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Abstract

Evans Function Computation

Blake Barker

Department of Mathematics

Master of Science

In this thesis, we review the stability problem for traveling waves and discuss the Evans function, an

emerging tool in the stability analysis of traveling waves. We describe some recent developments in

the numerical computation of the Evans function and discuss STABLAB, an interactive MATLAB

based tool box that we developed. In addition, we verify the Evans function for shock layers in

Burgers equation and the p-system with and without capillarity, as well as pulses in the generalized

Kortweg-de Vries (gKdV) equation. We conduct a new study of parallel shock layers in isentropic

magnetohydrodynamics (MHD) obtaining results consistent with stability.
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Chapter 1. Introduction

In this thesis we study the stability of traveling waves in viscous compressible fluid dynamics.

Traveling waves occur in detonations in a reactive gas, as shallow water waves, as shock layers

in a viscous plasma, and in many other observable natural phenomena. Small disturbances to

these traveling waves may propagate causing the state of the system to alter, e.g. to bifurcate.

Alternatively, the state of the system may persist for all time assuming the disturbance is small

enough. For a dissipative traveling wave, stability means the shape of the wave is preserved as it

moves forward in time and that small perturbations decay leaving the system state unchanged.

Ideally, mathematical descriptions of behavior should match the physical phenomena observed.

Many mathematical models involve justifiable reductions that simplify the models but preserve key

physical characteristics of the system. However, these simplifications may result in the behavior of

the mathematical model and the physical phenomena diverging as parameters vary. Parameters

associated with change in stability properties of the mathematical model provide likely candidates

for points of divergence from the physical phenomena. Hence, traveling wave stability analysis

plays an important role in model verification.

To demonstrate the stability of traveling wave solutions, it suffices to show that there are no

eigenvalues of the linearized operator in the deleted right half complex plane due to Zumbrun and

his collaborators [46, 21, 35, 36] who generalized earlier work of [37, 18, 33, 34, 43]. Bounds on

the unstable spectra can often be found using energy estimates, but usually a region in parameter

space must still be checked for unstable eigenvalues. An effective way of checking for eigenvalues

in a bounded region employs the Evans function, an analytic function whose zeros correspond

in location and multiplicity to the eigenvalues of the linearized operator. The Evans function is

determined by writing the eigenvalue problem as a first order system and then evolving the system

toward zero where we initialize at −∞ with the unstable manifold and at +∞ with the stable

manifold. The evolved solutions are then evaluated at zero and the Wronskian taken to determine

linear independence. Hence zeros of the Evans function correspond to the intersection of the

unstable manifold at −∞ and the stable manifold at +∞ thus forming an eigenfunction. Care
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must be taken to initialize the system in a way that preserves analyticity of the Evans function.

This allows us to compute the Evans function on a contour enclosing a bounded region where

eigenvalues may occur and then apply the argument principle to determine if there are roots inside

the contour. If the winding number is zero, then the traveling wave is stable, and if the winding

number is nonzero the wave is unstable.

Numerical implementation of the Evans function is difficult due to inherent stiffness in the

problem associated with resolving different growth and decay modes. Traditionally, this problem

was solved in an elegant fashion by lifting the problem into an exterior product space so that the

unstable and stable manifolds corresponded to a single stable mode in the new system. However,

the size of the lifted problem grows as
(n

k

)
where n is the dimension of the system and k is

the dimension of the stable or unstable subspace being evolved. Clearly this method becomes

numerically unwieldy very quickly as the system size increases. We review the recent development

of an orthogonalization method [28] that keeps the original dimension of the system and also

maintains analyticity of the Evans function. In addition we discuss STABLAB, an interactive

MATLAB based toolbox developed with convenience and flexibility in mind. As part of STABLAB,

we consider root solving for the Evans function, a significant problem since function evaluations

are costly making traditional root solving techniques, like Newton’s method, undesirable.

We use STABLAB to verify Evans function output for traveling waves in Burgers equation,

the generalized Korteweg-de Vries equation (gKdV) [39, 38], and the p-system with and without

capillarity [3, 24, 23]. We then conduct a new study in isentropic magnetohydrodynamics (MHD)

[4] obtaining results consistent with stability.

2



Chapter 2. Mathematical Background

In this chapter we discuss some of the mathematical issues pertaining to traveling wave stability;

see [22] for details. Zumbrun and collaborators have shown for a large class of equations that

spectral stability of the linearized operator implies nonlinear stability; see [46, 21, 35, 36]. Spectral

stability can be determined using the Evans function, an analytic function whose zeros correspond

in location and multiplicity to eigenvalues of the linearized system.

2.1 Traveling Waves

Consider the evolution equation,

ut + f(u)x − (B(u)ux)x + (C(u)uxx)x = 0, (2.1)

where x ∈ R, and u, f ∈ Rn, and B, C, Q ∈ Rn×n are sufficiently smooth.

Definition 2.1. A traveling wave profile of (2.1) is a solution of the form

u(x, t) = û(x− st), (2.2)

where s is wave speed.

Equivalently we make the transformation (x, t) → (x− st, t) and seek stationary solutions of

ut = F(u) = (s− f ′(u))ux + (B(u)ux)x − (C(u)uxx)x. (2.3)

In this last method we transform our coordinates to a moving frame of reference so that the

traveling wave appears stationary. Then the existence of a traveling wave solution reduces to that

of an ODE,

(f ′(u)− s)u′ − (B(u)u′)′ + (C(u)u′′)′ = 0, (2.4)

with appropriate boundary conditions. We restrict our attention to continuous traveling waves

3



with asymptotically constant end states,

lim
x→±∞

û(x) = u± and lim
x→±∞

û(n)(x) = 0, n ≥ 1. (2.5)

A traveling wave solution is called a shock layer when u+ '= u− and a pulse when u+ = u−.

Remark. Considered as a dynamical system, the end states u± are equilibrium points of (2.4) so

that connecting equilibria in the phase plane correspond to traveling waves. Note that (2.4) is

translationally invariant since it is autonomous in x so that {û(x + δ)}δ∈R forms a smooth one

parameter manifold of profiles for a single connecting orbit.

We finish this section with a few examples of traveling waves.

Example 2.2. (Viscous Burgers equation) We consider the one-dimensional Burgers equations,

ut + uux = νuxx, (2.6)

where the constant ν > 0 represents viscosity. Substituting û(x− st) = u(x, t) in (2.6) yields the

profile equation

− sû′ + ûû′ = νû′′, (2.7)

subject to û(±∞) = u±. Integrating from −∞ to x gives

− s(û− u−) +
1
2
(û2 − u2

−) = νû′. (2.8)

Taking x → +∞ we find

− s(u+ − u−) +
1
2
(u2

+ − u2
−) = 0, (2.9)

so that the Rankine-Hugoniot condition is

s =
u+ + u−

2
. (2.10)

Returning to (2.7) and solving for û′ we have

û′ =
1
2ν

(û− u−)(û− u+), (2.11)

4



which has solution

û(x) = s− a tanh
(

a(x− st + δ)
2ν

)
, (2.12)

where a = (u− − u+)/2 and δ ∈ R is some translate.

!!" !# " # !"
!$#

%

%$#

&

&$#

'

'$#

Figure 2.1: Profile for Burgers equation

Example 2.3. (gKdV) We consider the system

ut + uxxx + (up/p)x = 0, (2.13)

where p ≥ 2, p ∈ N. We translate (x, t) → (x− st, t) and seek stationary solutions of

ut − sux + uxxx + (up/p)x = 0. (2.14)

The additional rescaling (u, x, t) → (s1/(1−p)u, s1/2x, s3/2t) removes s;

ut − ux + uxxx + (up/p)x = 0. (2.15)

Hence, the profile equation is

u′′′ − u′ + (up/p)′ = 0, u(n)(±∞) = 0, n = 0, 1, 2. (2.16)

5



Integrating twice and using separation of variables results in the solution,

û(x) =
(

p(p + 1)
2

)1/(p−1)

sech((1− p)x/2 + δ)2/(p−1), (2.17)

where δ ∈ R is some translate; see Figure 2.2.

!!" !# " # !"
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"$!
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Figure 2.2: Profile for gKdV with p = 5

2.2 Stability of traveling waves

After determining the existence of a traveling wave, we are interested in knowing whether it is

stable. If the solution û is “bumped”a little, that is perturbed, will the system return to the shock

layer (possibly translated) or behave in some other fashion, e.g. bifurcate into something else?

Definition 2.4. We say û(x) is (asymptotically) orbitally stable with respect to some set of

admissible perturbations A if u(x, t) = û(x) + v(x, t) → û(x + δ) whenever v ∈ A and where δ ∈ R

is some translate.

2.3 Spectral stability

Determining asymptotic orbital stability reduces to a study of the spectrum of the traveling wave

profile; see [46, 21, 35, 36]. The eigenvalue problem comes from the linearization of (2.3) about

the stationary solution û(x) and the formation of the eigenvalue problem,

λv = Lv := −(A(û)v)x + (B(û)vx)x − (C(û)vxx)x, (2.18)

6



where A(û)v = df(û)v − dB(û)vûx − dC(û)vûxx.

Definition 2.5. We have:

(i). The spectrum σ(L) of L is the set of all λ ∈ C such that L− λI is not invertible.

(ii). The point spectrum σp(L) of L is the set of all isolated eigenvalues of L with finite multiplicity.

(iii) The essential spectrum σe(L) of L is the entire spectrum less the point spectrum, that is

σe(L) = σ(L) \ σp(L).

Definition 2.6. We say that L in (2.18) is spectrally stable if there is no spectrum in the closed

deleted right half plane, Σ+ = {λ ∈ C\{0}|(eλ ≥ 0}; see Figure 2.3.

Im

Re

Figure 2.3: Deleted right half plane

Zumbrun and his collaborators [46, 21, 35, 36] have shown, generalizing the earlier work of

[37, 18, 33, 34, 43], that spectral stability implies asymptotic orbital stability; see [23, 3, 4] for

examples of application. In the case of instability, bifurcation diagrams may be constructed to

observe its onset.

We note that the operator L always has nontrivial point spectrum since zero is an eigenvalue

of L associated with translational invariance of (2.4).

Lemma 2.7. (Sattinger [41]) The derivative of the profile û′ is an eigenfunction of L with

eigenvalue 0.

Proof. By translational invariance, we have for (2.3) that F(û(x + δ)) = 0 for all δ ∈ R. Then

differentiating with respect to δ and setting δ = 0, we have

0 =
∂

∂δ
F(û(x + δ))|δ=0 = F ′(û(x))û′(x) = L(û′(x)). (2.19)

7



To be spectrally stable, both the essential and point spectrum of L must be excluded from Σ+.

2.3.1 Essential Spectrum. Excluding the essential spectrum is simplified by the following

theorem:

Theorem 2.8 (Henry [20]). The essential spectrum of L in (2.18) is sharply bounded to the right

of

σe(L+) ∪ σe(L−), (2.20)

where L± correspond to the operators obtained by linearizing about the constant solutions û = u±,

respectively.

We linearize (2.3) about the constant solutions u± to get the linear PDE

λv = Lv := −A±vx + B±vxx − C±vxxx, (2.21)

where A± := df(u±), B± := B(u±), C± := C(u±).

Since constant coefficient linear operators have no point spectrum, we note σ(L±) = σe(L±).

We determine σe(L±) using the Fourier transfrom.

Note that

(L̂− λI)−1v = (−iξA± − ξ2B± + iξ3C± − λI)−1v, ξ ∈ R. (2.22)

We see L− λI is not invertible when −iξA± − ξ2B± + iξ3C± − λI is singular. Thus

λ ∈ σ(L±) iff λ ∈ σ(−iξA± − ξ2B± + iξ3C±), (2.23)

for some ξ ∈ R. This defines 2n-curves λ±j (ξ) corresponding to the eigenvalues of the right-hand

side. Hence

σe(L+) ∪ σe(L−) =
⋃

j

λ+
j (ξ) ∪

⋃

j

λ−j (ξ). (2.24)

In summary, sharp bounds on the essential spectrum of L are determined by the structure of

A±, B±, C±. This allows us to explicitly compute σe(L) and see if it intersects Σ+; see A.4 for an

8



example of computing the essential spectrum for Burgers equation.

2.3.2 Point Spectrum. Energy estimates provide a historically successful method for finding

bounds on the point spectrum of the linearized operator by leveraging the structure of the system.

However, finding uniform bounds excluding the imaginary axis while allowing zero is difficult if

not impossible. This difficulty can be remedied by transforming (2.18) to integrated coordinates.

We set

ṽ(x) =
∫ x

−∞
v(z)dz, (2.25)

substitute into (2.18), and integrate to obtain,

λṽ = Lṽ := −A(û)v̂′ + B(û)ṽ′′ − C(û)ṽ′′′. (2.26)

Lemma 2.9. The operator L in (2.18) and L in (2.26) have the same point spectrum with the

exception of λ = 0.

Proof. Suppose that λ '= 0 and Lv = λv. We substitute ṽ′ for v into (2.18) and integrate to obtain

(2.26). We note that ṽ and its derivatives decay to zero at ±∞,

λṽ(+∞) = λ

∫ ∞

−∞
v =

∫ ∞

−∞
−(A(û)v)x + (B(û)vx)x − (C(û)vxx)x = 0,

yielding the needed boundary conditions so σp(L)\{0} ⊂ σp(L). Now suppose Lṽ = λṽ with

ṽ(n)(±∞) = 0, n ≥ 0. We set v = ṽ′ so that ṽ(x) =
∫ x
−∞ v(z)dz and substitute v = ṽ′ into (2.26)

to obtain

λ

∫ x

−∞
v(z)dz = −A(û)v + B(û)v′ − C(û)v′′. (2.27)

Differentiating (2.27) yields (2.18) and thus σp(L) ⊂ σp(L).

Remark. We note that when u− '= u+ that w(x) =
∫ x
−∞ û′(z)dz = û(x) − û(−∞) is not an

eigenvector of L associated with λ = 0 since w(+∞) '= 0.

We give examples of energy estimates in sections 5.2 and A.3 and examples of using integrated

coordinates in our model systems in chapters 4 and 5 and in section A.6.
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2.4 Evans function

Energy estimates often give only a bound on where unstable spectra may exist. The Evans function

is an analytic function that can be used to study stability in a bounded region using the argument

principle. Furthermore, the Evans function gives structural information about the system; see [24].

We write the eigenvalue problem (2.18) or (2.26), (L− λ)v = 0, as a first order system,

W ′ = A(x, λ)W. (2.28)

We note that limx→±∞A(x, λ) = A±(λ), where A is analytic in λ. We assume that the dimension

k of the unstable subspace U− of A− and the stable subspace S+ of A+ sum to n, the dimension

of the entire phase space. We then initialize (2.28) at −∞ with k vectors spanning U− and with

n − k vectors spanning S+ at +∞ and solve both toward x = 0. This yields analytic basis

W−
1 , W−

2 , ...,W−
k and W+

k+1, W
+
k+2, ...,W

+
n spanning the manifolds W∓ of solutions of (2.28) that

decay as x → −∞ and x → +∞ respectively. We then define the Evans function as

D(λ) := det(W−
1 · · ·W−

k W+
k+1 · · ·W

+
n )|x=0. (2.29)

Hence, a zero of the Evans function corresponds to the manifolds W− and W+ intersecting signi-

fying an eigenfunction exists.

Remark. The eigenvalues of the linear operator L correspond in both multiplicity and location to

the zeros of D(λ) analogous to the characteristic polynomial of a finite dimensional operator.

Although we can solve analytically the Evans function for a few relatively simple systems, for

example Burger’s (see A.5 and A.6), most systems are too complicated to solve the Evans function

analytically and hence require numerical computation.

