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ABSTRACT 
 
 
 

THE EFFECT OF SIMULATED NODULES ON VOCAL FOLD MOVEMENT  
IN A TWO-LAYER SYNTHETIC MODEL 

 
 
 

Rachelle Nevitt Rauma 
 

Department of Communication Disorders 
 

Master of Science 
 
 
 

Abstract 
 

This study examined the differences between normal vocal fold vibration and the 

movement patterns of vocal folds with mass lesions by means of a synthetic model. The 

experimenter molded and cast three sets of vocal folds, representing normal structure, 

small nodules, and larger nodules. Acoustic, aerodynamic, and digital video signals were 

recorded and analyzed in order to quantify air flow and pressure, measure vibratory 

stability, and visually assess closure patterns across the three structural conditions. 

Statistical analysis revealed that the presence of vocal nodules resulted in a significantly 

higher onset pressure, fundamental frequency, airflow at onset, and offset pressure. 

However, the results were inconclusive with regard to vocal stability, and it remains 

unclear whether the current models of nodules are sufficiently similar to the human 

system to adequately model the type of mass lesions typically seen in a clinical context. 
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Introduction 

Voice production is affected by forces acting on the vocal folds, and their patterns 

of movement contribute to the changes in voice quality perceived by listeners (Gunter, 

2002). Numerous models of phonation have been described in the literature and used in 

research in order to investigate vocal fold movement in relation to airflow. These models 

have been developed because of difficulty with imaging and measuring vocal fold 

movement in vivo (Alipour, Scherer, & Finnegan, 1997; Berry, Zhang, & Neubauer, 

2006; Dollinger & Berry, 2006; Drechsel, 2007; Drechsel & Thomson, 2008; Hsiao, Liu, 

Luschei, & Titze, 2001; Thomson, Mongeau, & Frankel, 2005; Zhang, Neubauer, & 

Berry, 2006; Zhang, Neubauer, & Berry, 2007). 

One kind of phonation underrepresented in modeling research, however, is a type 

that can occur as a result of collision forces on the vocal folds (Titze, 1994), which is 

often referred to as vocal abuse, or phonotrauma, where the voice is used too loudly for 

too long. Mass lesions can arise as a result of tissue damage (Colton, Casper, & Leonard, 

2006). With the many modeling studies that have been undertaken in an attempt to 

quantify vocal fold movement patterns, there have been a limited number providing 

measurements of the oscillation patterns that can occur in a disordered system. 

Information about the interaction of airflow, pressure, and tissue resistance in relation to 

vocal fold movement will be useful in understanding the differences between normal and 

pathological voices and will contribute to furthering the current understanding of vocal 

fold vibration. Having a more detailed understanding about the characteristics of 

disordered vocal fold movement may also prove to be a clinical aid for the early detection 

of benign vocal fold lesions. The purpose of the current study is to compare normal and 

pathological vocal fold movement in a self-sustained oscillatory model of the vocal folds.  



2 

Review of Literature 

Scientists have studied vocal fold oscillation in detail for several decades. Various 

techniques have been used in this line of research, many of which have revealed valuable 

details of vocal fold physiology. One technique used more recently in research is physical 

modeling, which uses synthetic materials shaped to a similar geometry as human vocal 

folds. Models of human vocal folds are useful research tools which can overcome the 

significant imaging challenges of in vivo vocal fold studies. Synthetic models have the 

potential to provide important data that would otherwise be unavailable. 

Vocal Fold Morphology   

The vocal folds are located within the larynx at the narrowest portion of the 

airway. This system of folds seals off the laryngeal airway completely and rapidly when 

the appropriate muscles are activated. There are several layers of the vocal folds to 

consider.  

The most superficial layer is composed of epithelial tissue. Beneath it is a 

multilayer system composed of nonmuscular tissue, called the lamina propria. The lamina 

propria can itself be divided into three layers: superficial, intermediate, and deep. Each 

layer has a different composition of fibers to allow the vocal fold to oscillate in a 

complex way when it is set into motion. Lateral to the lamina propria is the 

thyroarytenoid muscle, which runs along the length of the vocal fold anteriorly to 

posteriorly. This muscle is the major portion of the vocal fold, comprising the majority of 

the vocal folds’ thickness (Hardcastle, 1976).  

The intermediate and deep layers of the lamina propria comprise what is known 

as the vocal ligament. The ligament (intermediate and deep layers) is thicker at the end 

points where larger mechanical stresses occur in the fibers (Titze, 1994).  
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It seems that the vocal fold is designed to protect itself at its end-point, where 

larger mechanical stresses occur in its fibers. The mucosa is thicker in the middle of the 

vocal fold where most collision forces occur. It has been suggested that the superficial 

tissue may be well equipped to withstand a certain amount of direct impact, which then 

acts as a sort of shock absorber for the ligament (Titze, 1994).  

Mechanics of Phonation  

The vocal folds are able to sustain oscillation (repeated back and forth movement) 

over an extended period of time (Titze, 1994). The characteristic back and forth 

movement of the vocal folds is what causes phonation to occur in humans and animals 

alike. In the larynx, this phenomenon is called flow-induced oscillation because a stream 

of air through the glottis promotes vibration in the system. Movement of the vocal folds 

is not “neurochronaxic,” with individual impulses from the nervous system leading to 

repeated movement of the folds. Rather, voicing is an aeromechanical event (Holmberg, 

Hillman, & Perkell, 1988; Tanaka & Gould, 1983; Titze, 1989; Titze, 1994). This can be 

illustrated in post-mortem examinations, which show the ability of an excised larynx to 

phonate when air is pushed through the laryngeal system when there is no neurological 

input to the muscles of phonation. Laryngeal muscles contribute by positioning and 

shaping the vocal folds, but not in making the folds move back and forth during each 

cycle. 

Van den Berg (1958) described vocal fold vibration as a function of tissue 

elasticity and vocal fold collision. His description has been called the myoelastic-

aerodynamic theory of vocal fold vibration. Van den Berg discussed the importance of 

the Bernoulli principle, which describes the reduction in pressure that occurs when 

particle velocity increases in a fluid system. However, continual energy transfer from the 
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airflow through the glottis to the tissue is more complex than negative pressure from the 

Bernoulli effect alone, because these forces cannot account for inward and outward 

movement of the folds (Titze 1994). If this were the case, a damping effect would 

diminish the movement of the tissue until the vocal folds came to rest. In addition to the 

Bernoulli effect, the myoelastic-aerodynamic theory describes two other reasons for 

sustained vibration of the vocal folds: elastic recoil of the tissue and decreased subglottal 

pressure (Jiang et al., 2000).  

