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ABSTRACT

CONSTRUCTION OF LARGE GEO-REFERENCED MOSAICS

FROM MAV VIDEO AND TELEMETRY DATA

Benjamin K. Heiner

Department of Electrical and Computer Engineering

Master of Science

Miniature Aerial Vehicles (MAVs) are quickly gaining acceptance as a plat-

form for performing remote sensing or surveillance of remote areas. However, because

MAVs are typically flown close to the ground (1000 feet or less in altitude), their field

of view for any one image is relatively small. In addition, the context of the video

(where and at what orientation are the objects being observed, the relationship be-

tween images) is unclear from any one image. To overcome these problems, we propose

a geo-referenced mosaicing method that creates a mosaic from the captured images

and geo-references the mosaic using information from the MAV IMU/GPS unit. Our

method utilizes bundle adjustment within a constrained optimization framework and

topology refinement. Using real MAV video, we have demonstrated our mosaic cre-

ation process on over 900 frames. Our method has been shown to produce the high

quality mosaics to within 7m using tightly synchronized MAV telemetry data and to

within 30m using only GPS information (i.e. no roll and pitch information).
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Chapter 1

Introduction

In recent years, civilian and military agencies have increased their utiliza-

tion of miniature unmanned aerial vehicles (MAVs - less than a 2m wingspan) in

many information gathering missions, which include rural search and rescue, agri-

cultural information gathering, and reconnaissance and surveillance. Due to their

small size, MAVs are attractive platforms for executing these missions. MAVs can

be deployed quickly and repeatedly, their small size simplifies storage and reduces

their detectability, they have lower costs when compared to larger UAVs and human-

operated aircraft, they enable operators to explore hazardous environments without

risk of life, and they can obtain high-resolution sensor data (such as imagery) with

low-cost sensors due to their low flight altitude.

While high-resolution imagery is easily obtained through the flight of a MAV,

the utilization of the collected imagery can become a cumbersome task. During the

flight of an MAV, hundreds of pictures can be collected by the MAV that must be

analyzed by a user. For example, a ten-minute flight with imagery collected once every

second will produce 600 images. Depending upon the amount of information present

in the imagery and the desired task, the process of analyzing this small sequence of

imagery can become overwhelming for a single user.

Furthermore, even when the user is looking at an image, the “context” of each

image is not immediately apparent. In other words, the geo-location, orientation,

and relationship of the image to other imagery are not always apparent. In order to

overcome these problems, a single, large, integrated image (mosaic) can be created

from the collected imagery. This mosaic provides a context rich view that allows
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the user to quickly analyze all of the visual data collected and reveals the spatial

relationship between images.

This spatial relation can be improved by orthorectifying1 the aerial imagery

and relating each pixel in the mosaic to geodetic coordinates (geo-referencing the

mosaic.) This allows measurements in the mosaic to relate directly to those in the

world. This thesis focuses on the task of creating and orthorectified geo-referenced

mosaics that are “visually appealing” and context rich using MAV imagery and sensor

data (GPS and IMU readings) from an onboard autopilot.

The remainder of this chapter is divided into four subsections which are as

follows. In Section 1.1, we present a survey of literature relating to the work presented

in this thesis. In Section 1.2, we discuss the novel contribution of the work presented

in this thesis. In Section 1.3, we present a overview of the proposed system. In

Section 1.4, we detail the organization of the remaining chapters in the thesis.

1.1 Related Work

The discussion of literature related to this thesis is divided into three sub-

sections, which discuss the creation of geo-referenced mosaics using IMU and GPS

sensors (i.e. pose information), reference imagery, and a bundle adjustment (BA)

process.

1.1.1 Creation of Geo-referenced Mosaics Using Pose Data

One method of producing the georeferencing information for the mosaic is to

use the initial pose estimates, from the IMU and GPS, to project the MAV imagery

onto a common coordinate system. This method has been shown to produce highly

accurate mosaics [2]. This method, however, is not well suited to MAVs. The small

size of an MAV airframe limits the weight, size, and power available for payloads,

necessitating the use of low-quality sensors for the IMU, leading to noisy pose esti-

mates.

1Orthorectify - process of geometrically correcting an aerial photograph so that its scale is uniform
and can be measured like on a map.
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The effects of noisy pose estimation can be seen in Figure 1.1. In this figure,

several MAV images are placed in a geo-referenced mosaic using only the information

obtained from the IMU and GPS unit. The placement of the images varies signifi-

cantly with noise in the pose estimates, causing discontinuities between consecutive

video frames. This is especially apparent in two particular areas of this figure, which

are the runway and base complex. Notice how a single, continuous runway is no

longer continuous and how the base buildings are duplicated and disjoint.

Figure 1.1: This figure shows a sequence of MAV images that have been placed in a
geo-referenced mosaic using only the information from the IMU and GPS unit. Note
how inaccuracies in the pose estimates cause discontinuities in the global mosaic. This
is especially apparent in two particular areas of this figure, which are the runway and
base complex.

Other techniques which create a continuous mosaic from the imagery, but

geo-reference from the pose data of a single frame ([3, 4]) similarly suffer from poor

performance due to inaccurate pose estimates from the IMU/GPS system on-board

the MAV. This is illustrated in Figure 1.2. In [5, 1], this is addressed via the use of a

Unscented Kalman Filtering (UKF) framework that fuses GPS/IMU pose estimates

with perspective transformations computed between images in an MAV sequence.

By using the perspective transformations computed between images, they are able to

improve the accuracy of MAV pose estimates coming from a GPS/IMU system. This
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framework has been used to produce geo-referenced mosaics in real time. However,

this framework can only create small mosaics, durations of 30 to 60 seconds. This

is due to the accumulation of errors in the estimated frame-to-frame perspective

transformations.

Figure 1.2: This figure shows a geo-referenced mosaic created using a single pose to
geo-locate the mosaic. As can be seen the process is sensitive to errors in the used pose
estimate.

1.1.2 Creation of Geo-referenced Mosaics Using Reference Imagery

In order to overcome the effects of noisy pose estimates, [6, 7] creates a con-

sistent frame-to-frame mosaic from the video stream and then registers the mosaic to

a preexisting geo-referenced image. In [8], a series of perspective transformations are

used to relate images in the video sequence to reference imagery. These perspective

transformations are made up of frame-to-frame, frame-to-local, local-to-local, and

local-to-reference registration. However, these methods are dependent on the avail-

ability of reference imagery, which is a significant assumption. In addition, when

reference imagery is available for the region of interest, it may be out of date or have

significant differences in appearance due to differing environmental conditions (i.e.

lighting, structures, season of the year, etc), resolution, or imaging technologies (i.e.

IR, EO, etc), significantly impairing the image-to-map registration process.
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(a) CIB Imagery (b) Google Imagery (c) MAV Sample Image

Figure 1.3: This figure shows reference imagery that is out of date and has significant
differences in appearance due to differing environmental conditions, resolution, or imag-
ing technologies between the current image and the geo-referenced MAV image. (a) 1m
CIB (Controlled Image Base - dataset of orthophotos, made from rectified grayscale
aerial images.) Imagery distributed by National Geospatial Agency, dated 25 Aug 2001
(b) Imagery collected by Florida Department of Environmental Protection, Distributed
by Google, dtd 2003 (c) Imagery collected on 9 August, 2008 at Ranger Camp Six

These issues are illustrated in Figure 1.3 using the two most recent reference

images available for a given MAV image. It is quickly apparent that the reference

imagery, Subfigures 1.3(a) and 1.3(b), are out of date. These images are missing four

main structures and appear to have dirt roads instead of paved roads leading to the

center complex. Furthermore, Subfigure 1.3(a) has been taken using a different imag-

ing device and at a reduced resolution. As can be seen, it is a significant assumption

that reference imagery existences that is up to date and compatible with captured

imagery.

1.1.3 Creation of Geo-referenced Mosaics Using BA Process

An alternate approach to building the mosaic is to simultaneously estimate

the camera poses and geo-referenced feature locations from overlapping images in the

video sequence, a process known as Bundle Adjustment (BA) [9]. In a general sense,

this process functions by identifying a set of parameters to be estimated, and a set of

measured values which are to be modeled as nonlinear functions of those parameters.

Most BA methods use the location of salient feature points as the parameter space

to be estimated. This approach minimizes the reprojection error between the image
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locations of several observed and predicted image points and has been shown to

produce high quality mosaics [10, 11].

Despite the high-quality mosaics product produced by these methods, they

have a high computational cost associated with the solving of their normal equations,

equations of the form A~x = ~b. In these equations, the ~x is the parameter space and

~b is measurement space. Furthermore they do not directly make use of geographic

information obtained from IMU/GPS systems attached to the camera in the BA

method.

In order to reduce the cost of solving the normal equations present in the BA

process, [12] modified the BA algorithm so that it does not explicitly estimate the

location of each feature. Instead, they define a minimum distance between a pair of

rays emanating from two cameras in the direction of an observed feature. This reduces

the number of parameters that need to be estimated and subsequently the computa-

tional cost of solving the normal equations. Alternately in [13], the BA algorithm is

modified so that it estimates point locations generated using projective transforma-

tions between images instead of direct feature locations. In other words, they distill

the information contained in point locations into perspective transformation that are

estimated using feature correspondences. These perspective transformations are then

used to generate control points in the world space. This approach is based on the

existence of a frame-to-frame mapping between images (referred to as a homogra-

phy [14]) and assumes that the scene is planar (a universal assumption among aerial

mosaicing applications). While both of these approaches reduce the computational

complexity associated with solving the normal equations, they do not directly make

use of geographic information obtained from IMU/GPS systems in the BA method,

which can improve the accuracy of the final product.

1.2 Contribution of This Thesis

In this thesis, we present a novel modification to the traditional BA method

that creates geo-referenced mosaics that are comparable in quality to prior methods.

