and the average number of link changes are able

to differentiate between our mobility models and help to explain multicast routing

performance. These are defined informally as:

• Spatial dependency: The degree to which two nodes are moving in a similar

direction with similar speed.

• Number of Link Changes: The number of link changes seen during the course

of a simulation. A link change is counted when two nodes come within radio

range when previously they had not been able to communicate directly, and

vice versa.

In addition, because we are studying multicast routing, we introduce two new

metrics:

• Neighbor Density: The number of nodes which are within radio range of a

given node. We do not distinguish between active and inactive nodes, because

with multicast a node that is not transmitting its own data can still act as a

forwarder.

• Reachability: The number of nodes that are reachable via forwarding through

the ad hoc network. We measure this using a recursive coloring algorithm, so

that nodes in the same partition have the same color.

We used a set of simulations to confirm that each of these metrics is able to

distinguish between the mobility models. Of the most importance to us, the number

of link changes clearly differentiates among the models (Figure 3.1). This behavior

was not seen with the IMPORTANT framework [46], but it is significant because the

number of link changes can have a significant impact on a multicast routing protocol

– each link change may potentially break the multicast tree or mesh and cause a

receiver or intermediate node to attempt a repair. Both spatial dependency and
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Figure 3.1: Mobility model link changes

density are higher for the group-based mobility models (Exhibition and Manhattan),

as is expected, though the difference is clearer with density (Figure 3.2). Note that

density is initially low for Battlefield and Exhibition because at low speeds the nodes

do not have time to form groups. Another significant difference among the protocols

is that all of them maintain high reachability except for Battlefield [54]. This means

that the Battlefield model is a good test for determining how well a protocol reacts

to a partition in the network.

Mobility metrics explain routing performance

For the mobility scenarios, we try to isolate the pattern of node movement from other

factors, such as the traffic rate. Hence we use only three multicast groups, each

consisting of 1 source and 7 receivers. The multicast groups are not overlapping,

which means that with the 3 senders and 21 receivers combined about half of the

nodes are participating in a multicast session. Each multicast source uses a Constant

Bit Rate (CBR) flow, transmitting a 64 byte packet every 250 milliseconds (6 Kbps).

We run each simulation for 600 seconds and we average the results of 25 simulations.
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Figure 3.2: Mobility model density

For both ODMRP and ADMR, throughput depends on the model (Figures 3.3

and 3.4) and the ordering from worst to best can be explained by both the number of

link changes and the density. Throughput is worst for Battlefield because it creates

the most link changes, to the point that the network frequently becomes partitioned.

At moderate to high speeds, approximately 10 nodes are separated from the rest of

the network with the Battlefield model. The Manhattan model has a similar large

number of link changes and also low density, so it is the next worst. Uniform and

Random Waypoint result in similar performance; although Uniform has fewer link

changes this is balanced by Random Waypoint having higher density. Finally, the

Exhibition model results in the best performance because the number of link changes

is relatively low and it creates high density.

Note that for ODMRP our results show lower throughput than with previ-

ous ODMRP simulations [43] because these previous simulations are at low speed

(20m/s), use a lower data rate, and try only the Uniform mobility model. Likewise,

we show lower throughput for ADMR than with previous ADMR simulations [10]

because the previous simulations use a elongated field (1500m x 300m) that results

in higher density and are limited to the Random Waypoint model.

48



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40  45  50

T
hr

ou
gh

pu
t (

%
)

Speed (m/s)

For Battlefield
For Exhibition

For Manhattan
For Uniform

For Waypoint

Figure 3.3: ODMRP throughput

Regardless of the mobility model, ODMRP performance degrades as speed in-

creases, whereas ADMR is able to maintain throughput greater than 80%. Based on

our results, we calculated Pearson’s correlation coefficient and confirmed that there is

a strong negative linear relationship between the number of link changes and through-

put for ODMRP. Note that ODMRP could obtain better performance by sending Join

Query messages more frequently, and hence reacting to broken links more quickly,

but this would in turn incur more overhead. Recent revisions of ODMRP use GPS

to track location and adaptively increase the refresh interval as mobility increases.

ADMR is able to maintain high throughput because (a) forwarding nodes are able to

initiate local repair of the multicast tree and (b) receivers experiencing high packet

loss can ask ADMR to switch to flooding. However, the cost of these actions are

higher control and transmission overhead.

One of our important findings is that the density created by each of the mo-

bility models explains the performance of the rest of our performance metrics. For

both ODMRP and ADMR, the transmission overhead, control overhead, and delay

varies according to the mobility model, with the ordering among the models corre-

lates exactly with the ordering for density. We show representative graphs for ADMR
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Figure 3.4: ADMR throughput

in Figures 3.5 and 3.6. Group-based mobility models, which lead to higher density,

result in a greater chance that multicast group members will be located near the

source. This leads to a savings in transmission overhead and delay. High density also

decreases control overhead for ODMRP, since Join Reply messages travel fewer

hops. For ADMR, however, control overhead increases with density (Figure 3.6).

This happens because ADMR switches to flooding more frequently when density is

low [54]; during these times ADMR has no control overhead.
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Figure 3.5: ADMR transmission overhead
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Figure 3.6: ADMR control overhead

These results confirm that characterizing link variations and density fluctua-

tions for any user movement is crucial towards understanding routing performance.

We also include reachability as a key metric since partitioning is a special case of a

link breaking. Additional metrics defined in the IMPORTANT framework, such as

temporal dependence, spatial dependence, and relative velocity, are important only

in that they induce link changes and density. It is possible, for example, to construct

a model that creates spatial dependence and yet few link changes. Each node in this

strawman model simply vibrates in place, with the amplitude of vibration significantly

smaller than the radio range. Given sparse placement, density variations are negligi-

ble and since movements are small no link breaks occur. However, depending upon

the alignment of the vibrations and relative velocities, spatial dependence between

two nodes can be varied arbitrarily. Hence, we can conclude that protocol designers

should concentrate on optimizing multicast protocols for both frequent mobility and

density.
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Figure 3.7: Variation of throughput with density

3.5 High Density Scenario

Our second scenario explores the effects of high density on multicast routing perfor-

mance. For this scenario, we study density without any mobility. Accordingly, we

statically place a set of 75 nodes on a field and vary the density by varying the size of

the field. We use three multicast groups, each having 1 source and 22 receivers. To see

the effects of density, we increase the traffic rate of each source slightly; each source

sends a 100 byte packet every 100 milliseconds (24 Kbps). We run each simulation

for 100 seconds and we average the results of 25 simulations.

Surprisingly, ADMR performs very poorly in this scenario (Figure 3.7). Both

ODMRP and ADMR initially receive low throughput as the density of the network

is so small that it is partitioned. As the density increases, ODMRP achieves very

high throughput once the network is connected, while ADMR never delivers more

than 60% of the packets. In fact, ADMR does much worse than a simple flooding

protocol.1 This indicates that ADMR’s ability to switch to flooding is not causing

this problem.

1For our implementation of flooding, we use a simple protocol in which each node receiving
a packet for a group first checks whether it is a duplicate and, if not, forwards the packet by
retransmitting it.
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To explore this problem further, we fix the density at a high value and then

vary the traffic rate to determine when ADMR encounters a problem. To accomplish

this, we randomly place 50 nodes within 20 meters of a central point, again with

no mobility. We use only a single multicast group, with 1 sender and 30 receivers.

We vary the traffic rate for this source by keeping the packet size fixed at 100 bytes

and adjusting the number of packets sent per second. We run each simulation for 60

seconds and we average the results of 25 simulations.

In this scenario, ADMR’s throughput begins to collapse when the sending

rate is only about 25 Kbps (Figure 3.8). This is even worse than flooding, which

must forward each packet 50 times! Because of its simplicity, ODMRP operates

extremely well, even at extremely high rates. ODMRP’s only control traffic is a

periodic Join Query; while this message is flooded, it is transmitted once every 3

seconds, regardless of the sending rate. The subsequent Join Reply messages, one

per receiver, form a tree shaped like a star. This means that each data packet is simply

broadcasted by the source and then immediately received by all group members.
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Figure 3.8: High density throughput

To pinpoint ADMR’s problems with high density, we plot a trace of the major

network activity when the traffic rate is 200 Kbps (Figure 3.9). The graph is divided

into three sections, with each section being a different version of ADMR. The bottom
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section of this plot shows the standard version of ADMR, before we have fixed any of

ADMR’s problems under high density. Each symbol on the graph represents a packet

being transmitted, with the y-axis indicating which node sent the packet. Node 0 is

the sender for the group. To make the trace readable, we show only the first 7 seconds

of network activity; the rest of the 60 second trace continues with exactly identical

patterns to those shown here.
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Figure 3.9: High density ADMR packet trace

The first problem evident from this trace is that ADMR suffers from Receiver

Join implosion. When the source starts at approximately 1300 ms, it transmits a

Receiver Discovery message. All existing group members immediately respond

with a Receiver Join message, which overwhelms the source. The source responds

with a separate Unicast Keep-Alive message for each receiver, but these messages

are delayed due to congestion.

However, the primary problem in this case is that ADMR sets a timer for each

Receiver Join message that is based on the inter-packet gap advertised by the

source. Because the inter-packet gap is so small in this simulation (4 ms), the timer

fires faster than the source can respond and ADMR assumes the join attempt has

failed. Hence, when the source sends its Receiver Discovery message, each re-

ceiver sends three Receiver Join messages, then gives up and sends a Multicast
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Solicitation message. Eventually, the source delivers a Unicast Keep-Alive

message to a receiver, and this causes another round of triple Receiver Join mes-

sages followed by solicitations. Because the solicitations are flooded and sent using

broadcast at the MAC layer, they cause severe congestion; 10 solicitations in a second

result in 500 control packets transmitted during that time. This congestion forces the

source to continually backoff. Hence, even though the source queues packets in the

MAC layer at about 2800 milliseconds, many of them are never sent. Even when

packets are sent, few of the group members successfully join for any length of time

– the throughput is 0.07%. Later in the trace (not shown), Repair timers have the

same problem as the Join timers, resulting in additional Multicast Solicitation

messages.

Fixing this problem requires only a small adjustment to the ADMR Join and

Repair timers. We establish a RepairWaitTime, so that the calculated timer can never

be less than this value. At large inter-packet gaps (low sending rates), the original

timer value is used, but at higher sending rates the timers are set to their minimum

values. By setting the RepairWaitTime to a reasonably short time (e.g. 500 ms), we

can ensure that the timer never fires too soon (this is the equivalent of 125 missed

packets for our packet trace), but is fast enough to adapt to mobility-induced losses.

The middle section of the packet trace in Figure 3.9 shows network activity

for ADMR with the Join and Repair timers fixed, using a value of 500ms for the

RepairWaitTime. This dramatically reduces the number of Receiver Join messages

that are sent, which allows data to be transmitted. Note that most group members

can now receive data, though some members that join later have difficulty joining

because of the congestion in the network.

This reveals a second serious problem with ADMR in the high density sce-

nario: each receiver transmits explicit acknowledgments to the source, resulting in

ack implosion. Like any ADMR forwarder, the source must receive either a passive or
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active acknowledgment to maintain its forwarding state. Since the forwarding tree is

actually a star at high density, all receivers are the last hop in the tree and all must

send an Explicit Ack for each packet. Hence, the throughput for this case improves

to only 12.92% as many packets are either delayed or lost due to the congestion from

explicit acks. Moreover, some nodes actually become forwarders for a short time,

as seen for nodes 8 and 16 in the middle section of the trace. This occurs when an

intermediate node receives a Multicast Solicitation before the source.

Our solution for the ack implosion problem is based on the observation that

this problem is very similar to the ack implosion problem in reliable multicast [55].

In the wireless case, a source (or any other forwarder in a dense region) only needs

to receive one acknowledgment for a packet in order to maintain its forwarding state.

Even better, if the source (or forwarder) can receive one ack for every k packets, then

it can maintain its forwarding state with a minimum of overhead.

Damping the explicit acks in ADMR is simple, since each ack is broadcasted.

Each group member sets an ack timer to a random value between zero and MaxAck-

Time. If the timer expires and the member has received data during this interval then

it sends an Explicit Ack. However, if the group member hears an Explicit Ack

during this interval, it cancels its timer and then waits the remainder of MaxAckTime

before it sets a new ack timer. The source (or forwarder) sets its forwarding state

timer to AckWaitTime, which is equal to m ∗ MaxAckT ime. This ensures that the

source does not time out its forwarding state unless it misses m acks in a row.

The top section of the packet trace in Figure 3.9 shows network activity for

ADMR with both explicit acks and the Join and Repair timers fixed. We use a

value of 66 ms for MaxAckTime, 2 seconds for AckWaitTime, and 500ms for the

RepairWaitTime. As can be seen from this trace, explicit acks are sent regularly,

but at a much reduced rate. This relieves the congestion in the medium, allowing a

throughput of 95.86%!
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To verify that our two solutions work, we repeated the simulation of Figure 3.8

using five versions of ADMR: the regular version, ADMR with the Join and Repair

timers disabled, ADMR with explicit acks disabled, ADMR with timers and explicit

acks disabled, and finally ADMR with our two solutions. As shown in Figure 3.10, our

solutions enable ADMR to scale with offered load during the high density scenario.

In fact, they work just as well as completely disabling the problematic mechanisms,

though this is not a viable alternative.

We do not claim that our solutions enable ADMR to obtain high throughput

for all scenarios. We did, however, test our solutions with the mobility scenario in

the previous section and found that we were able to obtain nearly identical results in

these cases. We do note that ADMR’s performance is sensitive to the timer settings

we have adjusted. Using larger values for the RepairWaitTime cause ADMR to react

too slowly to high mobility conditions, and using larger values for AckWaitTime cause

excessive pruning and low throughput for high mobility conditions.

Our primary purpose in this exercise is to demonstrate the pitfall of testing

multicast routing performance in only low density situations. Our experiments with

high density have identified several flaws in ADMR that can be generalized to any

multicast routing protocol. Explicit acknowledgments should be avoided if possible,
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and control messages that are flooded should be rate limited to avoid broadcast

storms. While we have implemented changes to ADMR that solve these problems for

a single group, dampening these messages across multiple groups is a more difficult

problem. Our results also question the practice of building a routing protocol that

reacts to packet loss. If the protocol interprets all packet loss as a sign of mobility,

then it will misinterpret congestion as a sign of mobility and potentially cause a

congestion collapse.

3.6 High Traffic Scenario

Our third scenario explores the effects of high traffic rates on multicast routing perfor-

mance. To isolate the effects of load from other factors we keep density and mobility

low. In these simulations we use the same parameters as the mobility scenario, except

we keep the speed constant at 1 m/s. We then vary the traffic rate in two ways: using

a fixed packet size of 64 bytes and varying the inter-packet gap, and using a fixed

inter-packet gap of 250 ms and varying the packet size. For this scenario use the

Exhibition model with 10 centers; results for other mobility models are similar.

Our results indicate that ODMRP is able to achieve a maximum throughput

of about 55 Kbps, while ADMR can receive at most 40 Kbps when varying the packet

size (Figure 3.11). Both protocols obtain significantly lower throughput when varying

the inter-packet gap (Figure 3.12). In both figures we show the average rate at which

data is received by the group members, as well as the average transmission rate (at

the MAC layer) for each node in the network and the average rate at which packets

are received by each node (also at the MAC layer). The data reception rate indicates

how successful the routing protocol is; for example, when the packet size is varied,

ODMRP receives about 30 Kbps when the sources send at 50 Kbps, or about 60%

of the throughput. The rate transmitted per node and the rate received per node

indicate the load imposed on the network by the routing protocol. The rate received
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is always higher than the rate transmitted because each node has more than one

neighbor.

Our second purpose in exploring this scenario is to examine a fundamental

question: how effectively can a multicast routing protocol use the available capacity

of an ad hoc network? It clear from our results that multicast can use more of

the available capacity by transmitting large packets rather than small packets. For

example, when varying the packet size ODMRP can receive about 55 Kbps, but can

only receive about 20 Kbps when varying the inter-packet gap. But how much of the

available capacity can a multicast routing protocol actually use?
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Figure 3.11: High traffic: packet size

From work on the capacity of ad hoc networks [48, 49], we know that the

unicast sending rate, λu available to a node is bounded by:

λu <
C/n

Lu/r
, (3.1)

where C is the capacity of the network, n is the number of nodes that are transmitting,

Lu is the expected path length in meters, and r is the radio range in meters. Because

Lu/r is the expected unicast path length in hops, we can translate this equation into
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an available sending multicast rate by substituting the expected number of hops in a

multicast tree. Hence, for multicast:

λm <
C/n

Lm

, (3.2)

where Lm is the expected number of hops in the multicast tree. This bound indicates

that one of the critical factors for a multicast tree is its efficiency, with a lower Lm

enabling a higher transmission rate. This is exactly what the bandwidth efficient

multicast protocol [47] tries to accomplish, by having receivers join along the shortest

path to the existing tree, rather than using the shortest path to the source. This

indicates that in a high traffic scenario it is better for a multicast protocol to use a

tree instead of a mesh.

To determine Lm for our scenarios, we ran an experiment that measured this

value for both ODMRP and ADMR as we vary the number of group members for a

single group with one source (Figure 3.13). In both cases, this measurement excludes

any forwarding done by flooding of control or data packets. The average Lm increases

slowly for both protocols when the group includes only a single source. This mea-

surement appears to follow the Chuang-Sirbu law, in which Lm/Lu = mk, where m
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is the number of receivers [56, 57]. This law fits our data when Lu is 3 (the measured

value for our simulations) and k is 0.58. When we allow all members to be sources

for the multicast group, ADMR is unaffected (since it builds a tree per source), but

Lm grows significantly for ODMRP since it uses a mesh. The number of links in the

mesh falls at very large group sizes for ODMRP, but this is only because the number

of nodes and the area of the network is limited. Hence, we would expect ODMRP to

not be bandwidth efficient as the number of sources grows.

Returning to Equation 3.2, we can now calculate the sending rate available to

a node. We use a measured Lm of 12 for a group size of 7 (Figure 3.13), 2000 Kbps for

C [49], and we have 3 active sources. This yields λm = 55Kbps for ODMRP, which is

what it does obtain when using large packets. Since ADMR has a lower Lm, it should

be able to achieve a higher sending rate. However, ADMR switches to flooding once

packet loss begins to occur, which is exactly the wrong thing to do during a period

of congestion. ADMR misinterprets packet loss as a sign of mobility and thus makes

the situation even worse. This problem is particularly acute when varying the inter-

packet gap, because increasing the sending rate in this case increases the number of

packets that are flooded.

It is an open question as to whether other multicast routing protocols better

utilize network capacity. We believe a tree-based protocol (with lower overhead than

ADMR) could do better than ODMRP, particularly for multiple sources, because its
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Lm will be lower. On the other hand, it is possible that the theoretical limits are

too high, and that ad hoc networks using IEEE 802.11a are simply unable to support

high levels of multicast traffic. We are currently designing a new multicast routing

protocol that uses a tree and reliable broadcast at the MAC layer in an attempt to

achieve high utilization.

3.7 Conclusion

Our goal in this work has been to identify cases where ad hoc multicast routing

protocols can improve their performance, resulting in a set of recommendations to

multicast protocol designers.

Our first recommendation is that designers focus on optimizing for both mobil-

ity and density. Protocols should react to link breaks, but with lower overhead than

ADMR does. Designers should also be aware of the pitfalls associated with high den-

sity situations, avoiding problems such as ack implosion and broadcast storms. While

these problems have been seen in wired networks, it is apparent that these lessons

have not always carried over into wireless networking. Protocols should instead take

advantage of the density created by group-based mobility patterns. Recent work by

Yi et al. does this by treating groups of users as a team and then multicast a single

packet to each team [58].

We strongly recommend that routing protocols should not attempt to monitor

packet loss and repair routes when loss is high. As we have seen with ADMR, such loss

may in fact be due to congestion and the increased repair traffic can lead to congestion

collapse. Rather, loss monitoring should be done by the transport layer, which can

then use input from the MAC layer to determine if the loss is due to congestion

or mobility. The transport layer can then request that the routing protocol take

appropriate action when the loss is due to mobility (and suspend sending any more

data until a new route is found).
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To achieve high capacity, protocols should use a bandwidth-efficient tree rather

than a mesh and should have very low control overhead. Mesh-based multicast proto-

cols increase the number of hops in the multicast tree and hence cannot support high

traffic rates. This argues for a simple, end-to-end protocol design, with receivers in

charge of joining groups and reacting to route changes. Asking multicast forwarders

to maintain the tree results in too much control traffic, particularly when broadcast

is used to repair the tree.

Finally, we suggest that future multicast protocol evaluations – both in simula-

tions and in testbeds – need to be more comprehensive. Evaluations should consider

a range of realistic mobility models and should include special cases, such as high

density and high traffic rates.
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Chapter 4

Multicast Architecture

4.1 Introduction

Our findings from the earlier evaluation chapter motivates us to build a multicast

transport architecture for providing reliability and congestion control. Ad hoc net-

works can suffer from packet losses due to congestion, mobility, and interference.

Hence, for multicasting, reliability must be provided to recover these lost packets.

Besides unreliability, these networks can also be bandwidth-constrained, which neces-

sitates a congestion control mechanism to estimate the correct sending rate. Further,

the bandwidth-constraint can vary from region to region, hence the congestion control

should be able to estimate the correct reception rate for each receivers.