If dim(k) > dim(n/2) it is often advantageous to use the adjoint formulation of the Evans

function; see [6]. Instead of finding the k dimensional unstable space of W ′ = A(x, λ)W at −∞,
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we find the n− k dimensional unstable subspace of W̃ ′ = −A(x, λ)∗W̃ at x = −∞. Then since

(W̃ ∗
i (x)Wj(x))′ = W̃ ∗

i (x)W ′
j(x) + (W̃ ∗

i )′(x)Wj(x)

= W̃ ∗
i (x)A(x, λ)Wj − (A(x, λ)∗W̃i(x))∗Wj(x)

= W̃ ∗
i (x)A(x, λ)Wj − W̃ ∗

i (x)A(x, λ)Wj(x)

= 0,

(2.30)

we have that W̃ ∗
i (x)Wj(x) ≡ constant. We note that W̃ ∗

i (−∞)Wj(−∞) = 0 since W̃ ∗
i is a left

eigenvector of A(−∞, λ) corresponding to a different eigenvalue than that of the right eigenvector

Wj(−∞). Thus W̃i and Wj are orthogonal so that the original manifolds W− and W+ intersect

when W̃− is orthogonal to W+. We then define the Evan function to be

D(λ) := det(W̃ ∗
− ·W+).

We may similarly define the Evans function using the adjoint at +∞.
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Chapter 3. Numerical Evans function computation

In this chapter we discuss numerical implementation of the theory introduced in Chapter 2. We

begin by showing how to numerically compute profiles. We then discuss various methods for

overcoming the challenge of solving stiff ordinary differential equations associated with the Evans

function. Finally we discuss root finding for the Evans function and computational issues.

3.1 Boundary value problem

Consider the wave profile ODE

y′ = f(y), (3.1)

with stationary points u±, f(u±) = 0, and where y = (y1, y2, ..., yn) ∈ Rn. Our boundary value

problem (BVP) consists of (3.1) together with appropriate boundary conditions, suppose

Π−s y(−∞) = 0, Π+
u y(+∞) = 0,

and a single phase condition, l ·y(0) = α. Here Π−s projects onto the stable subspace of df(u−) and

Π+
u projects onto the unstable subspace of df(u+). Our projective boundary conditions force the

BVP solver to approach the desired end states orthogonal to the undesired manifold. Because of

translational invariance, (3.1) together with projective conditions does not have a unique solution.

Hence, we break the domain in half and solve

y′(x) = f(y(x))

z′(x) = −f(z(x))
(3.2)

on [0,∞) subject to y(0) = z(0) and y1(0) = constant, and projective boundary conditions. We

give an example of solving a boundary value problem using these methods in A.2 and in the

examples below.

We note that solving the profile equation may be quite challenging. Sometimes dummy variables
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must be introduced to obtain the correct dimensionality or to solve for wave speed. As parameters

vary, solutions often become difficult to obtain and so continuation, stepping through parameter

space with previous solutions as the initial guess in the boundary value solver, must be used. Even

correctly employing boundary conditions can be tricky.

Example 3.1. The p-system with real viscosity is given in Lagrangian coordinates by

vt − ux = 0

ut + p(v)x =
(ux

v

)

x

(3.3)

where v is the specific volume, u is the velocity, and p(v) is the pressure law which we assume to

be adiabatic satisfying p(v) = a0v−γ , a0 > 0 and γ ≥ 1. The profile equation for a rescaled version

of the p-system, which we derive in 4.3, is given by

v′ = v(v − 1 + a(v−γ − 1)), (3.4)

where a = vγ
+

1−v+
1−vγ

+
subject to boundary conditions v− = 1, 0 < v(+∞) = v+ < 1 and v′(±∞) = 0;

see [3] for details. As described above, we break the domain in half doubling the size of the system,

v′ = v(v − 1 + a(v−γ − 1)),

z′ = −z(z − 1 + a(z−γ − 1)).
(3.5)

One boundary condition, v(0) = z(0), connects the two solutions associated with the negative and

positive domains. The other boundary condition, v(0) = (v−+v+)/2, fixes a point on the manifold

of solutions associated with translational invariance. We use MATLAB’s bvp4c solver, which uses

collocation, to solve the boundary value problem using the tanh function in the initial guess. This

yields the profile given in Figure 3.1.

Example 3.2. The p-system with capillarity in Lagrangian coordinates is given by,

vt − ux = 0,

ut + p(v)x =
(ux

v

)

x
− dvxxx,

(3.6)
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Figure 3.1: Profile for the p-system

where v represents specific volume, u is velocity, p(v) is the pressure law for an ideal gas, and d ≥ 0

represents capillarity strength. We consider an adiabatic gas law, p(v) = v−γ .

After some preliminary rescalings and integration, the profile equation, derived in 4.4, is given

by,

v − v− + a(v−γ − v−γ
− ) =

v′

v
− dv′′ (3.7)

where

a = − v+ − v−

v−γ
+ − v−γ

−
, (3.8)

and v− = 1 and 0 < v+ < 1; see [23] for details. We write 3.7 as a first order system setting y1 = v

and y2 = v′,

y1 = y2,

y2 =
−1
d

(y1 − 1 + a(y−γ
1 − 1)− y2

y1
.

(3.9)

Splitting the domain in half and doubling the dimension of the system, we have

y1 = y2,

y2 =
−1
d

(y1 − 1 + a(y−γ
1 − 1)− y2

y1
,

y3 = −y4,

y4 =
1
d
(y3 − 1 + a(y−γ

3 − 1) +
y4

y3
,

(3.10)
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where at x = +∞ we have y1 = v+, y2 = 0, y3 = v−, and y4 = 0. We take for boundary conditions

in our solver the two matching conditions y1(0) = y3(0) and y2(0) = y4(0), the phase condition

y1(0) = (1+v+)/2 fixing a unique solution on the manifold of solutions associated with translational

invariance, and we take L · ([y1 y2 y3 y4]T − [v+ v′+ v− v′−]T ) = L · ([y1 y2 y3 y4]T − [v+ 0 1 0]T ) = 0

where L is a basis for the unstable space at x = +∞ causing the boundary solver to approach the

ends states orthogonal to the growth manifold. We modify the tanh function to obtain our initial

guess and solve using bvp5c, one of MATLAB’s collocation boundary value solvers, to obtain the

profiles in Figure 3.2.
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Figure 3.2: The profile equation for the p-system with capillarity. As capillarity strength increases,
the profile becomes highly oscillatory.

3.2 The compound matrix method

In this section we consider numerical implementation of the Evans function discussed in section

2.4. We see how stiff ODE problems arise and how the compound matrix method overcomes this

difficulty; see [9] for details.

Consider the linear system

W ′ = A(x, λ)W (3.11)

with boundary conditions W (±∞) = 0, W ∈ Cn, λ ∈ C (fixed), ′ = d
dx . We seek non-

trivial solutions to the BVP. Let {rj}k
j=1 and {rj}n

j=k+1 be the generalized right eigenvectors of
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A−(λ) = limx→−∞A(x, λ) and A+(λ) = limx→∞A(x, λ) respectively, with corresponding eigen-

values {µ−j }k
j=1 and {µ+

j }n
j=k+1 where Re(µ−j ) > 0 and Re(µ+

j ) < 0. That is, {u−j }k
j=1 are the

growth modes at x = −∞ and {µ+
j }n

j=k+1 are the decay modes at x = ∞. Then the unstable

manifold U−(x) of x = −∞ is given by U−(x) = W−
1 (x) ∧ ... ∧W−

k (x) where Wj satisfies






W−
j
′ = A(x, λ)W−

j

W−
j (x) ∼ eµ−j xr−j x . 0, j = 1, ..., k

(3.12)

and the stable manifold S+(x) of x = +∞ is given by S+(x) = W+
k+1(x) ∧ ... ∧W+

n (x) where W+
j

satisfies 




W+
j
′ = A(x, λ)W+

j

W+
j (x) ∼ eµ+

j xr+
j x / 0, j = k + 1, ..., n.

(3.13)

Then a non-trivial solution exists when the unstable and stable manifolds intersect, that is when

the quantity

U−(x) ∧ S+(x) ∼= det[W−
1 W−

2 ...W−
k W+

k+1...W
+
n ] = 0;

see appendix B for a discussion of exterior products. If the eigenvectors {r−j }k
j=1 and {r+

j }n
j=k+1

vary analytically in λ, then we define the Evans function to be

D(λ) = U−(x, λ) ∧ S+(x, λ)|x=0

∼= det[W−
1 W−

2 ...W−
k W+

k+1...W
+
n ]|x=0.

(3.14)

Numerically, the Evans function is difficult to compute. As an example, suppose n = 4, k = 2.

We have eigenpairs (µ−1 , r−1 ), (µ−2 , r−2 ), (µ+
3 , r+

3 ), (µ+
4 , r+

4 ). Assume Re(µ−1 ) > Re(µ−2 ) > 0 and

Re(µ+
3 ) < Re(µ+

4 ) < 0. The numerical problem is that it is hard to resolve multi-mode growth

and decay because any round-off error (or numerical error) favors the largest growth/decay mode;

see Figure 3.3. Hence in the long run, W−
2 (x) becomes aW−

1 (x) + bW−
2 (x).

This causes either bad data, or slow computation. The compound-matrix method overcomes

this difficulty. We lift the problem from Cn to ∧k(Cn) (wedge product space). Note that

∧k(Cn) ∼= C(n
k).
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Slow Eigendirection

Fast Eigendirection

Figure 3.3: Numerical instability due to growth in the fast eigendirection

Example. Consider the n = 4, k = 2 case. Let {e1, ..., e4} be the standard basis for C4. Then

∧2(C4) has the basis (e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e4, e3 ∧ e4). Then we lift A(x, λ) into ∧2(C4) by

defining A(2) ◦ ei ∧ ej = (Aei) ∧ ej + ei ∧ (Aej). Thus if

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





, (3.15)

then

A(2) =





a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44





. (3.16)

The numerical advantage in our new system A(2) is that a single trajectory corresponds to our

manifold of A.

Lemma 3.3. If {µi, ri}n
i=1 are eigenpairs for A, then

∑k
i=1 µσ(i) is an eigenvalue of A(k), where

σ ∈ Sn, with corresponding eigenvector rσ(1) ∧ rσ(2) ∧ ... ∧ rσ(k).
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Proof.

A(k) ◦ rσ(1) ∧ rσ(2) ∧ ... ∧ rσ(k) = Arσ(1) ∧ rσ(2) ∧ ... ∧ rσ(k)

+ rσ(1) ∧Arσ(2) ∧ ... ∧ rσ(k)

+ rσ(1) ∧ rσ(2) ∧ ... ∧Arσ(k)

= [µσ(1) + ... + µσ(k)]rσ(1) ∧ rσ(2) ∧ ... ∧ rσ(k).

(3.17)

Corollary 3.4. If {µi}k
i=1 are the largest eigenvalues of A, then

∑k
i=1 µi is the largest eigenvalue

of A(k).

Proof. All eigenvalues of A(k) are of the form
∑k

i=1 µσ(i). Thus the k largest of A form the largest

eigenvalue of A(k).

It has been demonstrated that the following numerical technique yields good stability. We

begin with

W ′ = A(k)(x, λ)W W ∈ Cn ch k

W (−L) = eµ−Lr−.
(3.18)

Let W = eµ−xv(x). Then W ′ = µ−eµ−xv(x) + eµ−xv′(x). Hence µ−eµ−xv(x) + eµ−xv′(x) =

A(k)(x, λ)eµ−xv(x). The new ODE becomes






v′(x) = (A(k)(x, λ)− µ−)v(x)

v(−L) = r−.
(3.19)

3.3 The polar coordinates method

The compound matrix method provides an elegant way to overcome the inherent difficulty of

solving a stiff system. However, the dimension of the lifted problem grows as
(n

k

)
which becomes

large quickly, e.g.
(10

5

)
= 252 and

(20
10

)
= 184, 756. Several orthogonalization methods have been

developed to solve stiff Evans function problems maintaining the original dimension of the system.

However, these methods lose the important property of analyticity that allows implementation of
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the argument principle. A continuous orthogonalization method for Evans function computation

was given in [28] and demonstrated successfully in [3, 24, 23, 4], to name a few. We describe

this method of continuous orthogonalization, also known as the polar coordinate method, a.k.a.

analytic orthogonalization.

Lemma 3.5. If {q−1 , q−2 , ..., q−k } is an orthonormal set spanning {w−1 , w−2 , ..., w−k } then there exists

a k × k matrix α− such that

W− = [w−1 , w−2 , ..., w−k ]n×k = [q−1 , q−2 , ..., q−k ]α− = Q−α−. (3.20)

Moreover,

w−1 ∧ w−2 ∧ ... ∧ w−k = (detα−)q−1 ∧ q−2 ∧ ... ∧ q−k . (3.21)

Proof. Since {q−i } spans {w−i }, w−j = Q−x for some coefficient vector x. Define the jth column of

α− to be x. Then W− = Q−α−.

Now w−i =
∑k

p=1 α−p,iq
−
p which for ease of notation we denote

∑k
pi=1 αpiqpi . Then

w−1 ∧ w−2 ∧ ... ∧ w−k =

(
k∑

p1=1

αp1qp1

)
∧

(
k∑

p2

αp2qp2

)
∧ ... ∧

(
k∑

pk=1

αpkqpk

)

=
k∑

p1=1

k∑

p2=1

...
k∑

pk=1

(αp1αp2 ...αpk)qp1 ∧ qp2 ∧ ... ∧ qpk

=
∑

(j1,j2,...,jk)∈P

(αj1αj2 ...αjk)qj1 ∧ qj2 ∧ ... ∧ qjk ,

(3.22)

where P is the set of all permutations of (1, 2, ..., k), e.g. (j1, j2, ..., jk) = (2, 3, ..., k, 1) ∈ P . Let

|(j1, j2, ..., jk)| denote the sign of the permutation, that is |(j1, j2, ..., jk)| = 1 if (j1, j2, ..., jk) can

be written as an even number of permutations, and |(j1, j2, ..., jk)| = −1 otherwise. Then by the

alternating property of wedge products we have,

X

(j1,j2,...,jk)∈P

(αj1αj2 ...αjk )qj1 ∧ qj2 ∧ ... ∧ qjk =
X

(j1,j2,...,jk)∈P

|(j1, j2, ..., jk)|(αj1αj2 ...αjk )q1 ∧ q2 ∧ ... ∧ qk

= det(α)q1 ∧ q2 ∧ ... ∧ qk.
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Note that W− ∧W+ = (detα−)(detα+)Q− ∧Q+. Then we define the Evans function,

D(λ) = det(W−|W+) = (det α−)(detα+) det(Q−|Q+). (3.23)

Consider continuous orthogonalization. Let W−(x) = Q−(x)α−(x). Then suppressing the bar

notation we have,

W ′(x) = Q′(x)α(x) + Q(x)α′(x).

Hence,

Q′(x)α(x) + Q(x)α′(x) = A(x, λ)Q(x)α(x)

⇒ Q′(x)α(x) = A(x, λ)Q(x)α(x)−Q(x)α′(x)

⇒ Q′(x) = A(x, λ)Q(x)−Q(x)B(x),

(3.24)

where B(x) = α′(x)α−1(x). Note that α is invertible since otherwise {wi} would be linearly

dependent for some value of x signifying two unique solutions in phase space share a common

point.

Hence we seek to solve,






Q′(x) = A(x, λ)Q(x)−Q(x)B(x)

α′(x) = Bα.
(3.25)

Recall that QHQ = Ik×k. Thus

(QHQ)′ = (QH)′Q + QHQ′ = I ′ = 0. (3.26)
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substituting for Q′, we have

0 = (QHQ)′

= (QHAH −BHQH)Q + QH(AQ−QB)

= QHAHQ−BHQHQ + QHAQ−QHQB

= QH(AH + A)Q−BH −B.

(3.27)

Theorem 3.6. If (3.25) has orthogonal initial data, QH
0 Q0 = Ik×k, then (3.27) is a necessary

and sufficient condition for orthogonality.