This method makes direct use of pose information obtained from an IMU/GPS unit
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thereby allowing us to accurately geo-reference the mosaic to the world. Our approach

is similar to [13] in that we assume a planar scene and that information contained in

point correspondences are distiled into homographies.

The key insight used to set up our bundle adjustment problem is that the

frame-to-frame homography mapping is also a function of the poses of the camera at

the time the images were taken. Because they define a “visually appealing” mosaic,

the computed perspective mappings can be treated as constraints on the true pose

estimates. A measurement of this pose is directly computed by the IMU/GPS system

on-board the MAV. If we assume that for each frame an estimate of the camera

location is returned by the IMU/GPS system, then a constrained optimization routine

can be used to determine the set of camera poses that are closest to the measured pose

values while meeting the constraints imposed by the frame-to-frame homographies.

This approach has three main advantages which are discussed bellow.

First, similar to that of [12, 13], our method reduces the cost associated with

solving the normal equations. Traditional bundle adjustment requires a parameter

space that is of size 3M + 7N , where M is the number of features throughout the

entire video that were tracked, and N is the number of images being used to create

the mosaic. Our method’s parameter vector is of size 7N + 7, a significant reduction

in size. Similarly, the measurement space in a traditional BA is
∑

2kii where ki is

the number of images in which feature i appears. Because M > N , our method’s

measurement space of size 8(N − 1) + 7N + 7 is significantly smaller than traditional

BA. This reduction in the size of the measurement and parameter space reduces the

computational cost associated with solving the BA normal equations.

Second, our method uses a two stage filter process to remove outliers. This

comes from using homographies instead of feature locations in our BA cost function.

As stated in Section 1.1.3, traditional BA methods use the location of salient feature

points as the parameter space to be estimated. These feature locations can contain

outliers, which can degrade the accuracy of the BA method. While a RANSAC

algorithm can be applied to the parameter space of traditional BA methods, it can

become costly as the number of features in the parameter space increase. However,
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our algorithm explicitly addresses the problem of outliers during the selection of

homographies to be used in the BA cost function. This is accomplished using a two-

stage filter process. The first stage uses a RANSAC [15] process to remove outliers

during the calculation of candidate homographies, which minimizes the possibility of

calculating bad homographies. The second stage evaluates the registration of image

pairs generated via the candidate homographies. If a registration is blurred beyond

a predetermined threshold, determined using a focus metric, then it is removed from

consideration. This allows us to remove homographies that are still dominated by

outliers not detected in the first stage thereby further reducing the possibility of

outliers in the BA cost function.

The third benefit comes from the incorporation of IMU/GPS pose information

in the BA cost function. By including the global location information that is available

from the MAV’s IMU/GPS system in our BA, the most probable geo-location of the

mosaic, as a function of pose parameters, is explicitly computed in our constrained

optimization framework.

1.3 Process Overview

The proposed process for creating geo-referenced mosaics, as shown in Figure

1.4, is divided into four segments: data collection, initial mosaic creation, iterative

refinement of mosaic, and post processing. These segments are summarized in the

following subsections.

Figure 1.4: This figure shows a flow digram of the mosaic creation process.
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1.3.1 Data Collection

The data collection segment begins the process and encompasses the collec-

tion of IMU/GPS pose information and imagery from an MAV flight. Once a flight

is complete, the imagery is associated with the pose information and tagged. The

association process can be accomplished by synchronizing each telemetry packet (con-

tains pose information) GPS time stamp with an images received GPS time stamp

or EXIF2 creation time. In addition to the tagging of imagery, a camera calibration

is generated for the current camera setup if one does not already exist.

1.3.2 Initial Mosaic Creation

The initial mosaic creation segment begins with the removal of lens distortions

from GPS tagged imagery using function calls from OpenCV [16]. Once the lens

distortions are removed, the images are sent to a frame decimation unit which removes

other sources of noise caused by the acquisition process (i.e. transmision noise and

blurring) and redundant imagery which provide little to no new information about the

environment. The frame decimation unit then returns a subset of the MAV imagery

which best represents the area of interest. These preprocessing steps are highlighted

in blue and are shown in Figure 1.4.

Given this imagery subset, we then build a minimum spanning tree3 (MST)

that maximizes the overlap between candidate image pairs. To compute the MST,

we first create a fully connected graph using pose information, imagery, and a refer-

ence frame. The nodes in the graph represent the projected centers of each image

onto the reference frame. The edges in the graph represent possible frame-to-frame

registrations. Each edge is inversely weighted according to its overlap percentage (i.e.

w ∝ %−1). Once the graph is created, we use Prim’s algorithm [17] to compute the

MST. The units used in the selection of image pairs are highlighted in purple and are

shown in Figure 1.4.

2Exchangeable Image File Format (EXIF) - standard for storing interchange information in image
files.

3Minimum Spanning Tree (MST)- a spanning tree, tree connecting all nodes in a graph, with
weight less than or equal to the weight of every other spanning tree.
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We then generate the candidate frame-to-frame transformations for each edge

in the MST. To compute the transformation matrix, we first find features in each

image using a SURF detector/descriptor [18]. The features in the first image are

then placed into a K-d tree and associated with features in the second image using a

best-bin-first search algorithm [19]. Once feature correspondences are found, they are

refined using the RANSAC algorithm [15]. After removing outlier correspondences,

the transformation matrix is computed using the singular value decomposition (SVD)

as described in [14]. The resulting composite image from each pair of two images is

then generated using the newly calculated homographies. If a composite image is

blurred beyond a predetermined threshold then it is removed. At the end of this

segment, we now have a set of estimated perspective transformations for each image

pair in the subset of images that will be used in the BA method. This process is

shown in orange in Figure 1.4.

1.3.3 Iterative Refinement

In the iterative refinement segment of our process, we find the optimal MAV

pose estimates that align the captured images to create a high-quality mosaic while

minimizing the difference in the pose estimates to that of the measured poses. The

main algorithm used to find the optimal pose estimates is a constrained optimization

process using bundle adjustment. The constrained optimization procedure treats the

estimated feature-based frame-to-frame perspective transformations, homographies,

as constraints to ensure that the final mosaic is an image of high quality. The ho-

mographies are determined during run time using the homographies found in the

previous section and homographies generated using a reduced topology map (graph).

The segment starts by using the homographies found in the previous section as

inputs into the BA method. Once the BA method is completed, we create a reduced

topology map using the new pose estimates. The reduced topology map is a mixture

of the topology graph and minimum spanning tree explained in the previous section.

This map is then used to create a different set of homographies to be used in the in
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the BA method. This process is repeated until a maximum number of iterations are

reached.

1.3.4 Post Processing

Upon completing the iterative refinement of the mosaic as described in Sub-

section 1.3.3, a single, large, integrated geo-referenced mosaic of the region of interest

is created using the optimized pose estimates. This is done via the use of a virtual

camera centered one meter above the desired area. Using the virtual camera and

optimized poses, we project the MAV imagery onto a global coordinate system. We

then use a multi-resolution blending algorithm to combine images and place them on

the reference frame.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we describe

the initial mosaic creation segment in more detail with the exception of the graph

and MST units. In Chapter 3, we describe the iterative refinement segment in more

detail with a focus on our BA method. This chapter also covers the creation of the

minimum spanning trees (MST) and topology graph. In Chapter 4, we present the

results of our BA process. In Chapter 5, we conclude the thesis and give comments

on future work to extend and improve the work presented in thesis.
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Chapter 2

Initial Mosaic Creation

In this chapter we describe the initial mosaic creation segment introduced in

Section 1.3 in more detail with the exception of the graph and MST units (described

in Section 3.1). These units are temporarily replaced by assuming that consecutive

images captured by the MAV have sufficient overlap to enable creation of a mosaic.

This segment generates the subset of MAV imagery and frame-to-frame perspective

transformations that can be used by later steps to create a high quality geo-referenced

mosaic. The segment is shown in Figure 2.1 and can be broken into six sub-steps which

are described in the following sections.

Figure 2.1: This figure show the initial mosaic creation segement with the exception
of the graph and MST units.
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2.1 Lens Distortion Correction

The first step in the mosaic creation process is the removal of the lens dis-

tortions that deteriorate the positional accuracy of points on the image plane. Two

types of perspective distortions exist: radial and tangential. Radial distortions are

deformations of the image along radial lines around the principal point, and tangen-

tial distortions are deformations perpendicular to radially distorted points. This is

illustrated in Figure 2.3(d). Radial and tangential distortions occur when light rays

passing through a lens are bent, thereby changing their directions, and intersecting

the image plane at positions that deviate from the true rectilinear projection.

(a) Frame 2620 (b) Frame 2650 (c) Frame 2700

Figure 2.2: This figure shows the effects of lens distortion on the UAV images. All
images show the same road segment from different viewpoints in the video.

As can be seen in Figure 2.2, the distortions in the image are easily recognized

because they affect the way in which lines are perceived in the entire image. The

manifestations of lens distortions fall into two main categories: barrel and pincushion.

In the case of barrel distortions, straight lines appear to curve around the principal

point giving the impression that they were imaged on the surface of a sphere instead

of a plane. In the case of pincushion distortions, straight lines appear to curve away

from the principal point. This is illustrated in Figure 2.3. These distortions cause

the estimation of a perspective transformation to fail.