In this dissertation, we build a hop-by-hop multicast transport architecture,

which operates at the network layer to ensure that packets are sent reliably along

each hop in the multicast tree. Using a hop-by-hop approach allows us to avoid

problems present in the existing approaches to building multicast. A network layer

approach to proving reliability and congestion control to multicast is complex to build.

An application layer approach suffers from the twin problems of excessive overhead

(stress) and high latency (stretch).

Our architecture uses a receiver-driven approach since a receiver-based ap-

proach is more scalable and efficient. Each receiver can discover and maintain its own

route for joining the multicast tree [14, 59]. Further, each receiver can also request for
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retransmission of packets that it loses [24]. Hence, unlike TCP, the source is relieved

of the responsibility of the book-keeping for reliable transmission of each packet and

thus provides more scalability.

Therefore, the architecture needs three components: (a) an efficient receiver-

driven multicast routing and state-setup protocol; this protocol establishes the

branch, (b) a mechanism for determining when a node has moved, distinguishing

this from congestion; this mechanism maintains the branch, and (c) a mechanism for

reliable transport and congestion control at each hop along the tree.

This architecture is comprised of three modules: (a) a multicast state setup

protocol that builds the multicast tree and sets up both transport forwarding state at

each node in the tree, (b) a plug-in module which allows routing protocols to make a

more informed decision about the nature of loss before they react to it, and (c) a mul-

ticast transport protocol, which uses application layer buffering to provide reliability

and congestion control. In this chapter, we present an overview of all the modules

in our multicast architecture and their interaction with each other. Figure 4.1 shows

a schematic diagram of this multi-modular architecture. The multicast architecture

uses input from several layers – transport, network and MAC layers. In subsequent

chapters, we provide an in-depth description and evaluation of each of these modules.

4.2 ASSM

The first module is a multicast state setup protocol, Ad hoc State Setup Multicast

Protocol (ASSM). This protocol is used for setting up the multicast forwarding state

from a receiver along a branch of the multicast tree and establishing transport state at

each hop. To find the path from a receiver to the rest of the tree, ASSM uses the route

to the multicast source that is provided by the unicast routing protocol. Traditionally,

multicast protocols discover their own routes using a network-wide broadcast, where
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Figure 4.1: Multicast Transport Architecture

a route discovery packet is sent to each node in the network. By using routes that are

already present in the unicast routing table, ASSM can greatly reduce its overhead.

The operation of ASSM is show in Figure 4.2, where a new HCP receiver sends

an ASSM Join message to join a multicast tree. When an intermediate node (or the

source itself) receives an ASSM Join, it establishes multicast forwarding state for

the new branch. After that, ASSM passes the Join packet to the HCP layer, which

establishes transport state. Whenever the Join message reaches an existing node on

the tree, the Join message may be suppressed if there is no need to send it upstream

towards the source.

Another interaction between ASSM and HCP is to carry information about

missed packets. After the multicast and transport state is established, the source

transmits data for the receivers. However, due to several reasons, receivers might

miss some of these packets. An HCP receiver periodically resends the ASSM Join
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Figure 4.2: ASSM assists an HCP Receiver to join the multicast tree

both to refresh the forwarding state and to inform upstream nodes about any lost

packets. The receiver builds a list of missed packets and includes this list in the Join

message. As the Join message travels to upstream nodes, each node checks if it has

some of these missed packets in its application buffer; if it does, then it queues those

packets for retransmission. Any time a node has those missing packets and queues

them for retransmission, then that node deletes those packets from the Join message

so that its own upstream nodes avoid a duplicate retransmission. Ultimately the Join

message reaches the source; the source retransmits whatever packets remain in the

list.

In Chapter 5, we explore and verify ASSM’s independence of the underlying

unicast routing protocol by running it over top of two popular unicast routing pro-

tocols. Our results indicate that ASSM is able to deliver high throughput with low

overhead.

4.3 MDA

The second module is a Mobility Detection Algorithm (MDA), which enables the

multicast architecture to determine the cause of packet loss and react properly. A

link break is typically detected by the MAC layer, when it fails to send a frame

after trying for a certain number of times. The MAC layer propagates this failure
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notification to the routing layer. When a routing protocol receives this information,

it usually makes an assumption that the cause of the lost packet must be mobility.

However, this assumption is not always correct, since packets may get dropped due

to collision or congestion. Making this faulty assumption comes with a price; routing

protocols making this mistake suffer from significant overhead when they initiate the

repair of routes that have not been broken, resulting in decreased throughput for

affected applications.

We have designed this cross-layer MDA to detect the cause of a lost packet.

When ASSM sends a Join message and the MAC layer reports a link break, ASSM

first consults with MDA; new routes are discovered only when MDA indicates that

the current route is truly broken (Figure 4.3). However, if the packet loss is due to

ongoing congestion, MDA does not confirm the link break and ASSM does not trigger

any route repair activity (Figure 4.4).

In Chapter 6, we describe and evaluate MDA. Our results show that MDA

dramatically reduces routing protocol overhead and significantly increases application

throughput.
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4.4 HCP

The third module is a hop-by-hop congestion control (HCP) algorithm, which provides

reliable transmission and congestion control at each hop in the multicast tree. Nodes

in the tree buffer packets so they can retransmit them if needed. One of the main

goals of HCP is to be able to send faster to those receivers who have more bandwidth,

while still accommodating slower receivers. Further, by design HCP uses application

layer buffering since an application layer can typically access the disk space and is not

constrained by the sizes of buffer space available at the transport layer (Figure 4.5).

When a sender or a receiver application is started, it initializes by allocating a pre-

specified amount of disk space. A forwarder also has access to a buffer on disk and

when a forwarding state is set, it also calls an initialization and allocates from this

buffer.

HCP achieves reliability in two phases. In the first phase, each node in the tree

chooses one of its children and sends data to it reliably, using the MAC layer. Other

children try to receive the packet by listening to this transmission. However, this kind

of snooping is not completely reliable, so some children may lose some packets. To

cope with this loss, HCP uses a second phase of end-to-end reliability. Each receiver

keeps track of all the packets it has received, and if it misses any packet, it asks
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its upstream nodes to resend those packets. This request is added to the periodic

ASSM Join message. HCP stores recent packets in its application buffer; when it

receives a request for retransmission, it pulls that packet from the application buffer

and schedules it for transmission by queuing the packet in its retransmission queue

(Figure 4.6). Next time, when a packet is transmitted, HCP uses packet from its

retransmission queue, removes the packet from this queue, and then retransmits it.

Besides reliability, HCP also provides a congestion control algorithm which

estimates the correct sending rate. Congestion control takes help from an internal

module: a Scheduler that maintains information about all the flows passing through

the node. The scheduler uses a fair policy and sends data to each flow by taking turns.

The correct sending rate depends upon MAC layer; whenever MAC layer transmits

a frame, it informs HCP and HCP queues its next packet.

HCP also uses flow-control, which avoids sending data to a downstream node,

if the buffer at the downstream node is full. This mechanism is also achieved by

snooping. When a downstream node forwards data to its own downstream node,

then it updates a field reserved for available buffer in the HCP packet; the upstream

node snoops at the HCP packet and comes to know about the available buffer at its

71



Parent (P) transmits a 
packet (seq number k)
reliably to child A.
Child B snoops but
misses the packet

A

B

A

B

P P

In next ASSM Join,
child B copies info
about missed packet,
seq number k.

Retx
Queue

P

Parent (P) transmits
packet (seq number k)
and dequeues Retx Queue.
It removes info about missed
packet from ASSM Join and 
transmits it further.

A

B

A

B

P

Parent (P) queues packet (seq 
number k) in its retransmission 
queue, Retx Queue.

Retx
QueueRetx

Queue

Retx
Queue

Figure 4.6: HCP: Retransmission of a lost packet

72



downstream node. Data is forwarded to that neighbor, only when that the buffer

becomes available at that neighbor.
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Chapter 5

Ad Hoc State Setup Multicast Protocol (ASSM)

This chapter is an extended version of the paper published as “Scalable Mul-

ticast Routing for Ad Hoc Networks”, by Manoj Pandey and Daniel Zappala, The

Fourth International Workshop on Localized Communication and Topology Protocols

for Ad Hoc Networks (LOCAN), 2008, Atlanta.

Routing in a mobile ad hoc network is challenging because nodes can move

at any time, invalidating a previously-discovered route. Multicast routing is even

more challenging, because a source needs to maintain a route to potentially many

group members simultaneously. Providing scalable solutions to this problem typi-

cally requires building a hierarchy or an overlay network to reduce the cost of route

discovery and maintenance. We show that a much simpler alternative is possible, by

using source specific semantics and relying on the unicast routing protocol to find all

routes. This separation of concerns enables the multicast routing protocol to focus

on minimizing join latency, repair latency, and control overhead. Using these princi-

ples, we build a new multicast state setup protocol – Ad Hoc State Setup Multicast

Protocol, ASSM. Our simulations demonstrate that ASSM has a low overhead and

provides a high throughput in most of the simulation scenarios.
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5.1 Introduction

Group communication is an important service for mobile ad hoc networks, because

many proposed applications involve coordination among groups of people, such as

for emergency or military operations. To provide efficient group communication, a

number of multicast routing protocols, like ODMRP and ADMR, have been proposed

for ad hoc networks, usually building either a tree or a mesh. The focus of the first

generation of protocols was to have a fast reaction to network changes, so that packet

loss could be minimized [8, 10, 11, 41, 42]. More recent work in this area addresses the

scalability of multicast routing, in terms of network size, group size, and the number

of groups [60].

Two approaches have been used to provide scalable multicast routing in ad

hoc networks. One approach is to create a hierarchy by partitioning the network into

regions, with a group leader elected in each region [61]. Multicast packets are then

sent among group leaders, and each leader forwards packets to members within its

region. Another approach is to build a peer-to-peer overlay among the nodes, and

then construct a tree based on the overlay [62, 63, 64, 65, 66]. In this case, multicast

is provided entirely at the application layer, and packets are sent among overlay nodes

using TCP connections.

While these two approaches have been shown to scale well, they both have

the drawback that additional structure, either a hierarchy or an overlay, must be

maintained to provide multicast. This incurs additional overhead, which increases as

the nodes move. Both of these approaches may also increase delay, since packets are

not necessarily delivered along the shortest or fastest paths between the source and

the group members. Since overlay multicast is built out of unicast connections, it also

introduces additional stress, or excess packets, as compared to multicast forwarding

in the network layer.
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What these approaches overlook is that scalable multicast routing has already

been designed on much larger scale for the Internet, using the Source Specific Multi-

cast (SSM) [59] protocol. In SSM, each multicast tree has a single source, the group

owner, which is the root of the tree. Using a single source eliminates the need to

perform an Internet-wide search for any user that wants to be a source for the group.

Group members join a multicast tree by sending a join message that follows the uni-

cast route to the source for that tree. If the join reaches a router already on the tree,

then it merges at that point. If any group member wants to send data, it can either

relay its data through the source, or it can notify the group members and build a new

tree rooted at that group member. This design scales well because it separates group

advertisement and source discovery (which operate at the application layer) from tree

maintenance and data forwarding (which operate at the network layer).

In this chapter we apply this principle of separation of concerns to the design of

an ad hoc multicast routing protocol, called ASSM. As with SSM, the ASSM protocol

assumes that trees are identified by a group owner. This means that, in order for a

group member to join a multicast tree, it only needs to know the unicast route from

itself to the group owner. Since scalable unicast routing protocols have already been

developed for ad hoc networks, ASSM can leverage this work to provide light weight,

scalable, and receiver-oriented multicast routing for ad hoc networks. With ASSM,

multicast functionality is divided into the following components:

• group advertisement and source discovery: As with SSM [59], groups are iden-

tified by a combination of the source and group address (S, G), rather than by

the group address (G) alone. Essentially, every source is the group owner for

its own collection of multicast addresses, which allows addresses to be assigned

permanently to groups. The group and owner identifiers can then be advertised

via any application, on a web page, or even configured directly into an appli-

cation. This means that when a group member wants to join a multicast tree,
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ASSM already knows the identity of the root of the tree. This avoids using a

network-wide broadcast to discover multicast sources, as is necessary in many

other multicast routing protocols designed for ad hoc networks [8, 10, 11].

• unicast routing: A unicast routing protocol finds and maintains routes to all

nodes in the ad hoc network. Whenever ASSM needs to send a message, it sends

it using a unicast route. This design concentrates route discovery in a single

component, which eliminates duplicate broadcasts that are often performed by

multicast routing protocols. This design also allows multicast to take advantage

of any optimizations applied to the unicast routing protocol; making unicast

routing more scalable directly benefits multicast routing as well.

• multicast routing: ASSM builds and maintains a separate tree for each multicast

group, which reduces forwarding overhead as compared to a mesh. ASSM uses

a receiver-oriented design, so that join latency is small. ASSM also localizes the

repair decision, so that only the group members rebuild the tree, rather than

asking all nodes on the tree to repair it when it breaks. This minimizes repair

overhead, particularly during periods of high mobility.

Due to this separation of concerns, ASSM is able to provide scalable multicast

routing for large networks, large groups, and large numbers of groups. In addition,

this design greatly simplifies the multicast routing protocol, which only needs to

install and maintain multicast forwarding state using existing unicast routes.

To test the effectiveness of ASSM, we investigate two fundamental questions:

(1) Can a purely receiver-oriented multicast routing protocol provide low repair latency

while also minimizing overhead? (2) Does this design scale as well in ad hoc networks

as it does in the Internet? Repair latency is a critical measure because it indicates

how quickly the multicast routing tree can be rebuilt when nodes move. Scalability

is important because, while ad hoc network deployments are typically not large,

network bandwidth is often very limited. As the number of groups increases, more
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flows compete for this limited bandwidth, and it is important that the network provide

efficient delivery, with low loss rates and low control overhead.

Using simulations, we show that ASSM repairs broken links faster than ADMR

and ODMRP when a receiver moves, and is comparable to these protocols when a

source moves. Our results also show that ASSM provides a high packet delivery ratio

and low overhead as the number of groups increases, both for localized and co-located

groups. ASSM also scales well in situations with high mobility, high density, and high

traffic. Lastly, we run a simulation where we place additional sources in the network

for the same group; our results indicate that using the first source to relay incoming

data from newer sources, leads to better packet delivery than building source-specific

trees for all sources.

5.2 Related Work

When designing a multicast routing protocol for a mobile ad hoc network, there are

two main concerns that arise due to mobility: source discovery and tree maintenance.

Because nodes may be mobile, a group member does not know the location of the

nodes who want to send data to the group. Once the sources are found, the group

members join a tree or mesh that connects them to the sources. The routing protocol

must then repair the tree or mesh whenever any node on the tree moves. In this

section, we describe three categories of multicast routing protocols and how they

address the above two problems: first-generation flat protocols, hierarchical protocols,

and peer-to-peer overlays.
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5.2.1 First-generation Multicast Routing Protocols

ADMR

ADMR [10] solves the above two problems using a receiver-oriented protocol combined

with an aggressive maintenance of the multicast tree. To find multicast sources, a

group member floods a Multicast Solicitation message throughout the network.

When a source receives this message, it responds by sending a unicast Keep-Alive

message to that receiver; the receiver joins the tree by sending a Receiver Join

along the reverse path. When multiple sources are present, ADMR forms a separate

tree for each multicast source. To ensure the tree is repaired whenever a node moves,

each node monitors incoming packets and begins a repair process if it misses some

number of consecutive packets. The repair is done by having the node downstream

from the failure transmit a hop-limited flood of a Reconnect message, to reattach

to the existing tree.

ODMRP

ODMRP [8] solves these problems using a source-oriented protocol. To provide source

discovery, each source for each group floods a Join Query message throughout the

entire network. Each node receiving this message stores the previous hop from which

it received the message. When a group member receives the Join Query, it responds

by sending a Join Reply to the source, following the previous hop stored at each

node. The collection of state created by this and subsequent Join Reply messages

forms a mesh that connects all sources to all group members. To repair the tree when

nodes move, ODMRP simply re-sends the Join Query periodically and times out

mesh state periodically. Over time, the mesh adapts to any changes in node location.

The basic trade-off in ODMRP is between throughput and control overhead.

A source can increase throughput by sending more frequent Join Query messages.
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Each message rebuilds the multicast mesh, repairing any breaks that have occurred

since the last query, thus increasing the chance for subsequent packets to be delivered

correctly. However, because each query is flooded, increasing the query rate also

increases the control overhead of the protocol. ODMRP also can trade off redundancy

and forwarding overhead. By increasing the soft-state timer for node forwarding state,

ODMRP can increase the robustness of the mesh and hence provide more redundant

paths for packets to be delivered. Of course, the richer the mesh, the greater the

overhead when forwarding multicast packets.

MAODV

MAODV [11] is similar to ADMR in that it also uses a receiver-oriented protocol.

Rather than building a separate tree for each source, however, MAODV builds a

single tree shared among all sources. A group member finds the tree by broadcasting

a RREQ message; any node currently on the tree responds with a RREP. The group

member can then choose the best route and connect itself to the tree. To maintain

the tree, each node exchanges HELLO messages with its parent. If a node stops

hearing from its parent, it reconnects itself by broadcasting a RREQ.

One of the key advantages of MAODV and ADMR is that they are receiver-

oriented, so a new group member can quickly join the multicast tree, rather than

waiting for the source to add it. In addition, they both use a tree, rather than a

mesh, so they have lower forwarding overhead than ODMRP. In terms of repairing

the tree, ADMR can react to broken links more quickly because each node monitors

packet reception, rather than waiting for a timer to fire. However, both ADMR and

MAODV allow any node to repair the tree. This can lead to very high overhead

during periods of high mobility, since many nodes on a single tree will initiate repairs

simultaneously, leading to a large number of broadcast messages. Another problem
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with ADMR is that it switches to flooding when packet loss is high; if the packet loss

is due to congestion, the flooding of packets actually makes congestion worse [9].

5.2.2 Hierarchical Multicast Routing Protocol

MCEDAR (Multicast Core-extraction Distributed Ad hoc Routing) uses a hierarchi-

cal approach towards multicast routing [61]. It divides the network into various zones

or subgraphs and each of these subgraphs elect a central node, called the core. These

core nodes connect with core nodes of other subgraphs by forming a mesh, referred

to as the mgraph. Inside each zone, the receivers of the multicast group connect to

the respective core node to send control messages when they wish to join or leave the

group. MCEDAR uses the mgraph to handle the problems of source discovery and

tree maintenance. A new receiver looking for a source simply sends a join-request

message to the core node in its zone. If the core node is already a member of the

group, then it adds the new receiver. Otherwise, it broadcasts the join information

on the mgraph. When the source receives this join message, it responds by sending a

message to the receiver to confirm its join operation. Similarly, when a member has

to leave the group, then it sends a leave message to its core, which forwards the leave

message on the mgraph, if the core no longer has any children else the core simply

removes the member from the list of its children.

Although, MCEDAR uses a mesh-based mgraph for control traffic, it does

build a source-specific tree to forward data. The tree is built when the source responds

to the join-request sent by the core members. When the response is sent, the unicast

path is also stored for the new member; nodes use this route to forward data instead

of mgraph. This way, MCEDAR combines advantages of both tree and mesh based

multicast routing.

However, MCEDAR adds a layer of complexity as compared to non-

hierarchical routing protocols. The set of core-nodes can potentially become a bot-
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tleneck when a large number of groups are present. Further, additional studies need

to be done to evaluate and demonstrate the robustness of MCEDAR in the face of

high mobility, density, and traffic.

5.2.3 Peer-to-peer Overlay Multicast Routing Protocol

In this approach, group members form a mesh among themselves and a tree is con-

structed on top of this mesh. Individual links of the tree use TCP connections to

forward data. This approach is valuable since the underlying TCP offers services like

reliability, congestion-control, and flow-control. However, since a peer-to-peer overlay

does not use optimal routes, this approach can be inefficient. In fact, an evaluation of

Internet-based peer-to-peer overlay multicast in ad hoc networks reveals that a direct

deployment of these protocols can be far from efficient [63].

Gui and Mohapatra design an overlay multicast protocol called, Progressively

Adapted Sub-Tree in Dynamic Mesh, PAST-DM [5]. When a new receiver joins the

group, it begins by doing a local hop-limited discovery of other members belonging

to the overlay. Nearby members share the link state information among themselves

periodically, creating a mesh among the members. Next, PAST-DM creates a source-

based Steiner Tree on the top of this mesh. The tree-formation begins at the source,

which connects itself to all of its next-hop children and divides the remaining members

into sub-groups rooted at one of these children. Each of these children are responsible

for forwarding packets to their sub-groups. Further, each child node also re-computes

a tree for itself and groups its non-children member into sub-groups. This is done

until there are no more children left. For tree maintenance, each member keeps track

of its neighbors using a periodic neighbor discovery or by sending a query message to

its current neighbors.

ALMA (Application Layer Multicast Algorithm) uses a receiver-driven ap-

proach to achieve source discovery [67]. Receivers first choose a subset of existing
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members of the group and give higher preference to those that are closer. The au-

thors recommend using a rendezvous point or a local search to retrieve the subset of

existing members. These existing members are already connected to the source and

thus form a logical multicast tree. Next, a new receiver sends a join message to the

chosen subset of existing members. Upon receiving the join message, these members

can either accept the new receiver or deny it, if they are already supporting a large

number of receivers. Sending a leave message is comparatively simpler. The receiver

sends a leave message to its parent in the tree as well as to all of its children. Lastly,

receivers can also monitor the quality of their current connection to the tree and if

the quality of the connection degrades, then they can switch to a new parent. When

compared with ODMRP, ALMA starts to suffer when the group-size becomes large

since the inherent inefficiencies in overlay make it difficult for ALMA to scale.

