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Abstract: Modern machine learning and data analysis hinge on sophisticated search 
techniques. In general, exploration in high-dimensional and multi-modal spaces is needed. 
Some algorithms that imitate certain natural principles, the so-called evolutionary 
algorithms, have been used in different aspects of Environmental Science and have found 
numerous applications in Environmental related problems. In this paper we apply a 
derivative of PSO (Particle Swarm Optimization), recently introduced by the authors to 
partitional clustering of a real-world data set obtained from a Water Supply Company. The 
PSO derivative we consider here improves several typical features of this optimization 
technique. For one thing, PSO is adapted to consider mixed discrete-continuous 
optimization since the problem we tackle here involves the use of both continuous and 
discrete variables. For another, one of the main drawbacks associated with PSO comes 
from the fact that it is difficult to keep good levels of population diversity and to balance 
local and global searches. This formulation is able to find optimum or near-optimum 
solutions much more efficiently and with considerably less computational effort because of 
the richer population diversity it introduces. Finally, the cumbersome aspect, common to all 
metaheuristics, of choosing the right parameter values is tackled through self-adaptive 
dynamic parameter control. 

Keywords: Partitional clustering; Optimization; Evolutionary algorithm; Particle Swarm 
Optimization. 

 

1. INTRODUCTION 

Modern machine learning and data analysis hinge on sophisticated search techniques. 
Computer systems that are able to extract information from large amounts of data, that is to 
say, to perform Data Mining tasks, like pattern recognition, classification, diagnosis, etc. 
and, in general, systems that are adaptive and show capacity to learn, fundamentally rely on 
effective and efficient search techniques. Any adaptive system needs some kind of search 
mechanism in order to explore a feature space describing all possible states of the system. 
Due to the characteristics of many feature spaces exploration in high-dimensional and 
multi-modal spaces is needed. 

Classical methods of optimization involve the use of gradients or higher-order derivatives 
of the fitness function. But they are not well suited for many real world problems since they 
are not able to process inaccurate, noisy, discrete and complex data [Bonabeau et al., 1999; 
Kennedy and Eberhart, 2001]. Thus robust methods of optimization are often required to 
generate suitable results. Some algorithms that imitate certain natural principles, 
evolutionary algorithms like Genetic Algorithms, Ant Colony Optimization, Particle 
Swarm Optimization,  Harmony Search, etc., have been used in different aspects of 
Environmental Science and have found numerous applications in Environmental related 
problems [Downing, 1998; López, 2001; Nishida et al., 2004; Vojinovic and Solomatine, 
2005; Afshar and Mariño, 2006; Crowe et al., 2006; Katsifarakis and Petala, 2006; Valdés 

1782



J.L. Díaz et al. / A Particle Swarm Optimization derivative applied to cluster analysis 

and Barton, 2007; Karterakisa et al., 2007; Montalvo et al., 2008a, 2008b; Izquierdo et al., 
2007, 2008a, 2008b]. 

One of the evolutionary algorithms that has shown great potential and good perspective for 
the solution of various optimization problems [Dong et al., 2005; Janson et al., 2008; Jin et 
al., 2007; Liao et al., 2007; Pan et al., 2007; Montalvo et al., 2008a, 2008b; Izquierdo et al., 
2008b] is Particle Swarm Optimization (PSO). Swarm intelligence is a relatively new 
category of stochastic, population-based optimization algorithms that are closely related to 
evolutionary algorithms based on procedures that imitate natural evolution. Swarm 
intelligence algorithms draw inspiration from the collective behaviour and emergent 
intelligence that arise in socially organized populations. 

In this paper we apply a derivative of PSO, recently introduced by the authors [Izquierdo et 
al., 2008b; Montalvo et al., 2008a, 2008b] to partitional clustering of a real-world data set 
obtained from a Water Supply Company. In addition, we endow this PSO derivative with a 
self-adaptive feature that manages to internally control its parameters. 

Clustering analysis [Everitt, 1980] plays an important role in many fields and can be used 
both for preliminary and descriptive data analysis and unsupervised classification [Hastie et 
al., 2001], and to summarize common features of groups of elements, like identification of 
centroids or baricenters. Central to all of the goals of cluster analysis is the notion of 
similarity, in terms of proximity, between the individual objects being clustered (otherwise, 
dissimilarity is used to explain the difference). A clustering method attempts to group the 
objects based on the definition of similarity supplied to it. In the present paper we will work 
with clusters based in a mixed dissimilarity. For this reason we will use medoids like a 
representative grouping element (understanding medoid as the object of a cluster, whose 
average dissimilarity to all the objects in the cluster is minimal). 