The effects of radial lens distortion throughout an image, Id, can be approx-

imated using a polynomial[20]. The distortion model used to determine coefficients

14



(a) (b) (c) (d)

Figure 2.3: This figure is an Illustration of the lens distortion categories. (a) Normal
Image coordinates (b) Barrel Image coordinates (c) Pincushion Image coordinates (c)
Radial and tangential distortions

associated with radial and tangential lens distortion is xu

yu

 =

 xd (1 + k1r
2 + k2r

4) + 2p1xdyd + p2 (r2 + 2x2
d)

yd (1 + k1r
2 + k2r

4) + 2p2xdyd + p1 (r2 + 2y2
d)

 , (2.1)

where lu = [xu, yu]
T is the location of a undistorted image pixel, ld = [xd, yd]

T is the

location of a distorted image pixel, CR = [k1, k2] is the radial distortion coefficients,

CT = [p1, p2]is the tangential coefficients, and r = x2
d + y2

d. The distorted image pixel

locations xd and yd are calculated as xd

yd

 =

 j−cx
fx

i−cy
fy

 , (2.2)

using the intrinsic camera parameters that define the internal geometry of a camera.

The i and j in equation 2.2 are the row and column numbers of the pixel. The cx

and the cy represent the center of the imaging area. The fx and fy represent the

focal length in x and y direction. In this thesis, the intrinsic camera parameters are

calculated using the calibration functions in OpenCV, a open source computer vision

libraryintel06open.

An undistorted image can be created by creating a blank image Iu with the

same proportions as Id. Using Equation (2.1) we can transform distorted image

location ld to undistorted locations lu. Using bi-linear interpolation we can compute
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(a) Frame 2620 (b) Frame 2650 (c) Frame 2700

Figure 2.4: This figure shows the results of removing the effects of lens distortion on
the MAV images. All images show the same road segment from different viewpoints in
the video.

the intensity values of lu and map them to the blank image Iu. Example results of

this process can be seen in Figure 2.4.

2.2 Frame Decimation

It is relatively easy to acquire a large sequence of images for a desired region

that in turn can be used to construct a mosaic. For example, a ten-minute flight

with imagery collected thirty times every second will produce 18,000 images. How-

ever, these larger image sequences needlessly complicate the mosaic creation process.

Larger input sequences acquired at higher frame rates typically have imagery that

provides little to no new information about the environment. Therefore it is desirable

to use a preprocessing step, called frame decimation [21], to produce a sparse but suf-

ficient set of views for the creation of the mosaic which keeps the size of the problem

manageable, regardless of the input frame rate. Incorporating such a preprocessing

mechanism has a couple of advantages. The most important advantage is that the

computational complexity associated with creating the mosaic is reduced (e.g. the

complexity of the normal equation is reduced). Another benefit is that problems

caused by bad focus values or transmission noise can sometimes be avoided.

There are a variety of ways to design this frame decimation unit. The easiest

way is to simply reduce the frame rate by selecting every ith image in the image

sequence. However, this approach is undesirable because it can lead to the selection
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of blurred images and requires the frame rate to be entered by the user or preset

by the software. In [21], an alternate approach is presented where the preprocessing

unit automatically selects a subset of images with sufficient image quality and which

provide new information so that the algorithmic results are improved. Their algorithm

evaluates images based on a focus (sharpness) metric [22, 13, 23, 21] and incorporates

a boundary detection mechanism used to determine overlap in images.

The implementation used in this thesis is a slight variation of [21] and is

described in the following subsections. In Subsection 2.2.1, the frame decimation

process is described. In Subsection 2.2.2, we describe the process of detecting image

boundaries. In Subsection 2.2.3, we describe the focus metrics used in this process

and others.

2.2.1 Decimation Process

The frame decimation process starts by measuring the quality of each MAV

image using the Energy of Laplacian metric described in Section 2.2.3. This metric

gives a quantitative value that describes the focus (sharpness) attribute of an image.

Once all quality values are computed, we then iteratively detect image regions in the

MAV image sequence and select an image in each region to represent it. These regions

are found as described in Section 2.2.2.

The iterative process is performed using the temporal sequence of the MAV

imagery and begins by finding the image region defined by the first image. Once

the image region is found, we then select the image with the highest quality measure

within a threshold range to represent that image region. This process is then repeated

using the selected image from the previous iteration as the new center image in the

region detection process. The iterative process is finished when all the MAV images

have been processed.

This process is also shown in algorithmic form above to avoid confusion. The

original MAV image sequence is represented by the set I, the resulting decimated

image sequence is represented by J , and the image regions are represented by R.

Lower case letters represent an image in a given set.
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Algorithm 1 Frame Decimation Process

Input: I := {i|i = 0 · · ·n− 1}
Initilize: J := ∅

1. for each (i ∈ I) compute quality measure q.
3. Set i equal to the first image in I using temporal ordering.
4. Find the first image region, R ⊂ I, centered at i.
5. Set i equal to the image with the higest q in R.
5. Add i to J , i ⊂ J .
6. If R contains the last image in the temporal order continue else goto step 4

Return: J ⊂ I

Figure 2.5: This figure shows the results of running the frame decimation process on
a sequence of 9,000 images. The resulting sparse set of views contains over 200 images.

In Figure 2.5, we show the results of running the frame decimation process on

an image set of 9,000 images. The green in this figure represent the focus values for

each image in the set while the red represents the selected images for each boundary

in the set. The x-axis spans the frame numbers found in the video, while the y-axis

plots the focus values, with low focus numbers representing ”blurry” images. As can

be seen, the frame decimation process significantly reduces the number of images to
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be processed. Furthermore, the process is successful in only selecting images that

are clear. This increases the probability of finding a good perspective transformation

between image pairs, explained in Section 2.3.2.

Figure 2.6: This figure shows the results of running the frame decimation process on
a sequence of over 2,000 images. As can be seen the frame decimation can also be used
to reject images that have significant noise due to transmission.

As mention above, this process can also be used to remove images that have

been corrupted by transmission noise. This is because transmission noise in an image

increases its focus measure. This is shown in Figure 2.6. In this figure, we show

the results of the frame decimation process on a sequence of over 2000 images, with

some images containing transmission noise. The highlighted red region in this figure

represents images that are free of transmission noise and significant blurring. As can

be seen, the frame decimation process can remove images that contain transmission

noise by applying an upper limit on accepted focus values.
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2.2.2 Image Region Detection

Image region detection is crucial to the success of the frame decimation pro-

cess. A image region is defined as a temporal grouping of images with an overlap

percentage exceeding a minimum threshold. This overlap is calculated in the image

coordinate frame. To compute the overlap area, we first project the four corners of

each image onto a center image using their pose information and a perspective trans-

formation, explained in Section 2.3.1. The resulting projections (polygons) are then

superimposed onto each other to determine the overlap percentage of image pairs.

Images with overlap percentages above a user set threshold (typically above 50%) are

grouped together to form a image region.

2.2.3 Focus Metric

The quality evaluation of an image is usually subjective and based on its

perceived blurring. However, such approaches are laborious and lack robustness. In

[22, 13, 23] a number of sharpness metrics are described that objectively measure the

amount of blurr present in an image. The sharpness metric used in this thesis is the

Energy of Laplacian metric because it is smooth, has a sharp maximum, and little

to no local maxima. This is illustrated in Figure 2.7(c). The figure shows the focus

values of a MAV image as it is blurred using a Gaussian function. As can be seen,

the values quickly decrease as the image is blurred.

The Energy of Laplacian focus metric is defined as

EL (I) =
1

n

∑
x

∑
y

(gxx + gyy)
2 , (2.3)

where

gxx + gyy = −I (x− 1, y − 1)− 4I (x− 1, y)− I (x− 1, y + 1)

−4I (x, y − 1)− 20I (x, y)− I (x, y + 1)

−I (x+ 1, y − 1)− 4I (x+ 1, y)− I (x+ 1, y + 1) ,
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I is the whole image domain except for the image boundaries, and n is the number

of pixels in an image.

(a) Original

(b) Blurred (Kernel Size *)

(c)

Figure 2.7: This figure shows the effectiveness of the Energy of Laplacian focus
metric.

2.3 Image Alignment

This section describes the two methods we use for computing a perspective

transformation (alignment) between two images. The first method explained is de-

rived using a rigid body transformation and pose information. The second method
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explained uses feature correspondences and a full projective transformation model

(8 free parameters). Furthermore, this section also explains a homography rejection

mechanism which uses focus metrics.

2.3.1 Pose Based Alignment

Coordinate Frames

In this section we describe the various coordinate frames used to define the

MAVs pose and rigid body transformations. The coordinate frames are discussed in

a sequential order going from the world frame, to the body frame, to the camera

frame, and to the lastly the image frame as illustrated in Figure 2.8. Each of these

coordinate frames are combined to construct the rotation and translation used in the

next section.

Figure 2.8: This figure illustrates the rigid body transformations between the world
frame and the image frame.

World Frame - The world coordinate system used to encode the MAVs positional

information is a north, east, down (NED) local Cartesian coordinate system. The

NED coordinate system is setup such that the north axis is labeled x, the east axis

y, and the down axis z. In this local coordinate system positive altitudes translate

into a negative z. The unit of measure for the NED coordinate system is meters and

has an origin defined by the base station of the autopilot.

22



Body Frame - The MAVs coordinate system, known as the MAVs body frame,

originates at its center of mass with the x-axis pointing out of the nose, the y-axis

pointing out of the right wing, and the z-axis pointing out of the belly of the air-

craft. This is shown in Figure 2.9. The unit of measure for this system is also in

meters. The transformation between the world frame and body frame is composed

of a translation and rotation. The rotational information encodes a series of coor-

dinate rotations and can be represented in several different ways, including Euler

angles(ψRoll,θPitch, ψYaw), Direction Cosine Matrices (3× 3matrix), or quaternion

(4 element column vector).

Figure 2.9: This figure shows the body frame of the MAV.

In our implementation, we use the quaternion representation because of its sim-

plicity, mathematical ease, and lack of any singularities. A quaternion representation

provides a simple way to compute the distance between two rotations. Furthermore,

it is easy to meet the unity norm constraint when applied to optimization algorithms

by simply re-normalizing the quaternion after each iteration [24, 25] (i.e. iterations

of the BA process described in Chapter 3). The conversion between different repre-

sentations can be found in [24].