Another overlay multicast protocol, Prioritized Overlay Multicast (POM), al-

lows users to join several groups depending upon the priority of the service [65]. POM

enables an existing multicast group member to initiate and form another group of

higher priority. A typical usage is the case of law-enforcement officials responsible

for security of a public event. For a normal scenario, these officials can create an

overlay with regular priority. However, the moment a security breach occurs, one of

these officials can initiate a more secure overlay and the members of the earlier tree

with sufficient security authorization can join the new overlay. Thus, POM allows

members to smoothly transition from one priority overlay to another. POM depends

upon the unicast protocol to provide it with unicast routes for both source discovery

and tree maintenance.

5.3 ASSM

In this section, we describe how ASSM builds and maintains trees, as well as how

additional sources can send data to an existing multicast group.
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Figure 5.1: ASSM: Joining a Multicast Tree

5.3.1 Building a Tree

When an ASSM receiver joins a group, it already knows the group owner, S, since

this information is provided through a group advertisement mechanism. The owner

is also the root of the multicast tree. Figure 5.1 illustrates how a new group member

(R1) joins a multicast tree. The new member unicasts a Join message to the source

S. The format of the Join consists of following fields:

• Group Owner Address: The advertised owner for the group.

• Group Address: Address of the multicast group.

• Receiver Address: Address of the receiver.

• Previous Address: Address of the previous node sending the message. This

starts as the address of the receiver and is set at each intermediate node to that

node’s address.

• Role Type: This field is an enumeration of four roles: route-refresh, link-

repair, pruning and retransmission. route-refresh is used when a re-

ceiver sends a periodic ASSM Join. link-repair is used when the ASSM layer

has detected a link break. A receiver sends an ASSM Join message with prun-

ing option, when it wants to prune itself from the tree. Lastly, retransmis-
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sion is used when the Join message carries container information that controls

whether the message is resent at each hop.

• Protocol: The protocol that will handle the payload.

• Payload Length: Length of the payload in bytes.

• Payload: This payload acts as a generic state setup container. Protocols can

use this payload and interpret its data depending upon the protocol and role

type specified.

A typical ASSM Join has the address set as described and uses a role type of

route-refresh. The protocol and payload fields are set by the protocol performing

state-setup. For an ordinary join, with no other state setup, the payload length is

zero and the protocol is ASSM.

Whenever a node receives a Join message, it checks whether a forwarding state

already exists for the group (Figure 5.2). If it does, then needToForwardAssmJoin()

returns false and the node does not forward the Join message further. Instead, it

simply adds a new child to the forwarding state (the new child is the previous node

that sent the Join message). If the state does not exist, the node creates it, adds

the child, and sets the parent to the next node on the route. The node then forwards

the Join to its parent; this step is repeated until the Join reaches the source. In the

example shown, R2 and R3 have previously joined the tree, so when R1 sends a Join

it stops when it reaches the tree.

ASSM creates “soft state” forwarding states, meaning it times out if it is not

refreshed periodically – the timeout being Trefresh. All group members re-send a Join

message periodically after every Tjoin seconds, and these Join messages are forwarded

upstream if the state has not already been refreshed recently. As shown in Figure 5.2,

needToForwardAssmJoin() also takes into account the freshness of the state; if the

state is fresh, then it returns false. If a group member wants to leave the tree, it can
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bool function needToForwardAssmJoin(packet) :1

1: /*
2: * Return true if the packet needs to be forwarded */
3: */
4: retV al = true
5: assmHeader = getAssmHeader(packet)
6:

7: /* Find the multicast Entry */
8: multicastEntry = lookupMulticastState(assmHeader);
9:

10: if multicastEntry == NULL then
11: multicastEntry = createMulticastState(multicastEntry);
12: else
13:

14: if (assmHeader.roleType ==
route-refresh) and multicastEntry.fresh() then

15: retV al = false;
16: end if
17: multicastEntry.refreshMulticastState();
18: end if
19:

20: /* Invoke the appropriate handler to process the packet */
21: handlers list[assmHeader.protocol].handle(packet);
22:

23: return (retV al);
24:

Figure 5.2: ASSM Forwarder or Source receives ASSM Join
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stop refreshing the Join messages and the state on its branch will eventually time

out. To leave the group more quickly, a node can send a Prune message upstream

to immediately delete the state on its branch.

5.3.2 Repairing a Tree

The advantage of using soft state and refresh messages is that it also rebuilds the

multicast tree automatically whenever a node moves. As a Join message propagates

upstream, it gets forwarded upstream based on the current unicast route. If the route

has changed, then ASSM will automatically use a new path. If the Join message

cannot be transmitted from one hop to the next hop, then this indicates that either

the next node has moved or the frame was lost due to contention. We use the MDA

protocol [68] to determine the cause of the lost frame, and if the loss is due to mobility,

then the unicast routing protocol sends a failure message to the originator of the Join

message, which is the group member. The group member then sends a new Join

message, which triggers a new route request with the unicast routing protocol. Once

a new route is computed, ASSM can send the Join upstream to rebuild the tree.

The process of repairing a tree due to mobility is shown in Figure 5.3. In

this case, a node upstream has moved, and previous Join messages have caused the

downstream receivers to be notified of this failure. When new routes are computed

to the source of the tree, ASSM sends a Join message that follows the new route.

To prevent the Join from merging on the old route in this case, ASSM sets a bit

indicating that it is repairing the route, so that it can progress further upstream.

However, when using DSR as a unicast routing protocol, ASSM may have a

higher repair latency. This high repair latency occurs because DSR maintains multiple

routes to the same destination and when the current route is broken, it attempts to

use the remaining routes from its route cache for the same destination. We use Figure

5.4 to explain this behavior.
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At receiver R1, DSR maintains three routes to the source, S: {R1, C, D, E, S},

{R1, A, C, D, E, S}, and {R1, B, C, D, E, S}. Assuming that DSR uses the first route

and sends an ASSM Join message via {R1, C, D, E, S}. Now, if forwarder D moves

away, then the forwarder C can not send the ASSM Join and reports a link failure.

This link failure is propagated back to Receiver R1 as a DSR Route Error. DSR has

no way of knowing that the other routes are invalid since the error message does not

carry information about the broken link C − D and so DSR continues to keep these

routes. DSR then tries the second and third routes, both of which cause link failures.

It is only after all of the routes are exhausted, that DSR sends a new Route Request

to find a working route. Thus, maintaining multiple routes for the same destination

can lead to a higher repair latency.

5.3.3 Multicast Forwarding

Each node on the multicast tree has a parent node (null for the root of the tree) and

a set of children nodes (null for a leaf). To forward multicast packets, the node first

checks whether the packet arrived from the parent, and if not it discards the packet.

If the packet is not discarded, the node must deliver it to all of its children.

By default, multicast packets are forwarded down the tree using broadcast at

the MAC layer. However, broadcast traffic often suffers when it must compete with

traffic sent reliably by the MAC layer (e.g. using an RTS/CTS exchange). In this

case, the sender of a packet may set a field in each packet asking that forwarding be

done using an alternative method. We list some of the methods that ASSM can use

for forwarding:

1. Broadcasting [69]: Traditionally, multicast applications use UDP and broad-

casting is the preferred style of data forwarding. With broadcasting, data is

transmitted with no reliability and some of the children may not receive the

data.
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2. Reliable Broadcasting (Broadcast Medium Window, BMW [70]): Reliable

broadcasting can be used to guarantee that all neighbors receive each multi-

cast packet.

3. Reliable Multicast: This is similar to reliable broadcast, but instead ensures

reliable delivery only to those neighbors that are children on the multicast tree.

Excluding the first option of broadcast, data is sent using unicast with one

or more children; for these cases, ASSM plays an important role when a link break

occurs. When the MAC layer fails to transmit a packet to a moved child, it drops

the packet and notifies the node that the link is broken. In this case, ASSM deletes

the entry for the downstream node for which data is being sent and it waits for the

receiver to rejoin the tree.

5.3.4 Additional Sources

Besides the group-owner, ASSM can also support additional sources. These additional

sources can use several different methods to send data to the same multicast group:

• relaying: A source can relay data through the group owner by sending it to the

owner via unicast. When the group owner receives the data, it multicasts it over

the tree. The primary disadvantage of this method is that it adds additional

delay. This method can also be inefficient, since some routers may handle the

same data twice – once when sending it to the root as a unicast packet, and

again when forwarding it as a multicast packet.

• source-specific groups: A new source can send a unicast message to the group

owner, informing it of its identity. The group owner then relays a multicast

message to the group, informing them of the presence of the new source. Finally,

the group members join a separate multicast tree rooted at the new source. This
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method avoids the delay incurred by relaying all data through the group owner,

but adds additional unicast and multicast routing overhead.

• shared tree: A new source can send data using the same tree as the group owner,

provided multicast forwarding is done using a shared tree. For a shared tree,

the parent and child nodes are treated equally when forwarding packets – a

packet may arrive from any of these nodes and is then forwarded to the rest of

them. Using Figure 5.1 as an example, R1 could send a packet to the group

using this same tree, by having its parent accept the packet and send it further

up the tree.

To implement multicast using a shared tree, every node must cache data pack-

ets to prevent forwarding loops. Imagine node A sends a packet to child node B,

which forwards it to child C. In a wireless network, when node B forwards the packet,

A will also receive it. In a directional tree, A will discard the packet, since it did not

arrive from its parent in the tree. However, in a shared tree, this may be a new packet

that B is forwarding on behalf of a downstream source. Node A needs to be able to

distinguish between new packets and packets it has already sent. A small cache of

packets a node has already forwarded solves this problem.

5.4 Simulation Methodology

We have implemented ASSM in both GloMoSim and ns-2 [50, 71]. GloMoSim is

shipped with AODV and DSR. However, we also implemented additional optimiza-

tions for DSR, which are mentioned in its IETF draft, but were not implemented in

GloMoSim [72]. Unless specified otherwise, the data rate used for our simulations is

11 Mbps.

When evaluating ASSM, we set the Tjoin to 1 second and the Trefresh to 500

milli-seconds. We use CBR as the traffic and UDP as the transport protocol. Unless
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specified otherwise, we send four 64 Bytes packets per second. For comparison, we use

ADMR and ODMRP as two multicast routing protocols [8, 10]. Also, unless specified

otherwise, each of the simulations are run for 5 random seeds and we present the

average results from these runs.

Our evaluation uses four sets of simulations. The first set of simulations uses

controlled mobility, where one of the nodes of the multicast tree is mobile. The second

set of simulations tests ASSM using specific scenarios of varying group members and

varying number of groups. In the third set of simulations, we subject ASSM to generic

tests of high mobility, high density, and high traffic. In the last set of simulations, we

examine the effects of additional sources joining an existing group.

Performance Metrics

We use several metrics to evaluate the performance of ASSM along with ADMR and

ODMRP. For the controlled mobility simulations, we use three metrics to evaluate

the repair response and the amount of overhead incurred during the process.

• Repair Overhead: The number of control packets originated or forwarded in the

network to repair the broken link. For ASSM, we count packets that are either

triggered by ASSM or are sent by the unicast protocol on behalf of ASSM. Since

some amount of lingering control data can still be present in the network even

after the repair is complete, we consider a fixed time interval (of 3 seconds)

after the node moves and count all the overhead during this fixed time interval

as overhead.

• Repair Latency: The time difference between when a node moves away, breaking

the link, and when the affected receiver begins to receive packets again. We

move the target nodes at a fast speed, so this accurately reflects the time it takes

to repair the link. For the case of mobile receiver, we consider the time difference

when the receiver moves away and when it begins to receive data again. For the
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case of mobile source, we measure the latency for a randomly chosen receiver.

It is worth noting that repair latency depends on the convergence time of the

unicast protocol; fast convergence of the routing protocol reduces the time it

takes to repair a broken ASSM tree.

• Packet Loss: The number of packets lost during the repair period. With CBR,

packets are sent with a fixed inter-packet gap, hence packet loss is typically

proportional to repair latency.

For the remaining sets of simulations, we use the following four metrics:

• Packet Delivery Ratio: The ratio of the number of packets received to the

number of packets sent.

• Control Overhead: The ratio of the number of control messages originated or

forwarded over the combined total of data and control messages originated or

forwarded. Control overhead indicates the percentage of all messages that are

control messages.

• Transmission Overhead: The ratio of the number of data messages transmitted

(originated or forwarded) and the number of data messages received. This

metric measures the efficiency of a routing protocol; the lower the transmission

overhead, the fewer forwarders are required.

• Throughput rate: This is the number of kilobytes received per second by each

receiver.

5.5 Controlled Mobility

In this set of simulations, we move one of the nodes forming the multicast tree in a

field of size 1000m2 and study ASSM’s performance. We first move one of the receivers

and then we move the source. When we move a node, other nodes in the network
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are kept static, the goal being to understand the effects of link breaks occurring at a

receiver and a source. The data rate used for this set of simulations is 2 Mbps.

For these simulations, we vary the number of receivers for the multicast group.

As the number of receivers increases, the mobile node may move to a region where

there is an existing receiver and hence might find an existing route. Thus, increasing

the number of receivers, increases the probability of finding a route for the source.

Since ASSM uses existing routes, this simulation allows us to test if ASSM is able to

benefit from existing routes.

5.5.1 Mobile Receiver

We begin by examining the case when a receiver moves during a multicast session. We

randomly choose one of the receivers and make it move to a distant location compared

to its current position. To understand the effects better, the receiver moves at a large

speed so that it reaches the destination location in a negligible time. Other nodes

remain static in the field. We use the three metrics of repair control overhead, repair

latency, and packets lost during repair.

In Figure 5.5, we plot repair overhead for all the three protocols. ASSM per-

forms better than both ADMR and ODMRP. With ASSM, only the receivers down-

stream of a failed link need to repair their branches of the tree; this controlled repair

behavior leads to a lower overhead. It should be noted that ASSM also decreases its

repair overhead because nodes near the receiver’s new location are likely to already

have a unicast route to the source.

ODMRP has a higher overhead due to its source-based approach of multicast

forwarding state setup. It sends a periodic network-wide flood to refresh the mesh,

which causes it to have a higher overhead. For ADMR, when a receiver experiences

a link break, it sends a network-wide broadcast in the form of Multicast Solicitation

message ; this behavior is similar to what a unicast routing protocol may do. However,
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Figure 5.5: Controlled Mobility with Mobile Receiver

if the mobile receiver happens to be in the middle of the tree, which has a higher

chance when we increase the number of receivers, it can break the middle of a branch

of the multicast tree. This link break leads intermediate multicast forwarders to

trigger repair efforts – an activity that increases the overhead.

Of all the protocols, ADMR has the lowest repair latency (Figure 5.5); its fast

response is because an ADMR receiver continuously monitors incoming packets for

link breaks. If it loses a series of consecutive packets, it concludes that a link has

broken and immediately sends a Multicast Solicitation packet. ADMR demonstrates

an important design element – a smaller repair latency can be achieved when receivers

are allowed to independently monitor their connections and trigger a route repair

once the link break occurs. However, when load is high, monitoring received packets

can be deceiving, since packets can also be lost due to congestion. Hence, we need

a mechanism that would instruct ADMR not to react when the loss happens due

to congestion. To achieve lower repair-latency, ASSM could also monitor packets,

provided there is a mechanism to advise it to not react when packets are lost due to

congestion.

ASSM running with AODV performs better as compared to ASSM running

with DSR. Using DSR increases repair latency – a behavior that can be easily ex-
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plained because DSR maintains multiple routes to the same destination in the route

cache.

Among the three protocols, ODMRP has the worst repair latency. As ex-

plained in Chapter 3, repair latency for ODMRP is high because an ODMRP receiver

has to wait for the periodic Join Query to reconnect it to the mesh. The Join Query

is sent every 3.0 seconds and as shown in Figure 5.5, the repair latency has a similar

value. However, once the number of receivers increases, the latency decreases. With

more receivers, a receiver is likely to move in an area that already has a receiver and

hence a connection to the multicast mesh. This allows the mobile receiver to receive

data immediately, which reduces its repair latency.

For all the three protocols, number of packets lost follows the same pattern as

that of repair latency. As explained in the simulation methodology, we use a Constant

Bit Rate (CBR) traffic and hence the amount of packets lost is proportional to the

repair latency. We omit the graph for the sake of brevity.

5.5.2 Mobile Source

We next consider a source that moves during a multicast session. Like the previous

case of a mobile receiver, the source also moves to a random distant location compared

to its current position. Once again, to understand the effects better, the source moves

at a large speed so that it reaches the destination location in a negligible time. Lastly,

the topology is also similar to that of the previous section.

In general, for most of the protocols, overhead is slightly higher for a mobile

source than that of a mobile receiver. Figure 5.6 shows the overhead for the scenario

of a mobile source. ASSM with DSR and ODMRP both have low overhead, while

ADMR and ASSM with AODV fare poorly. For ASSM, the Join must travel till

the vicinity of source before discovering that the source has moved; when the receiver

moves, the ASSM Join needs to travel only one hop to find out that the link is broken.
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Figure 5.6: Controlled Mobility with mobile source. Varying number of Receivers
.

Upon detection of the link break, a Route Error travels back to the originator. Hence,

the Route Error also has to travel more hops as compared to the case when the

receiver is mobile, which adds to the repair overhead. The overhead for ODMRP

is fairly constant, regardless of whether the source or receiver moves, since it is a

source-initiated protocol.

Several problems affect ASSM when the source is mobile. First, both of its

underlying unicast routing protocols, AODV and DSR, face difficulties due to caching

of stale routes. When a source moves, all of its previous neighbors still believe that

they have a valid route to that source. Hence, when a Route Request is sent, the

neighbors respond by sending a Route Reply with a stale route, even though the

source has moved away! This use of stale routes further adds to the repair overhead.

Second, AODV uses an expanding ring search for propagating its Route Request.

If the source moves a large distance, the receiver may try multiple Route Requests,

leading to a higher overhead. Third, as the number of receivers increases, the repair

control overhead increases; this increase is because now due to more receivers, more

periodic ASSM Join messages are sent.

ADMR also has a high overhead. With a mobile source, intermediate nodes

fail to receive packets and trigger a route repair of their own. This consists of sending
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Repair and Reconnect messages. In addition, end receivers also send Multicast Solic-

itation messages. Since these solicitation messages are sent in the form of network-

wide flood, they become expensive. Hence a mobile source leads to a remarkably high

overhead for ADMR.

However, for ADMR the overhead decreases when the number of receivers

increases. Initially when the number of receivers is low, the tree formed is small and

the source is likely to move into a region, where there is no existing multicast receiver.

As a result, receivers are more likely to send a multicast Solicitation. However when

the number of receivers becomes large, so does the multicast tree and the source

is likely to move into an area where a forwarder already exists. Since the tree is

bidirectional, receivers will keep receiving data packets even when the source moves

to a new region as long as it moves near an existing forwarder. Thus, there is no need

to send a multicast solicitation message leading to a lower overhead.

The repair latency for all protocols decreases greatly as the number of receivers

grows, since the source is more likely to move near the existing tree (Figure 5.6). The

nature of packet loss is similar to that of repair latency; hence, we omit the latency

graphs for the sake of brevity.

The combination of ASSM and DSR does not perform as well as others in

terms of repair latency – this behavior can be explained due to DSR’s use of route

cache. To improve the performance of ASSM running with DSR, we implemented

several optimizations mentioned in the DSR draft, but not previously implemented

in its GloMoSim model. We added the following three enhancements:

• Draft section: 3.1 – Using exponential back-off to send Route Requests: When

a node sends a Route Request, it waits for a specified amount (∆T ) of time

for the Route Reply. If the node does not receive the Route Reply during that

time, it re-sends the Route Request. Such subsequent requests should be sent

with a new ∆T selected with an exponential back-off.
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• Draft section: 3.4.2 – Queued Packets Destined over a Broken Link: When a

link break happens, the node should also check its IP queue and remove all the

packets that use the broken link. This deletion ensures that the MAC layer

does not keep forwarding packets for a broken link time and again.

• Draft section: 8.2.5 – Preventing Route reply storms: If multiple nodes have

routes for a particular destination, they set a random timer, and only the node

for which timer expires sends a reply. Other nodes can reply only if they have

a better route (with shorter hops) for that destination.

In addition, we also implemented a novel Route Request aggregation opti-

mization for DSR. After a node forwards a Route Request, if it hears another Route

Request for the same destination from other nodes, it buffers the new Route Request.

Upon receiving a route reply, it sends a route reply back to all the buffered route re-

quests. This way, unnecessary forwarding of route requests for the same destination

is reduced and response are aggregated.

These optimizations lead to a significant savings in both overhead and latency.

Broadly, these enhancements reduce the number of packets being sent and hence the

contention in the network. Reducing the number of unnecessary request and reply

packets being sent on broken links reduces contention in the network leading to lower

delay for data packets. All of the above three enhancements were helpful in improving

the performance. As shown in Figures 5.6, with these added optimizations, DSR was

able to perform much better.