During phonation, when the subglottal pressure becomes great enough to 

overcome the resistance offered by glottal adduction, the vocal folds are forced apart and 

air flows through the glottal opening. As the air flows through the narrow glottis, air 

velocity increases to cause a decrease in intra-glottal pressure. This decrease in pressure, 

in addition to the elastic forces in the tissue of the vocal folds, essentially pulls the cords 

together medially (Hardcastle, 1976). 

Several theoretical models have been suggested to explain phonatory movement 

of the vocal folds. The one-mass model, described by Titze, has been used to give a 

visual representation of vocal fold movement during phonation. Later on, the three-mass 

model was suggested as a way to account for vertical phase differences between the 

lower and upper parts of the vocal folds, which was lacking in the description of the one-

mass model’s movement pattern (Titze, 1994).  

Rate of airflow through the glottis depends partly on subglottal pressure and will 

largely determine the degree to which the vocal folds are pulled toward each other during 

oscillatory movement (Hardcastle, 1976). Greater airflow through the glottis, leading to 

increased intensity, is almost always accompanied by a passive increase in fundamental 
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frequency (Fo). This is due to passive changes that occur to the vocal folds themselves as 

they are displaced during more intense phonation. As the vocal folds are moved further 

away from the midline in periods of loud phonation, they become displaced to the point 

that the tissue is stretched, resulting in smaller vocal fold cross-sectional mass and 

increased stiffness. The decrease in mass and increase in stiffness results in an increase in 

the number of vibration cycles per second (Hz), thus, a passively-induced increase in Fo. 

Interaction of Aerodynamic Variables 

Knowledge of the interaction of pressure, flow, and resistance in the larynx is 

important in considering how the vocal folds oscillate during phonation. Normal 

vibratory movement of the vocal folds depends on an interaction of several variables. 

Glottal resistance can be regulated by adjusting the level of vocal fold adduction, and the 

driving pressure from the lungs can also be controlled by the speaker. The combination of 

these two parameters will determine the level of flow during phonation. 

The driving force for voice production has been described as a bellows-like 

system, with pressure being generated in the trachea as the lungs are deflated (Catford, 

1983). From this point, the main source of resistance to initiated airflow is typically the 

glottis (Titze, 1994). Because of vocal fold adduction during phonation, more resistance 

is present during voicing than during metabolic breathing. Therefore, additional lung 

pressure is needed to force air through the constricted larynx during speech (Titze, 1994). 

Research has shown that vocal intensity is tied to subglottic pressure and airflow rate 

(Holmberg et al., 1988; Tanaka & Gould, 1983).  

Resistance and pressure are modified during speech to provide varying degrees of 

loudness or breathiness. For example, relaxed vocal folds (mild resistance) with a 

relatively high amount of upward pressure from the lungs (high pressure) will result in 
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increased flow through the glottis, and will sound breathy to listeners. Hypofunctional 

(lax) voices are produced with low resistance from the larynx and hyperfunctional (tense) 

voices are produced with an excessive degree of laryngeal resistance (Södersten, 

Lindestad, & Hammarberg, 1991). A loud voice is produced with increased pressure, and 

a quiet voice is produced with a relatively small amount of pressure. It is easier to sustain 

a low-pitched phonation than a higher one, in terms of muscular effort. As pitch 

increases, the vocal folds become stiffer (increased resistance), and more pressure is 

needed to maintain the same amplitude of sound (Titze, 1994).  

Because vocal fold movement patterns vary between speakers as a result of 

differences in pressure, flow, and resistance, some voices have a higher ratio of acoustic 

to aerodynamic power during phonation. Several studies have focused on calculating 

vocal efficiency as a measure of this ratio of acoustic to aerodynamic power (Fulton, 

2007; Hiki, 1983; Holmberg et al., 1988). In these studies, measures of flow rate 

multiplied by pressure, in relation to the sound signal’s intensity, have been used to 

provide a quantitative measure of energy transfer in the vocal folds. For example, a 

breathy voice would be relatively inefficient, due to the inadequate vocal fold resistance 

relative to the driving pressure from the lungs. Incomplete vocal fold closure during 

phonation has been shown to be significantly correlated with a high degree of perceived 

breathiness (Södersten et al., 1991).  

Sources of Phonatory Fluctuation 

In a normal system, the vocal folds oscillate fairly consistently from cycle to 

cycle, without substantial leakage of air or significant irregularity of movement in either 

fold. The folds move out of phase from each other, yet show no deviant physical behavior 

during the cyclic movement, despite changes that may occur as a result of altering pitch 
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or intensity. There are several ways in which a normal system can be disturbed, however, 

resulting in irregularity in the movement patterns of the folds. Mass lesions such as 

nodules, polyps, or cysts may develop in an otherwise normal speaker’s system, creating 

such changes in the basement membrane zone (BMZ) as have been shown by Gray 

(1991) and Courey, Shohet, Scott, and Ossoff (1996). Thickening of the BMZ, with an 

increase in fibronectin probably represents tearing forces, followed by consequential 

wound repair in the subepithelium when the voice is driven too hard by a speaker. Gaps 

at intercellular junctions, disruption and duplication of the BMZ, and deposits of collagen 

fibers have also been reported (Kotby, Narrar, Seif, Helal, & Saleh, 1988). This 

disorganization of the BMZ has been said to leave the vocal fold vulnerable to repeated 

injury (Gray, Hammond, & Hanson, 1995). Hyperphonation results in several changes to 

the vocal fold epidermis, including: (a) damage to the microvilli, (b) creation of a 

cobblestone appearance along the surface, and (c) damage to the surface and underlying 

cells (Gray, Titze, & Lusk, 1987).  

In terms of mechanical stress, it has been suggested by Titze that the tissue of the 

vocal folds is probably not suited for intense and repetitive impact (1994). There is a 

general belief that growths on the vocal fold surfaces, such as nodules, polyps, and 

contact ulcers, are the result of repetitive collision forces over a prolonged period of time 

(Titze, 1994). The following discussion examines mass lesions in greater detail. 

Vocal nodules. Nodules are localized benign growths on the vocal folds, thought 

to be the result of prolonged loud phonation, often referred to as vocal abuse (Colton, et 

al., 2006). It is a common belief among researchers that vocal nodules result from 

prolonged and repeated collision of the vocal folds during vibration (Titze, 1994). 
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Research has shown that vocal load (the number of oscillated cycles over time, energy 

dissipated, and acceleration and deceleration of vocal fold tissue during vocalization) is 

greater in loud speech than for normal or monotone speech, showing that repetitive and 

intensive use of the voice may cause enough collision force to pose a threat of injury 

(Titze, Svec, & Popolo, 2003). Higher-pitched voices, which can be found in most 

women, children, and tenors, are more susceptible to nodules than lower-pitched voices, 

suggesting that collision frequency plays a role in the formation of nodules. This has been 

documented clinically as a cumulative result of the number of collisions per unit of time 

(Greene, 1980; Van Riper & Irwin, 1958). Effortful vocal production has also been 

documented as a contributor to the formation of vocal nodules (Boone, 1983). It is 

therefore likely that nodules result from the reaction of the tissue to the constant stress 

induced by frequent, hard oppositional movement of the vocal folds.  

