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ABSTRACT

The Orbifold Landau-Ginzburg Conjecture for Unimodal and Bimodal Singularities

Natalie Bergin

Department of Mathematics

Master of Science

The Orbifold Landau-Ginzburg Mirror Symmetry Conjecture states that for a quasi-

homogeneous singularity W and a group G of symmetries of W , there is a dual

singularity W T and dual group GT such that the orbifold A-model of W/G is iso-

morphic to the orbifold B-model of W T/GT . The Landau-Ginzburg A-model is the

Frobenius algebra HW,G constructed by Fan, Jarvis, and Ruan, and the B-model is

the Orbifold Milnor ring of W T . The unorbifolded conjecture has been verified for

Arnol’d’s list of simple, unimodal and bimodal quasi-homogeneous singularities with

G the maximal diagonal symmetry group by Priddis, Krawitz, Bergin, Acosta, et

al. [9], and by Fan-Shen [4] and Acosta [1] for all two dimensional invertible singu-

larities and by Krawitz for all invertible singularities of 3 dimensions and greater in

[8]. Based on this Krawitz posed the Orbifold Landau-Ginzburg Mirror Symmetry

Conjecture, where the A-model is still the Frobenius algebra HW,G constructed by

Fan, Jarvis, and Ruan but constructed with respect to a proper subgroup G of the

maximal group of symmetries GW and the B-model is the orbifold Milnor ring of W T

orbifolded with respect to a non-trivial group K in SLn of order [GW : 〈J〉]. I verify

this Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for all unimodal and



bimodal quasi-homogeneous singularities in Arnol’d’s list with G = 〈J〉 < GW , being

the minimal admissible diagonal symmetry group. I also discuss some axioms and

properties of these singularities.
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1 Introduction

1.1 Background and Motivation

In developing models in string theory, one often comes to a point where one must

make an arbitrary choice between two alternatives. The two choices may lead to

very different mathematical constructions–usually called an A-model and a B-model,

and yet, since the choices are arbitrary, we expect the physics they describe to be

the same. That means many of the final mathematical objects that are constructed

should be equal, or isomorphic, or otherwise equivalent.

This phenomenon has led to many exciting new discoveries in algebraic and differ-

ential geometry. One such discovery is mirror symmetry. There are several types

of mirror symmetry, but we are interested in the so-called Berglund-Huebsch mirror

symmetry involving Landau-Ginzburg models.

The Landau-Ginzburg B-model is very well understood. Among other things, it takes

a quasi-homogeneous polynomial, a polynomial with “weights” for each variable re-

sulting in each term having “weighted” degree 1, with isolated singularities and asso-

ciates to it the “Chiral ring”, which is simply the Milnor ring C[x1, . . . , xn]/

(
∂W

∂xi

)
of the singularity W .

Until very recently, no one knew how to construct the LG A-model mathematically.

But in [5] the LG A-model was finally put on a solid mathematical foundation and

many aspects of it were finally understood. Among other things, this A-model asso-

ciates a ring to each quasi-homogeneous singularity called the FJRW ring. Both this

FJRW ring and the (B-model) chiral ring are actually Frobenius algebras.

1



The general philosophy of mirror symmetry suggests that for a large class of polyno-

mials W , there should be a corresponding mirror polynomial W T so that the A-model

of one is isomorphic to the B-model of the other. In the case of the B-model chiral

ring and the A-model FJRW ring, the obvious conjecture is that for a large class of

polynomials W , there is a choice of a mirror dual W T so that (W T )T = W and such

that there is an isomorphism of Frobenius algebras between the FJRW ring of W and

the chiral ring of W T . Berglund and Huebsch described a construction of W T for

certain polynomials that was conjectured to provide the mirror dual.[3]

This conjecture was verified by Acosta in [1], Fan-Shen in [4] and Krawitz in [8]. That

is, it was proved that the FJRW ring of W was isomorphic to the chiral (Milnor) ring

of W T and conversely. However, one key property of the A-model is that it depends

not only on the singularity W but also on a group of admissible symmetries G. The

FJRW ring actually depends heavily on the choice of the group G and in fact is graded

by G.

