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Abstract:

The need for tools capable of evaluating the potential impacts of alternative policies has been
expressed by many. This paper focuses on a methodology that describes how credibility can be
constructed for models used to evaluate alternative policies. Relative to modeling conducted in
scientific contexts, however, modeling for policy evaluation has notable differences that would
lead some to say that achieving credibility in such results is not possible. We first introduce a
model assessment framework that enables us to describe how models for policy evaluation can still
be more or less credible despite the differences from scientific modeling contexts. The argument
presented depends primarily on i) the scalar hierarchical structure used to represent the complex
policy system, ii) the ability of experimental frames to include a variety of constraints and/or weak
data patterns across the scalar levels used to represent the system, and iii) the way in which the
framework facilitates critique by stakeholders.

Keywords: Assessment; Critique; Complexity; Validation; Verification; Hierarchy theory; Simu-
lation

1 INTRODUCTION

The need for tools capable of evaluating the potential impacts of alternative policies has been
expressed around the world [e.g., Owens et al., 2004; Gov. Canada, 2005]. Despite this need,
research over the last 30 years has demonstrated that the impact of policy assessment on policy
decisions does not occur via a linear process - meaning that the outputs from policy assessments
are generally not carefully considered or used directly by decision makers [Owens, 2005]. In-
stead, the impact of these tools occurs in more subtle and nuanced ways such as by facilitating
group learning among stakeholders and providing ammunition that can be used to persuade op-
ponents [Owens, 2005]. In considering how credibility can be established in the context of policy
evaluation, the main conclusion is that while possessing credible models does not guarantee that a
policy change will occur, possessing models that are credible to stakeholders and domain experts
is indeed necessary for policy change to occur in contentious situations.

This paper thus focuses on the question of how to build credibility in models used to evaluate
alternative policies. Others have described the issues associated with building such models [e.g.,
Couclelis, 2005; Jakeman et al., 2006]. After introducing a number of concepts and definitions to
provide the necessary context associated with simulation modeling generally, a general assessment
framework is described that builds on previous work [e.g, Zeigler et al., 2000; Aumann, 2007].
Some of the unique challenges associated with models used to evaluate policies are then discussed
along with how the assessment framework presented can be applied to build credibility in policy
evaluation contexts. Given that credibility must be established with stakeholders, the way in
which results from this assessment framework could be delivered using web-based tools are also
described.
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To clarify the concepts and definitions in-

Figure 1: A general simulation framework con-
sists of both source and model systems; the mor-
phisms between the two systems in terms of in-
put, outputs and model structure; and the exper-
imental frames.

troduced, a single running example is used
throughout. This example focuses on how a
model developed to evaluate a policy of trad-
able disturbance credits (TDCs) can be as-
sessed. Similar to SO2 emission trading, un-
der TDCs a cap is placed on the cumulative
amount of landscape disturbance that can oc-
cur within a region and industrial players
within the region can purchase and trade per-
mits for the right to disturb land [e.g., We-
ber and Adamowicz, 2002]. This is one pol-
icy under evaluation for efficiently achieving
ecological and economic objectives in the
oil-sands area of NE Alberta, Canada. An
agent-based model is currently being used
for this evaluation, but only a small num-
ber of the model’s components are presented
here to illustrate the concepts in this paper.
The components used in this paper include industry agents (which attempt to maximize their
economic return by exploring for oil across the landscape and use the exploration information
to prioritize the drilling of wells and building of pipelines, etc), a government agent (which sets
disturbance cap, monitors cumulative disturbance across the landbase, and auctions disturbance
permits), and the natural environment (which includes things like natural disturbance and vegeta-
tive succession).

2 ASSESSMENT OF SIMULATION MODELS

2.1 Simulation Framework

At a high level, amodelis just a state transition function or mechanisms that instructs thesimula-
tor (e.g., a computer or algorithm capable of executing the model instructions) on how to generate
outputs from inputs (Figure 1). Thesource systemis the real or virtual system that is being mod-
eled and the goal of modeling is to achieve a representation of the source system so that under
“similar” inputs, both systems produce “similar” outputs. This idea is captured by theexperimen-
tal frameswhich include a specification of the conditions under which both the source and model
systems are to be observed or experimented with, along with mechanisms for comparing the two
systems. The aim of model assessment is to build credibility in the model and is accomplished by
ensuring that both systems “agree” over a sufficiently wide range of conditions encompassing the
objectives motivating the modeling project.