Proof. We have shown that (3.27) is a necessary condition for orthogonality. Since (QHQ)′ = 0,

then QHQ ≡ constant so that if QH
0 Q0 = Ik×k, then QHQ = Ik×k.

There are various continuous orthogonalization methods. For example, Drury’s method makes

the choice B = QHAQ and Davey’s method sets B = (QHQ)−1QHAQ. Recently, Zumbrun

showed that Drury’s method is stable in the context of Evans function computation [44], and in

[28], Drury out performed other methods, such as Davey’s. Another stable method for continuous

orthogonalization is given by Dieci, Russell, and Vleck; see [15].

3.4 Method of Kato

If we initialize the first order system, W ′ = A(x, λ)W given in (2.28) with analytically varying

initial conditions, then D(λ) will be analytic allowing us to use the argument principle to deter-

mine the presence of unstable spectra. We obtain an analytically varying initializing basis using

eigenprojections of A(x, λ) and a standard result due to Kato.

Let P± be the eigenprojection of A± := limx→±∞A(x, λ) onto its stable/unstable subspace

respectively. Assume A is consistently split, that is, that the dimension of the stable subspace and

the dimension of the unstable subspace of A± are constant and sum to n, the dimension of A, for

all λ ∈ Ω where Ω is some region of interest. Then the projectors P± are analtyic by standard

matrix perturbation theory [30].

Proposition 3.7. (Kato) [30] Let P (λ) be an analytically varying projection on a simply connected
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domain Ω ⊂ C. Then, the linear analtic ODE

r′j = P ′rj ; rj(λ0) = r0
j (3.28)

defines a global analytically varying basis {rj(λ)} of the associated invariant subspace Range P (λ)

where “ ’ ”denotes d/dλ. In particular if R(λ) = [r1(λ) r2(λ) ...rk(λ)] satisfies (3.28) where the

initial condition R0 = R(λ0) is full rank (its columns form a basis for the desired unstable/stable

subspace) and where P0R0 = R0, then

(i) rank(R) ≡ rank(R0)

(ii) PR ≡ R, and

(iii) PR′ ≡ 0.

Proof. Note that (3.28) is a linear ODE with analytic coefficients, and thus has an analytic solution

in a neighborhood of λ0. By the principle of analytic continuation, there is a global analytic solution

to (3.28) on any simple connected domain containing λ0; see [30, 27, 45]. We also get property (i)

since (3.28) is a linear ODE; see [45, 27, 30]. Before proving properties (ii) and (iii) we note that

PP ′P = 0 since P ′ = (P 2)′ = P ′P + PP ′ whereupon left multiplication by P yields PP ′P = 0.

Now note that

(PR−R)′ = P ′R + PR′ −R′

= P ′R + (P − I)R′

= P ′R + (P − I)P ′R

= PP ′R,

(3.29)

so that (PR − R)′ = −PP ′(PR − R). Initializing this last ODE with P (λ0)R0 − R0 = 0 and

employing uniqueness of solutions of ODEs, we have PR = R. For (iii) note that PR′ = PP ′R

and apply R = PR to get PR′ = PP ′PR = 0.

We note that together conditions (i) and (ii) give us that R(λ) is a basis of the desired subspace

and condition (iii) suggests that this basis is in some sense optimal since its variation on the desired

manifold is minimal.
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3.4.1 Application. Using a forward difference scheme to approximate 3.28, we have

Rj+1 −Rj

λj+1 − λj
=

Pj+1 − Pj

λj+1 − λj
Rj (3.30)

so that Rj+1 = Rj + Pj+1Rj − PjRj = Pj+1Rj since PjRj = Rj .

For a second-order scheme we use the approximations,

Rj+1 −Rj

λj+1 − λj
≈ P ′j+1/2Rj+1/2,

Rj+1/2 ≈ Pj+1/2Rj ,

Pj+1/2 ≈
1
2
(Pj+1 + Pj),

P ′j+1/2 =
Pj+1 − Pj

λj+1 − λj
,

to get the scheme

Rj+1 = Rj + (λj+1 − λj)P ′j+1/2Rj+1/2

= Rj + (λj+1 − λj)
Pj+1 − Pj

λj+1 − λj
Rj+1/2

= Rj + (Pj+1 − Pj)Pj+1/2Rj

= Rj +
1
2
(Pj+1 − Pj)(Pj+1 + Pj)Rj .

(3.31)

To insure Rj+1 is in the range of Pj+1 we multiply the scheme by Pj+1 to obtain

Rj+1 = Pj+1Rj +
1
2
Pj+1(Pj+1 − Pj)(Pj+1 + Pj)Rj , (3.32)

which simplifies to

Rj+1 = Pj+1[I + (1/2)Pj(I − Pj+1)]Rj . (3.33)

For details see [45].
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3.5 Winding number and root finding

In this section we discuss a new method, inspired by [12], for finding the roots of the Evans function

in the case of instability. Computing the Evans function is costly making traditional root solving

techniques, like Newton’s method, undesirable since new Evans function calls are required at each

iterative step. The method of moments only uses the information given by the already evaluated

contour to evaluate roots.

3.5.1 Derivation of Moments. Let f be analytic inside and on a simple closed positively

oriented contour Γ and let f be nonzero on Γ. Suppose z1, · · · , zn are the n distinct roots of

f inside Γ with respective multiplicities m1, m2, ...,mn and c '= zk ∀k is a constant. Then for

p = 0, 1, 2, ...

Mp(c) =
1

2πi

∮

Γ

(z − c)pf ′(z)
f(z)

dz =
n∑

k=1

mk(zk − c)p (3.34)

where mk is the multiplicity of zk. Note that Mp(c) is the pth moment of f about c.

Proof. The proof follows from an easy extension of the argument principle [40]. Let zk be a zero

of f inside of Γ. Since f is analytic at zk, we have

f(z) = h(z)(z − zk)mk (3.35)

where h(z) is analytic at zk and h(zk) '= 0 . Then f ′(z) = h′(z)(z − zk)mk + mkh(z)(z − zk)mk−1

and

g(z) =
(z − c)pf ′(z)

f(z)
=

(z − c)ph′(z)
h(z)

+
(z − c)pmk

z − zk
. (3.36)

Since h(z) is analytic at zk, the residue of g(z) at zk is mk(zk − c)p. Then by Cauchy’s Residue

Theorem, ∮

Γ

(z − c)pf ′(z)
f(z)

dz = 2πi
n∑

k=1

mk(zk − c)p. (3.37)

Note that M0(0) gives the number of zeros of f(z) inside of Γ, and that M1(0)/M0(0) and

M2(µ)/M0(0) respectively give their center of mass and variance.
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3.5.2 Using the Moments to Find Roots. Let Km be the mth order elementary symmetric

polynomial in the roots {zk}n
k=1 of f inside Γ. Then

p(z) = (z − z1)(z − z2) · · · (z − zn) (3.38)

= zn −K1z
n−1 + K2z

n−2 + · · ·+ (−1)nKn.

We determine Km using the moments described in the previous section. For example, consider the

case when f has two roots inside of Γ,

M0(0) = 2 (3.39)

M1(0) = z1 + z2

M2(0) = z2
1 + z2

2 .

Since

M1(0)2 = z2
1 + 2z1z2 + z2

2

= M2(0) + 2z1z2

we find

K1 = M1(0) (3.40)

K2 =
1
2
(
M1(0)2 −M2(0)

)
.

Now (z − z1)(z − z2) = z2 −K1z + K2, so z1 and z2 are given by z1,2 = 1
2 (K1 ±

√
K2

1 − 4K2).

We note that this method is limited since there is no general closed solution to polynomials

of degree greater than four, and since small perturbations in polynomial coefficients can lead to

significantly different roots.
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3.5.3 Computing M0(0). If f is analytic and nonzero on the contour C and W = f(C) does

not pass through the branch cut of the log function, then

∫

C

f ′(z)
f(z)

dz = log(f(z1))− log(f(z0)), (3.41)

where z0 is the beginning point of C and z1 is the end point. Now log(z) = Log|z|+ iArg(z)+ i2kπ

where Log is the natural logarithmic function of real variables and Arg is the principal argument

of z. Then ∫

C

f ′(z)
f(z)

dz

is just the change in the angle between f(z0) and f(z1) where the angle jumps by 2π when it

crosses the branch cut of log.

3.5.4 A Quadrature Method for Mp(0). We use Simpson integration with Lagrange inter-

polation to approximate ∮

Γ
(z − c)p f ′(z)

f(z)
dz

using a centered difference approximation for f ′(z).

Then,

∫ zi+2

zi

g(z)dz =
∫ zi+2

zi

(z − c)p f ′(z)
f(z)

dz

≈
∫ zi+2

zi

(z − zi+1)(z − zi+2)
(zi − zi+1)(zi − zi+2)

g(zi)dz +
∫ zi+2

zi

(z − zi)(z − zi+2)
(zi+1 − zi)(zi+1 − zi+2)

g(zi+1)dz

+
∫ zi+2

zi

(z − zi)(z − zi+1)
(zi+2 − zi)(zi+2 − zi+1)

g(zi+2)dz.

(3.42)

Let

a =
g(zi)

(zi − zi+1)(zi − zi+2)
,

b =
g(zi+1)

(zi+1 − zi)(zi+1 − zi+2)
,

c =
g(zi+2)

(zi+2 − zi)(zi+2 − zi+1)
.

(3.43)
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We have

∫ zi+2

zi

g(z)dz ≈
∫ zi+2

zi

a(z − zi+1)(z − zi+2) + b(z − zi)(z − zi+2) + c(z − zi)(z − zi+1)dz

=
z3
i+2 − z3

i

3
(a + b + c)−

z2
i+2 − z2

i

2
(
a(zi+1 + zi+2) + b(zi + zi+2) + c(zi + zi+1)

)

+ (zi+2 − zi)
(
azi+1zi+2 + bzizi+2 + czizi+1

)
.

(3.44)

3.5.5 Apllication. The gKdV equation, discussed in more detail in section 4.2, is given by

ut + uxxx + (1/p)(up)x = 0, p ≥ 2, p ∈ N. (3.45)

This system is known to undergo transition from stability to instability when p = 5; see [39, 38]

for details. In Table 3.1 we show how the root given by the method of moments convergences to

that given by Müller’s method for the gKdV system with p = 6. We use Simpson integration with

quadratic Lagrange interpolation to evaluate the relevant integral.

Mesh Points 8 18 28 38 48 58 68 78
Abs Difference 1.11 3.08(-1) 1.74(-1) 9.30(-2) 5.98(-2) 5.43(-2) 3.78(-2) 2.31(-2)

Table 3.1: Absolute value of the difference between the root given by the method of moments and
Müller’s method for the gKdV sysem with p = 6.

3.6 Multi-core processing

Numerical Evans function computations are costly since each function evaluation requires solving

an ODE to find an analytic basis. However, finding a basis for a point on the contour requires no

information about the other points, hence is embarrassingly parallel. We use Matlab’s new parallel

processing toolbox to compute the Evans function on eight cores resulting in a dramatic increase

in computation on the parallelized part.
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3.7 STABLAB

The Evans function has proven to be an excellent tool for studying shock wave stability in parameter

regimes that evade analytical proof, but also as a way of verifying or giving direction to analytical

results. Given a new system, we would like to be able to start computing the wave profile and the

Evans function within an hour. We would also like the flexibility to provide analytic components

to the computation when they are available. To accomplish this goal, we developed STABLAB,

an interactive MATLAB-based stability package.

In STABLAB, we provide options for computing the Evans function using either the compound

matrix method or the polar method. The adjoint formulation of the Evans function is also available

as well as a subroutine for finding an analytic basis using the method of Kato. Functions aiding

profile computation deal with the issue of translational invariance, and machinery is in place for

winding number calculations and root solving. Parallel computing is also available. See appendix

C for STABLAB documentation.

We use STABLAB to study the model systems given in chapter 4 and note that it is succesfully

used in [3, 24, 23, 26, 14, 25].
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Chapter 4. Example Systems

In this chapter we apply the theory and methods introduced in chapters 2 and 3 to several model

systems; we verify shock layer stability for Burgers equation and the p-system with and without

capillarity. We also verify instability in gKdV.

4.1 Burgers

Consider Burgers equation,

ut + uux = νuxx (4.1)

where the constant ν > 0 represents viscosity (by rescaling we may assume ν = 1) and x and t

represent space and time respectively; see [8] for details. Assume that

u(x, t) = û(x− st) (4.2)

where s is wave speed. This substitution reduces the problem to one variable with a moving frame

of reference. The solution to this ODE is the wave profile and is stationary because our frame of

reference moves along at the same speed as the wave.

We assume asymptotically constant boundary conditions û(±∞) = u± where u− > u+.

Transferring û into (4.1) we obtain

− sû′ + ûû′ = νû′′. (4.3)

Integrating yields

− s

∫ x

−∞
û′ +

∫ x

−∞
ûû′ = ν

∫ x

−∞
û′′, (4.4)

which becomes

− s(û− u−) +
1
2
(û2 − u2

−) = νû′. (4.5)

Note that as x approaches ±∞, û′ → 0 and û → u± so that
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− s(u+ − u−) +
1
2
(u2

+ − u2
−) = 0. (4.6)

Equation (4.6) is the Rankine-Hugoniot condition which states that s multiplied by the jump

in u denoted [u] := u− − u+ equals the jump in 1
2u2 denoted [ 12u2]. We simplify (4.6) to get

s =
u+ + u−

2
. (4.7)

Now returning to equation (4.5) and solving for û′ we obtain

û′ =
1
2ν

(û− u−)(û− u+). (4.8)

The solution is,

û(x) = s− a tanh
(

a(x− st + δ)
2ν

)
, (4.9)

where a = 1
2 (u− − u+).

4.1.1 Evans Function. We first find the eigenvalue problem by changing (4.1) to a scaled

moving frame of reference, (x, t) → (x−st+δ
v , t

v ), and find steady-state solutions to the equation

ut − sux + uux = uxx. (4.10)

Linearizing about the steady-state solution û in (4.10) gives

ut − sux + ûux + ûxu = uxx. (4.11)

This yields the eigenvalue problem

λu− su′ + ûu′ + û′u = u′′. (4.12)
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Figure 4.1: Burgers equation Evans function output for a semi-circular contour of radius 10 using
60 mesh points. Numerical infinity is set to x = 12. We have (left) u− = 10 and u+ = 2 and
(right) u− = 4 and u+ = 2.

We write the eigenvalue problem (4.12) as a first order system,

W ′ = A(x, λ)W, (4.13)

that is, 


u

u′





′

=




0 1

λ + û′ û− s








u

u′



 . (4.14)

We use STABLAB to evaluate the Evans function. This yields the output shown in Figure 4.1.

Note that the contour goes through λ = 0 since this is an eigenvalue of (4.12) with corresponding

eigenfunction û′. In A.6 we consider the integrated coordinates case. Excluding the origin yields

winding number zero consistent with stability.

