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ABSTRACT

OBSTACLE AVOIDANCE, VISUAL AUTOMATIC TARGET

TRACKING, AND TASK ALLOCATION FOR SMALL

UNMANNED AIR VEHICLES

Jeffery B. Saunders

Department of Electrical and Computer Engineering

Doctor of Philosophy

Recent developments in autopilot technology have increased the potential use

of micro air vehicles (MAVs). As the number of applications increase, the demand on

MAVs to operate autonomously in any scenario increases. Currently, MAVs cannot

reliably fly in cluttered environments because of the difficulty to detect and avoid

obstacles. The main contribution of this research is to offer obstacle detection and

avoidance strategies using laser rangers and cameras coupled with computer vision

processing. In addition, we explore methods of visual target tracking and task allo-

cation.

Utilizing a laser ranger, we develop a dynamic geometric guidance strategy to

generate paths around detected obstacles. The strategy overrides a waypoint planner

in the presence of pop-up-obstacles. We develop a second guidance strategy that

oscillates the MAV around the waypoint path and guarantees obstacle detection and





avoidance. Both rely on a laser ranger for obstacles detection and are demonstrated

in simulation and in flight tests.

Utilizing EO/IR cameras, we develop two guidance strategies based on move-

ment of obstacles in the camera field-of-view to maneuver the MAV around pop-up-

obstacles. Vision processing available on a ground station provides range and bearing

to nearby obstacles. The first guidance law is derived for single obstacle avoidance

and pushes the obstacle to the edge of the camera field-of-view causing the vehicle to

avoid a collision. The second guidance law is derived for two obstacles and balances

the obstacles on opposite edges of the camera field-of-view, maneuvering between the

obstacles. The guidance strategies are demonstrated in simulation and flight tests.

This research also addresses the problem of tracking a ground based target

with a fixed camera pointing out the wing of a MAV that is subjected to constant

wind. Rather than planning explicit trajectories for the vehicle, a visual feedback

guidance strategy is developed that maintains the target in the field-of-view of the

camera. We show that under ideal conditions, the resulting flight paths are optimal

elliptical trajectories if the target is forced to the center of the image plane. Using

simulation and flight tests, the resulting algorithm is shown to be robust with respect

to gusts and vehicle modeling errors.

Lastly, we develop a method of a priori collision avoidance in assigning mul-

tiple tasks to cooperative unmanned air vehicles (UAV). The problem is posed as a

combinatorial optimization problem. A branch and bound tree search algorithm is

implemented to find a feasible solution using a cost function integrating distance trav-

eled and proximity to other UAVs. The results demonstrate that the resulting path

is near optimal with respect to distance traveled and includes a significant increase in

expected proximity distance to other UAVs. The algorithm runs in less than a tenth

of a second allowing on-the-fly replanning.
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Chapter 1

Introduction

Fixed-wing micro air vehicles (MAVs) are increasingly common in military and

civilian use and their cost continues to decrease even as their functionality increases.

During the past ten years, autopilots for MAVs have become possible due to the

decreasing size of the necessary sensors as well as the decrease in size and power

requirements of integrated circuits. The size and low power requirements of these

aircraft offer the potential of autonomous surveillance [2], terrain mapping [3], search

missions [4], and mapping [5, 6] to name a few. The low detection probability, high

functionality, and low cost create military and civilian uses not previously possible.

However, small aircraft have significant weight limitations that prevent many sensors,

such as radar and ladar, to be carried onboard. Sensors commonly used on commercial

aircraft to detect obstacles and terrain are not feasible on MAVs. Since MAVs fly

at low altitudes, they require sensors to detect obstacles and terrain, and to avoid

collisions. The sensors need to be lightweight with low power requirements. This

research explores two lightweight devices to detect obstacles, laser rangers and EO/IR

cameras, and contributes to the current body of literature by developing methods of

reactive obstacle avoidance using laser rangers, and vision-based reactive obstacle

avoidance. In addition it also contributes by exploring vision-based target tracking,

and task allocation for teams of UAVs.

Reactive obstacle avoidance is defined here as obstacle avoidance in the zero

to three second time frame. It is commonly used in conjunction with a high level

path planner, such as Rapidly-Expanding Random Trees (RRT) [7, 8]. Assuming an

a priori terrain map is available, the path planner creates a path from an initial con-

figuration to a final configuration, incorporating any nonholonomic constraints of the
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vehicle and any known obstacles. The goal of reactive obstacle avoidance is to avoid

any pop-up obstacles on the path. Pop-up obstacles are obstacles that are detected

but not included on the terrain map. The reactive planner avoids obstacles while

the waypoint path planner creates a new path around pop-up obstacles. Chapter 2

develops obstacle avoidance using laser rangers and Chapter 3 develops vision-based

reactive avoidance techniques.

Laser rangers are non-scanning devices for range estimation. While the lack

of scanning capabilities on a MAV makes collision avoidance difficult to guarantee,

they are lightweight and feasible for use on MAVs. We develop two reactive guidance

strategies based on a laser ranger. The first generates waypoints around detected

obstacles. There is no guarantee of obstacle detection or avoidance. However, the

method requires little processing power and it is implemented on the autopilot. The

second guidance strategy oscillates the MAV around a waypoint path, essentially

scanning for obstacles. It guarantees obstacle detection and avoidance at the expense

of the oscillation.

As an alternative to laser rangers, cameras with vision processing offer range-

to-target and bearing-to-target estimation to obstacles in the field-of-view of the cam-

era [9, 10]. Cameras are lightweight and low power, making them feasible for MAVs.

Vision processing is available on a ground station if it is not available onboard. We

develop two guidance strategies based on range-to-obstacle and bearing-to-obstacle

estimates. Both strategies are based on movement of the obstacle in the camera

field-of-view. The first is derived for single obstacles. The guidance law pushes the

obstacle to the edge of the camera field of view. By maintaining the obstacle at

the edge of the camera field-of-view, we show that the MAV maneuvers around the

obstacle. After the MAV passes the obstacle, it continues on the original waypoint

path. The second guidance strategy is derived for two obstacles. It uses movement of

the obstacles in the camera field-of-view to balance the obstacles on opposite edges

of the field-of-view, essentially flying between the obstacles. Since more than two

obstacles may be encountered, we present two algorithms to decide which two obsta-

cles to maneuver between. The first algorithm operates in 2D at a constant altitude,
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commanding roll angles to avoid obstacles. The second operates in 3D, commanding

pitch and roll angles to avoid obstacles. Both single and multiple obstacle guidance

strategies are demonstrated in simulation and flight tests.

In addition to obstacle avoidance, target tracking is a desirable feature for

MAVs. The low audio signal of a MAV in flight allows it to observe targets without

detection. Target tracking is defined here as maintaining a target in the field-of-view of

an onboard camera with sufficient resolution for visual detection. Current research in

target tracking uses gimballed cameras to observe targets [11–16] or variable-azimuth

cameras [13, 14, 17]. Gimbals are not always feasible on MAVs, due to weight lim-

itations. We explore a feedback loop guidance strategy based on movement in the

camera field-of-view to maneuver the MAV such that the target does not leave the

camera field-of-view. The contribution of Chapter 4 is a guidance strategy using a

strapdown camera in a constant wind. It is demonstrated in simulation and flight

tests.

The final chapter of this research addresses task allocation for multiple vehicles.

In the COUNTER scenario, a team of MAVs are given a set of targets to observe,

using onboard sensors. The allocation algorithm must assign the MAVs to observe

targets in a sequential order such that fuel consumption is minimized, arrival to

targets is staggered, and collision is avoided. The problem is posed as a combinatorial

optimization problem. The optimal solution requires extensive computation. We

show that by using a branch and bound search, a near optimal solution is possible in

less than a second, allowing on-the-fly replanning.

The research contributions of this work are as follows.

• developed a 2D obstacle avoidance strategy to generate waypoint paths around

obstacles in real time,

• developed a 2D obstacle detection and avoidance strategy using a laser ranger

and circular paths that guarantees obstacle detection and avoidance,

• developed a 2D visual obstacle detection and avoidance strategy for single ob-

stacles,

3



• developed a 2D and 3D visual obstacle detection and avoidance strategy for

multiple obstacles,

• derived a visual target tracking strategy for strap-down cameras,

• formulated a task allocation algorithm for teams of MAVs incorporating dis-

tance traveled, collision, and staggered arrival to task, and

• described a simulation environment designed for fast research and prototyping

in an educational environment.

The organization of this research is as follows. Chapter 2 discusses reactive

obstacle avoidance using a laser ranger and Chapter 3 derives reactive obstacle avoid-

ance using a camera. Target tracking is discussed in Chapter 4. The task allocation

algorithm is addressed in Chapter 5. A conclusion and future directions of research

are discussed in Chapter 6. Additionally, the simulation environment for this research

and its advantages for development are introduced in Appendix A.
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Chapter 2

Obstacle Avoidance Using a Laser Range Finder

2.1 Reactive Avoidance Using Waypoint Path Generation

2.1.1 Introduction

An important problem in the design of fixed-wing miniature air vehicles (MAVs)

is obstacle avoidance. There are two general classes of obstacles: a priori known ob-

stacles (e.g. from a terrain map) for which a trajectory can be generated before flight,

and pop-up obstacles encountered during flight. The objective of this Chapter is to

present reliable computer algorithms that can avoid pop-up obstacles. We assume

a waypoint path planner creates paths around pop-up obstacles while the reactive

planner avoids collision in the zero to three second time frame. In this Chapter we

focus on fixed wing miniature air vehicles (MAV) with wingspans less than 48 inches.

Many methods of path planning and obstacle avoidance have been developed.

Potential fields is an easy to implement and popular method that creates a trajectory

by using attractive (toward the goal) and repulsive (away from obstacles) forces. The

result is a path that moves away from obstacles while still moving toward a goal. The

problem arises with the existence of local minima away from which a path cannot

be generated. Variants have been developed which attempt to remove local minima

such as an escape force [18] or simulated-annealing [19]. However, these still are not

guaranteed to find a path to the goal given the existence of such a path.

Probability Road Map (PRM) planners create a path by connecting random

configurations in the configuration space into a feasible path to a goal [20]. PRM

planners consist of two phases. The first is a learning phase. The planner randomly

generates points in the configuration space until a desired number of points is reached.
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Phase two connects the points in such a way that the cost of the path is minimized.

The algorithm allows freedom on how that cost is determined. PRM planners can

easily be used in holonomic scenarios where movement is not constrained. For non-

holonomic scenarios however, PRM planners may not be sufficient. The constraints

may be such that connection of feasible random points in the configuration space

occurs too rarely. PRM planners also have problems with respect to completeness and

computation time. There is no guarantee of completeness and no limit on computation

time for an optimal path. Some of these problems have been partially overcome in

subsequent work [21–25].

Rapidly-exploring Random Trees [26] [27] (RRT) is a good alternative to

PRM planners for non-holonomic systems. RRT builds a tree starting from an initial

configuration. Each branch on the tree takes into account the configuration from

which it is starting, and randomly generates a new feasible configuration. The result

is a tree that is completely within the constraints of the system. A path can then

be found by finding the lowest cost path through the tree. Recent work has added a

bridge technique to find paths through narrow spaces for PRM and RRT [28]. This

significantly reduces computation time for areas with narrow passageways. However,

RRT planners still suffer from lack of completeness and no limit to computation time

to find an optimal path.

Cell decomposition [29] divides the configuration space into cells which can

be labeled as obstacle-free or with-obstacle. A collision free path can be found by

connecting the cells from the initial configuration to the final configuration. Region

division into cells becomes a problem as obstacles become less trivial. It is desir-

able to have the smallest number of cells possible while still avoiding obstacles. A

real-time algorithm using cell decomposition was developed in [30]. Cell decomposi-

tion has recently been combined with probabilistic planning to produce probabilistic

cell decomposition [31] (PCD). The algorithm uses cells to direct the probabilistic

planner to more “interesting” areas. The result is a feasible path that requires less

computation time.
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In nearly all previous work, perfect knowledge of surrounding obstacles and

terrain is assumed. In MAVs, hardware to detect obstacles to such accuracy is not

feasible. Real situations must allow for error and lack of information of the dimensions

of an obstacle.

To plan around obstacles they must first be detected, and detection is a prob-

lem for small aircraft. Most sensors capable of reliable obstacle detection in large

areas, such as radar or laser scanners, are too heavy for small aircraft. One possible

lightweight sensor is a camera. Work has been done on using cameras and computer

vision to detect obstacles. Cameras are lightweight and possible to mount on a MAV.

In a paper by Sharp et al. [32], vision is used to land a helicopter, i.e. ground detec-

tion. A 3D model is created from computer vision in papers by Kanade et al. [33]

and Sinopoli et al. [34] which is used for navigation and obstacle avoidance. Com-

puter vision can be used for obstacle avoidance using state of the art technology and

algorithms. However, computer vision requires a large amount of computation which

usually requires an off-board computer. We would like all of the computation to be

self-contained onboard the MAV.

In this Chapter we propose a solution that uses a lightweight, low-cost laser

ranger and a computationally efficient algorithm to detect and avoid obstacles. Our

approach uses a priori known terrain maps to generate an initial waypoint path

through the known obstacles, and a reactive planner that responds to pop-up ob-

stacles detected by the laser ranger. An a priori planner plans waypoint paths by

exploring a terrain map using a Rapidly-Exploring Random Tree (RRT) [35]. The

MAV tracks the planned trajectory using standard trajectory tracking techniques.

The results of this chapter have been published in [36,37].

The reactive planner is used to dynamically avoid obstacles. We assume that a

simple single point laser ranger that operates as slow as two Hertz is mounted parallel

to the longitudinal axis of the MAV. Using only the returned distances, the MAV can

avoid detected obstacles in its path while minimizing the deviation from the planned

trajectory. The algorithm operates in real-time and is demonstrated in flight tests.
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2.1.2 Reactive Path Planner

The reactive path planner consists of two parts. The first part is the waypoint

path tracker. It is used by the obstacle avoidance algorithm and the a priori path

planner to track waypoint paths and uses the method described in [38]. The second

part of the reactive planner is the obstacle avoidance path planner which considers

all of the detected objects and plans waypoint paths around them.

We make a few assumptions about the environment. First we assume level

flight and no wind. This implies that the optical axis of the laser ranger is the flight

path of the MAV and that the laser will detect obstacles at the current altitude of

the MAV. We assume that the laser ranger runs at 2-3 Hertz. This allows it to run at

low power and be small enough to mount on a MAV. We also assume that the laser

has detected enough of the obstacle to successfully avoid it. Our last assumption is

the existence of available memory to store laser ranger data.

Consider the pop-up threat scenario shown in Figure 2.1. Figure 2.1(a) shows

the starting position of the MAV as it enters a situation where obstacle avoidance is

required. We assume the MAV has a forward ground velocity and tracks the given

waypoint path. We also assume the laser ranger has detected enough points on

objects to safely avoid the obstacle. The MAV detects the obstacles in Figure 2.1(b).

Notice that not all of the points are in front of the MAV. These points represent past

obstacles that the laser ranger detected but are no longer relevant. These are removed

as in Figure 2.1(c). To avoid the obstacles, we propose generating avoidance triangles

around the obstacles and using the sides of the triangles as possible waypoint paths.

Since the dimensions of the obstacles are unknown, they are estimated by construction

of a triangle around the scanned points, as shown in Figure 2.1(d). Notice that some

of the triangle sides intersect. If sides intersect, then they are not feasible paths

around the obstacles. Figure 2.1(e) removes the intersecting sides. The remaining

sides are all possible waypoint paths around the detected obstacles.

The MAV cannot always track each path generated before hitting an obstacle.

In addition, some paths can be tracked faster than others. Using an estimation

method described later, we can estimate at what point r the MAV can track each
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path. Using r, we can determine whether the path can be tracked before hitting the

obstacle. Infeasible paths can be removed as in Figure 2.1(f). The remaining paths

can be assigned a cost using the distance from the MAV to r, and a path selected

based on this cost. The final selected path is shown in Figure 2.1(h)

(a) MAV and waypoint path (b) Detected Obstacles (c) Remove obstacles behind
MAV

(d) Generated triangles (e) Possible waypoint paths (f) Remove infeasible paths

(g) Two possible paths (h) Choose path with smallest
cost

Figure 2.1: Reactive planner example. The MAV must detect and avoid obstacles
while approaching a pre-planned waypoint path.

The steps to avoiding obstacles by generating intermediate waypoint paths

make use of the waypoint trajectory tracking method described in Ref. [38]. The

first step is to calculate the desired approach angle (ψd) to the current waypoint
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path. Using ψd, the algorithm can consider the direction which progresses the MAV

toward the waypoint path. The second step removes all points behind the MAV and

farther than zl + 2R from the MAV, where zl is the height of the triangles generated

around obstacles and R is the minimum turning radius of the MAV. We remove points

over a certain distance from the UAV to prevent unneeded processing in determining

the best path around obstacles. The third step is triangle generation. Given that the

MAV cannot detect the exact size of the obstacle, the algorithm makes a buffer region

around the point using a triangle. The triangle is isosceles and the angle bisector of

the triangle has the same heading as ψd as shown in Figure 2.2(a). Make a triangle

for each point. The result will be multiple triangles that may overlap, but are all of

equal size as in Figure 2.2(b). Notice that zw and zl are two important dimensions

of the triangles (Figure 2.2(c)). zl is the distance the MAV has to maneuver around

the obstacle. If the MAV has a large turning radius, then zl will have to be large

as well. zw is the buffer region between the obstacle point and the new waypoint

path. As expected obstacle size grows, so will zw. There is further analysis on this in

Section 2.1.3.

The next step is to remove intersecting sides. There will be at least two

remaining sides for a pair of triangles after the intersection elimination since each

equivalent side is parallel. No matter how the triangles are arranged, at least a set

of non-parallel sides will remain. By our assumptions we know all the points around

an obstacle, therefore those paths also avoid obstacles.

There are two or more remaining triangle sides that can be used as waypoint

paths around the obstacle. The remaining task is to choose the best path. Each path

is within zl +2R to the MAV and deviates equally from ψd. Unfortunately, there will

still be some paths that cannot be tracked before colliding with an obstacle. We need

a cost function that estimates how fast the MAV can track each path. A good cost

function is simply the distance of the MAV to the first point on the waypoint path.