One approach for representing complex systems is to decompose them according to ascalar
hierarchyso that the objects at a given level contain, volumetrically and structurally, the objects
of lower hierarchical levels [e.g., Kline, 1995; Giampietro, 2004]. As illustrated in Figure 2,
one can think of the levels below a focal level as providing the “mechanism” while higher levels
provide a “purpose” or context for the lower levels. Emergent properties are taken to define each
level [Aumann, 2007].

At each level in this scalar hierarchy, model components can be specified with varying degrees
of detail according to aspecification hierarchy. An I/O Behaviorspecification is like a black-
box in which inputs are mapped directly onto outputs. For example, in Figure 2 the way in
which the Exploration component of the Oil Company is represented might follow an I/O behavior
specification. In aI/O Systemspecification, the model maintains an internal state that can be
changed by model inputs. Thus, whether the Oil Company engages in exploration at a given
time depends on it possessing sufficient TDCs. ACoupled Componentspecification is a model
composed of other I/O Behavior, I/O System, and possibly other coupled component models and
is illustrated by the entire Oil Company sub-model.
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Scalar and specification hierarchies enable definition of what is meant by “similarity” between two
systems [Zeigler et al., 2000]. Two systems are said to bemorphicat a given specification level if
it is possible to establish a direct correspondence between the defining elements of each system at
the same specification level within some experimental frame. For an I/O Behavior specification,
the morphism is simply the comparison of the inputs and outputs of both systems. For an I/O
System specification, the introduction of a state space requires the introduction of a mapping
between the state spaces of both systems. This mapping is said to behomomorphicif there is
a defined correspondence (but not necessarily an identity) between the states in both systems so
that both systems progress through similar pathways to achieve similar model outputs. Finally,
since component model specifications can involve all three model specification types, it must be
ascertained not only that the output of the overall model is correct (similar to I/O Behavior), but
also that the outputs are produced for the right reasons (i.e., that the homomorphisms between the
components of the two systems hold).

2.2 Model Assessment Framework

In the context of the simulation framework

Figure 2: Simplistically, the entities relevant
to evaluating the TDC policy include the oil
companies, a regulator, and the natural environ-
ment. These entities all operate over a defined
landscape area, and in turn are comprised of
other lower-level components. In the case of an
oil company, such components include units in
charge of exploring for oil, developing oil (i.e.,
building roads and pipelines to get the oil to mar-
ket), and also buying and selling TDCs with the
Regulator or other companies.

presented above, the goal of model assess-
ment is to establish the strengths of the mor-
phisms between the source and model sys-
tems. Building such credibility is accom-
plished via a processes of model verification,
model validation, and critique. It should be
noted that the meanings of these terms is not
entirely consistent across fields with some
eschewing the use of the term “validation”
[e.g., Anderson and Bates, 2001], others not-
ing the problems implied by the term while
acknowledging it’s widespread use [e.g.,
Oreskes and Belitz, 2001], and other distin-
guishing numerous different kinds of valida-
tion including operational, conceptual, data,
and even processes [e.g., Rykiel Jr., 1996].

In this paper,model verificationmeans veri-
fying that the actual model implementation
is consistent with the model design speci-
fications. Relative to the other assessment
processes, verification is relatively easy to
accomplish and thus this paper focuses on
the processes of model validation and cri-
tique and builds on previous work [e.g,
Balci, 1997; Rykiel Jr., 1996; Zeigler et al.,
2000; Aumann, 2007].

Model validationis about substantiating that
the behavior of the model “mimics” the be-
havior of the system with sufficient accuracy
so that it is impossible to distinguish the be-
haviors of both systems in the experimental
frames. Experimental framesare an opera-
tional formulation of the objectives motivating a modeling project and practically function as a
type of measurement or observer system consisting of ageneratorthat generates the input to the
systems, anacceptorthat monitors the “experiment” to ensure the desired experimental conditions
are met by both systems, and atransducerthat observes, analyzes and stores the output.

