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ABSTRACT

AUTONOMOUS AND INTELLIGENT RADIO SWITCHING

Qiuyi Duan

Department of Computer Science

Doctor of Philosophy

With the proliferation of mobile applications and the abundance of wireless

devices, it is increasingly common for devices to support multiple radios. When

two devices are communicating they should choose the best available radio based on

user preference and application requirements. This type of “radio switching” should

happen automatically, so that the system optimizes performance dynamically.

To achieve this objective, we design an Autonomous and Intelligent Radio

Switching (AIRS) system to leverage the radio heterogeneity common in today’s wire-

less devices. The AIRS system consists of three key components. First, we design

a radio preference evaluation module to dynamically select the best radio according

to users’ preference, application’s QoS requirements, and the device battery usage.

Second, we propose a link quality measurement and prediction module to predict

the radio quality under a variety of mobility and interference conditions. Third, we

present a radio switching decision making module to switch to the preferred available

radio intelligently, based on the preference and link quality evaluations.



The AIRS system maintains connectivity, as well as improves link quality, via

dynamic and intelligent radio switching, regardless of interference or collisions from

the interfaces of other devices. The radio preference evaluation module is able to

generate and adjust a preference list dynamically. Multiple users’ requirements are

satisfied in a mutually beneficial manner and the selected radio is Pareto optimal.

The link prediction module is able to achieve an accuracy above 90% under a variety

of mobility and interference conditions. The module can dynamically increase the link

measurement interval and significantly reduce its power consumption, without sacri-

ficing accuracy. The decision algorithm uses several parameters to avoid switching

radios too frequently, and is able to provide dynamic, but stable radio switching, while

balancing the competing objectives of high throughput and low power consumption.

Overall, the AIRS system is able to achieve high goodput (application level through-

put) and long battery life as applied to handoff management in a frequently changing

mobile environment.
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Chapter 1

Introduction

Ubiquitous or pervasive computing has long been a vision of the computing

community. Ideally, computing should be integrated into our environment, working

behind the scenes to provide computation and communication, with graceful interac-

tion with human users. Devices should be able to maintain connectivity, as well as

improve link quality, in various situations.

Wireless devices play an important role in these visions, as radios can be

embedded in many objects and have the potential to operate with a minimum of

configuration. As mobile communication systems continue to evolve, mobile devices

that support multiple physical transceivers are increasingly common. It is likely that

wireless technologies will continue to proliferate and that devices will continue to

support multiple radios and network stacks.

Complicating these visions, however, is the reality that no single wireless tech-

nology dominates the market nor provides the desired functionality in all situations.

Each wireless technology presents certain strengths and weaknesses, and each shines

within certain usage models. Cellular technology provides coverage over a wide area,

but phone manufacturers are adding WiFi interfaces so that users can browse the

web at a WiFi hotspot, with lower connection charges and possibly higher speeds.

Likewise, laptops and cellphones, in addition to WiFi or cellular interfaces, have Blue-

tooth interfaces for exchanging data directly with other devices or peripherals, when
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other network interfaces may be unavailable, too cumbersome, or consume too much

power.

Because of this reality, we envision that devices ought to be able to seamlessly

switch between available network connections on the fly in order to provide access to

available services. For example, if a person wants to transfer images from a cellphone

to a laptop, the devices should cooperate to make this happen however they can,

regardless of whether the transfer utilizes a Bluetooth or WiFi connection. Further-

more, as the availability or quality of a connection changes due to the activity of

other nodes or interference from other devices, devices should cooperate to switch to

the best available interface, taking into account power and performance tradeoffs. In

other words, wireless devices should exploit their heterogeneity in order to provide

better service to end users. This kind of communication should “just work” rather

than requiring the user to be involved.

Autonomously and intelligently optimizing connectivity between devices that

support multiple radios is an emerging challenge in wireless networking. A multi-

radio device should be able to evaluate radio configurations dynamically according

to distinct user preferences, accurately predict future link quality rather than simple

availability under a variety of mobility and interference conditions, and decide when

to switch radios and which radio to choose on the fly. To be suitable for mobile

devices, the radio switching mechanism should be computationally light, with modest

communication overhead. In addition, this type of radio switching, typically classified

as a soft, vertical handover, should allow each supported radio to have its own network

stack.

To meet these challenges, our research group has developed the Quality of

Transport (QoT) architecture [27], along with additional work exploring key compo-

nents of this architecture [3,12,8,10,9]. The preliminary work with QoT demonstrates

how devices with multiple radios can switch between radios, even if these radios use
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different network stacks. What has been missing from QoT, however is the “brain”

of the system. This includes: (a) periodic measurement of radios to determine their

status; (b) future radio quality prediction; (c) decision making on switching to a

different radio; and (d) preference negotiation between users.

In this dissertation, we develop an Autonomous and Intelligent Radio Switch-

ing (AIRS) system that provides all of this functionality. The AIRS system makes

it possible for devices to switch between supported interfaces autonomously and in-

telligently, according to the dynamic performance characteristics of each interface.

The AIRS system is designed to be compatible with the QoT architecture, but is

not restricted to this application. The presented AIRS system is applicable to any

architecture where smart and dynamic radio selection and switching are desired in a

heterogeneous multi-radio environment.

1.1 Quality of Transport

Quality of Transport (QoT) [27] is an architecture that transparently and auto-

matically manages session-layer protocol access to multiple radios in heterogeneous

mobile environments. It functions as an intelligent layer inserted between the ses-

sion/application layers (such as HTTP, FTP and OBEX) and transport layers (such

as IrDA, Bluetooth, and TCP/IP), facilitating dynamic, transparent and intelligent

radio switching for multi-radio devices in order to provide the highest quality data

transfer capability within constantly changing mobile environments.

As Figure 1.1 demonstrates, QoT introduces upper and lower abstraction mod-

ules and provides transparency to existing protocols without requiring additional

APIs. The upper module is referred to as the Transport Proxy Module (TPM) and

appears to a session layer as if it were an interface to a specific radio. The lower

module is referred to as the Transport Abstraction Module (TAM) and interacts with

the transport layer as if it were an arbitrary (but indeterminate) session protocol.

3



Figure 1.1: Data Exchange with QoT in Multi-Radio Environment

The TAM can also be viewed as presenting a consistent network interface to QoT,

facilitating an extensible architecture from a radio perspective. The TAM manages

radio connections and data transmission over the given radio.

The goal of QoT is to automatically manage the nature of the underlying data

connection in order to maximize user experience and satisfaction [34]. If the active

radio is disrupted, QoT attempts to connect over a less desirable (but available) radio

without disturbing the session. We refer to this type of handoff as a downgrade. If

QoT detects that a more preferred radio has become available, it attempts to connect

over that radio in order to improve the link quality. We refer to this type of radio

switching as an upgrade. In either case, the selected radio should be the optimal one

among available radios, so that the user’s requirements can be maximally satisfied

during the communication.

Figure 1.2 illustrates a QoT-enabled data exchange between two devices using

OBEX as the session layer protocol. The devices each support four radios, three

of which are common (IrDA, Bluetooth, and IEEE 802.11b). Suppose that, at the

time this figure presents, the most preferred link quality is provided by IrDA. In this

situation, QoT would route the OBEX traffic via the IrDA stack (in dashed lines). As

the user moves out of range of the active radio (IrDA) connection quality degradation

4
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Figure 1.2: Data Exchange using QoT

is detected. In order to provide seamless connectivity with desired quality, the next

preferred option, Bluetooth, would be selected. QoT would automatically switch the

underlying radio to Bluetooth (in solid lines), without interrupting the connection or

requiring user intervention.

1.2 Architecture of QoT

The basic architecture and preliminary implementation of QoT [27, 54], shown in

Figure 1.3, comprises five primary modules, namely QoTCore, QoTBrain, DeviceM-

anager, TPM, and TAM.

QoTCore is the “task handler” and “information provider” of the QoT ar-

chitecture. It is the module that performs operations, such as making a connection,

upgrading or downgrading the current radio, and transmitting data or control packets.

QoTCore interfaces with the upper and lower abstraction modules (TPM and TAM),

provides real-time information to the QoTBrain for decision making, and updates the

dynamic radio information in the DeviceManager module.

QoTBrain serves as a “controlling administrator” in the QoT framework. It

makes intelligent decisions autonomously based on the information provided by QoT-
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Figure 1.3: QoT Implementation Architecture

Core and DeviceManager, such as evaluating supported radios based on user prefer-

ences and application’s QoS requirements, scheduling radio quality assessment queries

with efficient query intervals, and initiating radio switchings (upgrade/downgrade) to

a selected radio at an appropriate time. QoTCore takes these orders from QoTBrain

and executes the given tasks. Meanwhile, QoTBrain periodically evaluates and pre-

dicts radio quality, then dynamically updates the corresponding information in the

DeviceManager module.

DeviceManager dynamically maintains a Remote Device Table (RDT), func-

tioning as a central repository of radio property and quality information, as shown in

Figure 1.4. Radio information recorded in the RDT table includes radio connection

parameters (such as IP addresses for TCP/IP), quality levels of relevant evaluation

metrics, availability prediction, and other link descriptors (such as coverage, cost, and

power consumptions).

1.3 Autonomous and Intelligent Radio Switching System

For this dissertation, we developed the Autonomous and Intelligent Radio Switching

(AIRS) system, which acts as the QoTBrain in the QoT architecture. As illustrated

6
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in Figure 1.5, the AIRS system is composed of four key modules, which measure the

radio status, predict link quality, and decide when to switch radios based on user

preference, application requirements and remaining battery life.

1.3.1 Radio Preference Evaluation

The Radio Preference Evaluation module is designed to produce and dynamically

maintain a preference list, ordering the available radios according to user preferences,

the application’s QoS requirement, and the usage of device battery. This module

provides three evaluation modes: “high throughput”, “power efficient”, and “adap-

tive”. In either “high throughput” or “power efficient” mode, the supported radios

are ranked according to their performance on the concerned factor. For example,

consider a device with WiFi, Bluetooth, and WirelessUSB. If the user selects the

“power efficient” mode, then these three radios are evaluated based on their power

consumption. Hence, the ranking list is WirelessUSB, Bluetooth, and WiFi, from the

most preferred to the least preferred.
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Figure 1.5: AIRS System

In “adaptive” mode, the radios are evaluated dynamically according to the

device battery usage using an Axiomatic Multi-transport Bargaining algorithm [8].

The lower the battery, the more weight is placed on power consumption. Radios are

first evaluated at the intra-device scope based on predefined utility functions, applying

the Utility Theorem. Then, radio preference is negotiated at the inter-device scope

applying Nash’s Axiomatic Bargaining theory. “Social utility” is calculated for each

radio, integrating connecting users’ preferences in a mutually beneficial manner.

Results demonstrate that radio selection using the Axiomatic Multi-Radio

Bargaining algorithm is fair and Pareto optimal. The radio selected can satisfy con-

necting users’ preference equally, and no alternative selection can provider better

connection than the selected one for all users.

This work is published at the 2006 IEEE Wireless Communications and Net-

working Conference:

Qiuyi Duan, Lei Wang, Charles D. Knutson, and Michael A. Goodrich. Ax-

iomatic Multi-Transport Bargaining: A Quantitative Method for Dynamic Transport

Selection in Heterogeneous Multi-Transport Wireless Environments. IEEE Wireless

Communications and Networking Conference (WCNC), Las Vegas, NV, April 2006.

The full paper is presented in Chapter 2.
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1.3.2 Link Quality Measurement and Prediction

The Link Quality Measurement and Prediction module is used to predict whether a

given link can meet application requirements in a constantly changing environment.

To predict future link quality, the device periodically measures radio status using one

or more metrics, including throughput, delay, and jitter [10]. The device maintains a

window of past measurements in FIFO order, and predicts future link quality based on

these measurements using a Weighted Least Square Regression (WLSR) algorithm.

The module calculates the “availability probability” to indicate the radio’s future

performance considering the QoS requirements on all concerned metrics.

There are many cases where we could decrease the frequency of periodic queries

on some radios to save more system power. For example, if two devices are communi-

cating on a preferred radio, and the connection is stable, the query interval on other

radios can be reduced. We dynamically adjust the query interval in the Efficient

Query Interval module using Fuzzy Logic control theory [9], taking into account the

radio preference and the link quality prediction, thus conserving battery life.

Our results show that the model is able to achieve an accuracy above 90%

when predicting link qualities under a variety of mobility and interference conditions.

We are also able to reduce the overhead of this prediction scheme by dynamically

increasing the link measurement interval, while preserving its accuracy. We com-

pare the WLSR method to several other prediction methods and show that WLSR

outperforms them significantly.

This work is published at the 2008 IEEE International Symposium on a World

of Wireless Mobile and Multimedia Networks, and an extended version is submitted

to IEEE Transactions on Mobile Computing:

Qiuyi Duan, Lei Wang, Charles D. Knutson, and Daniel Zappala. Link Qual-

ity Prediction for Wireless Devices with Multiple Radios. IEEE International Sympo-

9



sium on a World of Wireless Mobile and Multimedia Networks (WoWMoM), Newport

Beach, CA, June 2008.

Qiuyi Duan, Lei Wang, Charles D. Knutson, and Daniel Zappala. Efficient

Link Quality Prediction for Wireless Devices with Multiple Radios. Submitted to IEEE

Transactions on Mobile Computing.

The extended version is presented in Chapter 3.

1.3.3 Radio Switching Decision Making

The Radio Switching Decision Making module decides which radio should be selected

and when a switch should be performed. This module enables autonomous and intel-

ligent radio switching, according to the dynamic performance characteristics of each

interface. The decision making module integrates radio preference and link quality

prediction by applying the Expected Utility theorem, and utilize hysteresis and link

verification parameters to reduce frequent radio switches.

Our results show that the communicating devices are able to dynamically

choose the best available radio, while balancing throughput and power. The AIRS

system is able to achieve high goodput (application level throughput) and long bat-

tery life as applied to radio switching management in a frequently changing mobile

environment. A connection managed by AIRS has better performance in terms of

transparency and adaptiveness, compared to other alternative algorithms. Frequent

radio switches can be significantly decreased with the application of hysteresis, link

verification, and expected utility calculation.

This work is accepted at the 2008 IEEE International Workshop on Heteroge-

neous Multi-Hop Wireless and Mobile Networks:

Qiuyi Duan, Lei Wang, Charles D. Knutson, and Daniel Zappala. Au-

tonomous and Intelligent Radio Switching for Heterogeneous Wireless Networks.

10



IEEE International Workshop on Heterogeneous Multi-Hop Wireless and Mobile Net-

works (MHWMN), Atlanta, Georgia, September 2008.