There are two cases to consider to estimate the point at which the MAV can

track the waypoint path. The first case is when the waypoint path is very close, within

a turning radius R of the MAV. The second case is when the path is further away
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(a) Approach Angle to waypoint path
(ψd).

(b) Generate triangles around points.

(c) Triangle dimensions.

Figure 2.2: Triangle generation algorithm. Triangle sides are used as possible way-
point paths around obstacles.

than R. To determine which case to use, first determine whether the MAV needs to

turn left or right to track the path. This can be done by calculating the cross product

of the velocity vector v of the MAV by the waypoint being approached minus the

MAV position vector u (e.g. v× (w2−u)). If the cross product is positive, the MAV

must turn left, otherwise right. Now create a circle to the left or right of the MAV

as needed using the turning radius. The circle should be positioned to represent the

turn of the MAV. Translate the circle and waypoint path such that the center of the

circle is at the origin. This simplifies the calculations. We must find where the circle
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intersects the waypoint path. First take the equation of the waypoint path:

yi = m(xi − ux) + uy, (2.1)

where xi and yi are the intersection points of the waypoint path and circle, m is the

slope, and ux and uy are the position coordinates of the MAV. The equation of the

circle is:

R2 = x2
i + y2

i . (2.2)

Substituting and solving for xi we get

xi =
1

2(1 + m2)
(2m2w2x − 2mw2y + 2

√
−m2w2

2x + 2mw2xw2y − w2
2y + R + m2R).

(2.3)

yi can be obtained by substituting xi back into Equation (2.1). In the case that the

square root is negative, the circle and waypoint path do not intersect and we know

that we must use case two. If it is not negative, then we must find where xi and yi

are on the circle. Translate the waypoint path such that it crosses through the center

of the circle. Take the cross product of the waypoint path and xi and yi. If the cross

product is negative, use case two. Otherwise use case one. Case one consists of using

xi and yi as the coordinate r which indicates the position at which the MAV will

track the waypoint path as indicated in Figure 2.3(a).

(a) Case 1. (b) ψd. (c) Case 2.

Figure 2.3: Waypoint path interception.
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Case two projects the MAV position onto the waypoint path and adds an

estimated distance. The estimated distance is calculated by finding ψd, the angle of

the circle across the distance needed to fly before flying parallel to the waypoint path

(Figure 2.3(b)). That distance plus another two turning radii along the waypoint

path from the projection are the estimated distance to r, the point of tracking the

waypoint path. This is illustrated in Figure 2.3(c).

The cost function is the distance from the MAV to r. The smallest cost is the

path that can be tracked in the shortest distance. Choose the path with the smallest

cost as the new waypoint path.

The reactive path planner is summarized by the following steps,

1. calculate the desired heading angle to the waypoint path ψd,

2. remove all points behind the MAV and all points over zl + 2R distance away

from the MAV,

3. generate triangles with dimensions zw and zl along the angle ψd,

4. remove intersecting sides of triangles. The remaining sides are possible waypoint

paths,

5. calculate the estimated point of tracking for each of the waypoint paths (r).

The distance to this point is the cost for the corresponding waypoint path, and

6. choose the path with the smallest cost as the new waypoint path.

2.1.3 Analysis

This section presents conditions under which the UAV is guaranteed to track

a generated path from the reactive planner. The constraints of a fixed wing air

vehicle and limited processing efficiency severely limit finding feasible paths for all

configurations, but under certain conditions, successful avoidance can be guaranteed.

Consider Figure 2.4(a). The red X represents a detected obstacle and the

blue dashed line is the desired waypoint path to track. The MAV is angled such that
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the obstacle is slightly in front, thus not removing from consideration. To avoid the

obstacle, the MAV must turn nearly 180 degrees toward the waypoint path and then

turn back 90 degrees to begin tracking the path. This can be considered a worst case

scenario. Any other scenario requires less distance to track the path.

(a) Worse case scenario (b) Turning Radius (c) Quickest path

Figure 2.4: Analysis of worst case scenario to show sufficient conditions to guarantee
obstacle avoidance.

Theorem 2.1.1 Given a MAV with turning radius R, parameter zl ≥ 3R, and as-

suming (1) no wind, (2) sufficient points have been detected on a given obstacle, (3)

that the MAV is zl distance away from the obstacle, and (4) the MAV can track the

partial orbital paths to the waypoint path, then the MAV can successfully track the

waypoint path generated around that obstacle.

Proof: Consider the situation where the MAV is approaching a set of obstacles that

requires it to track a path requiring at least a 90 degree heading change as depicted

in Figure 2.4(b). To track the path, the MAV must turn 180 degrees toward the path,

and then turn another 90 degrees to track the path, as shown in Figure 2.4(c). The

MAV may cover up to 3R distance before tracking the path around the obstacle. The

parameter zl is the distance from an obstacle where a path begins. Therefore, if the

UAV is at least 3R away from the obstacle, the MAV is guaranteed to avoid it.
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2.1.4 Simulations Results

Virtual World

The goal of this Section is to describe the simulation environment. The sim-

ulator is the primary testing method for our architecture making it an important

aspect in understanding the results. The simulator generates random cities through

which the MAV can be flown. The parameters that can be changed are street width,

building width, mean building height, and building height variance. The buildings

created are placed on a flat terrain and can be detected by a simulated laser ranger.

The buildings are rectangular and protrude vertically from the flat terrain surface.

The physics engine of the simulator models aerodynamic forces, gravitational

forces, forces due to control surfaces, forces due to thrust, and forces due to wind.

The MAV aerodynamic coefficients have been tuned to match the airframes used in

our hardware testbed.

The simulator also emulates the Kestrel autopilot used at BYU [39]. It receives

a .dll file of compiled Kestrel autopilot code and runs in real time in to match the speed

and timing of the MAV autopilot. The controls and sensors are run by the autopilot

in the simulator in the sense that they are executed in hardware as algorithms. This

method makes the simulation a close match to actual flight tests facilitating rapid

prototyping.

Reactive Planner

Avoiding a single obstacle allows the algorithm parameters like zw and zl to

be appropriately tuned. The parameters can be adjusted based on convergence speed

to the desired waypoint, desired distance from obstacle during avoidance, and desired

distance from obstacle to begin avoidance. In the simulation depicted in Figure 3.15,

the MAV was directed to fly on a waypoint path directly through a building. The

building is represented as a solid gray box in the image with a width of 20 meters.

The solid white line is the waypoint path. The dotted line is the actual path flown
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by the MAV. The parameters of the algorithm are:

R = 30,

zl = 3R,

zw = 35.

where R is the minimum turning radius of the MAV. The MAV used the virtual

laser range finder running at three Hertz to detect the position of the obstacle and

effectively avoided it.

Figure 2.5: Single obstacle simulation
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2.1.5 Flight Test Results

A successful test of the reactive planner required at least one obstacle high

enough at which to fly the MAV without a need to change altitude low to the ground.

This prevents the laser ranger from detecting points on the ground that might be mis-

takenly considered obstacles and allows for short altitude drops during turns. We used

the laser ranger in Figure 2.6 from Optics Planet [1] with dimensions approximately

3 inches by 4 inches.

Figure 2.6: We used the laser ranger available from Optics Planet [1] to detect obsta-
cles.

We chose an isolated building on the BYU campus that is 50 meters high

and 35 meters square. Other surrounding buildings rose to about 20 meters which

separated the building as a single obstacle. We planned a path from the south side

of the building to the north at an altitude of 40 meters. The MAV had no previous

information on the location and dimensions of the building. The turning radius of

the MAV is approximately R = 30 meters. We set zl = 90 meters as suggested by

Section 2.1.3 and zw = 55 meters to ensure that one detected point on the building

generated a path sufficiently close to the side of the building. A GPS telemetry plot

of the results is shown in Figure 2.7.
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Figure 2.7: Flight test results plot of a MAV avoiding a building with a planned path
through the building.

As the MAV approached the building, the laser ranger detected the building

and calculated its position. When the MAV came within 90 meters of the building, the

reactive planner generated a path around the building and the MAV began to track

the path. Notice that as the MAV passed the building, it once again began to track

the original waypoint path that went through the building. The MAV successfully

avoided the building without human intervention.

2.2 Circular Paths

Our goal in this section is to incorporate a laser ranger sensor into an obstacle

avoidance algorithm such that obstacle detection and obstacle avoidance are guar-

anteed. We assume each MAV is equipped with a laser ranger in the longitudinal

direction of the body frame. A single laser ranger is light enough to mount on a MAV
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and allows ranging for obstacles directly in front of the MAV. We will derive a series

of circular paths around a waypoint path such that the MAV may scan obstacles near

the waypoint path and possible escape routes to avoid detected obstacles. Our goal is

to guarantee obstacle detection and extend the derived methods of obstacle avoidance

to real time and account for frequent changes in the environment.

2.2.1 Problem Description

We want to generate an oscillating path along which a MAV may traverse

to scan potential obstacles. The desired path must conform to the non-holonomic

constraints of a fixed wing aircraft and enable the MAV to scan possible new paths

ahead. Consider the first order set of kinematic equations of a fixed wing MAV,

ṙn = V cos ψ, (2.4)

ṙe = V sin ψ, (2.5)

ψ̇ =
g

V
tan φ, (2.6)

V̇ = αV (V c − V ), (2.7)

φ̇ = αφ(φ
c − φ), (2.8)

where (rn, re)
T is the position of the aircraft, V , Vc, φ, and ψ are the velocity, com-

manded velocity, roll, and heading, g is the gravitational constant, and αφ and αV

are parameters. Using these equations, a constant roll angle φd results in a constant

heading change ψ̇. The aircraft flies a circular trajectory with a turning radius R.

With a mounted laser ranger, the MAV scans nearby regions outside the circular

path.

We would like to use the scanning abilities of the circular path by incorporating

a series of circular oscillations in waypoint paths such that the MAV scans obstacles

on or near a waypoint path and any possible escape routes that can be flown to avoid

obstacles. Let ψd be the heading of the waypoint path, let R be the desired radius

of the circular paths, and let ψm be the maximum deviation from ψd in the circular
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Figure 2.8: Geometry of a circular path around a waypoint path. The path of the
MAV is shown in red.

oscillation as shown in Figure 2.8. Let the circular paths be arranged in such a way

that they intersect at exactly one point, and the angle of the tangent line at that point

be ψm from the waypoint path heading ψd. We want the MAV to track one of the

circular paths until it reaches the intersection point of another circular path, where

it will then begin to track the new circular path. The result is a series of oscillating

circular paths around a waypoint path. We assume that the time to change roll angle

is zero for simplicity.

2.2.2 Analysis

To analyze the conditions of the path that result in successful scanning, we

need the properties of the path. Consider Figure 2.9. bd is the desired path of travel.

In other words, its orientation is ψd. The angle ∠dbg is ψm by definition. We can

construct a line segment fg such that it is tangent to circles a and c, passing through

the point where the circles intersect at point b. ab is a radius of circle a ending at
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Figure 2.9: The measurements of the circular path can easily be found using geometry.

point b, where the circle a and c intersect. bc is a radius of circle c to point b. The line

segment ac begins at the center of circle a and ends at the edge of circle c. ac passes

through point b and is perpendicular to fg. The length of ac is twice the radius of the

circle, or 2R. Using complementary angles, we know that ∠cbd = π
2
−ψm. ∠bch = ψm

using the sum of angles in a triangle. Using similar logic, we can find the other angles

as labeled in Figure 2.9.

Using our knowledge of the angles, we find the lengths of the edges of the

triangles in Figure 2.9. We know that `(bh) = R sin(ψm), and `(ch) = R cos(ψm),

where `(x) is the length of x. We can now find the distance from the center of

one circle to the center of another circle. The distance from a to e is 4R sin(ψm).

The distance from the center of a circle to a center n circles ahead in the path is

2nR sin(ψm), where n is an even number. In Figure 2.9, the distance from a to e can

be calculated using n = 2, resulting in 4R sin(ψm).

To avoid obstacles successfully, the MAV needs to scan complete escape routes

that may be flown in the case of obstacle detection. We will use the circles in the

description of the path as possible escape paths from obstacles. These circles need

to be scanned completely before the MAV starts traversing them to guarantee the

escape route is obstacle free. We assume for a moment that ψd does not change.
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Theorem 2.2.1 Let ψm be the maximum deviation from a desired heading ψd in a

circular scanning path. Let n be the number of circles ahead to scan and L be the

range of the laser ranger. If ψm > tan−1
(√

n
n

)
and L ≥ √

c2 + 2Rc where c =

2R
√

n2 sin2(ψm) + cos2(ψm), then a circle n circles ahead in the circular scanning

path will be completely scanned.

Proof: Refer to Figure 2.10(a). Let ab denote a tangent line of circles e and d. Let

θ be the angle of ab measured from ψd. This represents the laser ranger of the MAV.

We need to verify the laser passes this location. Draw the radii ae and bd to the

intersection points of the tangent line on circles e and d respectively. The tangent

line and radii are perpendicular to each other. Construct the line segment ed between

the centers of the circles. This line is perpendicular to the radii and parallel to ab.

ab then has the same length and orientation as ed. Construct the line segment ef

parallel to the direction of travel, and create the line segment df perpendicular to

it. ∠def = ∠bag because of the parallel lines ab, ag, ed, and ef . ∠edf = π
2
− θ

using the sum of triangle angles. Using the geometry discussed earlier, we know

that `(ef) = 2nR sin(ψm) and `(df) = 2R cos(ψm). The angle ∠cab = π
2
− θ by

complementary angles. We have shown that triangles abc and def have three equal

angles and one equal side, therefore they are equivalent triangles. We can now use

the lengths of the sides of triangle def on triangle abc. An equation for the relation

of θ and ψm can be constructed as

π

2
− θ = tan−1

(
2nR sin(ψm)

2R cos(ψm)

)
. (2.9)

We want to know the angle where ψm = θ, this is the smallest angle for ψm to ensure

the laser passes this tangent line. Substituting ψm for θ and solving we get

ψm = tan−1

(√
n

n

)
. (2.10)
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This is the angle at which the laser scans the edge of the circle. ψm may be larger

and still cross the tangent line, therefore,

ψm ≥ tan−1

(√
n

n

)
. (2.11)

We know if ψm ≥ tan−1
(√

n
n

)
, then the laser ranger begins to scan circle d.

We need to show the laser ranger completes the scan. Consider Figure 2.10(b). ab is

a tangent line of circles e and d with ea and db as radii of the circles to the tangent

points. ac is parallel to the direction of travel (orientation ψd). α is the angle of

the tangent line from the direction of travel. ab represents the orientation the laser

ranger must achieve to completely scan circle d. We know that if ψm ≥ α, then circle

e will be completely scanned.

In triangle abc, ∠acb is π
2
−α. This implies ∠dcj = π

2
−α. By the sums of angles

in a triangle, ∠cdj = α. The length `(di) = 2R cos ψm was derived above. Using the

angle ∠bdf , we know `(df) = `(eh) = R cos α. Using the difference of `(ji) and `(di),

we can find `(dj) = 2R cos ψm − R cos α. Using `(dj), then `(dc) = 2R cos ψm−R cos α
cos α

.

`(cb) is easily seen now as:

`(cb) = R−
(

2R cos ψm −R cos α

cos α

)
= 2R

(
1− cosψm

cos α

)
. (2.12)

Notice that in Equation 2.12 we require that cosψm

cos α
≤ 1 for the length to be

positive. This implies cos ψm ≤ cos α. Given triangle abc, we know 0 ≤ α ≤ π
2
. Given

0 ≤ ψm ≤ π, then cos ψm ≤ cos α ⇒ ψm ≥ α. Thus the laser always achieves position

ab. If ψm ≥ tan−1
(√

n
n

)
, then circle e is completely scanned.

The next step is to determine a sufficient laser range to ensure a circular path is

completely scanned. Consider Figure 2.12(a). We can find the area the laser scans as

the MAV tracks circle a. The area is a circle centered at a with a radius of
√

R2 + L2.
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(a) ab represents the position the laser ranger must achieve to start scanning
circle e. ψm > tan−1

(√
n

n

)
results in the laser ranger scanning a circular route

n circles ahead in the path.

(b) ab represents the position the laser ranger must achieve to finish scanning
circle d. We can find that α < ψm regardless of the chosen value of ψm.

Figure 2.10: Geometry used in derivations of the requirements of the circular path to
guarantee scanned paths.
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Let circle e be a circle we desire to scan n circles ahead in the path. The distance

from a to the center of circle e is

`(ae) =
√

(2Rn sin(ψm))2 + (2R cos(ψm))2. (2.13)

The distance from a to any point on circle e has an upper bound of `(ae) + R. To

guarantee that the laser has sufficient range to scan circle e, we can set the upper

bound of the distance from a to any point on circle e equal to the radius of the circle

scanned by the laser and solve for L,

√
R2 + L2 ≥

√
(2Rn sin(ψm))2 + (2R cos(ψm))2 + R. (2.14)

To simplify, let c =
√

(2Rn sin(ψm))2 + (2R cos(ψm))2. Then

√
R2 + L2 ≥ c + R. (2.15)

The required range of the laser to scan circle e is

L ≥
√

c2 + 2Rc. (2.16)

We have shown thus far the required conditions on the circular paths to guar-

antee obstacles will be detected before collision. In addition, these obstacles will be

detected while tracking an obstacle free circle. In the case an obstacle is detected,

two options are obvious. The first is to turn around using the circular orbit currently

being flown and back track. The second is to fly the current circular orbit in its full

360 degrees in an attempt to scan for a new obstacle-free path in a different direction.

25



Figure 2.11: The blue circle is the area scanned by the laser as the MAV tracks circle
a.

Once another obstacle free path is found, the circular paths can continue in a new

direction. Either method guarantees obstacle avoidance.

2.2.3 Waypoint Path Transitions

An important part of flying waypoint paths is the transition between paths at

waypoint junctions. We need to devise a method of smooth transition from one path

to another. Consider Figure 2.12(a). The red dashed line represents the direction

of travel of a MAV. The green dashed line is a new waypoint path the MAV must

transition to. As the MAV approaches the new path, it must change direction by

tracking circles of its current path until reaching a tangent with a circle of the new

path, after which it can track the new path. This is represented in the path from

circle a to circle b. We call the first circle of the new path the transition circle, shown

as circle b.
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(a) Simple figure of a waypoint path transition is shown and the path a MAV
flies through it.