Camera Frame - The rigid body transformation from any arbitrary coordinate

frame to another is typically defined by a rotation and translation. However, the

transformation of the body frame to the camera frame only requires a rotation. This

is because the cameras location is assumed to be located at the MAVs center of mass
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(i.e. ~0). The displacement from the center of mass is negligible compared to distances

in the cameras field-of-view. The cameras x-axis goes to the right and the y-axis goes

towards the top of the camera. This is illustrated in Figure 2.10.

(a) (b)

Figure 2.10: This figure illustrates the cameras coordinate frame and perspective
model.

In the case of this thesis, we are using a fixed camera location which is rotated

90 degress in the azimuth (az) direction. This allows us to define the rotation from

the body frame to the camera frame as a single rotation which is calculated as

Raz =


cos (az) −sin (az) 0

sin (az) cos (az) 0

0 0 1

 =


0 −1 0

1 0 0

0 0 1

 . (2.4)

Image Frame - The most convenient method for representing image locations is

pixel coordinates. In this coordinate system the x-axis goes through the right side

of the image and represents the columns, the y-axis goes towards the bottom of the

image and represents the rows, and the origin is located at the top left corner of the

image. This is show in Figure 2.11. The unit of measure for this system is pixels while

the word frame unit of measure is in meters. Therefore we need a transformation that

takes the world 3D points and maps them to the image 2D points.

24



Figure 2.11: This figure shows the image frame in reference to the camera frame.

This is accomplished using a camera calibration matrix which is defined as

K =


fsx fsθ cx

0 fsy cy

0 0 1

 , (2.5)

where f is the focal length, sx is the scaling in the x direction, sy is the scaling in the

y direction, sθ is the pixel skew, cx is the x translation, and yx is the y translation.

Using this matrix we can define the mapping from world 3D points to image 2D points

as

xI = Kxc, (2.6)

where xI is the point in the image and xc is the point in the world.

Computation of H from the MAV Pose

As discussed in the Introduction, it is possible to derive a function that maps

pose estimates into a homography matrix. While this function can be derived using

pre-existing techniques, we describe it in more detail here to provide a complete

description of our system.

To derive the matrix Hi←j from world poses, we require the pose estimates ~Pi

and ~Pj. Because we are also estimating a bias quaternion, the first step of computing

H is to compose the quaternion in the pose estimates with the bias quaternion (i.e.
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constant error in rotation). These modified poses are used throughout the rest of this

section without explicitly stating that the attitude estimates have been biased.

From rigid body motion, we can define the relation between the camera coor-

dinate frame fc and the world frame fw as

~Xc = Rw→c(~q) ~Xw + Tc, (2.7)

where ~Xc = [x, y, z]T is a point in fc, Rw→c is a rotation matrix (defined as a function

of ~q in the pose estimate), and Tc is the location of the origin of fc in fw. Solving for

~Xw in terms of fcj and substituting it into equation 2.7, we obtain

~Xci = Rw→ci

(
Rw←cj ~Xcj + Tcj − Tci

)
, (2.8)

which is the rigid body transformation from fcj to fci. Note that this equation is

general for all points in fcj. We will now add the constraint that all points we are

interested on lie on a plane.

Let π be a planar surface where all ~X ∈ π and ~n is a normalized vector

orthogonal to π. The existence of π implies that

〈
Rw→c ~n, ~Xc

〉
= d ,

1

d
(Rw→c~n)T ~Xc = 1, (2.9)

for all ~X ∈ π, where d is the minimal distance of the camera from the plane. We can

now substitute equation 2.9 into equation 2.8 yielding

~Xci = Rw→ci

(
Rw←cj ~Xcj + Tji

1

d
(Rw→c~n)T ~Xcj

)
, (2.10)

where Tji = Tcj−Tci. Simplifying and adding in the calibration matrices Kci and Kcj

for the two cameras, we can now rewrite the equation for the perspective transforma-

tion matrix Hi←j as

Hi←j = KciRw→ci

(
I + Tji

1

d
~nT
)

Rw←cjK
−1
cj . (2.11)

26



This process is illustrated in Figure 2.12.

Figure 2.12: This figure illustrates the process discussed in Section 2.3.1.

2.3.2 Feature Based Alignment

The accurate alignment of adjacent images is a crucial step in obtaining ge-

ometrically correct mosaics. The best way to ensure that an accurate alignment is

obtained would be to align each pixel location in the source image to that of the

destination image. However, as the resolution of the imagery increases this method

becomes impracticable because of its computational cost. A popular alternative to

direct registration is feature-based approaches, which align images using a subset of

the avaliable features. Such approaches are fast in comparison to direct registration

and have a much lower computational cost.

However, there are a variety of feature representations to choose from, each

of which has its own pros and cons. The selection of which depends on the applica-

tion needs. In context of this thesis, we use the SURF(Speeded-Up Robust Features)

representation [18] because of its robustness to changes in scale, rotation, noise, il-

lumination, and perspective [26]. Furthermore, this feature representation performs

well in wide baseline situations and provides a descriptor of the feature.
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The following subsections describe SURF in more detail and how it is used to

compute a perspective transformation.

SURF Fast-Hessian Detector

Figure 2.13: This figure shows the Laplacian of Gaussian Approximations using
boxfilters. The top row represents the actual Lxx, Lyy, and Lxy. The bottom row
represents is the box filter versions of Lxx, Lyy, and Lxy.

The SURF detector is based on the determinant of the Hessian matrix. The

Hessian matrix as a function of space X and scale σ is calculated as

H (X, σ) =

Lxx (X, σ) Lxy (X, σ)

Lyx (X, σ) Lyy (X, σ)

 , (2.12)

where Lxx (x, σ) refers to the convolution of the second order Gaussian derivative

∂2g(σ)
∂x2 , similarly for Lxy and Lyy, and X = [x, y] is a point in the image I. These

deriviates are know as the Laplacian of Gaussians (LoG) and are aproximated using

box filter representations of the respective kernels. These box filters are shown in

Figure 2.13.

The location and scale of interest points are selected by relying on the determi-

nant of the Hessian. The determinant is the the blob response at location X = [x, y, σ]

and is calculated as

det (Happrox)) = DxxDyy − (0.9Dxy)2 , (2.13)

where Dxx, Dyy, and Dxy are the box filters shown in Figure 2.13.
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Interest points are localized in the scale and image space by applying a non-

maximum suppression in a 3x3x3 neighbourhood. Finally, the local maxima found

using the approximate determinant are interpolated in scale and image space. This

process is explained in detail in [18, 27]. Figure 2.14 shows the feature points found

in two MAV images using the SURF detector.

(a) (b)

Figure 2.14: This figure shows the results of the SURF feature detector when applied
to two MAV images.

SURF Descriptor

The SURF descriptor describes how pixel intensities are distributed within a

scale dependent neighborhood of each interest point detected by the Fast-Hessian.

The process for extracting the descriptor is as follows. First, each detected inter-

est point is assigned a unique orientation. The orientation is computed using Haar

wavelet responses in both x and y directions. This allows the feature to be invariant

to image rotations. Second, a square window around the interest point is constructed

which contains the pixels that will form entries in the descriptor vector. The window

size is 20σ and is oriented along the direction defined by the found orientation. Third,

the window is then divided into 4x4 sub regions. A Haar wavelet of size 2σ is calcu-

lated for each subregion using 25 distributed sample points. This produces 4 values

for each subregion with 64 values total to be used in the descriptor. The generated

descriptor is now invariant to scale, rotation, noise, illumination, and perspective.
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Feature Correspondences

The correspondence of SURF features is a relativly simple process made pos-

sible by its discriptor. Feature matching is done through a Euclidean-distance based

nearest neighbor search. Given a feature point X = [x, y] in the source image, the

search finds the nearest neighbour of X in the set of destination points. Robustness to

noise is added by rejecting points for which a ratio of the nearest neighbour distance

to the second nearest neighbour distance is greater than some threshold. However,

the task of finding the nearest Euclidean-distance neighbour can become costly as

the number of features increase. This cost can be minimized using a K-d tree and

a Best Bin First(BBF) search [19], which is the implementation used in this thesis.

Figure 2.16 shows the correlation of two MAV images. As can be seen, the correlation

process for the most part correctly matches the feature locations.

Figure 2.15: This figure shows the correlation of SURF feature detectors using the
same two MAV images used in Figure 2.14. This figure has been rotated 90 degrees for
display purposes.

Estimation of Homography

Once a set of 2D to 2D point correspondence, xi = [xi,yi]
T ↔ x

′

i

[
x
′

i,y
′

i

]T
,

is computed, it is possible to compute the perspective transformation, H, such that
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x
′

i = Hxi . A common method used for computing this perspective transformation is

the Direct Linear Transformation(DLT) algorithm as described in [14]. This method

is repeated here to provide a complete description of our system.

The vectors x
′

i and Hxi have the same direction but vary in magnitude by a

nonzero scale factor because they are homogeneous vectors. Therefore, the equation

x
′

i = Hxi may also be expressed in terms of the vector cross product, x
′

i ×Hxi = 0.

The explicit form of this cross product is given as

x
′

i ×Hxi =


y
′
ih

T
3 xi − z

′

ih
T
2 xi

z
′
ih

T
1 xi − x

′

ih
T
3 xi

x
′
ih

T
2 xi − y

′

ih
T
1 xi

 , (2.14)

where h1, h2, and h3 represent the rows of H. This equation can be rewritten in

matrix form as

x
′

i ×Hxi =

 0T −z′ixT
i y

′
ix

T
i

z
′
ix

T
i 0T −x′ixT

i




h1

h2

h3

 = 0, (2.15)

with the third row of the matrix omitted because it is linearly dependent on the first

two.

This leaves us with an equation of the form Aih = 0, where Ai is 2×9 matrix.