The full paper is presented in Chapter 4.
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Chapter 2

Axiomatic Multi-Radio Bargaining: A Quantitative Method

for Dynamic Radio Selection in Heterogeneous Multi-Radio

Wireless Environments

Radio selection mechanisms are designed to facilitate seamless connectivity

in heterogeneous multi-radio environments, allowing access to the “best” available

radio according to user requirements. Evaluating radio configurations dynamically

according to the user’s preferences and Quality of Service (QoS) requirements is a

challenging task. This paper describes a quantitative approach that applies the Utility

Theorem and Nash’s Bargaining solution to heterogeneous wireless environments.

The mathematical model presented generates and adjusts the radio preference list

dynamically depending on the degree to which a radio satisfies user preferences and

the application’s QoS requirements. We incorporate a negotiation engine using the

Axiomatic Multi-Radio Bargaining algorithm to integrate local and remote users’

requirements in a mutually beneficial manner as devices are connected via a peer-to-

peer link. The radio selection model discussed in this paper is computationally light

with modest communication overhead, making it suitable for mobile devices.

2.1 Introduction

Heterogeneous multi-radio devices are increasingly common. Devices in these envi-

ronments typically possess multiple physical transceivers, such as IrDA, Bluetooth,

13



IEEE 802.11b/g, and cellular. Such intra-device heterogeneity can be exploited to

optimize connection quality by selecting the “best” available radio, according to the

users’ preferences and the application’s Quality of Service (QoS) requirements.

Quality of Transport (QoT) is a protocol that manages session/application

layer access to multiple radios in heterogeneous wireless environments (Figure 2.1).

QoT functions as an intelligent layer inserted between the session and transport layers,

facilitating dynamic, transparent and autonomous radio switching for multi-radio

devices in order to provide the highest quality data transfer capability [27]. If the

active radio is disrupted, QoT attempts to connect over an available but less desirable

radio without disturbing the session (referred to as a downgrade). If QoT detects that

a more preferred radio has become available, it attempts to connect over that radio

in order to improve the link quality (referred to as an upgrade). In either case,

the selected radio should be the optimal one among available radios, so that the

user’s requirements can be maximally satisfied during the communication with QoS

commitment.

The radio selection module in the QoT framework is designed to provide and

dynamically maintain a radio preference list according to users’ preferences and ap-

plications’ QoS requirements. As a reference for QoT radio switching, such radio

preference information allows traffic from session layers to be routed over the “best”

available radio at any given time.

The rest of the paper is organized as follows. First, we introduce related work

in Section 2.2. Second, we present a radio selection overview in Section 2.3, illustrating

the role and functionality of our radio selection model. Next, descriptive criteria

selection and user interface are discussed in Section 2.4 and Section 2.5 respectively.

In Section 2.6, the radio selection model is introduced in detail. Dynamic preference

adjustment is described in Section 2.7. Finally, conclusions are presented in Section

2.8.
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Figure 2.1: Data Exchange with QoT in Multi-Radio Environment

2.2 Related Work

A number of research projects have examined heterogeneous connection capabilities.

The BARWAN project at UC Berkeley explored the use of vertical handoffs in wireless

overlay networks as a mechanism for intelligently and dynamically maintaining an

active TCP/IP connection to a network infrastructure [45]. The model assumed

that networks with the smallest coverage provided the highest throughput, and hence

were the “best.” Such network selection may be inappropriate without considering

user preferences and other relevant criteria.

The network selection mechanism for the BARWAN project was improved

in [51], in which the author proposed a policy-based decision making scheme that

relied on user input to determine tradeoffs between network cost, performance, and

power consumption. However, no performance feedback information was provided,

and the user was not enabled to adjust requirements after the initial setting. This

policy-based approach was further improved in [58] by considering multiple active

services, but the feedback problem still exists.

A segment selection algorithm based on fuzzy multiple objective decision mak-

ing is discussed in [5]. Their model considers the trade-off between cost and quality

in order to make a choice between terrestrial and satellite networks for a connection.
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Figure 2.2: QoT Brain – Radio Switching Decision Making Model

The MosquitoNet [2] project at Stanford University was aimed at providing

continuous Internet connectivity to mobile hosts through a mechanism of switching

seamlessly between different network devices to take advantage of available connec-

tivity, whether wired or wireless. Their work concentrates on Internet connectivity

optimization, presuming that Internet access is the only essential usage model. The

mechanism by which a connection is chosen is not discussed. The quality of connec-

tion and user’s preferences are not considered in this model.

A Prioritized Soft Constraint Satisfaction (PSCS) scheme is proposed in [12] to

select the “best” radio in a dynamic wireless radio switching system based on a user-

established range of preferences and priority for criteria such as speed, power, range

and cost. QoS requirements and mobility issues are not considered in this model.

The user interface in this model is relatively complicated, requiring significant user

involvement, and the final radio selection is decided almost entirely based on the

user’s inputs. Non-technical users of the PCSC interface may not understand the

meaning of specific terms, or may lack the ability to intelligently specify such criteria.

Such weakness may significantly degrade the applicability of the model in practice.

The PSCS radio selection model is extended in [11] for situations in which

devices connect over a peer-to-peer link. A negotiation engine is added to generate
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a preference list that is favorable to both users. However, QoS, mobility, and the

complexity and dependency problems are inherited, making the model somewhat

weak with respect to accuracy and applicability.

While leveraging some of the strengths of PSCS, the model discussed in this

paper generates and adjusts the radio selection list based on the application’s QoS re-

quirement and the user’s preferences. Performance feedback information is provided

for the user’s reference and for dynamic adjustment. This model is computation-

ally light with modest communication overhead, and is less dependent on the user’s

inputs. Besides the intra-device radio evaluation and inter-device preference negotia-

tion scenarios presented in this paper, the proposed model may be applicable to other

multi-criteria selection problems in ad-hoc networks.

2.3 Radio Selection Overview

In order to better understand our model, we present an overview in this section,

showing the performing environment, functional role and specific functionality of our

radio selection model.

2.3.1 Mobility Issue

Connectivity quality (such as packet loss, error rate, latency, and jitter) changes as

a user moves. For example, the signal quality degrades as a user leaves the service

range. Hence, user mobility may impact radio selection.

However, computation and communication complexity increase significantly

when mobility is considered. Radio selection models require periodic assessment of

signal quality for all potential radios, so that the preference list may be updated

based on this information. Devices connected over a peer-to-peer link must renegoti-

ate their preference information constantly. Therefore, for complexity and overhead
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considerations, we separate the measurement of such highly dynamic factors into an

independent module.

2.3.2 Environmental Role of Radio Selection

The QoT Brain serves as a “trusted advisor” in the QoT framework. It makes intel-

ligent radio switching decisions autonomously, so that the “best” available radio may

be selected at any given time.

As illustrated in Figure 2.2, the QoT Brain is composed of four sub-modules.

The Radio Preference Evaluation module is designed to produce and dynamically

maintain a preference list, disclosing the desirability of each radio according to user

preferences and the application’s QoS requirement. The radio preference list is up-

dated whenever a change of preference settings is detected.

The Link Quality Measurement and Prediction module is used to provide ac-

curate status information for all supported radios via periodic radio performance

measurements and quality assessments, in order to minimize the probability of in-

correct radio switching. This module considers the QoS parameters that are not

involved in the Radio Preference Evaluation module, such as packet loss, latency, and

jitter. Further, it cooperates with the Radio Preference Evaluation module, providing

requisite information for intelligent radio switching decision making.

Query Interval Adjustment module is designed to reduce system overhead by

determining an efficient assessment query interval based on the radio desirability and

its status records.

The Radio Switching Decision Making module integrates both radio desirabil-

ity and status information, selects the “best” “stably available” radio at that given

moment, and makes the final switching decision.

These four modules are interrelated and function in a cooperative manner. The

system shown in Figure 2.2 makes it possible to keep the user connected seamlessly
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over the “best” available radio at any given time. The radio selection model discussed

in this paper achieves the functionality of the Radio Preference Evaluation module

in Figure 2.2.

2.4 Descriptive Criteria

QoT-enabled devices rank and select radios transparently without the user’s explicit

involvement. The user may express specific preferences via a set of descriptive cri-

teria provided by the system, and may make adjustments where desired. Our radio

selection model collects such preference settings and translates them into a radio

preference list.

Typical descriptive criteria include data rate, power consumption, signal range,

service charge, signal quality (latency and reliability), jitter, etc. [12] [5] [51]. We

consider two criteria to be critical in our radio selection model: data rate and power

consumption.

• Data rate – User preferences may vary with respect to this criterion. Some

usage models call for extremely high speed, while others may be satisfied as long

as the throughput is sufficient to satisfy the application. The user’s preference

setting for data rate would be considered as one of radio selection rules during

decision making.

• Power consumption – System power is a critical resource for mobile devices.

Most users are concerned with the battery life of their mobile devices and some

prefer power-efficient services with less data efficiency in order to achieve longer

battery duration. Therefore, power consumption is selected as an imperative

criterion for radio selection. Users may set specific preferences on this criterion

to achieve desirable services.
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This criteria set is simple and straightforward, while providing necessary pref-

erence information for decision making. Other criteria that we considered but did

not include in this model are:

• Service charge – Most short-range wireless services do not require usage

fees (for example, IrDA and Bluetooth). Wireless LANs are typically free of

charge [51], although the proliferation of subscriber-based WiFi hot spots is

changing that somewhat. Still, such hot spots generally operate on a flat-fee

basis, rather than a per-byte usage charge. Assuming that a regular flat fee is

charged for a user subscription, there is no particular cost savings in avoiding

the service. Hence, our current model chooses to ignore service charge as a

selection criterion.

• Service range – It is not necessary to consider signal range for mobile commu-

nications. For a certain wireless service, the device is either within the signal

range or not. Such radio availability variations are considered under the mobil-

ity criterion through dynamic radio quality trackings. Furthermore, when the

device is under the coverage of a preferred service according to the data rate

and power consumption settings, a user’s specific restrictions on signal range

may even cause incorrect radio selections. Suppose that the user sets the pre-

ferred threshold at more than 1 meter, implying that IrDA is not a desirable

candidate. If two devices communicate within 1 meter, and both users care a

great deal about power consumption. IrDA is the optimal choice. However, it

would not be selected due to the range restriction.

• Mobility – Signal quality1 changes as a user moves. As discussed in section

2.3, even though mobility is an issue that may impact radio selection, due to its

1Signal quality, including packet loss, latency, and jitter etc., is not considered as a selection
criterion, since it is difficult for the user to provide specific settings. QoS requirements on these
metrics are considered in the mobility module.
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computation and communication overhead, functionality for mobility detection

and radio availability maintenance are combined in a separate module.

2.5 User Interface

The radio selection user interface supports two phases: connection mode selection and

preference adjustment.

The interface for connection mode selection, represented in Fig. 2.3, allows

the user to indicate the most important criterion. Selection of high-speed mode

indicates that the user is generally more concerned with throughput than with power

consumption. Hence, services with high data rate are preferred. The radio with the

highest data rate is initially prioritized above other radios. Selection of power-efficient

mode demonstrates that the user is more concerned with the device’s battery life than

with communication speed. Radios with low power consumption are desirable so long

as such radios meet the application’s throughput requirement. Within all options that

are qualified on throughput, the radio with the lowest power consumption is initially

prioritized.

Clearly, connection mode selection is not enough. Sometimes, even though

a user chooses high-speed mode, the fastest radio may not be the one that is actu-

ally preferred. Thus, mode selection suggests only that the concern for throughput

is greater than the concern for power consumption. We need to find a more favor-

able setting based on the user’s specific desires on two criteria. Such information is

obtained via the preference adjustment interface, which is illustrated in Figure 2.4.

Based on the user’s connection mode selection at phase one, two sliders are

set to the corresponding positions according to the performance features of the pri-

oritized radio, with data rate and power consumption marked below the axes. Other

achievable performance options for data rate and power consumption are distributed

along the two axes respectively. If the current setting is satisfactory according to the
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Figure 2.3: User Interface: Connection Mode Selection

Figure 2.4: User Interface: Preference Adjustment

user’s desire (high speed or power saving preference), communication can start imme-

diately. Otherwise, the user can further adjust the setting by moving the slider of the

corresponding criterion to other preferred options. For each criterion, the position of

the slider indicates the user’s preference setting.

Applications have specific Quality of Service (QoS) requirements. Such QoS

information may be acquired via cross-layer communication techniques. For exam-

ple, the application layer could communicate to other layers the application’s QoS

needs, including required throughput [39]. In order to guarantee a reasonable com-

munication quality, we set the minimum data rate threshold as the QoS throughput

requirement. Radios with data rate lower than the minimum threshold are incapable

of completing the application, and thus should not be presented as options. Data rate

options corresponding to such radios are locked against selection on the interface. The

minimum threshold changes as the application’s requirement changes.
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Criteria are interrelated. A preference setting on one criterion may potentially

restrict the selection on the other criterion. For example, in order to provide a data

rate higher than the minimum throughput threshold, power consumption may not

be made arbitrarily low. As discussed in [12], we use Shannon’s Law to determine

the minimum power threshold based on the minimum data rate requirement. Any

option below the minimum threshold on the power criterion is incapable of meeting

the application throughput requirement, and is locked against selection.

For the user’s convenience, data rate is also presented as a time representation,

namely the elapsed time required to download a one-hour length movie (typically

500 MB). The power consumption is also transformed into time format, namely the

approximate battery life based upon the execution of the target application over the

preferred radio. The system power information could also be gathered using cross-

layer techniques such as those introduced in [39] [43]. The remaining battery life

in our model has a different definition. The purpose of such a transformation is

to provide the user an explicit perception of the power consumption features of all

radios, instead of an accurate prediction of exactly how long the battery could last

considering all tasks and system consumptions. Estimation methods can be found

in [53] [40] [38].

2.6 Dynamic Radio Selection Model

The radio selection mechanism is designed to facilitate seamless connectivity while

respecting user preferences. The model discussed in this paper dynamically main-

tains a radio preference list by balancing users’ preferences on data rate and power

consumption, so that the “best” available radio will be selected at any given time,

according to user requirements.
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2.6.1 Terminology

We denote rmin as the minimum data rate requirement, which is set based on the

QoS throughput requirement gathered from the application layer. The value of rmin

adjusts dynamically as the application’s requirement changes.

We let rmax represent the maximum data rate, which is the highest data rate

that radios can support. The value of rmax is set based on system information, and

does not change unless a new transceiver with higher throughput is added.