The database utilized consists in a record of requests, complains and claims (PQR’s in 
Spanish), for the year 2006 of Calarcá Water Supply Company Multipropósito, S.A. ESP, 
located in a town of the coffee Colombian region. These records are combined with the 
information of the network model for this year. The results obtained in this work are 
important to aid the management of the network and the decision making of most relevant 
places to be considered in future rehabilitations. 

The PSO derivative we consider here is adapted to consider mixed discrete-continuous 
optimization since the problem we tackle here involves the use of both continuous and 
discrete variables and will work jointly with statistical clustering criteria arranged to take 
these type of mixed measures. Also, this formulation is able to find optimum or near-
optimum solutions much more efficiently and with considerably less computational effort 
because of the richer population diversity it introduces. Finally, the cumbersome aspect, 
common to all metaheuristics, of choosing the right parameter values is tackled through 
self-adaptive dynamic parameter control. 

The remainder of this paper is organized as follows. Next section presents the rules for the 
manipulation of the particles in each iteration and explains how parameters are controlled. 
Also, the main features of the PSO derivative we consider here are introduced. Then, the 
database under consideration is concisely described and the main objectives in this study 
presented. Next, section 4 introduces the necessary statistical clustering criteria including 
the description of the fitness evaluation and the search space. Finally, the main results are 
reported. A conclusions section wraps up the paper. 

 

2. PSO AND THE PROPOSED DERIVATIVE 

A swarm consists of a set of particles moving within the search space, which is D-
dimensional, each representing a potential solution of the problem. Each particle has a 
position vector, Xi = (xi1, …, xiD), a velocity vector, Vi = (vi1, …, viD) and the position at 
which the best fitness was encountered by the particle, Yi = (yi1, …, yiD). In each cycle of 
the evolution the position of the best of the N particles in the swarm, Y* is identified. 
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2.1 Manipulation of particles 

In each generation, the velocity of each particle is updated by means of its velocity history, 
its best encountered position and the best position encountered by any particle: 

Vi = ωVi + c1 rand( ) (Yi - Xi) + c2 rand( ) (Y* - Xi),     (1) 

On each dimension, particle velocities are clamped to minimum and maximum velocities to 
control excessive roaming of particles outside the search space:  

Vmin ≤ Vj ≤ Vmax.     (2) 

Usually Vmin is taken as -Vmax, which is a user defined parameter. 
The position of each particle is also updated every generation. This is done by adding the 
velocity vector to the position vector, 

Xi = Xi + Vi.         (3) 

The parameters are as follows: ω is a factor of inertia suggested by Shi and Eberhart [1998] 
that controls the impact of the velocity history into the new velocity. Acceleration 
parameters c1 and c2 are typically two positive constants, called cognitive and social 
parameter, respectively. rand( ) generates two independent random numbers between 0 and 
1, and are used to maintain the diversity of the population. 

 

2.2 Manipulation of parameters 

The role of the inertia, ω, in (1), is considered critical for the PSO algorithm’s convergence 
behaviour. Although initially the inertia was constant it may vary from one cycle to the 
next. As it permits to balance out global and local searches, it was suggested to have it 
decrease linearly with time, usually in a way to first emphasize global search and then, with 
each cycle of the iteration, prioritize local search, [Shi and Eberhart, 1999]. A significant 
improvement in the performance of PSO with the decreasing inertia weight over the 
generations is achieved by using [Jin et al., 2007] 

( )( )1ln2
15.0
+

+=ω
k

,        (4) 

where k is the iteration number. In the framework herein described this parameter is 
adaptively controlled by using (4). 

However, the acceleration coefficients and the clamping velocity are neither set to a 
constant value, like in standard PSO, nor set as a time varying function, like in adaptive 
PSO variants [Ratnaweera and Halgamuge, 2004; Aramugan and Rao, 2008]. Instead they 
are incorporated to the own optimization problem. Each particle will be allowed to self-
adaptively set its own parameters by using the same process used by PSO given by 
equations (1) and (3). To this end, these three parameters are considered as three new 
variables that are incorporated to position vectors Xi. In general, if D is the dimension of the 
problem and P is the number of self-adapting parameters, the new position vector for 
particle i will be: 

Xi = (xi1, …, xiD, xiD+1, …, xiD+P).       (5) 

It is clear that the first D variables correspond to the real position vector of the particle in 
the search space, while the last P account for its personal parameters. Obviously, these new 
variables do not enter the fitness function, but are manipulated by using the same mixed 
individual-social learning paradigm used in PSO. 