4.2 gKdV

Consider the generalized Korteweg-de Vries equation (gKdV), see [39, 38] for details,

ut + uxxx + (1/p)(up)x = 0, p ≥ 2, p ∈ N. (4.15)
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We look for a traveling pulse solution of the form,

û(x) = u(x− st, t), û(n)(±∞) = 0, n = 0, 1, 2... (4.16)

Equivalently we translate (x, t) → (x− st, t) and look for stationary solutions of

ut − sux + uxxx + (up/p)x = 0. (4.17)

We may scale out s under the transformation (u, x, t) → (s1/(p−1)u, s1/2x, s3/2t) to get

ut − ux + uxxx + (up/p)x = 0. (4.18)

Under the new rescaling, the profile ODE becomes

u′′′ − u′ + (up/p)′ = 0. (4.19)

Integrating twice and using separation of variables results in the solution,

û(x) =
(

p(p + 1)
2

)1/(p−1)

sech((1− p)x/2 + δ)2/(p−1), (4.20)

where δ ∈ R is some translate. The linearized eigenvalue problem is

λu− u′ + u′′′ + (ûp−1u)′ = 0. (4.21)

Translating to integrated coordinates (u → u′) we have

λu− u′ + u′′′ + ûp−1u′ = 0. (4.22)
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We write (4.22) as a first order system,





u

u′

u′′





′

=





0 1 0

0 0 1

−λ 1− ûp−1 0









u

u′

u′′




. (4.23)

Our first order system has a two dimensional growth manifold at x = −∞ and a one dimensional

decay manifold at x = +∞. Hence, we use the adjoint formulation of the Evans function at x = −∞

as described in section 2.4. The output in Figure 4.2 has winding number one indicating that the

gKdV system is not spectrally stable, which holds anytime p > 5; see [39, 38]. We use the winding

number and root finding methods discussed in section 3.5 on this system. Table 3.1 demonstrates

the effectiveness of the method of moments for finding the root of the Evans function.
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!"!&
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Figure 4.2: Evans function output for the generalized Korteweg-de Vries equation with p = 7.

4.3 p-system

We consider the p-system with real viscosity, also known as the one dimensional isentropic com-

pressible Navier-Stokes equations, in Lagrangian coordinates,

vt − ux = 0

ut + p(v)x =
(ux

v

)

x
,

(4.24)
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where v is the specific volume, u is the velocity, and p(v) is the pressure law which we assume to

be adiabatic satisfying p(v) = a0v−γ , a0 > 0 and γ ≥ 1.

We seek traveling wave solutions to (4.24) with end states (v±, u±), v− > v+ > 0, by translating

(x, t) → (x− st, t) and considering stationary solutions of

vt − svx − ux = 0

ut − sux + (a0v
−γ)x =

(ux

v

)

x
.

(4.25)

Rescaling by (x, t, v, u) → (−εsx, εs2t, v/ε,−u/(εs)), where ε = v− yields

vt + vx − ux = 0,

u′ + (av−γ)′ =
(ux

v

)

x
,

(4.26)

where a = a0ε−γ−1s−2.

The profile equation thus satisfies,

v′ − u′ = 0

u′ + (av−γ)′ =
(

u′

v

)′
,

(4.27)

with boundary conditions (v(±∞), u(±∞)) = (v±, u±). Simplifying gives

v′ + (av−γ)′ =
(

v′

v

)′
. (4.28)

Integrating from −∞ to x yields the profile equation

v′ = v(v − 1 + a(v−γ − 1)). (4.29)

Setting x = +∞ we find

a = − v+ − 1
v−γ
+ − 1

= vγ
+

1− v+

1− vγ
+

. (4.30)
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We linearize (4.26) about the profile (v̂, û) to find the eigenvalue problem,

λv + v′ − u′ = 0,

λu + u′ −
(

h(v̂)
v̂γ+1

v

)′
=

(
u′

v̂

)′
,

(4.31)

where h(v̂) = −v̂γ+1 + a(γ − 1) + (a + 1)v̂γ .

Changing to integrated coordinates, (u, v) → (u′, v′) we have

λv + v′ − u′ = 0,

λu + u′ − h(v̂)
v̂γ+1

v′ =
u′′

v̂
.

(4.32)

Writing (4.32) as a first order system yields,

A(x, λ) =





0 λ 1

0 0 1

λv̂ λv̂ f(v̂)− λ




, W =





u

v

v′




, ′ =

d

dx
, (4.33)

where f(v̂) = v̂ − v̂−γh(v̂), with h as before.

Once again using STABLAB, we have in Figure 4.3 the numerical profile and the Evans function

output as v+ → 0. We note that as v+ → 0 the Evans function approaches a limiting contour.

Humpherys, Lafitte, and Zumbrun discovered this limiting behavior numerically which led them

to prove stability analytically in the limiting case [24] demonstrating the power of employing the

Evans function to study shock wave stability. See also [37] ,[3].

4.4 p-system with capillarity

We consider the isentropic gas dynamics system with capillarity (Slemrod’s model),

vt − ux = 0

ut + p(v)x =
(ux

v

)

x
− dvxxx,

(4.34)
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Figure 4.3: The profile equation (left) and Evans function output (right) for the p-system as
v+ → 0.

where v is the the specific volume, u is the velocity in Lagrangian coordinates, the constant d ≥ 0

represents capillarity strength, and p(v) is the pressure law for an ideal gas.

Translating (x, t) → (x− st, t) we have,

vt − svx − ux = 0,

ut − sux + p(v)x =
(ux

v

)

x
− dvxxx.

(4.35)

Rescaling, (x, t, u) → (−sx, s2t,−u/s) the system becomes

vt + vx − ux = 0,

ut + ux + ap(v)x =
(ux

v

)

x
− dvxxx,

(4.36)

where a = 1/s2.

The profile equations satisfy

v′ − u′ = 0,

u′ + ap(v)′ =
(

v′

v

)′
− dv′′′,

(4.37)

which simplifies to

v′ + ap(v)′ =
(

v′

v

)′
− dv′′′ (4.38)
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with boundary conditions (v, u)(±∞) = (v±, u±). Integrating from −∞ to x yields

v − v− + a(p(v)− p(v−)) =
v′

v
− dv′′, (4.39)

where

a = − v+ − v−
p(v+)− p(v−)

(4.40)

is found by setting x = +∞ to get the Rankine-Hugoniot condition. We take p(v) = v−γ .

Linearizing (4.36) about the profile equation (v̂, û) yields the eigenvalue problem

λv + v′ − u′ = 0,

λu + u′ − (f(v̂)v)′ =
(

u′

v̂

)′
− dv′′′,

(4.41)

where f(v̂) = −ap′(v̂)− v̂x/v̂2. Transforming to integrated coordinates yields,

λv + v′ − u′ = 0,

λu + u′ − f(v̂)v′ =
u′′

v̂
− dv′′′.

(4.42)

Writing (4.42) as a first order system gives

A(x, λ) =





0 λ 1 0

0 0 1 0

0 0 0 1

λ/d λ/d h/d −(dv̂)−1





, W =





u

v

v′

v′′





, (4.43)

where h = h(v̂, λ) := 1 + ap′(v̂) + v̂x/v̂2 − λ/v̂. There are two growth/decay modes of (4.43) at

both ±∞ making the ODE a stiff problem. We overcome this difficulty by using either the method

of continuous orthogonalization or the compound matrix method. To use the compound matrix
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method we lift A(x, λ) into the exterior product space Λ2(C4) ≈ C6 obtaining,

A(2)(x, λ) =





0 1 0 −1 0 0

0 0 1 λ 0 0

λ/d h/d −(dv̂)−1 0 λ 1

0 0 0 0 1 0

−λ/d 0 0 h/d −(dv̂)−1 1

0 −λ/d 0 −λ/d 0 −(dv̂)−1





; (4.44)

see (3.16) and related discussion. We use STABLAB to verify some of the Evans function output

given in [23]. First, we numerically solve the profile equations. For small d the solution is monotone,

but as capillarity strength increases, the traveling wave becomes oscillatory, as in Figure 4.4. For

large capillarity strength, the profile becomes too oscillatory for accurate Evans function results;

overcoming this difficulty is an interesting direction for further work. In Figure 4.5 we give some

typical Evans function output and in Figure 4.6 we show the affect of varying v+ and d.
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Figure 4.4: The profile equation for the p-system with capillarity. As capillarity strength increases,
the profile becomes highly oscillatory.
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Figure 4.5: Evans function output for the p-system with capillarity. Here d = 0.45 and v+ = 0.65
(left) and 0.25 (right).
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Figure 4.6: Evans function output of a semi-circular contour for the p-system with capillarity. On
the left d = 0.75 and v+ ∈ [0.20, 0.80]. The contours get closer to the origin and begin to wrap
around it as shock strength increases. The contours move away from the origin and shrink in the
small shock limit. On the right, v+ = 0.25 and d ∈ [0.15, 0.80]. The contours get larger and more
spread out as d decreases.
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Chapter 5. Isentropic MHD

In this chapter we discuss the numerical results of our work done in [4] as well as summarize a few

of the analytical results.

5.1 Introduction

Consider the system,

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

vt − u1x = 0

u1t +

„
p +

„
1

2µ0

« `
B2

2 + B2
3

´«

x

= (2µ + η)
“u1x

v

”

x

u2t −
„

1
µ0

B∗
1B2

«

x

= µ
“u2x

v

”

x

u3t −
„

1
µ0

B∗
1B3

«

x

= µ
“u3x

v

”

x

(vB2)t − (B∗
1u2)x =

„„
1

σµ0v

«
B2x

«

x

(vB3)t − (B∗
1u3)x =

„„
1

σµ0v

«
B3x

«

x

,

(5.1)

where v denotes specific volume, u = (u1, u2, u3) velocity, p = p(v) pressure, B = (B∗1 , B2, B3)

magnetic induction, B∗1 constant, and µ > 0 and η > 0 the two coefficients of viscosity, µ0 > 0 the

magnetic permeability, and σ > 0 the electrical resistivity; see [2, 13, 29, 31] for further discussion.

With brief exceptions, we take

η = −2µ/3, (5.2)

as typically prescribed for (nonmagnetic) gas dynamics [5].
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By a viscous shock profile of (5.1) we mean a traveling wave solution

v(x, t) = v̂(x− st),

u1(x, t) = û1(x− st),

u2(x, t) = û2(x− st),

u3(x, t) = û3(x− st),

(vB2)(x, t) = (̂vB2)(x− st),

(vB3)(x, t) = (̂vB3)(x− st),

(5.3)

moving with speed s and having asymptotically constant end-states

(v±, u1±, u2±, u3±, (vB2)±, (vB3)±). Alternatively we translate x → x−st and consider stationary

solutions of 8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

vt − svx − u1x = 0

u1t − su1x +

„
p +

„
1

2µ0

« `
B2

2 + B2
3

´«

x

= (2µ + η)
“u1x

v

”

x

u2t − su2x −
„

1
µ0

B∗
1B2

«

x

= µ
“u2x

v

”

x

u3t − su3x −
„

1
µ0

B∗
1B3

«

x

= µ
“u3x

v

”

x

(vB2)t − s (vB2)x − (B∗
1u2)x =

„„
1

σµ0v

«
B2x

«

x

(vB3)t − s (vB3)x − (B∗
1u3)x =

„„
1

σµ0v

«
B3x

«

x

(5.4)

Under the rescaling,

(v, u1, u2, u3, µ0, x, t, B∗1) → (v/ε,−u1/(εs), u2/ε, u3/ε, εµ0,−εsx, εs2t,−B∗1/s), the system becomes

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

vt + vx − u1x = 0

u1t + u1x +

„
av−γ +

„
1

2µ0s2

« `
B2

2 + B2
3

´«

x

= (2µ + η)
“u1x

v

”

x

u2t + u2x −
„

1
µ0

B∗
1B2

«

x

= µ
“u2x

v

”

x

u3t + u3x −
„

1
µ0

B∗
1B3

«

x

= µ
“u3x

v

”

x

(vB2)t + (vB2)x − (B∗
1u2)x =

„„
1

σµ0v

«
B2x

«

x

(vB3)t + (vB3)x − (B∗
1u3)x =

„„
1

σµ0v

«
B3x

«

x

(5.5)

41



where p(v) = a0v−γ and a = a0ε−γ−1s−2. We may also remove µ by rescaling, so without loss of

generality, µ = 1. Linearizing about the profile

(v, u1, u2, u3, B1, B2, B3) = (v̂, û1, 0, 0, B∗1 , 0, 0) we have

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

vt + vx − u1x = 0

u1t + u1x − aγ
`
v̂−γ−1v

´
x

= (2µ + η)

„
u1x

v̂
+

û1x

v̂2
v

«

x

u2t + u2x −
1
µ0

B∗
1 (B2)x = µ

“u2x

v̂

”

x

u3t + u3x −
1
µ0

B∗
1 (B3)x = µ

“u3x

v̂

”

x

(v̂B2)t + (v̂B2)x −B∗
1 (u2)x =

„„
1

σµ0

«
B2x

v̂

«

x

(v̂B3)t + (v̂B3)x −B∗
1 (u3)x =

„„
1

σµ0

«
B3x

v̂

«

x

.

(5.6)

Note the system is decoupled and that equations 3-6 are two copies of the same system. Stability

for the first two equations was demonstrated in great generality in [3, 24] . We make the substitution

α = v̂B2 and, dropping the subscripts on uj and Bj , write the eigenvalue problem,






λu + u′ − 1
µ0

B∗1B′ = µ

(
u′

v̂

)′

λα + α′ −B∗1u′ =
(

1
σµ0

) (
B′

v̂

)′
.

(5.7)

We make the substitution

ũ(x) =
∫ x

−∞
u(z)dz, α̃(x) =

∫ x

−∞
α(z)dz, (5.8)

to get






λũ′ + ũ′′ − 1
µ0

B∗1B′ = µ

(
ũ′′

v̂

)′

λα̃′ + α̃′′ −B∗1 ũ′′ =
(

1
σµ0

) (
B′

v̂

)′
.

(5.9)

Then integrating form −∞ to x we have, suppressing the tilde,
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




λu + u′ − 1
µ0

B∗1B = µ

(
u′′

v̂

)

λα + α′ −B∗1u′ =
(

1
σµ0

) (
B′

v̂

)
,

(5.10)

or equivalently,






λu + u′ − B∗1α′

µ0v̂
= µ

u′′

v̂

λα + α′ −B∗1u′ =
1

σµ0v̂

(
α′

v̂

)′
.

(5.11)

Our first orders system is thus





u

µu′

α

α′

σµ0v̂





′

=





0 1/µ 0 0

λv̂ v̂/µ 0 −σB∗1 v̂

0 0 0 σµ0v̂

0 −B∗1 v̂/µ λv̂ σµ0v̂2









u

µu′

α

α′

σµ0v̂





. (5.12)

Recall that v̂ satisfies

v′ = (3/4)v(v − 1 + a(v−γ − 1)), a = vγ
+

1− v+

1− vγ
+

. (5.13)

Before exhibiting our numerical results, we visit some of the energy estimates done in [4].

5.2 Energy estimates

To help with doing energy estimates, we note a few facts.

Fact 1: Suppose v is a smooth real valued function and w is a smooth complex valued func-

tion with the property that w(n)(±∞) = 0 for n = 0, 1, 2, ... Then Re(
∫

R vww̄′) = Re(
∫

R vw′w̄) =

Re(− 1
2

∫
R v′|w|2).

Proof: If w = (a + ib) then ww̄′ = (a + ib)(a′ − ib′) = aa′ + bb′ + i(ba′ − ab′) and w̄w′ =
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(a− ib)(a′ + ib′) = aa′ + bb′ + i(ab′ − ba′) = aa′ + bb′ − i(ba′ − ab′). Now

∫

R
vww̄′ = v|w|2|∞−∞ −

∫

R
w̄(vxw + vwx)

= −
∫

R
vx|w|2 −

∫

R
vw̄wx.

(5.14)

Thus,

2Re(
∫

R
vww̄′) = Re(−

∫

R
vx|w|2), (5.15)

so that

Re(
∫

R
vww̄′) = Re(

∫

R
vw̄w′) = −1

2

∫

R
vx|w|2. (5.16)

Fact 2: Suppose w(n)(±∞) = 0, n = 0, 1, 2, ... Then

∫

R
w′′w̄ = −

∫

R
|w′|2. (5.17)

Proof:

∫

R
w′′w̄ = w̄w′|∞−∞ −

∫

R
|w′|2

= −
∫

R
|w′|2.