Suggested Optimizations for DSR

Nevertheless, we also implemented two additional optimizations suggested in the DSR

draft and found that they did not improve DSR’s performance. These include:

• Draft section: 3.4.1 – Packet Salvaging: When an intermediate node finds that

a link is broken to the destination node, it attempts to salvage the packet by
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finding a new route from its own routing table. At first guess, salvaging makes

intermediate nodes retry other stale routes in the vicinity of S and quickly

invalidate them. This could lead to a faster invalidation of the routes than

the receiver selecting routes one by one and deleting them. This improvement

would occur because an intermediate node is in the vicinity of S and hence a

unicast packet would have to travel fewer hops to reach the broken link.

However, this does not work. We use Figure 5.7 to illustrate the failure. Let us

assume that Receiver R has three routes: Route1, {R, A, B, C, D, S}, Route2,

{R, A, B, C, D, J, S} and Route3, {R, A, B, E, G, H, I, S}. It starts by using

Route1. Since S has moved away, forwarder D finds out that the link DS is

broken. It then tries to salvage packet by using route {D, J, S}. However, when

salvaging it replaces the original route, Route1 in the source header by the new

route {D, J, S}. Hence when J triggers a route error, it deletes its link to S

and the error is unicasted back to D and not to R! Thus, replacement of the

source route during salvaging limits the proliferation of the information about

a broken link and does not let the original receiver, R, know about other routes

being invalid as well.

Furthermore, when R selects the next route, Route2 and sends data, J attempts

to forward data to S, even though it has recently deleted its link JS. The reason

for this behavior is that all intermediate nodes simply follow the source route

specified in the packet and they do not store any recent link breaks. Hence, even

with packet salvaging, the amount of time required to exhaust invalid routes

remains the same.

• Draft section: 3.4.4 – Increased Spreading of Route Error Messages: The draft

suggests that Route Error messages can be piggybacked on a Route Request

to spread information about a recent link break and thus stale routing can be

potentially reduced. However, this is not completely true. If R uses Route3,
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Figure 5.7: Routing in DSR

then the Route Error would carry information only for the broken link IS. All

the recent link break information for broken links, DS, JS, and FS is not

piggybacked with the route request. Nodes like K, and L could still believe that

they have a route to S. Thus, piggybacking does not completely eliminate this

stale information.

5.6 Localized Groups

In this section we use a scenario of localized groups to demonstrate the efficiency of

ASSM. For this, we place several one-hop groups in a field such that members of each

group are within one hop of the source. In real-life deployments, a group could be

visiting an exhibition in a museum and receiving a multicast describing the exhibit;

in this case, most of the receivers would be in the close vicinity of the source. In our

simulation, each multicast group has 3 members. There are 100 static nodes kept

in an area of 1000m2. During the simulation, we vary the number of these one-hop

groups. During the simulation, we create traffic by sending ten 4 kilobyte packets per

second. Lastly, we run ASSM with optimized DSR.

The purpose of this scenario is to demonstrate that for communication hap-

pening in closely placed groups, traditional multicast protocols that use network-wide
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Figure 5.8: Controlled Mobility with varying one-hop Groups

messages can degrade performance. For example, ODMRP sends a periodic network-

wide Join Query broadcast; nodes belonging to every group hear Join Queries being

sent for all the other groups in the field. Clearly, there is no need for such a network-

wide broadcast in this scenario. However, ASSM does not need to use a network-wide

broadcast for its periodic route refresh; it simply uses the unicast route to send a one-

hop control packet to refresh the forwarding state.

Figure 5.8 shows the control overhead and packet delivery ratio. ASSM has

low overhead and high packet delivery ratio. ASSM sends the first request as a one

hop broadcast and merely with this first broadcast, it is able to locate the source.

AODV, which uses an expanding ring search for sending out Route Requests, is able

to have the same benefit. Furthermore, periodic ASSM Joins are sent via the unicast

routing protocol, which simply forwards it within one hop. As compared to ASSM,

ODMRP does poorly because of two reasons. First, it uses flooding to propagate its

Join Query, which consumes valuable bandwidth. Second, unlike ASSM, it uses a

mesh to forward data packets and thus consumes additional resources to forward a

packet.

With respect to the packet delivery ratio, ADMR’s performance is the worst

among all the three protocols in this scenario. As described in Chapter 3, this per-
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formance degradation is caused due to ADMR’s excessive control mechanisms. As

stated in the earlier chapter, when ADMR looses a packet due to congestion, it falsely

interprets the loss as a link break due to mobility, even though none of the nodes are

mobile. Due to this incorrect interpretation, ADMR unnecessarily triggers expensive

route repair mechanisms. These repairs add to the overhead and we see a sharp de-

crease in the observed packet delivery ratio. ODMRP has a lower packet delivery

ratio due to use of mesh.

5.7 Co-located Groups

In this section we use a scenario of co-located groups to demonstrate ASSM’s use of

SSM semantics and unicast routing. For this, we test the three multicast protocols

by increasing the number of groups located at the same source. Unlike the previous

section, these group-members are not localized and hence could be several hops away

from the source. Further, the members of these groups are not identical, however,

they all receive multicast data from the same source. In real-life deployments, a

source could be providing different multicast streams for different movies; each movie

being viewed by a different set of receivers. For this simulation, we place 100 static

nodes in an area of 1000m2. During the simulation, we vary the number of groups.

For each group, both members and group owners are chosen randomly. During the

simulation, we also create traffic by sending ten 4 kilobyte packets per second. Lastly,

we run ASSM with optimized DSR.

The purpose of this scenario is to demonstrate that when there are multiple

co-located groups, traditional multicast protocols will send control messages targeted

to the same source over and again. This redundancy occurs because these multicast

protocols do not distinguish the fact that all the groups are located at the same

physical device.
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Figure 5.9: Control Overhead with Co-located Groups

As shown in Figure 5.9, ASSM outperforms both ADMR and ODMRP in

terms of overhead. Because ASSM uses SSM semantics, it has the ability to use

the same route for different groups since the source of the group is the same node.

If one receiver searches for a route to the source, then the unicast routing protocols

simply caches the route for all the nodes in that neighborhood. If there are additional

receivers in the neighborhood, then they do not need to do any additional flooding

for finding the source.

However, this is not the case for both ODMRP and ADMR since they both

do group-specific network flooding. By design, an ODMRP source uses flooding to

search for receivers. Even though the source is the same for all the groups, the

source still needs to do flooding for each group, since this allows receivers for each

group to receive the query and respond. Thus, for ODMRP, unless the source sends

information about all the groups in one single Join Query, there is no way to reduce

this overhead.

Likewise, ADMR creates separate trees for all the groups and the source sends

a receiver-discovery broadcast. Once again, even if the source is the same, it still

needs to do a network-wide flood for each group, leading to no savings.
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5.8 Evaluation with high mobility, high density, and high

traffic

In Chapter 3, we find that it is important to test a new multicast protocol with

scenarios of high mobility, high density, and high traffic. Multicast protocols can

suffer from excessive repair and during congestion, this behavior can lead to congestion

collapse. Therefore, having explored several facets of ASSM, we next conduct a set of

simple generic tests for ASSM, where we subject ASSM to conditions of high mobility,

high density and high traffic. The purpose of these tests is primarily to confirm that

the performance of ASSM does not degrade during these scenarios. In this section,

we run ASSM on top of AODV.

5.8.1 High mobility

We begin by testing ASSM with high mobility. The simulation methodology is same

as that of Chapter 3. We place 50 nodes in a field of area 1000m2. There are three

groups, each with 1 sender and 7 receivers. We use only one mobility model, random

waypoint, since our purpose is to ensure that ASSM does not fail at high speeds. The

random waypoint model uses a pause time of 30 seconds.

We plot the packet delivery ratio for the three protocols in Figure 5.10. ASSM

has a similar drop in its packet delivery ratio like ODMRP and a slightly higher drop

in its packet delivery ratio at higher speeds as compared to ADMR (Figure 3.4 and

3.3). This similarity with ODMRP is no coincidence! Like ODMRP, ASSM also

uses periodic refresh messages to maintain a route. While ODMRP sends a periodic

route-refresh flood and receivers reply to that flood to refresh routes, ASSM receivers

periodically send a refresh join message. This approach does introduce latency in its

repair as the disconnected receiver needs to wait for the next ASSM Join to repair

the broken route. It is due to this latency that we see a slightly higher drop in the
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Figure 5.10: Packet Delivery Ratio vs. mobility

packet delivery ratio at higher speeds. It is worth noting that ASSM can potentially

benefit from a faster approach towards repairing broken routes by monitoring received

packets.

5.8.2 High density

We now consider the scenario of high density. Once again, we use a methodology

similar to that of the Section 3.5. We place 75 nodes and vary the size of the field,

measuring the average number of neighbors for each node as the neighbor density.

We use three multicast groups, each with 1 sender and 22 receivers.

We plot the packet delivery ratio for this simulation in Figure 5.11. Both

ODMRP and ASSM perform similar. Unlike ADMR, ASSM’s performance does not

degrade with increasing density.

As explained in Section 3.5, ADMR suffers from two problems: Receiver Join

implosion and ACK implosion. ASSM avoids both of the pitfalls. With ASSM, the

source does not use any network-wide flood to discover receivers; instead the receivers

join explicitly by sending a unicast message to the source. Since ASSM solicits this

route from the unicast routing table and if the route is already available, then no

further source discovery flooding is done. Secondly, the receivers do not send any
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Figure 5.11: Variation of Packet Delivery Ratio with density
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explicit acks when they receive packets. Both of these design choices make ASSM

more efficient when handling a high density scenario.

5.8.3 High traffic

Next, we evaluate ASSM using a high traffic scenario. We use a simulation method-

ology similar to that of the Section 3.6. However, since the results for varying the

inter-packet gap and for varying the size of packets are similar, we choose to run

ASSM for the case of varying the inter-packet gap. Further, we focus only on the

average number of bytes received by each receiver.

As shown in Figure 5.12, both ASSM and ODMRP are able to deliver high

throughput. In fact, ASSM performs better than ODMRP, because ASSM avoids
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any periodic flooding unlike ODMRP, where each source must periodically flood the

network for discovering the receivers. Further, after an ASSM receiver sends its Join

message to the source, all the receiver does is wait for the source to transmit data.

Hence, except for the case of sending the ASSM Join, it is only the sender that

transmits and all other nodes merely listen to the data and forward it; this simplicity

keeps the network relatively free and hence, enables a higher throughput for ASSM.

5.9 Additional Sources

Finally, we conduct a set of simulations to examine several alternatives for handling

additional sources. For this scenario, the group has a total of 7 receivers and we keep

the number of receivers same when increasing the number of sources that transmit

to the same group. We choose these receivers randomly from a total of 50 randomly

placed static nodes. The sources generate CBR traffic and send ten 64 byte packets

every second.

We test two methods by which ASSM can handle additional sources. First,

they may use the existing tree to relay their data; they simply unicast their data

to the group owner, which then multicasts the data on the tree. Second, they may

send their information to existing receivers via the group owner; when receivers get

information about a new source, then they explicitly join the new source thereby

creating a source-specific tree for each source.

From our results, we find that when using relay method, ASSM has a higher

packet delivery ratio that when it builds new trees for each source (Figure 5.13).

This trend is not surprising because building a new tree causes additional overhead

for sending an extra Join message per source. When we plot the number of control

packets sent, we find that it is higher for the case of source-specific trees. As expected,

for ASSM, the delay incurred, when using a relay is higher (Figure 5.13). It is

interesting to note when the number of sources is small, the relay has low delay, as with
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Figure 5.13: Additional Sources

all other protocols. The probable cause for this is that with a small number of sources

relaying packets to the original source, the original source does not get overwhelmed

and is able to relay the packet on the tree with no additional delay. In this case,

setting up a tree for each source perhaps consumes enough network bandwidth to

introduce additional delay as compared to when using the relay. However, when the

number of sources becomes too large, the original source gets overwhelmed and the

delay starts to increase sharply since the original source can forward data only at a

certain limited rate.

ADMR continues to perform worst among all protocols. ADMR performs

worse as compared to ASSM with source-specific case, even though in both cases

source-specific trees are built. This behavior can be explained due to the inherent

inefficiencies present in ADMR; in fact, when the number of sources is increased

beyond four, ADMR’s performance decreases sharply both in terms of throughput

and delay. ODMRP, like the relay-variant of ASSM, uses one common mesh and

avoids a high overhead. Hence, ODMRP’s performance is similar to the relay-variant

of ASSM.
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5.10 Conclusion

In this chapter, we demonstrate that it is possible to design a scalable multicast

routing protocol for ad hoc networks without using hierarchy or an overlay. Using

SSM semantics eliminates much of the overhead previously required for joining a

multicast group. Using existing unicast routing protocols enables protocol designers

to focus on making one scalable routing protocol that can be used for both unicast

and multicast services.

We evaluate various aspects of ASSM using simulations. Our simulations

include scenarios of controlled mobility, high mobility, high density, high traffic, and

additional sources. Our results shows that localizing repair decisions at the group

members enables ASSM to provide both low repair latency and low repair overhead.

Further, due to its simple design, ASSM is also able to deliver high throughput in

most of the above tests.

As a future work, we need to improve ASSM’s repair latency even further by

triggering repairs instead of using a periodic timer. A group member should be able

to measure the average inter-packet delay, and then trigger a repair if this delay grows

too large, rather than waiting for the next timer expiration. This would allow ASSM

to perform better when mobility is high. We also plan to directly compare ASSM

to multicast routing protocols that use a hierarchy or overlay to demonstrate that

multicast scales better when it builds on top of scalable unicast routing.
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Chapter 6

Mobility Detection Algorithm (MDA)

This chapter was published as “To Repair or Not to Repair: Helping Routing

Protocols to Distinguish Mobility From Congestion”, by Manoj Pandey, Roger Pack,

Lei Wang, Qiuyi Duan, and Daniel Zappala, IEEE INFOCOM MiniSymposia, May

2007, Anchorage.

In this chapter, we present the second module of our Multicast Architecture: a

Mobility Detection Algorithm, MDA, that properly detects the cause of a lost frame.

Ad hoc networks are designed for mobile scenarios; when nodes move, established

links break. These networks detect link break when they are unable to transmit frame

on an established link. However, packets might not be transmitted due to an ongo-

ing congestion as well! Hence, it is easy for protocols to mistake a congestion based

loss as a mobility based loss. However, reacting wrongly to a congestion based packet

means that a network-wide route discovery flood might be triggered, which is an inef-

ficient behavior. Thus, routing protocols can frequently remove valid routes and keep

acquiring newer routes; this mistake can lead to route oscillations leading to a lower

performance. MDA is an integral module of our multicast architecture since our ar-

chitecture consists of a multicast state setup protocol, ASSM, which is dependent upon

underlying unicast routing protocols. Without MDA, these unicast protocols can fail

to distinguish congestion based losses from mobility based losses during congestion.

One of the difficult problems facing mobile ad hoc networks is determining the

cause of frame loss and reacting properly. Most ad hoc routing protocols typically
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assume that any lost frame indicates that the destination for the frame has moved, so

all paths using that node are broken. This is a faulty assumption; it is possible that

the frame could not be delivered due to congestion, rather than mobility. Routing

protocols making this mistake suffer from significant overhead when they initiate the

repair of routes that have not been broken, resulting in decreased throughput for af-

fected applications. In this paper, we present a mobility detection algorithm, MDA,

that properly detects the cause of a lost frame. It then coordinates with the routing

protocol so that new routes are discovered only when the current route is truly bro-

ken. This approach dramatically reduces routing protocol overhead and significantly

increases application throughput. We use a simulation study to demonstrate the ef-

fectiveness of MDA in a variety of scenarios and to determine the proper setting for

MDA parameters.

6.1 Introduction

One of the difficult problems in mobile ad hoc networks involves distinguishing

whether packet loss has occurred due to mobility or congestion, and then having

the transport and routing protocols react properly. If the transport protocol assumes

all packet loss is a sign of congestion, then it may needlessly decrease its rate when

mobility causes loss. Likewise, if the routing protocol assumes all packet loss is a

sign of mobility, it may initiate an expensive route discovery or repair process when

it should instead do nothing and let the transport protocol adjust its rate.

There are two instances when packets can be lost in an ad hoc network: when

the forwarding queue at a node overflows or when transmission of a frame fails at

the MAC layer. In the first case, the loss is clearly due to congestion, so there is

no ambiguity as to the appropriate response. In the second case, however, the cause

for a failed transmission could be due to either mobility, congestion, or interference.

Loss due to mobility occurs when a node moves, so that the packet cannot possibly
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be delivered. Loss due to congestion may occur when two or more wireless nodes are

transmitting at the same time, causing collisions. Interference likewise causes loss

due to collisions, but the competing source uses a different technology in the same

spectrum, such as a microwave oven or cordless phone. In this paper we focus on

distinguishing between mobility and congestion, leaving interference for future work.

In examining this problem, we focus on the IEEE 802.11 standards, in which

the MAC layer uses CSMA/CA to attempt to avoid collisions with other nodes. Prior

to transmitting, each node uses an RTS/CTS exchange to obtain the medium, and

then uses a DATA/ACK exchange to ensure reception of a transmission [73]. If

either the RTS/CTS or DATA/ACK exchange is unsuccessful, it retries the entire

transmission up to 7 times for smaller packets or 4 times for larger packets, doubling

the time between transmissions for each retry. If the frame cannot be delivered, it

notifies the network layer that the link has failed. The exact cause of the dropped

frame cannot be determined by the MAC layer.

What exactly should happen when a packet is lost? If the loss is due to

mobility, then clearly the current route is broken. In this case, the routing protocol

should repair the route, and in the meantime the transport protocol should stop

transmitting. Once the route is repaired, the transport protocol may need to restart

its congestion control algorithm to determine the appropriate sending rate for the

new path.

When loss is due to congestion, the appropriate reaction depends on whether

the route is experiencing transient or persistent congestion. Many transport protocols

purposely cause transient congestion as they probe the network for available band-

width; if just a single packet is lost, the transport protocol should reduce its rate. If a

flow experiences persistent congestion, its rate will eventually decrease to a level that

the application or user considers too slow; the only remedy in this case is to find a

different path, assuming some kind of alternate path routing is available. With per-
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sistent congestion, a basic routing protocol cannot be allowed to find a new route, as

all traffic will then switch to this new route, without solving the problem. Rather, a

QoS routing protocol must be used to carefully route different flows so as to efficiently

use network bandwidth and to avoid oscillation.

In either case, whether congestion is transient or persistent, the default action

of the routing protocol should be to do nothing when packets are lost due to congestion.

With basic routing, the transport protocol will need to share available bandwidth

among the flows on the route. Even with QoS routing, the transport protocol must

be given a chance to converge before the system can determine whether an alternate

path is needed.

Most ad hoc routing protocols have a major design flaw in that they are

designed to react to all packet loss as a sign of mobility, without any regard to

congestion. Both AODV [12] and DSR [15] assume that a single dropped frame

in the MAC layer is a sign that all paths using the MAC layer destination as a

next hop have failed. AODV also has the option of broadcasting periodic HELLO

messages to inform its neighbors that it has not moved away; failure to receive a

number of HELLO messages leads the node to believe that its neighbor has moved

away. Similar behavior exists in ADMR [10], a multicast routing protocol for ad hoc

networks. ADMR assumes that the sender transmits at a constant rate and infers

that a route is broken if a number of consecutive packets are not received.

This design flaw is also present in routing protocols that use passive ACKs and

HELLO messages to determine link availability. The DSR IETF draft [72] specifies a

mechanism using passive acknowledgments; a node listens for the next hop to forward

the packet and, when overhead, concludes that the link is still active. However, if

congestion occurs, these passive ACKs are likely to get lost, causing DSR to mistak-

enly conclude that a link has failed. WRP [74] depends on HELLO messages being

exchanged between nodes, or can use an ACK of a link update message, to conclude
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that a link is still active. If WRP does not receive these messages, regardless of the

cause, it triggers a route repair process.

The costs incurred due to this design flaw are significant because finding a new

route involves flooding the network to some extent. Whenever it determines that a

route has failed, AODV drops all packets queued for that next hop and uses flooding

to try to repair the route. DSR uses any existing alternate routes, and once all paths

to the destination are invalidated it notifies the sender that the route has failed. This

in turn causes the sender to use flooding to try to find a new route. When ADMR

determines that a branch of a multicast tree has failed, an affected node or group

member uses flooding to try to find a new route to the rest of the tree.

We have observed two severe consequences of this design flaw in our work.

First, we have shown that ADMR may suffer from congestion collapse due to excessive

route discovery packets when operating in dense networks [9]. When many nodes

send route discovery messages, they cause loss due to collisions, which in turn leads

to ADMR sending more route discovery packets! The second consequence we have

observed is very long route convergence times in ADMR and DSR, even in sparsely

populated networks. When multiple nodes flood route discovery packets, this can

cause congestion, which in turn may cause the routing protocol to believe that some

discovered routes have already failed. We have observed in several simulations that

it is possible for DSR or AODV to take several minutes to stabilize under these

conditions, with many route-finding attempts occurring redundantly.

During more typical steady state conditions, the price of misinterpreting packet

loss is increased routing protocol overhead, leading to reduced application throughput.

In this paper we demonstrate that this is a significant concern, with routing overhead

consuming as much as 700 Kbps in a 2 Mbps wireless network.