Early or acute nodules are fairly soft and pliable, may be reddish, and are mostly 

vascular and fluid-filled. With continued trauma, the tissue undergoes hyalinization and 

fibrosis, making the nodule and surrounding area much more firm. Nodules that have 

been present for an extended amount of time will become hard, white, thick, and fibrosed. 

When nodules are chronic, they are usually bilateral, but they may not be entirely 

symmetrical (Titze, 1994).  

 Vocal fold nodules arise at the junction of the anterior and middle third of the 

vocal fold and in their more advanced stage, tend to appear white, opaque and firm 

(Dikkers, 1994; Titze, 1994). They typically result in an hourglass glottal closure 

configuration, and will affect the vocal fold mucosal wave and vibration in different 

ways, depending on their size and degree of associated edema (Johns, 2003). 
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Stresses to the vocal folds that are likely to contribute to the formation of vocal 

nodules include compressive stress and shear stress. Compressive stress perpendicular to 

the plane of contact may cause cellular rupture over time. Shear stress parallel to the 

plane of contact has been suggested to cause separation of tissue elements. Damage may 

also be caused by cellular alteration in function in response to the stress environment 

(Gunter, 2003).  

Vocal polyps. Polyps have also been attributed to repeated mechanical stress, in 

addition to some other type of irritation of the tissue lining of the epithelial layer. Polyps 

can be localized in one area, or they can be distributed over the surface of the vocal fold. 

These lesions are fluid-filled masses that can be either sessile (broadly attached at the 

base) or pedunculated (thinly attached and bulb-like) in appearance (Colton, et al., 2006; 

Dikkers, 1994; Titze, 1994).  

Pathological changes of the vocal fold extracellular matrices alter vocal quality 

secondary to the loss of normal vibratory function and alteration of tissue viscosity and 

thereby create mild to debilitating levels of dysphonia when the polyps are present on the 

folds (Colton, et al., 2006).  

Airflow in a patient with nodules or polyps may be equal to or slightly higher than 

that found in a patient without mass lesions (Colton, et al., 2006). Tanaka and Gould 

(1985) reported a mean value of 275 mL/s in their two patients with nodules, whereas 

normal male speakers produce flows of approximately 125 mL/s. Woo, Colton, and 

Shangold (1987) reported a mean flow rate of 265 mL/s for their combined polyp and 

nodule group across 14 male and 18 female speakers. In this study, normal speakers 

produced a mean flow rate of 144 mL/s. The magnitude of the increase of airflow rates 
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appears to depend on the severity of the lesion (Colton, et al., 2006). Electroglottograms 

show decreased closing times of the vocal folds and an irregular pattern, which is the 

most likely cause for the increase in airflow that accompanies mass lesions on the vocal 

folds.  

Techniques for Measuring Phonation  

Analysis of vocal fold movement is physically difficult because of their location 

within the neck. Typical medical imaging approaches, such as x-ray and ultrasound, are 

ineffective for the vocal folds because the surrounding ring of cartilage forms a barrier, 

distorting the resulting picture. In spite of these physical limitations, there are several 

ways to indirectly measure phonation. Measurement procedures such as 

electroglottography, acoustic measurements, and endoscopy are available for clinicians to 

gain a more accurate picture of vocal fold movement. Each procedure yields a different 

piece of information about what occurs inside the larynx during phonation. A 

combination of measurement techniques will give researchers a more accurate assessment 

of vocal fold movement. 

Electroglottography (EGG) measures change in electrical impedance when two 

electrodes are placed on opposite sides of the neck, close to the vocal folds. Changes in 

conductivity across the larynx can provide information on how large a portion of the 

vocal folds is touching at a given moment in time. This measurement can take place 

because tissue conducts electricity better than air, so impedance increases when the vocal 

folds separate and decreases as they come in contact with each other (Titze, 1994).  

Acoustic measurements can be made to calculate cycle-to-cycle changes in 

frequency and amplitude that take place in response to the movement patterns of the 

vocal folds. In other words, measurements of acoustic output provide a numerical 
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representation of how the vocal folds are behaving during phonation. With the use of a 

microphone and voice analysis software, measurements of frequency and amplitude 

perturbation can be obtained. 

Various types of imaging are available to researchers to provide a visual 

assessment of vocal fold activity. One tool which shows the basic movement of the vocal 

folds over time is videolaryngoscopy. A dynamic superior view of the vocal folds is 

provided by a rigid fiberscope, which is positioned at the back of the mouth in the 

oropharynx. One limitation of videolaryngoscopy is that the images seen by a clinician 

are not in real time. The strobe light gives the impression of slowed movement, but 

cannot show the sequential opening and closing phases of the vocal folds. Another 

imaging tool is the high-speed digital camera, which is capable of yielding thousands of 

frames per second. High-speed digital images are taken with a constant light source, so 

the consecutive still images allow for more precise understanding of the nature of 

movement of the vocal folds. Although novel methods of assessing vocal fold vibration, 

such as high-speed photography, videokymography, and photoglottography have 

emerged over the past two decades, laryngeal videostroboscopy remains the most 

practical and clinically useful tool in assessing vocal fold vibratory characteristics and 

glottal configuration (Johns, 2003).             

Laryngeal Modeling Studies 

Historically, models have been developed to simulate vocal fold vibration in order 

to represent the movement of real vocal folds. The value of models is centered in the idea 

that they allow us to make predictions beyond what can be, or what has been measured. 

Measurements can tell us what is, and models can tell us what is possible in unexplored 

situations (Titze, in Stevens & Hirano, 1981).  
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Excised larynx studies. The canine larynx has been frequently used as a model of 

the human larynx (Berke et al., 1987; Durham, Titze, & Scherer, 1987; Kakita, Hirano, & 

Ohmaru, 1981; Slavit & McCaffrey, 1991; Yanagi, Slavit, & McCaffrey, 1991). 

However, when the canine laryngeal tissues are compared with human tissues, one 

difference becomes apparent; the canine does not have a well-established vocal ligament 

(Hirano, 1975). Other differences include the superficial layer, which is thicker in 

canines, and the lack of intermediate and deep layers in canine vocal fold tissue. It has 

been established that the canine larynx has no vocal ligament and a relatively thick 

mucosa. Furthermore, the vocalis muscle in the excised canine larynx does not contract 

(Titze, 1981). Titze surmised that the ligament in humans is crucial for sustaining high 

pitches. Canine species can initiate phonation, but are less able to sustain it, particularly 

at high pitches. These differences in canine and human vocal fold tissue suggest a need 

for better modeling techniques because sustained phonation is so difficult to produce for 

quality research.  