The minimum and maximum power consumption thresholds are similarly de-

fined, with pmin representing the minimum power threshold (which is set based on rmin

using Shannon’s Law) and pmax representing the maximum power threshold, which is

the highest power consumption regardless of the availability status of radio, according

to the system information.

rpref is used to represent the data rate that the user prefers, gathered from

the user interface (see Section 2.5). Any data rate in [rpref , rmax] meets the user’s

preference for throughput. Any data rate in [rmin, rpref) is capable of satisfying the

application, even though it is not fully desirable.

Similarly, we obtain the user’s preference on power consumption from the inter-

face and denote it as ppref . Power consumption in [pmin, ppref ] meets user’s preference,

while power consumption in (ppref , pmax] is an acceptable option.

R = {R1, R2, ..., Ri, ..., Rn} denotes the set of all radios. n is the number of

radios that the device possesses. Ri represents radio i.

2.6.2 Intra-Device Radio Selection

The Axiomatic Multi-Radio Bargaining algorithm comprises two phases: intra-device

radio preference evaluation and inter-device radio preference negotiation. We first
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consider phase one2, in which the radio is selected according to the local user’s pref-

erence and the application’s QoS requirements.

We apply the Utility Theorem [42] [36] to reflect variations in user’s require-

ments. As the Utility Theorem states, if an agent (user) has a preference relation

that satisfies the axioms of preference3, then a real-valued utility function4 can be

constructed that reflects this preference relation such that the following hold:

U(Ri) > U(Rj), if Ri is preferred to Rj

U(Ri) = U(Rj), if Ri and Rj are equally preferred

We first set a radio’s utility based on the data rate criterion. Radios with data

rate less than rmin do not qualify for the requested application. Hence user input is

indifferent on those options and 0 is assigned as the data rate utility for all incapable

radios. Radios within the range [rpref , rmax] are equally desirable according to the

user’s requirement. We set their data rate utility as 9. Radios in [rmin, rpref) are

capable with varying degrees of satisfaction. Their utility is given proportionally in

range [1,9) according to their data rate, as shown in Equation 2.1.

rRi
− rmin

rpref − rmin

=
Urate(Ri) − U(rmin)

U(rpref) − U(rmin)

⇒ Urate(Ri) =
rRi

− rmin

rpref − rmin

∗ 8 + 1 (2.1)

2The radio selection method at phase one also applies to a scenario in which the mobile device
communicates with an infrastructure, such as a network access point.

3The axioms of preference refer to the properties of orderability, transitivity, continuity, substi-
tutability, monotonicity, and decomposability. Details can be found in [42].

4The utility function is unique up to a positive affine transformation, which means that if a
function U() satisfies the axioms of preference for a particular agent, then so does αU() + β for
α > 0 and β ∈ R.
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Figure 2.5: Relationship of Utility and Descriptive Criteria

Therefore, we define the utility function for the data rate criterion as Equation

2.2 to reflect the user’s preferences on available radios. The relationship of utility and

data rate is further illustrated in Figure 2.5.

Urate(Ri) =































0 rRi
< rmin

rRi
−rmin

rpref−rmin
∗ 8 + 1 rRi

∈ [rmin, rpref)

9 rRi
∈ [rpref , rmax]

(2.2)

Similarly, we create another real-valued function via Equation 2.3 to represent

a user’s well-behaved preferences on the power consumption criterion. The utility

setting is also illustrated in Figure 2.5.

Upower(Ri) =































0 pRi
< pmin

9 pRi
∈ [pmin, ppref ]

pmax−pRi

pmax−ppref
∗ 8 + 1 pRi

∈ (ppref , pmax]

(2.3)

For simplicity, we use 0 and real numbers from 1 to 9 to represent the utilities.

Any real number will do, provided that the number assigned to the most preferred

option is higher than the number assigned to the least preferred option and connected

devices use the same scale.
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Now, according to the user’s preferences, each radio is evaluated by two in-

dependent criteria, data rate and power consumption, via the Equation 2.2 and 2.3

respectively. However, these two criteria are not equally important from the user’s

standpoint. We need to balance their degrees of importance when calculating the

radio’s overall utility. We do this by taking a weighted combination of the utilities of

data rate and power consumption using a weight that matches the user’s connection

mode selection, where we can determine the criterion that is more important. In

our model, this criterion is weighted 10 times more heavily than the less important

criterion. The overall utility for each radio is calculated using Equation 2.4, where

the value of the more important criterion is put to the tens position to represent its

stronger influence on the outcome.

Uoverall(Ri) =















Urate(Ri) ∗ 10 + Upower(Ri) high-speed

Upower(Ri) ∗ 10 + Urate(Ri) power-efficient

(2.4)

It is possible for us to choose other weight values to reflect the importance of

the more important criterion. Experiments were conducted to determine the effects

of the weight selection in Equation 2.4. Although not shown because of space limi-

tations, we found that smaller weights were not strong enough to reflect the relative

importance of the criterion in the utility, and larger weights neglected the less im-

portant criterion too much. Since the utility range for each criterion is [0, 9], weights

that are greater than 9 are sufficient to disclose the decisive influence of the more im-

portant criterion and provide similar balanced information. We empirically selected

10 as the balancing weight in our model.

The radio with higher overall utility ranks higher in the final radio preference

list and is more preferred by the user. As implied in Equation 2.4, the radio with the

higher utility on the more important criterion better meets the user’s preference and

QoS requirements. Hence, it is assigned a higher overall score and is ordered higher for
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selection. Radios with the same utility evaluations on the more important criterion

are ordered based on their utilities on the other criterion. The radio with a satisfying

performance on the less important criterion may not be desirable – its probability

of being selected depends on its performance on the more important criterion. The

overall utility of radios that are unqualified on either criterion (Urate(Ri) = 0 or

Upower(Ri) = 0) is set to 0. Radio with a lower power consumption is preferred if

there is a tie.

The overall utility explicitly represents the user’s preference with QoS consider-

ation. The radio is selected based on the degree to which it satisfies user requirements.

2.6.3 Inter-Device Radio Selection

As devices are connected over a peer-to-peer link with differing preferences on connec-

tion quality — a radio selection preferred by one user may not satisfy the other user’s

requirements. A radio preference negotiation mechanism is required to integrate both

local and remote users’ preferences. In this section, we consider the second phase of

Axiomatic Multi-Radio Bargaining algorithm — inter-device preference negotiation.

Traditional turn-taking negotiation incorporates significant communication

overhead and inherits potential deadlock risks. In order to solve this problem, QoT

employs a third party arbitration handled through the arbitration engine on the pri-

mary device [11]. The engine works like a benevolent court system, which can fairly

enforce the agreement reached by the agents.

The arbitration engine first gathers preference information from local and re-

mote devices on common radios. Only the radio’s overall utility is required, since it

includes all relevant information, such as the connection mode selection, the applica-

tion QoS requirement, and the user’s specific preferences on each descriptive criterion.

Based on such preference information, we apply Nash’s Axiomatic Bargaining Solu-
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tion [52] [36] [35] to evaluate all radio configurations and generate the commonly

shared social preference list.

Nash’s Axiomatic Bargaining is a mechanism that sets up the rules of the

negotiation so that socially “good” things happen given any users’ utilities. A radio

that is mutually beneficial to both users is preferred. The better it meets both users’

requirements, the higher it is listed.

As Nash’s Axiomatic Bargain algorithm defines, there is a special outcome,

called a fall-back solution, that can result if negotiation breaks down. As radio selec-

tion negotiation fails, no radio can satisfy both users’ requirements simultaneously,

and no connection can be set up. Therefore, we set the utility of fb solution as

Uuser1(fb) = Uuser2(fb) = 0.

According to Nash’s Axiomatic Bargaining algorithm, the best negotiation

solution is the one that maximizes the benefits of the two agents, as demonstrated in

Equation 2.5:

Rbest = arg max
Ri∈R

[Uuser1(Ri) − Uuser1(fb)][Uuser2(Ri) − Uuser2(fb)] (2.5)

Since Uuser1(fb) = Uuser2(fb) = 0, Equation 2.5 can be simplified into Equation

2.6.

Rbest = arg max
Ri∈R

[Uuser1(Ri)][Uuser2(Ri)] (2.6)

Applying Nash’s Axiomatic Bargaining algorithm, we define a real-valued func-

tion, namely the Axiomatic Multi-Radio Bargaining algorithm, to calculate the social
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utility for each radio using Equation 2.8 and make a social selection using Equation

2.7.

Rbest = arg max
Ri∈R

Usocial(Ri) (2.7)

Usocial(Ri) = Uuser1(Ri) ∗ Uuser2(Ri) (2.8)

Preferences of both local and remote users are equally considered during the

negotiation. A radio’s social utility is calculated based on its overall utility evaluated

by the two connecting devices. The higher the utility a radio gets, the better it meets

the users’ preferences simultaneously. The radio with the highest utility value is the

best negotiation solution as defined by the Axiomatic Bargaining algorithm.

Social selection should be fair with respect to both users’ requirements. A

fair solution in our model implies two aspects. One is that the negotiation process is

unbiased, meaning that the connecting users’ preferences are impartially considered.

The other is that the selected solution is Pareto optimal, meaning that no alternative

solution is better than the selected one for both users. A radio that simultaneously

satisfies both users’ requirements in a mutually beneficial manner is preferred.

Nash’s Axiomatic Bargaining algorithm is fair according to its axioms. It

is Pareto optimal, symmetric, independent of the utility scales of two agents, and

independent of irrelevant alternatives [35]. The Axiomatic Multi-Radio Bargaining

algorithm inherits such features and is able to provide a fair solution that satisfies the

above fairness axioms. Our algorithm allows the “best” available radio to be selected

via an impartial consideration of the preferences from both sides.

The social radio selection list is ordered from the radio with the highest social

utility to the one with the lowest value. A radio with lower power consumption

is preferred if there is a tie. If the active radio becomes unavailable, connecting
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Transport Data Rate(Mbps) Power (mw)

IrDA (SIR) 0.115 40

Bluetooth 0.723 270

IEEE 802.11b 11 2250

IEEE 802.11a 54 2000

GPRS 0.107 3000

Figure 2.6: Performance Scenario Data of All Radio Configurations

devices could switch to the next available radio, which is currently the “best” radio

among all available options. As a more preferred radio becomes available, connecting

devices could upgrade to that radio to achieve a more favorable connectivity quality.

Therefore, the most preferred available radio configuration could be selected at any

given time, providing a mutually beneficial connectivity.

This radio selection model performs with reasonable computation and com-

munication overhead because of its simplicity, making it suitable for mobile devices.

2.6.4 Performance Evaluation

We employed two QoT-enabled devices in our experiments, connecting via a peer-to-

peer link in order to exchange files using the OBEX protocol. The commonly shared

radios are IrDA (SIR), Bluetooth, IEEE 802.11b/a, and GPRS. We vary users’ inputs

to all possible mode and preference settings, and compared the performance of our

algorithm with three other strategies: Always Power Efficient, Always High Speed,

and Always the Largest Coverage. The minimum and maximum thresholds for data

rate and power consumption were gathered from the application layer and system

information using cross-layer techniques. Scenario data, shown in Figure 2.6, were

collected from each radio’s specification.

We use two metrics to evaluate the performances of various selection algo-

rithms: desirability and fairness.

• The desirability metric reflects the degree to which a selected radio satisfies

the users’ requirements. We use a radio’s overall utility for intra-device selection
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Figure 2.7: Intra-Device Radio Selection Comparisons on Various Preference Settings
— Desirability of the Selection

evaluation, and the average overall utility of the radio over thousands of different

preference settings from both users for performance comparison on inter-device

selection.

• The fairness metric indicates the degree of impartiality with which users’ pref-

erences are considered during negotiation. Like desirability, we use the average

overall utility of the radio over all possible preference settings from both users

for such performance evaluation.

Figure 2.7 compares our algorithm with the other three strategies for local

radio selection using the desirability metric5. As the result demonstrates, the radio

selected using our algorithm is consistently more or equally desirable when compared

5The X-axis represents all possible preference settings under a specific connection mode selection.
Patterns of the lines in Figure 2.7 depend on the experiment order on various settings, and are not
essential to the motivations that underlie the research presented here.
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to other strategies. The “best” available radio could be selected following our radio

preference list in either High-Speed or Power-Efficient mode.

Figure 2.8 compares the fairness and desirability of our algorithm with the

other three strategies in three cases: both users care about speed; both users care

about power consumption; users have different connection mode preferences. The

result of each case is the average overall utility of the selected radio over all possible

preference setting combinations with respect to that specific mode selection.

According to the line of symmetry, Figure 2.8 indicates that the radio selected

using the Axiomatic Multi-Radio Algorithm is consistently fairer than the selection

using the other strategies in all cases. When two users make the same connection

mode selections, they have similar evaluations on the commonly shared radios. Hence,

radio selection of any strategy meets the connecting users’ requirements with a similar

degree of satisfaction, either desirable to both sides or undesirable to both sides.

As the figure shows, the radio selected using our algorithm is closer to the line of

symmetry compared to the selection of other strategies, even though the advantage is

not significant. When two users make different connection selections, their preferences

may be significantly different. The Axiomatic Multi-Radio algorithm dynamically

evaluates all shared radios according to both users’ requirements and selects the option

that is mutually beneficial to both sides. As the figure shows, the radio selected using

our algorithm is much closer to the line of symmetry compared to the selection of

other strategies.

Based on the Pareto optimal lines, Figure 2.8 demonstrates that the radio se-

lection using the Axiomatic Multiple-Radio Bargaining algorithm is consistently more

desirable when compared to the other three strategies in any case with all different

preference setting combinations from the connecting peers. The Always High Speed

and Always Power Efficient strategies only perform well when both users concern

speed and both concern power consumption respectively. The radio selected using
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the Axiomatic Multi-Radio algorithm is consistently the most desirable one compared

to other strategies, because of its capability of choosing the Pareto optimal option

through dynamic evaluations. The advantage is especially obvious when connecting

users have different mode selections.

As the experimental results illustrate, our algorithm allows the “best” available

radio in terms of fairness and desirability to be chosen, so that both users’ connectivity

requirements are mutually benefited during the communication.

2.7 Dynamic Preference Adjustments

The preference adjustment interface (Figure 2.4) also provides feedback information

on connection quality. Positions of the two sliders are dynamically adjusted according

to the current radio configuration, disclosing present connection performance infor-

mation.

The user can adjust the preference setting at any time as requirements change,

by moving the corresponding slider to the desired option or by changing the connec-

tion mode selection. Relevant variables, such as rpref , ppref , and connection mode,

change accordingly. The radio selection model reevaluates all radio configurations

based on the updated information, and generates a preference list according to the

new preference setting. A QoT enabled device would then switch to the most desired

available radio, so that the configuration selected is always favorable to the user’s

requirement.