(b) Derivation for finding the center of the first circle on the new waypoint path.

Figure 2.12: The path of a MAV is shown during a waypoint change. The red dashed
line represents the first waypoint path, and the green dashed line represents the second
waypoint path. The blue line shows the path of a MAV flying the waypoint path
transition. The goal is to find the center of circle b which is the first circle for the MAV
to track on the second waypoint path.
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The difficult part in the new path is finding the location of the transition circle.

The derivation for finding the center of circle b is illustrated in Figure 2.12(b). We

want to find circle b given the change in heading of θ and an intersection point of

both paths with an offset of (x,R cos(ψ)) from the center of circle a. Note that x

may be negative here if the offset is to the left. The following theorem shows how to

find the location of the center of circle b.

Theorem 2.2.2 Let two waypoint paths intersect with angle θ. Let circle a be the

circle on the first waypoint path nearest the intersection point without crossing it. Let

x be the distance of a to the intersection point along the waypoint path. The location

of the center of the transition circle is

bx =
−(2 tan θ + 2q)±

√
(2 tan θ + q)2 − 4(tan2 θ + 1)(q2 − 4R2)

2 tan2 θ + 2
, (2.17)

by =bx tan θ + q, (2.18)

where

q = tan θ

(
−x + R cos

(π

2
− θ + ψm

)
+

R sin
(

π
2
− θ + ψm

)

tan θ

)
+ R cos(ψm). (2.19)

Proof: Refer to Figure 2.12(b) for illustration of this proof. First translate circle

b along the new waypoint path de such that the center of the circle lies on the first

waypoint path cf , this is circle c. Line segments df and eg are tangent lines of circle

c at angles of ψm along the direction of travel. cd and ce are radii of circle c. By

opposite angles from ψm, ∠edf = ∠deg = ψm. By adding the sum of the angles in a

triangle, ∠egc = θ − ψm. Using the right triangle 4ceg and summing the angles, we

find ∠ecg = π
2
− θ + ψm. Construct the line segment eh perpendicular to cf . Using

the two right triangles formed, we can find the following,
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`(ch) = R cos
(π

2
− θ + ψm

)
, (2.20)

`(eh) = R sin
(π

2
− θ + ψm

)
, (2.21)

`(hk) =
R sin

(
π
2
− θ + ψm

)

tan θ
, (2.22)

`(mc) = x− `(ch)− `(hk) (2.23)

= x−R cos
(π

2
− θ + ψm

)
− R sin

(
π
2
− θ + ψm

)

tan θ
, (2.24)

`(am) = R cos(ψm). (2.25)

Knowing the location of c, we can shift circle c back along the waypoint path

until it arrives at circle b, which can also be described as when `(ac) = 2R. First

create the equation of the line which crosses through c and runs parallel to de,

by = tan θ

(
bx − x + R cos

(π

2
− θ + ψm

)
+

R sin
(

π
2
− θ + ψm

)

tan θ

)
+ R cos(ψm).

(2.26)

Let

q = tan θ

(
−x + R cos

(π

2
− θ + ψm

)
+

R sin
(

π
2
− θ + ψm

)

tan θ

)
+ R cos(ψm). (2.27)

The equation can be simplified to

by = bx tan θ + q. (2.28)

We need to know the distance from a to any point on this line, and find where that

equals 2R. First set the distance equal to 2R and solve for bx,
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2R =
√

(bx tan θ + q)2 + bx

4R2 = (tan2 θ + 1)b2
x + 2(tan θ + q)bx + q2

0 = (tan2 θ + 1)b2
x + 2(tan θ + q)bx + (q2 − 4R2)

bx =
−(2 tan θ + 2q)±

√
(2 tan θ + q)2 − 4(tan2 θ + 1)(q2 − 4R2)

2 tan2 θ + 2
.

by can be found by substituting bx back into Equation 2.28. The result is the

location of circle b as an offset from the center of circle a. Remember that these

coordinates are in reference to point a and the rotation of ψd. To move them to world

coordinates, they must be translated by a and rotated by ψd − π
2
.

2.2.4 Conclusion

In the first half of this chapter we derived an obstacle avoidance strategy

which uses a laser ranger to detect pop-up obstacles and generate new waypoint

paths around them. It was tested by planning a waypoint path through a building.

The MAV successfully detected and avoided the building and continued to track the

original waypoint path after avoidance.

In the second half of this chapter we described a set of circular paths that

oscillate around a waypoint path for the purpose of scanning obstacles with a laser

ranger. The paths scan obstacles as well as escape paths that may be utilized to

prevent collision. When an obstacle is detected, a feasible path to avoid that obstacle

is guaranteed. The feasible path is the circle the MAV is flying when the obstacle is

detected. A method of transition between waypoint paths was also developed.

With the introduction of this new class of paths, obstacle detection is guaran-

teed. Methods of obstacle avoidance other than the rudimentary methods mentioned

in this Section can be explored in future work. The laser ranger acquires data in real

time and previously studied methods may be adapted to update paths based on new
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laser data. Future work may also explore 3D scanning, 3D obstacle avoidance, and

terrain mapping using the laser ranger.
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Chapter 3

Vision-based Reactive Avoidance

3.1 Introduction

Fixed wing micro air vehicles (MAVs) are becoming common in military and

civilian use as their functionality increases and their cost decreases. Advances in in-

tegrated circuits have allowed low-power microcontrollers and the necessary sensors

have become small enough to permit miniature autopilots to be used on MAVs. Cur-

rent autopilots are as small as two inches square, weigh less than an ounce, [40] and

may be installed on aircraft with wingspans of less than 12 inches. The size and low

power requirements of these aircraft offer the potential applications of autonomous

surveillance [2], terrain mapping [3], search missions [4], and mapping [5, 6] to name

a few. Small cameras can be mounted onboard, allowing for visual surveillance and

observation. MAVs can avoid detection due to their weak audio signal and low en-

ergy emission. The low detection probability, high functionality, and low cost create

military and civilian uses not previously possible.

Although MAVs are capable of navigating waypoints autonomously, they can-

not yet fly safely through urban terrain where buildings and other obstacles create a

hazardous flying environment. The sensors used for obstacle detection on large air-

craft are too heavy for use on MAVs. Alternatively, cameras are small and lightweight

enough to mount on a MAV, making computer vision a feasible option. Laser rangers

have been used in the past to detect obstacles [36], but only provide a single range

measurement in the body frame. The laser ranger may be mounted on a gimbal [41],

requiring a larger airframe to support the additional weight and aerodynamic drag.

Scanning laser range finders are commercially available, but are currently too heavy

for use on MAVs.
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Strapdown cameras supported by have the potential to provide time-to-collision,

object segmentation, and object identification unavailable with other sensors. Vision-

based obstacle detection is a topic of research and while it has not reached reliability

sufficient for commercial aircraft systems, it continues to show potential [42–44]. We

assume that vision processing provides object segmentation, bearing, and time-to-

collision for obstacles. Using that information, we can maneuver the MAV to push

obstacles to the edge of the camera field of view. Maintaining the obstacle on the

edge of the field of view guarantees that the MAV is not on a collision course with

the obstacle.

Obstacle avoidance and path planning algorithms have been extensively re-

searched in literature. For example, probability road map (PRM) methods generate

random points in the configuration space and connect the points to create a navi-

gation map of the environment [45–47]. Another probabilistic planning technique is

the Rapidly-Expanding Random Tree (RRT) [7,8], which is often used in conjunction

with fixed-wing air vehicles. RRTs generate random points on the configuration space

and connect them to a tree of other points such that the non-holonomic constraints

of the vehicle are met. Points unable to connect to the tree are removed. While these

methods and their many variants [27, 28, 35, 48–51] have shown considerable success,

they require time to generate paths around obstacles. A reactive planner will produce

fast results and react quickly to pop-up obstacles. While the reactive planner immedi-

ately avoids pop-up obstacles, a high level path planner can produce a new waypoint

path to avoid obstacles over a longer planning horizon. Reactive obstacle avoidance

methods have been shown in previous work by means of dynamic replanning [52],

potential fields [18], simulated annealing [19], predefined maneuvers [53], and mixed

integer linear programming (MILP) [54]. MILP has been used in obstacle avoidance

techniques with success, however it requires extensive computation, limiting its use

for reactive avoidance.

Potential fields is a common reactive obstacle avoidance technique [18,53,55],

but unfortunately, it and many of its variants only guarantee a high probability

of avoiding obstacles. Since collisions in flight can be catastrophic, aircraft require
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a guarantee of obstacle avoidance. We previously developed a reactive method by

generating a path on one side of obstacles and an RRT method producing waypoint

paths [36]. While the reactive method produced paths around obstacles, it was not

based on a continuous control law making it susceptible to oscillations in the presence

of multiple obstacles. In this chapter, we will describe a continuous guidance strategy

that reacts to detected obstacles within the camera field-of-view and requires very

little computational processing.

Cell decomposition is another popular path planning method in which a con-

figuration space is decomposed into cells. A path is easily found in each cell using a

a variety of methods. A sequence of cells is found to connect the initial conditions

to the goal [29, 30]. Additional methods include visibility graphs [56] and Voronoi

diagrams [57]. Each have varying success, but neither are designed for non-holonomic

vehicles.

This chapter develops a reactive guidance strategy that is intended to be used

within a tiered system of path planning as illustrated in Figure 3.1. The first tier

reacts instantaneously to detected obstacles using a reactive guidance strategy based

on a feedback control law. The control law maneuvers the MAV to push the obstacles

to the edges of the camera field-of-view essentially avoiding immediate collision with

obstacles. The reactive method is the focus of this chapter. The second tier plans a

waypoint path around obstacles locally in the body frame of the MAV. The third tier

creates a global path from the current configuration to the goal. Each tier acts at a

different time scale and has increasing computation time. The reactive guidance tier

responds to obstacles where the predicted time-to-collision is zero to three seconds

and requires very little computation. The tier two planner reacts to obstacles with

predicted time-to-collision three to ten seconds and plans a local path that can be

overridden by the reactive planner. The tier three planner reacts to obstacles with

predicted time-to-collision is greater than ten seconds and plans a global path to the

goal. The global plan can be overridden by the local planner in the presence of pop-up

obstacles.
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Figure 3.1: The tiered approach to path planning is shown. The first tier is the
reactive layer to avoid obstacles where the time-to-collision is 0-3 seconds. The second
tier plans paths in the body frame where time-to-collision is 3-10 seconds. The third
tier plans paths from the initial configuration to the final configuration using global
terrain maps.

The goal of this chapter is to develop a guidance strategy to maneuver MAVs

around obstacles utilizing vision processing for obstacle detection. The basic idea is

to push the obstacle to the edge of the camera field-of-view causing the vehicle to

maneuver around the obstacle. Maintaining the obstacle at a predetermined angle

prevents collision and allows time for a high level path planner to generate new

waypoint paths. These results have been published in [58,59].

The organization of the chapter is as follows. Section 3.2 introduces and ana-

lyzes the reactive obstacle avoidance of a single obstacle. Section 3.3 introduces and

analyzes the reactive avoidance of multiple obstacles. We discuss methods of state

estimation in Section 3.4. Simulation and flight tests are presented in Sections 3.5

and 3.6. Section 3.7 offers concluding remarks and possible future directions of re-

search.
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3.2 Single Obstacle Avoidance

This section derives and analyzes a reactive avoidance method for single ob-

stacles.

The airframe is equipped with an onboard autopilot with inner loop control

of roll, pitch, airspeed, and altitude. Assuming that airspeed and altitude are held

constant, the kinematic model is given by

żn = V cos ψ, (3.1)

że = V sin ψ, (3.2)

ψ̇ =
g

V
tan φ, (3.3)

where (zn, ze)
T is the North-East position of the aircraft, V is the airspeed, φ is the

commanded roll angle, ψ is the heading, and g is the gravitational constant and where

we have assumed zero ambient wind. The airframe is a fixed-wing micro air vehicle

with a strapdown camera mounted parallel to the x-axis of the body frame. A forward

looking camera allows objects to be viewed in the short reachable region of the MAV.

Maps of terrain and potential obstacles within those terrains are often available

before launch and are used to plan a collision-free trajectory. However, those maps

may not be accurate, requiring a sensor to detect pop-up obstacles. We assume

a time-to-collision map is available from vision processing algorithm [9, 10, 34, 60].

Time-to-collision estimation is discussed in section 3.4.

We use geometry in the MAV body frame to derive the relative equations of

motion between the MAV and the center of the obstacle, as shown in Figure 3.2. Let

ρ be the range from the MAV to the center of the obstacle and let η be the bearing

to the center of the obstacle. The equations of motion for the system are
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Figure 3.2: A conceptual view of the MAV approaching an obstacle. The guidance
law moves the obstacle to the edge of the camera field of view to avoid collision.

ρ̇ = −V cos η, (3.4)

η̇ =
V

ρ
sin η − g

V
tan φ. (3.5)

The objective is to develop a guidance strategy that effectively pushes the

edge of the obstacle to a specified angle ηd in the image plane. The idea is that if

the obstacle is pushed out of the field of view of the camera, then it can no longer

be tracked by the guidance algorithm and a collision may not necessarily be avoided.

We will assume that the obstacle is a cylinder of radius R, and pose the guidance

problem with respect to the range and bearing to the edge of the cylinder as shown

in Figure 3.3.
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Figure 3.3: Change of variables from the range and bearing to the center of the
obstacle (ρ, η), to the range and bearing to the edge of the obstacle (ρ̂, η̂).

From Figure 3.3 we see that

R = ρ sin(η − η̂), (3.6)

ρ̂ = ρ cos(η − η̂). (3.7)

Differentiating (3.6) with respect to time and using Equations (3.4) and (3.5) we get

Ṙ = 0 = ρ̇ sin(η − η̂) + (η̇ − ˙̂η)ρ cos(η − η̂)

=⇒ − V cos η sin(η − η̂) + V sin η cos(η − η̂)

− ρ cos(η − η̂)(
g

V
tan φ + ˙̂η) = 0

=⇒ V sin η̂ − ρ cos(η − η̂)(
g

V
tan φ + ˙̂η) = 0

=⇒ ˙̂η = − g

V
tan φ +

V

ρ

sin η̂

cos(η − η̂)
.
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Substituting from Equation (3.7) gives

˙̂η = − g

V
tan φ +

V

ρ̂
sin η̂. (3.8)

Similarly, by differentiating Equation (3.7) and simplifying we get

˙̂ρ = −V

[
cos η̂ − R

ρ̂
sin η̂

]
. (3.9)

If η̄ is the field of view of the camera, then we desire that |η| ≤ η̄. Let |ηd| < η̄

be the desired position of the edge of the obstacle in the image plane. Consider the

Lyapunov function candidate

W =
1

2
(η̂ − ηd)

2,

and differentiate to obtain

Ẇ = (η̂ − ηd) ˙̂η

= (η̂ − ηd)

(
− g

V
tan φ +

V

ρ̂
sin η̂

)
.

Therefore, selecting the guidance law as

φ = tan−1

(
V 2

gρ̂
sin η̂ +

V k

g
(η̂ − ηd)

)
, (3.10)

gives

Ẇ1 = −k(η̂ − ηd)
2,

which implies that η̂(t) → ηd.

Theorem 3.2.1 By keeping the object at angle ηd in the camera field of view using

the guidance strategy

φ = tan−1

(
V 2

gρ̂
sin η̂ +

V k

g
(η̂ − ηd)

)
, (3.11)
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the MAV converges to a limit cycle of radius ρ(t) = R
√

1 + tan2 ηd and ρ̂(t) →
R tan ηd.

Proof: As η̂ → ηd, from Equation (3.9) we get that

˙̂ρ → −V

[
cos ηd − R

ρ̂(t)
sin ηd

]
.

We argue that ˙̂ρ → 0. Suppose that as η̂ → ηd, that ˙̂ρ > 0, then

− V

[
cos ηd − R

ρ̂(t)
sin ηd

]
> 0

⇔ cos ηd <
R

ρ̂(t)
sin ηd

⇔ρ̂(t) < R tan ηd.

Since ˙̂ρ > 0, ρ̂ is monotonically increasing, bounded above, and will converge, which

implies that ˙̂ρ → 0. On the other hand, suppose that ˙̂ρ < 0, then

− V

[
cos ηd − R

ρ̂(t)
sin ηd

]
< 0

⇔ cos ηd >
R

ρ̂(t)
sin ηd

⇔ρ̂(t) > R tan ηd.

Since ˙̂ρ < 0, ρ̂ is monotonically decreasing, bounded below, and will converge, which

implies that ˙̂ρ → 0. Therefore, as η̂(t) → ηd, ˙̂ρ → 0, which implies that ρ̂(t) →
R tan ηd.

By holding the edge of a cylindrical object at angle ηd in the camera field

of view, that the MAV will converge to the limit cycle around the object shown in

Figure 3.4. From geometry we have that

ρ2 = ρ̂2 + R2 = R2(1 + tan2 ηd).
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Therefore

ρ(t) → R
√

1 + tan2 ηd.

Figure 3.4: By keeping the object at angle ηd in the camera field of view, the MAV
converges to a limit cycle of radius R

√
1 + tan2 ηd.

If the MAV is following a waypoint path and a cylindrical obstacle pops-up

in the image, the collision avoidance strategy is then to push the edge of the object

to an angle of ηd in the image plane using guidance strategy (3.11), until the MAV

moves well past the obstacle and can resume tracking its original path.

3.3 Multiple Obstacles

The purpose of this section is to derive and analyze a reactive avoidance

method for multiple obstacles.
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Camera Field of 

View
Right Obstacle

Left Obstacle

Figure 3.5: A conceptual view of the MAV approaching 2 obstacles is shown. The
objective of the control is to fly between the obstacles to avoid collision.

To avoid a large number of obstacles at a constant altitude, the MAV will have

to maneuver between two obstacles, to the left of a single obstacle, or to the right of

a single obstacle, regardless of the total number of obstacles in the current path. We

will simplify multiple obstacle avoidance into the case of avoiding two obstacles at a

time, a left obstacle and a right obstacle. In section 3.3.1, we present an algorithm

to decide the best set of obstacles to maneuver between.