Saying it is impossible to distinguish the behaviors of two systems requires the concept ofreplica-
1027
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tive validity, namely that for all experiments possible within the experimental frame, the behav-
ior of the model and the source system agree within the specified tolerance at the I/O Behavior
level. For models specified at the I/O System level, the introduction of a state-space necessi-
tates a stronger notion ofstructural validitymeaning that the model mimics in a step-by-step,
component-by-component fashion the way in which the source system performs its state transi-
tions. Structural validity ensures that the model is generating the correct I/O behavior for the
right reasons, and not because incorrect behaviors in one model component are compensated by
behaviors in other model components. Methodologically, structural validity can be achieved by
applying experimental frames to each of the model components within a given scalar level and
across hierarchical levels to assess the larger scale consequence of these behaviors (see Figure 3
and discussion below).

One final, important step for achieving model credibility is acritique of the processes of model
design, verification, and validation. Such critique is essential because model validity is only
established relative to the study objectives as implemented in the experimental frames. If these
objectives are incorrectly specified and/or the model is incorrectly defined, the model can still
be valid with respect to this incorrect specification even though the simulation results will not
be credible when viewed from a broader perspective. However, for such a critique to occur the
model verification and model validation steps must be accessible, transparent, and understandable
to non-modelers. How this can be achieved in the context of the current simulation and assessment
framework will be discussed below.

We will say that a model is credible in a particular problem context if it has been verified, vali-
dated, and critiqued. No model can be absolutely credible, but rather models should be thought of
in terms of degrees of credibility. Ultimately, the greater the need for high levels of credibility, the
higher will be model development and assessment costs. Thus, the level of credibility required for
the project needs to be bounded before the model is constructed and model assessment performed.

3 BUILDING CREDIBILITY IN MODELS FOR POLICY EVALUATION

While the above simulation and assessment frameworks appear quite natural for most systems
studied by the physical sciences, a number of substantial differences arise in the context of policy
evaluation that impact the way in which assessment can be carried out and ultimately the kind
and level of credibility that is achievable. While models in scientific contexts are about construct-
ing scientific explanations based on facts and well established theories, in a policy context the
purpose is to decide on a course of action based on our values about the kind of unknown (and
unknowable) future we desire based on knowledge that is always incomplete [Couclelis, 2005].
In addition, while scientific modeling will likely only ever be critiqued by a relatively small sci-
entific community, a much larger community of diverse stakeholders will seek to comment on
any policy assessment - especially if the financial stakes are high. These differences are explored
more fully in this section.

3.1 Differences in the Simulation Framework

A major difference between typical scientific modeling and policy evaluation is that no source
system exists for the later - since the point of such evaluation is to do itbefore a policy is ever
enacted. Evaluation of a policy’s performance must thus be judged relative to the future and
not relative to observed behaviors - as is typical in scientific contexts. This unknown future is
typically expressed using a number of alternative, coherent, plausible and relevant future scenarios
capturing the exogenous conditions under which the policy might operate [e.g., Couclelis, 2005].
Thus, relative to the framework shown in Figure 1, the inputs to the model system also contain
a set of future scenarios. The non-existence of the source system coupled with the alternative
futures used means that limited data will exist for model validation, particularly at higher scalar
levels that are critical to evaluating policy performance (e.g., experimental frame C in Figure 3).
These differences help explain why the kind of credibility possible in scientific contexts cannot
exist for policy evaluation.
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3.2 Model Assessment - Validation

Despite these differences and their attendant challenges, we will argue that it is still possible for
results of a policy evaluation to be more or less credible. The main tenets of the argument are
based on the utility of constraints and “weak data patterns” when applied across the scalar levels
of the model to validate model components, and the ability to apply experimental frames across
multiple models.