The radio preference list also changes as the application’s QoS requirement

changes or as the system resources change.

As introduced in section 2.5, minimum thresholds of the two criteria are set

based on an application’s QoS requirements. As an application executes, QoS require-

ments change accordingly. With cross-layer information sharing, QoT could detect

such changes and adjust rmin and pmin dynamically according to the new requirement.
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Maximum thresholds of the two descriptive criteria, rmax and pmax, are set

based on system resource information. Their values do not changed unless a new

transceiver with an even higher data rate or power consumption feature is added.

The radio selection model reevaluates all supported radios based on the newly

updated criteria information. The social preference list is also updated through rene-

gotiation as devices are connected over a peer-to-peer link.

2.8 Conclusion

This paper presents a dynamic radio selection model that applies the Utility Theorem

and the Axiomatic Bargaining algorithm to heterogeneous wireless environments. The

mathematical model generates and adjusts a preference list dynamically, facilitating

seamless connectivity with user preferred quality. Multiple users’ requirements are

satisfied in a mutually beneficial manner using Axiomatic Multi-Radio Bargaining

algorithm. The model is suitable for mobile devices with modest computation and

communication overhead.

Future work in radio selection decision making could be focused on multiple

radio utilization, such as inverse multiplexing, making the connectivity more favorable

according to user preference.
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Chapter 3

Efficient Link Quality Prediction for Wireless Devices with

Multiple Radios

With the abundance of wireless devices available today, it is increasingly com-

mon for devices to support multiple radios, for example both WiFi and Bluetooth.

Communication between these devices ought to be as simple as possible; they should

be able to seamlessly switch between different radios and network stacks on the fly in

order to better serve the user. To make this a possibility, we consider the challenging

problem of predicting link quality – in terms of throughput, delay, and jitter – in

a changing mobile environment. In this paper we present a link quality prediction

algorithm that uses Weighted Least Square Regression to predict future availability

based on past measurements of link quality. We use a simulation study to show

that our prediction algorithm outperforms several alternatives, and is able to achieve

an accuracy above 90% under a variety of mobility and interference conditions. We

also show that our algorithm can significantly reduce its power consumption, without

sacrificing accuracy, by increasing the link measurement interval. Finally, we demon-

strate how a multi-radio system can improve throughput and power consumption by

using our prediction algorithm to dynamically select the best available radio.
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3.1 Introduction

Wireless devices ought to make it easier for users to communicate with each other.

Complicating this vision, however, is the reality that no single wireless technology

dominates the market nor provides the desired functionality in all situations. Cellular

technology provides coverage over a wide area, but phone manufacturers are adding

WiFi interfaces so that users can browse the web at a WiFi hotspot, with lower

connection charges and possibly higher speeds. Likewise, laptops and cellphones,

in addition to WiFi or cellular interfaces, have Bluetooth interfaces for exchanging

data directly with other devices or peripherals, when other network interfaces may be

unavailable, too cumbersome, or consume too much power. It is likely that wireless

technologies will continue to proliferate and that devices will continue to support

multiple radios and network stacks.

Because of this reality, we envision that devices ought to be able to seamlessly

switch between available network connections on the fly in order to provide access to

available services. For example, if a person wants to transfer images from a cellphone

to a laptop, the devices should cooperate to make this happen however they can,

regardless of whether the transfer utilizes a Bluetooth or WiFi connection. Further-

more, as the availability or quality of a connection changes due to the activity of

other nodes or interference from other devices, devices should cooperate to switch to

the best available interface, taking into account power and performance tradeoffs. In

other words, wireless devices should exploit their heterogeneity in order to provide

better service to end users. This kind of communication should “just work” rather

than requiring the user to be involved.

In pursuit of this vision, we have developed a device architecture for seamlessly

switching between available wireless interfaces [27], and we have examined several

components of this architecture [3, 12, 8]. In this paper, we focus on one aspect of

radio selection, the ability to predict the availability and performance characteristics
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of each wireless interface [10]. This is a key issue, since in many cases, wireless

devices have several different radios to choose from, and need some guidance as to

which interface is likely to satisfy the application in the near future.

Predicting link availability has received significant attention in ad hoc wireless

networks, where it is principally used to help routing protocols provide stable routes

[23,17]. In this work, nodes use a single WiFi radio and cooperate to maintain network

connectivity. Each node tries to predict the probability that a link to its neighbor

will continue to be available for some time into the future. The routing protocol then

uses this metric to compute routes that will remain available for the longest time;

this has shown to be more effective than using shortest path routing.

The issues we face in designing for heterogeneous wireless devices differ from

this previous work in several fundamental ways. The main difference is that we are

interested in predicting link quality, rather than simply link availability. With a sin-

gle interface and a network of homogeneous devices, maintaining connectivity is most

important. However, with multiple available interfaces between two communicating

devices, our goal is to choose the interface that can best meet application require-

ments. Accordingly, we try to predict whether a link will meet the throughput, delay,

and jitter requirements of a particular application.

Another difference from previous work is that we consider devices in which each

interface may potentially have its own network stack. For example, WiFi interfaces

typically use a TCP/IP stack, but Bluetooth interfaces have their own stack. This

means that we must devise a general algorithm that does not depend on a particular

technology. We must also handle interference as a common occurrence, since different

technologies may share the same frequencies.

The challenge in predicting the quality of a wireless link is that fluctuations

occur due to mobility and contention from other wireless devices. In this paper, we

predict future link quality using a sliding window of previous, periodic measurements.
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We devise a prediction algorithm based on the Weighted Least Square Regression

(WLSR) algorithm and determine the proper weighting of current versus past mea-

surements using a full factorial simulation. We then reduce power consumption by

using fuzzy logic to dynamically adjust to the frequency of the periodic measurements,

based on radio status.

We use a simulation study to show that our algorithm is able to accurately and

efficiently predict link quality under a variety of mobility and interference conditions.

We compare prediction based on WLSR to several alternatives, as well as to an ideal

algorithm that uses knowledge of the future to make predictions. Prediction based

on WLSR outperforms the alternative algorithms, while achieving an accuracy above

90%. We also show that using dynamic link measurements reduces the overhead of

the algorithm significantly, while preserving its accuracy. Finally, we illustrate the

utility of our link quality prediction algorithm by using it to dynamically select the

best radio for communication between two mobile devices, and show that it improves

throughput while reducing power consumption.

3.2 Related Work

One of the motivating works in this field is a paper by Bahl et al. which argues

that wireless devices ought to use multiple radios collaboratively to improve system

performance and functionality [1]. In this paper, the authors prototype several new

wireless devices with multiple radios. One uses a low-power radio to wake up the

device and then uses a higher power 802.11 radio for standard WLAN communication.

This strategy can significantly extend the battery life of a PDA. Another prototyped

system uses multiple radios to provide higher capacity for wireless mesh networks.

Similar work by Rodriguez et al. uses a mobile access router to provide improved data

performance by using multiple service providers, technologies, and wireless channels

[41].
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This work illustrates the benefits of using multi-radio devices intelligently. Our

work is complementary in that we are seeking to predict link quality so that a device

can utilize those radios likely to provide good service in the near future. This is a

challenging problem when the available radios may be intermittently available due to

mobility and interference.

One of the most active related areas is concerned with mobility prediction for

mobile ad hoc networks. In this area, each node has a single radio, so it is important

to predict when nodes will move far enough away from each other that they can no

longer communicate. At this point, the routing protocol must be invoked to find a new

path. Doss et al. provide a good review of techniques in this area [7]. McDonald and

Znati develop a probabilistic model of link availability to predict the future status of

a wireless link, based on a random mobility model [32]. They then use this to improve

routing by placing a bound on the probability of path failure. Jiang et al. provide a

probability of continuous link availability for some period in the future, so that the

routing protocol can then choose paths based on their stability [23]. Other work uses

GPS devices to predict mobility [46]. One thing to be careful of, however, is that

shadowing in an urban environment greatly affects link quality, causing several link

quality prediction algorithms to perform poorly [16].

Several projects predict link availability or link quality based on past measure-

ments. Gerharz et al. predict link stability based on a statistical evaluation of link

lifetime from past observations [17]. Farkas et al. use pattern matching to predict link

lifetime, using a circular buffer of past SNR measurements [15]. Other work uses use

signal strength or success rate to characterize link quality in sensor networks [28,26].

In sensor networks, since nodes are typically static, relatively few samples are needed

to determine link quality, In our case, we need to sample more frequently because the

devices we use are mobile.
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Application Type

Metric VoIP Live Video Streaming Video Data
Throughput 64 kbps 384 kbps 256 kbps 128 bps
Delay 150 ms 150 ms 4 s –
Jitter 30 ms 30 ms – –

Table 3.1: Application QoS Requirements

3.3 Measurement Framework

Consider two devices – a laptop and a PDA, for example – each with a WiFi and a

Bluetooth interface. The key concept we explore in this paper is how to predict the

quality of each interface so that the device can dynamically choose the one that is

most likely to meet application requirements at a given time. The connection may

be initially routed through a TCP/IP stack to the WiFi interface, but at some later

time if the WiFi link suffers interference the devices should switch the connection to

Bluetooth, without affecting the application or notifying the user.

We use three metrics to express application QoS requirements: throughput,

delay, and jitter. The application specifies its requirements in terms of a threshold

that must be met – if the link can support these requirements, then it is said to

be “qualified” for that application. The device then selects the best qualified link

based on user preference, which could for example favor performance or power sav-

ings. Table 3.1 lists example requirements, which are based on relevant business

documentation and academic papers [25, 47, 37, 33]. In this paper we use only VoIP

applications, since they express a QoS threshold for all three metrics, but our results

are similar for other classes of applications.

To justify our use of all three metrics, we ran a simulation of a WiFi radio

as it experiences changes in link quality due to a combination of interference and

mobility. Fig. 3.1 shows each of the three metrics alone, as well as in combination.

There are clearly times when a single metric alone indicates the performance of the

link is satisfactory, while other metrics indicate the link is not qualified. Only by

42



1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0
 0  20  40  60  80  100  120  140  160  180  200  220  240

A
va

ila
bi

lit
y

Time (second)

Throughput+Delay+Jitter
Throughput Only

Delay Only
Jitter Only

Figure 3.1: WiFi Link Quality

combining all three metrics are we able to ensure that the link can meet application

QoS requirements.

3.3.1 Link Quality Measurements

To determine the quality of a link between two devices, we periodically send link-layer

assessment queries from the primary device to the secondary device. This distinction

is a natural fit for some technologies, such as Bluetooth; in others, we designate the

initiator of communication as the primary device.

To make a query, the primary device sends a link quality request to the sec-

ondary device using the appropriate network stack, requesting its real-time quality

information. Upon receiving the request, the secondary device measures it signal-to-

noise ratio (SNR) and includes this in a link quality response using the same radio.

To compute the throughput of the link, the primary device averages its own

SNR with the value in the response. It then uses this average to estimate the through-

put of the link using the general Shannon’s capacity formula in a Rayleigh Fading
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Environment [30], which is the most applicable model when there is no dominant line

of sight. Using this estimate provides an upper bound on capacity, ensuring that the

system will never conclude that a link is unqualified when it is actually suitable. In

addition, this method uses little power and overhead as compared to measuring the

channel over a sustained period of time.

The primary device uses the round-trip time for the request and response as a

measure of the link delay. The jitter is calculated as the difference between the delay

for this request and the previous request.

To ensure the accuracy of our measurements, both the request and response

are given priority in the device OS, so that the round-trip time gives an accurate

measure of link delay, including any MAC negotiation. In addition, we pause active

data traffic during the query to avoid any conflicts that might occur if multiple radios

in a single device attempted to operate concurrently.

We begin by assuming that measurements are performed at regular intervals.

We later show how the measurement interval can be varied dynamically, so that fewer

measurements are performed during stable periods. Using dynamic measurements re-

duces overhead and conserves battery life, while still maintaining prediction accuracy.

3.3.2 Measurement Window

The wireless device keeps a window of past measurements and then tries to predict

future link quality based on these measurements. The window contents are kept in

FIFO order, so that a new measurement replaces the oldest measurement.

The size of the measurement window is an important parameter for the pre-

diction algorithm. It should not be too large, since mobility can quickly cause old

measurements to be outdated. The window should also not be too small, since in-

terference can cause link quality to vary rapidly in a short period of time. Keeping

enough measurements in the window can smooth out this behavior.
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We use simulations to determine the appropriate window size in Section 3.7.

3.4 Prediction Algorithm

We develop a prediction algorithm based on the Weighted Least Square Regression

(WLSR) algorithm [22]. This algorithm takes as input the window of current mea-

surements for a given QoS metric, which occur at periodic intervals, and predicts the

value of the metric for the next scheduled measurement period. Although this is a

short period of time into the future (typically 1 second), this is enough time to enable

the device to switch to a different radio if needed.

WLSR is an efficient prediction method that makes good use of small data

sets. The only state required is the set of measurements considered (we use 5 to 30

measurements), and the algorithm can be implemented with about a hundred lines

of code. No training or learning is required. Because WLSR applies weights to the

measurements, we can treat them with different levels of importance according to

their ages. This makes WLSR well-suited for a frequently changing mobile environ-

ment, since only recent performance measurements are useful in predicting future

availability.

When predicting a future value for a metric, the WLSR algorithm calculates

both a mean and a standard deviation for the prediction. This enables us to calculate

a probability that the link will be able to meet the requested QoS threshold for that

metric at the next measurement interval. We average the probabilities for each metric

to arrive at an overall prediction for the link.

3.4.1 WLSR Weights

When using WLSR, it is critical that each measurement is weighted properly. In our

case, we want to give more weight to more recent samples, in case the quality of the
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link has changed recently. Accordingly, we number the samples from 1 to n, with n

being the oldest, and set the weight for each measurement using:

ωi =
1.0

κi
(3.1)

where κ is a fixed multiplier, (κ ≥ 1.0). When κ = 1 all samples are treated equally,

as in Ordinary Least Square Regression (OLSR).

The value for κ must be selected carefully. If the weight decreases too rapidly,

old samples have very little contribution to the prediction, and only the most recent

samples will be taken into consideration, ignoring any larger trend. On the other

hand, if the weight decreases too slowly, all samples will be treated almost equally,

making the prediction too dependent on old measurements.

We perform a full-factorial experiment to determine the proper value of κ in

Section 3.7.