Let ρr and ρl denote the range to the right and left obstacles in the camera

field-of-view and let ηr and ηl be the bearing to the right and left obstacles. An

illustration of the obstacles in relation to the MAV body frame and camera field-of-

view is shown in Figure 3.5.

Let ρm and ηm be the range and bearing to the midpoint between the two

obstacles where
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ρm =
ρr + ρl

2
,

ηm =
ηr + ηl

2
.

The midpoint is a static point in the inertial frame and therefore moves in the

body frame. The dynamics of the obstacle in the MAV body frame are generalized

from (3.4) and (3.5) as

ρ̇∗ =− Va cos η∗, (3.12)

η̇∗ =
Va

ρ∗
sin η∗ − g

Va

tan φ, (3.13)

where ∗ may denote right obstacle r, left obstacle l, or midpoint m.

The objective is to fly between the obstacles. Our approach to this problem is

to balance the obstacles on either side of the image plane. In the absence of wind, the

course angle of the MAV is the angle of the optical axis. Balancing the obstacles on

opposite sides of the camera field-of-view effectively steers the MAV on a collision-free

path.

Moving the obstacles to the edges of the image plane will not ensure the MAV

does not come in close proximity of an obstacle. If the MAV approaches the obstacles

at a steep angle, as shown in Figure 3.6, it will come in close proximity to one of

them, and possibly collide. To avoid this problem, we also regulate the difference in

range-to-obstacles ρd = ρr − ρl to zero. If the guidance loop maintains ρr = ρl, then

in the scenario in Figure 3.6 the MAV will roll away from the obstacles to force ρd to

zero while simultaneously regulating ηm to zero.

We use backstepping to derive the guidance strategy to regulate ηm and ρd.

Consider the following Lyapunov function candidate
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Figure 3.6: If the MAV avoids the obstacles by only moving the obstacles to the edges
of the image plane, the MAV may come in close proximity to the obstacle. To avoid
this problem, force ρr − ρl to zero as well.

W1 =
k1

2
ρ2

d,

and differentiate to obtain

Ẇ1 =ρd (−V cos ηr + V cos ηl)

Ẇ1 =ρd (−V cos (2ηm − ηl) + V cos ηl) .

(3.14)

Assume for the moment that ηm is a controllable input and let β = ηm be the

input, then

Ẇ1 =ρd (−V cos (2β − ηl) + V cos ηl) .

Letting

β =
1

2

(
ηl + cos−1

(
cos ηl +

k1

V
ρd

))
, (3.15)
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we get

Ẇ1 =− k2
1ρ

2
d.

Let ζ = ηm − β and differentiate to obtain

ζ̇ =η̇m − β̇

=
V

ρm

sin ηm − g

V
tan φ− β̇, (3.16)

where

β̇ =
1

2


V

ρl

sin ηl − ψ̇ − 1√
1− cosηl − k1

V
ρd(

− sin ηl

(
V

ρl

sin ηl − ψ̇

)
+ k1 (−cosηr + cosηl)

)]
. (3.17)

Let W2 be defined as

W2 =
k1

2
ρ2

d +
1

2
ζ2,

and differentiate to obtain
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Ẇ2 =k1ρdρ̇d + ζζ̇

=k1ρd [−V cos (2ηm − 2β − ηl + 2β) + V cos ηl] + ζζ̇

=k1ρd [−V cos (2ζ) cos (2β − ηl) + V sin (2ζ) sin (2β − ηl) + V cos ηl] + ζζ̇

=k1ρd


−V cos (2ζ)

(
cos ηl +

k1

V
ρd

)
+ V sin (2ζ)

√
1−

(
cos ηl +

k1

V
ρd

)2

+V cos ηl] + ζζ̇.

Using an infinite series expansion for cos(2ζ) and sin(2ζ) we obtain

Ẇ2 =k1ρd

[
−V

(
1− (2ζ)2

2!
+ ...

)(
cos ηl +

k1

V
ρd

)

+V

(
2ζ − (2ζ)3

3!
+ ...

) √
1−

(
cos ηl +

k1

V
ρd

)2

+V cos ηl] + ζζ̇.

By extracting ζ and simplifying, Ẇ2 becomes

Ẇ2 =k1ρd

[
−V

(
cos ηl +

k1

V
ρd

)
+ V cos ηl

]

+ ζ

[
k1ρd

(
−V

(
−2(2ζ)

2!
+

2(2ζ)3

4!
+ ...

)(
cos ηl +

k1

V
ρd

)

+V

(
2− 2(2ζ)2

3!
+ ...

) √
1−

(
cos ηl +

k1

V
ρd

)2

 + ζ̇




47



Ẇ2 =− k2
1ρ

2
d + ζ

[
2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i + 2)!

(
cos ηl +

k1

V
ρd

)

+
∞∑
i=0

(2ζ)2i(−1)i

(2i + 1)!

√
1−

(
cos ηl +

k1

V
ρd

)2

 + ζ̇


 . (3.18)

Substituting Equation (3.16) for ζ̇ into equation (3.18) gives

Ẇ2 =− k2
1ρ

2
d + ζ

[
2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i + 2)!

(
cos ηl +

k1

V
ρd

)

+
∞∑
i=0

(2ζ)2i(−1)i

(2i + 1)!

√
1−

(
cos ηl +

k1

V
ρd

)2

 +

V

ρm

sin ηm − g

V
tan φ− β̇


 .

(3.19)

The control signal in Equation (3.19) is the roll angle φ. To stabilize the system, let

φ = tan−1

[
V

g

(
V

ρm

sin ηm − β̇ + k2ζ + 2k1ρdV

( ∞∑
i=0

(2ζ)2i+1(−1)i

(2i + 2)!

(
cos ηl +

k1

V
ρd

)

+
∞∑
i=0

(2ζ)2i(−1)i

(2i + 1)!

√
1−

(
cos ηl +

k1

V
ρd

)2







 , (3.20)

which results in the negative definite Lyapunov function

Ẇ2 = −k2
1ρ

2
d − k2ζ

2. (3.21)

The following theorem shows that the guidance law in Equation (3.20) causes

the MAV to converge to the perpendicular bisector of the two obstacles.

Theorem 3.3.1 Using the guidance strategy in Equation (3.20), the MAV trajectory

asymptotically approaches the line ρr = ρl.
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Proof: From (3.21) we have that ρd → 0 and ηm → 0 simultaneously. If ρd = 0, then

ρr = ρl implying the MAV is on the line ρr = ρl. Equation (3.21) is negative definite,

implying ρd → 0, hence the MAV approaches the line ρr = ρl.

Notice that cos−1 in (3.17) adds the constraint cos ηl +
k1

V
ρd < 1 to the system.

We can simplify the constraint by letting ηl = η̄ and ρd = ρmax where ρdmax is the

maximum distance possible between any two obstacles (ρdmax depends on your camera

field of view and sensor range). Simplifying yields

cos η̄ +
k1

V
ρdmax < 1. (3.22)

Letting η̄ = 40◦ and ρdmax = 50, typical values discussed in section 3.5.2, sets the left

side of (3.22) to 0.8, making this a reasonable constraint.

3.3.1 High-level Decision Making

In a general urban environment, any number of obstacles may clutter the path

of the MAV, not just two at a time. In addition, there may not be any need to

maneuver between obstacles if they are not in the current path of the MAV. Hence,

we require a higher level decision strategy to decide if avoidance is required and which

obstacles to maneuver between.

To decide if obstacle avoidance is necessary, we need to parse obstacles from

the time-to-collision map provided by vision processing [10]. We assume all obstacles

are static in the inertial frame, therefore we can calculate a depth map from the

time-to-collision map. Since the MAV maintains constant altitude, we only need

to consider obstacles at the current altitude of the MAV. To find obstacles at the

altitude of the MAV, we scan a line of the depth map that is rotated to remove the

effects of roll and translated to remove the effects of pitch. Let x ∈ [−Sx

2
, Sx

2

]
and

y ∈
[
−Sy

2
, Sy

2

]
be the horizontal and vertical coordinates of a pixel in the camera

field-of-view, where Sy and Sx are the vertical and horizontal number of pixels of the

camera. The equation of the scan line in the depth map removing roll and pitch is,
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y = tan φ

(
x− Sx

2

)
+

Sy

2
− θSy

ϕV

cos φ, (3.23)

where ϕV is the vertical field-of-view of the camera. The scan line reduces compu-

tation by examining only the obstacles corresponding to same altitude as the MAV.

The steps to choose which obstacles to avoid are outlined in Algorithm 1.

Algorithm 1: High level decision making for constant altitude obstacle avoid-
ance
Data: Minimum horizontal obstacle separation δdhmin, minimum safe distance

from obstacles dmin

Input: Inertial location, euler angles, camera depth map, waypoints
Output: Commanded roll angle
Initialization;1

Calculate scan line, removing roll and pitch;2

Input scan line from depth map;3

Find obstacles within minimum safe distance;4

Determine if obstacles are on current path;5

if Obstacles are in path then
Insert pseudo obstacles to left of and depth of leftmost obstacle, and right6

of and depth of rightmost obstacle;
ηm = 2π;7

for Number of Obstacles do
di = distance between obstacles;8

mi = midpoint between edges of obstacles;9

ηmi
= horizontal angle from optical axis to mi;10

if ηmi
< ηm and di > δdhmin then

m = mi;11

end

end
Use m in guidance law;12

Return roll from guidance law;13

else
Return roll to continue on waypoint path;14

end
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The first step is to calculate and input the scan line from the depth map in

lines 1− 3. By iterating through the scan line, we can find obstacles that are within

a predefined minimum safe distance. If any of those obstacles are in the path of the

MAV, then obstacle avoidance is required. The guidance law maneuvers between two

obstacles, and the MAV may need to maneuver to the left of the leftmost obstacle

or to the right of the rightmost obstacle. Therefore, we insert pseudo obstacles to

the left of the leftmost obstacle and the right of the rightmost obstacle in line 6. To

minimize heading change, find the midpoint m between obstacles that requires the

smallest change in heading of the MAV and that also passes the minimum distance

from the obstacles in lines 7 − 11. Use midpoint m for the guidance law to return a

roll angle in lines 12− 13. In the case that no obstacles block the path of the MAV,

the algorithm returns the roll angle to continue along the waypoint path in line 14.

Ideally, we want the guidance strategy to avoid obstacles in three dimensions.

Algorithm 1 operates in two dimensions, but can be modified to operate in three

dimensions by varying altitude. Toward that end, we derive a guidance law for altitude

control based on the MAV pitch angle. The dynamics of vertical obstacle movement

in the body frame are similar to horizontal movement and characterized as

η̇θ = −θ̇ +
V

ρm

sin ηθ. (3.24)

where θ̇ is the pitch rate and ηθ is the vertical angle from the optical axis to the

midpoint m. We assume that the angle of attack is close to zero. Consider the

Lyapunov function candidate where

W =
1

2
η2

θ , (3.25)

Ẇ =
1

2
ηθη̇θ

=
1

2
ηθ

(
−θ̇ +

V

ρm

sin ηθ

)
.
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Let

θ̇ =
V

ρm

sin ηθ + k3ηθ, (3.26)

resulting in regulating ηθ and consequently change altitude to the level of the midpoint

m. The Lyapunov function candidate simplifies to

Ẇ = k3η
2
θ . (3.27)

Theorem 3.3.2 Using the guidance law described by (3.26), the angle ηθ is asymp-

totically stable.

Proof: Substituting the guidance law (3.26) into the Lyapunov function (3.25) results

in the negative definite function (3.27). Therefore, the angle ηθ is asymptotically

stable.

Since we assume the angle of attack is close to zero, a thrust change may be

necessary to minimize the angle of attack.

Using (3.26) as the altitude control, we can modify Algorithm 1 to Algorithm 2

to add altitude variation. The basic idea is to scan for obstacles at multiple altitudes

to determine if a small change in altitude would reduce the heading change required

to avoid obstacles. While the code outline is much larger, the main difference is the

loops for multiple scan lines at different altitudes and a cost function to determine the

best two obstacles to maneuver between. The cost function incorporates the required

pitch change and the required heading change to maneuver between two obstacles.

Since altitude change has slower response time than heading change, the cost of a

pitch variation is calculated as twice the cost of a heading variation. Hence the cost

of a midpoint between two obstacles is 2θmi
+ ηmi

where θmi
is the pitch required to

change altitude and ηmi
is the horizontal angle to the midpoint from the optical axis.

The result is a midpoint between two obstacles with minimal cost.
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Algorithm 2: Variable altitude obstacle avoidance

for Number of vertical scan lines do1

Calculate scan line, removing roll and pitch;2

Input scan line from depth map;3

Find obstacles within minimum safe distance;4

if Obstacles are in current path then5

Collision flag = 1;6

end

end
if Collision flag = 1 then

for Number of vertical scan lines do
Insert pseudo obstacles to left of leftmost obstacle, and right of7

rightmost obstacle;
for number of obstacles on scan line-1 do

di = distance between obstacles;8

mi = midpoint between obstacle and next obstacle;9

θmi
= pitch required to change to that altitude;10

ηmi
= horizontal angle to mi;11

cost = 2 ∗ θmi
+ ηmi

;12

if cost is smallest found and di greater than minimum horizontal
obstacle separation and θmi

< θmax then
min cost = cost;13

m = mi;14

end

end

end
if No m found within constraints then

return maximum roll and maximum climb angle;15

else
Calculate roll φ from guidance law using m;16

Calculate pitch θ from guidance law using m;17

return roll and pitch;18

end

else
Return roll and pitch to continue on waypoint path;

end

3.4 State Estimation

We assume the autopilot provides the Euler angles of the MAV. Time-to-

collision and bearing-to-obstacle estimates are provided by vision processing, de-
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scribed in [10]. Range-to-obstacle is estimated from time-to-collision because the

obstacles are static. Here we will discuss an alternate method of estimating the

range-to-obstacle ρ.

Range and Bearing

Bearing-to-obstacle η will be measured in the vehicle frame. This angle cannot

be measured directly from the image plane because the roll angle can affect the

obstacle location in the image plane. However, the roll angle can be removed from

the image plane by a simple rotation. Let (u,v) be the location of the obstacle in

the image plane. The roll is removed by the transformation


û

v̂


 =


cos φ − sin φ

sin φ cos φ





u

v


 . (3.28)

After the transformation, η is given by

η = tan−1

(
û

f

)
, (3.29)

where f is the focal length of the camera in units of pixels.

A range estimate can be derived from the equations of motion. Equation (3.5)

is a function of range-to-obstacle. If we measure η̇ from movement in the image plane,

then (3.5) can be used as a measurement in an Extended Kalman Filter (EKF) to

estimate the range-to-obstacle. Incorporating the range and bearing as states, the

equations of motion are

f(x) =


ρ̇∗

η̇∗


 =




V
ρ∗

cos η∗
V
ρ∗

sin η∗ − g
V

tan φ


 , (3.30)
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h(x) =


η̇∗

η∗


 =




V
ρ∗

sin η∗ − g
V

tan φ

η∗


 . (3.31)

The Jacobians of the equations of motion and output are:

∂f(x)

∂x
=


 0 V sin η

− V
ρ2 sin η V

ρ
cos η


 , (3.32)

∂h(x)

∂x
=


−

V
ρ2 sin η V

ρ
cos η

0 1


 . (3.33)

The above equations are sufficient to implement an EKF to estimate range and bear-

ing.

3.4.1 Time Delay

The proposed system utilizes computer vision to track obstacles and provide

range and bearing estimates to those obstacles. As a result, the time delay introduced

by sending the video to the ground, processing, and returning the results, may be

significant enough to adversely affect the guidance strategy. We address this problem

using an Out-Of-Sequence Measurement Extended Kalman Filter (OOSM-EKF) [61–

64].

The approach in this section differs from [61–64] in that we do not assume

a linear process or a linear measurement. The downside is that our approach will

require additional memory and processing power. The estimate of the state at sam-

ple time k is denoted by x̂k, and the associated error covariance is denoted by Pk.

Camera data received at time k is denoted by Ck, and inertial sensor data (rate gyros,

accelerometers, airspeed, altitude) measured at time k is denoted by Sk. If inertial

data is used to drive the prediction phase of the EKF, and camera data is used for
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the correction step, and both inertial data and camera data is received at every time

step, then the standard EKF algorithm is shown in Algorithm 3.

Algorithm 3: Standard EKF Algorithm

Input: Inertial data Sk, camera data Ck, state estimate x̂k−1, error covariance
Pk−1

Output: State estimate x̂k, error covariance Pk

[ξ̂k, Πk] = ekf predict(x̂k−1, Pk−1,Sk)

[x̂k, Pk] = ekf correct(ξ̂k, Πk, Ck)

For simplicity of exposition we will make the following assumptions which can

be relaxed at the expense of additional bookkeeping:

• The camera data is received in order, i.e., Ck is received after Ck−1.

• The delay in the camera data d is a constant integer number of samples, i.e.,

while Ck is received at sample time k, it is valid (image was captured) at sample

time k − d.

The basic idea of our OOSM-EKF is to retain in memory the state estimate

and error covariance over d samples. The revised algorithms is listed in Algorithm 4.

When a camera measurement is received at sample k, it is d samples old. Therefore,

to properly incorporate the data into the estimator, it must be fused with the estimate

for sample k−d. This is accomplished in Algorithm 4, Line 1. The old state estimates

between samples k−d and k−1, which have been used for real-time feedback and were

produced via Algorithm 4, Line 4, are ignored, and the inertial data Sj, j ∈ {k−d, k}
which has been stored in memory, is used to propagate the state estimate forward to

sample k using Algorithm 4, Lines 2 and 3.

The major advantage of Algorithm 4 is that the delayed camera data is incor-

porated into the estimation process in the same way that it would be if the information
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Algorithm 4: EKF algorithm with delayed camera data

Input: Current inertial data Sk (valid at sample k), stored inertial data Sj

(valid at sample j), j ∈ {k− d, . . . , k}, camera data Ck (valid at sample
k − d), state estimate x̂k−d and x̂k−1, error covariance Pk−d and Pk−1.

