








Min. DOC Min. Fuel

A Fuel -5.99% -6.84%
A Cost -2.39% -2.01%
A Time 3.70% 6.2%

A Distance 0.76% 0.87%

Table 10. Star Alliance formation savings.

Min. DOC Min. Fuel

Solo Routes 48 33
2-Aircraft Formations 21 27
3-Aircraft Formations 20 21
Distance Flown in Formation 54.8% 62.1%
Time Flown in Formation 55.2% 61.8%
Average A Departure Time 4.9 min 4.8 min

Table 11. Star Alliance formation network analytics.

Tab. 11 highlights structure of the optimized formation flight schedules. In each case the majority of
the routes are flown in formation. The numbers of formation aircraft once again increase in the case of the
minimum fuel formation. We observe that the large and spatially and temporally concentrated Star Alliance
schedule is well-suited for formation flight.

VIII. Conclusion

In this paper we demonstrate a bi-level decomposition scheme to solve for the optimal formation flight
schedule. The scale of the problem necessitates the careful development of heuristic search patterns to
eliminate unlikely formations. The results of a series of design studies based on real-world route network and
schedules demonstrate that formation flight can net significant fuel savings. The application of formation
flight to a representative South African Airlines (SAA) long-haul route network can reduce fuel burn by over
4.6% or reduce direct operating cost by 2.1%. The savings increase when aircraft from multiple airlines fly
in similar corridors. The larger Star Alliance transatlantic route network can expect a 6.8% reduction in
fuel burn or a 2.4% reduction in cost from optimized formation flight scheduling. Finally, the results of a
preliminary study demonstrate that the formation flight network can be effectively designed at the system
level to cope with compressibility effects induced by wake vortices.

The addition of a cost-sensitive design object sheds light on the economic viability of formation flight.
We observe that aircraft must in general divert from their direct great circle route to meet up in formations.
Although the drag savings from formation flight can more than make up for the fuel burn penalties from the
diversions, the same cannot yet be said of the cost penalties stemming from the increased flight times. A
more detailed cost model based on real world airline operations is needed to more accurately assess the cost
impacts of formation flight.
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