3.4.2 WLSR Method

We use the standard WLSR regression method [22, 13], given as:

m̂ = α̂ ∗ t + β̂ (3.2)

where t is the measurement time, m̂ is the value of a QoS metric (throughput, delay, or

jitter) at time t, and α̂ and β̂ are the regression parameters. The regression parameters

are calculated by minimizing the Weighted Sum of Square Errors (WSSE) between

the data in the measurement window and the performance level computed using the

estimation model:

WSSE =
n

∑

i=1

ωiei
2 =

n
∑

i=1

ωi(mi − (α̂ ∗ ti + β̂))
2

(3.3)
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Solving equations ∂WSSE
∂α̂

= 0 and ∂WSSE

∂β̂
= 0 gives the WLSR estimations of α̂ and

β̂ as:

α̂ =

∑n

i=1 ωimiti − n ∗ √ωt ∗ √ωm
∑n

i=1 ωiti
2 − n ∗ √ωt

2
(3.4)

β̂ =
√

ωm − α̂
√

ωt (3.5)

where n is the size of the measurement window.

Once we calculate the regression parameters, we can then predict a future

value for the metric by:

m̂p = α̂ ∗ tp + β̂, (3.6)

which provides the predicted mean for the metric at time tp. We also calculate he

standard deviation of the prediction using:

Sm̂p
= Se ∗ [1 +

1

n
+

(tP −√
ωt)2

∑n

i=1 ωiti
2 − n ∗ √ωt

2
]

1
2

(3.7)

where the standard deviation of the estimate, (Se), is:

Se =

√

WSSE

n − 2
(3.8)

3.4.3 Qualification Probability

We define the qualification probability for a link as the likelihood that the predicted

performance exceeds the QoS threshold specified by the application, such as those

listed in Table 3.1.

To calculate the qualification probability, we construct a pdf for the metric

at the prediction time, using the predicted mean and standard deviation. We use
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Figure 3.2: Qualification Probability

a t distribution for the pdf since the sampled data set is small. The qualification

probability, Pqual, is the area under the pdf that meets the threshold (to the right for

throughput and to the left for delay and jitter). We consider the link to be qualified

for this metric if Pqual is at least 50% of the total area. This is equivalent to the

mean of the pdf meeting the QoS threshold for the metric under consideration. This

process is illustrated in Fig. 3.2.

The overall availability of the link, (Pavail), is given by averaging the qualifi-

cation probability of each metric, where m is the number of metrics.

Pavail =
m

∑

i=1

1/m ∗ Pqual(i), (3.9)

We consider the link to be acceptable for the application if its predicted per-

formance meets the QoS requirements of all relevant metrics. Accordingly, we rate

the link as available if Pavail ≥ 50%. It is possible that the overall availability is

greater than 50%, even when the link is not qualified for one or more of the metrics.

In this case, we artificially assign the overall availability to 40%, so that the link is

considered unavailable.
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3.5 Dynamic Link Quality Measurements

In our previous discussion, we have assumed a fixed link measurement interval. In this

section we describe a control system that uses fuzzy logic to vary the link measurement

interval so that fewer measurements are made during periods of link stability. The

challenge is to reduce overhead and conserve power, while still maintaining prediction

accuracy.

Fuzzy logic has several advantages that make it particularly suitable for ad-

justing the link measurement interval [24,29,31]. First, fuzzy logic is capable of highly

adaptive control, making it suitable for dynamic environments. It is able to control

nonlinear systems that would be difficult or impossible to model mathematically, fa-

cilitating control systems that would normally be deemed unfeasible for automation.

Second, fuzzy logic is very robust because it does not require precise, noise-free inputs,

and the output is a smooth control function despite a wide range of input variation.

We note that fuzzy logic has been applied to many control systems, ranging from

simple, small, embedded micro-controllers to large, networked, multi-channel data

acquisition and control systems.

When varying the link measurement interval, we make a distinction between

two types of radio handoffs. An upgrade occurs when a more desirable radio becomes

available and the device switches from the active radio to this better radio. A down-

grade occurs when the active radio becomes unavailable and the device must switch

to a less desirable radio. We consider these two cases separately. The active radio is

always measured using a fixed interval of 1 second. We do not adjust the measure-

ment interval for the active radio, so that the system can react quickly to any changes

in its availability.
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3.5.1 Downgrade Radios

The measurement interval for a potential downgrade radio (IRdown
) is a function of

three factors:

IRdown
= f(Pavail(Ra), Pavail(Rdown), P ref(Rdown)) (3.10)

The predicted availability of the active radio, Pavail(Ra), is the primary de-

termining factor. If Pavail(Ra) is high, indicating that the radio currently in use is

predicted to continue being available, the system can decrease the measurement fre-

quency of downgrade radios to save power. On the other hand, If Pavail(Ra) is low,

suggesting that the active radio is at a risk of dropping off, the system needs to query

downgrade radios more frequently in order to know their current status in case a radio

switch is needed.

Secondary factors for the measurement interval are the predicted availability

of the downgrade radio, Pavail(Rdown), and the preference of the downgrade radio

(Pref(Rdown). The preference of the radio is based on its characteristics and whether

the user prefers to favor throughput or power efficiency. For example, if the user

prefers power efficiency, in order to maximize battery lifetime, then she will rank

a Bluetooth radio above a WiFi radio. A radio that is preferred more than other

downgrade radios, and that also has a high predicted availability, is likely to be

selected for a downgrade. Link quality measurements should be performed more

frequently on such a radio in order to accurately maintain its status. On the other

hand, a radio that is low on the preference list or that has a low predicted availability

should be measured less frequently to save system power.

To build a fuzzy logic control system, we define an input membership function

for the input variables Pavail(Ra) and Pavail(Rdown), as shown in Fig. 3.3. This function

maps the input variables to a degree of membership in three fuzzy sets: High, Medium,
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Figure 3.3: Input Membership Function for Downgrade Radios

and Low. Adding more fuzzy sets can improve resolution and provide more sensitive

control, but causes extra complexity as well. Since 50% is the threshold used for

the availability prediction, these three fuzzy sets fall in the range of (50%, 100%).

To reduce computational overhead, we use the common triangle shaped membership

function, with a typical overlapping of 50% of width [24].

To better understand the input membership function, consider an active radio

with a predicted availability of 0.9 and a downgrade radio whose predicted availability

is 0.7. First we use the input membership function for Pavail(Ra) to find its mem-

bership values for the three fuzzy sets: 0.75 for “High”, 0.25 “Medium”, and 0 for

“Low”. Similarly, we calculate the membership values for Pavail(Rdown), resulting in

0 for “High”, 0.75 for “Medium”, and 0.25 for “Low”.

Given such a mapping, the second step of our control system processes the

set memberships of all input variables using decision rules, as shown in Table 3.2,

and calculates the system output. Based on different combinations of the two inputs,

there are seven possible output sets. The membership value for a given set is the

product of the memberships for the two input membership values.

Continuing our previous example, Ra has a positive membership in “High” and

“Medium”, and Rdown has a positive membership in “Medium” and “Low”. Apply-

ing the decision rules, we obtain four output fuzzy sets with positive memberships:

“Larger” has a membership of 0.75 ∗ 0.75 = 0.56, “Largest” has a membership of

0.75 ∗ 0.25 = 0.19, “Normal” has a membership of 0.25 ∗ 0.75 = 0.19, and “Large”
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Pavail(Ra) Pavail(Rdown) Output Fuzzy Sets

Low
High Smallest
Medium Smaller
Low Small

Medium
High Small
Medium Normal
Low Large

High
High Large
Medium Larger
Low Largest

Table 3.2: Decision Rules for Downgrade Radio Measurement Interval
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Figure 3.4: Output Membership Function for Downgrade Radios

with a membership of 0.25 ∗ 0.25 = 0.06. The memberships of all other output fuzzy

sets is 0.

As a third step, our control system calculates the measurement interval for the

radio using an output membership function, shown in Fig. 3.4. This function again

uses the common triangle shape with a typical overlapping of 50%. The membership

function is divided into Ndown = 7 regions, corresponding to each output fuzzy set.

The range of the function is from the minimum measurement interval, mindown, to the

maximum measurement interval, maxdown, in this case 1 to 7 seconds. Thus “Small-

est” corresponds to a measurement interval of 1 second, and “Largest” corresponds

to a measurement interval of 7 seconds. We later use simulations to determine the

best settings for the range of this function.

The measurement interval for the radio is computed using the weighted average

of all the output fuzzy sets, where the weight is the membership value. Continuing
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our previous example, the measurement interval for the downgrade radio is IRdown =

0.19 ∗ 4 + 0.06 ∗ 5 + 0.56 ∗ 6 + 0.19 ∗ 7 = 5.75 seconds.

As a final step, we adjust the measurement interval based on the preference

ranking of the radio. If there exists a more preferred radio we could downgrade to, and

it has an equal or higher availability prediction than the Rdown we are considering,

that radio is more likely to be selected as a downgrade candidate. In this case,

the measurement interval for Rdown should be increased. Formally, we increase the

measurement interval of Rdown by 2∗ ((maxdown−mindown +1)/Ndown), if there exists

a radio Ri, such that Pref(Ri) < Pref(Rdown) and Pavail(Ri) >= Pavail(Rdown).

Concluding our example, suppose there is another potential downgrade radio

that is more preferred and has a greater predicted availability. In this case, IRdown
=

5.75 + 2 ∗ (7 − 1 + 1)/7) = 7.75.

3.5.2 Upgrade Radios

The measurement interval for a potential upgrade radio (IRup
) is a function of two

factors:

QIRup
= f(Pavail(Rup), P ref(Rup)) (3.11)

Link quality measurements should be performed more frequently on a radio

that has a high predicted availability and that is preferred more highly than other al-

ternatives. Likewise, a radio should be measured less frequently if has a low predicted

availability or if there are other more preferred radios that are likely to be available.

The input membership function for upgrade radios, shown in Fig. 3.5, is similar

to the one used for downgrade radios. For upgrade radios we use Nup = 5 fuzzy sets:

Very High, High, Medium, Low, and Very Low. We add two additional fuzzy sets for

more sensitive control, since Pavail(Rup) is the only input.
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Figure 3.6: Output Membership Function for Upgrade Radio

Consider a potential upgrade radio with a predicted availability as 0.8. Using

the given input membership function, we calculate the membership of Rup in the

output sets: 0.5 for “High”, 0.5 for “Medium”, and 0 for all other sets.

The system does not need decision rules in this case since there is only a

single input variable. The output membership function maps the output sets into a

measurement interval as shown in Fig. 3.6. In this example, the minimum interval,

minup, corresponding to “Very High”, is 1 second, and the maximum interval, maxup,

corresponding to “Very Low”, is 5 seconds.

The system output is the weighted average of all the output fuzzy sets, where

the weight is the membership is the membership value. Using our example, the

measurement interval IRup
= 0.5 ∗ 1 + 0.5 ∗ 2 = 1.5 seconds.

The preference ranking of Rup also affects how frequently measurements should

be performed. If a more preferred radio performs equally well or better, we increase

the measurement interval of Rup to save more power. We use the same procedure as

for downgrade radios.
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3.5.3 Effect on Prediction Algorithm

The prediction algorithm uses past measurements to predict future availability. What

should it do when measurements are spaced farther apart, due to the dynamic mea-

surement intervals? In our work, we assume that measurements always occur at

regular 1 second intervals. If a measurement is “skipped” because the interval has

been increased, the algorithm assumes the value of this measurement is the same as

the preceding measurement. This enables us to compare performance of the same

algorithm, both with and without the dynamic measurement intervals.

3.6 Simulation Methodology

We perform a simulation study to evaluate accuracy and efficiency of the prediction

algorithm using ns-2.28 [14]. We implemented an interface interference model, the

link measurement mechanism, and the prediction algorithm.

3.6.1 Topology

We use a topology, shown in Fig. 3.7, that includes two mobile devices with WiFi,

Bluetooth, WirelessUSB, and ZigBee as common radios. The two devices use a VoIP

application running over UDP. We note that the choice of application and transport

protocol does not affect the prediction accuracy. We consider different transport

protocols when evaluating overhead.

The simulation topology is designed so that the link quality of the hour radios

varies due to both mobility and interference. To simulate mobility we move the multi-

radio devices in and out of range of each other. To simulate interference we turn on

and off a set of Bluetooth devices and a set of WiFi devices. The scenarios we use

are sufficient to show how well our prediction algorithm works for both frequent and

infrequent changes due to mobility, as well as high volatility due to interference. We
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Figure 3.7: Simulation Topology

use only a VoIP application in our simulations because it has QoS requirements for all

three of the link quality metrics – throughput, delay, and jitter. Our results are the

same for other application types; the only difference is that the prediction algorithm

takes into account fewer metrics.

3.6.2 Prediction Accuracy

To evaluate the accuracy of our prediction algorithm, we compare the predicted avail-

ability to a series of ideal predictions generated with the benefit of hindsight of all

measurements, both future and past. Choosing an ideal prediction for a given moment

depends on the tradeoff between fast response time versus stability. Some applica-

tions or users may want to switch immediately when a single measurement indicates

a link has become unavailable, to minimize disruption or to maximize throughput.

Other applications or users may prefer to stay with a particular radio for some period

of time, to avoid the disruption or overhead that may occur with frequent switching.

To balance this tradeoff, we define a period τ during which the user prefers to stay
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Figure 3.8: Measurements and Ideal Predictions for Bluetooth Radio

with a single radio. If the user wants to switch aggressively, then τ could be 1 second,

whereas if she prefers stability it could be 20 seconds.

Another consideration for the ideal prediction is the user’s patience with in-

terference. We define persistence, ρ, as the percentage of measurements that must

indicate the link is qualified during the period τ . For example, some users may insist

that the link never suffer from interference, for a ρ of 100%, while others may be

comfortable if the link is qualified 80% of the time during the measurement period.

To illustrate the different ideal predictions that are possible, Fig. 3.8 plots

curves for various settings of τ and ρ. The measurements are taken from a simula-

tion of a Bluetooth radio for the two multi-radio devices. Both devices are initially

stationary, then one of them moves in and out of Bluetooth range (but still in WiFi

range) for the periods from 30s to 60s, 90s to 100s and 110s to 115s. Notice that

curves with a small τ follow the measurement pattern closely, while using a large τ

and ρ is much more stable.
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Given an ideal prediction, we then compare it to an actual prediction and

calculate the prediction error rate, which is the ratio of the number of incorrect

predictions to the total number of predictions made during the simulation. The

prediction is defined as incorrect if the link is estimated to be unavailable while it is

actually available based on the ideal prediction, and vice versa.

3.6.3 Switching Accuracy

While prediction accuracy is important, ultimately what matters most is that the

multi-radio device is able to consistently choose the best radio. Based on the ideal

prediction for all available radios, we generate an ideal radio switching curve, which

chooses the best available radio at every single moment. If, at a given time, there are

n available radios, as determined by the ideal prediction algorithm, then ideal radio

switching chooses the radio that delivers the highest throughput or the best power

savings, depending on user preference. Likewise, we construct a radio switching curve

based on predicted availability, so that we can determine how well our system performs

compared to the ideal system.