Output: State estimate x̂k, error covariance Pk

if Camera measurement received at sample k then[
ξ̂k−d, Πk−d

]
= ekf correct(x̂k−d, Pk−d, Ck)1

for j = k − d + 1 to k do[
ξ̂j, Πj

]
= ekf predict(ξ̂j−1, Πj−1,Sj)2

end

[x̂k, Pk] =
[
ξ̂k, Πk

]
3

else
[x̂k, Pk] = ekf predict(x̂k−1, Pk−1,Sk)4

end

were not delayed. In other words, when camera information is received at sample k,

the resulting estimate x̂k and error covariance Pk are identical to the estimate and

error covariance that would have resulted if the camera information had been received

at sample k − d. The disadvantages of Algorithm 4 are the increased computational

and memory requirements. The inertial data Sj and the old state estimate x̂k−d and

error covariance Pk−d must be retained in memory. In addition, the prediction step

involving the inertial data Sj is performed twice (Lines 2 and 4) for every inertial

measurement, and d prediction steps must be performed at sample k.

3.5 Simulation Results

Simulations were conducted in Simulink with a six degree-of-freedom model

and full flight dynamics. The optical axis of the simulated camera was parallel to

the longitudinal axis of the MAV body frame. The locations of objects in the camera

field-of-view were calculated for use in the guidance strategy which uses the locations

of objects in the image frame to estimate range-to-obstacle and bearing-to-obstacle

as discussed in section 3.4.
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Figure 3.7: The simulation setup is shown. The solid lines are waypoint paths. The
squares are obstacles. The MAV starts on the upper right waypoint heading south. The
control law must avoid the obstacles and continue along the waypoint path afterward.

3.5.1 Single Obstacles

The obstacle locations for single obstacle avoidance are shown in Figure 3.7.

The obstacles are represented as squares. The autopilot uses waypoint path tracking

for guidance [38]. The waypoint paths are shown as solid lines in Figure 3.8. The

upper right waypoint is the starting location of the MAV. The MAV tracks the way-

points in a clockwise fashion. An obstacle is placed on each waypoint path such that

the reactive planner must maneuver around the obstacle or a collision will occur.

The obstacle avoidance strategy overrides the waypoint path tracker when

an obstacle is in the camera field of view and within approximately 70 meters of

the MAV. The waypoint path tracker resumes control after the obstacle has left the

camera field of view. The results of the simulation are shown in Figure 3.8. The path

of the MAV is shown by the dashed line. The obstacles are successfully avoided.

The estimates of range-to-obstacle and bearing-to-obstacle without time delay

are shown in Figures 3.9-3.10. The range always stays within 0.3 meters of the actual
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Figure 3.8: The results of a simulation are shown. The dashed line shows the path of
the MAV in tracking the waypoint path and avoiding obstacles. The MAV successfully
avoids the obstacles.
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Figure 3.9: The plots for actual range-to-obstacle (solid line) and its estimate (dashed
line) while approaching an obstacle are shown.
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Figure 3.10: The plots for actual bearing-to-obstacle (solid line) and its estimate
(dashed line) while approaching an obstacle are shown.

value. The bearing-to-obstacle always stays within 0.02 radians of the actual value.

These values are adequate to avoid obstacles in flight.

The range-to-obstacle and bearing-to-obstacle estimates under the effects of a

0.33 second time delay, but without the time delay EKF, are shown in Figures 3.11-

3.12. The purpose of these figures is to show how time delay can affect range and

bearing estimates. The error in range increases to 1 meter and the bearing to 0.3

radians.

The results of the time delay EKF are shown in Figures 3.13-3.14. The time

delay is set to 0.33 seconds. The range-to-obstacle shows a decrease in error down to

0.4 meters as a result of the time delay EKF. The bearing-to-obstacle error decreases

to 0.1 radians.

3.5.2 Multiple Obstacles

The multiple obstacle guidance strategy uses two gains, k2 to balance the

obstacles to the edges of the image plane, and k1 to drive ρd → 0. The gain k1 is

60



2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
45

50

55

60

65

70

Time (sec)

R
an

ge
 (

m
et

er
s)

Figure 3.11: The plots for actual range-to-obstacle (solid line) and its estimate
(dashed line) with time delay, but without the time delay EKF, while approaching
an obstacle are shown.
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Figure 3.12: The plots for actual bearing-to-obstacle (solid line) and its estimate
(dashed line) with time delay, but without the time delay EKF, while approaching an
obstacle are shown.
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Figure 3.13: The time delay EKF estimates for range-to-obstacle (dashed line) are
compared to the actual range values (solid line).
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Figure 3.14: The time delay EKF estimates for bearing-to-obstacle (dashed line) are
compared to the actual range values (solid line).
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Figure 3.15: The guidance strategy is flown in simulation with k1 = .001. The MAV
does not approach the perpendicular bisector strongly enough.

tuned to prevent overshoot while still converging in a reasonable time. The gain k2

balances driving ηm → 0 and ρd → 0. If either gain is too high, obstacles will go out of

the camera field-of-view as the MAV maneuvers, and the result will be an oscillation

as the obstacles move in and out of the camera field of view. The gains need balance

to allow the guidance law to maneuver away from the obstacles if |ρd| À 0.

Simulations for k1 = 0.001, k1 = 0.01, and k1 = 0.02 are shown in figures

3.15, 3.16, and 3.17 respectively. The waypoint path is shown by a dotted line while

the resulting trajectory is shown by a solid line. In Figure 3.15 the trajectory only

slightly approaches the perpendicular bisector of the obstacles implying ρd is not

driven to zero. Figure 3.16 shows a tendency toward the perpendicular bisector of

the obstacles. Figure 3.17 shows a strong tendency toward the perpendicular bisector.

The gain k2 = 0.01 was chosen for flight tests.

The purpose of driving ρd → 0 is to maneuver the MAV away from obstacles

when the approach to the obstacles is at an acute angle. This was tested in simulation

and is shown in Figure 3.18. If the guidance strategy were to only drive ηm → 0, the
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Figure 3.16: The guidance strategy is flown in simulation with k1 = .01. The MAV
approaches the perpendicular bisector slightly.

Figure 3.17: The guidance strategy is flown in simulation with k1 = .02. The MAV
strongly approaches the perpendicular bisector.
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Figure 3.18: The guidance strategy is flown in simulation with k1 = .01 with an ap-
proach to obstacles that must drive ρr−ρl → 0. The MAV approaches the perpendicular
bisector and returns to the waypoint path after passing the obstacles.

MAV would collide with the edges of the obstacle. Alternatively when both ηm → 0

and ρd → 0 simultaneously, the MAV maneuvers toward the bisector of the obstacles.

The simulation demonstrates the effectiveness of this approach.

To test the effectiveness of the 3D algorithm, we simulated a city with ob-

stacles where changing altitude to avoid obstacles is preferable to changing heading.

The initial conditions of the simulation were set such that the waypoint path went

through an overpass. To avoid collision, the UAV would have to change altitude be-

low the underpass and avoid the trees and pillars before continuing on the waypoint

path. The results of the simulation are shown in Figure 3.19. The spheres represent

the trajectory of the MAV and the cubes represent the waypoint path. The MAV

successfully navigates underneath the underpass, around the trees and pillars, and

emerges on the other side without collision to continue along the waypoint path.
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Figure 3.19: The 3D avoidance algorithm guides the UAV below an underpass and
around trees to avoid collision in an urban environment. The cubes represent the
waypoint path and the spheres represent the trajectory of the MAV.

3.6 Flight Tests

Flight tests were conducted using an air vehicle with a wing span of 48 inches

and two elevon control surfaces, as shown in Figure 3.21. The Kestrel autopilot from

Procerus Technologies [39], shown in Figure 3.22, navigated the MAV. The guidance

strategy in implemented in MATLAB on the ground station and roll commands are

transmitted to the autopilot. The camera is mounted parallel to the longitudinal

axis of the MAV. For obstacles, we used red cloth on a PVC pipe frame as shown in

Figure 3.20. Bearing and time-to-collision of the obstacles is estimated using color

segmentation.

3.6.1 Single Obstacles

The path of the MAV in flight avoiding a single obstacle is shown in Figure 3.24.

The waypoint path is represented by the solid line, the obstacle by the square, and

66



Figure 3.20: The obstacle is an elevated red banner. Color segmentation finds the
obstacle in the image plane.

Figure 3.21: The MAV has a wing span of approximately 48 inches and uses the
Kestrel autopilot.

Figure 3.22: The Kestrel autopilot onboard the MAV is compared to the size of a
quarter.
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Figure 3.23: The path of the MAV in flight tests. The solid line is the waypoint path
and the dashed line is the path of the MAV in flight. The yellow box is the obstacle.
The MAV avoids collision with the obstacle and continues along the waypoint path.

the flight path by the dashed line. The MAV avoided the obstacle by approximately

25 meters and continued along the waypoint path.

The range-to-obstacle and bearing-to-obstacle estimates compared with GPS

truth data are shown in Figure 3.24-3.25. The time delay is approximated at 0.1

seconds. The range estimate error is within 5 meters of the true value and the

bearing estimate error is within 0.01 radians after the filter converges.

3.6.2 Multiple Obstacles

A collision avoidance scenario using two obstacles is shown in figure 3.26.

The commanded waypoint path of the MAV is represented by the dashed line and

intersects one of the obstacles. The squares represent the obstacles. To avoid collision,

the MAV maneuvers away from the waypoint path. The trajectory of the MAV is

represented by the solid line. The trajectory deviates from the waypoint path and
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Figure 3.24: Range-to-obstacle estimates are compared with GPS truth data. The
dashed line represents the truth data and the solid represents the estimate.
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Figure 3.25: Bearing-to-obstacle estimates are compared with GPS truth data. The
dashed line represents the truth data and the solid represents the estimate.
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Figure 3.26: The flight path of the MAV avoiding two obstacles is shown. The solid
line is the waypoint path and the dashed line is the trajectory of the MAV.

does not intersect either obstacle. The MAV successfully avoids the obstacles in the

two passes shown in Figure 3.26.

3.7 Conclusion

In this chapter we have presented two methods for reactive obstacle avoid-

ance by using guidance strategies based on observations made in the image plane.

The first guidance strategy pushes obstacles to the edge of the image frame to avoid

collision with single obstacles. The second guidance strategy balances obstacles on

either side of the image plane, effectively flying between them. When multiple ob-

stacles are present, 2D and 3D algorithms determine between which two obstacles to

maneuver. State estimation utilizes obstacle location in the image plane to provide

estimates of range-to-obstacle and bearing-to-obstacle. The time delay EKF provides

filtered measurements of range-to-obstacles and bearing-to-obstacle. Both strategies

are demonstrated in simulation and flight tests.
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These are reactionary methods, implying that they override a trajectory tracker

in reaction to unknown obstacles. As unknown obstacles are discovered and mapped,

a higher level path planner may have time to plan a path around the obstacle as

the reactionary planner prevents direct collision. Future work includes integrating

the higher level tiers, the path planners, of the proposed obstacle avoidance system

described in Section 3.1.
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Chapter 4

Visual Tracking in Wind with Field of View Constraints

4.1 Introduction

Current autopilots are as small as two inches square, weigh less than an ounce,

and may be installed on aircraft with wingspans of less than twelve inches [40]. Small

aircraft using onboard cameras can avoid detection because they have a weak audio

signature and because the passive camera does not emit detectable energy. This chap-

ter focuses on autonomous vision-based target tracking, defined here as maintaining

a target in the field-of-view of an onboard camera with sufficient resolution for visual

detection.

Target tracking is an enabling technology for a wide range of potential military

and civilian uses. For example, enemy military movements can be automatically

tracked by a MAV. The Coast Guard can send a MAV to inspect and track unidentified

watercraft. Police can follow suspects without the need for ground vehicles.

Vision-based target tracking is difficult for several reasons. Processing visual

data often requires computational resources that are not available on small MAVs,

thus requiring a nearby ground station to acquire and process video. Transmitted

video is often noisy and intermittent because of transmission interference as well as

camera jitter resulting in dropped frames and thus in noise in the tracked position

of the target in the image frame. Therefore the tracking method must be robust to

target position error introduced by the camera. Another difficulty is that the target

may move outside the camera field-of-view, either because of camera motion caused

by gusts of wind, or because the target moves. This implies that the tracking method

must respond quickly to motion in the image plane.
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Previous work has addressed some of the problems described in the previous

paragraph. For example, Thomasson derived a solution to target tracking in wind [17]

by assuming an elevation controlled camera and constant wind. He found that the air

vehicle must fly an ellipse with the target located at one of its foci and with the major

axis of the ellipse aligned perpendicular to the direction of the wind. The calculation

of the dimensions of the ellipse is based on prior knowledge of the magnitude and

direction of the wind velocity. Given the kinematic constraints of the MAV, the wind

velocity, and the target velocity, an elliptical trajectory is generated for the MAV to

track. If the wind velocity and target velocity remain constant, the MAV will track

the target indefinitely, but since the method is open-loop, it will not be robust to

changes in wind, gusts, or target motion. This chapter improves on [17] by using a

feedback method that still results in elliptical orbits around the target.

Successful path planning feedback solutions to target tracking problems have

been demonstrated in [11–16,34,65]. The general approach is to generate paths based

on current knowledge. As information is acquired, whether about the wind, target, or

MAV, the path to track the target is regenerated. Reference [65] generates paths to a

landing position based on vision of a runway or other landmark. Moving targets are

tracked using dynamic planning in [11–16] and use gimballed cameras to help track

targets. Unfortunately, gimbals are not always feasible on small MAVs. Removing

the gimbal introduces additional kinematic constraints and path planning becomes

more difficult. Additionally, a gust of wind or a sudden change in the course of the

target may push it outside the field-of-view before a response is generated, possibly

causing the MAV to lose the target altogether. Fast response is necessary to prevent

the target from leaving the image plane. This chapter differs from previous work by

using visual feedback to maneuver the MAV so that the target remains in the camera

field-of-view.

A feedback control law is developed in [66] for target tracking from kinematic

laws similar to those developed in this chapter. The authors assume known target

velocity, zero wind, and a gimballed camera. The flight paths in [66] were circular

trajectories centered around the target. Circular, rather than elliptical, trajectories
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are possible because of the degrees of freedom provided by the gimbal. However, the

gimbal adds weight and may not be feasible on small MAVs. We build on these results

by developing a feedback law around the image plane and by removing the gimbal.

An adaptive feedback approach to target tracking using computer vision is

developed in [67,68]. A fixed angle camera is used to track a target and an adaptive

scheme estimates the target velocity and other parameters. This approach had good

success in simulation results. Adaptive control however often suffers from transients

that affect initial flight performance in hardware tests.

A common application of target tracking is target geo-location, which refers to

the process of inferring the inertial location of a target from the pose of the sensor

and the location of the target in the sensor frame [69, 70]. While target geo-location

provides a frame of reference for the guidance algorithm, target location error is intro-

duced from error in the estimated pose of the sensor and error in the estimated target

location in the sensor frame. If the guidance strategy is based on target movement

in the sensor frame rather than the inertial frame, the resulting system will be more

robust.

In this chapter a non-linear control law is developed using range-to-target and

bearing-to-target information obtained from target motion in the image plane. This

approach maintains the target in the image plane by providing quick reaction to target

movement or gusts of wind. As the target moves in the image plane, the control law

“pushes” the target back to the center of the camera field-of-view. An extended

Kalman filter (EKF) reduces noise in the estimates. The resulting trajectory in wind

as a result of the guidance law is an elliptical orbit. The goal is to maintain the target

in the camera field-of-view in the presence of wind and target motion. The results of

this chapter have been published in [71].

4.2 Problem Description and System Dynamics

4.2.1 Inertial Dynamics

The MAV is assumed to have an autopilot with inner control loops to command

roll angle, pitch angle, airspeed, and altitude. The constant altitude kinematic model
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is therefore given by

ṅ = Va cos ψ + Vw cos χw, (4.1)

ė = Va sin ψ + Vw sin χw, (4.2)

ψ̇ =
g

Va

tan φ, (4.3)

V̇a = αV (V c
a − Va), (4.4)

φ̇ = αφ(φ
c − φ), (4.5)

where (n, e)T is the North-East position of the aircraft, Vw, Va, V c
a , φ, and ψ are

the wind speed, airspeed, commanded airspeed, roll, and heading angles, χw is the

wind angle, g is the gravitational constant, and αφ and αV are positive autopilot

parameters. Assuming that the controlled roll dynamics are significantly faster than

the heading dynamics (a valid assumption for the MAVs that we use), we let

φc = arctan

(
ψ̇Va

g

)
, (4.6)

and think of ψ̇ as the commanded input.

The MAV is equipped with a camera pointed out of the right wing allowing

it to persistently orbit a target in the camera field-of-view. The camera is not gim-

balled and does not move during flight. We assume that vision processing software is

available to track the location of the target in the image plane.

Tracking moving targets in wind is difficult because the crab angle caused

by wind may move the target out of the camera field-of-view. Currently available

sensors on MAVs do not allow accurate measurement of the crab angle. GPS sensors

allow for measurement of the course angle. The idea pursued in this chapter is to

use the location of the target in the image plane to track the target. If motion in the

image plane is translated to motion in the aircraft body frame, then the target can

be maintained in the center of the image plane, thus removing the requirement to
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measure the crab angle and removing possible error from the transformation to the

world frame.

4.2.2 Relative Dynamics

The relative dynamics are best described by polar coordinates in the MAV

body frame as shown in Figure 4.1. Let ρ be the range-to-target and let η be the

ρ

wV
aV

ψχ −w

η η

ψρ�

Optical axis

Line of sight vector

Figure 4.1: Dynamics of the target are viewed from the MAV body frame.

bearing-to-target as measured from the optical axis. The equations of motion are

ρ̇ = −Va sin η − Vw sin (η + χw − ψ) , (4.7)

η̇ = ψ̇ − Va

ρ
cos η − Vw

ρ
cos (η + χw − ψ) , (4.8)

where ψ̇ is the input.
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4.2.3 Camera Geometry

The geometry for the lateral field-of-view of the camera is shown in Figure 4.1.