To solve the loss detection problem for ad hoc routing protocols, we design a

Mobility Detection Algorithm, MDA, that uses MAC-layer statistics to distinguish
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between mobility and congestion-based losses. Using MDA can significantly reduce

routing overhead, leading to corresponding increases in throughput.

One of the advantages of MDA is that it uses a cross-layer design so that it is

completely independent of the routing protocol. We are able to use MDA to signifi-

cantly improve the performance of both AODV and DSR. Because of its independence,

MDA is easily adapted to work with any kind of link availability mechanism. We re-

port results showing that our performance improvements for AODV hold whether it

uses packet loss, HELLO messages, passive acknowledgments, or network-layer ac-

knowledgments to determine whether a route is alive.

To demonstrate the advantages of MDA, we conduct a simulation study that

examines routing protocol performance in conjunction with a congestion-controlled

transport protocol. This study is unique in that it is the first to show the impact of

routing overhead on application throughput. Prior studies of routing protocols send

constant bit rate (CBR) traffic, usually only a small number of packets per second,

and measure just the percentage of packets delivered correctly. We use ATP for a

transport protocol because it has been designed specifically to overcome some of the

shortcomings of TCP in an ad hoc wireless network [19].

Our results show that MDA successfully differentiates between packet loss

due to mobility versus loss due to congestion. As a result, the routing protocol

only rebuilds routes when the current one has truly been broken, significantly lower-

ing routing overhead. In a scenario dominated by congestion, MDA improves ATP

throughput by 50 to 100%, with similar gains for CBR flows. In a scenario dominated

by mobility, MDA properly notifies the routing protocol, with no negative impact on

application throughput. In more mixed scenarios, MDA improves ATP throughput

by 10-100%, depending on the routing protocol. We also evaluate appropriate settings

for MDA parameters and show that its behavior is very close to that of an omniscient

routing protocol.
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6.2 Mobility Detection Algorithm

MDA is based on the observation that proving a node has moved is not possible, but

it is easy to conclude that a node has not moved. Whenever the MAC layer reports

a transmission failure, instead of reporting a failed link, MDA waits for a short time.

If the destination of the lost frame transmits a packet during this time, then MDA

knows it has not moved, so the loss must be due to congestion. If MDA does not hear

a frame from the destination, then it assumes the destination has moved and notifies

the routing protocol so that it can repair the route.

The complete MDA algorithm is shown in Algorithm 6.1. The main state

MDA keeps is a global credibility value, initially set to threshold, typically 1 or 2.

MDA interprets high credibility as indicating that frame loss is due to mobility, while

low credibility (anything less than threshold) implies loss is due to congestion. The

credibility value is kept globally, rather than separately for each neighbor, because

this enhances shared learning across all neighbors. This is particularly effective for

detecting congestion-induced losses; in a wireless medium, if any frame is dropped

due to congestion then it is highly likely that subsequent lost frames are also due to

congestion.

If the MAC layer drops a frame due to transmission failure, MDA first checks

if any CTS signal was received from the destination during any transmission attempt.

If a CTS was received, then that neighbor must still be within transmission range; this

causes credibility to be immediately set to zero. Otherwise, MDA starts a credibility

observation on this suspect neighbor by starting a timer. Finally, MDA checks the

credibility value and sends a failure notification to the routing layer only if the current

credibility equals threshold.

To determine whether a node has in fact moved, MDA has the MAC layer

notify it of all frames that it overhears from any neighbor. If the timer for a node

expires before MDA observes a frame from this neighbor, then the neighbor is assumed
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Figure 6.1: Mobility Detection Algorithm

1: credibility = threshold;
2:

3:

4: if transmission failure to node X then
5: if received CTS from X during attempt then
6: credibility = 0;
7: else
8: mdaT imer.set(t, X);
9: if credibility == threshold then

10: notify routing protocol node X has moved;
11: end if
12: end if
13: end if
14:

15: if mdaTimer for node Y expires then
16: credibility = min(threshold, credibility++);
17: end if
18:

19:

20: if hear from any node Z then
21: if mdaTimer.isset(Z) then
22: mdaTimer.cancel(Z);
23: credibility = 0;
24: end if
25: end if
26:

to have moved, and credibility is increased. If MDA hears from a neighbor with an

outstanding timer, then it sets the credibility to zero cancels the timer.

Using this algorithm, MDA has a simple decision to make each time the MAC

layer reports a dropped frame due to multiple retransmissions failing. If the credibility

is at the threshold, then MDA reports a link failure to the routing protocol. If the

credibility for the neighbor is below the threshold, then MDA assumes that the loss

is due to congestion and does not give any signal to the routing protocol.

Note that MDA’s decision is purely based on observation. Whenever a frame

is dropped, a node examines all packet transmissions for a given time interval to
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determine whether it can hear anything from that neighbor. MDA can conclusively

determine when a neighbor has not moved, if it ever hears from that neighbor. How-

ever, when MDA does not hear from a neighbor for a certain time, it infers that the

neighbor has moved, and this decision may be wrong. The neighbor may still be

within range, but may not be transmitting or there may be enough congestion that

it cannot be reached.

MDA works well in conditions of both high mobility and high congestion. If

mobility is high and congestion is low, link failures (primarily due to mobility) are

detected quickly because congestion will not have reduced the credibility value. Dur-

ing conditions of high congestion, losses will always be reported as due to congestion,

even though a node may have moved. This is acceptable because the transport pro-

tocol should lower its sending rate first, to prevent congestion collapse. It will then

be easier for MDA to determine which nodes have moved during this period, and

the routing protocol can react to route changes when the network is not as heavily

congested.

The performance of MDA depends on the setting of two parameters – the

threshold and the duration of the timer. If the threshold is set too high, MDA will

not react quickly enough to mobility based losses. However, a very small threshold

may cause misinterpreted losses, and hence incorrect repair responses. The timer

value should be set fairly high for two reasons. First, if congestion is low, a node

may simply be sending at a slow rate. Second, during congestion it will be difficult

to hear from a node to determine whether it has moved. However, a very large timer

will make it difficult for MDA to react quickly to route failures, since the worst-case

reaction time is equivalent to the threshold times the timer value. We evaluate a wide

range of timer settings in our simulations to determine the appropriate value.
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6.3 Simulation Methodology

Our main objective in evaluating MDA is to determine how much it can reduce routing

overhead and increase application throughput. To properly evaluate throughput, we

use ATP, a transport protocol with a congestion control algorithm designed especially

for ad hoc wireless networks. Because ATP is new and still has some flaws, this has

the effect of limiting the throughput gains that MDA can achieve. However, ATP

is the best available choice at this time. Future transport protocols may take better

advantage of the limited available bandwidth in wireless networks, and in this case

MDA’s performance enhancements should be even greater.

In our simulations, we use the ns2 simulator [71], version 2.28. For routing pro-

tocols we use the default implementations for DSR (with minor, bug-fixing changes)

and AODV. Because no version of ATP was available, we implemented ATP in ns2

based on the original publication [19]. In our experiments all nodes communicate us-

ing IEEE 802.11 at the MAC layer, with a 250m radio range, free-space radio signal

propagation, and a maximum data rate of 2 Mbps. We run each simulation for 600

seconds and take the average of 5 experiments for each data point.

Unless otherwise specified, MDA uses a credibility timer of 1 second. Most

simulations use a threshold of 1 or 2, though in one case we use a threshold as high

as 10.

In our simulations we collect the following metrics:

• Route Failures: The total number of route failures reported during the sim-

ulation. MDA should reduce the number of route failures since it suppresses

sending notifications of congestion-induced packet loss to the routing protocol.

• Routing Overhead: All control messages originated or forwarded by any node,

converted to Kbps. In most cases we report total routing overhead, summed

over the entire simulation. We also use instantaneous overhead, calculated with
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Figure 6.2: Topology for Congestion Scenario

an Exponentially Weighted Moving Average that is updated every second. For

DSR, control packets consist of Route Request, Route Reply, and Route

Error messages. For AODV, control packets consist of Route Request,

Route Reply, and Route Error messages.

• Throughput: For congestion-controlled flows we report the total throughput

summed over all flows in Kbps. We calculate instantaneous throughput using

an EWMA that is updated every second.

• Packets Delivered: For constant-rate flows we report the total number of

packets received per second. We calculate instantaneous packets delivered using

an EWMA that is updated every second.

6.4 Detecting Congestion-Induced Loss

To determine how well MDA detects congestion-induced loss, we simulate a scenario

that isolates congestion from mobility. Shown in Figure 6.2, this scenario consists

of a static dumbbell topology, where a group of senders and a group of receivers are

located on either side of a linear connection of five nodes. The nodes are spaced far

enough apart so that communication must occur over the shared path. We establish

50 senders on the left to transmit data to corresponding receivers on the right.

In this scenario, MDA works exactly as planned and never reports any route

failures because all packet loss is caused solely by congestion. Without MDA, DSR

reacts to as many as 2,000 route failures and AODV assumes as many as 10,000 route

failures during the 10-minute simulation. As a result, MDA dramatically reduces
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Figure 6.3: Congestion Scenario with ATP flows running over DSR

routing overhead, as shown in Figure 6.3. This in turn increases throughput for DSR

by 50%. We see similar performance improvements for AODV, with throughput gains

as high as 100%.

From these results we observe that a threshold of 1 is sufficient for MDA

to properly detect congestion-induced loss. Higher thresholds do not significantly

improve performance in this case because losses due to congestion can be reliably

detected, and it takes only one such detection to reduce credibility and suppress

notification of route failures.

To confirm that MDA provides consistent help to ATP, we plot the behavior of

one of the 50 ATP flows over time in Figure 6.4. When used with MDA, DSR’s routing

overhead falls to zero, which causes ATP’s instantaneous throughput to double and

become more smooth. We observe similar results for CBR flows using several different

transmission rates.

To illustrate that these performance improvements are not simply a product

of a special case topology, we also simulate a static network of 50 randomly-placed

nodes. This scenario again emphasizes congestion, since there is no mobility, but the

congestion is spread out over the entire network. As shown in Figure 6.5, using MDA
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Figure 6.4: Congestion Scenario with 50 ATP flows running over DSR

125



 0

 100

 200

 300

 400

 500

 10  20  30  40  50  60  70  80  90  100

R
ou

tin
g 

O
ve

rh
ea

d 
(k

bp
s)

Number of Flows

AODV: UDP flows
AODV: ATP flows

AODV with MDA: UDP flows
AODV with MDA: ATP flows

(a) Routing Overhead

 0

 50

 100

 150

 200

 10  20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t (

kb
ps

)

Number of Flows

AODV with MDA: ATP flows
AODV with MDA: UDP flows

AODV: ATP flows
AODV: UDP flows

(b) Throughput

Figure 6.5: Random Static Network with AODV flows

reduces AODV routing overhead by a factor of 10 and doubles ATP throughput.

Similar gains are achieved for CBR flows.

6.5 Detecting Mobility-Induced Loss

To determine how well MDA detects mobility-induced loss, we simulate a scenario

that emphasizes mobility over congestion. Shown in Figure 6.6, this scenario consists

of a pair of a source and a destination; the pair move synchronously so that they

periodically use a different route. The topology also consists of four parallel routes,

Route1-Route4, each with four hops. The nodes are spaced far enough apart so that
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Figure 6.6: Topology for Mobility Scenario

communication must occur over these routes and so that the routes are completely iso-

lated from each other. For experiments with this scenario, the source and destination

cycle through each of the available routes every 50 seconds, starting at Route1 and

moving through Route4 and back. In order to avoid congestion, the source transmits

at a very low rate of 4 packets per second, with a packet size of 64 bytes.

The goal of this scenario is to ensure that MDA does not adversely affect

throughput by preventing the routing protocol from reacting to route failures. As

shown in Figure 6.7(a), MDA is able to maintain high throughput for ATP, as long

as the threshold is low. With a threshold of 1, MDA ensures that ATP gets the same

throughput as without MDA (not shown). Results are similar for thresholds of 2 and

3. With a threshold of 10, however, MDA takes too long to identify mobility-induced

losses.

The poor throughput with a threshold of 10 occurs because ATP tries to

aggressively use all available throughput, causing congestion-based packet loss. MDA

detects this loss and reduces the credibility to zero. The higher the threshold, the

longer it takes for MDA to increase the credibility back to the point where it will begin

notifying the routing protocol of a route failure. ATP throughput drops severely each

time the route changes (every 50 seconds) because it takes it takes at least 10 seconds

(1 second for each credibility level) to notify the routing protocol of the route failure.

The ability of MDA to properly detect mobility-based losses is better illus-

trated with a constant-rate flow sending at a low rate. Figure 6.7(b) shows the packet

delivery ratio for a CBR flow sending 4 64-byte packets per second. The throughput
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Figure 6.7: Mobility Scenario with ATP or CBR flow running over DSR
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is exactly the same, regardless of whether MDA is used or not, and regardless of the

MDA threshold setting. Because the flow never causes congestion, MDA correctly in-

terprets all packet loss as mobility-induced. Whenever the MAC layer loses a frame,

MDA does not hear from the destination node within the allotted time interval, so

credibility is never reduced below the threshold. This clearly illustrates that MDA

does not interfere with the routing protocol’s ability to react to route failures and

discover a new route.

6.6 Differentiating Between Congestion and Mobility

To test MDA more completely, and to test its ability to differentiate between con-

gestion and mobility, we generate a random topology of 100 nodes in a square field

of (1000m)2. We then vary both mobility (speeds from 0 to 30 m/s) and congestion

(number of senders from 0 to 100). Our results that isolate mobility and congestion

confirm those of our previous two scenarios, so we omit them. Here we report results

for the general case where all nodes move using the random Waypoint mobility model,

with a speed of 20 m/s and a pause time of 10 seconds. We then vary the number

of ATP or CBR flows from 0 to 50. CBR flows send 10 packets per second with a

packet size of 64 bytes.

Because this scenario includes both congestion and mobility, we introduce

a new metric, correct route failure decisions. To calculate this metric, we use an

omniscient version of MDA that is aware of the location of all nodes at every instant.

The omniscient protocol can determine, for each packet loss, whether the destination

node is in range of the source node, and thus accurately ascribe the loss to either

mobility or congestion. We then report the percentage of correct decisions made by

the standard version of MDA.

Figures 6.8 and 6.9 show that MDA again provides performance improvements

for both DSR and AODV. Although MDA makes correct route failure decisions only
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about 60% of the time, it still reduces routing overhead and improves throughput to

levels that are nearly as good as the omniscient version. Throughput gains are more

modest when mobility is the dominant factor, since the routing protocol is doing the

right thing even without MDA. Improvements are more evident at higher loads, with

throughput gains as high as 300%.

MDA’s incorrect route failure decisions stem from how it handles loss due to

mobility. When nodes are mobile, there will be many times when MDA’s credibility

metric is at the threshold, in order to react to mobility properly. At these times, MDA

will make a mistake on the first frame that is lost due to congestion and assume it

is instead due to mobility. The higher MDA’s threshold, the better it will properly

categorize congestion losses, but the longer it will take to recognize mobility. Likewise,

there will be times when MDA’s credibility is low due to congestion, causing it to

make a mistake on packets lost due to mobility. As shown in these results, MDA’s

imperfection does not have a significant impact on system performance.

We achieve similar results for constant-rate flows in the random scenario. As

congestion increases in the network, both DSR and AODV make correct route failure

decisions only about 5 to 20% of the time. MDA makes the correct decision about

60% of the time. This significantly decreases routing overhead, but provides only

a small gain in the packet delivery ratio. This is because a flow that is not using

congestion control can artificially increase its packet delivery ratio by sending as fast

as it can, while ignoring packet loss.

6.7 MDA Timer Setting

To determine the appropriate setting for MDA’s timer, we repeated the random

scenario with a range of timer settings. Figure 6.10 shows the routing overhead and

throughput for 50 ATP flows in the random scenario, but with no mobility. For timer

values below 1 second, MDA is not able to hear from the destination node in time,
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Figure 6.8: Random Scenario with ATP flows over DSR
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Figure 6.9: Random Scenario with ATP flows over AODV
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Figure 6.10: Static Random Scenario with ATP flows

so it frequently and incorrectly notifies the routing protocol of a route failure. This

substantially routing overhead, particularly for AODV, and correspondingly reduces

throughput. Both the routing overhead and the throughput level off for timer values

larger than 1 second.

Figure 6.11 shows similar results for 50 ATP flows in the random scenario,

where all nodes move as before with a speed of 20 m/s and a pause time of 10 seconds.

The difference with this data is that, because the nodes are mobile, high MDA timers

continue to reduce routing overhead and improve throughput. The problem here is

that a high timer value prevents the routing protocol from reacting to legitimate
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Figure 6.11: Mobile Random Scenario with ATP flows

route failures, which of course reduces routing overhead. This also increases overall

throughput because fewer flows are competing for the available bandwidth.

These results indicate that our timer setting of 1 second works well. If de-

sired, a shorter timer of 1

3
or 1

2
second could reduce the latency required to react

to route changes, while sacrificing some of the improvement in routing overhead and

throughput.
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6.8 Cross-Layer Architecture

To demonstrate the utility of MDA as part of a cross-layer architecture, we imple-

mented several additional route failure detection mechanisms for AODV in ns2. The

mechanisms we use include HELLO messages, passive acknowledgments, and explicit

network-layer acknowledgments. We then repeated our above experiments with each

of these mechanisms. While some mechanisms, such as HELLO messages, lead to

substantially longer latency in detecting a failed route, in most cases MDA was able

to reduce routing overhead and increase throughput, as in our previous results. To

avoid repetition, we do not include the detailed results here.

6.9 Related Work

One alternative to MDA is to use signal strength measurements to determine whether

a node has moved [75, 76]. In this work, a node may initiate a search for an alter-

nate path when a next hop along the current path begins to move out of range,

as determined by signal strength. One of the complications is that the mechanism

must compensate for variations in signal strength due to fading, multi-path effects,

or power conservation mechanisms. This approach is shown to significantly decrease

the number of broken paths and to improve packet latency for TCP.

While our work focuses on routing protocols, there has also been a great deal of

work on helping transport protocols react properly to lost frames. Most of the work in

this area takes an end-to-end approach to solving this problem and does not interact

directly with the MAC layer at each node. For example, ATP [19] ignores dropped

frames as a sign of congestion, and the sender instead collects explicit rate information

from each node along its path to the destination. One enhancement of TCP [18] uses

out of order packets detected by the receiver as a sign of a route change caused by

mobility, allowing TCP to respond differently to these losses. TCP Casablanca [77]
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assigns priorities to packets, and assumes that lower priority packets are dropped first.

A receiver can then use the dropping pattern that it observes to determine when loss

is due to congestion and when it is due to mobility. Cen et al. explore a range of

end-to-end mechanisms for distinguishing congestion from other types of packet loss

[78]. As an exception to this approach, TCP-ELFN [79, 80] interacts directly with

the routing protocol. When TCP-ELFN receives a route failure notification from the

routing protocol, it freezes its congestion window and its state and then restarts once

a new route has been installed.

6.10 Conclusion

In this paper we have demonstrated the benefits of using a cross-layer Mobility De-

tection Algorithm to determine whether a lost frame in a wireless network is due to

mobility or congestion. By determining when a lost frame is truly a sign of a route

failure, MDA significantly reduces routing overhead and can increase throughput by

10 to 100%, depending on the routing protocol and the mobility scenario. MDA

can be used with any mobile ad hoc routing protocol, even those that use passive

acknowledgments or HELLO messages to maintain routes.

We plan to work in several additional related areas. First, we plan to test

MDA with other congestion control algorithms. Many of our results show a dramatic

decrease in routing overhead, with significant but more modest gains in throughput.

It is possible that a different congestion control algorithm may be able to take better

advantage of the reduce routing overhead afforded by MDA. Second, MDA currently

considers only mobility and congestion as sources of loss. Frames may also be lost

due to interference from other technologies such as Bluetooth, microwave ovens, and

cordless phones. A complete architecture should also detect interference from these

sources and use alternative frequencies or other methods to avoid the interference

when possible.
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Chapter 7

Hop-by-Hop Congestion Protocol (HCP)

This chapter is an extended version of the paper published as “Hop-by-Hop

Multicast Transport for Mobile Ad Hoc Wireless Networks”, by Manoj Pandey and

Daniel Zappala, The Fifth IEEE International Conference on Mobile Ad Hoc and

Sensor Systems (MASS), 2008, Atlanta.

Multicast transport is a challenging problem because the source must provide

congestion control and reliability for a tree, rather than a single path. This problem

is made even more difficult in mobile ad hoc networks due to problems caused by

contention, spatial reuse, and mobility. To address these problems, we design a hop-

by-hop multicast protocol, Hop-by-Hop Congestion Protocol or HCP, which pushes

transport functionality into the core of the network. Although this approach requires

per-flow state, a hop-by-hop approach simplifies congestion control, enables local

recovery of lost packets, and provides an efficient use of wireless capacity. We use a

simulation study to demonstrate the effectiveness of this approach and compare its

efficiency to application-layer multicast.

7.1 Introduction

In this chapter we consider the problem of multicast transport across mobile ad hoc

wireless networks. It is well known that it is difficult to provide unicast transport

over multiple wireless hops, due to contention, spatial reuse, mobility, and other
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challenges of wireless networks [81, 82]. Multicast transport is further complicated

because a source must provide reliability and congestion control over a multicast tree,

and different branches of the tree may lose different packets and may have different

available bandwidths over time. Of primary concern with multicast is scalability –

it is infeasible for a source to track state and receive feedback from all of the group

members simultaneously.