Given the actual and ideal switching curves, we measure the switching error,

which is the amount of time that our switching algorithm is using a different radio

than the ideal switching curve. There may be times when our prediction algorithm is

incorrect, since it is difficult to predict the future, but if the switching error is small,

then the prediction error is not significant.

3.7 WLSR Weights and Window Size

We begin our evaluation of the prediction algorithm by determining the proper set-

tings for the WLSR weights and the measurement window size. For these experi-

ments, we use a fixed measurement interval of 1 second, then perform a full factorial

experiment using different WLSR weights and measurement window sizes.
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Measurement Window Size 5 10 15
WLSR Weight 1.0 1.3 1.6 1.0 1.3 1.6 1.0 1.3 1.6

τ = 1s
ρ = 80%

BT Mobility
WiFi 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BT 17.65% 20.23% 20.84% 22.07% 19.76% 21.90% 29.62% 22.25% 23.33%

WiFi Mobility
WiFi 10.00% 8.33% 10.00% 9.27% 7.09% 7.09% 11.00% 6.00% 5.80%
BT 6.67% 5.00% 5.00% 9.09% 5.45% 5.45% 11.40% 6.00% 6.00%

Interference
WiFi 17.41% 16.66% 16.66% 22.79% 19.67% 18.03% 29.67% 21.96% 19.82%
BT 11.14% 8.28% 8.28% 12.70% 11.08% 9.28% 12.77% 12.23% 10.46%

Average 10.48% 9.75% 10.13% 12.65% 10.51% 10.29% 15.74% 11.41% 10.90%

τ = 5s
ρ = 80%

BT Mobility
WiFi 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BT 7.51% 10.12% 10.73% 11.04% 8.73% 10.87% 17.59% 10.23% 11.30%

WiFi Mobility
WiFi 10.08% 8.40% 10.08% 9.27% 7.09% 7.09% 11.00% 6.00% 5.80%
BT 6.72% 5.04% 5.04% 9.09% 5.45% 5.45% 11.40% 6.00% 6.00%

Interference
WiFi 15.25% 14.18% 15.40% 17.03% 14.57% 15.55% 23.73% 16.41% 16.75%
BT 11.22% 9.26% 9.26% 13.35% 11.72% 10.26% 13.83% 13.65% 11.53%

Average 8.46% 7.83% 8.42% 9.96% 7.93% 8.21% 12.93% 8.72% 8.56%

τ = 10s
ρ = 80%

BT Mobility
WiFi 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BT 7.81% 10.52% 11.16% 11.13% 8.80% 10.96% 17.59% 10.23% 11.30%

WiFi Mobility
WiFi 10.53% 8.77% 10.53% 9.36% 7.16% 7.16% 11.00% 6.00% 5.80%
BT 7.02% 5.26% 5.26% 9.17% 5.50% 5.50% 11.40% 6.00% 6.00%

Interference
WiFi 15.86% 15.05% 16.33% 18.17% 15.68% 16.35% 24.46% 17.48% 17.47%
BT 11.50% 10.39% 10.39% 13.93% 12.62% 11.15% 14.68% 14.16% 12.39%

Average 8.79% 8.33% 8.94% 10.29% 8.29% 8.52% 13.19% 8.98% 8.83%

Table 3.3: Full Factorial Experimental Results

In selecting scenarios for this experiment, our goal is to have enough variation

in radio availability so that the WLSR parameters we choose will work across a wide

range of possible situations. Accordingly, we use scenarios that include times when

the radio is continuously available, times of periodic unavailability, and times of high

volatility.

We use the topology shown in Fig. 3.7, and the multi-radio devices share both

a WiFi and a Bluetooth radio. We run experiments with the following three scenarios,

each of which lasts for 120 seconds:

• BT Mobility: One of the multi-radio devices stays stationary, while the other

moves in and out of Bluetooth coverage at a speed of 4m/s during the following

periods: 30s - 60s, 90s - 100s and 110s - 115s.

• WiFi Mobility: One of the multi-radio devices stays stationary, while the

other moves in and out of WiFi coverage at a speed of 30m/s during the fol-

lowing periods: 30s - 65s and 75s - 110s.
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• Interference: The multi-radio devices stay stationary. The 5 pairs of Blue-

tooth nodes and the 10 pairs of WiFi nodes generate traffic during the periods

30s - 60s, 90s - 100s and 110s - 115s.

For each scenario, we run an experiment with each possible combination of the

WLSR weight κ and the measurement window size n. The weight κ varies from 1.0

to 1.6, in increments of 0.1, and the window size n varies from 5 to 30, in increments

of 5. We repeat each experiment five times. Because of space constraints, we show

only the most relevant results. With other parameters we tested, the prediction error

rate either increases or remains the same.

Table 3.3 shows the results of the full factorial experiment. Each row lists

the prediction error for both the WiFi and Bluetooth radios for a given experiment

under the listed scenario. The first group of experiments compares the prediction to

an ideal curve with τ equal to 1 second and ρ equal to 80%, with subsequent groups

compared against other settings for the ideal curve. For each group we mark the best

average prediction in bold.

When responsiveness is preferred (τ is small), a small measurement window

and a larger weight work best. This gives the highest weight to the most recent of a

small number measurements, so that the prediction is likewise more responsive. As τ

increases, a larger window and smaller weight begin to perform better. Using these

settings enables the prediction algorithm to be more stable.

Based on these experiments, we believe a measurement window size of 5 or 10

and a WLSR weight of 1.3 provides a good balance between reactivity and stability.

These settings perform well across all the experiments.

In subsequent simulations, we use τ = 10s and ρ = 80% for the ideal curve.

Based on Fig. 3.8, this provides good immunity to interference while also reacting to

changes due to mobility. Subsequent simulations also use a measurement window of

10 and WLSR weight of 1.3.
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3.8 Comparison to Other Algorithms

We next evaluate the WLSR prediction algorithm by comparing it to two alternative

algorithms: Exponential Weighted Moving Average (EWMA) and a prediction based

on the signal strength only. We continue to use a measurement interval of 1 second.

We use the topology shown in Fig. 3.7, and the multi-radio devices share both

a WiFi and a Bluetooth radio. We run experiments with the following three scenarios:

• Mobility: One of the multi-radio devices stays stationary, while the other other

moves in and out of Bluetooth coverage at a speed of 4m/s during the following

periods: 30s - 60s, 90s - 100s, 110s - 115s. This same node also moves out of

WiFi coverage at 150s, and then moves back at 190s, at a speed of 30m/s

• Interference: The two multi-radio devices stay stationary. The 5 pairs of

Bluetooth nodes and the 10 pairs of WiFi nodes generate traffic during the

periods 30s - 60s, 90s - 100s and 110s - 115s. The Bluetooth nodes also generate

traffic from 190s - 220s and the WiFi nodes also generate traffic from 140s−170s.

• Combined: The combination of both the mobility and the interference scenar-

ios.

We run each simulation for 240 seconds, with one link measurement query per

second for each radio. We repeat each simulation five times and combine the results.

We show the average prediction error presented for this experiment in Ta-

ble 3.4. In almost all scenarios, the WLSR algorithm is able to predict link quality

more accurately than the other two algorithms. The only exception is the predic-

tion for WiFi in the mobility scenario, where the error rate of WLSR is only slightly

higher than that of signal strength model. This is a good result for WLSR, since

signal strength prediction is mainly useful for mobility prediction, and WLSR does

just as well. On average, more than 90% of the predictions using WLSR are correct,

as compared to the ideal curve.
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Prediction Algorithm WLSR EWMA Signal

Mobility
WiFi 1.62% 2.71% 1.44%
BT 6.13% 13.62% 11.09%

Interference
WiFi 12.30% 17.75% 22.45%
BT 9.18% 9.35% 9.68%

Combined
WiFi 10.90% 15.35% 18.64%
BT 6.62% 12.52% 12.71%

Average 7.79% 11.88% 12.67%

Table 3.4: Prediction Accuracy Comparison
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Figure 3.9: Link Quality Prediction of WiFi – Interference Only

To further illustrate the prediction accuracy of the WLSR algorithm, we plot

the simulation results in Fig. 3.9- 3.12 , each with a randomly selected replication seed.

The measurement curve represents the actual link status considering all relevant QoS

metrics, either available (shown as 1.0) or unavailable (presented as 0.0). The ideal

curve is generated from the measurement and based on user’s preference (τ = 10s and

ρ = 80%). We then show the predictions for all three algorithms. On each prediction

we plot the threshold at 0.5; if a prediction is above the threshold then the link is

predicted to be available during that period.

62



1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0

 0  20  40  60  80  100  120  140  160  180  200  220  240

A
va

ila
bi

lit
y

Time (second)

Measurement
Ideal

WLSR
Threshold

EWMA
Singal Strength

Figure 3.10: Link Quality Prediction of BT – Interference Only
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Figure 3.11: Link Quality Prediction of WiFi – Mobility Only
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Figure 3.12: Link Quality Prediction of BT – Mobility Only

These figures show why the WLSR prediction is more accurate than the

EWMA and signal strength algorithms. It is able to closely match the ideal curve,

with very little latency when changes occur. The only difficulty WLSR encounters is

during longer periods of WiFi interference, when several consecutive good measure-

ments briefly fool it into thinking the interference is gone.

In general, the EWMA algorithm reacts more gradually to changes in link

status, taking an extra second or two to react. As a smooth function, EWMA does

not react quickly to sudden changes. This causes particular difficulty during short

periods of interference, as it may never declare the link unavailable. During longer

periods of WiFi interference it also is fooled into thinking the interference is gone,

but appears to have more difficulty than WLSR.

Using only the measured signal strength works well for mobility-induced

changes. However, it is so sensitive to rapid changes in Bluetooth mobility that

it does not provide the stability we prefer during these periods. The signal strength
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algorithm also does not handle interference well, perceiving that the link is available

the entire time.

Another interesting point about the WLSR algorithm is that it often produces

a probability of 40%. Recall that this value is arbitrarily assigned when the overall

probability would be above 50% but one of the metrics by itself disqualifies the link.

This frequently occurs when jitter is unacceptable, even though throughput and delay

are met.

Finally, note that even if a link is obviously unavailable due to mobility, the

WLSR prediction does not reach 0. This is because the predicted availability is

a probability calculated based on the pdf functions of all relevant metrics. Even

though the predicted performance is much lower than the threshold, the probability

computed will not be 0.

3.9 Overhead

Periodic link quality measurements impose overhead in terms of throughput and

power consumption. To evaluate overhead we generate UDP traffic under three

workloads – light (10 packets/s), medium (100 packets/s) and heavy (1000 pack-

ets/s), with 128 byte packets. For a fourth workload we generate a constant stream

of TCP traffic. In all cases we measure throughput both with and without queries

and then calculate throughput loss as the ratio of throughputwith − throughputwithout

to throughputwithout. We calculate the power consumed as a percentage of the overall

battery life per minute, and we do this separately for the queries and the background

workload. The initial battery level is 10 watt-hours, which is the typical battery level

for PDAs. Table 3.5 shows the average overhead as computed from five replications

of the experiments.

These results show that the overhead for link quality measurements is very

low, with almost negligible throughput loss and power consumption. In all cases, the
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Transport Protocol UDP TCP
Workload Light Medium Heavy –
Throughput -0.05% -0.12% -0.40% -0.19%
Power (queries) 0.0034% 0.0034% 0.0032% 0.0030%
Power (workload) 0.0066% 0.0144% 0.0592% 0.0660%

Table 3.5: Link Measurement Overhead

throughput loss is below 0.5%, and the power consumed is generally small compared

to the workload. The throughput loss during light UDP loads is smaller because the

link is usually not busy when queries are sent.

3.10 Using Dynamic Link Quality Measurements

We can further decrease the overhead of periodic link quality measurements by adap-

tively increasing the measurement interval during stable periods. To measure the

effectiveness of this approach, we run experiments that compare the dynamic mea-

surement intervals to fixed measurement intervals.

Recall that the dynamic algorithm uses fuzzy control, with the downgrade

radio bounded by mindown and maxdown and the upgrade radio bounded by minup

and maxup. We vary the minimum intervals from 0.25 to 1 seconds and the maximum

intervals from 2 to 10 seconds. We compare the dynamic algorithm to the one that

uses a fixed measurement interval, with values from 1 to 10 seconds.

We use two simulation scenarios that take into account different user prefer-

ences. In the high throughput scenario, the user prefers a radio with a high data rate;

in the power efficient scenario, the user prefers a radio with low power consumption:

• High Throughput Scenario: One of the multi-radio devices stays stationary,

and the other moves in and out of Bluetooth coverage at a speed of 4m/s. Ten

pairs of WiFi nodes and five pairs of Bluetooth nodes communicate with each

other, causing interference on these radios. To maximize throughput, the multi-

radio systems may downgrade from WiFi to Bluetooth, or from Bluetooth to
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WirelessUSB, and they may upgrade from WirelessUSB to Bluetooth, or from

Bluetooth to WiFi.

• Power Efficient Scenario: One of the multi-radio devices stays stationary,

and the other moves in and out of WirelessUSB coverage at a speed of 11m/s.

Ten pairs of Bluetooth nodes communicate with each other, causing interference

on the Bluetooth radio. To maximize power savings, the multi-radio systems

may downgrade from WirelessUSB to Bluetooth, or from Bluetooth to WiFi,

and they may upgrade from WiFi to Bluetooth, or from Bluetooth to Wire-

lessUSB.

In both cases, we initiate mobility and interference 3 - 5 times during the

simulation, with a random starting time. The duration of each mobility or interference

event lasts from 30 - 50 seconds. We use a typical battery life for PDAs of 10

watt-hours. Each simulation runs for 300 seconds, and average our results over 50

replications.

Our results indicate that a minimum measurement interval below 1 second

does not significantly improve prediction accuracy, while consuming more battery

power. Because of this finding, we only show results here with minimum measurement

interval of 1 second.

In Fig. 3.13 and Fig. 3.14 we plot the cumulative switching error versus the

power consumption for our link quality prediction algorithm. We label the points for

the dynamic measurement interval with the tuple (maxdown, maxup). We likewise label

the points for the fixed measurement interval with the time between measurements.

The circles on the graph indicate clusters of points. For example the cluster labeled

(2.0 − 10.0, 2.0 − 3.0) have maxdown in the range from 2 to 10 seconds and maxup in

the range from 2 to 3 seconds.