Since the camera is pointed out the right wing, the azimuth angle of the target in the

image is given by the state variable η. Let η̄ be the limit, due to the field-of-view of

the camera, on the azimuth angle. Therefore, to maintain the target in the camera

field-of-view, we require that

|η| ≤ η̄.

ρ

φ
eα

eη
h

1tan
h

ρ
−    

Optical axis

Line of sight vectorϕ

Figure 4.2: Longitudinal view of camera geometry.

The camera geometry in the longitudinal direction is shown in Figure 4.2,

where φ denotes the roll angle of the MAV, αe is the (constant) elevation angle of

the optical axis relative to the body frame, and η̄e is the field-of-view limit on the

elevation angle. The angular deviation of the line of sight vector from the optical axis
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is given by

ϕ = tan−1

(
h

ρ

)
− φ− αe. (4.9)

To ensure that the target remains in the camera field-of-view, we require that

|ϕ| ≤ η̄e.

4.2.4 Control Objective

The control objective is to minimize the distance to the target while simul-

taneously maintaining the target in the camera field-of-view, and to do this within

specified roll angle limits. Formally, the control objectives are:

1. If |η(0)| ≤ η̄, ensure that |η(t)| ≤ η̄ for all t ≥ 0, where η̄ is the lateral field-of-

view of the camera.

2. If |ϕ(0)| ≤ η̄e, ensure that |ϕ(t)| ≤ η̄e for all t ≥ 0, where η̄e is the longitudinal

field-of-view of the camera.

3. Ensure that |φ(t)| ≤ φ̄ where φ̄ is the maximum allowable roll angle.

4. Minimize the stand-off distance to the target ρ(t) to maximize the resolution of

the image in the camera frame.

4.3 Target Motion in the Image Plane

4.3.1 Maintaining the Target in the Lateral Field-of-View

To derive a strategy to maintain the target in the camera field-of-view, consider

the Lyapunov function candidate

W1 =
1

2
η2.

Differentiating W1 along solutions of (4.8) gives

Ẇ1 = η

(
ψ̇ − Va

ρ
cos η − Vw

ρ
cos(η + χw − ψ)

)
.
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Selecting the heading rate as

ψ̇ =
Va

ρ
cos η +

Vw

ρ
cos(η + χw − ψ)− k1η + ν, (4.10)

results in

Ẇ1 = −k1η
2 + ην

≤ −k1η
2 + |η| |ν|

= −(1− θ)k1η
2 +

[|η| |ν| − θk1η
2
]
,

where θ ∈ (0, 1) is a selectable gain. Therefore, Ẇ1 is negative definite if |ν| < k1θ |η|,
resulting in the following theorem.

Theorem 4.3.1 If ψ̇ is given by Equation (4.10), where ν satisfies

|ν| < k1θ |η| , (4.11)

for some θ ∈ (0, 1), then |η(0)| ≤ η̄ implies that |η(t)| ≤ η̄.

Proof: Since Ẇ1(η̄) and Ẇ1(−η̄) are both negative, the set {−η̄ ≤ η ≤ η̄} is positively

invariant.

The signal ν will be used later in this section to minimize ρ(t).

4.3.2 Minimizing the Range-to-Target

The signal ν can be used to minimize the average value of ρ subject to con-

straint (4.11). In this section we will derive two possible strategies for selecting ν.

The first strategy is based on a continuous time derivation. Toward that end, let

W2 =
1

2
(ρ + λρ̇)2,
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where λ > 0. Minimizing W2 will minimize the deviation of ρ from the origin.

Differentiating W2 gives

Ẇ2(ν) = (ρ + λρ̇)(ρ̇ + λρ̈(ν)),

where

ρ̈(ν) =(−Va cos η)ν +

[
k1Vaη cos η +

VwVa

ρ
cos η cos(η + χw − ψ) (4.12)

+
V 2

w

ρ
cos2(η + χw − ψ)

]
, (4.13)

is obtained by differentiating Equation (4.7) and substituting Equation (4.8). There-

fore ν can be selected as

ν∗ = arg min0≤|ν|≤k1θηẆ2(ν), (4.14)

where θ ∈ (0, 1).

The second strategy for picking ν is based on a discrete time version of the

dynamics. Substituting Equation (4.10) into Equation (4.8) gives

η̇ = −k1η + ν. (4.15)

Given a sample rate T , the sampled-data version of (4.15) is

ηk+1 = e−k1T ηk + (1− e−k1T )νk.

Using an Euler approximation, the sampled-data equivalent of (4.12) is

ρk+2 = ρk+1 + T [−Va sin ηk+1 − Vm sin(ηk+1 + χw − ψk+1)] ,
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where

ρk+1 = ρk + T [−Va sin ηk − Vm sin(ηk + χw − ψk)] ,

ψk+1 = ψk + T

[
Va

ρk

cos ηk+

Vw

ρk

cos(ηk + χw − ψk)− k1ηk + νk

]
.

Therefore, νk can be selected as

ν∗k = arg min|νk|≤k1θηρk+2.

4.3.3 Maintaining the Target in the Longitudinal Field-of-View

When the MAV changes roll angle, the target moves in the longitudinal camera

field-of-view. While some movement is expected and unavoidable, we need to find a

set of sufficient conditions which guarantee that the target will not leave the camera

field-of-view. The conditions for the longitudinal field-of-view are hard to find because

the target may leave the camera field-of-view if the initial conditions are extreme, such

as when the initial conditions place the target in the corner of the camera field-of-view.

One possible method is to solve the differential equations for all initial conditions and

to determine which initial conditions do not result in the target leaving the camera

field-of-view. However, the differential equations are difficult to solve analytically.

An alternative is to simulate a reasonable range of initial conditions to determine

a sufficient gain for each set of initial conditions. If the worst-case conditions are

simulated, then a sufficient set of gains can be found to maintain the target in the

camera field-of-view. In this section, we simulate a set of worst-case conditions to

find bounds on the gains to maintain the target in the longitudinal field-of-view.

To simulate a set of worst case conditions, we set η = η̄ = 40◦, η̄e = 40◦,

αe = 30◦, φ̄ = 30◦, and a constant wind Vw blowing from the MAV to the target as

shown in Figure 4.3. The initial distance to target is selected so that the target is

on the edge of the longitudinal field-of-view and would leave the field-of-view if the
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Figure 4.3: The simulation finds the minimum initial distance to the target by using
a set of worst case scenarios. The MAV is initialized with η = η̄ and such that the
wind direction pushes the MAV towards the target. This scenario is used to find the
minimum distance so that the target does not leave the camera field-of-view.

MAV banked to turn away from the target. Each instance of the simulation adds

one meter to the initial distance to target until the MAV can successfully converge to

an orbit around the target without the target leaving the camera field-of-view. The

gain k and wind Vw are varied to find a wide range of conditions. The results are

shown in Figure 4.4. To apply the results to a wide range of vehicles, the units are

nondimensionalized by dividing by Va or h as required.

Since the results are close to linear, we can estimate a linear upper bound using

a plane. The plane shown in Figure 4.5 was found using least squares estimation and

biased above the data points. It estimates a sufficient set of initial conditions to

maintain the target in the camera field-of-view. The plane is described as a function

of k and Vw by

ρ0min > (3.9037)
kh2

Va

− (0.0291)
Vwh

Va

+ (0.4911). (4.16)

Equivalently, the plane can also be described as a function of ρ0min and Vw by
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Figure 4.4: Results of simulation experimentation show the gain k given a minimum
initial distance from target (ρ0min) and constant wind Vw.

0.5 ≤ k ≤ (0.2562)
ρ0minVa

h2
+ (0.0075)

Vw

h
− (0.1258)

Va

h2
. (4.17)

The wind is a constant and must be chosen based on expected environmental con-

ditions. Given the wind speed, the minimum initial distance from the target can be

chosen to determine the required gain k.

The same set of simulations determine the smallest distance from target ρmin

resulting from the gain k and wind Vw when starting from the initial distance ρ0min.

If the MAV starts with an initial distance of ρ0min, then the distance to target will

not be less then ρmin during the flight. The results are shown in Figure 4.6. The gain

and wind chosen in Equation (4.16) determine the smallest distance to target ρmin in

Figure 4.6.

Given the value ρmin determined in simulation, The following theorem guar-

antees that the target will stay in the longitudinal field-of-view.
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Figure 4.5: A plane estimates an upper bound to the experimental distances. The
plane provides a simple mechanism of finding a sufficient k.

Theorem 4.3.2 If the design constraints

φ̄ ≥ tan−1

(
h

ρmin

)
− η̄e − αe, (4.18)

φ̄ ≥ −η̄e + αe, (4.19)

g

Va

tan
(−φ̄

) ≤ −Va cos η̄ + Vw

ρmin

− k1 (1− θ) η̄, (4.20)

g

Va

tan φ̄ ≥ Va cos η̄ + Vw

ρmin

, (4.21)

g

Va

tan (η̄e − αe) ≥ Va cos η̄ + Vw

ρmin

, (4.22)

g

Va

tan

(
tan−1

(
h

ρmin

)
− η̄e − αe

)

≤ −Va cos η̄ + Vw

ρmin

− k1 (1− θ) η̄, (4.23)

are satisfied and
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Figure 4.6: Results of simulation experimentation show the smallest distance from
target (ρmin) given a gain k and constant wind Vw.

ψ̇ =
Va

ρ
cos η +

Vw

ρ
cos (η + χw − ψ)− k1η + ν, (4.24)

and Equation (4.16) is satisfied, then the target will stay in the longitudinal field-of-

view.

Proof:

The upper and lower bounds of the roll angle to maintain the target in the

longitudinal field-of-view are found geometrically from Figure 4.2 as

φvup = tan−1

(
h

ρ

)
+ η̄e − αe, (4.25)

φvlo = tan−1

(
h

ρ

)
− η̄e − αe. (4.26)

86



The camera field-of-view is not the only constraint on the roll angle. The physical

roll angle limits also constrain the roll. The physical roll constraints are added to the

roll bounds as

φup = min

(
tan−1

(
h

ρ

)
+ η̄e − αe, φ̄

)
, (4.27)

φlo = max

(
tan−1

(
h

ρ

)
− η̄e − αe,−φ̄

)
. (4.28)

We first need to show that these constraints are consistent, φlo ≤ φup, by

separating the limits into four inequalities. The first inequality

−φ̄ ≤ φ̄, (4.29)

is always true. The second

tan−1

(
h

ρ

)
+ η̄e − αe ≥ tan−1

(
h

ρ

)
− η̄e − αe

⇔ η̄e ≥ −η̄e, (4.30)

is also always true. The third inequality

φ̄ ≥ tan−1

(
h

ρ

)
− η̄e − αe

⇐ φ̄ ≥ tan−1

(
h

ρmin

)
− η̄e − αe, (4.31)

and fourth inequality
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−φ̄ ≤ tan−1

(
h

ρ

)
+ η̄e − αe

⇐ φ̄ ≥ −η̄e + αe, (4.32)

are design constraints, given by Equations (4.18) and (4.19).

The next step is to constrain the guidance strategy to maintain φlo(t) ≤ φ(t) ≤
φup(t). First find the upper and lower bounds of the control

ψ̇ =
Va

ρ
cos η +

Vw

ρ
cos (η + χw − ψ)− k1η + ν, (4.33)

as

−Va cos η̄ + Vw

ρmin

− k1η + ν ≤ ψ̇ ≤ Va cos η̄ + Vw

ρmin

− k1η + ν. (4.34)

Using the coordinated turn ψ̇ = g
Va

tan φ assumption to relate the heading rate to the

roll angle gives

−Va cos η̄ + Vw

ρmin

− k1η + ν ≤ g

Va

tan φ

≤ Va cos η̄ + Vw

ρmin

− k1η + ν. (4.35)

If g
Va

tan φlo is less than the lower bound, then the target will not move below the bot-

tom of the longitudinal field-of-view or violate the lower physical roll bound. There-

fore, we constrain g
Va

tan φlo to be less than the lower bound in (4.35) by setting

g

Va

tan φlo ≤ −Va cos η̄ + Vw

ρmin

− k1η + ν. (4.36)
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Using the guidance strategy in Section 4.3.2, substitute ν = k1θη into (4.36) and

simplify yielding

g

Va

tan φlo ≤ −Va cos η̄ + Vw

ρmin

− k1 (1− θ) η̄. (4.37)

There are two possible bounds for φlo described in (4.28). Equation (4.37) must satisfy

both. To satisfy those bounds, substitute the two limits for φlo from Equation (4.28)

into (4.37) which yields the two design constraints (4.19) and (4.23).

Similarly, if g
Va

tan φup is always greater than the upper bound of (4.35), then

the target will not move above the top of the longitudinal field-of-view or violate the

upper physical roll bound. Constrain g
Va

tan φup to be greater than the upper bound

by setting

g

Va

tan φup ≥ Va cos η̄ + Vw

ρmin

− ν.

(4.38)

Again, minimize the distance to target by setting ν = k1θη to obtain

g

Va

tan φup ≥ Va cos η̄ + Vw

ρmin

− k1η + k1θη.

(4.39)

The bound can be made tighter by removing the last two terms to get

g

Va

tan φup ≥ Va cos η̄ + Vw

ρmin

. (4.40)

There are two possible bounds for φup described in (4.27). Equation (4.40) must

satisfy both. To satisfy those bounds, substitute the two limits for φup from Equa-

tion (4.27) into (4.40). This results in two more design constraints given in Equa-

tions (4.21) and (4.22).
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If Equations (4.31), (4.32), (4.20), (4.21), (4.22), and (4.23) are satisfied, then

the target will be maintained in the longitudinal field-of-view, i.e. φlo(t) < φ(t) <

φup(t).

4.3.4 Resulting Flight Paths

Ref [17] shows that the path of an air vehicle tracking a target in wind with a

roll only camera is an elliptical orbit if η = 0. To show that our approach produces

a similar result, divide (4.7) by (4.10), letting η = ν = 0 to get

dρ

dψ
= ρ

−Vw sin(χw − ψ)

Va + Vw cos(χw − ψ)
,

which, as pointed out in [14], is an elliptical orbit with eccentricity ε = Vw

Va
. One of

the advantages of our approach is that rather than forcing the target to be located

along the optical axis, the target is allowed (through the selection of ν) to move in

the image plane to facilitate more circular orbits in wind. An interesting question

is whether circular orbits, where the target remains in the camera field-of-view, are

possible in wind. The following theorem provides explicit conditions.

Theorem 4.3.3 Circular orbits that maintain the target in the field-of-view are pos-

sible if

tan η̄ ≥ max
ψ∈[0,2π]

∣∣∣∣∣
Vw

Va
sin(χw + ψ)

1 + Vw

Va
cos(χw + ψ)

∣∣∣∣∣ .

Proof: Dividing (4.7) by (4.10) gives

dρ

dψ
= ρ

−Va sin η − Vw sin(η + χw − ψ)

Va cos η + Vw cos(η + χw − ψ)− k1η + ν
.

When the orbit is circular, dρ
dψ

= 0, or in other words,

−Va sin η − Vw sin(η + χw − ψ) = 0.
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Solving for tan η gives

tan η = −
Vw

Va
sin(χw + ψ)

1 + Vw

Va
cos(χw + ψ)

.

Maximizing the right hand side over all possible values of ψ gives the desired result.

4.4 Time-Delayed State Estimation

The proposed system utilizes computer vision to track obstacles and provide

range estimates to those obstacles. As shown in Figure 4.7, vision processing is

implemented on the ground station. As a result, the time delay introduced by sending

the video to the ground, processing, and returning the results, may be significant

enough to adversely affect the guidance strategy. We address this problem using the

time delay EKF previously described in Section 3.4.1.

4.5 Simulation Results

Simulations were conducted in Simulink using a six degree-of-freedom model.

We used an emulated Kestrel autopilot [39] with airspeed set to Va = 13 m/s. The

location and size of the target in the camera image plane were calculated and delayed

to emulate vision processing. The location of the target in the image plane was filtered

by the delayed EKF and used by the guidance strategy described in Section 4.3. The

system architecture is shown in Figure 4.7.

The results of a stationary target in zero wind are shown in Figure 4.8 (a).

Without wind, the expected shape of the orbit is circular. Figure 4.8 (a) demonstrates

the flight path of the MAV converging to a circular orbit as predicted. The circular

orbit is the result of a guidance loop without a priori calculation of a flight path.

The gain k1 changes the rate of convergence to the orbit. To examine the

effect of k1 on the convergence rates, the gains were set to k1 = 1.5 in Figure 4.8 (a),

k1 = 3.0 in Figure 4.9 (a), and k1 = 5.0 in Figure 4.10 (a). While a larger gain results

in faster convergence, it also induces more target movement in the camera frame.

The corresponding target motion in the camera frame are shown in Figures 4.8 (b),
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Figure 4.7: A block diagram of the system architecture. The elements in gray are
implemented on-board the aircraft, the vision processing, delayed EKF, and guidance
law are implemented on the ground station.
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Figure 4.8: (a) Simulated flight path using the guidance strategy in Section 4.3 in
zero wind. The MAV’s initial configuration allows the camera to capture the target.
The MAV navigates onto a stable orbit around the target. The gain is set to k1 = 1.5.
(b) The corresponding motion of the target in the image plane.
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Figure 4.9: (a) Simulated flight path in zero wind with gain k1 = 3.0. (b) The
corresponding motion of the target in the image plane.
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Figure 4.10: (a) Simulated flight path in zero wind with gain k1 = 5.0. (b) The
corresponding motion of the target in the image plane.

4.9 (b), and 4.10 (b). To balance convergence rate with target movement, we chose a

gain of k1 = 3.0 for flight tests.

The results of a stationary target in a constant wind of Vw = 5 m/s to the

North are shown in Figure 4.11 (a). Notice that the flight path converges to an ellipse

as was predicted in [17], without explicit path planning. The corresponding motion

of the target in the image plane is shown in Figure 4.11 (b).
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Figure 4.11: (a) Simulated flight path result with wind of 5m/s from the North, and
parameters set to k1 = 5.0, η̄ = 0, φ̄ = 20◦. (b) The corresponding motion of the target
in the image plane.
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Figure 4.12: (a) Simulated flight path result with wind of 5m/s from the North, and
parameters set to k1 = 5.0, η̄ = 30, φ̄ = 20◦. (b) The corresponding motion of the
target in the image plane.
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Figure 4.13: (a) Simulated flight path with wind of 5m/s from the North, and pa-
rameters set to k1 = 5.0, η̄ = 0, φ̄ = 30◦. (b) The corresponding motion of the target
in the image plane.