Current approaches for solving this problem mirror the solutions tried on the

Internet: (1) an end-to-end multicast transport layer built on top of an unreliable,

network-layer multicast service [24, 83], and (2) an application-layer multicast overlay

built using unicast transport connections between participating hosts [4, 84].

With a multicast transport layer, packets are sent to group members unreliably

using a multicast routing protocol that operates at the network layer [10, 8]. The

transport protocol then uses feedback from receivers in the form of ACKs or NACKs

to regulate the source’s sending rate and to provide end-to-end reliability [2, 85, 3].

The benefit of this approach is that network layer multicast is very efficient, since a

tree can be built that minimizes hop count or power consumption. The downside is

that it is very difficult to provide an efficient and scalable transport protocol that can

manage the differing loss rates and congestion on the tree.

Application-layer multicast avoids some of the complexities of multicast trans-

port by building an overlay using TCP (or other unicast transport protocol) connec-

tions [62, 64, 86, 66, 65, 63]. The advantage of this approach is that reliability and

congestion control only needs to be provided between pairs of hosts, rather than for

a whole tree at once. However, the distribution tree usually imposes greater delay

(called stretch) and higher bandwidth usage (called stress) as compared to a tree built

at the network layer [4]. Because capacity and power are constrained in an ad hoc

network, inefficiencies due to both stress and stretch should be avoided.
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In this chapter, we take a different approach by designing a hop-by-hop mul-

ticast transport protocol. Rather than pushing multicast transport to the edges of

the network, where it becomes either complex or inefficient, we push transport func-

tionality into the network. With hop-by-hop multicast transport, every node in the

multicast tree performs both congestion control and reliability. Whenever a node on

the tree forwards a packet, it uses credit-based congestion control to ensure that it

does not overflow the packet queues of its children. In addition, each node on the

tree caches packets for the application, and can repair losses for any group members

that are downstream.

The hop-by-hop approach has been previously studied for providing unicast

transport on both the Internet and ad hoc networks [87, 6]. The end-to-end approach

has long been preferred for transport protocols because it simplifies the core of the

network. Hop-by-hop protocols typically require per-flow state in routers [88, 89],

and this is difficult to scale to large numbers of flows. However, recent work shows

that this may be feasible in core Internet routers [90], and this should certainly be

less of a concern in ad hoc wireless networks, since they will typically have far fewer

flows to handle.

While no variant of a hop-by-hop transport protocol has been proposed for

multicasting in ad hoc wireless networks, this approach for multicasting has a lot of

promise. This chapter examines and evaluates its advantages. We begin by outlining

a few of these advantages:

• Efficient use of network bandwidth: End-to-end protocols typically send explicit

ACKs or NACKs; both RALM[2] and ReACT[3] use one of these forms of end-

to-end signaling. However, sending these packets consumes network bandwidth,

which is usually small for ad hoc networks. In hop-by-hop approach, we use

feedback from the MAC layer at each hop to determine whether a given packet

was received by the next hop and eliminate the need for sending ACKs.
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• Local Recovery via buffering: The ability of HCP to use buffering at each in-

termediate node, allows for a faster local recovery. When receivers request

retransmission, they forward the request towards the source. On the way, each

intermediate node examines this message; if an intermediate node has the re-

quested packets in their buffer, then they retransmit it to the receiver. Thus

the source does not need to retransmit every lost packet, which leads to lower

load on the network.

• Faster response time: A hop-by-hop approach is attractive because it provides

faster response to congestion than that of an end-to-end transport. This method

reacts more quickly to congestion since all decisions are made locally at each

hop. The primary goal of each node is to avoid sending extra data that the

next node cannot buffer; this regulation greatly simplifies the design of the

congestion control algorithm.

• Exploiting receiver heterogeneity: Most of the existing multicast protocols fail

to address an important requirement – different receivers can have different

available bandwidths; these existing protocols often select a rate suitable for

the lowest bandwidth receiver [2, 3, 27], and others group receivers into rate

sub-trees [28]. A hop-by-hop approach is uniquely able to send data at different

rates to different receivers since it uses buffering to enable receivers to obtain

different rates for the same multicast source, rather than requiring the source to

send at the speed of the slowest receiver. If a node on the multicast tree receives

data faster than it can send it, rather than telling its parent to slow down, it

caches the packets until it can send them. The size of the cache determines how

much of a mismatch there can be between different reception rates. If there is

a large difference between the incoming rate and the outgoing rate, then the

cache will eventually fill, causing the parent node to slow down.
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This behavior is very relevant for ad hoc networks, since different regions can

experience varying degrees of congestion. Varying degrees of congestion can

be caused due to varying network traffic, node density, and interference. The

assumption that all receivers have similar bandwidth and hence there should

be one global sending rate, which is usually of the low-bandwidth receiver, can

potentially be unfair to high-bandwidth receivers.

These reasons motivate us to design a Hop-by-Hop Congestion Protocol, HCP.

In addition to the above advantages, HCP is also designed to have its own unique

advantages. First, it uses a combination of hop-by-hop and end-to-end reliability;

it uses MAC layer reliability at each hop and on top of that provides end-to-end

reliability. Second, HCP uses feedback from the MAC layer to estimate the correct

sending rate. Third, HCP uses fair queuing at each hop to ensure fairness among the

flows passing through an HCP node. Lastly, HCP also integrates well with ASSM to

provide state-setup at each hop in the multicast tree and to request lost packets.

Our simulations demonstrate that HCP is effective in providing both reliabil-

ity and congestion control. HCP delivers high throughput and fairness if there are

multiple co-existing multicast groups that compete for the same bandwidth. We also

run simulations to understand the behavior of limited buffer space on the perfor-

mance of HCP; our results indicate that a buffer as small as 100 kilobytes is sufficient

for HCP. We then compare HCP to application-layer multicast using an overlay of

reliable connections. Because HCP is built on top of shortest-path routing, it is able

to provide greater efficiency and much higher throughput under varying conditions of

traffic and mobility.
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7.2 Related Work

While the hop-by-hop approach has not previously been used for multicast transport

in ad hoc networks, recent research has designed hop-by-hop congestion control algo-

rithms for unicast flows in wireless networks. One approach uses congestion pricing

to regulate the rate of flows in a mesh network [91]. Other protocols have been devel-

oped for sensor networks, using back pressure [92, 93] or rate-based congestion control

[94, 95] to control the sending rate of each sensor. The foundation of this work is

rate-based and credit-based congestion control for high speed networks [88, 89].

In ad hoc networks, several multicast transport protocols have been designed

to run on top of a best-effort multicast routing protocol. RALM [2] sends a window of

packets and selects one receiver to provide feedback. The receiver returns an ACK if

it has all of the packets, or a NACK if it is missing some. The source retransmits any

missing packets to the entire group, one-by-one, then moves on to the next window of

packets. ReACT [3] uses the same mechanism as RALM and adds local recovery, so

that a receiver can get missing packets from any other receiver on the path between

itself and the source. It also tries to distinguish between contention and congestion

losses so that the the source only slows down due to congestion. In CALM [85]

a source sends at an application-specified rate, and receivers send a NACK if they

miss a certain number of consecutive packets. Upon receiving a NACK, the source

retransmits a missing packet and asks a targeted receiver to reply with an ACK. It

then moves on to the next receiver until all have responded with an ACK, then reverts

to the initial rate. All of these protocols slow down severely when congestion occurs,

by limiting the rate of the source to one packet at a time.

In contrast to this approach, a number of protocols use application-layer pro-

tocols to provide multicast transport, by building an overlay of unicast transport

connections. ALMA uses receiver-oriented methods to build a tree of group mem-

bers, reconfiguring the tree whenever mobility or congestion occurs [64]. Additional
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mechanisms are used to prevent loops and to ensure data continuity when the tree

changes. Both AMRoute [86] and PAST-DM [62] build a mesh of connections to

connect the group members, then construct a shared tree using the mesh. Recent

work has investigated the use of the Scribe structured DHT for multicast in ad hoc

networks and makes some recommendations to improve its performance [63].

Other research has developed reliable multicast protocols that implement only

reliability, without congestion control. RMA requires every receiver to ACK every

packet sent by the source [96], which can lead to ACK implosion. An Anonymous

Gossip provides local recovery by having receivers exchange pairs of lost messages

with each other [97]. ReMHOC [98] is patterned after SRM [24]; a receiver sends

NACKs that can be answered by any other group member. Recent research makes

the case for using FEC to provide reliability for multicast in wireless mesh networks

[99].

Tang and Gerla use a combination of a reliable broadcast MAC protocol and

some modifications to ODMRP to provide multicast congestion control without reli-

ability [100]. The reliable MAC ensures that it never overflows a downstream queue

when it broadcasts a message. If queues become too large, ODMRP carries an ECN

message to the source to tell it to slow down. This scheme does not guarantee relia-

bility because the MAC protocol reverts to unreliable broadcast when contention is

high, and there is no way to retransmit packets when they are lost due to contention

or mobility.

7.3 HCP Architecture

To provide hop-by-hop multicast transport, we design HCP architecture as shown

in Figure 7.1. As packets arrive from the application layer or from a parent in the

multicast tree, they enter the core of HCP, which implements congestion control

and reliability. This component provides reliability and local recovery by keeping a
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Figure 7.1: HCP Architecture

separate buffer of packets for each flow. This component also provides congestion

control, using a module called, Scheduler, to ensure that it sends data at a correct

rate. If any packets arrive for HCP that do not have associated per-flow state, they

are discarded. Further, the Scheduler uses fair queuing [101] to determine the order

in which packets are sent from each of these per-flow buffers. This ensures fairness

among all of the multicast flows traversing this node. Fairness over wider areas is

addressed by existing research [102] and is out of scope for this paper.

7.3.1 State Setup and Forwarding

HCP interacts with ASSM in several ways; two of these interactions assist HCP in

state setup and forwarding. First, HCP uses ASSM to establish per-flow buffers and

state at each node on a multicast tree. When a multicast receiver sends a Join message

for the first time, it includes an initialization container in the Join message. As the

Join message travels upstream, ASSM contacts HCP at each hop and delivers this

container, instructing HCP to establish state for the flow if it doesn’t already exist and

also to allocate application-layer buffer. In Figure 7.2, we provide Psuedocode that

outlines the initialization process at HCP forwarders; this process creates an entry in

the Scheduler and provides APIs for buffering and reading data. When forwarders
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function initForwardingState(S, G) :1

1: /*
2: * When a new state is setup, HCP forwarder allocates a buffer, inserts a
3: * record in the Scheduler and adds the file descriptor in the entry
4: */
5: ...
6: fd = allocate(size);
7: Scheduler.addEntry(S, G, fd);
8: ...

function forwardingStateGetGroupSpecificData(S, G, data, datasize) :

1: /*
2: * Get the record in the Scheduler. From the Scheduler, get
3: * the file descriptor. Read from the file descriptor.
4: */
5: index = Scheduler.getEntry(S, G);
6: data = Scheduler[index].fd.read(start, datasize);
7: return (data);

function forwardingStateAddGroupSpecificData(S, G, data, datasize) :

1: /*
2: * Get the record in the Scheduler. From the Scheduler, get
3: * the file descriptor. Write to the file descriptor.
4: */
5: index = Scheduler.getEntry(S, G);
6: Scheduler[index].fd.write(start, datasize, data);

Figure 7.2: HCP Forwarder Node
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need to buffer a packet or send a packet for a given group, they use this entry to do

so.

The state that ASSM creates is “soft state” and it times out if HCP does not

refresh it periodically by sending Join messages. If a receiver wants to leave the tree,

it can stop refreshing the Join messages and the state on its branch eventually times

out. To leave the group more quickly, a node can send a Prune message upstream to

immediately delete the state on its branch.

The second interaction with ASSM appears in the form of forwarding packets

on the multicast tree. When a new packet arrives, HCP determines how to forward

the packet by getting the forwarding entry from ASSM. This entry contains a list

of child nodes to which it should send the packet. Usually, multicast packets are

forwarded using broadcast, but this causes multicast to suffer a high loss rate when

it must contend with TCP traffic, which uses the RTS/CTS exchange. Instead, HCP

uses a form of semi-reliable broadcast. Each time HCP forwards a packet, it chooses

one of the children and forwards it the packet using the same RTS/CTS exchange as a

unicast packet. This ensures that one child receives the packet reliably, and the other

children attempt to receive the packet through promiscuous listening. As packets are

forwarded, each child will get some packets reliably and other packets by snooping.

A fortunate consequence of using semi-reliable broadcast is that HCP can

detect when a child moves away, since the RTS/CTS exchange will fail. In this case,

HCP removes the forwarding state for that child. If this is the only child downstream

from this node, HCP leaves the rest of its state in place and instead waits for a timeout

before it deletes the state. This allows the route to be repaired without losing all the

packets in the parent node’s application-buffer.

7.3.2 Scheduling and Fairness
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function sendNextPacket() :1

1: /*
2: * If there are packets for retransmission, then decide whether the packet
3: * needs to be new data or a retransmission packet.
4: */
5: if (retransmissionBuffer.getSize() > 0) then
6: /* Returns a number between 0 and 100 */
7: randomNumber = random() ∗ 100
8:

9: if (randomNumber < CONFIG − RETX − PERCENT ) then
10: /* Send Packet from Retransmission Buffer */
11: forwardPacket(retransmissionBuffer.head());
12: retransmissionBuffer.removeHead();
13: retransmissionBuffer.size −−;
14: return;
15: end if
16: end if
17:

18: /* Forward the Packet */
19: forwardPacket(getNextNewPacketFromBuffer())
20: return;

Figure 7.3: Scheduler: Callback Function

HCP uses the Scheduler component to estimate the correct sending rate at

every hop. The Scheduler depends upon the feedback from the MAC layer to deliver

packets. The MAC layer continuously observes the IP queue-size and if the queue-size

becomes less than a given threshold size, ip-queue-threshold, then the MAC in-

vokes a callback function provided by Scheduler. This callback triggers the Scheduler

to send the next packet. However, the Scheduler delivers only one packet at a time

to prevent the IP queue from overflowing. For our implementation, we set the value

of ip-queue-threshold to 2.

Figure 7.3 provides the Pseudocode for Scheduler’s callback function

sendNextPacket(). In this Psuedocode, config-retx-percent represents the per-

centage of forwarding packets that can be retransmission packets. In our implementa-

147



function assignTokenToNextFlow(passedCounter) :1

1: /*
2: * Get the next record after the current record that has the token. Assign
3: * token to the next record.
4: */
5:

6: index = getNextEntryWithV alidF lows(Scheduler, passedCounter);
7: Scheduler[index].hasToken = TRUE;
8: return;

function getNextNewPacketFromBuffer() :

1: /* Find the entry in the Scheduler that has the token */
2: index = Scheduler.getEntryWithToken();
3:

4: if Scheduler[index].isActive then
5: assignTokenToNextF low(index);
6: return (Scheduler[index].fd.read(start, datasize));
7: else
8: /*
9: * If the flow is inactive, then assign token to the next

10: * flow and call this procedure again
11: */
12: assignTokenToNextF low(index);
13: return(getNextNewPacketFromBuffer());
14: end if
15:

16: /* Here, for the first time. It appears that no flow has the token. */
17: assignTokenToNextF low(0);
18: return(getNextNewPacketFromBuffer());

Figure 7.4: Scheduler: Fairness Algorithm
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tion, we keep this parameter to 50; thus, providing equal weightage to both first-time

packets and as well as retransmission packets.

The implementation for Scheduler’s fairness mechanism is simple. As shown in

Pseudocode 7.4, the Scheduler uses a token-based system to poll a flow for sending a

packet. When the MAC layer invokes sendNextPacket(), the Scheduler either sends

a retransmission packets or uses getNextNewPacketFromBuffer() to get packet

from the flow, which holds the token. Then it uses assignTokenToNextF low() to

handover the token to the next eligible flow. In token-assignment, we only consider

those flows that are active and have packets to send; we render a flow inactive, if its

multicast state has not been refreshed recently by ASSM Join message.

7.3.3 Reliability

For data forwarding, HCP uses a form of semi-reliable broadcast. When HCP for-

wards a packet it randomly chooses one of the children and forwards the packet to the

chosen child node using the same RTS/CTS exchange as a unicast packet. This pro-

vides MAC layer reliability for data forwarding to that node. Other children attempt

to receive the packet through promiscuous listening. As HCP forwards packets, each

child receives some packets reliably and others by snooping.

However, with a semi-reliable broadcast, it is likely that some packets will be

lost. To provide end-to-end reliability, HCP receivers monitor the sequence numbers

of incoming packets, detect sequence number gaps, and request retransmissions from

upstream nodes using NACKs. Each node on the multicast tree buffers the most

recent packets it has forwarded and can respond to these requests.

To send a NACK, a receiver creates a request container that contains a list of

the missing packets and inserts this container into an ASSM Join message (Figure 7.5).

The list of packets is a set of tuples of the form (l1, l2), where l1 is the first sequence

number and l2 is the last sequence number of the gap.
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function receiverUpdateContainerForASSMJoin(packet) :1

1: /*
2: * The receiver copies retransmission information in ASSM Join container.
3: */
4: assmHeader = getAssmHeader(packet);
5: groupOwner = assmHeader− > groupOwner;
6: groupAddress = assmHeader− > groupAddress;
7:

8: retxInfo = (retxInfo∗)getASSMJoinContainer(packet);
9: index = Scheduler.getEntry(groupOwner, groupAddress);

10: tupleList = getMissedTuples(Scheduler[index]);
11:

12: /*
13: * If there are non-zero tuples appended, then need to specify the role
14: * type field of the ASSM header
15: * /
16: if length(tupleList) > 0 then
17: updateASSMJoinContainer(retxInfo, tupleList);
18: assmHeader− > roleType =retransmission;
19: end if
20:

Figure 7.5: End-to-end Reliability: Sending ASSM Join
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function1

forwarderOrSourceHandlerAssmLayerReceivingASSMJoin(packet) :

1: /*
2: * Upstream members (forwarders and source) use this routine. The
3: * forwarder retransmits packets that it has in its application buffer;
4: * the source retransmits the remaining packets.
5: */
6: assmHeader = getAssmHeader(packet);
7: groupOwner = assmHeader− > groupOwner;
8: groupAddress = assmHeader− > groupAddress;
9: retxInfo = (retxInfo∗)getASSMJoinContainer(packet);

10: index = Scheduler.getEntry(groupOwner, groupAddress);
11: tupleList = getMissedTuples(retxInfo);
12: fd = getApplicationBufferHandler(Scheduler[index]);
13: /*
14: * Loop over all the missed sequence numbers tuples specified in the
15: * of ASSM Join container and check if we have the tuple.
16: */
17: for each tuple in tupleList do
18: if (fd.checkIfY ouHaveThisTupleInBuffer(tuple)); then
19: /*
20: * Add this tuple to the Retransmission Buffer. Then clear
21: * this tuple information from the ASSM container.
22: */
23: retransmissionBuffer.addTuple(tuple);
24: removeRetxTuple(retxInfo, tuple);
25: else if (fd.checkIfY ouHaveThisTuplePartiallyInBuffer(tuple)); then
26: /*
27: * If The Buffer has only partial sequence numbers, then create a new
28: * tuple, tupleNew, with those sequence numbers, which we do not
29: * have. From ASSM container, remove the old tuple and add
30: * the new one. Also, add tupleNew to retransmissionBuffer.
31: */
32: tupleNew = adjustRetxTupleWithPartialInfo(retxInfo, tuple);
33: retransmissionBuffer.addTuple(tupleNew);
34: removeRetxTuple(retxInfo, tuple);
35: addRetxTuple(retxInfo, tupleNew);
36: end if
37: end for
38: return

Figure 7.6: End-to-end Reliability: Processing ASSM Join
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As the Join message travels upstream, each HCP node on the tree examines

the container and determines if its application-buffer contains any of the requested

packets present in the container (Figure 7.6). If the node does have one or more

of these packets, then it schedules these packets for retransmission and removes the

appropriate tuples from the list. If there are still tuples remaining, then it signals

ASSM to continue forwarding the Join message upstream. In the worst case, the

source receives the NACK and re-sends any missing data.

When retransmitting packets, an HCP node follows several policies. First,

it always re-sends data using an RTS/CTS exchange to the child that sent it the

request. This ensures that the packet makes it at least one step closer to the receiver

that is missing the packet. Second, by setting to config-retx-percent parameter

to 50, each node gives equal priority to first-time packets and retransmission packets.

This allows receivers experiencing loss to get the retransmission, while not penalizing

receivers without loss too heavily.

7.3.4 Congestion Control

HCP uses congestion control to estimate the correct sending rate at each hop by

ensuring that an upstream node does not overflow the per-flow buffers at its children

directly downstream on the tree. Each forwarder node maintains a count of available

buffers for each of its downstream nodes for a given flow. Each time it successfully

transmits a packet for that flow, it decreases this count. It transmits only if there is

some space available with each of the downstream nodes. To communicate its avail-

able buffer space, a downstream node relies on passive feedback. When a downstream

node forwards a packet to its own downstream nodes, it includes the current buffer

space for the flow in the protocol header. When the upstream node overhears the

packet, it is able to synchronize the buffer count for that child with this amount.
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Figure 7.7: Buffer overflow avoidance scheme

Figure 7.7 illustrates the congestion control mechanism in detail. When an

upstream node (F1) snoops the packet sent by its downstream node (F2), it reads the

available buffer and updates this in its Scheduler table. Since by design, a majority of

downstream nodes in HCP use snooping to listen to data packets, snooping is already

configured with HCP. When the upstream node has data to send, it first verifies if

the downstream node (F2) has available buffer space; if the available buffer with the

downstream node is greater than a threshold, available-thresh, it forwards the

next packet. Otherwise, it waits and allows the downstream node to continue sending

more packets and make additional room in its buffer. When the upstream node

forwards a packet, it also decreases the available buffer space for its downstream nodes

in the Scheduler by 1. HCP does this because if the downstream node successfully

receives the packet, then its buffer space is reduced by 1.