(5.18)

Fact 3: Suppose w, u are smooth functions with w(n) = 0, u(n) = 0 for n = 0, 1, 2... Then

Re(
∫

R w′ū) = Re(−
∫

R w̄u′) Proof:

∫

R
w′ū = wū|∞−∞ −

∫

R
wū′, (5.19)

so that

Re

(∫

R
w′ū

)
= Re

(
−

∫

R
wū′

)
= Re

(
−

∫ ∞

−∞
w̄u′

)
= Re

(
−

∫ ∞

−∞
w̄u′

)
. (5.20)
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5.3 Stability for B∗
1 = 0

For B∗1 = 0 the eigenvalue equations become






λu + u′ = µ
u′′

v̂
,

λα + α′ =
(

1
σµ0v̂

) (
α′

v̂

)′
,

(5.21)

or 




λv̂u + v̂u′ = µu′′,

λv̂α + v̂α′ =
(

1
σµ0

) (
α′

v̂

)′
.

(5.22)

Taking the real part of the complex L2-inner product of u against the first equation and α

against the second equation yields,






λ

∫

R
v̂|u|2 +

∫

R
v̂u′ū− µ

∫

R
u′′ū = 0,

λ

∫

R
v̂|α|2 +

∫

R
v̂α′ᾱ−

∫

R

(
1

σµ0

) (
α′

v̂

)′
ᾱ = 0.

(5.23)

Then summing the two, using Fact 1 and Fact 2, and integrating by parts, we have,

Re

„
λ

Z

R
v̂

`
|u|2 + |α|2

´«
= −

Z

R

„
µ|u′|2 +

„
1

σµ0v̂

«
|α′|2

«
+

1
2

Z

R
v̂x

`
|u|2 + |α|2

´
< 0, (5.24)

a contradiction for Reλ ≥ 0 and u, α not identically zero (Recall v ≥ 0, vx ≤ 0).

5.4 Stability for infinite µ0

In the infinite µ0 case, the eigenvalue equations are given by,






λu + u′ = µ
u′′

v̂

λα + α′ −B∗1u′ = 0.

(5.25)

The first equation is stable by a simple adjustment to the B∗1 = 0 case. Assuming Reλ ≥ 0,
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we have u ≡ 0 so that the second equation is

λα + α′ = 0. (5.26)

But this equation is constant coefficient and hence stable (ce−λ doesn’t satisfy boundary condi-

tions).

5.5 Infinite σ case

In the infinite σ case, the eigenvalue equations are






λu + u′ − B∗1α′

µ0v̂
= µ

u′′

v̂

λα + α′ −B∗1u′ = 0.

(5.27)

We rewrite this in symmetric form as






µ0v̂λu + µ0v̂u′ −B∗1α′ = µµ0u
′′

λα + α′ −B∗1u′ = 0.
(5.28)

Taking the real part of the complex L2-inner product of u against the first equation and α

against the second equation and summing gives,






∫

R
µ0v̂λ|u|2 +

∫

R
µ0v̂u′ū−

∫

R
B∗1α′ū−

∫

R
µµ0u

′′ū = 0

λ

∫

R
|α|2 +

∫

R
α′ᾱ−

∫

R
B∗1u′ᾱ = 0.

(5.29)

Summing the two equations and using facts 1-3, we have

Reλ

(∫

R
v̂µ0|u|2 + |α|2

)
= −µµ0

∫

R
|u′|2 +

µ0

2

∫

R
v̂x|u|2 ≤ 0, (5.30)

a contradiction for Reλ ≥ 0 and u not identically zero. If u ≡ 0, then we have a constant coefficient

system for α which is thus stable.
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5.6 Renormalized Evans function

There is a square root singularity in the Evans function when B∗1 = √
µ0v+. We remove this

singularity by introducing the pair of renormalizations

Ď(λ) :=

(
(1−B∗1/

√
µ0)2 + 4λ(µ/2 + 1/2σµ0)

)1/4

(
(1−B∗1/

√
µ0)2 + 4(µ/2 + 1/2σµ0)

)1/4

(
v+/4 + λ

)1/4

(
v+/4 + 1

)1/4

×

(
(1−B∗1/

√
µ0v+)2 + 4λ(µ/2v+ + 1/2σµ0v2

+)
)1/4

(
(1−B∗1/

√
µ0v+)2 + 4(µ/2v+ + 1/2σµ0v2

+)
)1/4

D(λ)

(5.31)

and

D̂(λ) :=

(
(1−B∗1/

√
µ0)2 + 4λ(µ/2 + 1/2σµ0)

)1/4

(
(1−B∗1/

√
µ0)2 + 4(µ/2 + 1/2σµ0)

)1/4
D(λ). (5.32)

From [4] we have,

Theorem 5.1. On (λ ≥ 0, the reduced Evans function D is analytic in λ and continuous in all

parameters except at v+ = 0 and B1 = √
µ0v±, at which points it exhibits algebraic singularities

(blow-up) at λ = 0. The renormalized Evans functions Ď and D̂ are analytic in λ and continuous

in all parameters except at (λ, v+) = (0, 0).

In the limit that v+ → 0, the profile equation reduces to v′ = (3/4)v(v− 1) which has solution

v̂0 = 1/2− 1/2 tanh(3x/8). From [4] we have,

Theorem 5.2. For σ, µ0 and B∗1 bounded, the reduced Evans function D(λ) converges uniformly

on compact subsets of {(λ ≥ 0} \ {0} in the large-amplitude limit v+ → 0 to a limiting Evans

function D0(λ) obtained by substituting v̂0 for v̂. Likewise, Ď and D̂ converge to

Ď0(λ) :=

(
1−B∗1/

√
µ0)2 + 4λ(µ/2 + 1/2σµ0)

)1/4

(
1−B∗1/

√
µ0)2 + 4(µ/2 + 1/2σµ0)

)1/4
λ1/2D0(λ) (5.33)

and

D̂0(λ) :=

(
(1−B∗1/

√
µ0)2 + 4λ(µ/2 + 1/2σµ0)

)1/4

(
(1−B∗1/

√
µ0)2 + 4(µ/2 + 1/2σµ0)

)1/4
D0(λ), (5.34)
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each continuous on (λ ≥ 0. Moreover, for B∗1 <
√

µ0, nonvanishing of Ď0 on {(λ > 0} is

necessary and nonvanishing of Ď0 on {(λ ≥ 0} is sufficient for reduced Evans stability (i.e.,

nonvanishing of Ď, D on {(λ > 0} for v+ > 0 sufficiently small. For B∗1 >
√

µ0, nonvanishing of

D̂0 on {(λ > 0} is necessary and nonvanishing of D̂0 on {(λ ≥ 0} together with a certain sign

condition on D̂(0) is sufficient for reduced Evans stability for v+ > 0 sufficiently small.1 This sign

condition is implied in particular by nonvanishing of D̂(0) on the range

√
µ0 ≤ B∗1 ≤

√
µ0 + max

{√
µ0

2
,

√
1
2σ

}
. (5.35)

Finally, we state a Theorem from [4] which gives a bound on where any unstable eigenvalues, if

any exist, can occur. This facilitates a numerical study since we can compute the Evans function

on a contour containing the bounded region given below and than use the argument principle from

complex analysis.

Theorem 5.3. Nonstable eigenvalues (λ ≥ 0 of (5.12) are confined for 0 < v+ ≤ 1 to the region

(λ + |7λ| < 1
2

max
{ 1

µ
, µ0σ

}
+ (B∗1)2

√
σ

µµ0
. (5.36)

5.7 Numerical stability results

For a given amplitude, the analytical results in [4] truncate the computational domain to a compact

set, thus allowing for a comprehensive numerical Evans function study patterned after [24, 26],

which yields Evans stability in the intermediate parameter range. We then demonstrate Evans

stability in the large-amplitude limit by (i) verifying convergence to the limiting Evans functions

given in Theorem 5.2 (i.e., checking that convergence has occurred to desired tolerance at the limits

of values v+, λ considered), and (ii) verifying nonvanishing on (λ ≥ 0 of the limiting functions D̂0,

Ď0. These computational results, together with the analytical results in [4], give unconditional

stability for all values except for cases where two or more parameters blow up simultaneously. The

numerical computations were performed in STABLAB.

When compared to the numerical study for isentropic Navier-Stokes [3, 24], this present system

is better conditioned, yet much more computationally taxing since there are more free parameters
1 D, D̂ are real-valued for real λ by construction, so that sgnD̂(0) is well-defined.
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to cover, i.e., (γ, v+, B∗1 , µ0, σ); the isentropic model by contrast has only two parameters (γ, v+).

Since each dimension adds, roughly, an order of magnitude to the runtime, we used parallel compu-

tation via MATLAB’s parallel computing toolbox. In our main study, we computed along 30,870

semi-circular contours corresponding to the parameter values

(γ, v+, B∗1 , µ0, σ) ∈ [1.0, 3.0]× [10−5, 0.8]× [0.2, 3.8]× [0.2, 3.8]× [0.2, 3.8].

In every case, the winding number was zero, thus demonstrating Evans stability; see Section 5.8

for more details.

We also carried out a number of small studies to illustrate our analytical work in the limiting

fixed-amplitude cases. These are briefly described below and are also given more detail in Section

5.8.
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Figure 5.1: Renormalized Evans function output for semi-circular contour of radius 4.5 (left)
as the amplitude varies. Parameters are B∗1 = 2, µ0 = 1, σ = 1, γ = 5/3, with v+ =
10−1, 10−1.5, 10−2, 10−2.5, 10−3, 10−3.5, 10−4, 10−4.5, 10−5, 10−5.5, 10−6. Note the striking concen-
tric structure of the contours, which converge to the outer contour in the large-amplitude limit
(i.e., v+ → 0) and to a non-zero constant in the small-amplitude limit (i.e., v+ → 1), indicating
stability for all shock strengths since the winding numbers throughout are all zero. The limiting
contour given by D̂0(λ) is also displayed, but is essentially identical to nearby contours. When the
image is zoomed in near the origin (right), which is marked by a crosshair, we see that the curves
are well behaved and distinct from the origin. Also clearly visible is the theoretically predicted
square-root singularity at the origin of the limiting contour, as indicated by a right angle in the
curve at the image of the origin on the real axis.

In Figure 5.1, we see the typical concentric structure as v+ varies on [0, 1]. Note that in the
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strong-shock limit, the output converges to the outer contour representing the Evans function

output of the limiting system. In the small-amplitude limit, the system converges to a non-zero

constant. Since the origin is outside of the contours, one can visually verify that the winding

number is zero thus implying Evans stability, even in the strong-shock limit.

In Figure 5.2, we illustrate the convergence of the Evans function as B∗1 → ∞. Note that

the contours converge to zero, but they are stable for all finite values of B∗1 . Stability is proven

analytically in [4] by a tracking argument.

In Figure 5.3, we see the structure as µ0 → 0. Once normalized (right), we see that the

structure is essentially unchanged despite a large variation in µ0; in particular, the shock layers

are stable in the µ0 → 0 limit. This was proven analytically in [4].

Finally, in Figure 5.4, we see the behavior of the Evans function in the case that r = µ/(2µ +

η) → ∞. This is the opposite case of that considered in [17]. As shown in [4] this case can be

computed by disengaging the shooting algorithm and just taking the determinant of initializing

e-bases at ±∞. Notice that in this limit the shock layers are also stable.
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Figure 5.2: Evans function output for semi-circular contour of radius 5 (left) and a zoom-in of the
same image near the origin (right). Parameters are v+ = 10−2, µ0 = 1, σ = 1, γ = 5/3, with
B∗1 = 2, 3.5, 5, 10, 15, 20, 25, 30, 35, 40. Note that the contours converge to zero, which is marked
by a cross hair, as B∗1 →∞.
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Figure 5.3: Evans function output for semi-circular contour of radius 5 (left) together with a
renormalized version of the contours (right), where each contour is divided by its rightmost
value, thus putting all contours through z = 1 on the right side. Although these results are
typical, the parameters in this example are B∗1 = 2, v+ = 10−2, σ = 1, γ = 5/3, with
µ0 = 10−.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3, 10−3.5, 10−4, 10−4.5, 10−5. Note that the renormalized
contours are nearly identical. This provides a striking indication of stability for all values of µ0 in
our range of consideration, and in particular for µ0 → 0.
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Figure 5.4: Renormalized Evans function in the r = ∞ case. Parameters are v+ = 10−1, 10−2,
10−3, 10−4, 10−5, 10−6, µ0 = 1, σ = 1, γ = 5/3. We also have a semi-circular radius of 4.5 with
B∗1 = 2 (left), and a semi-circular radius of 1 with B∗1 = 0.5 (right).
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5.8 Numerical Investigation

In this section, we discuss our approach to Evans function computation, which is used to determine

whether any unstable eigenvalues exist in our system, particularly in the intermediate parameter

range left uncovered by analytical results in [4]. Our approach follows the polar-coordinate method

developed in [28]; see also [3, 24, 26, 23, 14]. Since the Evans function is analytic in the region

of interest, we can numerically compute its winding number in the right-half plane around a large

semicircle B(0,Λ) ∩ {(λ ≥ 0} containing (5.36), thus enclosing all possible unstable roots. This

allows us to systematically locate roots (and hence unstable eigenvalues) within. As a result,

spectral stability can be determined, and in the case of instability, one can produce bifurcation

diagrams to illustrate and observe its onset. This approach was first used by Evans and Feroe [16]

and has been applied to various systems since; see for example [38, 1, 10, 7].

5.8.1 Approximation of the profile. Following [3, 24], we can compute the traveling wave

profile using one of MATLAB’s boundary-value solvers bvp4c [42], bvp5c [32], or bvp6c [19],

which are adaptive Lobatto quadrature schemes and can be interchanged for our purposes. These

calculations are performed on a finite computational domain [−L−, L+] with projective boundary

conditions M±(U − U±) = 0. The values of approximate plus and minus spatial infinity L±

are determined experimentally by the requirement that the absolute error |U(±L±) − U±| be

within a prescribed tolerance, say TOL = 10−3; see [26, Section 5.3.4] for a complete discussion.

Throughout much of the computation, we used L± = ±20, but for some rather extreme values in

our parameter range, we had to lengthen our interval to maintain good error bounds.

5.8.2 Approximation of the Evans function. Throughout our numerical study, we used the

polar-coordinate method described in [28], which encodes W = ρ Ω, where “angle” Ω = ω1∧· · ·∧ωk

is the exterior product of an orthonormal basis {ωj} of Span{W1, . . . ,Wk} evolving independently

of ρ by some implementation (e.g., Drury’s method) of continuous orthogonalization and “radius”

ρ is a complex scalar evolving by a scalar ODE slaved to Ω, related to Abel’s formula for evolution

of a full Wronskian; see [28] for further details. This might be called “analytic orthogonalization”,

as the main difference from standard continuous orthogonalization routines is that it restores the

important property of analyticity of the Evans function by the introduction of the radial function
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ρ (Ω by itself is not analytic); see [28, 45] for a discussion on this method.

5.8.3 Shooting and initialization. The ODE calculations for individual λ are carried out

using MATLAB’s ode45 routine, which is the adaptive 4th-order Runge-Kutta-Fehlberg method

(RKF45). This method is known to have excellent accuracy with automatic error control. Typical

runs involved roughly 300 mesh points per side, with error tolerance set to AbsTol = 1e-6 and

RelTol = 1e-8.

To produce analytically varying Evans function output, the initial data V(−L−) and Ṽ(L+)

must be chosen analytically using the method of Kato, see section 3.4. The algorithm of [11] works

well for this purpose, as discussed further in [3, 28].

5.8.4 Winding number computation. We compute the winding number by varying values

of λ around the semicircle B(0,Λ) ∩ {(λ ≥ 0} along 120 points of the contour, with mesh size

taken quadratic in modulus to concentrate sample points near the origin where angles change more

quickly, and summing the resulting changes in arg(D(λ)), using 7 log D(λ) = argD(λ)(mod2π),

available in MATLAB by direct function calls. As a check on winding number accuracy, we test

a posteriori that the change in argument of D for each step is less than 0.2, and add mesh points,

as necessary to achieve this. Recall, by Rouché’s Theorem, that accuracy is preserved so long as

the argument varies by less than π along each mesh interval.