The most important result shown in these figures is that the dynamic mea-

surement interval provides a better tradeoff between switching accuracy and power
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Figure 3.13: Switching Error vs. Power Consumption: High Throughput Scenario
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Figure 3.14: Switching Error vs. Power Consumption: Power Efficient Scenario
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consumption. Using a fixed measurement interval allows the system to directly trade

off better radio switching for more power consumption, depending on the measure-

ment frequency. Using a dynamic measurement interval that may vary from 1 to 3

seconds allows the system to maintain the same accuracy as a fixed interval of 1 sec-

ond, but with lower power consumption similar to using a fixed interval of 3 seconds.

The best setting is labeled with (3.0, 3.0) on both graphs.

Another result seen in these graphs is that high maximum measurement inter-

vals provide generally the same power savings but with decreased switching accuracy.

Thus there is no advantage to using a maximum measurement interval as large as 10

seconds.

To further illustrate how the dynamic measurement interval works, we ran-

domly select one experiment from both of the simulation scenarios. These figures,

shown in Fig. 3.15 and Fig. 3.16, show how our system selects a different radio over

time, based on predicting link availability. In each figure, the lower half shows ideal

radio switching, based on knowing future availability. The upper half shows the radio

switching performed by our system, along with the periodic link measurements. Note

that the measurement interval for each radio increases when it is not being consid-

ered for use in the near future, and decreases when it is the active radio or is likely

to be used for an upgrade or downgrade. Overall, the radio switching for our system

matches the ideal system fairly closely.

3.11 System Performance

To illustrate the utility of our prediction algorithm, we examine the performance

of a multi-radio system that chooses the best available radio based on link quality

predictions. For this simulation we use the same, simple radio switching algorithm as

in the previous section. If, at a given time, there are n available radios, as determined
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Figure 3.15: Radio Switching: High Throughput Scenario
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Figure 3.16: Radio Switching: Power Efficient Scenario
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Figure 3.17: Dynamic Radio Switching

by the prediction algorithm, then the system chooses the radio that delivers the

highest throughput or the best power savings, depending on user preference.

The first scenario we consider is when the user prefers high throughput. While

the multi-radio devices communicate, 20 pairs of WiFi nodes transmit nearby, sim-

ulating intensive interference for a 15 second interval, at 20s, 50s, and 80s. The

simulation runs for 120 seconds. The multi-radio devices should be able to switch to

Bluetooth when the WiFi radio becomes unavailable.

Fig. 3.17 compares the performance of radio switching when using either the

WLSR, EWMA, or signal strength prediction algorithms. We include the case for no

radio switching (staying with WiFi the entire time) to illustrate the overall benefit

of using both radios. Both the WLSR and EWMA algorithms improve performance

significantly, whereas switching based on signal strength has almost no effect. Because

the measured signal strength still satisfies the transceiver capture level, it does not

handle interference well.
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Prediction Method None WLSR EWMA Signal Strength
Total MBytes 5.33 7.07 6.52 5.33
Throughput (kbps) 358.88 475.49 438.05 358.88
% Gain - 32.49% 22.06% 0.00%

Table 3.6: Throughput Improvement via Radio Switching

Prediction Method None WLSR EWMA Signal Strength
Power (Joules/s) 21.28 12.45 12.88 12.08
% Savings - -41.50% -39.47% -43.23%

Table 3.7: Power Savings via Radio Switching

When comparing WLSR to EWMA, WLSR has shorter latency in the predic-

tion algorithm, allowing radio selection to happen faster. Thus, although both algo-

rithms result in throughput dropping for a short period, using WLSR has a tangible

benefit. The overall benefit is reflected in Table 3.6, which summaries the through-

put gain seen by each mechanism. Using WLSR improves throughput by 32% in this

case, as compared to EWMA, which gains 22%. Though not shown here, our results

also show about a 10% improvement in throughput when our WLSR algorithm uses

a dynamic measurement interval instead of a fixed interval.

The second scenario we consider is when the user prefers power savings. While

the multi-radio devices communicate, they move out of range of the Bluetooth radio

for a period of 30 seconds. This happens twice, once at 15s and again at 75s, with

the simulation running for 120 seconds. We again compare the three prediction

algorithms.

As shown in Table 3.7, all three algorithms provide significant power savings

when compared to using the WiFi radio the entire time. In this case, using signal

strength alone works very well, but the WLSR algorithm is almost as good. Since

WLSR also handles interference well, these results show it is a good fit for a multi-

radio system.
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3.12 Conclusion and Future Work

In this paper, we present a link quality prediction algorithm using Weighted Least

Square Regression (WLSR). The algorithm allows mobile devices with multiple radios

to statistically predict link quality based on a series of past measurements. Because

the algorithm is sensitive to regression weights and the measurement window size, we

use a simulation to determine good settings for these parameters. We also develop

a method to compute an ideal prediction curve so that we can compare prediction

accuracy of various algorithms.

Our simulation results demonstrate that the WLSR algorithm is able to predict

link quality accurately and stably in a frequently changing mobile environment. The

prediction algorithm is more accurate than alternative algorithms, and the overhead

caused by the link measurements is negligible in terms of throughput and power

consumption.

We further show that the overhead of periodic link measurements can be re-

duced using a dynamic measurement interval. This allows the system to conserve

power by measuring radios less frequently when they are not active and not likely to

be used in the near future.

We demonstrate the utility of our prediction algorithm by using it in a radio

switching architecture that enables multi-radio devices to switch to a different radio

when the current one becomes unavailable due to mobility or interference. This

combination allows devices to increase throughput or lower power consumption, based

on user preference.

Our future work will focus on efficient radio switching algorithms. In this

paper, our system switches to the most preferred radio whenever it is available, but

this can result in frequent switching when radios are sporadically available. We plan

to develop a switching algorithm that is responsive to application requirements but

avoids frequent switches.
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Chapter 4

Autonomous and Intelligent Radio Switching for

Heterogeneous Wireless Networks

As wireless devices continue to become more prevalent, heterogeneous wireless

networks – in which communicating devices have at their disposal multiple types of

radios – will become the norm. Communication between nodes in these networks

ought to be as simple as possible; they should be able to seamlessly switch between

different radios and network stacks on the fly in order to better serve the user. To

make this a possibility, we consider the challenging problems of when two commu-

nicating devices should decide to switch to a different radio, and which radio they

should choose. We design an Autonomous and Intelligent Radio Switch (AIRS) de-

cision algorithm that uses predicted radio availability and user profiles to choose the

best available radio for two adjacent devices. The decision algorithm uses several

parameters to avoid switching radios too frequently. We use a simulation study to

evaluate the best settings for several parameters, then show that the AIRS system

performs better than several alternative algorithms. AIRS is able to provide dy-

namic, but stable radio switching, while balancing the competing objectives of high

throughput and low power consumption.
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4.1 Introduction

As wireless devices continue to evolve, systems that support multiple radios are be-

coming increasingly common, because no single wireless technology provides the de-

sired functionality in all situations. Cellular technology provides coverage over a wide

area, but phone manufacturers are adding WiFi interfaces so that users can browse

the web at a WiFi hotspot, with lower connection charges and possibly higher speeds.

Likewise, laptops and cellphones, in addition to WiFi or cellular interfaces, have Blue-

tooth interfaces for exchanging data directly with other devices or peripherals when

other network interfaces may be unavailable, too cumbersome, or consume too much

power.

Likewise, wireless networks are likely to be composed of heterogeneous devices

in the future. Mesh networks will need multiple radios, so they can communicate

with mobile devices that may switch among different radios to conserve power or

provide greater throughput. Ad hoc networks will be composed of many heteroge-

neous devices, and will need to find ways to adapt to radio availability when these

devices move. In both cases, devices ought to be able to seamlessly switch between

available radios on the fly in order to provide continuous access to available services.

Communication ought to “just work”, rather than requiring the user to be involved.

One of the key challenges for a heterogeneous wireless network is deciding

when to switch radios and which radio to choose. In a multi-hop network, a flow

may span several hops, and each pair of adjacent devices in the flow may experience

different amounts of interference, mobility, and competing traffic. Hence, the radio

switching decisions for a given flow can be decomposed into a series of negotiations

between adjacent nodes. For each pair of nodes, several radios may be available, so

the devices must choose the one that will provide the best performance. This type

of radio switching is typically classified as a soft, vertical handover, meaning that
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multiple radios are available and that each radio typically has a different network

stack.

In this paper, we develop an Autonomous and Intelligent Radio Switching

decision algorithm that has several unique features. First, it takes as input the

predicted link quality of each radio link, rather than using only current measurements

of availability. Second, it also takes as input user preference, so that it can make

decisions based on whether the user wants to optimize throughput or battery power.

Third, it can choose the best available radio according to preference ranking (based

on throughput or power savings) or by calculating expected utility, which provides a

balance between throughput and power. Finally, the algorithm includes mechanisms

to avoid the overhead of frequently switching radios when their availability is sporadic.

We evaluate the AIRS decision algorithm using a simulation study of het-

erogeneous wireless devices. First, we determine the appropriate settings of several

parameters that help the decision algorithm to avoid frequent switches. We illustrate

its effectiveness by showing how the decision algorithm avoids using radios that are

only sporadically available, as well as ignoring brief periods of unavailability for a

preferred radio. Finally, we show that the algorithm provides better throughput and

power savings compared to alternative algorithms.

4.2 Related Work

The concept of seamless handoff between different wireless interfaces has been ex-

plored in a number of contexts. Network layer approaches typically assume an IP

stack for all interfaces, and try to preserve IP connectivity as hosts move [45, 2, 57,

56, 55, 48, 41]. Session layer approaches operate above the transport layer, while still

making radio switching transparent to the application layer [6, 50, 19, 18, 20, 4, 44].

Switching at the session layer enables devices to utilize many different types of ra-
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dios. However, much of the work in this area is very preliminary, with many problems

not yet addressed.

Several decision algorithms have been developed for deciding when to perform

a handover or which interface to use for a particular flow. Singh et al. describe how

to optimally assign flows to different access networks, assuming that all interfaces

are always available, but characterized by variable delay and bit rate [44]. Wang et

al. describe a handoff system that allows users to express policy about what is the

“best” wireless system at the current moment, with the goal of balancing network load

among networks with similar performance [51]. Handoffs are only performed if the

network has been consistently available for some time. Chen et al. propose a vertical

handoff decision making scheme using a score function on three criteria: expense,

link capacity, and power consumption [6]. A few projects have proposed decision

algorithms based on fuzzy logic and neural networks [57, 21, 49]. Much of this work

reacts to current network conditions, rather than predicting future availability.

4.3 Radio Switching Decision Algorithm

Our decision algorithm is part of a larger Autonomous and Intelligent Radio Switching

(AIRS) system [27]. The goal of this system is to leverage radio diversity and keep

the user connected to available network services using the “best” available interface

at any given moment.

As illustrated in Figure 4.1, the AIRS system is composed of four key mod-

ules. The Radio Preference Evaluation module dynamically maintains an ordered

preference list for each of the wireless interfaces, based on user preference, the appli-

cation’s QoS requirement, and the current status of the device’s battery [8]. It allows

the user to select one of three profiles: “high throughput”, “power efficient”, and

“adaptive”. The latter choice optimizes for throughput when battery power is high,

then gradually switches to more power efficient interfaces as battery power starts to
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Figure 4.1: AIRS System

decrease. The Link Quality Measurement and Prediction module uses periodic mea-

surements of each interface to predict the availability and quality of each radio in

the near future [10]. The Query Interval Adjustment module adjusts how frequently

queries are made, based on the past performance of the interface and its placement

in the preference list [9].

In this paper, our focus is on the Radio Switching Decision module, which

determines which radio should be used and when the handoff should be made to this

radio. This module takes into consideration the predicted quality of each interface as

well as the ordered preference list from other modules of the system. The prediction,

Pavail(Ri), is given as a percentage chance that the radio for interface i will meet

application QoS requirements in the near future. In AIRS the prediction must be

greater than 50% in order for the system to consider that link to be available, and

thus eligible to be chosen by the decision module.

The decision module makes a distinction between two types of radio switching.

An upgrade occurs when a more desirable radio becomes available and the active

interface is superseded. A downgrade occurs when the active connection becomes

unavailable and the connection must switch to a less desirable radio.

79



4.3.1 Downgrade Switching

Figure 4.2 shows the decision algorithm for a downgrade; this algorithm is executed

whenever the AIRS system receives a new periodic link measurement (and hence a

new availability prediction) for the active radio, Ra, that is currently being used by

a connection.

At the start of this algorithm, a hysteresis parameter, ha, for the interface is

initialized to a positive value, e.g. 15%. The initial value of the hysteresis parameter

determines how badly a link may perform before the system will downgrade. By

initializing this to, for example, 15%, the system allows a link’s predicted availability

to reach 35% before a downgrade takes place. The hysteresis decreases when a link

is currently unavailable, so that the system can react more quickly when a radio

suddenly cannot be used. We later use simulations to determine a good initial value

for this parameter.

The first step in the algorithm is to determine whether the current radio is

predicted to be available in the near future; this is true if Pavail(Ra) is greater than

50%. If the radio will be available, the algorithm next checks whether the current

measurement indicates the link is available right now. This is necessary because the

predicted availability is based on many previous measurements, whereas the current

availability is based on only the most recent measurement. A link may have a long

history of availability, then suddenly become unavailable (e.g. due to mobility) or

may suffer transient interference, which should be ignored. The challenge is to adapt

quickly to changes in link status while remaining stable during periods of transient

interference.

To handle this uncertainty, our decision algorithm relies on a combination of

predicted availability, plus hysteresis. If the active radio is not currently available,

ha is reduced by 5%, otherwise it is reset to its initial value. If, in the original step,

the link is predicted not to be available in the future, then ha is reduced by 5% and
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Figure 4.2: Downgrade Decision Algorithm
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a new check is made by determining whether Pavail(Ra) + ha is greater than 50%. If

the interface is not available by this measure, then a downgrade is initiated.

To initiate the downgrade, the decision module first selects the best available

interface. If the user has selected the “adaptive” profile, the preferred interface is the

one with the highest expected utility, Uexpected(Ri), calculated as:

Uexpected(Ri) = Usocial(Ri) × Pavail(Ri) (4.1)

The social utility is derived from user preference on the two communicating

devices and the the characteristics of the link, such as delay and bandwidth. If the

user instead prefers to optimize throughput or power consumption exclusively, then

the best available interface is selected from an ordered preference list. Once a new

radio is selected, algorithm resets ha for the active radio and switches to the new

radio.