Also, Vi and Yi, giving the velocity and best so far position for particle i, increase their 
dimension, with corresponding meaning: 

Vi = (vi1, …, viD, viD+1, …, viD+P) and      (6) 

Yi = (yi1, …, yiD, yiD+1, …, yiD+P).       (7) 
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This way, by using equations (1) and (3), each particle will be endowed additionally with 
the ability of adjusting its parameters by aiming to both the parameters it had when it got its 
best position in the past and the parameters of the leader, which managed to take this best 
particle to its privileged position. As a consequence, particles not only use their cognition 
of individual thinking and the social cooperation to improve their positions but also to 
improve the way they do it by accommodating themselves to the best known conditions, 
namely, their conditions when getting the best so far position and the leader’s conditions. 

Before providing a schematic representation of the proposed algorithm two more 
observations have to be made. 

For one thing, the discussion so far considers the standard PSO algorithm, which is 
applicable to continuous systems and cannot be used for mixed discrete-continuous 
problems, like the one we consider here. To tackle discrete variables this algorithm takes 
integer parts of the flying velocity vector discrete components into account; hence the new 
discrete component velocities Vi are integer and consequently the new position vector 
discrete components will also be integer (since the initial position vectors were generated 
with integer values). According to this idea, velocity updating for discrete variables turns 
out to be: 

Vi = fix(ωVi + c1 rand( ) (Yi - Xi) + c2 rand( ) (Y* - Xi)),    (8) 

where fix(·) implies that we only take the integer part of the result. 

For another, in [Montalvo et al., 2007b], PSO was endowed with a re-generation-on-
collision formulation, which further improves the performance of standard discrete PSO. 
The random regeneration of the many birds that tended to collide with the best birds was 
shown to avoid premature convergence, as it prevented clone populations from dominating 
the search. The inclusion of this procedure into the discrete PSO produces greatly increased 
diversity, improved convergence characteristics and higher quality of the final solutions. 
The modified algorithm can be given by the following pseudo-code, with k as iteration 
number. 

_________________________________________________________________ 
1) k = 0 
2) Generate a random population of M particles: { }M

ii kX 1)( =
, according to (5) 

3) Evaluate the fitness of the particles (only the first D variables enter the fitness function) 

4) Record the local best locations { }M
ii )k(Y 1= ; according to (7) the values of the corresponding 

parameters are also recorded 
5) Record the global best location, Y*(k), and the list of the m best particles to check collisions 

(including their corresponding parameters) 
6) While (not termination-condition) do 

a) Determine the inertia parameter ω(k), according to (4) 
b) Begin cycle from 1 to number of particles M 

Start 
(1) Calculate new velocity, )1( +kVi , for particle i according to (1), and take its 

integer part (for discrete optimization) for the first D variables, according to (8) 
(2) Update position, )1( +kX i , of particle i according to (3) 
(3) Calculate fitness function for particle i and update Yi 
(4) If particle i has better fitness value than the fitness value of the best particle in 

history, then set particle i as the new best particle in history  
(5) If particle i is not currently the best particle but coincides with the best, then re-

generate particle i randomly (including its parameters) 
End 

c) k = k + 1 
7) Show the solution given by the best particle 
_________________________________________________________________ 

 

In this study, a population size of M = 100 particles has been used. Also, among the 
different termination conditions that may be stated, a condition stopping the process if there 
is no improvement after a pre-fixed number of iterations has been considered. 
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The performance of the approach here introduced can be observed from the results reported 
in the next section.  

 

3. THE DATABASE 

The database utilized consists in a record of requests, complains and claims (PQRs in 
Spanish) issued in Calarcá Water Supply Company Multipropósito, S.A. ESP, for the year 
2006. The municipality of Calarcá (Colombia) is located in the Andean area, it has a land 
area of 21,923 ha; 244 ha belongs to urban zones and 21,679 ha to rural sectors. Population 
is about 73,500 inhabitants. 

These PQRs are reports of the users both in principal and domiciliary network sections. The 
PQRs indicated the type or description of damages, their locations, relevant technical 
concepts and the solutions. There were 846 records registered in that year. 

Every record was located in a chart of the water network according to the address 
referenced in the PQR record; addresses were only in terms of street names and numbers, 
so a hard work had to be done for obtaining the UTM coordinates of every problem 
reported. 