The constraint η̄ bounds the movement of the target in the camera field-of-

view. If the bound is relaxed, the target can move more in the camera field-of-view.

The result is a more circular orbit, or an ellipse with a lower eccentricity. Fig-

ures 4.11 (a) and 4.12 (a) show the flight path for η̄ = 0◦ and η̄ = 30◦, respectively.

The eccentricity of the ellipse decreases from 0.42 for η̄ = 0◦ to 0.33 for η̄ = 30◦.

In addition, the target motion in the camera field-of-view increases as shown in Fig-

ures 4.11 (b) and 4.12 (b).

The constraint φ̄ bounds the roll angle of the MAV. As φ̄ increases, the MAV

can fly a smaller orbit and converge more quickly to orbits because of the increased

turning rate limit. The effect of φ̄ is shown in Figure 4.13 (a) with φ̄ = 30◦, η̄ = 0◦

and 4.14 (a) with φ̄ = 30◦, η̄ = 30◦. In Figure 4.13 (a), the constraint η̄ = 0◦ prevents

the MAV from increasing the roll angle to φ̄. An increase in the roll angle would also

affect η, therefore η̄ is the active constraint. However, when η̄ = 30◦, the roll angle

becomes the active constraint. The orbit, shown in Figure 4.14 (a), becomes smaller

as expected. In addition, the target motion in the camera field-of-view increases as

shown in Figure 4.14 (b).
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Figure 4.14: (a) Simulated flight path with wind of 5m/s from the North, and pa-
rameters set to k1 = 5.0, η̄ = 30, φ̄ = 30◦. (b) The corresponding motion of the target
in the image plane.

Figure 4.15: The MAV has a wing span of approximately 48 inches and uses the
Kestrel autopilot from Procerus Technologies.

4.6 Flight Results

Flight tests were conducted using a MAV with a 48 inch wing span with

two elevon control surfaces as shown in Figure 4.15, and the Kestrel autopilot from

Procerus Technologies [39]. A camera was mounted on the MAV at an azimuth angle

of 90◦ (out the right wing) and an elevation angle of 30◦, as shown in Figure 4.16.

The wind speed during the flight tests was approximately 2 meters per second. The

parameters were k1 = 3, η̄ = 10◦, and φ̄ = 15◦.

The video was transmitted to the ground station via a 2.4 GHz analog trans-

mitter, where a color segmentation algorithm was used to locate the target in the
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Figure 4.16: The camera is mounted under the MAV at an elevation angle of 30◦.

Figure 4.17: The ground station processes video by color segmentation to find the
location of the red cloth.
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Figure 4.18: Flight results using the algorithm described in Section 4.3 in constant
ambient wind of approximately Vw = 2m/s.

image frame. The target was a red cloth on the ground. The color segmentation

algorithm used thresholds to remove all colors other than red, and returned the lo-

cation of the largest patch of red. A representative image from the video sequence is

shown in Figure 4.17.

The resulting flight path of the MAV is shown in Figure 4.18 and the target

motion in the camera field-of-view is shown in Figure 4.19. The ambient wind resulted

in an elliptical orbit with eccentricity ε = 0.17. The theoretical prediction for a wind

of Vw = 2 meters per second is ε = Vw

Va
= 0.15. The guidance algorithm presented

in this chapter successfully maintained the target in the field-of-view of the camera

throughout the flight test.

4.7 Conclusion

In this chapter we have derived equations of motion for a target in a MAV

body frame of reference and the image plane. In addition we have shown a feasible

non-linear guidance law to track the target using image plane target movement using
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Figure 4.19: The motion of the target in the image during a flight test is shown.

a side-mounted camera. Movement in the image is used to “push” the target in the

image plane to maintain it in the camera field-of-view. Simulation and flight results

verify the effectiveness of the approach.
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Chapter 5

A Priori Collision Avoidance Path Planning Using Branch and
Bound Tree Search

5.1 Introduction

Micro air vehicles (MAVs) have received increasing amounts of attention in the

last few years. Low cost and ease of use give them application for military and civilian

purposes alike. Small onboard autopilots allow for accurate autonomous navigation

removing the need to place pilots in danger. The next logical step is deployment of

teams of MAVs to cooperatively and synergistically accomplish a series of tasks.

A cooperative team of MAVs has the potential to produce greater and more

efficient results than a team of independent MAVs. They can adapt to changing

situations, replan task assignments when a MAV is lost, communicate over large

areas, and quickly complete scenarios. We would like to use as much of that potential

as possible. The goal of this paper is to produce a method of task assignment such

that we can produce a flight plan a priori and have the ability to replan mid-flight to

adapt to changing situations.

Many military intelligence and reconnaissance mission scenarios involving teams

of MAVs have been introduced in the past few years. Each scenario involves vary-

ing degrees of coupling between the goals of team coordination, task priority, and

planning feasible paths to accomplish tasks. Finding a general optimal solution is

difficult. Many methods result in combinatorial problems that are difficult to search.

Algorithms in [54] and [72] use mixed integer linear programming to solve the com-

binatorial problem. Both methods involve a high amount of computation and cannot

integrate collision avoidance and other coupled factors without adding to computa-

tion time. The capacitated transhipment network solver and iterated capacitated
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transhipment network solver in [73] and [74] respectively decouple the problem to

produce suboptimal solutions.

The desired solution must have the ability to couple all constraining aspects of

the problem, including path planning and collision avoidance, and be expandable to

include other desired constraints. The branch and bound tree search described in [75]

is expandable to include additional constraints. We propose to improve the algorithm

to include additional costs to complement the distance cost already introduced in [75].

We will show that the combined additional costs produce near optimal results while

successfully adding needed constraints.

5.2 Problem Description

Consider the proposed COUNTER solution for intelligence and reconnaissance

missions. The COUNTER research program proposes to have one operator control

one SAV (small air vehicle) and four MAVs as they perform the mission. The mission

is to find and investigate objects in the city in order to locate targets. The task for the

SAV is to orbit above the city providing video to the operator and acting as a relay

for the MAVs. The MAVs are tasked to visit selected objects in the city in order to

convict or acquit those objects as being targets. Since there are many UAVs involved

and only one operator, the algorithms developed for COUNTER were designed to

utilize the MAVs to maximize the number of objects acquitted or convicted.

COUNTER is a cooperative control environment in which MAVs must cooper-

ate together to quickly observe objects. The cooperative environment involves many

coupled problems that may not be so obvious at first glance including minimizing

distance travelled, collision avoidance, staggered target arrival (to optimize operator

efficiency), and revisiting poorly observed targets. This paper attempts to solve the

coupling of minimizing distance travelled, collision avoidance, and staggered target

arrival. The other coupled parts of the problem may also be solvable by the same

methods, but are not explored here. The results of this chapter have been published

in [76].
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5.3 Branch and Bound Algorithm

The Branch and Bound tree search is described fully in [75] and is presented

here for completeness.

Combinatorial problems can be completely represented by a decision tree. A

decision tree is defined by a set of nodes T = (N, E) where N is the set of all nodes

and E is the set of all edges. Each edge is directed, meaning it can only be traversed

in one direction. Every node can have parent nodes from which an edge is traversed,

or children node to which an edge is traversed. The root node is the single node

without a parent node from which all nodes derive. Leaf nodes are nodes without

children nodes. The root node begins the tree and the leaf nodes terminate the tree.

The leaf nodes represent possible solutions.

Each node in the tree is given a cost based on the scenario it represents. The

cost function determines which solutions are optimal. The leaf node with the lowest

cost is considered the optimal solution.

Branch and bound assumes the cost of nodes monotonically increases, i.e. all

children of a node have a higher cost than the node itself. Using a best first search, a

feasible solution can quickly be found. Any nodes with a larger cost than the initial

solution can be pruned from the tree significantly reducing the number of nodes to

expand. Large parts of the tree can be pruned. If a new leaf node with a lower cost

is found, it becomes the current optimal solution with which to compare other nodes.

The search can continue till either the tree is completely searched and the optimal

solution is found, or some time limit is reached at which the current best solution is

used.

In the COUNTER scenario, the root node represents all the vehicles and tar-

gets without any assignments. Each edge traversal adds one target assignment to

a vehicle. The leaf nodes represent complete sets of target assignments to vehicles.

In [75], the cost of a node is the maximum distance flown by any one MAV. The

optimal solution minimizes the maximum distance flown by any one MAV.
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5.4 Cost Function Algorithm

Our goal is to find a set of target assignments that minimize the distances

traveled by any of the vehicles while maintaining a large distance between MAVs and

staggering the MAVs arrival at objects. The J2 (min-max) cost function of [75]

J2 = max
i∈U

Ri > 0, (5.1)

where Ri is the distance traveled by MAV i, is used to minimize the distance traveled

by any of the MAVs. In order to meet the other objectives of the goal, we will add one

cost representing the proximity distance to other MAVs (collision cost) and another

representing the minimum time between target arrivals (arrival time cost).

5.4.1 Collision Cost

We assume all paths flown by MAVs between targets are Dubbin’s paths [77].

Each path consists of turns of radius R and straight lines. Lines and turns will be

considered different waypoints to simplify calculations even though they represent

a single Dubbin’s path. The following descriptions estimate the minimum distance

between MAVs flying combinations of straight line paths and turning paths.

Two Straight Line Paths

Straight line paths can be described perimetrically by:

m̄i = wi,j −wi,j−1,

mi =
m̄i

‖ m̄i ‖ =
wi,j −wi,j−1

‖ wi,j −wi,j−1 ‖ ,

and

ri = Vitmi + wi,j−1, (5.2)
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where j is the current waypoint and t = 0 when ri = wi,j−1. Equation 5.2 represents

a MAV perfectly tracking a waypoint path starting at wi,j−1 when t = 0 and finishing

at wi,j when t =
‖wi,j−wi,j−1‖

V1
.

We want to know the distance between two MAVs at any point along the path,

‖ r1 − r2 ‖2= d2,

‖ (V1tm1 + w1,j−1 − V2tm2 −w2,j−1) ‖2= d2. (5.3)

and take the minimum. The minimum can be found by taking the derivative and

setting equal to zero. The result is:

t =
V1m

T
1 (w2,j−1 −w1,j−1) + V2m

T
2 (w1,j−1 −w2,j−1)

V 2
1 mT

1 m1 + V 2
2 mT

2 m2 − 2V1V2mT
1 m2

. (5.4)

The minimum distance can be found by substituting t into

d =‖ r1 − r2 ‖ . (5.5)

Turn and Straight Line Path

The minimum distance between a turn and a straight path is somewhat more

difficult algebraically. A gradient descent could be useful for accuracy, but introduces

a large amount of computation. We can estimate the proximity of a turn path and

a straight path to within an error of 2R by finding the geometric intersections of the

paths and checking the times of those intersections.

Consider the equations of a circle and line:

(re − w1,j−1,e)
2 + (rn − w1,j−1,n)2 = (R + rd)

2, (5.6)
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and

rn = m(re − w2,j−1,e) + w2,j−1,n. (5.7)

These can be simultaneously solved and the minimum can be found using the

quadratic equation. Substitute

a = 1 + m2, (5.8)

b = 2(w2,j−1,n − w1,j−1,n −mw2,j−1,e)− 2w1,j−1,e, (5.9)

and

c = (w2,j−1,n − w1,j−1,n −mw2,j−1,e)
2 + w2

1,j−1,e − (R + rd)
2, (5.10)

into

re =
−b±√b2 − 4ac

2a
. (5.11)

rn can be found by substituting re back into equation 5.7. If the result is imaginary,

then the circle and line don’t intersect. If the intersection isn’t in the time frame of

the waypoints, then they don’t intersect. In these cases, the distance from the center

of the circle to the MAV on the waypoint path in the correct time frame can estimate

the distance.

Two Turns

For the distance between two turns, the distance between the circles is sufficient

if they are in the same time frame. This introduces a maximum error of 4R.
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Cost Function

The cost function needs an adjustable parameter such that a desired minimum

distance is imposed on the MAVs. An inverse square distance relationship allows the

cost to greatly increase as distance decreases. Multiplication by β adds a tunable pa-

rameter to influence the distance at which the cost becomes significant. The collision

cost function is,

JCC =
β

mini,j (di,j)
2 > 0, {i, j} ∈ U, i 6= j. (5.12)

5.4.2 Arrival Time Cost

The arrival time at each target is calculated using the length of the path

travelled to the target and a constant velocity assumption. We find the minimum

difference between any two arrival times and substitute that into an inverse square

formula for the cost. Once again we multiply the result by a constant γ to tune the

cost. The arrival time cost is,

JAT =
γ

mini,j (ti,j)
2 , {i, j} ∈ U, i 6= j, (5.13)

where ti,j is the difference in arrival time between targets i and j.

5.4.3 Combined Arrival Time and Collision Cost

The combined cost function combines the min-max cost with the two new costs

into one function. The constants β and γ in Equation 5.12 and Equation 5.13 allow

for tuning. The function is,

J = J2 + JCC + JAT . (5.14)
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5.5 Simulation

We ran 100 Monte Carlo simulations to demonstrate the effectiveness of the

collision cost, arrival time cost, and combined cost. Each run consists of three vehicles

and seven targets. The number of targets and vehicles is small to allow time to search

the tree for the optimal solution in each run. The optimal solution could then be

compared with the time limited branch and bound solution.

Each run used a uniform distribution to place targets and vehicle starting

positions on square map. The map size is 3,000 feet by 3,000 feet for all calculations.

However, simulations were also run on maps of up to 7,000 feet by 7,000 feet to show

the path planner effectiveness at larger map sizes. Each MAV is assumed to have the

same constant velocity.

The path planner was executed to the optimal solution four times for each

run, once for min-max cost, collision cost, arrival time cost, and combined cost. With

each cost function computed on the same data, they could be compared with more

accuracy. We chose for parameters β = 1000000 and γ = 15000 to balance the costs

based on simulation performance.

5.6 Results

5.6.1 Collision Cost

Our goal with the collision cost was to increase the proximity distance of the

MAVs with minimal change in the min-max cost. The distance between MAVs was

increased with an average of 90% compared to the min-max cost runs. The average

increase in min-max cost was 0.8%.

Figure 5.1 shows the distance increase for each of the 100 runs with the per-

centage increase in figure 5.2. The runs are ordered with increasing distance. Most

of the runs result in a significant increase in distance. The runs without change in

distance already have a large distance between MAVs, with the smallest at 300 feet.

The difference in min-max cost between the two runs is displayed in figure 5.3.

Little difference is made in min-max cost between cost functions. Notice the two
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Figure 5.1: The minimum distance between MAVs over a 100 tours is shown.
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Figure 5.2: The percentage increase in the minimum distance from the min-max cost
run to the collision cost run.
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Figure 5.3: The difference in the min-max costs between the min-max run and the
collision cost run.

spikes in the graph. This is the result of two MAVs with starting positions in close

proximity. If the MAVs have similar starting positions, the planner will remove one

of them from flight to prevent collision. This is expected, however undesirable.

All of the above calculations result from tree searches to find the optimal

solution. The optimal solution can take large periods of time to find due to the

combinatorial nature of the problem. However, the branch and bound search can find

a near optimal solution in tenths of a second. Figure 5.4 shows the increase in average

minimum distance across the runs as nodes are processed. A larger amount of nodes

implies a larger amount of time to process. The minimum distance from the collision

cost runs tends to increase as more nodes are processed. Notice the minimum distance

in the min-max costs runs show little change over number of processed nodes.

5.6.2 Arrival Time Cost

The arrival time cost has similar results to the collision cost. Figure 5.5 shows

the arrival time difference between the arrival time cost function and the min-max
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Figure 5.4: The average minimum distance between MAVs as nodes are processed is
shown. The collision cost results in increased distance between MAVs.
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Figure 5.5: The minimum difference in arrival times between targets is plotted for
each run. The arrival time cost function produces arrival time differences better than
or equal to the min-max cost function.
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Figure 5.6: The minimum difference in arrival times between targets is plotted against
number of nodes processed.

cost function. The arrival time cost function results in arrival time differences greater

than or equal to that of the mix-max cost function. Arrival time differences are

increased by 133%. The min-max cost is increased by 0.06%.

The arrival time difference is plotted with the nodes processed in figure 5.6.

Once again, they are similar to the results of the collision cost. The initial solution

has an initial increase in arrival time difference and the solution improves over time.

5.6.3 Combined Cost

The combined cost has the potential to improve proximity of the aircraft and

stagger target arrival times while keeping the distance flown by the MAVs close to

optimal. The performance of these goals can be measured by comparing the results

of the combined cost function to that of the other cost functions.

Figure 5.7 compares the expected proximity distance of the MAVs as nodes

are processed. The combined cost function results are similar to the results of the

collision cost function. Adding another cost had very little effect on proximity results.
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ber of nodes processed. The arrival time and combined cost functions have similar
results.
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The differences in target arrival times are shown in figure 5.8. The combined

cost function results are similar to the arrival time cost function. The combined cost

has done little to negatively affect the target arrival time difference.

The min-max cost increased by 0.64% from the min-max cost run to the com-

bined cost run. This is a small difference and worth the large increase in proximity

distance and staggered target arrival.

5.7 Conclusion

In this paper we have demonstrated a method of assigning targets to multi-

ple vehicles while balancing objectives of distance traveled, collision avoidance, and

staggered target arrival. The results show significantly improved expected distance

between MAVs and a large increase in staggered arrival time. Both of these features

may be added simultaneously with little difference in results. Suboptimal solutions

may be found quickly using a time limited branch and bound search.

The success of the additional costs suggests additional research into other de-

sired constraints that may vary between different scenarios and objectives. The com-

binatorial nature of the problem allows for a large number of near optimal solutions

that may satisfy a variety of constraints.
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Chapter 6

Conclusion and Future Work

Obstacle avoidance with pop-up obstacles is a difficult problem. The con-

straints of fixed-wing air vehicles add complications that current avoidance strategies

are unable to overcome. The minimum velocity of fixed-wing aircraft create time

constraints on obstacle avoidance strategies. Finding optimal paths around obstacles

is infeasible under time constraints because they require extensive computation using

current methods. In this work, we contribute to current literature by presenting four

strategies for obstacle avoidance that attempt to overcome these problems.