For this mechanism, an important consideration is the definition of available

buffer itself. HCP’s buffer contains two types of packets: those that have been trans-

mitted at least once and those that have never been transmitted. Due to limited

space, a node may drop those packets that have been transmitted at least once since
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there is a chance they may not be needed again. However, a node should never drop

a packet it has not yet transmitted downstream. Hence, we refer to the number of

empty buffers plus the number of packets that have already been transmitted, as the

available buffer. We say that the buffer is full when it contains only those packets

that have never been transmitted.

7.4 Simulation Methodology

We use simulations to evaluate HCP and to compare it to application-layer multicast

in an ad hoc network. We have implemented all three modules of our architecture:

MDA, HCP and ASSM in ns2, and use AODV [12] for the unicast routing protocol.

Unless specified otherwise, all our simulations use a default data rate of 11 Mbps and

a packet size of 1024 bytes. In addition, the default size for HCP’s per-flow buffers

is 100 KBytes, and ASSM uses a refresh period of 1 second. Lastly, except stated

otherwise, we run all the simulations for 5 random seeds and then average the results.

To compare HCP to an application-layer overlay multicast, we build a simple

overlay protocol using ATP [19] connections to connect group members. We use ATP

rather than TCP, since ATP is designed to avoid many of the problems with unicast

transport in ad hoc networks. ATP uses a rate-based congestion control algorithm

that measures link characteristics on the forward path to set the proper rate. ATP

also aggregates ACKs into epochs to reduce the overhead of per-packet feedback.

We implement two variants of our simple overlay: optimal and random. With

an optimal overlay, we are interested in knowing the best possible performance of an

overlay; however, this requires recalculating the overlay whenever any node moves,

which is prohibitively expensive in real deployments. With a random overlay, the

expected performance is the worst case, since nodes pick neighbors randomly rather

than optimally, leading to poor performance. For real-life deployments of an overlay,

performance should lie between these two extremes.
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We build the optimal overlay in two steps. First, using the Floyd-Warshall

algorithm, we build a logical mesh that connects all nodes in the multicast group,

where the weight of each link in the mesh is equal to the shortest distance between

those two nodes in the ad hoc network [103]. Next, using the Kruskal algorithm,

we calculate a minimum spanning for the members from this mesh; the links in the

spanning tree represent an ATP connection in the overlay. Lastly, we also reconstruct

the overlay whenever a node moves, so that it maintains optimality over the lifetime

of the multicast group.

We build the random overlay by choosing random pairs of group members

and connecting them with ATP. This model is useful for two reasons. First, this

approximates an overlay that has been perturbed over time by mobility. Second, in

most of the today’s peer-to-peer overlays, member have only a partial view of the

other members of the group and so the overlay may not be optimal.

To evaluate HCP, we perform the following five sets of simulations.

• We begin by examining the unicast behavior of HCP using a multicast group

with only one source and one receiver. This allows us to compare HCP to

unicast transport protocols; we choose ATP as the unicast transport protocol.

• We next examine the multicast behavior of HCP. We study several multicast

related properties of HCP: (a) the ability to retransmit missed packets when a

given link breaks in the multicast tree, (b) the ability to estimate the correct

sending rate when network bandwidth changes, and (c) the ability to share

bandwidth fairly when multiple multicast groups co-exist.

• We then examine the impact of limited buffering available at intermediate nodes.

If nodes have larger buffers, then when a group member moves and loses a

packet, it is likely that an intermediate node will have the lost packets in its

buffer. Thus, this intermediate node can handle retransmissions instead of the

source. Even for a file transfer of 1GB, it is likely that intermediate nodes have
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enough disk space to buffer the entire file. However, for the case where nodes

have limited buffer, HCP will be unable to buffer the entire file at intermediate

nodes, and the source will have to handle some retransmissions. In this set of

simulations, we examine the trade-off between buffering and retransmissions.

• We next evaluate HCP with both variants of the overlay: optimal and random.

In this set, we provide higher traffic loads by varying both group size and the

number of groups.

• Our final set of simulations evaluates HCP along with the above two variants

of the overlay under conditions of mobility.

7.4.1 Metrics

We use a combination of several metrics along with packet and sequence traces to

examine the simulation results. Our metrics are as follows:

• Instantaneous throughput is the current throughput rate for a receiver. For

this estimation, we sum all the bytes received in a given second to calculate

the instantaneous rate for that second. We repeat this calculation every tenth

of a second. Instantaneous throughput is plotted only for one run; hence for

simulations, where we measure instantaneous throughput, we run them only for

one seed.

• Combined throughput is the total bytes received during the entire simulation by

all receivers, divided by the duration of the simulation.

• Delay is the time taken by a packet to arrive at the receiver. To understand

the behavior of the protocols better, we categorize delay into two types: (a)

delay when the packet arrives for the first time and (b) delay when the packet

arrives as a retransmission packet. For retransmission packets, delay is the time
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difference when the packet arrives after retransmission at a receiver and the

time when the packet was originally sent by the sender.

• Packet Loss: We categorize lost packets with four types: (a) mobility based

losses, (b) passive losses, when downstream nodes fail to snoop, (c) contention

losses, when the MAC layer tries the maximum number of times to transmit the

frame and then drops the frame, and (d) congestion losses, when HCP receives

a packet, but cannot keep it since its buffer is full. Unless stated otherwise, we

plot loss as percent of total packets sent in the simulation.

• Sequence Number Trace: Besides these metrics, we also use sequence number

traces. In a sequence number trace, we plot the sequence number received for

a given node vs. time.

7.5 Unicast Results

We begin our simulations by comparing HCP with ATP. ATP is a transport protocol

with a congestion control algorithm designed especially for ad hoc wireless networks.

There are several reasons that motivate us to compare HCP with ATP. First, ATP

uses a rate based congestion-control algorithm, which is different than that of HCP;

HCP uses a credit based control, where it uses the buffer available at downstream

node to limit the rate. Second, ATP uses an end-to-end feedback mechanism, sending

a periodic ACK with information about the received rate. Thus, ATP serves as a good

test for our hop-by-hop approach.

HCP is designed for multicast flows; however, as a boundary condition, any

multicast flow can be reduced to a unicast flow if it has one source and one receiver.

The advantage of using this unicast behavior is that it eliminates complexities in-

troduced when there are multiple receivers or multiples sources. We explore this

behavior in the next section.
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The objective for this set of simulations is simple: to test if HCP can deliver

better throughput than ATP and if it is fair to multiple co-existing flows. We do not

include mobility for these simulations since we want to focus on congestion. Further,

we run both HCP and ATP with MDA since this enables us to do a fair comparison.

7.5.1 Throughput for Unicast Scenario

For this test, we use a linear chain topology and vary the number of nodes in the

chain. As the number of nodes in the chain is increased, nearby nodes experience

increased collisions and increased contention. For the chain, we place 5 flows with the

source at one end of the chain and the receiver at the other end of the chain; next,

we measure the combined throughput for all these flows.

Figure 7.8 shows the output of this simulation where we plot the combined

throughput for all 5 flows. Overall, both HCP and ATP deliver similar results. As the

number of nodes in the chain increases, throughput for both ATP and HCP decreases.

This behavior has been well-studied in literature [49, 81]. When the number of nodes

in the chain increases, the degree of collision also increases. This increased rate of

collision happens because there are more nodes in the neighborhood of each forwarding

node. Hence, a node has to contend with a larger number of neighbors on each side

of the chain. Due to increased contention, the throughput decreases substantially.

However, with fewer hops, HCP performs better than ATP. This poor perfor-

mance of ATP can be explained due to its rate estimation algorithm. ATP assumes

that the network is linear and so when the receiver reports an average delay of ∆

seconds per packet, then ATP concludes that if it takes ∆ seconds for one packet to

go through, then for every 1 second epoch, it can send 1/∆ packets. This is a good

assumption when the rate is smaller, but when rate becomes higher, the assumption

about the network’s linearity does not hold. This is because at a lower rate, most

of the times the MAC layer can send data by using only one transmission. However,
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Figure 7.8: Throughput for ATP and HCP for Linear Topology Scenario

at a higher rate, the MAC layer might have to retry sending the same data several

times, before it successfully transmits it. Further, the MAC layer also backs off using

an exponential time whenever it has to retry. Hence, when ATP starts sending a

large number of data, then the initial assumption that per packet delay is ∆, does

not hold true. The ATP receiver has to wait for one full epoch to report this bad

estimation for the current epoch. After one epoch passes, the ATP receiver reports

a higher value of ∆ (meaning a lower rate); thus, ATP’s rate estimation is prone to

fluctuation.

HCP’s rate estimation is based on a simple feedback from the MAC layer;

this feedback is of the order of milli-seconds unlike ATP’s one second epochs. When-

ever local contention increases, the MAC layer stops HCP from enqueuing any new

data and thus eases the network load. When the network load reduces, the MAC

successfully sends the data and only then it allows HCP to forward its next packet.

However, when the number of chain increases in the network, contention due

to increased nodes begins to dominate over the rate-estimation algorithm. Hence,

both ATP and HCP see a reduced throughput as we increase the number of nodes in

the chain.
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7.5.2 Fairness for Unicast Scenario

In this section, we examine another integral aspect of a congestion control protocol

– fairness when there are multiple competing flows. We use two linear chain topolo-

gies, one with 3 nodes and another with 6 nodes. For both topologies, we measure

instantaneous throughput and hence, we run these simulations for only one seed. As

the size of the chain increases, network contention increases. By varying the size of

the linear chain, we are able to show fairness with varying network contention.

Three nodes chain topology

The first linear chain topology consists of 3 nodes. We start three flows at 0 seconds,

10 seconds, and 30 seconds. The main premise is that as a new flow is introduced,

the bandwidth should be shared evenly among all the flows. Further, when a flow

is terminated, the protocol should release the bandwidth for other flows, which the

protocol should redistribute fairly among remaining flows.

As shown in Figure 7.9, HCP is able to share the bandwidth smoothly when

the number of flows decreases or increases. ATP, on the other hand struggles with

fluctuations in throughput (Figure 7.10). As explained in the previous section, this

fluctuating behavior is because of ATP’s end-to-end approach for congestion control.

Six nodes chain topology

For the second linear chain topology, we place six nodes in the chain and start two

flows. Adding nodes in the chain leads to an increased degree of collisions; using a

longer chain allows us to observe the behavior of congestion control algorithm amidst

increased contention.

HCP flows are able to share the bandwidth evenly (Figure 7.11). A point of

interest in the HCP graph occurs when the throughput dips at around 30 seconds.
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Figure 7.9: Instantaneous Throughput for HCP for Small Linear Chain
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Figure 7.10: Instantaneous Throughput for ATP for Small Linear Chain
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Figure 7.11: Instantaneous Throughput for HCP for Long Linear Chain
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When we analyzed the packet trace, we found that this dip is due to a false link

break. A false link break can occur because the routing protocol considers a packet

loss as a sign of link break. However, this may not always be the case; a packet loss

can occur due to congestion. MDA avoids false link breaks. It begins by assuming

that the a packet loss is due to mobility and hence permits the first false link break

to be treated as a regular link break. However, MDA switches on its monitoring

mechanism and if it finds that the link is not broken, then it suppresses subsequent

false link breaks. This suppression is apparent from the graph as there are no other

dips in the throughput graph. On the other hand, ATP continues to see fluctuations

in its throughput (Figure 7.12).

7.6 Multicast Results

In this section, we demonstrate the multicast behavior of HCP. For this, we run two

types of simulations. First, we examine the reliability component of HCP and demon-

strate that HCP is able to retransmit lost packets. Second, we examine the congestion

control algorithm and demonstrate that when there are multiple co-existing groups,

they all share the bandwidth equally. In this set of simulations, we also show that

HCP is able to handle network bandwidth heterogeneity well – in other words, it pro-

vides different throughput to different receivers according to the available bandwidth

at these receivers. Since we are interested in measuring instantaneous throughput,

we run these simulations for only one seed.

7.6.1 Reliability

We first examine the reliability offered by HCP and demonstrate that it can retransmit

packets that are lost due to either mobility or contention. For comparison, we also

use the optimal overlay along with HCP. In this section we use the topology shown

in Figure 7.13. The network consists of one source, S, and two receivers, R1 and R2.
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Source (S)
(Address:0)

Receiver (R1)
(Address:6)

Reciever (R2)
(Address:4)

    F2
(Address:2)

     F4 
(Address:5)

    F3
(Address:3)

    F1
(Address:1)

Figure 7.13: Reliability Topology

Four other nodes act as forwarders. The multicast tree initially uses forwarders F1,

F2, and F3.

Loss Due to Mobility

We consider two cases when packets are lost due to mobility. For the first case, we

move forwarding node F2 far away, breaking the tree, and then one second later move

F4 to its previous position, repairing the tree. For the second case, we move receiver

R2 to a distant location, preventing it from receiving packets, and then move it back

to its previous location one second later. In both cases R1 is not a member of the

group; we make R1 join the group when we study loss due to contention in the next

section. Since the topology is a chain topology, all forwarding on the tree is done

with MAC-layer reliability. This allows us to isolate loss that occurs due to mobility

from the case when it occurs due to semi-reliable broadcast.

Figure 7.14 shows packet traces at R2 for the case when a forwarder in the

middle of the tree moves. Traces are shown for both HCP and for the optimal overlay.

The vertical lines on the graphs show the events when F2 moves out of range of F1

and when F4 moves into its previous location.

This trace shows that HCP prevents most packet loss because F1 stops trans-

mitting when the tree breaks and buffers the packets it has received so far. Once the

receiver rebuilds the tree, creating new forwarding state, F1 resumes transmitting

the packets from its buffer. F2 also has some packets it has buffered, but since it has
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Figure 7.14: Packet Trace When Forwarder Moves
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been partitioned from the rest of the network and is no longer on the tree, this state

eventually times out.

This trace also shows that while HCP achieves better throughput than the

optimal overlay, the overlay does recover from the link failure more quickly. The

relatively slow recovery for HCP is due to the fact that ASSM is configured to refresh

the tree every second, so a new Join is not sent immediately when the route breaks.

To fix this problem, a receiver could track the average inter-packet delay and then

trigger a new Join if this delay ever grows too large.

We see similar results for the case when the receiver moves.

Packet Loss due to Contention

We next examine packet loss due to contention by adding receiver R1 to the multicast

tree. In this scenario, all nodes ares static. Forwarder F1 now has two children and

hence it uses semi-reliable broadcast, alternating the RTS/CTS exchange between

R1 and F2. This causes loss for both receivers because promiscuous listening is not

always reliable, particularly when surrounding nodes are sending at the same time.

Figure 7.15 shows packet traces at R2 when there is loss due to contention.

For HCP, the trace shows that there is substantial loss even without mobility, because

of the reliance on promiscuous listening. A tail of retransmitted packets occurs about

once a second, when the receiver requests them using a NACK. The overlay avoids

this loss since it uses two unicast connections, rather than a tree, and always uses

MAC-layer reliability.

Despite the higher loss rate and the subsequent retransmissions, HCP is still

able to achieve higher throughput. The main reason is that the overlay is not as

efficient as the tree. Let us illustrate this using Figure 7.13. The overlay can consist

of a connection from S to R1, and then another connection from R1 to R2, so every

packet must be forwarded twice on hop F1−R1 as compared to HCP. When a packet
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Figure 7.15: Packet Traces with Contention
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arrives at F1, it forwards it to R1 on the first connection. However, R1 must then

forward it back to F1 on the second connection, and then F1 forwards it on to F2.

With HCP, the original packet transmitted by F1 is sometimes received by both R1

and F2. Even if one of them misses it, it is retransmitted at most once by F1, which

still saves one packet transmission. We revisit this behavior later in Section 7.8.

7.6.2 Congestion Control

We next examine the congestion control component of HCP and demonstrate that

it recalculates rates as conditions change, while also sharing bandwidth fairly among

competing flows. We also show that HCP can accommodate receivers with differ-

ent available bandwidths, delivering a high rate to a faster receiver, while buffering

packets for the slower receiver.

Our first scenario uses a simple chain topology, consisting of a set of four nodes.

The source sits at the one edge of the chain while the receiver sits at the oppose end

of the chain. We increase the number of flows by having the same receiver subscribe

to multiple groups, each using the same source. We use a total of 3 groups starting

at 2, 10, and 25 seconds. In this scenario, we measure instantaneous throughput and

hence we run simulations for only one seed.

As shown in Figure 7.16, HCP is able to converge quickly to a new rate, while

also sharing bandwidth equally among all groups. HCP reduces its rate appropriately

as more groups share the bandwidth, and also increases its rate as transmission for

some groups becomes complete. Though we don’t show results for the overlay in this

case, we found that it did not converge to new rates as quickly as HCP because it

uses end-to-end rate adjustment.
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Figure 7.16: Congestion Control with Multiple Multicast Groups

Heterogeneity

We next consider the case where different receivers have different available band-

widths. We use the topology shown in Figure 7.17, which consists of two chains, one

with a high data rate (11 Mbps) and one with a low data rate (1 Mbps). Since we

measure instantaneous throughput, we run these simulations for only one seed.

In ad hoc networks, bandwidth heterogeneity can occur due to mobility, fading,

and interference. HCP accommodates heterogeneity by buffering at intermediate

nodes to handle different regions with varying bandwidths. For slower links, data is

buffered and is sent at the (slow) speed of the link. Hence, the source does not need

to send to every receiver at the rate of the slowest group member.

Figure 7.18 shows the instantaneous throughput received by both receivers,

calculated over one second intervals. HCP is able to send at a higher rate for R2

while also providing a lower rate for R1. Packets are buffered on the slower path as

needed.

169



Low 
Bandwidth 
Region

High 
Bandwidth 
Region

Source (S) Receiver (R2)

Reciever (R1)

Data Rate 
= 1 Mbps

Data Rate 
= 11 Mbps
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  10  20  30  40  50  60

R
at

e 
(M

bp
s)

Time (seconds)

Receiver R1
Receiver R2

Figure 7.18: HCP: Multiple Rates in a Single Multicast Tree

170



Source (S)     F2    F1 Reciever (R)

Mobility breaks
existing links

Mobility forms
new link

Mobility trajectory

Reciever (R)

Figure 7.19: Buffer Size Topology

7.7 Limited Application Buffer

An important factor in the performance of HCP is its buffer size. In all previous

experiments, each flow is allocated a buffer of of 100 KBytes. Since mobile devices

may have buffer constraints, we explore the effectiveness of HCP as the buffer size

changes. For this section, we use the topology shown in Figure 7.19, which consists

of a chain of four nodes. We vary the buffer size at each node from 5 to 200 KBytes

and transfer a 5 GB file from the source to the receiver using 1KB-sized packets.

We first examine the effects of buffer size when there is no mobility. Figure 7.20

plots the number of packets that must be dropped by F1 due to buffer overflow. We

plot two lines – one for the case with credit-based flow control and one without. In

both cases, 50 KBytes is enough buffering to prevent packet loss. As the buffer size

grows smaller, packet loss increases, though it is extremely small compared to the total

number of packets sent for the 5 GB file. Notice that packet loss occurs even when

we use congestion control because of the unreliability of passive feedback. If a node

is unable to receive feedback concerning the amount of space available downstream,

it may send when the downstream buffer is full, causing loss.

We next examine the effects of buffer size when a receiver moves. In this

simulation, the receiver moves from its first location to the second location indicated
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Figure 7.20: HCP: Packet Loss vs. Buffer Size

in the topology. In this case, the receiver will miss some packets, then request them

when it joins the tree again. As the buffer size decreases, there is a greater chance

the lost packets will need to be requested from the source.

Figure 7.21 plots the number of lost packets that must be retransmitted by

the source for different movement speeds and buffer sizes. Two trends are evident:

more buffering is needed when the receiver moves more slowly, and larger buffer sizes

provide more local recovery.

7.8 Evaluation at High Traffic Load

In this section, we evaluate HCP during conditions of high load. We create load

conditions by varying both group size and the number of groups.

7.8.1 Varying group size

For this simulation, we vary the number of group members for one multicast group;

we keep one source and vary the number of receivers. We place 50 static nodes

randomly in a field of size 1000mX1000m. Each HCP node has a buffer of 100 KB.
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Figure 7.21: HCP: Source Retransmission versus Buffer Size

Since the overlay buffers packets in the application layer, we do not impose any buffer

limitation for nodes in the overlay.