In the context of the running example con-

Figure 3: Experimental frames (in gray) encap-
sulate the lower-level components in Figure 2
where each frame contains criteria on the behav-
ior of the sub-model that need to be respected.
For example, the sub-model dealing with buying
and selling TDCs needs to ensure that the trans-
actions balance across the entire company, that
the prices it is paying for the TDCs are not caus-
ing the company’s financial ruin, etc. At higher
hierarchical levels, the amount of oil produced
by a company over time should not fluctuate
widely, the market should be efficient, and over-
all trading volumes for TDCs should be large
given a large number of players in the market.

sidered here, the impacts of a policy change
would ideally be assessed regionally (in
terms of economic and ecological indica-
tors) and at lower scalar levels to capture the
impacts on individual firms. The lack of em-
pirical data may lead some to conclude that
achieving any kind of credibility is impossi-
ble. However, such a position overstates the
necessity of data in achieving model credi-
bility. In general, the ability of any model
to mimic data at the I/O Behavior level is
only weak evidence that the important un-
derlying processes have been correctly cap-
tured since models that inaccurately capture
underlying processes can still predict quite
well [Oreskes and Belitz, 2001]. For exam-
ple, statistical models can predict quite well
provided they are applied in a similar context
to which they were built.

In the context of a policy that alters any ex-
isting context for which data may exist, va-
lidity can be established using structural in-
tegrity criteria at the I/O System level. Struc-
tural integrity criteria ensure that the an-
swers achieved at a given scalar level are
also achieved for the “right reasons” - mean-
ing that all of the experimental frames ap-
plied to lower levels are also satisfied. In
the context of the scalar hierarchical model
decomposition used, it must be decided
whether the behaviors of sub-models are the
same under the new policy context. For
example, under TDCs the vegetation suc-
cession pathways will remain the same, as
should the probability of a strike success as
exploration proceeds across a basin (see Fig-
ure 3). In this case, existing data can be used.

For sub-model behaviors that change under alternative policies, the experimental frames can in-
clude a number of alternative options: i) constraints can be applied to these components (e.g.,
Do a company’s number of TDCs and the disturbance it creates balance? Is the disturbance cap
being maintained across the landscape?); ii) qualitative behavior assessment criteria (e.g., Are
companies developing in areas of actual high petroleum potential? Are companies generally sell-
ing TDCs to each other when it makes sense to do so? Is the market efficient?); and iii) “vague”
or “weak” data patterns (e.g., Do the natural disturbance patterns created by the model agree with
what is observed empirically?). Thus, the lack of “hard data” for the system being modeled is no
excuse for failing to perform model validation in policy contexts.
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Applying such types of “data” across the scalar hierarchical levels using the experimental frames
can provide as much information for model validation as a single strong empirical data pat-
tern [Grimm et al., 2005, & Online Material] and also [Aumann et al., 2006, Appendix B].
The reason for this is thatall experiments specified for the scalar hierarchical levels below the
current level must be satisfiedsimultaneously. Provided the criteria used in the experimental
frames are not trivial, satisfying all frames simultaneously rapidly becomes challenging. Further,
the way in which experimental frames trade-off with each other can be used to guide refinement
of model structure and also refine the experimental frames [Reynolds and Ford, 1999; Wiegand
et al., 2003].

Another way in which model validity can be established is by comparing the behaviors of alter-
native models constructed using different modeling assumptions. In the context of such multiple
models, the experimental frames are general enough to allow these models to be validated against
each other. However, the challenge here is ensuring that the experimental frames areapplicable-
meaning that the conditions required by an experimental frame can be satisfied by all the models.

In summary, the non-existence of the source system and the lack of data does not mean model
validation can be ignored nor that validation is impossible. Instead, the above validation process
allows us to say why the model’s behaviors are being produced and to demonstrate that these
behaviors are being produced for the right reasons. The reason we are justified in believing the
outcomes produced by the model results from the behavior of the lower level model components
being deemed to be valid based on the experimental frames applied at these level(s) coupled
with the experimental frames applied across higher hierarchical levels. As a result, we can have
confidence that these lower levels are not spuriously influencing the behavior of higher levels, and
that the behaviors of model components are all within reasonable bounds. Because the outputs
are produced for reasons that we think are justifiable (if we didn’t think this, then we would
add additional experimental frames or include models built using alternative assumption), we are
compelled to view the results as valid within the assumptions of the assessment.