Excised human larynges have also been used in research, but have been shown to 

have two distinct disadvantages. First, they are only able to phonate for a short amount of 

time. Second, they are not suited for parametric studies involving tissue geometry and 

stiffness.  

Synthetic vibrating vocal fold models. Physical replicas of the human vocal 

system have been constructed more recently to simulate human phonation in order to 

overcome the challenges associated with direct in vivo measurements. Physical models 

are able to phonate for a long period of time, overcoming a major limitation presented by 

excised human larynges, which can only oscillate for approximately 30 minutes. Replicas 



13 

of the human vocal folds have given researchers increased opportunity to study 

oscillation characteristics. Physical models of the vocal folds have been used in research 

to study the vibratory characteristics of phonation (Berry, 2006; Berry et al., 2006; 

Drechsel & Thomson, 2008; Riede, Tokuda, Munger, & Thomson, 2008; Thomson, 

Mongeau, & Frankel, 2005; Zhang et al., 2006). These models have been refined in the 

past several years to allow more realistic movement patterns of the artificial vocal folds. 

One such improvement to this type of modeling is the development of a two-layer (body 

and cover; Hirano & Kakita, 1985) self-oscillating system (Drechsel, 2007; Riede et al., 

2008; Drechsel & Thomson, 2008). Vocal fold modeling has also improved to allow 

researchers to quantify several parameters of normal vocal fold oscillation. Thomson, et 

al. (2005) studied the aerodynamic transfer of energy to the vocal folds in a self-sustained 

oscillatory model of the vocal folds. Riede et al. (2008), Dreschel (2007), and Dreschel & 

Thomson (2008) extended this research to include a more realistic body and cover model 

of the vocal folds. 

In spite of the advances that have been made in the past several years, however, 

there are several characteristics of synthetic models that limit the degree to which they 

can accurately simulate human vocal fold movement. One limitation lies in the 

morphology of the vocal folds. Synthetic models have no vocal ligament and fewer layers 

than the tissue structure of human folds. Also, the geometry of the synthetic models is not 

completely realistic. Without the differentiated layers and equivalent shape of the human 

structures, the movement of the models may not reflect the exact movement patterns and 

the phasing subtleties of the normal vibratory cycle.  

Another disadvantage to using synthetic models is that the silicone which 
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comprises the synthetic folds has a different composition than human tissue. Studies have 

shown a nearly linear stress-strain curve in tensile testing of synthetic folds (Riede et al., 

2008); human tissue, on the other hand, reveals a non-linear response on the stress-strain 

plot as its tissue is stretched (Titze, 1994). Human tissue is essentially stronger, and 

shows more resilience to elongation.  

A third issue that has yet to be resolved in synthetic vocal fold research is the lack 

of a mucosal wave, which is a key characteristic of healthy phonation in humans. This 

difference is likely due to the lack of lamina propria layers in synthetic models. Until a 

mucosal wave similar to that observed in human phonation can be realistically simulated 

in vocal fold models, it may be difficult to engage the interest of researchers who work in 

the area of human vocal pathology.  

Even with the current differences between human and synthetic vocal folds, 

however, there are enough similarities between the two to give comparable results on a 

number of measures. For example, the use of vocal fold models can give valuable 

information about flow dynamics and the basic movement patterns of vocal folds. 

Observing the changes that take place when vocal fold geometry and composition are 

altered will increase our understanding of the parameters which lead to disordered vocal 

fold movement patterns. Measurements of velocity, airflow, and fundamental frequency 

in the context of normal and pathological vocal fold movement will improve our 

understanding of vocal fold oscillation and laryngeal function during phonation. The 

current study compared normal and pathological vocal fold movement, with the use of a 

self-sustained oscillatory model with added masses to simulate vocal nodules. With the 

information from this study, researchers may be better able to draw inferences about the 
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way changes in the makeup of vocal folds can contribute to pathological differences in 

the voice. 
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Method 

Materials 

A physical model of the human vocal folds was made to replicate the adult male 

larynx using a three-part addition-cure silicone material (single-part Silicone Thinner and 

two-part EcoFlex 0030, Smooth-On, Inc.). The vocal folds were a two-layer (body and 

cover) version of the Thomson et al. (2005) one-layer model, as discussed in Riede et al. 

(2008) and Drechsel & Thomson (2008). The construction and fabrication of the model 

has been discussed at length in Riede et al. (2008), and is summarized here.  

The vocal folds were constructed with two layers of differing material, as 

illustrated in Figure 1. Silicone compound (Ecoflex 0030) was used to construct both the 

body and cover portions of the vocal folds. Varying ratios of Ecoflex 0030 part A, 

Ecoflex 0030 part B, and silicone thinner (see Table 1) were combined to achieve the 

differing silicone consistencies for the body and cover portions of the vocal folds, as the 

modulus of the cured silicone could be adjusted by varying the amount of silicone thinner 

used. The cover layer was approximately 2 mm thick, with a composition ratio of 1:1:4, 

and the body layer was made with a ratio of 1:1:2. A base layer was constructed with 

thick silicone compound (Dragon Skin Q) to serve as a foundation at the lateral portion of 

the folds (see Figure 2). The stiffness of this base was deemed to be sufficiently high, so 

as to not vibrate with the vocal folds themselves (Riede et al., 2008). 

Fabrication of the molds for all experimental conditions involved computer-aided 

design (CAD) models, generated using Pro/Engineer and displayed in Figure 3. The body 

and cover portions of the vocal folds were then made in series, using these molds. The 

body of the vocal folds was created first, by pouring a 1:1:2 ratio silicone mixture into the 

body mold, and allowing approximately 6 hours to cure. After the body portion  
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Figure 1. 

Schematic showing the approximate dimensions of the synthetic, two-layer vocal folds 

used in this study. The medial surfaces of the folds were rounded as shown, with a radius 

of approximately 0.33 cm. Adapted from Drechsel & Thomson (2008). 
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Table 1 

Silicone Ratios Used for Vocal Fold Construction 

  

Item Part B Part A Silicone Thinner 
  

Body 1 1 2 

Cover 1 1 4 

Base 1 1 1 
 
Nodules 1 1 0 
  



19 

 

 

 

Figure 2.  

Single-fold coronal cross-section of Condition 1, with corresponding silicone 

composition ratios. The dark grey base layer forms the lateral anchor for the vocal folds. 
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Figure 3.  

Computer-aided design models used for rapid prototyping and casting of the different 

layers of the vocal folds for Condition 1. 
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cured, stiff silicone mixture (Dragon Skin Q) was poured into the mold to create the base 

of the vocal folds and was allowed 1-2 hours to cure. A 1:1:4 ratio silicone mixture was 

then poured into the cover mold. The body and base portion were set into the cover mold 

to bond the body portion with the cover portion. These were allowed to cure for 24 hours. 