5.8.5 Description of experiments: broad range. In our first numerical study, we covered

a broad intermediate parameter range to demonstrate stability in the regions not amenable to our

analytical results in [4], and also to close our study for unconditional stability for all (finite) system

parameters. Since Evans function computation is essentially “embarrassingly parallel”, we were

able to adapt our STABLAB code to take advantage of MATLAB’s parallel computing toolbox,

sending to each of 8 “workers” on our 8-core Power Macintosh workstation, different values of λ
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producing a net speedup of over 600%. The following parameter combinations were examined:

(γ, v+, B∗1 , µ0, σ) ∈ {1.0, 1.1, 11/9, 9/7, 7/5, 5/3, 1.75, 2.0, 2.5, 3.0}

× {0.8, 0.6, 0.4, 0.2, 10−1, 10−2, 10−3, 10−4, 10−5}

× {0.2, 0.8, 1.4, 2.0, 2.6, 3.2, 3.8}

× {0.2, 0.8, 1.4, 2.0, 2.6, 3.2, 3.8}

× {0.2, 0.8, 1.4, 2.0, 2.6, 3.2, 3.8}.

In total, this is 30,870 contours, each consisting of at least 120 points in λ. In all cases, we found

the system to be Evans stable. Typical output is given in Figure 5.1.

We remark that the Evans function is symmetric under reflections along the real axis (conju-

gation). Hence, we only needed to compute along half of the contour (usually 60 points in the first

quadrant) to produce our results.

5.8.6 Description of experiments: limiting parameters. The purpose of our second study

is to verify convergence in the large-amplitude limit (v+ → 0), as well as illustrate the analytical

results in the limiting cases, namely as B∗1 → ∞, B∗1 → 0, µ0 → ∞, µ0 → 0, σ → ∞, σ → 0,

r →∞, and r → 0. In all cases, we found our results to be consistent with stability.

In Table 5.1, we provide typical relative errors between the normalized and limiting-normalized

Evans functions in the large-amplitude limit; we varied B∗1 for illustrative purposes. The relative

errors are given by computing, respectively,

max
j

∣∣∣∣∣
D̂(λj)− D̂0(λj)

D̂0(λj)

∣∣∣∣∣ and max
j

∣∣∣∣
Ď(λj)− Ď0(λj)

Ď0(λj)

∣∣∣∣

along the contours except for small λ (that is, when |λ| < 10−2). Note that in the large-amplitude

limit, the relative errors go to zero, as expected.
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v+ B∗1 = 0.2 B∗1 = 0.8 B∗1 = 1.4 B∗1 = 2 B∗1 = 2.6 B∗1 = 3.2 B∗1 = 3.8
10(-1) 9.94(-1) 1.23 3.46 9.33 2.16(1) 4.89(1) 1.09(2)
10(-2) 4.36(-1) 5.19(-1) 1.36 2.82 4.92 8.19 1.32(1)
10(-3) 1.42(-1) 1.72(-1) 4.50(-1) 8.34(-1) 1.25 1.86 2.53
10(-4) 4.23(-2) 5.04(-2) 1.32(-1) 2.30(-1) 3.23(-1) 4.55(-1) 5.88(-1)
10(-5) 1.26(-2) 1.50(-2) 4.00(-2) 6.83(-2) 9.35(-2) 1.28(-1) 1.61(-1)
10(-6) 3.94(-3) 4.77(-3) 1.28(-2) 2.18(-2) 2.96(-2) 4.03(-2) 5.01(-2)
10(-7) 2.16(-3) 2.62(-3) 7.08(-3) 1.20(-2) 1.63(-2) 2.21(-2) 2.75(-2)
10(-8) 2.07(-3) 2.51(-3) 6.78(-3) 1.15(-2) 1.56(-2) 2.12(-2) 2.63(-2)

Table 5.1: Relative errors for Ď(λ) and D̂(λ). Here σ = µ0 = 0.8 and γ = 5/3.

Appendix A. Burgers Equation

A.1 Burgers Equation

Consider Burgers equation,

ut + uux = νuxx (A.1)

where the constant ν > 0 represents viscosity and x and t represent space and time respectively;

see [8] for details. Assume that

u(x, t) = û(x− st) (A.2)

where s is wave speed. This substitution reduces the problem to one variable with a moving frame

of reference. The solution to this ODE is the wave profile and is stationary because our frame of

reference moves along at the same speed as the wave.

We assume asymptotically constant boundary conditions û(±∞) = u± where u− > u+,

û(±∞)(n) = 0, n = 1, 2, ...

Transferring û into (A.1) we obtain

− sû′ + ûû′ = νû′′. (A.3)

Integrating yields

− s

∫ x

−∞
û′ +

∫ x

−∞
ûû′ = ν

∫ x

−∞
û′′, (A.4)
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which becomes

− s(û− u−) +
1
2
(û2 − u2

−) = νû′. (A.5)

Note that as x approaches ±∞, û′ → 0 and û → u± so that

− s(u+ − u−) +
1
2
(u2

+ − u2
−) = 0. (A.6)

Equation (A.6) is the Rankine-Hugoniot condition which states that s multiplied by the jump

in u denoted [u] := u− − u+ equals the jump in 1
2u2 denoted [ 12u2]. We simplify (A.6) to get

s =
u+ + u−

2
. (A.7)

Now returning to equation (A.5) and solving for û′ we obtain

û′ =
1
2ν

(û− u−)(û− u+). (A.8)

The solution is,

û(x) = s− a tanh
(

a(x− st + δ)
2ν

)
, (A.9)

where a = 1
2 (u− − u+).

A.2 Numerical Profile

For illustrative purposes, we numerically solve the profile euqation using (A.3) instead of (A.8)

allowing us to demonstrate projective boundary conditions. Our boundary value problem does not

have a unique solution since a translation is also a solution. Hence, we fix û(0) = s, the average

of our endpoint values. We make the transformation x → −x on the positive half of the domain

thus doubling the dimension of the system. If we let y1 = û and y2 = û′ for the left domain and
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y3 = û and y4 = û′ for the now translated right domain, then the new bvp is





y1

y2

y3

y4





′

=





y2

1
ν (y1y2 − sy2)

y4

1
ν (sy4 − y3y4)





, (A.10)

with y2(−∞) = y4(−∞) = 0, y1(−∞) = u−, y3(−∞) = u+ and y1(0) = y3(0) = s.

We use projective conditions at −∞ in the bvp solver to scale out the none-growth terms. Let A

be the matrix whose columns are the right eigenvectors of the jacobian matrix of the system at −∞.

Recall that the left eigenvectors are the rows of A−1. Then if Rg is a right eigenvector corresponding

to growth and Ld is a left eigenvector corresponding to none-growth, we have Ld ·Rg = 0. Then our

projective condition is Ld ·(y−∞−(u−, 0, u+, 0)T ). Our system has two such projection conditions.

This setup causes the boundary value solver to come in orthogonal to the undesired manifold and

to fix the solution at x = −∞ at the desired end states. We obtain Figure A.1 using Matlabs

bvp4c solver. As you can see, reflecting the lower part back to the right side yields the desired

tanh solution.

!10 !9 !8 !7 !6 !5 !4 !3 !2 !1 0
1.5

2

2.5

3

3.5

4

4.5

Figure A.1: Traveling Wave Profile
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A.3 Stability of Burgers Equation

We say that a traveling wave is spectrally stable if the linearized operator has no eigenvalues in the

deleted right half plane, {λ ∈ C \ {0} | Re(λ) ≥ 0}. Zumbrun and Howard have shown for several

general classes of shock waves that spectral stability implies nonlinear stability. We use an energy

estimate to prove Burgers equation is spectrally stable.

We first find the eigenvalue problem by changing (A.1) to a scaled moving frame of reference,

(x, t) → (x−st+δ
v , t

v ), and find steady-state solutions to the equation

ut − sux + uux = uxx. (A.11)

Linearizing about the steady-state solution û in (A.11) gives

ut − sux + ûux + ûxu = uxx. (A.12)

This yields the eigenvalue problem

λu− su′ + ûu′ + û′u = u′′. (A.13)

We make the coordinate change (u → u′) and then integrate to obtain the integrated eigenvalue

problem

λu = (s− û)u′ + u′′. (A.14)

Taking the L2 inner product with respect to ū, the complex conjugate of u, we obtain

λ

∫

R
|u|2 =

∫

R
(s− û)ūu′ +

∫

R
u′′ū. (A.15)

Integrating the right term by parts we have

λ

∫

R
|u|2 =

∫

R
(s− û)ūu′ −

∫

R
|u′|2. (A.16)

Then integrating the middle term by parts we find that 2Re
∫

(s − û)ūu′ =
∫
|u|2û′. Note that
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Re

Figure A.2: Essential spectrum of the linearized operator for Burgers equation

û′ < 0. Then

Re(λ)
∫

R
|u|2 =

1
2

∫

R
|u|2û′ −

∫

R
|u′|2 < 0 (A.17)

so that Re(λ) < 0. Thus Burgers equation is spectrally stable.

A.4 Essential spectrum

Following the discussion in section 2.3.1, we have for (A.13) the Fourier version of the eigenvalue

problem,

λu = −iξA± −B±ξ2 = ±i
1
2
(u− − u+)ξ − ξ2. (A.18)

Hence, the essential spectrum is a parabola (see Figure A.2).

A.5 Evans Function

Previously we showed stability of traveling wave solutions using energy estimates. Energy estimates

often provide a bound on the region in the right half plane where eigenvalues can occur, but do

not say whether or not the bounded region contains eigenvalues. Becasue it is analytic, the Evans

function may be evaluated on a contour containing the bounded region and the argument principle

invoked to determine if there are any eigenvalues inside the contour. We use Burgers Equation to

detail how to compute the Evans function.
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We write the eigenvalue problem (A.13) as a first order system,

W ′ = A(x, λ)W, (A.19)

that is,




u

u′





′

=




0 1

λ + û′ û− s








u

u′



 . (A.20)

Substituting (A.9) into (A.13) we obtain

u′′ = λu− a
(
tanh

(ax

2

)
u
)′

, (A.21)

subject to the boundary conditions u(±∞) = u′(±∞) = 0.

We are interested in solutions of (A.21) that connect the unstable manifold at −∞ and the

stable manifold at +∞. Indeed if the unstable and stable manifold intersect, then λ is an eigenvalue.

For simplicity we evaluate the Wronskian at x = 0 to check for linear independence.

We begin by using the method of Kato (see section 3.4) to choose analytically varying initial

conditions so that the Evans function will be analytic.

The eigenvalues of A(x, λ) are

µ± =
û− s∓

√
(û− s)2 + 4(λ + û′)

2
, (A.22)

which at x = ±∞ reduce to

µ± =
∓a∓

√
a2 + 4λ

2
, (A.23)

and the associated right and left eigenvectors are

r± = v±




1

µ±



 , l± =
±1

v±(µ− − µ+)

(
µ∓ −1

)
, v± ∈ C. (A.24)

We obtain our eigenprojection by multiplying the associated stable or unstable right eigenbasis

with the left one. This yields the projection,
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P± = r±l± =
±1

µ− − µ+




µ∓ −1

µ+µ− −µ±



 .

Let φ = a2 + 4λ so we may simplify to get,

P± = ∓φ
−1
2




µ∓ −1

µ+µ− −µ±





so that

P ′± = ±2φ
−3
2




µ∓ −1

µ+µ− −µ±



 ∓ φ
−1
2




∓φ

−1
2 0

−1 ∓φ
−1
2



 .

Substituting P and P ′ into the commutator operator and simplifying yields,

(P ′P − PP ′)± = φ−1




−1 0

±a 1



 .

Hence our analytically varying basis satisfies




s′1

s′2



 =




−φ−1 0

±aφ−1 φ−1








s1

s2



 .

Thus the system of ODEs is

(s±∞1 )′ =
−s1

a2 + 4λ

(s±∞2 )′ =
±as1

a2 + 4λ
+

s2

a2 + 4λ

(A.25)
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subject to the initial conditions

v∓




1

µ∓



 . (A.26)

The solution to this system is

s±∞1 = k±1 (a2 + 4λ)
−1
4

s±∞2 = k±2 (a2 + 4λ)
1
4 ∓ ak±1

2
(a2 + 4λ)

−1
4 .

(A.27)

From our initial conditions we obtain

k±1 = v±(a2 + 4λo)1/4

k±2 = ∓1
2
k±1 .

(A.28)

Our analytic initializing basis is thus given by (A.27) and (A.28).

Returning now to (A.21),

u′′ + a
(
tanh

(ax

2

)
u
)′
− λu = 0,

we see that the general solution is

u = C−
(√

4λ + a2 − a tanh
(ax

2

))
sech

(ax

2

)
exp

(x

2

√
4λ + a2

)

+ C+

(
−

√
4λ + a2 − a tanh

(ax

2

))
sech

(ax

2

)
exp

(
−x

2

√
4λ + a2

)
.

For |x| >> 1 we have

ω±(x) ≈




u

u′



 = 2C±




∓(a +

√
4λ + a2)

a2 + 2λ + a
√

4λ + a2



 e∓
x
2 (
√

4λ+a2+a)
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Equating this to our initial conditions yields,

∓ 2C±(a +
√

4λ + a2) = s1 = k1
±(a2 + 4λ)−1/4

so that

C± = ∓1
2
k1
±

(
a +

√
4λ + a2

)−1 (
a2 + 4λ

)−1/4
.

Now

ω±(0) =




u

u′





x=0

= C±




∓
√

4λ + a2

2λ





so that

D(λ) =

∣∣∣∣∣∣∣

u−(0) u+(0)

u′−(0) u′+(0)

∣∣∣∣∣∣∣
= 4C−C+λ

√
4λ + a2.

Then substituting for C± the Evans Function is

D(λ) =
−λk1

+k1
−(

a +
√

4λ + a2
)2 .

We note that the Evans Function is analytic in the right half plane and that the only zero is

λ = 0.

A.6 Integrated Coordinates

Since û is a solution of (A.3), we have

sû′ − ûû′ + νû′′ = 0.
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Differentiating we have

sû′ − ûû′′ − (û′)2 + νû′′′ = 0.

That is, substituting û′ for u in

L(u) = su′ − (ûu)′ + u′′ (A.29)

gives L(û′) = 0 so that û′ is an eigenvector with eigenvalue 0. This is the eigenvalue associated

with translational invariance discussed in section 2.3.

A useful technique for computing the Evans function involves changing the eigenvalue problem

to integrated coordinates. Doing so removes the eigenvalue at zero associated with translational

invariance while all other eigenvalues remain the same. This both makes it more probable to find

uniform bounds when doing energy estimates and aids in numerical computation of the Evans

Function. We employ this technique to Burgers Equation along with the method of Kato to see

how it simplifies the Evans Function.

Recall that the eigenvalue problem is

λu− su′ + (ûu)′ = u′′. (A.30)

We make the coordinate change (u → u′) and then integrate to obtain the integrated eigenvalue

problem

u′′ + (s− û)u′ − λu = 0. (A.31)

The ODE is thus




u

u′





′

=




0 1

λ û− s








u

u′



 . (A.32)

Recall that when we use the method of Kato to find an analytically varying basis for our initial

conditions that x = ±∞. Since u′(±∞) = 0, our basis for the integrated problem will be the same

as we found previously, that is (A.27).
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Now substituting (A.9) into (A.31) we obtain

u′′ + a tanh
(ax

2

)
u′ − λu (A.33)

which has solution

u(x) = c+e
−x
2

√
4λ+a2sech

(ax

2

)
+

c−√
4λ + a2

e
x
2

√
4λ+a2sech

(ax

2

)
. (A.34)

For x >> 1 we have

2c+

(
1

− 1
2 (a +

q
4λ + a2)

)
e
−x
2 (
√

4λ+a2+a), (A.35)

and for x << 1 we have

2c−√
4λ + a2

(
1

1
2 (a +

q
4λ + a2)

)
e

x
2 (
√

4λ+a2+a). (A.36)

Then

c+ =
1
2
k+
1 (a2 + 4λ)

−1
4

c− =
1
2
k−1 (a2 + 4λ)

1
4 .