The main pre-processing task involved the selection of relevant and non relevant fields in 
the database. Breakage dates and times were excluded since their occurrence was deemed 
to depend strongly on the physical and working conditions of the network. Also, the names 
of personnel on duty, the repair date and the theoretical roughness of the pipe were 
neglected. Decision about what fields to include were made based on hydraulic criteria. 
Since rehabilitation was the main objective, geographical locations suggesting causes and 
occurrence of water loses were assessed of paramount importance. As a consequence, the 
information used included: pipe identification, to assess if it was subjected to a high or low 
number of faults; upstream and downstream node identification, to evaluate concurrence of 
faulty pipes on the same node pointing to pressure or demand problems at the node; type of 
reported breakage, either domiciliary or on the main network; pipe diameter; pipe length; 
pipe material and magnitude of the leak. In addition, data obtained from the mathematical 
model of the network were included in the database. Specifically, information related with 
demand characteristics and patterns. However, pressure data were not included, since 
pressure, being a decisive agent of water loses and breakages, would have blurred all the 
other specifically sought causes of the problem under consideration, more connected with 
materials, lengths, diameters, demand patterns, etc., in close relationship with rehabilitation 
purposes. Finally, also the UTM coordinates of the fault points were included. 

As a matter of fact, typical pre-processing tasks for identifying outliers, missing values, 
etc., were performed. As a consequence, some records were modified, withdrawn, 
completed, etc. 

 
4. STATISTICAL MEASURES AND FITNESS EVALUATION 

4.1 Introduction 

Clustering is the grouping of similar objects [Everitt, 1980]. An object can be described by 
a set of measurements or by its relation to other objects. The goals of cluster analysis are 
varied and include wide activities such looking for “natural” groups, hypothesis generation 
etc. Central to all of the goals of cluster analysis is the notion of similarity, in terms of 
proximity, between the individual objects being clustered (otherwise, dissimilarity is used 
to explain the difference). A clustering method attempts to group the objects based on the 
definition of similarity or dissimilarity supplied to it. 

 

4.2 Dissimilarities 

The dissimilarity between two objects measures how different they are [Hastie et al., 2001]. 
It has to be noted here that, although usual metrics can be used, they must not necessarily 
verify the triangle inequality. 
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The computation of the dissimilarity between two objects depends on the type of the 
original variables. Many data sets contain variables of different types. The next method 
solves the computation of the dissimilarity in a general form, considering that the data set 
contains p variables: 

( ) ( )

1

( )

1

( , ) [0,1]

p
f f

ij ij
f

p
f

ij
f

d
d i j =

=

∂
= ∈

∂

∑

∑
 (9) 

With 
( ) 0f
ij∂ =  if xif or xjf is missing, or if xif = xjf = 0 and f is an asymmetric binary variable. 

Otherwise, 
( ) 1f
ij∂ = . 

( )f
ijd  is the contribution of variable f, which depends on its type: 

1. If f is binary or nominal, 
( ) 0f
ijd =  if xif = xjf and 

( ) 1f
ijd =  otherwise. 

2. If f is interval-scaled, 
( ) | |

max ( ) min ( )
if jff

ij
h hf h hf

x x
d

x x
−

=
− . 

3. For ordinal and ratio-scaled variables, ranks rif and 
1
1

if
if

f

r
z

M
−

=
−  are 

computed, and then zif is treated as interval-scaled. 
 

4.3 Clustering algorithms 

The goal of cluster analysis is to partition the observations into groups so that the pair-wise 
dissimilarities between those assigned to the same cluster tend to be smaller than those in 
different clusters. Among others, clustering algorithms can be classified in two categories: 
partitioning and hierarchical algorithms. Most partitional clustering algorithms assume an a 
priori number of clusters, c, and a partition of the data set into c clusters. To get the correct 
partition, an objective function must be formulated that measures how good a partition is 
with respect to the data set. Hierarchical clustering algorithms transform a proximity data 
set into a tree-like structure. The main drawbacks of these algorithms are its high 
computational cost and that always suffer from the problem of not knowing where to cut 
the generated tree. 