4.3.2 Upgrade Switching

Figure 4.3 shows the decision algorithm for an upgrade, which is executed whenever

the AIRS system receives a periodic link measurement and prediction for an inactive

radio, Ri. At the start of this algorithm, a link verification parameter, vi, for the

interface is initialized to a positive value, e.g. 4. This parameter indicates how

many additional measurements must be taken before the interface is considered as a

candidate for an upgrade switch. Thus a value of 4 would indicate that the link must

be available for four consecutive measurement periods before it is used.

The first step in the algorithm is to determine whether this (inactive) radio is

available. If it is available, the algorithm next checks whether this radio has a higher

expected utility, or higher preference ranking, than the current radio. If this interface

is preferred, vi is decreased by 1. Once vi reaches zero, this link may be used for an

upgrade switch.
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Figure 4.3: Upgrade Decision Algorithm
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The decision algorithm also uses a penalty parameter, pi, to avoid radios that

have failed previously. This parameter is set to one if the radio becomes unavailable

within 3 seconds after it was used for an upgrade. It is reset back to zero once the

radio has been available again for a consecutive number of measurements (equal to

the initial value of vi). If both vi and pi reach zero, and this radio is the most preferred

available radio, then an upgrade is initiated.

We later use simulations to determine a good initial value for the link verifi-

cation parameter.

4.4 Performance Evaluation

We perform a simulation study using ns-2.28 to calibrate the radio switching decision

algorithm’s parameters and to evaluate its effectiveness. Our simulation implements

the entire AIRS system, since the decision module depends on input from both the

link quality prediction module and the radio preference module, as introduced in

Section 4.3.

As mentioned earlier, we decompose the radio switching problem to a negoti-

ation between adjacent devices. Our topology thus consists of two adjacent mobile

devices as shown in Figure 4.4, each with WiFi, Bluetooth, WirelessUSB, and ZigBee

radios. The two devices use a VoIP application running over UDP, though the choice

of application and transport protocol does not affect our results. In addition, our

topology includes 10 pairs of Bluetooth devices and 10 pairs of WiFi devices. In our

experiments, we use mobility, plus interference from the additional devices, to vary

the channel quality for each of the radios.

4.4.1 Evaluation Metrics

To evaluate the effectiveness of our decision algorithm, we measure the average switch

latency. For a downgrade, this is the difference between the time when the active radio
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Figure 4.4: Simulation Topology

becomes unavailable and when the downgrade switch occurs. For an upgrade, this is

the difference between the time when the switch occurs and the time when the new

radio becomes available. A naive decision algorithm could immediately switch to a

different radio whenever the current one becomes unavailable or a better one becomes

available. Some of the switches however are incorrect and should be avoided. Thus

latency must be balanced by the need to eliminate frequent switches.

We would like to minimize such frequent switches, since each radio switch

incurs some latency and overhead. The primary device sends out a switch request,

and the secondary device responds with either a switch accept or a switch reject. The

primary device waits for this response with a certain timeout, and retries the request

several times if needed. We consider a frequent switch to be one that occurs within

3 seconds of the last switch, and report the frequent switches as a percentage of the

total switches.

We also measure goodput, which is the application level throughput averaged

throughout the entire simulation, and battery power to determine the effect of radio

switching on application performance.
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4.4.2 Decision Algorithm Parameters

We perform a variety of simulations with different scenarios to determine the proper

settings for the hysteresis and link verification parameters. In selecting scenarios

for these experiments, our goal is to have enough variation in radio availability so

that the switching model parameters we choose will work across a wide range of

possible situations. Accordingly, we use scenarios that include times when the radio

is continuously available, times of periodic unavailability, and times of high volatility.

We also use both the high throughput and power efficient user profiles, with preference

ranking as the selection criteria:

1. High throughput Scenario: One of the multi-radio devices stays stationary,

and the other moves in and out of Bluetooth coverage at a speed of 4m/s.

There are 10 pairs of WiFi nodes and 5 pairs of Bluetooth nodes generating

interfering traffic. During the simulation, the devices may need to downgrade

from WiFi to Bluetooth, or from Bluetooth to WirelessUSB, and upgrade from

WirelessUSB to Bluetooth, or from Bluetooth to WiFi.

2. Power efficient scenario: One of the multi-radio devices stays stationary,

and the other moves in and out of WirelessUSB coverage at a speed of 11m/s.

There are 10 pairs of Bluetooth nodes generating interfering traffic. During the

simulation, the devices may need to downgrade from WirelessUSB to Bluetooth,

or from Bluetooth to WiFi, and upgrade from WiFi to Bluetooth, or from

Bluetooth to WirelessUSB.

In both profiles, the simulation scenarios are generated randomly. Mobility and

interference each occur 3 - 5 times during the simulation, with a random starting time.

The exact numbers of mobility and interference occurrences are randomly determined

in simulation setup. The duration of each mobility/interference lasts from 30 - 50

seconds, which is also generated randomly in the setup stage.
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We run each simulation for 300 seconds, and average our results over 50 repli-

cations. We use a typical battery life for PDAs, 10 watt-hours. We compare the AIRS

decision algorithm to a naive radio switching algorithm that uses the same prediction

inputs and radio preference rankings as introduced in Section 4.3, but switches as

soon as possible whenever a better radio is available.

For downgrades, there is a clear tradeoff between the average switch latency

and frequent switches, as shown in Figure 4.5. Each symbol on the graph represents

a different combination of the hysteresis parameter (ranging from 0.05 to 0.25) and

the link verification parameter (ranging from 1 to 4). The points that represent the

same hysteresis setting cluster together, since the link verification parameter does

not affect downgrade switching. With just 15% hysteresis, the percentage of frequent

switches decreases to less than 5%, while the average switch latency increases from

about a half a second to 2 seconds. More hysteresis can nearly eliminate frequent

switches, but at the cost of another second and a half of latency. This tradeoff is

clearly better than the naive algorithm, which switches quickly but frequently. Based

on this evaluation, we use 15% for this parameter in the remaining simulations.

A similar tradeoff exists for upgrades and the link verification parameter,

shown in Figure 4.6. The number of frequent switches decreases and the latency

increases as the verification parameter increases, and a setting of at least 4 reduces

the percentage of frequent switches to below 5% again. The naive algorithm is again

limited to frequent but fast switches. In the case of upgrade switching, an active

radio is already being used, so it is less critical to have low latency in this situation

than for a downgrade. We thus use a setting of 4 for the link verification parameter

in the remaining simulations.

We next compare AIRS using expected utility to AIRS using preference rank-

ing with the adaptive profile. In this profile, the preferences of the radios are dynami-

cally adjusted based on the battery usage, changing from high throughput preference
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Figure 4.7: Effect of Applying Expected Utility

to power efficient preference as the battery level goes down. We make our selection

based on the expected utilities of support radios as discussed in Section 4.3, and we

use a hysteresis parameter of 15% and a link verification parameter of 4. Simulation

scenarios are generated randomly, and the results are averaged over 50 replications.

Figure 4.7 shows the effect of using expected utility for both downgrade and

upgrade scenarios. The expected utility algorithm further decreases the frequent radio

switch ratio, without impacting the average switch latency.

To illustrate how effective the decision algorithm can be in avoiding frequent

switches, we run an additional experiment that causes frequent disruptions in the

availability of one of the radios. Figure 4.8(a) shows the measured availability for

each radio on the two devices. The radios are shown from bottom to top in order of

highest power consumption to lowest power consumption. The WiFi radio is always

available; the Bluetooth radio is available at first, but then drops off; the WirelessUSB

radio is volatile (device moves in and out of the WirelessUSB service range frequently);

and the ZigBee radio is always unavailable.
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The important part of this scenario is that, for the power efficient user profile,

the WirelessUSB radio is the most preferred radio, since the ZigBee radio is always

unavailable. There is one period where WirelessUSB is mostly available, with spikes

where it is ineffective, and another period where it is mostly available, with spikes

of activity. These periods are caused by the radio moving in and out of range, or

perhaps by interference.

In this scenario, as shown in Figure 4.8(b), the naive algorithm switches very

frequently, which can cause interruptions in the conversation and additional overhead.

The AIRS decision algorithm, however, allows for much more stable selection of radios,

using lower powered options when they are mostly available, and switching to WiFi

only when necessary. The AIRS algorithm effectively reduces frequent switches in

both downgrade and upgrade.

4.4.3 Performance Comparison

We evaluate the AIRS decision algorithm by comparing it to several alternative algo-

rithms. The naive switching algorithm, discussed previously, switches whenever there

is a more preferred radio available, and uses the AIRS prediction module to determine

availability. The packet loss algorithm switches to the next best radio whenever a

single link-layer frame is lost using the current radio. The timeout algorithm switches

to the next best radio whenever the transport layer times out (about 10 seconds).

Each of these algorithms uses preference ranking lists, so we test them against the

AIRS algorithm using both the high throughput and power efficient user profiles. In

addition, we compare these alternatives to the AIRS decision making model that uses

expected utility with adaptive user profile.

We again generate simulation scenarios randomly, including periods of inter-

ference and availability to affect the different radios. To achieve a high likelihood

that there is at least one radio available at all times, we reduce the mobility and
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interference occurrence to 2 - 3 times, and reduce the mobility duration to 10 - 20

seconds. We set the device battery randomly in the range 35 - 65 watt-hours; at the

low end of this range the battery is not sufficient to use the highest powered radio for

the duration of the simulation. Each simulation runs for 300 seconds, and we average

the results over 50 replications.

As shown in Figure 4.9, the AIRS system using expected utility provides the

best tradeoff between battery power and goodput. The scenarios for the high through-

put profile are clustered on the bottom of the graph. For each algorithm, the power

of the device is nearly depleted, eventually decreasing the averaged goodput. The

AIRS algorithm gets the most goodput because many frequent radio switches can be

avoided using hysteresis and link verification. Likewise, the scenarios for the power

efficient profile are clustered near the top of the graph. Most of these actually get

higher goodput, plus longer battery life, because there are radios that provide good

enough throughput while consuming less power. The AIRS algorithm again does the

best of these. Finally, the AIRS system using the adaptive profile gets the most good-

put, while still preserving much of the battery. This is because radios preferences are

dynamically adjusted according to battery power. The result shows that the adap-

tive profile, along with expected utility in the decision algorithm, is a good choice for

balancing these two objectives.

The results shown in Figure 4.9 are affected by the time when switches ac-

tually happen. The AIRS decision making model is able to switch when necessary

based on accurate link quality prediction, while avoiding frequent switches. Hence,

connections are carried over different radios during the entire simulation. The naive

algorithm often makes incorrect switches, and sacrifices goodput and power due to

such intensive switches. Switching based on packet loss causes even more incorrect

switches. Switching based on timeout is another extreme case. Switch actions are

severely delayed, making the connection break for a period of time, which affects the
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goodput and is unacceptable from users’ perspective. In each scenario, devices move

randomly within the coverage of WiFi. Timeout rarely occurs on WiFi with only the

impact of interference. Once the device switches to WiFi, it may stick to this radio

even in power efficient user profile. Hence, battery power is easily depleted when

using the timeout algorithm.

To illustrate how AIRS works when using the adaptive profile, we randomly

selected one simulation and show how the system dynamically chooses a radio over

time to balance power and throughput. Figure 4.10(a) shows the measured availability

for each radio on the two devices, with WiFi, Bluetooth, WirelessUSB, and ZigBee

from top to bottom.

Figure 4.10(b) shows how the AIRS system changes the active radio over time,

using the adaptive profile. Initially the system uses WiFi, since it offers the highest

throughput and the battery power is high. As the battery becomes depleted, it

switches to Bluetooth, then WirelessUSB when Bluetooth is unavailable for a short
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period of time. It then continues to use Bluetooth to preserve battery power, except

for a short period near the end where it must switch to WiFi to maintain connectivity.

Radio switching using AIRS is smart, timely, and stable.

4.5 Conclusion and Future Work

The AIRS system is a key component of a heterogeneous wireless network. For any

pair of communicating nodes, the system is able to dynamically choose the best avail-

able radio, while balancing throughput and power. The system uses several mech-

anisms to avoid frequent switching, and offers the user the choice of three different

performance profiles.

A number of areas remain for future work. In a wireless network with many

systems using AIRS simultaneously, additional mechanisms may be needed to pro-

vide stability and ensure that the network-wide utility is optimized. In addition,

an implementation of AIRS would provide valuable insight into its feasibility and

performance.
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Chapter 5

Summary

5.1 Contribution

The AIRS System is able to intelligently and transparently improve connectivity by

exploiting the inherent heterogeneity of multi-radio devices, and make the supported

radios to serve best where needed. The AIRS system fulfills the functionality of

QoTBrain, and makes QoT more intelligent, adaptive, and efficient. For any pair of

communicating devices, the system is able to select the most preferred radio consid-

ering both connecting users’ preference in a mutually beneficial manner, accurately

predict link quality with efficient measurement intervals, and dynamically choose the

best available radio, while balancing throughput and power. Users can achieve high

goodput and long battery life as the AIRS system is applied for handoff management.

5.2 Delivered Artifact

The follows artifacts were generated in the ns-2.28 simulator [14]:

• Implemented energy consumption control at device scope

• Implemented an interference detection module for radio switching

• Extended WirelessUSB module to support packet exchange in both directions

and queuing functionality at network layer

• Extended ZigBee to support communicating within multi-radio context
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• Implemented a radio preference evaluation and negotiation scheme for intelligent

radio selection

• Implemented an efficient link quality prediction model for dynamic radio selec-

tion

• Implemented a seamless and adaptive decision making system

• Automatic testing using Python and OTcl

5.3 Future Work

Three issues should be discussed in the future work to further enhance the AIRS

system.

1. Extend the AIRS system with efficient radio switching algorithms for multi-hop

connections. Our current work focuses on intelligent radio switching between

adjacent devices. In a heterogeneous wireless network, a flow may span several

hops. The radio switching algorithm should be able to improve the performance

of the entire flow. Future research may focus on coordination between hops,

packet routing, and the overall efficiency.

2. Extend the AIRS system to support multiplexing of multiple network stacks,

both wireless and wired interfaces. Our current work only considers integrat-

ing the wireless radios supported by the device via dynamic radio switching,

assuming mobility support is always desired. Sometimes when user is not in

motion, wired interface is available and can provide even better link quality. An

advanced AIRS system should be able to switch between all kinds of interfaces

to fully leverage the inherent heterogeneity and to further improve the commu-

nication experience. Future research may focus on evaluating the preference of

wired interface and predicting its link quality.
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3. Extend the AIRS system to provide improved and stable connections for all

connecting pairs within the entire network. Many systems may use AIRS si-

multaneously in a wireless network. Additional mechanisms may be needed

to provide stability and to ensure that the network-wide utility is optimized.

Future research may focus on radio switching stability and fast convergence,

so that multiple pairs will not switch to the same radio simultaneously and

repetitively.
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