Once this combination body/cover model had bonded and cured, it was removed from the 

mold and the model was cut into two 1.7 cm lengths to act as symmetric vocal folds. 

Lateral and dorso-ventral surfaces of the vocal fold models were attached to an acrylic 

plate using liquid silicone adhesive (Pro Bond®, Elmer’s Products, Inc.).  

Mass lesions similar to vocal fold nodules were cast using a ratio of 1:1:0 silicone 

mixture. No silicone thinner was used for nodule conditions in order to simulate a 

tougher, more fibrous nodule on each vocal fold. The nodule-like protrusions were given 

a broad base, and were assigned a diameter size of 2 mm, with a thickness equal to that of 

the lamina propria, based on measurements of adult nodules as provided by Dikkers 

(1994). The nodules were placed halfway between the anterior and posterior surfaces of 

the synthetic model, corresponding to the center of the membranous vocal fold where 

maximum impact from vibration takes place (Titze 1994). The nodules were not placed 

on the anterior-third boundary of the vocal folds for the purposes of this project, because 

the point of maximum impact in the synthetic model was in the center of the vocal folds. 

Three experimental conditions were simulated and tested. In Condition 1, 

“healthy” vocal folds were simulated, in which the cross-section was uniform in the 

dorso-ventral direction (see Figure 2). In Condition 2, young nodules were simulated by 

using a small mass of fibrous material with a broad base on the surface of the cover layer 

(Figures 4 and 5). In Condition 3, older nodules were simulated by using a larger base of  
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Figure 4. 

Coronal cross-section of Conditions 2 and 3, with nodule masses protruding from the 

upper border of the vocal fold cover. 
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Figure 5. 

Superior view of Condition 2, in which the nodule mass (dark grey area) is restricted to 

the immediate area around the swelling on the vocal fold. 
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fibrous material that extended through the 2 mm cover layer (see Figure 6). Both nodule 

conditions (Conditions 2 and 3) were assigned the same nodule diameter on the surface of 

the fold; however, Condition 3 had more mass beneath the surface to simulate extensive 

vocal abuse characterized by fibrosis, as is present with persistent nodules.  

For each experimental condition, the medial surfaces of the vocal folds were 

positioned to simulate a semi-closed glottis when no airflow was being applied to the 

model, by assigning a pre-phonatory width of 0.5 mm. This light approximation of the 

folds allowed room for nodules to lightly touch each other without creating excessive 

medial tension to skew the measurements. A 2.5 cm uniform polyvinylchloride (PVC) 

tube was connected to an expansion chamber to simulate the subglottal system. This tube 

was then connected to an air supply, with shop air used as a flow source (see Figure 7). A 

pressure regulator (Pneufine 26129-1C-19, CKD Corp) was used to reduce pressure 

instability from the air supply, and a flow meter (Omega FL4611) was attached to 

calculate the rate of airflow from the source. Subglottal pressure was monitored using a 

differential pressure transducer (Omega PX138-001D5V) placed inside the PVC pipe 

directly below the vocal folds, and displayed on a process meter (Omega DP24-E).  

For all experimental conditions the pressure was gradually increased until the 

model began oscillating. This pressure level was recorded, along with the model’s F0 and 

air flow rate at onset. Pressure was then increased to allow for acoustic testing at the 

same pressure for each model in a condition. Once these data were obtained, pressure was 

incrementally reduced until the model discontinued self-oscillation.  

A high speed camera (Photron APX-RS) was used to record images of the 

physical model during experimentation at a rate of 4,000 frames per second with a 1024 x  
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Figure 6. 

Superior view of Condition 3, in which the nodule mass extends dramatically along the 

length of the fold and into the cover layer 
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Figure 7.  

Test setup used in this study. From Drechsel & Thomson (2008). 
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768 pixel resolution. A microphone was attached above the vocal folds to record changes 

in F0 during oscillation (see Figure 7). A Particle Image Velocimetry (PIV) system 

(LaVision) was used to obtain velocity measurements from the experimental conditions. 

Testing Procedure 

First, phonation onset pressure (onset), fundamental frequency (F0), and flow 

were measured for the three separate models in Condition 1 (each model was tested 

individually). Next, the pressure was increased to 0.90 for microphone signal recording 

and high-speed camera recording. Acoustic data were captured in a .WAV format, with 

approximately 6 seconds of recording time per model. The high-speed camera recorded 

approximately 10 cycles of oscillation for visual perceptual analysis of vocal fold 

movement. The pressure was then reduced incrementally, until phonation offset pressure 

(offset) was obtained. The stiffness and length of the vocal folds were kept constant, as 

these factors are considered to be major causes in changing F0. All models in Condition 1 

were brought to a pressure of 0.90 kPa for microphone signal recordings and high-speed 

camera recording.  

Each model in Condition 2 (N = 4) was then recorded in succession, with the 

same setup and order of experiments used for Condition 1 testing. Once onset was 

established, pressure was brought to 0.90 kPa for acoustic and high-speed recording. 

Pressure was decreased until offset was recorded. 

Once Condition 2 experimentation was complete, the models from Condition 3 

were tested in succession (N = 3). Similar testing procedures were followed; however, the 

pressure required for oscillation in Condition 3 was so high that the 0.90 kPa pressure 

used in Conditions 1 and 2 was inadequate for vibration. Therefore, acoustic and high-
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speed camera data were recorded at a pressure of 1.90. Pressure was then decreased 

slowly until offset was reached. 

Data Analysis 

 Onset pressure was obtained and recorded for the normal and nodule conditions. 

Air pressure was kept at onset, initially, in order to compare frequency and vibratory 

characteristics between the three conditions at onset. Once phonation began, pressure and 

airflow data were recorded. Pressure was then raised to 0.90 kPa for Conditions 1 and 2, 

and 1.90 kPa for Condition 3, for the remainder of testing. A microphone recorded the 

acoustic output for each model, and this signal was used to obtain information about the 

frequency of oscillation, harmonic spectrum, and perturbation of amplitude and 

frequency. The microphone signal from each model was analyzed using TF32, a time-

frequency analysis software program. The final measure taken of each model was offset, 

which was made by turning down the pressure until the point at which the model 

discontinued oscillation, and recording the corresponding pressure level. All 

measurements were taken in a laboratory with ambient noise levels below 70 dB SPL (C-

weighted) during experimentation. Measurements were taken with the normal model 

(Condition 1), and were compared with measurements taken from the two disordered 

systems (Condition 2 and Condition 3).  
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Results 

To determine whether there was a significant difference across the three 

conditions, a one-way ANOVA was performed on the dependent measures. A series of 

Bonferroni post hoc tests was subsequently used to determine which conditions were 

different from each other. Descriptive statistics (mean and standard deviation) for the 

dependent variables of phonation onset pressure, phonation offset pressure, jitter, 

shimmer, signal-to-noise ratio, air flow, and frequency can be found in Table 2 for 

Condition 1, Table 3 for Condition 2, and Table 4 for Condition 3. Results from the one-

way ANOVA (F-ratios, p-values, and effect sizes for significant main effects) for the 

variables that changed significantly across conditions can be found in Table 5. The means 

and standard deviations for these changes can be seen in Figures 8, 9, 10, and 11.  