The A matrix can then be constructed by stacking each Ai matrix computed from fea-

ture correspondence. Given this matrix and a minimun of 4 feature corespondences,

we can now solve for the elements of H via an SVD, with the unit singular vector

corresponding to the smallest singular value being the solution.

The DLT algorithm works well when the only source of error in the esti-

mation comes from the measurement of feature locations. However, some feature

locations will inevitably be mismatched and introduce other sources of errors, known

as outliers. These outliers can severely disturb the estimated homography and conse-

quently should be removed. This is accomplished using a random sample consensus
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(RANSAC) algorithm [15] to identify and eliminate outliers from the homography

estimation.

The RANSAC algorithm partitions the feature correspondences into inliers

(largest consensus set) and outliers (remaining feature correspondences). To compute

the inliers, the algorithm first selects a random sample of 4 correspondences and

computes the homography H using the DLT algorithm. Once H is computed, it

is used to map feature locations in the source image to the destination image. A

distance d⊥ between the mapped and calculated correspondence locations is then

computed and used to determine inliers for which d⊥ < t =
√

5.99σ pixels. This

process is repeated for N samples, where N is determined adaptively. The set with

the largest number of inliers is then used to compute the final H. Figure 2.16 shows

an estimated homography using RANSAC and DLT algorithms. The red and blue

dots in the image are outlier feature locations while the purple dots are the inliers.

Figure 2.16: This figure shows the estimation of a perspective transformation using
the MAV images shown in Figure 2.14 and Figure 2.16.

2.3.3 Focus Based Rejection of Homographies

Using the process described above, we can estimate a perspective transforma-

tion Ĥs→d that maps a source image Is onto a destination image Id using the DLT

32



and RANSAC algorithms. While the RANSAC algorithm enables us to remove out-

liers, it does not guarantee that all outliers are removed. Therefore, we also perform

outlier rejection on the estimated perspective transformation using a focus metric.

The key insight in this process is that errors in estimated perspective transformation

translate into a blurring affect in the overlap regions of the composite images. This

is illustrated in Figure 2.17. As mention in Section 2.2.3, a focus metric objectively

measures the amount of blurr present in an image and can therefore be used to mea-

sure the accuracy of the perspective transformations given its resulting composite

image.

(a) (b)

Figure 2.17: This figure shows how inaccuracies in an estimated perspective trans-
formation affect the resulting composite image.

The process starts by finding the overlap region in each image. To compute

the overlap regions, we first create a blank image, Is→d, to hold the pixel values of

the source image mapped in the destination coordinate frame. Once this image is

created, Ĥs→d is used to map pixel locations in Is into Is→d. The newly populated

Is→d and original Id images are then combined using an alpha blend and the result

is stored into new image Ic. We then find the overlapping region of Is→d, Id, and Ic

using the process described in Section 2.2.2.

Once the overlap regions are defined, we can compute the focus values of each

region. The focus metric used is the variance of the image (image energy) which is
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less punative in comparision to the Energy of Laplacian metric discussed in Section

2.2.3. The discrete version of this metric is defined as

V (I) =
1

n

∑
x

∑
y

(
I2 (x, y)− µ2

)
, (2.16)

where

µ =
1

N

∑
x

∑
y

I (x, y) ,

x and y are pixel coordinates, I is the image being evaluated, and N is the number of

pixels being evaluated.

The computed focus values are then used to compute the ratio of the composite

region to the average of the source and destination region values. If the ratio is above

a user defined threshold, then the estimated projective transformation is accepted.

This can be computed as

Compositevalue
(Sourcevalue +Destinationvalue) ∗ .5

≥ tf . (2.17)

This process is shown in Figure 2.18.

Figure 2.18: This figure shows the outlier rejection of estimated perspective trans-
formations.
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2.4 Chapter Summary

Once this process is complete, a sparse subset of the initial MAV imagery that

most represent the desired area has been selected. In addition, a series of feature-

based perspective transformations for this subset of MAV imagery has been created.

The perspective transformations will be used as constraints in the initial iteration of

the bundle adjustment method described in the next chapter.
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Chapter 3

Iterative Refinement of Pose Estiamtes

In this chapter we describe the iterative refinement segment introduced in Sec-

tion 1.3.3 in more detail. The primary purpose of this segment is to find the optimal

MAV pose estimates that align the captured images to create a high-quality mosaic

while minimizing the difference in the pose estimates to that of the measured poses.

The main algorithm used to find the optimal pose estimates is a constrained opti-

mization process using bundle adjustment. The constrained optimization procedure

treats the estimated feature-based frame-to-frame perspective transformations, ho-

mographies, as constraints to ensure that the final mosaic is an image of high quality.

However, which homographies are used as constraints is an input to that procedure

and must be determined at run-time. Therefore, our algorithm consists of two main

sub-groups: constrained optimization using bundle adjustment (BA) and image-to-

image homography selection. Together these groups form a nested iterative process

for refining the MAV pose estimates. This is illustrated in Figure 3.1.

This nested iterative process is constructed using three individual iterative

processes. Going from the innermost to the outermost iteration loop, they are as

follows: bundle adjustment (BA) method, constrained optimization using Lagrange

multipliers, and topology enhancement.

The innermost iteration loop, bundle adjustment, attempts to find the point

in the parameter space that most closely (in a weighted-least squares sense) maps to

the measurements collected. This method iteratively estimates the parameter values

that predict the measured values most correctly according to our cost function. The

measurement space is defined by the MAV pose estimates ~Pi, feature-based frame-

to-frame perspective transformations Ĥi←i+1, and prior knowledge of the world, such
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Figure 3.1: This figure show the iterative refinement segment of the mosaic creation
process shown initially in Figure 1.4.

as the assumed normal vector ~n and rotational bias terms ~q. The parameter space is

defined by the parameters to be estimated which include the MAV pose estimates P̂i,

normal vector n̂, and rotational bias terms q̂.

The pose estimates used to construct the parameter and measurement spaces

contain the position T and attitude ~q information of the MAV body for a given image.

Position information is encoded using a local North-East-Down (NED) Cartesian

coordinate system as explained in Section 2.3.1. Attitude information is represented

using a quaternion representation also explained in Section 2.3.1. Each pose can be

represented as follows

~P =


x

y

z

~q

 . (3.1)
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The BA method is completed when one of three termination criteria is met.

First, the BA method stops when a local minimizer is reached. In other words, the

process stops when the direction of steepest descent is approximately zero resulting in

nearly identical parameter estimates in each iteration. Second, the BA method stops

when the change in parameter estimates is small (i.e. below some threshold). This

can occur when the steps in the steepest descent direction move us around the local

minimizer. Finally, the BA method stops when a maximum number of iterations are

completed. As in all iterative processes, this is a safeguard against an infinite loop.

The middle iteration loop, constrained optimization using Lagrange multipli-

ers, evaluates the BA method at various Lagrange multipliers λ. These Lagrange

multipliers provide us with a strategy for enforcing the constraints placed on homo-

graphies in our BA cost function and are explained in Section 3.2. The iteration loop

starts by evaluating the BA method at a minimum Lagrange multiplier, λ = λmin.

Once completed, the BA method is revaluated using the last measurement and pa-

rameter values at a new λ increased by a scale factor σL. This is continued until a

maximum Lagrange multiplier is reached, λ = λmax.

Upon the completion of this middle iteration loop, we have an improved set of

MAV pose estimates , P̂i, that were computed using the initial MAV pose estimates

~Pi and feature-based perspective transformations Ĥi←i+1 between image pairs. At

this point, these pose estimates are used to either create a geo-referenced mosaic

or to determine a new set of image pairs using a reduced topology map [10, 13]

generated from P̂i. The reduced topology map maximizes the overlap between image

pairs thereby minimizing the possibility of errors in the estimation of feature-based

perspective transformations. Each edge in this map represents a valid image pair.

The image pairs are then used to compute a new set of feature-based perspective

transformations that are used in the BA method to improve its accuracy.

The outermost iteration loop, topology enhancement, encompasses the cre-

ation of the reduced topology maps. Because image pairs chosen to constrain the

optimization procedure can have a significant effect on the resulting pose estimates,

the topology map created in the outermost iteration level alternates between differ-
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ent configurations. To compute this reduced topology map, we start by evaluating

the middle level using the initial MAV pose estimates and feature-based perspective

transformations output from the initial mosaic creation segment. Once completed,

the middle iteration is revaluated using a new set of perspective transformations

generated from the image pairs determined by the reduced topology map. This is

repeated for a preset iteration count determined by the user.

The remainder of the chapter discusses the individual components in more

detail and is organized as follows. In Section 3.1, we describe the creation of the

topology map used in the outer most level. In Section 3.2, we describe our constrained

optimization setup using our BA cost function and our implementation of the BA

method.

3.1 Selection of Image Pairs for BA Process

As discussed in the introduction of this chapter, we use a reduced topology map

(graph) to determine the image pairs and subsequently the feature-based perspective

transformations to be used in the BA method. To compute the reduced topology

graph, we first compute a full topology graph and then its minimum spanning tree.

The reduced topology graph is a mixture of these two graphs.

To create the full topology graph, we first project the four corners of each

image i in image set Ii→n onto the reference frame using MAV pose information and

perspective transformations, explained in Section 2.3.1. Each projected center loca-

tion is then used to represent a vertex location in the topology graph. The resulting

projection of the four corners (polygons) are then superimposed onto each other to

create new polygons that represent the overlap areas (intersections) of polygon pairs

[28]. The overlap area is then converted into an overlap percentage and used to create

the edges in the topology graph. The edges in the graph represent candidate frame-to-

frame perspective transformations between image pairs and are directly determined

via the overlap percentage. The edges are inversely weighted according to their over-

lap percentage (i.e. w ∝ %−1). As the edge weights approach ∞ they are removed
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using a pruning process described below. The process of creating the topology graph

is illustrated in Figure 3.2.