This approach does, however, also have some notable limitations. First, even if alternative models
are constructed and these models all agree across the applicable experimental frames, there is a
very real possibility that all of such models are simply wrong due to a common lack of knowl-
edge about the non-existent system being modelled. Thus, agreement across diverse models may
simply be a result of common ignorance. While disagreement across models might improve un-
derstanding at the stage of critique, this is unlikely to occur under common ignorance and is
particularly challenging since no source system exists to act as the ultimate authority. Another
limitation in the above method is that evaluations can only be done under a small and finite set of
alternative futures. While utilizing a greater variety of alternative futures will help to ensure that a
“robust policy” is identified [e.g., Lempert et al., 2006], constructing a large number of alternative
futures that are coherent, plausible and realistic presents its own challenges.

3.3 Model Assessment - Critique

A larger critique of model design and validation is essential because model validity is a necessary
but insufficient condition for establishing the credibility of modeling results [e.g., Balci, 1997]. As
is clear from the discussion above, model validity is only established relative to the experimental
frames used. If these experimental frames are inadequate for the study objectives, the model can
still be deemed to be valid even though the simulation results will not be credible. Credibility can
be enhanced via a process of external review by stakeholders. However, the challenge is delivering
the large quantities of information produced during validation in a manner that is accessible,
transparent, and understandable to such reviewers who are likely not modelers. This section
illustrates conceptually how such delivery could be accomplished under the simulation framework
presented.

Since the system being modeled is conceptualized in terms of a scalar hierarchy, these entities are
represented as separate sub-models within the overall model. Each of these sub-models is also
“wrapped” (e.g., Figure 3) in one or more experimental frames that may encompass one or more
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sub-models. Each experimental frame has associated with it criteria governing the inputs that
are allowable for the sub-model (generator), criteria to ensure that the assumptions underlying
the sub-model are maintained (acceptor), and the frame also monitors the output produced by
the sub-model to ensure its acceptability (transducer). Problems could originate in any of these
three areas, and the aim is to present such failures to the user in an easy to understand way and
enable them to browse the criteria used in the experimental frames. One possibility is illustrated
in Figure 4.

Current programming tools enable the hierarchical structure of models to be displayed. Thus, the
challenge is to expand these tools to display the experimental frames and also add in an overarch-
ing monitoring system that monitors and reports on the status of all the frames as the model runs.
Conceptually, users could browse such information as illustrated in Figure 4. The challenge is im-
plementing such a tool in a general manner so that it can deal with models from diverse problem
contexts.

4 CONCLUSION AND RECOMMENDATIONS

With the ever increasing power of comput-

Figure 4: Using the hierarchical structure of
the model and the fact that experimental frames
cover different sub-models, it becomes possible
for a user to quickly identify which sub-models
are failing and why, and communciate these re-
sults to stakeholders.

ers, the amount of modeling done and the
complexity of the models built in both sci-
entific and policy fields will continue to in-
crease. However, to date the field of model
assessment lags far behind our current com-
putational abilities. Indeed, much work is
still needed to arrive at the concepts and a
framework for model assessment that is gen-
eral across disparate disciplines. This paper
attempts to advance the field of model as-
sessment, at least as it relates to policy as-
sessment, by introducing a number of con-
cepts that have proven useful in scientific
modeling contexts and describing how these
same concepts apply to policy evaluation.

The strengths of this framework are that it
can be applied in both scientific and policy contexts, suggesting that it is at least somewhat gen-
eral. Conceptually, the framework lends itself to the communication of model validation results
along with the experimental frames in a manner that is accessible, transparent, and likely un-
derstandable to stakeholders (Figure 4). Drawbacks to the framework include that implementing
it will require substantially more programming effort and running it along with the model will
require considerable computational resources.

This framework would seem to be a natural starting place for enabling autonomic model assess-
ment tools - meaning tools that are capable of assisting in the complex process of model validation
and the identification of inadequate model components or experimental frames. While autonomic
computing aims to create computer systems that are capable of self management - the processes
of model verification, model critique, and the specification of the experimental frames all require
levels of human involvement that go far beyond anything a computer can do for us. In a policy
context where one of the aims of modeling is to foster dialog among stakeholders, we do not
see the inability to fully automate this model assessment framework as a drawback. Instead, a
more urgent research need is figuring out how to best incorporate model assessment tools into
stakeholder consultation to facilitate public consensus on which policy is prefered.
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