In Figure 7.22, we plot the combined throughput for all receivers for each run

on Y-axis and the number of receivers on the X-axis. The result demonstrates that

HCP scales well when the group size becomes large. HCP provides higher throughput

than overlay because with overlay, all forwarding is done using unicast, leading to

redundant transmissions. However, with HCP each forwarder unicasts the data only

once to a randomly selected downstream node and other downstream nodes merely

snoop and listen. Thus, multiple nodes can listen to a single transmission. It is

because of this reason that even though the data rate of the medium is 11 Mbps,

HCP is able to provide a throughput as high as 14 Mbps! With a small number

of receivers, both HCP and optimal-overlay perform similarly. The reason for this

behavior is because with a small number of receivers, the network load is less and

the overlay is able to deliver packets reliably using its unicast links. It is only when

the number becomes large, that the load becomes so high that overlay’s unicast does

not scale well. As expected, with the random variant of the overlay, we find that the

throughput achieved is worst, which shows that the random variant forms inefficient
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Figure 7.22: Throughput as a function of group size

Source (S) Reciever (R2)   B  C  A

Reciever (R1)

Figure 7.23: Understanding Peer-to-peer Overlay structure

trees even when the group size is small. The actual performance of an overlay will lie

between the random and the optimal cases, depending upon how often the overlay is

re-constructed.

For the overlay, the advantage of using ATP connections among peers comes

at a cost. Since members setup connections among themselves, instead of letting the

network build an efficient tree, the overlay often leads to redundant transmissions.

We use Figure 7.23 to demonstrate this problem in more detail. This topology has

three members for a given multicast group: source S and two receivers, R1 and R2.

The optimal way of connecting all these members in an overlay is to connect S to R1

and then connect R1 to R2. The total number of hops is 3 + 3 = 6.

However, if one were to do a native multicast, where the tree is built at the

network layer, the total number of hops would be reduced. With native multicast, S

can connect to A, which in turn can connect to B. A single broadcast at B would
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ensure that both nodes R2 and C receive the packet. Lastly, C can connect to R2.

Hence, the total number of hops is 2 + 1 + 1 = 4, which is smaller than the earlier

cost of 6 hops.

To better explain the scalability of HCP, we vary group size and plot the

expected number of forwarding hops, Lm for both HCP and the overlay, as outlined

in Section 3.6. For a tree to do efficient forwarding, it should have a lower Lm.

When Lm is high, more and more intermediate nodes spend their bandwidth in data

forwarding. A protocol with lower Lm will have spare bandwidth for forwarding

additional data which can lead to higher throughout.

To determine Lm for HCP, we run a simple experiment, where we send CBR

traffic at a very low rate for one group. We count the total number of packets

forwarded and total packets sent. Lm is the ratio of packets forwarded to the packets

sent, and provides an estimate of the total number of hops in the tree. To determine

Lm for the overlay, we obtain values from the logical mesh created using Kruskal”s

Algorithm in Section 7.4. Likewise, for the random variant of overlay, once all edges

are selected, we count the total forwarding hops in the tree.
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Figure 7.25: First-time Delay vs. group size

In Figure 7.24, we plot Lm for all of these protocols, along with the minimum

and maximum values. HCP has a low Lm. This behavior is expected since it builds

an efficient tree like ADMR (Figure 3.13). On the other hand, the overlay builds trees

with a lot of stress. As expected, the random variant does worst among all the three

protocols. When we look at the corresponding throughput for all of these protocols

in (Figure 7.22), we find that it correlates well with Lm.

Next, we plot delay for first-time packets in Figure 7.25. HCP incurs higher

delay than the overlay, because of per-hop buffering. HCP packets spends more

time waiting in the buffer. On the other hand, overlays send data using rate-based

congestion control, and hence they can keep buffering requirements fairly small at

intermediate nodes. Furthermore, unlike HCP, in an overlay, it is only the peers that

buffer packets, instead of every intermediate forwarder.

However, one of the ways to improve the delay is to enhance our current

buffering mechanism. In our present design, we maintain a single buffer for both

local recovery and for keeping packets, which have not been sent yet. Our current

design allows each intermediate nodes to buffer a large number of unsent data packets.

Allowing a large number of unsent data packets means adding more to the delay. If we
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Figure 7.26: Retransmission Delay vs. group size

were to have a smaller cache for unsent data packets, then the delay can get reduced.

In addition, we can keep a large buffer for caching the sent packets, so that local

recovery can be achieved effectively. However, the trade-off with using a small cache

for unsent data packets is that it reduces the ability of an upstream node to cater

to heterogeneous children. If the upstream node has only a few packets in its unsent

data, then the fast-bandwidth downstream nodes can receive only a small number

of extra packets than that of the slow-bandwidth children – this way, the efficacy of

sending different rates to different receivers can possibly become limited. We defer

this study to a future work.

When we plot delay for retransmission packets in Figure 7.26, we find a simi-

lar trend. HCP once again incurs higher delay than overlay. Once again, the limited

buffer increases the delay even for retransmission packets. When we studied sev-

eral simulation traces, we found that besides limited buffering, two other reasons

might be at work leading to higher retransmission delay. First, due to congestion

and contention, some of the downstream intermediate nodes drop even the retrans-

mission packets. Hence, the receiver is forced to request the retransmission of the

same packet, which leads to additional delay. Second, for retransmission, if there are
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Figure 7.27: Packet Loss vs. Group Size

multiple receivers requesting for a given packet, then we send it using unicast to one

of the receivers and let others snoop it. Since snooping is not reliable, this means

that the retransmission packets can get lost and the receiver would need to request

for retransmission of the same packet. Since the receiver sends information for lost

packets once every second, when retransmission packets are dropped, it incurs delay

of the order of seconds. As a future work, we should consider the case of sending

retransmission packets reliably for all the receivers requesting a given packet.

Lastly, we plot different losses for this scenario in Figure 7.27. For HCP the

passive loss increases with an increase in the group size. Essentially an increase

in group size implies that the number of downstream nodes for a given forwarder

increases; this leads to a higher passive losses. However, since the fanout (number

of downstream nodes for a given upstream node) increases, it does not lead to a

significant increase in the contention loss. Even though the number of receivers

increases, the upstream nodes can still get away with just one unicast forwarding!

Since the passive loss can occur at each forwarder (including the sender) and with

more receivers the fan-out can become large, we find that the passive losses can equal

or exceed the total number of packets being sent. For HCP, the passive loss exceeds
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Figure 7.28: Throughput vs. Number of Groups

100% when the group size becomes large – this means that each packet is lost at least

once on the tree. This strongly motivates us to explore mechanisms, like BMW that

can provide reliable broadcasting and hence can reduce the passive loss [70]. Even

though HCP is able to outperform the overlay in terms of throughput (Figure 7.22),

reducing the passive loss can potentially provide a further increase in the throughput.

In Figure 7.27, we find that the other types of losses appear to be relatively small.

7.8.2 Varying number of groups

Next, we evaluate both HCP and the overlay by varying the number of groups. For

each group, we keep the composition of its members same: one source along with 4

receivers. The remaining simulation parameters are the same as those of the previous

section.

As compared to the previous case of varying group size, varying the number of

groups adds more stress. With more groups, data must be forwarded for each group;

in general, this increased load leads to lesser throughput for protocols (Figure 7.28).

For the overlay, throughput decreases when the number of groups becomes high. A

study of simulation traces reveals that the underlying protocol, ATP, struggles with
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Figure 7.29: First-time Delay vs. Number of Groups

its rate mechanism when the number of groups becomes high. Several ATP ACK

packets, which carry the rate information, are dropped due to increased load. The

sender often does not have an accurate sending rate information and might continue

to use an earlier slower sending rate. In fact, for some of the senders, several initial

ATP ACKS are lost and hence they continue to use the very first initial, low rate

proposed by ATP.

However, we find that HCP is able to deliver more throughput with increasing

groups. This increase is seen because with increasing groups, the number of receivers

increase. Additional receivers occupy different areas of the field and thus, HCP is

able to harvest the bandwidth from a larger portion of the network. This behavior is

similar to the case when we increase the group size.

The pattern for first-time delay is similar to the previous case of varying group

size. However, due to increased contention, the delay values are higher (Figure 7.29).

The pattern for retransmission packets is also similar except that at larger number

of groups, we find that overlay’s retransmission delay is reduced (Figure 7.30). This

is because, even though the overlay can send a lot of data, due to inaccurate rate
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Figure 7.30: Retransmission Delay vs. Number of Groups

estimation, the network remains under-utilized and so retransmission packets are

forwarded quickly.

When we study loss-pattern, we find that for HCP, the number of congestion

losses increases as the number of groups is increased (Figures 7.31). The reason for

this increased congestion loss can be attributed to the congestion-control mechanism.

When a downstream node forwards a packet, it copies its available space into the

header, and the upstream node depends upon snooping to receive this info. However,

snooping is itself not reliable and hence it is possible that for some packets, the

upstream node does not get the correct estimate of buffers available at its downstream

nodes. Thus, we need to explore approaches to reduce snooping loss and hence

congestion losses with HCP. Unlike the case of varying group size, passive loss appears

to be small because the number of receivers per group and hence the fanout remains

constant leading to a smaller passive loss. Other types of losses, like the case of

varying group size, appear to be small.
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Figure 7.31: Packet Loss vs. Number of Groups

7.9 Evaluation with Mobility

Lastly, we examine the effects of mobility on the performance of HCP and the overlay.

We place 50 mobile nodes in a field of 1000mX1000m; nodes move using the random

waypoint mobility model, with a pause time of 30 seconds. We run two sets of

simulations. In the first set, we vary mobility and keep the number of groups and the

composition of each group constant; this allows us to isolate the effects of mobility

from other traffic parameters. In the second type, we repeat one of our previous

scenarios of varying group size, but we introduce an ambient mobility; this allows us

to study the combined effects of two parameters, mobility and increasing group size,

on protocol performance.

7.9.1 Vary Mobility

We begin by varying mobility and keep the group numbers and per-group composition

same. We keep 3 groups and each group has 5 members; out of these 5 members, one

of them is the source. Similar to Section 3.6, we increase the speed of these mobile
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Figure 7.32: Throughput as a function of mobility (each group has 5 members)

nodes from 0 to 50m/s. To explore further, we also run an additional scenario, where

we increase the number of group members to 8, in which one of them is the source.

When we plot throughput with varying mobility in Figure 7.32, we find that

with increasing speed, the degradation in throughput does not occur significantly.

This is a very welcome result. With CBR flows (Section 3.6), once a packet is dropped,

UDP does not retransmit it and hence we see a lower packet delivery ratio with

increasing mobility. However, HCP and the overlay do retransmit lost packets and

hence throughput does not degrade significantly with mobility. Like all previous cases,

the random variant of the overlay ends up providing a lower bound on achievable

throughput. However, when we increase the number of members for each group to 8

instead of 5 and we find that HCP shows a clear advantage over both variants of the

overlay (Figure 7.33).

The delay pattern is similar to earlier cases, of varying group size or varying

the number of groups. For the sake of repetition, we omit these graphs. However,

from our results we find that delay incurred is slightly higher. This increase in delay

is seen because frequent link breaks cause packets to wait in the buffer until a route
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Figure 7.33: Throughput as a function of mobility (each group has 8 members)

is found; for HCP, packets sit at any node’s buffer and for overlay, packets wait at

one of the peer’s buffer.

In general, packet loss is small with increasing mobility (Figures 7.34). We find

that contention and congestion based losses decrease with increasing mobility. The

reason for this noticeable decrease is that with increasing mobility, more and more

links break leading to fewer active members. Hence, this leads to lesser contention

losses. Further, due to link breaks, lesser packets are received; this leads to lesser

congestion losses. However, an important difference is seen for HCP’s passive loss,

which increases with mobility. Upon studying the trace, we find that when a receiver

moves away, then it leaves behind the forwarding state at its earlier upstream node in

the tree. This is due to the soft-state nature of ASSM; the old forwarders continue to

keep stale downstream receivers for the tree for a certain period. Hence, in effect,there

are more downstream nodes attached to an upstream node, when mobility increases.

The loss pattern for the case when there are 8 members per group exhibits a similar

trend.

We also plot mobility losses in Figures 7.35. We find that HCP suffers slightly

more mobility losses than the overlay. Overall, the losses are small when speed is
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Figure 7.34: Packet Loss for HCP and overlay
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Figure 7.35: Mobility-based Packet Loss vs. Mobility
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Figure 7.36: Throughput vs. Group Size with ambient mobility

increased. The loss pattern for the case when there are 8 members per group also

exhibits a similar trend.

7.9.2 Varying Group Size with ambient mobility

Next, we repeat one of the previous scenarios, where we vary the group size, but we

make nodes mobile with a constant ambient mobility. We choose an ambient speed

of 20 m/s, since from the previous scenario, we find that a speed of 20 m/s affects

these protocols moderately.

The throughput pattern is same as that of the earlier scenario, where we vary

the group size (Figure 7.36). However, due to ambient mobility, both HCP and overlay

provide lower throughput than that of the static case. We find that the pattern for

various types of losses (mobility and non-mobility) and delay are similar to that of

the static case. However, the delay values are slightly higher, which can be explained

due to frequent link breaks. For the sake of repetition, we omit these graphs.
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7.10 Conclusion

In this chapter, we design and evaluate the third and last module of our multicast

transport architecture: a hop-by-hop congestion control transport protocol, HCP.

There are several novel design elements in HCP. First, HCP uses a multicast state

setup protocol, ASSM, for setting up transport state at each hop of the multicast tree.

Second, it uses application layer buffering at each node. Third, instead of estimating

the sending rate or the transmit window size, HCP depends upon the MAC layer’s

ability to send data at a fast rate.

For both multicast and unicast flows, our results show that as compared to

ATP, HCP provides higher throughput, ensures better fairness among all the receivers,

and estimates the correct sending rate when the number of co-existing flows increases

or decreases. Further, HCP caters to receivers that have different available bandwidth;

HCP delivers data to each receiver according to the bandwidth they can afford. Our

results also show that HCP can perform satisfactorily for a buffer-size as low as

100KB.

Under realistic conditions, with varying traffic load and mobility, HCP out-

performs an application-level overlay, running on top of ATP, in terms of throughput.

HCP has a significant advantage in terms of scalability with load. As the group size

or the number of groups increases, HCP can deliver much higher throughput than an

application-level overlay.

Some additional work can be done to improve HCP. First, we need to explore

mechanisms that can provide reliable broadcasting at the MAC layer and hence reduce

the passive losses. We can use mechanisms like BMW [70]. A trade-off is present here

because with each reliable broadcast, the message is sent reliably to all neighbors or

at least those neighbors that are members of the multicast group. Typically, this is

achieved using the sequence of RTS/CTS/DATA/ACK – using this sequence for each

forwarding at each hop in the tree may be expensive.
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Second, we need to explore designs to provide faster recovery for retransmission

packets. This might be achieved by using a better caching strategy. The delay for

all packets can be reduced by splitting the current single per-flow buffer into two

buffers: (a) a smaller buffer for unsent packets and (b) a separate buffer for storing

packets intended to aid retransmissions. The smaller buffer for unsent packets would

mean lesser delay at each hop but would also limit the ability of HCP to cater to

heterogeneous receivers.

Third, we need to explore cache replacement mechanisms, besides the current

LRU scheme in our implementation, for replacing data from the per-flow cache. With

LRU, all nodes delete cached data at approximately the same time. So large caches

are needed to avoid having the same source repair all the loss. It might be better

to have a randomized cache replacement, so if the node is missing the data, another

intermediate node might have it.

Fourth, we need to provide faster repair with ASSM. An HCP receiver can

measure the average inter-packet delay, and then trigger a repair if this delay grows

too large, rather than waiting for the next timer expiration. This would allow ASSM

to perform better when mobility is high.

Next, we should explore using a rate-based congestion control algorithm to

reduce contention-based losses. Currently, HCP’s congestion control algorithm de-

pends upon the feedback from the MAC layer to deliver packets. However, it needs

to be seen if replacing this algorithm with a rate-based algorithm can lead to lower

contention losses.

Lastly, one could explore the retransmission behavior of HCP. In our current

implementation, we use an equal mix of retransmission packets and new packets,

however, additional policies can also be explored. As an example, one can keep track

of downstream nodes that make frequent requests for retransmission; it might be

more reliable to select that downstream node for unicast forwarding, which makes

188



the most frequent requests for retransmission. Thus, this can potentially reduce the

retransmission efforts.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we build and evaluate a multi-modular multicast transport ar-

chitecture that provides routing, reliability, and congestion control. The dissertation

consists of four steps – evaluation study, building ASSM, building MDA, and build-

ing HCP. The last three steps build three different modules that work in tandem to

provide the above services in an efficient manner. We provide a design of each of

these modules along with a simulation-based evaluation of their performance.

In the first step, we conduct a rigorous evaluation of two existing multicast

routing protocols. Our goal is to identify cases where ad hoc multicast routing proto-

cols can improve their performance. Our evaluation provides us with several recom-

mendations. Our first recommendation is that designers need to focus on optimizing

for both mobility and density. Protocols should react to link breaks, but with a

controlled routing overhead. Designers should also be aware of the pitfalls associated

with high density situations, avoiding problems such as ACK implosion and broadcast

storms. Our second recommendation is that routing protocols should not attempt to

monitor packet loss and repair routes when loss is high; such packet loss may in fact

be due to congestion and the increased repair traffic can lead to a state of congestion

collapse. Our third recommendation is that for achieving high capacity, protocols
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should use a bandwidth-efficient tree rather than a mesh and should also have low

control overhead.

In the second step, we build and evaluate a novel multicast state setup protocol,

ASSM. This state setup protocol uses existing routes provided by the unicast routing

protocol instead of generating its own network-wide route discovery flood. ASSM

interacts well with transport protocol and assists it in setting transport state at

intermediate forwarder nodes in the multicast tree. ASSM also uses an SSM style

multicast to conserve multicast address space and to provide simple source discovery.

Our results demonstrate that it is possible to design a scalable multicast routing

protocol for ad hoc networks without using hierarchy or an overlay. Using SSM

semantics eliminates much of the overhead previously required for joining a multicast

group. Our work also shows that localizing repair decisions at the group members

enables the multicast routing protocol to provide both low repair latency and low

repair overhead.

The third step builds the next module of our transport architecture – a cross-

layer Mobility Detection Algorithm that determines whether a lost frame in a wireless

network is due to mobility or congestion. As one of the lessons learned in the first

step, it is important to enable the routing protocol to avoid unnecessary route repair

that can lead to lower performance. MDA determines when a lost frame is truly a sign

of a route failure before it reacts. Using simulations, we demonstrate that MDA is

able to reduce routing overhead, which enables it to increase throughput significantly;

MDA can increase throughput by 10 to 100%, depending on the routing protocol and

the mobility scenario.

In the fourth step, we design and evaluate a hop-by-hop congestion control

transport protocol, HCP, for multicast applications. HCP has several abilities that

makes it provide high throughput but with a lower overhead. HCP supports local

routing of lost packets by having each of the intermediate forwarders buffer packets
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and retransmit them if the downstream nodes miss them. Furthermore, the buffering

capability enables each forwarder node to store and transmit data at different rates –

an ability that is useful when the network has different regions with different available

bandwidths. Our simulation results demonstrate that HCP is able to adjust its send-

ing rate as the network bandwidth changes, is fair to other co-existing flows, and can

deliver data at different rates to different receivers as per their available bandwidth.

Furthermore, when we compare HCP with an optimal peer-to-peer application layer

multicast under varying conditions of traffic and mobility, our results indicate that

HCP is able to deliver better throughput with a low overhead.

8.2 Future Work

However, much remains to be explored!

For ASSM, its current approach of using a periodic Join message to repair link

break should be replaced by a more reactive approach; a group member should be

able to measure the average inter-packet delay, and then trigger a repair if this delay

grows too large. In the future, we plan to examine alternative forwarding methods,

and methods for handling multiple sources in the same group. We also plan to study

scalability in terms of the network size, group size, and the traffic rate. Finally, we

plan to compare ASSM to multicast routing protocols that use a hierarchy or overlay

to demonstrate that multicast scales better when it is build on top of scalable unicast

routing.

For MDA, we need to explore several additional related areas. First, MDA cur-

rently considers only mobility and congestion as sources of loss. However, frames may

also be lost due to interference from other technologies such as Bluetooth, microwave

ovens, and cordless phones. A complete architecture should also be able to detect

interference from these sources and determine the correct nature of loss. Second, we

can test MDA with other congestion control algorithms. Many of our results show
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a dramatic decrease in routing overhead, with significant but more modest gains in

throughput. It is possible that a different congestion control algorithm may be able

to take better advantage of the reduced routing overhead afforded by MDA.

For HCP, we need to address several additional mechanisms. First, it would

be helpful to reduce the amount of packet loss due to contention. One possibility

would be to use rate-based congestion control to slow down the forwarding nodes, so

that promiscuous listening succeeds more often. Another possibility is to substitute

a reliable MAC-layer multicast for our semi-reliable algorithm; BMW [70] is likely a

good starting point. Finally, we would like to further study the tradeoffs of buffering

versus local recovery. For example, perhaps a parent and a child should cache different

packets, so there is a chance that if one of them is missing a packet, then the other one

has it. In the absence of a cache coordination protocol, random cache replacement

might provide this benefit without any overhead.

With our multicast transport architecture, we conduct several simulations for

demonstrating that HCP is fair when there are multiple HCP co-existing flows. How-

ever, there are two cases when additional work needs to be done. First, in our current

simulations, all competing flows use the same source, destination, and the intermedi-

ate routers. The next logical step would be to examine fairness, when multiple flows

pass through the a set of common intermediate routers, but have different sources

and destinations. Second, we also need to study fairness when an HCP flow contends

for the medium with a non-HCP flow like ATP.
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