Figure 3.2: This figure illustrates the process of creating the pruned topology map
using the MAV pose estimates and the fram-to-frame rigid body transformations.

Once the full topology graph is created, a minimum spanning tree (MST) that

maximizes the overlap between candidate image pairs is created. This MST has a

couple of advantages. First, it produces a fully connected topology graph with a

minimum number of edges. Reducing the number of edges in the topology graph also

reduces the BA measurement space size thereby also reducing computational cost as-

sociated with solving the normal equations (i.e. A~x = ~b). Second, by maximizing the

overlap between image pairs we also reduce the possibility of error in the estimation

of feature-based perspective transformations.

To create the MST of the topology graph, we first run a pre-pruning process

to remove edges that are above a maximum threshold value tb. As stated above, the

edges of the full topology graph represent candidate image pairs. For each candidate

image pair a feature-based perspective transformation is estimated, evaluated, and

possibly rejected as described in Section 2.3.2. However, as the overlap between

image pairs decrease the possibility of rejection increases. This results in wasted
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(a) Without Prunning

(b) With Prunning

Figure 3.3: This figure shows the results of prunning the edges of the topology graph
before the creation of the MST.

computations and an increased process time. Therefore, image pairs above tb are

removed from consideration before the creation of the MST.

Figure 3.3 shows the placement of approximately 150 images in the reference

frame using the described process. The blue lines represent the temporal path of the

MAV, green lines represent the candidate frame-to-frame perspective transformations

(edges of graph), and the red dots represent the center of each projected image (ver-

tices of graph). As can be seen, the pruning process significantly reduces the number

of edges to be considered in the creation of the MST and results in the same MST.

After pruning the edges of the topology graph, we use Prim’s algorithm [17]

to find a MST for the given topology graph. This algorithm works as follows. First,
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select an arbitrary vertex, b, in the topology graph, T , and use it as the first vertex

in the MST, M . Second, choose a vertex in T with a minimal connected edge weight

to a vertex in M and add it to M . Third, repeat this process until all vertices in T

are also in M . This process is illustrated in Figure 3.4.

Figure 3.4: This figure shows the various stages of selecting image pairs using the
initial MAV pose estimates.

Given that we now have a topology graph Gfull and its MST GMST , we can

create the reduced topology graph mentioned in the introduction. To compute this

graph, we start by initializing a new graph Greduced using the computed MST. Edges

are then incrementally added to Greduced using the criteria described in [29, 13] which

are as follow: (i) add edges that link images with significant overlap and (ii)create

a “material shortcut” between vertices. Material shortcuts are defined as edges that

have the greatest effect on the accuracy of the BA method, such as the first edge to

close a loop or edge that ties together two swaths.

The first criterion has already been meet due to the pruning process used to

create the topology map and subsequently the MST. The edges in these maps are

directly computed from the overlap percentages of image pairs. Furthermore, only

image pairs above a specified overlap percentage are included in the maps. The

second criterion is determined via the ratio of the current path length that connects

43



two vertices and the cost of the new edge. This is computed as

γI,j =
we
dsp

, (3.2)

where dsp is the shortest path that connects two vertices and we is the weight asso-

ciated with the new edge. The j and i represent the vertices being evaluated. This

ratio goes from 0 to 1 with low values representing good candidate links.

Figure 3.5: This figures illustrates an iteration of the gready algorithm used to add
links back into the MST.

Using the ratio described above and greedy algorithm similar to the one pre-

sented in [13], we can now choose which edges have to be added to the reduced

topology graph. The greedy algorithm starts by removing all edges in Gfull that also

exist in GMST . Once all duplicate edges are removed, we compute allshortest paths

between vertex pairs using Dijkstra’s algorithm and store the results in a matrix

Masp. Each entry of the matrix represents the shortest path from a source vertex

(row index) to a destination vertex (column index). Likewise, we create a matrix,

Mw, that holds the weights associated with the candidate edges in Gfull. The two
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matrixes are then divided to give us the needed ratio. Using the computed ratio, we

then remove all edges in Gfull that have a ratio above a user defined threshold tratio.

Out of the remaining edges in Gfull, we select the edge with lowest ratio and add

it to Greduced. This process is repeated until all edges are removed from Gfull. An

iteration of the greedy algorithm is illustrated in Figure 3.5.

3.2 Constrained Optimization Using Bundle Adjustment

3.2.1 Constrained Optimization Setup

As discussed in Section 1.2, the fundamental approach used to create a geo-

referenced mosaic is to perform a constrained optimization problem using bundle

adjustment. The optimization problem we are trying to solve is:

min
~Pi,~n,~qb

N∑
i=1

(~Pi − P̂i)2 s.t.

~h(~Pi, ~Pi+1, ~n, ~qb) = ĥi,

||~n||2 = 1,

||~qpi||2 = 1, and ||~qb||2 = 1,

(3.3)

where ~n is the normal vector (in world coordinates) of the plane being imaged,

~qb is a “bias” quaternion representing constant errors in the pose estimates from

the IMU/GPS unit on-board the MAV, ~h(~Pi, ~Pi+1) is a function, described in Sec-

tion 2.3.1, for computing the homography given two poses and the normal vector,

and ĥi is derived from the matrix Ĥi←i+1, which is the homographies generated from

feature correspondences. Because the matrix Ĥ is defined up to a scale factor, the
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bottom right element of this matrix is set to 1. ĥi is then set equal to

ĥi =



Ĥ1,1

Ĥ1,2

Ĥ1,3

Ĥ2,1

Ĥ2,2

Ĥ2,3

Ĥ3,1

Ĥ3,2



, (3.4)

where the subindices #,# represent the row and column, respectively, of Ĥ.

We handle the constraints imposed on this optimization in two ways. The

constraints on ~n, ~qb, and ~qpi are imposed by re-normalizing these vectors to one after

each iteration of the bundle adjustment [24]. The constraint on ~h(~Pi, ~Pi+1, ~n, ~qb) is

handled using a Lagrange multiplier λ, leading to

min
~Pi,~n,~qb

N∑
i=1

(~Pi − P̂i)2 + λ
(
~h(~Pi, ~Pi+1)− ĥi

)2

, ||~qb||2 = 1, ||~qpi||2 = 1, and ||~n||2 = 1.

For a given value of λ, this minimization function can be solved using bundle ad-

justment. Generally we start with a λ of .001, increasing by factors of 10 until

λ = 100, 000. For non-final values of λ, we do not enforce as strict of a convergence

criteria for bundle adjustment in order to speed up the optimization process.

For initial conditions on our constrained optimization problem, we initialize the

estimated poses to the measured poses returned by the IMU/GPS system on-board

the MAV. The normal vector ~n is initialized to a vertical vector (
[

0 0 −1
]T

), and

the bias quaternion to the identity quaternion (
[

0 0 0 1
]T

).
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3.2.2 Bundle Adjustment Implementation

Bundle adjustment is a method for finding the closest point on a manifold

defined by a parameter vector ~p to a measurement vector ~x. In our case, the mea-

surement vector can be written as:

x̂ = [P̂0, · · · , P̂N , ĥ0, · · · , ĥn−1, n̂v, q̂0]
T , (3.5)

where n̂v =
[

0 0 −1
]T

and q̂0 =
[

0 0 0 1
]T

are added to the measurement

vector to represent prior knowledge of typical values for ~n and ~qb (the ground should

have a normal that is close to vertical, and the biases should be small.)

The parameter space over which bundle adjustment will iterate is defined by

the parameters which are being optimized in the constrained optimization problem

(Pi, ~n, and ~qbias). The total parameter vector is defined as:

~p = [~P0, · · · , ~PN , ~n, ~qbias]T . (3.6)

To perform this optimization we use a weighted Gauss-Newton method. This method

iteratively linearizes the function to be minimized in the neighborhood of the current

estimate, by solving linear systems known as normal equations. The normal equations

are defined as

A = JTΣ−1J, (3.7)

~g = JTΣ−1~εp, (3.8)

~x+
E = A−1~g, (3.9)

where J is an m×n matrix containing the partial derivatives of the cost function (i.e.

a Jacobian matrix), Σ is the covariance matrix which represents the distance metrics

which are defined below, A is an m × m matrix that contains the approximated

second derivatives of the cost function, ~εP is the residual error in pose estimates and

homography matrices, ~g is the gradient, and change ~x+
E in the parameters for the next
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iteration. The Jacobian Matrix is formulated as

J =

 P
H

 , (3.10)

where

P = diag

(
δ ~P1

δ ~P1

,
δ ~P 2

δ ~P2

, · · · , δ
~Pn

δ ~Pn
,
δ~n

δ~n
,
δ~qbias
δ~qbias

)
= In+7, (3.11)

and

H =diag
([

δH1

δP1

δH1

δP2

]
, · · · ,

[
δHn−1

δPn−1

δHn−1

δPn

])
. (3.12)

Due to the block diagonal nature of both P and H, efficient bundle adjustment can

be used to solve the normal equations.

The covariance matrix Σ is assumed to be diagonal with weighting for each

element as defined in Table 3.1. The weighting on the x, y, z, and ~q parameters

represent the assumed error present in IMU/GPS estimates. The covariance on the

attitude parameter q is relatively large due to a variety of issues associated with

the acquisition of this measurement. First, the small size of an MAV airframe limits

the weight, size, and power available for payloads, necessitating the use of low-quality

sensors for the IMU, leading to noisy pose estimates. Second, the delays in the system

are not accurately measured. This can lead to inaccuracies in the alignment of MAV

pose estimates and imagery. Third, attitude information may not be available. The

weighting of ~n is chosen such that it only allows minimal deviations from the initial

estimate of n̂v. The covariance for ~qb is also chosen to be quite large to allow for

a large range of bias values (more motivation for these values will be found in the

results section).