Condition 1 

Phonatory onset pressure, or the pressure required for oscillation to start, was 

calculated first. The models in Condition 1 required an average of 0.76 kPa to begin 

oscillation. Flow rate had a mean of 1.24 liters per second (L/s). 

The F0 of Condition 1 models ranged from 123.3 to 126.7 Hz at onset. This F0 is 

comparable to the average F0 of an adult male. When pressure was increased, all models 

demonstrated a slight increase in F0.  

The acoustic signal yielded measures of frequency and amplitude perturbation 

(jitter and shimmer, respectively), which are commonly calculated in the field of speech 

pathology as a means of objectively characterizing cycle-to-cycle instabilities in the 

voice. Three jitter and shimmer measurements were taken from each model’s acoustic 

signal. These measurements were compared in each model to ensure the model did not 
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Table 2  

Descriptive Statistics for Condition 1 

  

Item M SD Range 
  

Jitter % 1.01 0.62 1.24   

Shimmer % 5.13 0.53 1.03   

SNR 17.97 0.60 1.20  
 
Onset (kPa) 0.76 0.10 0.20 
 
Offset (kPa) 0.60 0.14 0.27 

Frequency (Hz) 124.77 1.75 3.40 
 
Flow (L/s) 1.24 0.02 0.04 
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Table 3 

Descriptive Statistics for Condition 2 

  

Item M SD Range 
 _    

Jitter % 1.03 0.27 0.57   

Shimmer % 5.33 1.71 4.12  

SNR 18.55 2.63 5.90  
 
Onset (kPa) 0.77 0.09 0.23 
 
Offset (kPa) 0.58 0.13 0.30 

Frequency (Hz) 125.63 1.39 3.30 
 
Flow (L/s) 1.53 0.22 0.47 
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Table 4 

Descriptive Statistics for Condition 3 

  

Item M SD Range 
  

Jitter % 0.80 0.29 0.39  

Shimmer % 3.96 1.08 2.16  

SNR 18.43 3.01 5.40  

Onset (kPa) 1.69 0.34 0.60 
 
Offset (kPa) 1.23 0.33 0.65 

Frequency (Hz) 134.03 3.26 6.40 
 
Flow (L/s) 2.26 0.37 0.66 
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Table 5 

Repeated Measures ANOVA and Bonferroni Post Hoc Contrasts for Variables Which 

Changed Significantly Across Condition. 

 
 

Condition Overall ANOVA 1 vs. 2 1 vs. 3 2 vs. 3 

Variable F-ratio p-value p-value p-value p-value 

Onset Pressure 22.402 0.001** 1.000 0.002** 0.002** 

Offset Pressure 9.809 0.009** 1.000 0.025*   0.014* 

Onset Frequency 17.174 0.002** 1.000 0.004** 0.004** 

Onset Flow 13.813 0.004** 0.500 0.004** 0.018* 

 
 
Note. Degrees of freedom are 2, 7. *p < .05. **p < .01. 
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Figure 8.  

Mean (and standard deviation) onset pressure for each of the three conditions. 
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Figure 9. 

Mean (and standard deviation) offset pressure of each of the three conditions.
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Figure 10.  

Mean (and standard deviation) onset frequency of each of the three conditions. 
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Figure 11.  

Mean (and standard deviation) onset flow of each of the three conditions. 
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exhibit excessive variability in perturbation over time. Average jitter for all models in 

Condition 1 was 1.01 %. Average shimmer for models in Condition 1 was 5.13%. 

Signal-to-noise ratio (SNR) was also calculated, as an additional measure of the 

model’s periodicity. The average SNR for models in Condition 1 was 17.97. 

Offset pressure (the pressure at which models ceased vibrating after being set in 

motion) was calculated at the conclusion of testing for each model and had a mean of 

0.60 kPa. 

Closure patterns and regularity of oscillation were reviewed with images from the 

high-speed camera. Models in Condition 1 demonstrated a complete closure pattern, with 

nearly-symmetric movement of the vocal folds (see Figure 12). Excursion was measured 

at the point when the folds were farthest away from midline. Excursion for Condition 1 

was approximately 4 mm. 

Condition 2 

Onset pressure for models in Condition 2 ranged from 0.66 to 0.89 kPa, with an 

average onset of 0.77. Flow at onset for these models had a mean of 1.53 L/s.  

The F0 of Condition 2 models ranged from 123.7 to 127.0 Hz at onset, with a 

mean of 125.6 Hz.  

The models in Condition 2 had mean jitter of 1.03%, shimmer of 5.33%, and SNR 

measures of 18.55.  

At offset, models ceased vibrating at an average pressure of 0.58 kPa. 

The vocal folds in Condition 2, which can be seen in Figure 13, have a smaller 

degree of excursion from midline than what is present in the models in Condition 1, with 

approximately 2.5 mm of space between the folds at excursion. Closure pattern is noted  
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Figure 12.  

Still images taken from a high-speed camera recording of a model in Condition 1. 

Maximum excursion is approximately 4 mm. A complete closure pattern can be seen, 

along with the nearly-symmetric movement of the folds during oscillation. 
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Figure 13.  

Still images taken from a high-speed camera recording of a model in Condition 2. There 

is a small degree of excursion from midline, with approximately 2.5 mm between the 

folds at the most open point. Masses representing early-stage bilateral nodules are 

present. The closure pattern is incomplete at one end. Movement of the folds during 

oscillation is slightly asymmetric. 
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to be incomplete at one end. Movement of the folds during oscillation is fairly regular, 

with little asymmetry noted. 

Condition 3 

Onset pressure for models in Condition 3 ranged from 1.30 to 1.90 kPa, with an 

average onset of 1.69. Flow at onset for these models had a mean of 2.27 L/s. Mean onset 

pressure for this condition was found to differ significantly from the average performance 

of models in Condition 1 (p = .002) and Condition 2 (p = .002).  

The F0 of Condition 3 models ranged from 131.2 to 137.6 Hz at onset, with a 

mean of 134.0 Hz, which was significantly higher than the onset frequency of Condition 

1 (p = .004) and Condition 2 (p = .004). 

The models in Condition 3 had mean jitter of 0.80%, shimmer of 3.96%, and SNR 

of 18.43, when measured at a pressure of 1.90 kPa. These results were not significantly 

different from means obtained in Conditions 1 or 2. 