In real-life problems very large data sets containing variables of several types are typically 
found. This requires for a clustering algorithm to be scalable and capable of handling 
different attribute types. Classical methods are not the answer: for example, PAM 
(Partitioning Around Medoids) algorithm [Kaufman & Rousseeuw, 1990] can handle 
various attribute types but is not efficient with large data sets. k-means algorithms [Hartigan 
& Wong, 1979; Likas et al., 2003] can handle large data sets but deal with only data sets 
formed from interval-scaled variables. CLARA (Clustering Large Applications) algorithm 
[Kaufman & Rousseeuw, 1990] is a combination of sampling approach and the PAM 
algorithm. Instead of finding medoids, each of which is the most located object in a cluster 
for the entire data set, CLARA draws a sample from the data set and uses the PAM 
algorithm to select an optimal set of medoids from the sample [Wei et al., 2003]. To 
alleviate sampling bias, CLARA repeats the sampling and clustering process multiple times 
and selects the best set of medoids as the final clustering. The objective function is the next: 

n

))O,M(rep,O(d
)D,M(Cost

n

i
ii∑

== 1  (10) 

where D is the data set to be clustered, n the number of objects in D, M is a set of selected 
medoids, d(Oi,Oj) is the dissimilarity between objects Oi and Oj, and rep(M,Oi) returns the 
medoid in M which is closest to Oi. 
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4.4 Statistical clustering criteria 

Several clustering criteria have been proposed and three of them are based on the 
fundamental matrix equation: T = W + B, where W and B are the within-cluster and 
between-cluster variation, respectively. T is, then, the total scatter matrix. For univariate 
data the above expression reduces to usual ANOVA decomposition. Under this point of 
view, the ideal form of T is a matrix built with a small W and a large B, so that the distances 
within the clusters are small compared with distances between clusters medoids. Then, an 
intuitive procedure for choosing clusters is to minimize the “size” of W and/or maximize B.    

The statistical criteria to measure the adequacy of the partition and define the optimization 
problem to solve the clustering paradigm via heuristics are based in W and B. Friedman and 
Rubin [1967] proposed minimizing the W trace. Another idea is to minimize det(W) or 
maximize trace(BW-1). More recently, McGregor et al. [2004] have developed new 
methodologies for validation results based in W too. Barbará et al. [2002] have worked with 
entropy based measures for categorical data clustering.  

 

5. RESULTS 

The PSO algorithm was run several times and results were almost identical. A population 
size of only 30 particles was used. Maximum and minimum velocities were established as: 
 

• Maximum velocity for discrete variables = 50% of variable range 
• Minimum velocity  = - Maximum velocity 

 
The termination condition stopped the process if after 20 iterations no improvement in the 
solution had been obtained. Results were obtained in a mean value of only 40 iterations. 

Clusters were made using PSO and considering different possibilities: 2, 3 and 4 clusters. 
The search space was multi-dimensional and all dimensions were not in correspondence 
with the same type of variable. Clusters were analysed and some conclusions can rapidly be 
drawn: 

• Two main different groups were identified; the first one was represented mainly 
by concrete and PVC pipes, while most of the pipes were made of PVC in the 
second one.  

• Pipes length was established as short, medium and long, based on certain mean 
values and the range of lengths determined for all the pipes in the database. In the 
first group, most of the pipes were long, and short pipes were less significative. In 
the second group the amount of medium and long pipes was almost the same and 
short pipes were more significative. 

In correspondence with cluster analysis, it was shown that problems were concentrated on 
medium size pipes made of concrete and on large size pipes made of PVC. Also some 
problems on short pipes made of PVC were detected. Either the rest of materials or medium 
PVC pipes did not have relevant influence on the problems detected. 

 

6. CONCLUSIONS 

Data mining analysis helped to discover where most of the problems in a real water 
distribution network were concentrated. Cluster analysis was carried out using the PSO 
algorithm. Results can be used as a strategic plan for network rehabilitation, considering 
that attention should go first where problems seems to appear more frequently. 

Richer results could be obtained incorporating some new fields in the database. In that case, 
it would be necessary to use a bigger population size for solving the problem, but with no 
added conceptual difficulty. 

PSO algorithm was compared to partitional clustering performed by other algorithms that 
work with various attribute types (such as PAM and CLARA). There were not significant 
differences on what was obtained, while PSO efficiency was superior. Thus those results 

1788



J.L. Díaz et al. / A Particle Swarm Optimization derivative applied to cluster analysis 

show the PSO’s ability in cluster building. Bigger sizes of the database would enhance PSO 
superiority in efficiency terms (time of execution and best optimization solution), avoiding 
the need of adapting to new types of data, as happened with PAM, k-means and CLARA. 
However, PSO clustering should also be compared with CLARANS (CLARA based on 
Randomized Search) and bagged clustering procedures, based on the bootstrap re-sampling. 

Searching for knowledge in databases is really necessary for the water supply sector. 
Incorporating a tool for clustering analysis to the pool of software packages related to water 
distribution networks could be very useful. However, it should be also important to 
incorporate some tools for analysing clustering results.  
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