While the covariance values described above all have fairly straight-forward

physical meanings, the covariance on the homography values is a bit more compli-

cated. The goal of the constraint in the constrained optimization is to ensure that

the poses chosen for the MAV camera cause the images to be aligned as well as a

free mosaic created from only feature based methods. Therefore, we derive the co-

variances to represent movement in pixel locations due to changes in the homography
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Table 3.1: Covariance Matrix Weights
Parameters Weighting

x, y, z 1
~q .1
~n .0001
~qb 1

H1,1H1,2H2,1H2,2
1

λ max(Iheight,Iwidth)
∗ 1
op

H1,3H2,3
1
λ
∗ 1
op

H3,1H3,2
1

λ max(Iheight,Iwidth)
2 ∗ 1

op

parameters. Because different elements of the homography matrix have different ef-

fects on the pixels, we have covariances that vary as shown in Table 3.1. Homography

covariances are also scaled by one over the overlap percentages, 1
op

, to give presidence

to homgraphies with higher degrees of overlap. To utilize bundle adjustment within a

constrained optimization framework, the homography covariances are also scaled by

1
λ
.

3.3 Chapter Summary

Upon the completion of the pose optimization process as described above, we

have an optimized set of MAV pose estimates, P̂i. At this point, these pose estimates

are used to create a single, large, integrated geo-referenced mosaic. This is done

via the use of a virtual camera centered one meter above the desired area. Using

the virtual camera and optimized poses, we project the MAV imagery onto a global

coordinate system. We then use a multi-resolution blending algorithm to combine

images and place them on the reference frame. The results of this process are shown

in the next chapter.
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Chapter 4

Results

In this chapter, we evaluate the geo-referenced mosaics created using the con-

strained optimization framework with bundle adjustment and topography refinement.

Two main attributes are essential in a geo-referenced mosaic: (i) the mosaic needs to

be “visually appealing” and (ii) the mosaic needs to be accurately geo-located in the

world. The results presented in this chapter will show that the proposed mosaicing

framework generates mosaics with these qualities. Furthermore, we will show that the

geo-referenced mosaics created using this framework are comparable to prior work.

The chapter is organized as follows. In Section 4.1, we describe the aerial

platforms used to collect MAV flight video and the generation of synthetic video. In

Section 4.2, we evaluate the visual quality of the mosaic created using the proposed

framework. In Section 4.3, we evaluate the geo-referencing accuracy of the generated

mosaics.

4.1 Experimental Setup

In order to evaluate our system, we used imagery collected from two different

MAV platforms and synthetically generated video. This section describes these items

in detail and is organized as follows. In Subsection 4.1.1, we describe the BYU

MAGICC LAB Test Platform used in the collection of MAV video. In Subsection

4.1.2, we describe the alternate MAV Test Platform used in the collection of MAV

video. In Subsection 4.1.3, we describe the synthetically generated video sequence

used in the evaluation of the proposed process.
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4.1.1 BYU MAGICC LAB Test Platform

The MAV used in the BYU MAGICC Lab is a hand launchable Delta-wing

test platform constructed from EPP foam. Figure 4.1, shows the key items in this

system. This test platform uses a Procerus KestrelTM autopilot that is equipped

with three-axis accelerometers and gyros, two pressure sensors, and a µ-blox AG

GPS receiver. These sensors are used to obtain position and altitude measurements

(i.e. pose estimates). The pose estimates computed by the Kestrel autopilot are

transmitted to the ground at 25Hz over a 115.2 kBaud radio modem. This unit is

shown in Subfigure (a).

(a) (b)

(c)

Figure 4.1: This figure shows the BYU MAGICC lab test platform used in the
collection of MAV imagery. (a) Procerus KestrelTM Autopilot (originally developed at
BYU). (b) Procerus Ground Station setup and MAV. (c) Actual airframe used in the
collection of MAV image sequences.

The airframe used to collect the MAV imagery is shown in Subfigure (c).

This airframe has an expanded payload bay, wingspan of ∼ 1.5m, an empty weight
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of 3.2lbs, and a payload capacity of 1.8lbs. The airframe uses a brushless electric

motor for propulsion, an electronic speed controller, and is fueled by lithium polymer

batteries. It can be equipped with either a 640 x 480 SONY camera or a Canon

SD1100 Elph 8 Mpixel commercial camera. The SD1100 can be set to take one high-

resolution image per second and stores still imagery onboard the MAV. The video

collected from these two cameras is sent to the ground station using a 2.4GHz NTSC

video transmitter (30 frames a second).

This platform is advantageous because it uses the Procerus ground station,

which enables frame-level synchronization of pose information (including attitude)

from the autopilot with video collected by the MAV. The Procerus ground station

is shown in Subfigure (b). The items used in the ground station include a laptop

to run the Procerus ground station software, a communication box for receiving and

transmitting MAV packets, Garmin GPS unit for video synchronization, and a RC

transmitter for operational control (i.e. user fail-safe).

4.1.2 Alternate Test Platform

In addition to the MAGICC lab test platform, we also collected imagery using

a second test platform. This test platform is an MAV used by the US Armed Forces

and has a wingspan of 1.3 m and weighs about 4.2 lbs. The platform was equipped

with a Canon SD1000 Elph 7 Mpixel commercial camera, which was programmed to

take one high-resolution image per second. Imagery and pose estimates collected from

the MAV are synchronized using the EXIF time stamps of the imagery and GPS time

stamps of pose estimates. Note that tight synchronization between this airframe’s

autopilot data and imagery was not achieved, leading to erroneous attitude estimates

(i.e. no roll and pitch information). GPS, however, with its slower update rate, was

effectively synchronized with the image data.

4.1.3 Generation of Synthetic Video

Due to limitations placed on acceptable flight areas and the availability of

reference imagery, we also verify the proposed system using synthetically generated
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video. The synthetic video is used as a ground truth to verify the visual appearance

and geo-locations of the mosaic. Furthermore, by using synthetic video we are able

to test the proposed system using large data sets.

(a)

(b)

Figure 4.2: This figure shows the large scale geo-referenced image used in the cre-
ation of synthetic video and the lawnmower test pattern that was used. (a) shows the
high-resolution aerial reference image downloaded from agrc.utah.gov (i.e. 40.382777
Latitude -111.767322 longitude). (b) shows the lawnmower pattern used for generation
of synthetic video.

The synthetic video is created using a large area geo-referenced image and

rigid body transformations as described in Section 2.3.1. During the creation of the

synthetic video, we create a synthetic MAV that flies at at fixed altitude over the

reference imagery, with random roll and pitch angles. The yaw angle is fixed in a

direction determined by the lawnmower patter displayed in Figure 4.2(b). Once the

”true” poses of the MAV have been computed and the images generated for those

poses, the pose estimates are corrupted with noise. In addition to the added noise, the
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generated images are also blurred using a Gaussian function. All angles are generated

using a uniform distribution. The reference image used to create the synthetic video

along with the lawn mower flight pattern, as shown in Figure 4.2(a), were downloaded

from agrc.utah.gov and are high-resolution aerial images taken of the state of Utah

(i.e. 40.382777N -111.767322E).

4.2 Evaluation of Visual Quality

As stated in the introduction of this chapter, it is essential for a mosaic to

be “visually appealing”. In other words, the mosaic needs to accurately represent

the area being observed as perceived by an end user. In this section, we will show

that the generated geo-referenced mosaics have this attribute. This is shown using

synthetically generated data and actual MAV flight data collected using the aerial

platforms described in Section 4.1.

This section is subdivided into three main subsections. In Section 4.2.1, we

describe the quality metrics used to quantify percevied differences in mosaics. In

Subsection 4.2.2, we compare the mosaic generated from optimized pose estimates to

mosaics created using the actual poses on synthetic video. In Subsection 4.2.3, we

evaluate the image quality of the mosaics generated using actual MAV video.

4.2.1 Quality Evaluation Measures

In this thesis, we use the peak signal-to-noise (PSNR) measure and the struc-

tural similarity index measure (SSIM)[30] to evaluate the quality of the mosaics gener-

ated from synthetic imagery. The PSNR ratio is used because it is simple to calculate

and it is a commonly used metric when comparing imagery (i.e. used to evaluate

compression quality). The SSIM, while harder to compute, is normalized for lumi-

nance and contrast making it a more robust. Both measures are metrics (i.e. assume

original imagery exists) and only evaluate the image quality based on its luminance

(i.e. gray scale).
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The PSNR is given in decibel units (dB), which measure the ratio of the peak

signal and the difference between two images. The PSNR ratio is computed as

PSNR = 20 ∗ log10

(
MAXI√
MSE

)
, (4.1)

where MAXI is the maximum possible pixel value of the image and MSE is the mean

squared error of two m × n monochrome images, Iorig and Imodified. The MSE is

calculated as

MSE =
1

mn

m−1∑
i=0

n−1∑
i=0

‖Iorig (i, j)− Imodified (i, j)‖2 . (4.2)

The result of the SSIM measurement is a decimal value between −1 and 1. A

value of 1 means both images are identical. The SSIM metric is calculated as

SSIM (x, y) =
(2µxµy) (2covxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) , (4.3)

where µx and µy are the average x and y values, σ2
x and σ2

y are the variance of x, and

y, covxy (scalar) is the the covariance of x and y, c1 and c2 are stabilizer constants.

4.2.2 Results Using Synthetic Imagery

The synthetic video enables us to compare a mosaic generated from optimized

pose estimates to mosaics created using the actual poses estimates. The synthetic

video used containes 5,000 images (before frame decimation) and was created as

described in Section 4.1.3.

In Figure 4.3, we show three mosaics created during various stages of the

mosaic creation process and a mosaic created using the actual poses. In Subfigures

(a) and (b), we show the mosaics created using the actual and initial pose estimates.