(A.37)

Now

w+(0) = c+




1

−1
2

√
4λ + a2



 (A.38)

and

w−(0) =
c−
2




2√

4λ+a2

1



 . (A.39)

Hence
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∣∣∣∣ w−(0) w+(0)
∣∣∣∣ = −c+c−. (A.40)

Then

D(λ) = −1
4
k+
1 k−1 = constant. (A.41)

We see that using the integrated coordinate transformation and the method of Kato has greatly

simplified the Evans Function.

Appendix B. Exterior Products

Let V be a finite dimensional vector space over the field of scalars F . Let Wk = V × V × ...× V

denote the product set {(v1, v2, ..., vk)|vi ∈ V }. Let F (Wk) be the set consisting of all finite linear

combinations of elements of Wk. That is, an element of F (Wk) takes the form
∑M

j=1 αjVj where

αj ∈ F and Vj ∈ Wk. Let S(Wk) be the subset of F (Wk) generated by the set of all elements of

the following types:

(u1, .., w + v, .., uk)− (u1, .., w, .., uk)− (u1, .., v, .., uk)

(u1, .., αup, .., uk)− α(u1, .., up, .., uk) α ∈ F

(u1, u2, .., uk) ui = uj for some i $= j

Define
∧k V to be the quotient space F (Wk)/S(Wk), and define

u1 ∧ ... ∧ uk = [(u1, ..., uk)] = equivalence class of (u1, ..., uk). Thus two vectors are equivalent if

their difference is in S(Wk). Note that F (Wk)/S(Wk) forms a vector space. We call
∧k V the k-th

exterior power of V and a vector in
∧k V is called a k-vector or k-form. Using our new notation

we have the following properties,

u1 ∧ ... ∧ (αw + βv) ∧ ... ∧ uk = α(u1 ∧ ... ∧ w ∧ ... ∧ uk) + β(u1 ∧ ... ∧ v ∧ ... ∧ uk), (B.1)
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and

u1 ∧ ... ∧ uk = 0 whenever ui = uj for i $= j. (B.2)

Lemma B.1. The following holds:

u1 ∧ ... ∧ uq ∧ ... ∧ up ∧ ... ∧ uk = −u1 ∧ ... ∧ up ∧ ... ∧ uq ∧ ... ∧ uk.

Proof. By property (B.2) we have

u1 ∧ ... ∧ (v + w) ∧ ... ∧ (v + w) ∧ ... ∧ uk = 0.

Expanding as in (B.1) we obtain,

0 = u1 ∧ ... ∧ v ∧ ... ∧ v ∧ ... ∧ uk

+ u1 ∧ ... ∧ v ∧ ... ∧ w ∧ ... ∧ uk

+ u1 ∧ ... ∧ w ∧ ... ∧ v ∧ ... ∧ uk

+ u1 ∧ ... ∧ w ∧ ... ∧ w ∧ ... ∧ uk.

Two terms cancel using property (B.2) so that

u1 ∧ ... ∧ v ∧ ... ∧ w ∧ ... ∧ uk = −u1 ∧ ... ∧ w ∧ ... ∧ v ∧ ... ∧ uk. !

Definition B.2. A permutation π is a bijective map from [1, 2, ...,m] to itself. We denote the set

of permutations defined on [1, 2, ...,m] by Pm and use π(k) to represent the image of k under π.

Proposition B.3. Let {v1, ..., vn} form a basis for V . Then the k-vectors of the form

{vπ(1) ∧ ... ∧ vπ(k)|1 ≤ π(1) < ... < π(k) ≤ n}

form a basis for
∧k V .

67



Proof. Any k-form in
∧k V can be written

M∑

r=1

ur,1 ∧ ur,2 ∧ ... ∧ ur,k, (B.3)

where ur,j ∈ V and M ∈ N. Expanding ur,j in terms of {vi} yields

M∑

r=1

(αr,1,1v1 + ... + αr,1,nvn) ∧ ... ∧ (αr,k,1v1 + ... + αr,k,nvn). (B.4)

Repeated use of property (B.2) and Lemma B.1 yields the linear combination,

∑

π∈P

βπvπ(1) ∧ ... ∧ vπ(k).

Definition B.4. Let W be a vector space. A map L : Wk → W is multilinear if L(u1, .., αup +

βũp, .., uk) = αL(u1, .., up, .., uk) + βL(u1, .., ũp, .., uk) for p = 1, 2, ...k. The map L is alternating

or antisymmetric if L(uπ(1), ..., uπ(k)) = sign(π)L(u1, ..., uk), π ∈ Pk.

Theorem B.5 (Universal Alternating Mapping Property). If L : Wk → W is a multilinear

alternating map, then there exists a unique linear map

L̂ :
∧k V → W such that L̂(u1 ∧ ... ∧ uk) = L(u1, ..., uk), ∀u1, ..., uk.

Proof. A multilinear alternating map L : Wk → W is uniquely extended to a linar map L̄ :

F (Wk) → W by defining

L̄




M∑

j=1

αjVj



 =
M∑

j=1

αjL(Vj),

where αj ∈ F and Vj ∈ Wk. Note that S(Wk) is in the kernel of L̄. Consequently, every φ ∈ F (Wk)

in the equivalence class [φ] ∈
∧k V maps to the same element L̄(φ) in W . Define L̂([φ]) = L̄(φ).

That is

L̂(u1 ∧ ... ∧ uk) = L̂([(u1, ..., uk)]) = L(u1, ..., uk).
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Suppose L̃ were another such map. Then

L̃(u1 ∧ ... ∧ uk) = L̂(u1 ∧ ... ∧ uk), ∀(u1, ..., uk),

so that L̃− L̂ is zero on the generators of
∧k V , and thus on all of

∧k V .

Definition B.6. If V is a vector space over F where F = R or F = C, an inner product on V

is a function 〈·, ·〉 : V × V → F which for all α, β ∈ F and for all x, y, z ∈ V satisfies:

(i) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉,

(ii) 〈x, αy + βz〉 = ᾱ〈x, y〉+ β̄〈x, z〉,

(iii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇒ x = 0

(iv) 〈x, y〉 = 〈y, x〉.

Definition B.7. A k-form in
∧k V is called a pure form if it is a wedge product between k

linearly independent vectors in V . A k-form is decomposable if it can be written as a pure form.

Note that every element of
∧k V is a sum of decomposable elements.

Theorem B.8. Let V be a vector space with inner product 〈·, ·〉. Then

[u, v] := det





〈u1, v1〉 · · · 〈u1, vk〉
...

. . .
...

〈uk, v1〉 · · · 〈uk, vk〉




(B.5)

defined on decomposable elements u, v ∈
∧k V defines an inner product on

∧k V by extending

bilinearly to any k-form.

Proof. Let û, v̂ represent pure k-forms associated with u, v ∈ Wk. Let λ, µ represent k-forms with
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λ =
∑n

j=1 αj ûj , µ =
∑m

i=1 βiv̂i where the ûj , v̂i are pure k-forms and αj , βi ∈ F . Define

H(u, v) = det





〈u1, v1〉 · · · 〈u1, vk〉
...

. . .
...

〈uk, v1〉 · · · 〈uk, vk〉




.

Fix v0 = (v1, ..., vk) and v̂0 = v1∧...∧vk. Now H(u, v0) : Wk → F is alternating and multilinear.

By the Universal Alternating Mapping Property, there exists a unique linear map fv0 :
∧k V → F

such that fv0(û) = H(u, v0). Fix λ ∈
∧k V. Now fv0(λ) =

∑n
j=1 αjfv0(ûj) =

∑n
j=1 αjH(uj , v0).

Now Hλ(v) :=
∑n

j=1 αjH(uj , v) is multilinear and alternating, so by the Universal Alternating

Mapping Property, there exists a unique linear map gλ :
∧k V → F such that gλ(v̂) = Hλ(v). Set

[λ, µ] := gλ(µ)

=
m∑

i=1

βigλ(v̂i)

=
m∑

i=1

βiHλ(vi)

=
m∑

i=1

βi

n∑

j=1

αjH(uj , vi)

=
n∑

j=1

m∑

i=1

αjβiH(uj , vi).

Appendix C. STABLAB Code

In this appendix we document STABLAB.
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C.1 Burger’s equation

function Burgers

beep off; clc; clear all; close all

tic

p.ul=10;

p.ur=2;

%structure variables

s.I=12;

c.ksteps=30;

c.basisL=@analytic_basis;

c.basisR=@analytic_basis;

c.evans=@evans;

c.LA=@A;

c.RA=@A;

c.epsl=0;

c.epsr=0;

c.proj=@projection2;

m.n=2;

e.kl=1;

e.kr=1;

e.evans=’reg_reg_polar’;

m.damping=0;

m.method=@drury;

m.options=odeset(’RelTol’,1e-6,’AbsTol’,1e-8,’Refine’,1,’Stats’,’on’);
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%dependent structure variables

s.R=s.I;

s.L=-s.I;

e.LA=c.LA;

e.RA=c.RA;

e.Li=[s.L 0];

e.Ri=[s.R 0];

c.L=s.L;

c.R=s.R;

%preimage contour

circpnts=30; imagpnts=30; r=10; spread=4; zerodist=10^(-4);

preimage=semicirc(circpnts,imagpnts,c.ksteps,r,spread,zerodist);

halfw=contour(c,s,p,m,e,preimage);

w = [halfw fliplr(conj(halfw))];

wnd=winding_number(w);

plot(w,’-*k’);

time=toc;

fprintf(’Time: %1.2d seconds\n’,time);

fprintf(’Winding Number: %1.1d\n’,wnd);

function out = A(x,lambda,s,p)

a=.5*(p.ul-p.ur);

cc=.5*(p.ul+p.ur);

u=cc-a*tanh(a*x/2);

uder=(-a^2/2)*sech(a*x/2)^2;
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out=[0 1; lambda+uder u-cc];

function out = Aadj(x,lambda,s,p)

a=.5*(p.ul-p.ur);

cc=.5*(p.ul+p.ur);

u=cc-a*tanh(a*x/2);

uder=(-a^2/2)*sech(a*x/2)^2;

out=-[0 1; lambda+uder u-cc]’;

C.2 isentropic

function isentropic

beep off; clc; clear all; close all

tic

global s p

%independent variables

p.gamma=5/3;

p.vp=.001;

%dependpent variables

p.a=-(1-p.vp)/(1-p.vp^-p.gamma);

%structure variables

s.I=12;

s.larray=2;

s.rarray=1;

s.side=1;
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c.ksteps=30;

c.basisL=@analytic_basis;

c.basisR=@analytic_basis;

c.evans=@evans;

c.LA=@A;

c.RA=@Aadj;

c.epsl=0;

c.epsr=0;

c.proj=@projection2;

m.n=3;

e.kl=1;

e.kr=1;

e.evans=’reg_adj_polar’;

m.damping=0;

m.method=@drury;

m.options=odeset(’RelTol’,1e-6,’AbsTol’,1e-8,’Refine’,1,’Stats’,’on’);

%dependent structure variables

s.R=s.I;

s.L=-s.I;

e.LA=c.LA;

e.RA=c.RA;

e.Li=[s.L 0];

e.Ri=[s.R 0];

c.L=s.L;

c.R=s.R;

s.sol = getprofile;

74



%preimage contour

circpnts=30; imagpnts=30; r=10; spread=4; zerodist=10^(-4);

preimage=semicirc(circpnts,imagpnts,c.ksteps,r,spread,zerodist);

halfw=contour(c,s,p,m,e,preimage);

w = [halfw fliplr(conj(halfw))];

wnd=winding_number(w);

plot(w,’-*k’);

time=toc;

fprintf(’Time: %1.2d seconds\n’,time);

fprintf(’Winding Number: %1.1d\n’,wnd);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function sol = getprofile

global s

% BVP solver

options = bvpset(’RelTol’, 1e-6, ’AbsTol’, 1e-8,’Nmax’, 20000);

solinit = bvpinit(linspace(0,s.R,20),@guess);

sol = bvp5c(@double_F,@bc,solinit,options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = guess(x)

global s p

a = 0.5*(1+p.vp);

c = 0.5*(1-p.vp);

out = [a-c*tanh((s.R/s.I)*x);a-c*tanh((s.L/s.I)*x)];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = bc(ya,yb)

global p

out = [ya(1,:)-ya(2,:);

ya(1) - 0.5*(1+p.vp)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = F(x,v)

global p

out=v*(v-1+p.a*(v^(-p.gamma)-1));

function out = A(x,lambda,s,p)

a=p.a;

gamma=p.gamma;

v=soln(x,s);

out = [0 lambda 1;

0 0 1;

lambda*v lambda*v f(v,gamma,a)-lambda];

function out=f(v,gamma,a)

out=v-v^(-gamma)*h(v,gamma,a);

function out=h(v,gamma,a)

out= -v^(gamma+1)+a*(gamma-1)+(a+1)*v^(gamma);atim}

function out = Aadj(x,lambda,s,p)
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a=p.a;

gamma=p.gamma;

v=soln(x,s);

out = -[0 lambda 1;

0 0 1;

lambda*v lambda*v f(v,gamma,a)-lambda]’;

function out=f(v,gamma,a)

out=v-v^(-gamma)*h(v,gamma,a);

function out=h(v,gamma,a)

out= -v^(gamma+1)+a*(gamma-1)+(a+1)*v^(gamma);

C.3 capillarity

function capillarity

beep off; clc; clear all; close all

tic

global s p b

p.d=-.45;

p.gamma=1.4;

p.vp=.15;

p.a=-(1-p.vp)/(1-p.vp^-p.gamma);

p.ul=[1;0];

p.ur=[p.vp;0];

77



%structure variables

s.I=25;

s.larray=[3;4];

s.rarray=[1;2];

s.side=1;

c.ksteps=30;

c.basisL=@analytic_basis;

c.basisR=@analytic_basis;

c.evans=@evans;

c.LA=@A;

c.RA=@A;

c.epsl=0;

c.epsr=0;

c.proj=@projection2;

m.n=4;

e.kl=2;

e.kr=2;

e.evans=’reg_reg_polar’;

m.damping=0;

m.method=@drury;

m.options=odeset(’RelTol’,1e-6,’AbsTol’,1e-8,’Refine’,1,’Stats’,’on’);

%dependent structure variables

s.R=s.I;

s.L=-s.I;

e.LA=c.LA;

e.RA=c.RA;
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e.Li=[s.L 0];

e.Ri=[s.R 0];

c.L=s.L;

c.R=s.R;

AM = Flinear(p.ul);

eig(AM)

PM = projection1(AM,-1);

b.LM = orth(PM.’).’;

AP = Flinear(p.ur);

PP = projection1(AP,1);

b.LP = orth(PP.’).’;

s.sol = getprofile2;

%preimage contour

circpnts=30; imagpnts=30; r=10; spread=2; zerodist=10^(-2);

preimage=semicirc(circpnts,imagpnts,c.ksteps,r,spread,zerodist);

halfw=contour(c,s,p,m,e,preimage);

w = [halfw fliplr(conj(halfw))];

wnd=winding_number(w);

plot(w,’-*k’);

time=toc;

fprintf(’Time: %1.2d seconds\n’,time);

fprintf(’Winding Number: %1.1d\n’,wnd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function sol = getprofile2

global s

% BVP solver

options = bvpset(’RelTol’, 1e-6, ’AbsTol’, 1e-8,’Nmax’, 20000);

solinit = bvpinit(linspace(0,s.I,400),@guess2);

sol = bvp5c(@double_F,@bc2,solinit,options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = guess2(x)

global s p

a = 0.5*(p.ul(1)+p.ur(1));

c = 0.5*(p.ul(1)-p.ur(1));

alpha = 0.75;

out = [a-c*tanh(alpha*(s.R/s.I)*x);-c*a*alpha*sech(alpha*(s.R/s.I)*x).^2;...

a-c*tanh(alpha*(s.L/s.I)*x);-c*a*alpha*sech(alpha*(s.L/s.I)*x).^2;];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = bc2(ya,yb)

global s b p

out = [ya(s.rarray,:)-ya(s.larray,:);

ya(1) - 0.5*(p.ul(1)+p.ur(1));

[b.LP zeros(size(b.LP))] * (yb - [p.ur;p.ul]);

[zeros(size(b.LM)) b.LM] * (yb - [p.ur;p.ul])];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = Flinear(U)

global p

out = [0 1;(1+p.a*p_prime(U(1)))/p.d 1/(-U(1)*p.d)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function out = p_prime(v)

global p

out = -p.gamma * v^(-p.gamma-1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = F(x,y)

global p

out = [y(2,:);(y(1,:)-p.ul(1)+p.a*((y(1,:)^(-p.gamma)...