Upon offset, models ceased vibrating at an average pressure  of 1.23 kPa. Mean 

offset pressure for models in Condition 3 differed significantly from that of Condition 1 

(p = .025) and Condition 2 (p = .014). 

The still images taken from high-speed recording of a model in Condition 3 show 

several irregularities (see Figure 14). A great deal of excursion from midline can be seen, 

with approximately 6 mm of space between the folds at maximum excursion. The closure 

pattern of these folds is noted to be relatively complete at both ends of the vocal folds. 

Movement of the folds is irregular, with asymmetries present during opening and closing 

phases of oscillation. 
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Figure 14.  

Still images taken from a high-speed camera recording of a model in Condition 3. 

Chronic bilateral nodules are simulated, with a broad base of stiffened material along the 

edges of the vocal folds. A large excursion from midline is noted, with approximately 6 

mm of space between the folds at the point of maximum excursion. The closure pattern is 

relatively complete at both ends of the folds. Movement of the folds is fairly regular, 

without a great deal of asymmetry present during opening and closing phases of 

oscillation. 
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Discussion 

The purpose of the current study was to investigate differences between normal 

and disordered vocal fold activity in a synthetic model. This involved assessment of 

several vocal measures.  

Airflow 

Colton, et al., (2006) reported that airflow rates in the disordered larynx appear to 

depend on the severity of the lesion on the vocal fold. Several studies, including the 

current investigation, have supported this idea. Tanaka and Gould (1985) reported a mean 

value of 275 mL/s in two patients with nodules, whereas normal male speakers produce 

flows of approximately 125 mL/s. Woo, Colton, and Shangold (1987) reported a mean 

flow rate of 265 mL/s for their combined polyp and nodule group across 14 male and 18 

female speakers. Normal speakers produced a mean flow rate of 144 mL/s. The current 

study yielded a mean flow rate of 1.24 L/s for vocal folds in Condition 1. Models in 

Condition 3 demonstrated a much higher mean flow rate (2.27 L/s).  

Several factors may contribute to higher flow rates when lesions are present on 

the vocal folds. One such factor is the tendency of vocal folds with nodules to show an 

incomplete closure pattern. Extra air leaks through the larynx during phonation when the 

vocal folds do not fully approximate. It is well documented that patients with nodules 

frequently have incomplete closure patterns during phonation, such as a posterior gap or 

hourglass closure pattern (Park & Mongeau, 2008). Air leakage through any gaps in the 

folds occurs during the closed phase of the phonatory cycle and creates higher rates of 

airflow. 

Nodules also rarely match each other in terms of mass and size and therefore 

contribute to some degree of aperiodicity, as each fold vibrates in a slightly different 
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phase (Case, 2002). Phase differences can result in an increase in airflow during 

phonation. 

Another contributor to elevated airflow rates in patients with nodules is the degree 

of stiffness present in the folds when nodules are present. With a set of stiffened folds, 

pressure from the lungs must be higher to achieve onset of phonation. Airflow levels are 

then much higher during phonation, because of the need for so much pressure to sustain 

phonatory movement in the larynx. 

Onset Pressure 

In the current study, models in Condition 1 had a lower onset pressure than 

models with nodules in Conditions 2 and 3. Onset pressure appears to be positively 

associated with variables of stiffness and mass, since an increase in either property led to 

an increase in the pressure needed for vibration to commence in this study.  

Scherer (1991) reviewed other factors that increase onset pressure for human 

vocal folds. The degree of inferior convergence of the folds has been documented as one 

feature that impacts onset pressure. If vocal folds are closer to each other at their lower 

borders, onset pressure is decreased. The current study controlled for this variable by 

setting vocal fold models the same distance from each other throughout the experiments.  

Another feature that can contribute to onset pressure variability is the vertical 

height of the folds. If the height of the vocal folds increases, less pressure may be needed 

to allow the vocal folds to oscillate. However, this variable was also controlled in the 

current study and did not likely influence the onset pressure, either within or between 

conditions.  

The third factor that can affect onset pressure is tissue damping, which accounts 

for friction in the folds. Scherer (1991) suggested that if the vocal fold tissue has a low 
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level of viscosity or friction, it has more freedom to move, which leads to a lower 

subglottal pressure needed to set the folds in motion. This factor is one that can be 

influenced by the differences in tissue that were present in the three conditions tested in 

the current study. Vocal folds in Condition 1 had a low viscosity with the composition of 

the vocal fold cover layer that allowed a great deal of free movement. The folds in 

Condition 2 had a slight increase in viscosity when the small volume of stiffened mass 

was added to them. This same principle applies to the folds in Condition 3. They 

contained a larger stiffened mass along the medial edges of the folds, and thus greater 

friction; this increased the pressure needed to achieve the onset of vibration.  

Frequency 

Pitch, the perceptual correlate of frequency, has been shown to change as a 

function of vocal fold length and tension, subglottal pressure, amplitude of motion of the 

vocal folds, and activity of the thyroarytenoid muscle (Scherer, 1991).  

The fundamental frequency of an object in motion is dependent on multiple 

factors. Mass and length of the vocal folds can greatly contribute to changes in vibratory 

frequency. Larger vocal fold mass generally yields a perceptually lower voice with its 

low fundamental frequency. An increase in airflow through the glottis is usually 

accompanied by an increase in fundamental frequency (Fo). This is due to changes that 

occur to the vocal folds themselves as they are displaced during more intense phonation. 

As the vocal folds are moved further away from the midline during periods of loud 

phonation, their degree of displacement is increased, and the folds are stretched, resulting 

in smaller vocal fold cross-sectional mass and increased stiffness; thus, there is an 

increase in the frequency of vibration  (Titze, 1989).  
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The current study revealed an increase in F0 when stiffened mass lesions were 

added to the vocal folds. Even though an increase in mass is generally associated with a 

lower F0, the models in Condition 3 of this study were displaced sufficiently to create an 

increase in F0 despite the addition of the mass lesions. Because the models in Condition 3 

had such a great deal of stiffness along the cover layer of the vocal folds, subglottal 

pressure had to be increased substantially to induce oscillation. The dramatic increase in 

air pressure needed to sustain oscillation in Condition 3 created a greater degree of 

displacement than that noted in Conditions 1 and 2, and therefore, a higher F0.  

Several previous studies have shown that the speech signal’s fundamental 

frequency increases when nodules are present (Niedzielska et al., 2001; Niedzielska, 

2005). This is most likely due to the modification of the airflow through the larynx that 

results from the pathology (Scalassara et al., 2007).  