It is immediately apparent that the mosaic created from the initial pose estimates

is of far lesser quality than that of the true pose information. In Subfigures (c)

and (d), we show mosaics created using the optimized pose estimates of the first

and last iteration of the constrained optimization process using bundle adjustment
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and topology refinement. By inspection, we can see that both mosaics significantly

improve the initial pose estimates and resemble the mosaic created from the true

pose information. However, it is not immediately apparent as to how accurately

these mosaics represent the optimal mosaic, Subfigure (a).

(a) (b) (c) (d)

Figure 4.3: These figures show the mosaics created using true, noisy, and refined pose
estimates. Each image is rotated by 90 degrees. (a) Mosaic created using true pose
estimates. (b) Mosaic created using noisy pose estimates. (c) Mosaic created using
after one complete iteration of the full nested BA process. (d) Mosaic created using
after four complete iteration of the full nested BA process.

In order to evaluate the accuracy of each mosaic, we use the PNSR and SSIM

metrics described in the Subsection 4.2.1. Table 4.1 shows the quality measures

of each mosaic. This table demonstrates the significant improvements achieved by

using a constrained optimization framework with bundle adjustment and revising the

topography graph.
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Table 4.1: PSNR and SSIM Quality Measures
Metric Initial First Iteration Fourth Iteration

PSNR(dB) +29.29 dB +31.74 dB +33.45 dB
SSIM([-1,1]) 0.4658 0.6002 0.7499

(a)

(b)

(c)

Figure 4.4: This figures shows the magnitude of the differences between the reference
and computed mosaics, where white indicates no difference and black represents maxi-
mal difference. Each image is rotated by 90 degrees. (a) SSIM map comparing the true
and initial pose estimates. (b) SSIM map comparing the true and initial optimized pose
estimates. (c) SSIM map comparing the true and topology optimized pose estimates.

In Figure 4.4, we display the magnitude of the differences between the refer-

ence and computed mosaic, where white indicates no difference and black represents

maximal difference. In Subfigure (b), we demonstrate the improvements achieved

using bundle adjustment in a constrained optimization framework without any modi-

fication to the topography graph. By modifying the topography graph and re-running

the constrained optimization, even more improvements are achieved as shown in Sub-

figure (c). As can be seen in Subfigures (b) and (c), there is virtually no black border

around the images. This shows that we can quite accurately align the mosaics with

the reference imagery. Note that the dark regions still present in Subfigure (c) rep-
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resent differences of less than 1m, demonstrating that our algorithm is capable of

producing mosaics that accurately represent the area being observed.

4.2.3 MAV Imagery

In addition to synthetic imagery, we have verified our approach on using im-

agery from real MAVs. In specific, we will show that the created mosaics are con-

tiguous, crisp, clear, and virtually free of any distortions introduced by the mosaic

creation process. The imagery was collected using aerial platforms described in Sec-

tion 4.1 and constitutes two flights worth of data.

Figure 4.5: This figure shows the quality of an actual MAV mosaic created using 600
MAV images of Vineyard in Utah.

The first flight was conducted using the MAGICC lab test platform and col-

lected 900 viable images (before frame decimation) spanning an area over 500 meters

long. This imagery was collected using a 640 x 480 SONY camera. The mosaic cre-
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ated from this sequence can be seen in Figure 4.5. Notice how vehicles, curbs, roads,

buildings, and even rocks in the mosaic are crisp and clear. In addition, notice how

lines are well defined and straight. By visual inspection, we can see that the process

creates a clear and consistent mosaic.

Figure 4.6: This figure shows the quality of an actual MAV mosaic created using 17
high-resolution images of Florida location.

We also tested the method using 13 high-resolution images collected by the

alternate test platform. The imagery was captured using a Canon SD1000 Elph 7

Mpixel commercial camera. The resulting mosaic spans an area over 1000 meters long

and can be seen in Figure 4.6. Note that tight synchronization between this airframe’s

autopilot data and imagery was not achieved, leading to erroneous attitude estimates

(i.e. no roll and pitch information). Given the absence of attitude information, we
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are still able to create a consistent mosaic thereby showing that our process exhibits

the first attribute of a geo-referenced mosaic.

4.3 Evaluation of Geo-location Accuracy

Now that we have shown that the proposed framework has the ability to create

visually appealing mosaics, we show that it also has the second described attribute of

a geo-referenced mosaic, accurately geo-located mosaics. Furthermore, we show that

the proposed framework can produce comparable geo-located mosaics when compared

to prior methods, such as [1] which is similar in design. In order to evaluate the geo-

location accuracy of a mosaic, it is overlaid on imagery from Google Earth. This

process assumes that the imagery in Google Earth is accurately geo-located.

In Figure 4.7, we show a geo-referenced mosaic created using optimized pose

estimates and the data from the first flight. The geo-location errors in this mosaic

were less than 7m across the entire surface. This was determined by measuring the

displacement between the reported building, road, and pathway locations. Given a

geo-location accuracy of 7m, we have demonstrated the second attribute needed to

construct a geo-referenced mosaic.

Figure 4.7: This figure shows the geo-referenced mosaic created using the work
presented in this thesis.
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In order to test the robustness of the process, a geo-referenced mosaic was

created using optimized pose estimates and the data from the second flight. The

resulting mosaic can be seen in Figure 4.6. By visual inspection of location at the

ends and center of the mosaic, we found that geo-location errors for this mosaic

ranged from 16 to 30 meters. This is a significant improvement compared with the

raw telemetry information, which led to errors in the range of 9 to 320 meters. Having

demonstrated the two attributes of a geo-referenced mosaic and shown a robustness

to noisy pose estimates, we next compare our proposed framework to prior work.

Figure 4.8: This figure shows the geo-location accuracy of a actual MAV mosaic
created using 17 high-resolution images of Florida location.

In Figure 4.9, we show two mosaics created using different mosaic frameworks

and the MAV data from the first flight as described above. In Subfigure (a), we show a

mosaic that was created using a single pose estimate to orthorectify and geo-reference

the first image of the mosaic. All subsequent images were then projected onto the

mosaic using this image. Note how slight errors in the initial pose estimate deteriorate

the geo-location accuracy of the mosaic. Measuring the displacement in the location

of the house at the bottom of the image, [1] reported an error in geo-location of

approximately 75m.

In Subfigure 4.9(b), we show a mosaic that was created using the UKF frame-

work presented in [1]. The reported geo-location accuracy of this method was approx-

imately 5m. This framework is similar to the work presented in this thesis because
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it also uses perspective transformations computed between images to improve the

accuracy of MAV pose estimates coming from a GPS/IMU system. As can be seen,

our proposed system is able to produce comparable results over longer sequences of

imagery. The method in [1] is only able to construct mosaics consisting of less than

400 images while ours is only limited by the size of the video sequence. Our method

has been shown to produce high quality geo-referenced mosaics and visually appealing

mosaics over large data sets.
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(a)

(b)

Figure 4.9: This figure shows two mosaics created using different frameworks and the
same video sequence. Each image is rotated by 90 degrees. (a) Geo-referenced mosaic
created using a single pose to geolocate the mosaic. (b) Geo-referenced mosaic created
using the work presented in [1].
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Chapter 5

Conclusion

This thesis has presented a novel modification to the traditional BA method

enabling the creation of georeferenced mosaics that are comparable in quality to

prior methods. This method makes direct use of pose information obtained from

an IMU/GPS unit thereby allowing us to accurately geo-reference the mosaic to the

world.

The key insight used to set up this bundle adjustment problem is that the

frame-to-frame homography mapping is also a function of the poses of the camera at

the time the images were taken. Because they define a “visually appealing” mosaic,

the computed perspective mappings can be treated as constraints on the true pose

estimates. A measurement of this pose is directly computed by the IMU/GPS system

on-board the MAV. If we assume that for each frame an estimate of the camera

location is returned by the IMU/GPS system, then a constrained optimization routine

can be used to determine the set of camera poses that are closest to the measured pose

values while meeting the constraints imposed by the frame-to-frame homographies.

Using our method, we have demonstrated mosaics created from over 900 im-

ages resulting in geo-location errors on average of less than 7m. We have also shown

using synthetically generated video that our method can handle over 7,000 images.

Furthermore, we have demonstrated geo-registration without any attitude informa-

tion from the MAV. Visually appealing mosaics were achieved in both cases.

5.1 Recomendations for Future Work

Even though the proposed system has been shown to achieve its objectives,

there are still key areas that could be improved. The first of these is the extension of
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the current algorithm to create 3D mosaics of desired areas. This would necessitate

a fundamental change in the BA so that it works with non-planar terrain and the

incorporation of digital elevation information. However, by making such changes to

the design we can increase the contextual information of the mosaic and subsequently

it usability.

Second, the algorithm can be extended to incorporate homographies generated

using reference imagery (i.e. reference-to-image perspective transformation). Cur-

rently, when a map is being created, we assume there is no pre-existing geo-registered

imagery available. However, when prior imagery is available, the accuracy and align-

ment of images to each other and to the geo-coordinate system can be improved. This

change would only require minor modifications to the parameter and measurement

spaces, such as the addition of a virtual camera pose and virtual camera calibration.

Third, the algorithm can be extended using existing superresolution tech-

niques. Currently, when multiple images are being captured of a given area, a single

image is chosen to represent the area. However, when multiple images are captured

of an area, it is possible to achieve ”super-resolution”, or better resolution due to

multiple images than can be achieved by any one image. This change would increase

the visual information of the mosaic and subsequently it usability.

Lastly, the current implementation can be speed up by optimizing the current

implementation. This can be done in a variety of ways. First, we can use optimized

linear algebra libraries that take full advantage of the sparseness normal equations

thereby speeding up the BA method. Second, the program would benefit from the

explicit use of vectorization instruction sets, such as the SSE and AltiVec instruction

sets. These instruction set would also speedup matrix operations. Third, the applica-

tion would also benefit from explicit parallelization. This would allow the application

to fully utilize the available resources.
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