The first strategy, discussed in Chapter 2, uses laser rangers. The guidance

generates sets of waypoints around obstacles. The waypoints maneuver the MAV

around the obstacle, after which the MAV continues on the waypoint path. There is

not always a guarantee of obstacle avoidance, but computation is minimized.

The second strategy uses a laser ranger to scan the area in the reachable region

of the MAV by oscillating along a waypoint path. Obstacles in the path of the MAV

are guaranteed to be detected and avoided. However, the oscillation is an undesirable

feature.

For single obstacles, we developed a guidance strategy in Chapter 3 based on

movement of the obstacle in the field-of-view of a camera. The guidance strategy

estimates the range-to-obstacle and bearing-to-obstacle from obstacle movement in

the camera field-of-view and the guidance strategy pushes the obstacles to the edge of

the camera field-of-view. After maneuvering around the obstacle, the MAV continues

along the waypoint path.

For multiple obstacles, we developed a guidance strategy to maneuver the

MAV between obstacles based on motion in the camera field-of-view. A strategy is
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developed to determine between which obstacles to maneuver. This and the single

obstacle strategy perform well in simulation and flight tests. However, they are in-

tended for the zero to three second time frame while high level path planners generate

paths around obstacles.

Chapter 4 addressed vision-based target tracking using a strap-down camera.

Similar to the vision-based obstacle avoidance strategies, our method uses movement

of the target in the camera field-of-view to guide the MAV and maintain the target

in the field-of-view. The resulting paths are elliptical as predicted in literature.

In Chapter 5 we discussed a branch and bound algorithm to assign tasks to

teams of UAVs. The problem is posed as a combinatorial optimization problem. A

feasible solution is possible in less than a second, and better solutions are possible

with increased computation time.

The research contributions of this work are as follows.

• developed a 2D obstacle avoidance strategy to generate waypoint paths around

obstacles in real time,

• developed a 2D obstacle detection and avoidance strategy using a laser ranger

and circular paths that guarantees obstacle detection and avoidance,

• developed a 2D visual obstacle detection and avoidance strategy for single ob-

stacles,

• developed a 2D and 3D visual obstacle detection and avoidance strategy for

multiple obstacles,

• derived a visual target tracking strategy for strap-down cameras,

• formulated a task allocation algorithm for teams of MAVs incorporating dis-

tance traveled, collision, and staggered arrival to task, and

• described a simulation environment designed for fast research and prototyping

in an educational environment.
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6.1 Future Work

There are number of prospective research topics that may extend from this

research. Laser rangers are light-weight and potentially require little space. Multiple

laser rangers on a single MAV may give enough information to guarantee obstacle

detection without a need for obstacle avoidance. If the obstacles are detected outside

the turning radius of the MAV, then a guidance strategy might be able to guarantee

obstacle avoidance. This method would not require vision processing and could run

on a low power system onboard the MAV.

Vision-based reactive obstacle avoidance has many areas for improvement.

Satisficing control similar to [78] may be possible to guide the MAV around obstacles

detected in the image plane as opposed to the deterministic method in this work.

The guidance law would require little processing and possibly perform better. Addi-

tionally, probabilistic methods such as risk functions to assign a risk to each pixel in

the image plane need to be explored. A guidance law based on risk functions would

maneuver the MAV in the direction of the pixel with the lowest risk.

This work did not explore vision processing extensively. However, the state

estimation methods developed in Chapter 3 performed well enough for flight tests

with large red obstacles. Adding additional information from object looming, fea-

ture tracking, and other vision processing techniques may improve range and bearing

estimation.

In Chapter 4, the guidance strategy minimized the distance to the target.

However, this may not always be the goal of the operator. Similar goals may be

to maintain a constant target size in the image, stay outside a minimum distance,

maximize altitude, or minimize target movement in the image plane. Each of these

could be based on a guidance law similar to the one explored in this dissertation.

Chapter 5 calculated collision using deterministic methods. A probabilistic

technique may be more accurate and more favorable to differing vehicle models.
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Appendix A

Matlab Simulation Environment

A.1 Introduction

Unmanned Air Vehicles (UAVs) take on tasks to replace piloted aircraft in

situations where human intervention is dangerous, too expensive, or infeasible. In

military tasks, they remove danger to human pilots by flying surveillance, reconnais-

sance, and attack missions without human involvement. Domestic missions include

forest fire monitoring, search and rescue, and surveillance. Very often, small, rela-

tively inexpensive UAVs accomplish these tasks. UAVs not only remove human risk,

but lower the overall costs involved in mission tasks.

The high number of potential applications and the low cost of small UAVs

have kindled research and development in small autopilots. The decrease in size of the

required sensors and integrated circuits have allowed the development of light-weight

autopilots capable of navigating airframes with wingspans as small as 6 inches [40,79].

The sensors available for large aircraft are not feasible on small UAVs because of

payload limitations. They require small sensors that are typically less accurate. Small

UAVs typically have fast dynamics, making accurate sensors even more important.

While the technology of sensors improve, the theory for inner loop autopilot control

continues to develop using alternative sensors such as computer vision [80]. The

goal of this appendix is to create a simulation platform to aid in these new control

methods.

The purpose of our research is to develop a simulation that expedites pro-

totyping of research and development by providing mechanisms to test new control

algorithms and sensors on various types of UAVs, including vision-based control. The
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base simulation is simple, but offers enough features to aid in development of complex

control.

The University of Florida developed a simulation testbed for rapid vision pro-

cessing [81]. Their goal was to accelerate the process of development of vision-based

control inside simulation and smoothly transition the control to flight tests. One of

our goals in this simulation is similar to theirs. We want to create a simulation where

vision-based control can be rapidly developed in a simulation environment, tested

with hardware in the loop, and transitioned smoothly to flight tests. We briefly dis-

cuss an application in which this was accomplished and the flight tests performed

with that vision based control [58].

We have five goals for this simulator,

1. modularity to support different airframes and research,

2. fast research and development prototyping,

3. hardware-in-the-loop testing,

4. graphical interface with camera simulation for vision processing, and

5. research standardization to prevent code loss when employees leave.

A.2 Overview

We want the simulation to be modular. At Brigham Young University, we

have a wide variety of airframes, including fixed wing aircraft, quadrotors, helicopters,

and vertical take-off and land (VTOL) aircraft. We want to incorporate each of these

different airframes into the simulation with minimal change when changing airframes,

including physics and autopilot capabilities. To help with this, the simulation is

encoded in Matlab’s Simulink.

Simulink has many beneficial characteristics for a simulation using multiple

airframes and autopilots that include,

1. a scripting interface for fast development,
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Figure A.1: The organization of the simulation is shown.

2. a large set of engineering script libraries including control and computer vision,

3. a customizable library for simulation blocks that can be used for different air-

frames,

4. simple data plotting functions, and

5. an interface for C++ code (mex functions).

The block diagram of the simulation structure is shown in Figure A.1. There

are three subsystems. The first is the Guidance and Navigation System. This includes

the Extended Kalman filter (EKF) for state estimation, the High Level Path Planning,

the Autopilot, and any vision processing required. For most research development,

this block is most important.

The second subsystem is the Physical System. This includes the sensors on-

board the autopilot and the physics of the airframe. This system is important when

changing airframes. A fixed-wing aircraft will have different flight characteristics
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than a quadrotor. To make this simulation universal, we store the physics engine of

each airframe in the Simulink library. Each physics engine can be dragged from the

Simulink library to the simulation.

The third subsystem is Plotting and Vision. There are two purposes of this

section. The first is to display any graphs, plots, and data as required. The second

is the graphical display called Aviones. Aviones displays the UAV in a terrain and

simulates a camera for computer vision.

These three subsystems are simple, yet capable of fulfilling the goals of the

simulation.

The end goal of research and development is not to produce a good implemen-

tation in simulation, but to produce flight results from the theory and code developed

in the simulation. This simulation architecture provides one more step in that process

to completion. Most embedded systems are coded using C and possibly C++. To

implement an autopilot on a microprocessor, the Matlab script must be converted

to C code. The conversion to C code also opens possibilities for bugs and problems

that were not present in the script version. Fortunately, Matlab also has a C/C++

interface called mex functions. The script can be converted to C/C++ code and

tested the simulation environment without changing any other details. This limits

the programming bugs and errors present in the embedded system.

In an educational environment, the employment length of each student is rel-

atively short before they graduate and move on. Students usually implement their

research on the current autopilot platform, or in a specialized simulation, and leave.

The code is rarely reusable and often poorly documented. This is another problem

this simulation architecture will remedy. Each student provides a section of code with

a simulation block that corresponds to their research, ideally using a script implemen-

tation and a mex function implementation. Some students work on low level design

for new airframes, others high level control, and sometimes a new physics engine is

required. Each of these are integrated into a Simulink block and added to a Simulink

Library. After the student leaves, the research completed by the student may be

required for another project. Rather than implement the research again, we can use
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the library block previously created. This standardized method of research for short

term employees minimizes code loss.

The simulation has a standard method of transport that each researcher must

adhere to. The system consists of 18 states. They are inertial position (pn, pn, h),

body frame velocity (u, v, w), roll φ, pitch θ, yaw ψ, angular accerations (p, q, r), the

azimuth αa and elevation αel of the camera, and the quaternion representation of

the orientation (e1, e2, e3, e4) which is often required by VTOL aircraft. These states

contain enough information for a physics engine of any airframe developed at BYU.

By adhering to these standards, each block created will continue to be usable after

its initial purpose has expired.

A.3 Physics

The physics of an airframe can be a difficult section to complete accurately.

Matlab plays a key role in helping researchers write correct code for the physical

system. In the case of a fixed-wing aircraft, there are typically 12 states which need

differential equations. The force equations we use are
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where C∗ are the coefficients of lift and drag, x is the states, and δ is the surface

deflections. The differential equations for a fixed-wing aircraft using those forces are
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These sets of equations, and the equations for lift, drag, and force are compli-

cated. Mistakes are easy to make and often occur. Matlab makes debugging easier

with scripting, breakpoints, and plots. After a working copy of the script is ready, the

script can be converted into a mex function because Matlab can sometimes consume

a lot of processing time executing a script. We compiled the fixed-wing physics into

a mex function to lower the processing time. This is more simple after the script

implementation. Each of the physics Simulink blocks for the different airframes are

integrated into the Simulink library so future researchers can drag and drop the de-

sired airframe physics into the simulation. When a researcher needs to use an airframe

in simulation, he or she only needs to drag and drop it from a library.

A.4 Guidance and Navigation

The guidance and navigation section of the simulation includes the low level

control, high level control, vision processing, and sensor filters.
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A.4.1 Autopilot

The autopilot is the low level inner loops to maintain altitude, heading, roll,

pitch, heading rate, etc. Commercial autopilots commonly use a series of PID loops

for low level control of an aircraft. For the fixed wing autopilot in this simulation, we

use the PID loop architecture described in [40].

Simulink can implement an autopilot in script or in a C++ mex function. In

this simulation, it is advantageous to use both methods. The scripting interface of-

fers an excellent method of implementing and testing an autopilot system. Scripting

requires no compilation, allows breakpoints, and provides complex mathematical op-

erations with simple commands. After theoretical analysis is complete, the scripting

interface provides a fast method to test the theory. After a script method demon-

strates theoretical correctness, a C mex function can be written in simulation before

porting it to an autopilot. The mex function provides a method of testing C code in

simulation to minimize errors before moving it to an autopilot.

A.4.2 High Level Path Planning

The high level path planning can use any method required by the researcher.

The most common method is manually created waypoint paths. The UAV flies a

series of waypoints, and when the last waypoint is reached, the UAV returns to the

first waypoint and starts over. The method we use of waypoint following is described

in [38]. This is the default method of high level planning in this simulation. The high

level planner commands a roll angle to the autopilot to stay on the waypoint path.

In the case automatic path planning is required, we often use rapidly-expanding

random trees [26,36]. A series of random waypoints are generated and connected to a

tree such that the kinematic constraints of the vehicle are not violated. This generates

a waypoint path from a starting position to the goal.

Each researcher requires different methods of path planning. Each method is

stored in a library Simulink block so code does not need to be rewritten when it is

required in the future.
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Figure A.2: The Procerus autopilot is used for hardware-in-the-loop simulations.

A.4.3 Vision Processing

Matlab has a wide variety of vision processing functions available through its

scripting interface. The vision processing Simulink block can use the Matlab vision

processing functions for fast development of required vision processing. The Aviones

graphics block simulates a camera and sends the pixel data to the vision processing

block. The pixel data from Aviones is treated as pixel data from an actual camera;

even adding noise is possible. Vision processing on the data is different for each

application, but the development process is simplified by script implementation. The

Matlab functions offer a method to check theory validity without a lengthy program

in C.

A vision processing implementation in C is usually required eventually, whether

for the ground station or onboard the aircraft. To ease the process of converting from

Matlab script, we use a mex function with OpenCV support. OpenCV is an open

source vision processing library. OpenCV has many powerful vision functions. Using

OpenCV in a mex function greatly reduces the time required in converting from script

to C code. The mex function is used in the same way as a script file, allowing the C

implementation to be tested in the simulation before using it in a separate program.

A.4.4 Hardware in the Loop

A common step in hardware development is hardware-in-the-loop testing. Be-

fore any flight, a control platform needs testing as close to actual flight as possible.

Researchers often use the embedded autopilot with simulated physics to test the plat-

form. In our case, the physics engine is located on the autopilot. An RF modem sends
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Figure A.3: Telemetry information flows from the autopilot to Virtual Cockpit via
an RF modem, to Simuliank via a TCP/IP connection.

the telemetry data from the autopilot to the ground station. A computer program

called Virtual Cockpit collects the data. A TCP/IP connection sends the telemetry

data to other programs as required, including Matlab through a mex function. The

simulation can use the telemetry information for any hardware-in-the-loop testing

required, such as vision simulation with Aviones and vision processing with the script

interface or OpenCV. Running hardware-in-the-loop using Matlab creates a vision

simulation that normally isn’t available for hardware-in-the-loop. This option speeds

up the development cycle.

The hardware-in-the-loop mechanism is also available for flight tests. While

another program can be made for monitoring and vision processing to separate sim-

ulation from hardware-in-the-loop and flight tests, the option of leaving control in

Matlab speeds up development. Using Matlab for vision processing and control pro-

vides an option of using simulated vision during a flight test, increasing safety and

allowing observance of flight characteristics during the control.

A.5 Graphical Interface

A.5.1 Matlab Plotting

Matlab has a large set of plotting functions useful for debugging, tuning, and

evaluation. The Simulink plotting block is the place to store these plotting routines.

Debugging and plotting routines are written by students as they continue research.
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(a) UAV Chase View from the simulation is
shown.

(b) UAV Camera view from the simulation is
shown. The pixels from the camera view can
be used in vision processing in the simulation.

Figure A.4:

Many of the routines are useful as and added to the Simulink library for use in other

projects.

A.5.2 Aviones

We use another plotting interface called Aviones. Aviones is an OpenGL 3D

environment that uses terrain elevation maps overlayed by satellite images of the

terrain. The result is a virtual terrain matching any terrain for which elevation data

is available. An example is shown in Fig A.4(a). This environment is available in

Matlab through a mex function. The first call to the function initializes the window

with the desired size, frame rate, terrain, etc. Another call to the function updates

the state of the UAV. The result is smooth video of the UAV moving through the

terrain.

The viewpoint in Aviones is adjustable. There are four viewpoints available:

chase, camera, satellite, and groundtrack. The chase view is a viewpoint one meter

behind the UAV with the same yaw angle as the UAV. Fig A.4(a) shows the chase

view. The satellite view is simply a high altitude looking down on the terrain. The

groundtrack views the UAV from the launch position. The most useful view for
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control is the camera view. The camera view simulates a camera at the elevation and

azimuth angles given in the state vector. The pixel data from the camera view is sent

to the video processing Simulink block for any required vision processing.

A.6 Flight Tests

We conduct flight tests on a regular basis. Some of these flight tests involve

our obstacle avoidance algorithms. Obstacle avoidance is dangerous to test. If an

obstacle is not detected properly, the airframe may crash into the obstacle, possibly

damaging the airframe and the obstacle. In addition, most obstacles are close to the

ground, requiring the UAV to fly at low altitudes and relying on accurate altitude

measurements to prevent it from colliding with the ground. These dangers can be al-

leviated by first testing using hardware-in-the-loop vision provided by the simulation.

The graphical interface section can generate camera data, process it, and send control

commands to the autopilot in flight. This allows the UAV to fly at high altitudes,

in an obstacle free area, while testing obstacle avoidance routines. If performance is

adequate, then a flight test with real obstacles may be warranted.

Obstacle avoidance with hardware-in-the-loop vision has been conducted many

times with this simulation architecture. An example is shown in Figure A.5. In this

example, we use the obstacle avoidance routines described in Ref. [58]. As the vision

processing detects the obstacles, it moves the obstacles to the edge of the camera

field-of-view to avoid them. For two obstacles, each obstacle is moved to opposite

sides, thus the UAV maneuvers between the obstacles. The flight was conducted

safely at an altitude of 100 meters in an obstacle free area. This flight test allowed us

to monitor flight performance, tune gains, and determine if a low altitude test with

real obstacles is feasible. All control code was written in Matlab script, unchanged

from the purely simulated tests.

A.7 Conclusion

In this chapter, we have described a simulator with the following properties,

1. modularity to support different airframes and research,
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Figure A.5: The UAV avoids a virtual obstacle using the vision generated with the
hardware-in-the-loop simulation. The solid line is the UAV path, the dashed line is the
waypoint path, and the yellow blocks are obstacles.

2. fast research and development prototyping,

3. hardware-in-the-loop testing,

4. graphical interface with camera simulation for vision processing,

5. research standardization to prevent code loss when employees leave, and

6. support for flight testing with vision generation.

The simulator is a significant factor in fast development and prototyping of new re-

search. It contributes to safe flight tests in situations where flight tests are dangerous

by allowing testing at high altitudes and generated data. It also provides a standard

research platform for employees.
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