Perturbation  

Previous studies have not reported vocal perturbation data for physical models of 

the vocal folds. In studies of human phonation, jitter and shimmer are often computed to 

reveal instability in the voice, which can be a clinical indicator of possible vocal fold 

pathology. In the human voice, the likelihood of pathology increases when jitter and 

shimmer percentages increase. In general auditory perceptual terms, moderate amounts of 

jitter and shimmer are associated with “roughness” of the voice, whereas in physical 

terms, perturbation is associated with vocal fold vibration instability (Murphy, 2000).  

Jitter and shimmer in the current study are rather interesting to note because of 

their difference from what one would expect from human voice samples. A typical 

speaker without laryngeal disorder should be able to generate a vowel prolongation with 

very little jitter, usually less than 1%. As jitter values increase beyond this 1% level, the 
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voice is perceptually more dysphonic or rough. In human speakers with no laryngeal 

pathology, average jitter measures are typically below 1% (Case, 2002). Shimmer is 

another acoustic measure giving information about cycle-to-cycle perturbation of 

intensity in a voice. Typical speakers, holding a vowel sound as steady as possible, 

should have little variation in intensity with each cycle of vibration.  

Voices of persons with vocal nodules usually show above normal levels of jitter 

and shimmer (Case, 2002). Increases in nodule size and mass typically lead to elevated 

jitter and shimmer measures. However, in the current study, the mean jitter values did not 

statistically differ from one condition to the next, and were actually slightly lower in 

Condition 3, in which the nodule mass was much higher. Mean shimmer followed a 

similar pattern; there were no significant differences across conditions, and values were 

also somewhat lower in Condition 3. These findings might be explained by the structural 

symmetry of the synthetic folds. Tissue asymmetry may be present in human vocal folds 

with nodules or polyps, and this may lead to the increased perturbation measures found 

for such speakers. Typical vocal nodules, while bilateral, will not be as symmetric in 

composition as the simulated mass lesions in this study. The models in Condition 3 had 

larger masses, but since they essentially mirrored each other in their mechanical 

properties, the folds moved in relative symmetry. The identical simulated nodules 

allowed a relatively uniform movement pattern for each fold during oscillation, which 

likely led to modest perturbation measures. The regularity of movement from models in 

the current study is one explanation for the disparity in these findings relative to human 

speakers. A potentially valuable area for future study would be to investigate 

asymmetrical vocal fold movement in physical models by deliberately altering the 
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physical properties of one fold, in order to learn whether such a model would behave in a 

way that is similar to phonation in human speakers with vocal fold pathology. 

Signal-to-Noise Ratio 

One voice characteristic of those with vocal nodules is a lowered harmonic-to-

noise ratio, or SNR (Case, 2002). In general auditory perceptual terms, high levels of 

noise are associated with breathiness, and in physical terms, noise is associated with 

turbulent flow at the glottis (Murphy, 2000). Typically, perceptually breathy voices are 

associated with vocal nodules or some other form of pathology that interferes with full 

approximation of the folds during the closed phase of the vibratory cycle. Previous 

studies have shown that the normal range of SNR for the human voice is from 9-30 dB 

(Klingholz & Martin, 1985); however, it is widely accepted in voice research that SNR is 

typically significantly lower for individuals with vocal fold pathology. For example, 

Zhang and Jiang (2006) reported SNR measures from 7.98 to 15.4 in speakers with 

laryngeal pathology, and measures from 21.9 to 26.8 in speakers with no laryngeal 

pathology.  

The results from the current study are in contrast to data obtained from human 

speakers, in that they do not show significant differences in SNR values between 

conditions. Condition 1 models had a mean ratio of 17.97, and Condition 3 models had a 

slightly higher mean SNR of 18.43. Several factors may have contributed to these results. 

The symmetry of the synthetic folds during oscillation may have prevented any 

difference in SNR between conditions. As discussed previously, the nodules in a human 

system are often asymmetrical in terms of mass and size. The nodules in the current study 

were symmetrically cast, and may have introduced less variability in the model system 

than would be expected in an actual pathological vocal fold condition. Although an 
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increase in mass was sufficient to create significant differences in onset pressure, 

frequency, flow, and offset pressure between conditions, the symmetry of the movement 

patterns in all 3 conditions was enough to ensure stability of SNR, jitter, and shimmer. 

Another factor to consider is the stiff silicone-filled area from Condition 3. Its 

dimensions were unlike anything that would be anticipated in a human larynx. The 

physical properties of these models, created to help visualize movement patterns of a 

disordered human system, may vary significantly from those of human speakers who 

have nodules or polyps. The “nodule area” created for the models in Condition 3 was 

geometrically unrealistic due to the rectangular shape that the nodule-stiffened area takes 

up on these models (see Figure 6). Therefore, the SNR observed in this study may not 

easily generalize to the results that might be observed in studies including speakers who 

have mass lesions on their vocal folds.  

Future studies in vocal fold modeling with mass lesions should test samples from 

the population of people with nodules and polyps, and compare their performance on 

SNR and other acoustic measures to samples of people from the population without vocal 

pathology. These data could then be compared with vocal fold models made to simulate 

each of these conditions. It would also be beneficial to refine the current model to 

experiment with asymmetries of size, shape, and stiffness of the simulated nodules, in 

order to more accurately reflect the disorder data from human voice research. 

Other pathological conditions could also be simulated as models become more 

refined in the future. For example, models could be created to simulate conditions such as 

Reinke’s edema, unilateral vocal fold paralysis, and vocal polyps. Further research might 

also focus on measurement variables that were beyond the scope of the current study, 
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such as particle image velocimetry, Young’s modulus, and more in-depth use of high-

speed imaging techniques in movement analysis. Different views of the vocal folds could 

also be recorded, giving a thorough look at vocal fold movement from inferior and 

transverse angles.  

Another direction to follow in future research would be to make modifications to 

Condition 1 to allow for a more realistic representation of the individual layers of the 

lamina propria and epithelial tissue. As mechanical models are refined and show more 

realistic movement patterns, we come closer to being able to use these models in a 

clinical context and potentially even improve diagnostic practices in the voice clinic.  

Conclusion 

While the present work demonstrates the basic feasibility of using physical 

models to better understand disordered human vocal fold behavior, it is clear that further 

research is needed to make refinements to the models. This preliminary study of the 

potential to model voice disorders suggests that modeling may be extended to a broader 

range of phonatory conditions and pathologies in the future. Because modeling research 

continues to become more refined, a long-term goal for similar research would be to 

develop a comprehensive laryngeal system that yields new information about glottal 

aerodynamics and structure. Hopefully, progress in synthetic models along with human 

subject studies will provide this type of definitive data in the near future. In this way, 

insight into specific physiological patterns of vocal folds with numerous pathological 

conditions can be gained to further our understanding of the complexities of the human 

voice.  
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Despite some inherent limitations of this study, the results provide a foundation 

for further research regarding the effect that mass lesions might have on typical patterns 

of voice production. 
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