-p.ul(1)^(-p.gamma))) - y(2,:)./y(1,:))/p.d];

function out = A(x,lambda,s,p)

v = soln(x,s);

b = 1/v(1);

h = 1-p.a*p.gamma*v(1)^(-p.gamma-1) + v(2)/v(1)^2-lambda/v(1);

out = [0 lambda 1 0;

0 0 1 0;

0 0 0 1;

lambda/p.d lambda/p.d h/p.d (-b/p.d)];

function out = Aadj(x,lambda,s,p)

v = soln(x,s);

b = 1/v(1);

h = 1-p.a*p.gamma*v(1)^(-p.gamma-1) + v(2)/v(1)^2-lambda/v(1);

out = -[0 lambda 1 0;

0 0 1 0;

0 0 0 1;
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lambda/p.d lambda/p.d h/p.d (-b/p.d)]’;

C.4 analytic choice

function out = analytic_basis(projection,x,preimage,s,p,A,posneg,eps)

% out = analytic_basis(projection,x,preimage,s,p,A,posneg,eps)

%

% Returns an analytic basis at specified infinity using the method of Kato.

%

% Input "projection" is a function handle to the projection function to be

% used, "x" is the numerical value of infinity, "preimage" is the contour

% on which the Evans function is computed, "s" and "p" are structures

% explained in the STABLAB documentation, "A" is a function handle to the

% Evans matrix, "posneg" is 1 or -1 determining which space the

% projection function should return, and "eps" is the tolerance in the

% projection function.

iterations = size(preimage,2);

[p_old, Q1] = projection(A(x,preimage(1),s,p),posneg,eps);

[n,k]=size(Q1);

out=zeros(n,k,iterations);

out(:,:,1) = real(Q1);

for j=2:iterations

proj = projection(A(x,preimage(j),s,p),posneg,eps);

%out(:,:,j) = proj * (eye(n) + proj * p_old - p_old * proj) * out(:,:,j-1);

out(:,:,j) = proj * (eye(n) + 0.5 * p_old * (eye(n)- proj)) * out(:,:,j-1);

p_old = proj;

end
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C.5 capa

function out=capa(x,y,lambda,s,p,A,n,k,MU)

% out=capa(x,y,lambda,s,p,A,n,k,MU)

%

% Returns the value y’(x) of the first order system y’=(A(x,lambda)-(mu)I)y

%

% Input "x" is the value where y’(x) is evaluated, $y$ is the vector y(x),

% "lambda" is the point in the complex plane where the Evans function is

% evaluated, s,p are structures explained in the STABLAB documentation, "A"

% is a function handle to the Evans matrix, "n" is the dimension of the

% system and "k" is the dimension of the manifold sought, and "MU" is the

% eigenvalue corresponding to the largest or smallest eigenvalue of

% A(\pm \infty,lambda)

out = (A(x,lambda,s,p)-MU*eye(nchoosek(n,k))) * y;

C.6 contour

function out=contour(c,s,p,m,e,preimage)

% out=contour(c,s,p,m,e,preimage)

%

% Returns the Evans function output for the given input.

%

% Here c,s,p,m,e are structures described in the introduction of the

% STABLAB documentation. The input preimage is the contour on which the

% Evans function will be computed.

lbasis=c.basisL(c.proj,c.L,preimage,s,p,c.LA,1,c.epsl);

rbasis=c.basisR(c.proj,c.R,preimage,s,p,c.RA,-1,c.epsr);

index=1:(c.ksteps+1):length(preimage);
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lbasis=lbasis(:,:,index);

rbasis=rbasis(:,:,index);

preimage=preimage(index);

out=zeros(1,length(preimage));

%parfor j=1:length(index) %Use this for parallel computing

for j=1:length(index)

out(j)=c.evans(lbasis(:,:,j),rbasis(:,:,j),preimage(:,j),s,p,m,e);

j %Take this out for parallel computing

end

C.7 davey

function ydot=davey(t,y,lambda,A,s,p,n,k,mu,damping)

% ydot=davey(t,y,lambda,A,s,p,n,k,mu,damping)

%

% Returns the ODE output for the polar method using the method of Davey

%

% Input "t" and "y" are provided by ode45, "A" is a function handle to the

% desired Evans matrix, s,p are structures explained in the STABLAB

% documentation, "n" is the dimension of the system and "k" is the

% dimension of the manifold, "mu" is the rescaling value for increased stability,

% and "damping" is the damping coefficeint.

W = reshape(y(1:k*n,1),n,k);

A_temp=A(t,lambda,s,p);

Winv = pinv(W);

ydot = [reshape((eye(n)-W*Winv)*A_temp*W+damping*W*(eye(k)-W’*W),n*k,1);0];

ydot(end) = (trace(Winv*A_temp*W)-mu)*y(k*n+1,1);
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C.8 double F

function out = double_F(x,y)

% out = double_F(x,y)

%

% Returns the split domain for the ode given in the function F.

%

% Input "x" and "y" are provided by the ode solver. Note that s.rarray

% should be [1,2,...,k] and s.larray should be [k+1,k+2,...,2k]. See

% STABLAB documentation for more inforamtion about the structure s.

global s

out = [(s.R/s.I)*F(x,y(s.rarray,:));(s.L/s.I)*F(x,y(s.larray,:))];

C.9 drury

function ydot=drury(t,y,lambda,A,s,p,n,k,mu,damping)

% ydot=drury(t,y,lambda,A,s,p,n,k,mu,damping)

%

% Returns the ODE output for the polar method using the method of Drury

%

% Input "t" and "y" are provided by ode45, "A" is a function handle to the

% desired Evans matrix, s,p are structures explained in the STABLAB

% documentation, "n" is the dimension of the system and "k" is the

% dimension of the manifold, "mu" is the rescaling value for increased stability,

% and "damping" is the damping coefficeint.

W = reshape(y(1:k*n,1),n,k);
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A_temp=A(t,lambda,s,p);

ydot = [reshape((eye(n)-W*W’)*A_temp*W+damping*W*(eye(k)-W’*W),n*k,1);0];

ydot(end) = (trace(W’*A_temp*W)-mu)*y(k*n+1,1);

C.10 evan

function out=evans(yl,yr,lambda,s,p,m,e)

% out=evans(yl,yr,lambda,s,p,m,e)

%

% Returns the evans function output at a given point.

%

% Input "yl" and "yr" are respectively the initializing values on the left

% and right for the desired manifolds, "lambda" is the value in the complex

% plane where the Evans function is evaluated, and s,p,m,e are structures

% explained in the STABLAB documentation.

fun=str2func(e.evans);

out=fun(yl,yr,lambda,s,p,m,e);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out=reg_adj_polar(yl,yr,lambda,s,p,m,e)

[omegal,gammal]=manifold_polar(e.Li,orth(yl),lambda,e.LA,s,p,m,e.kl);

[omegar,gammar]=manifold_polar(e.Ri,orth(yr),lambda,e.RA,s,p,m,e.kr);

out=det(orth(yl)’*yl)’*det(orth(yr)’*yr)*gammal’*gammar*det(omegal’*omegar);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out=adj_reg_polar(yl,yr,lambda,s,p,m,e)

[omegal,gammal]=manifold_polar(e.Li,orth(yl),lambda,e.LA,s,p,m,e.kl);

[omegar,gammar]=manifold_polar(e.Ri,orth(yr),lambda,e.RA,s,p,m,e.kr);

out=det(orth(yl)’*yl)*det(orth(yr)’*yr)’*gammar’*gammal*det(omegar’*omegal);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function out=reg_reg_polar(yl,yr,lambda,s,p,m,e)

[omegal,gammal]=manifold_polar(e.Li,orth(yl),lambda,e.LA,s,p,m,e.kl);

[omegar,gammar]=manifold_polar(e.Ri,orth(yr),lambda,e.RA,s,p,m,e.kr);

out=det(orth(yl)’*yl)*det(orth(yr)’*yr)*gammal*gammar*det([omegal omegar]);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.11 manifold compound

function out = manifold_compound(x,z,lambda,s,p,m,A,k,pmMU)

% out = manifold_compound(x,z,lambda,s,p,m,A,k,pmMU)

%

% Returns the vector representing the manifold evaluated at x(2).

%

% Input "x" is the interval the manifold is computed on, "z" is the

% initializing vector for the ode solver, "lambda" is the point on the

% complex plane where the Evans function is computed, s,p,m are structures

% explained in the STABLAB documentation, "A" is the function handle to the

% desired Evans matrix, "k" is the dimension of the manifold sought, and

% "pmMU" is 1 or -1 depending on if respectively the growth or decay

% manifold is sought.

[R,D] = eig(A(x(1),lambda,s,p));

[e,mat] = max(real(diag(pmMU*D)));

MU = D(mat,mat);

[X,Z]=ode45(@capa,x,z,m.options,lambda,s,p,A,m.n,k,MU);

out = Z(end,:).’;

C.12 manifold polar

function [omega,gamma] = manifold_polar(x,y,lambda,A,s,p,m,k)
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% [omega,gamma] = manifold_polar(x,y,lambda,A,s,p,m,k)

%

% Returns "omega", the orthogonal basis for the manifold evaluated at x(2)

% and "gamma" the radial equation evaluated at x(2).

%

% Input "x" is the interval on which the manifold is solved, "y" is the

% initializing vector, "lambda" is the point in the complex plane where the

% Evans function is evaluated, "A" is a function handle to the Evans

% matrix, s,p,m are structures explained in the STABLAB documentation, and k

% is the dimension of the manifold sought.

mu = trace(orth(y)’*A(x(1),lambda,s,p)*orth(y));

[X,Y]=ode45(m.method,[x(1) x(2)],[reshape(y,m.n*k,1);1],m.options,lambda,A,s,p,...

m.n,k,mu,m.damping);

omega = reshape(Y(end,1:m.n*k).’,m.n,k);

gamma = Y(end,m.n*k+1);

C.13 projection1

function P = projection1(matrix,posneg,eps)

% P = projection1(matrix,posneg,eps)

%

% Returns a projector P

%

% Input "matrix" is the matrix from which the eigenprojection comes,

% "posneg" is 1,-1, or 0 if the unstable, stable, or center space is

% sought respectively.

[R,D] = eig(matrix);

L = inv(R);
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P = zeros(size(R));

if posneg==1

index = find(real(diag(D))>0).’;

elseif posneg==-1

index = find(real(diag(D))<0).’;

elseif posneg==0

index = find(abs(real(diag(D)))<eps).’;

end

for j=index

P = P + R(:,j)*L(j,:);

end

C.14 projection2

function [P,Q1] = projection2(matrix,posneg,eps)

% [P,Q1] = projection2(matrix,posneg,eps)

%

% Returns a projector P and spanning set Q1 of the invariant subspace

% associated with the given matrix and specified subspace.

%

% Input "matrix" is the matrix from which the eigenprojection comes,

% "posneg" is 1,-1, or 0 if the unstable, stable, or center space is

% sought.

[U,T] = schur(matrix,’complex’);

E = ordeig(T);

k = length(find(posneg*real(E)>eps));
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US = ordschur(U,T,posneg*real(E)>eps);

Q1 = US(:,1:k);

[U,T] = schur(-matrix,’complex’);

E = ordeig(T);

k = length(find(posneg*real(E)>-eps));

US = ordschur(U,T,posneg*real(E)>-eps);

Q2 = US(:,1:k);

R = [Q1 Q2];

L = inv(R);

P = zeros(size(matrix));

for k=1:size(Q1,2)

P = P + R(:,k)*L(k,:);

end

C.15 relative error

function out=relative_error(x)

% out=relative_error(x)

%

% Returns max(|x(j+1)-x(j)|/|x(j)|)

%

% Input "x" is a vector whose relative error is sought

out=abs(x(2)-x(1))/abs(x(1));

for j=1:length(x)-1

out=max(out,abs(x(j+1)-x(j))/abs(x(j)));

end
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C.16 semicirc

function [preimage]=semicirc(circpnts,imagpnts,ksteps,r,spread,zerodist)

% [preimage]=semicirc(circpnts,imagpnts,ksteps,r,spread,zerodist)

%

% Returns a quarter of a semicircle

%

% Input "circpnts" is the number of points on the circle part, "imagpnts"

% is the number of ponits on the imaginary axis, "ksteps" is the number of

% kato steps taken (and are later taken out of the contour), "r" is the

% radius of the semicircle, "spread" is a constant that spreads the points

% on the imaginary axis so that they are more dense near the origin, and

% "zerodist" is how close along the imaginary axis the contour comes to the

% origin.

p1=(circpnts-1)*ksteps+circpnts;

p2=(imagpnts-1)*ksteps+imagpnts+ksteps;

theta = linspace(0,pi/2,p1);

ln=linspace(r^(1/spread),zerodist^(1/spread),p2).^spread;

preimage=[r*exp(1i*theta) ln*1i];

C.17 soln

function out=soln(x,s)

% out=soln(x,s)

%

% Returns the solution of bvp problem where the domain was split in half

%

% Input "x" is the value where the solution is evaluated and "s" is a

% stucture described in the STABLAB documenation
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if x<0

x=s.side*s.I/s.L*x;

temp=deval(s.sol,x);

out=temp(s.larray,:);

else

x=s.side*s.I/s.R*x;

temp=deval(s.sol,x);

out=temp(s.rarray,:);

end

C.18 winding number

function out=winding_number(w)

% out=winding_number(w)

%

% Returns the winding number of a contour w

%

% Input "w" should be a closed contour not passing through zero.

%

% If f is analytic and nonzero at each point of a simple closed positively

% oriented contour C and is meromorphic inside C, then

% WindingNumber(w)=N0-Np where w=f’(C)./f(C) and N0 and Np are respectively

% the number of zeros and poles of f inscide C (multiplicity included).

%

% The change in the argument between any two points of w should be less than

% Pi for WindingNumber(w) to be accurate.

%Computes the winding number of the contour

out=0;
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for k=1:length(w)-1

if imag(w(k+1))==0 && real(w(k+1))<0

kp=pi*sign(imag(w(k)));

else

kp=imag(log(w(k+1)/norm(w(k+1))));

end

if imag(w(k))==0 && real(w(k))<0

kc=pi*sign(imag(w(k+1)));

else

kc=imag(log(w(k)/norm(w(k))));

end

opt1=kp-kc;

opt2=-(2*pi-abs(opt1))*sign(opt1);

if min(abs(opt1),abs(opt2))==abs(opt1)

out=out+opt1;

else

out=out+opt2;

end

end

temp=out/(2*pi);

out=round(temp);
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