The conjecture that was proved by Krawitz et al. was for the maximal symmetry

group of W but did not involve any group on the B-side. However, recently an in-

teresting physically motivated construction called “orbifolding” has been developed

by Kaufmann and Krawitz for the B-side in [8]. For certain choices of a group of

symmetries G of W , it constructs an orbifolded Chiral ring (orbifolded Milnor ring)

which is graded by the group G. If the group is the trivial group, the construction

reduces to the usual chiral (Milnor) ring.

Krawitz conjectured that for all the singularities that have an unorbifolded dual W T

described by Berglund-Huebsch and for all admissible groups G, there should be

a dual group GT so that the (A-model) FJRW ring for W and G is isomorphic as

2



a Frobenius algebra, to the orbifolded (B-model) Chiral ring for W T orbifolded by GT .

In this paper I verify this conjecture for all unimodal and bimodal singularities with

the minimal admissible group 〈J〉.

1.2 Overview of Results

In this paper I verify the Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for

Arnol’d’s list of unimodal and bimodal singularities where G = 〈J〉 < GW [2] based

on certain restrictions to the correlators. These singularities are

Unimodal Singularities:

P8 : x3 + y3 + z3 + axyz

X9 : x4 + y4 + bx2y2

Q12 : x3 + y5 + yz2

U12 : x3 + y3 + z4

Bimodal Singularities:

Z1,0 : x3y + y7

Q2,0 : x3 + xy4 + yz2

S1,0 : x2z + yz2 + y5

U16 : x3 + xz2 + y5

Q16 : x3 + yz2 + y7

3



The original “unorbifolded” conjecture was proven for the simple and parabolic sin-

gularities in [5] and in [9] for Arnol’d’s list of unimodal and bimodal singularities.

As mentioned above, the complete conjecture was later proved by Fan-Shen, Acosta,

and Krawitz in [1, 4, 8].

2 Construction

2.1 Review of Construction

For this paper W will always be a non-degenerate, quasi-homogeneous, invertible

polynomial in variables x1, x2, . . . , xN .

Definition 2.1.1. A quasi-homogeneous polynomial W is a polynomial with weights

qx1 , qx2 , . . . , qxn in Q ∩ (0, 1) such that any scalar λ ∈ C∗ satisfies

W (λqx1x1, λ
qx2x2, . . . , λ

qxnxn) = λW (x1, x2, . . . , xn).

For example, the singularity known as Q2,0, defined by the polynomial x3 +xy4 +yz2,

has weights qx = 1
3
, qy = 1

6
, qz = 5

12
.

Definition 2.1.2. Non-degeneracy of a quasi-homogeneous polynomial requires that

• the weights be uniquely determined

• there is an isolated singularity at the origin.

Each quasi-homogeneous polynomial W determines a matrix of exponents BW .

Definition 2.1.3. The ij entry of the BW matrix is the exponent of xj from the i-th

monomial of the polynomial.

4



When the number of monomials equals the number of variables, the matrix BW is

square, and because of the non-degeneracy condition, BW is invertible. In this case,

rescaling the variables allows us to assume that all non-zero coefficients are 1, so

the matrix completely determines the polynomial up to rescaling. As an example of

this matrix representation W ↔ BW , the singularity Q2,0 : x3 + xy4 + yz2 has as its

corresponding matrix 
3 0 0

1 4 0

0 1 2

 .

Definition 2.1.4. When W has the same number of variables as monomials, i.e.,

when BW is square, we say that W is invertible.

Remark 2.1.5. It is known that when the weights are uniquely determined (as in

our case), BW has maximal rank, so BW is an invertible matrix when it is square.

When W is invertible, the transpose matrix BT
W corresponds to a different quasi-

homogeneous polynomial. This new polynomial will be denoted W T . Often W T also

has an isolated singularity at the origin.

Remark 2.1.6. For any invertible singularity, we can rescale the variables so that all

non-zero coefficients are 1. Throughout this paper we will always make this rescaling.

Definition 2.1.7. For any invertible singularity W , the Berglund-Huebsch dual W T

is defined to be the polynomial with monomials determined by BT (and with all

non-zero coefficients equal to 1).

For example, Q1,0 gives

BT
Q2,0

=


3 0 0

1 4 0

0 1 2


T

=


3 1 0

0 4 1

0 0 2


5



thus QT
2,0 : x3y + y4z + z2.

We need the Jacobean ideal to define both the A-model and the B-model rings.

Definition 2.1.8. The Jacobian ideal J is defined by

J =

(
∂W

∂x1

,
∂W

∂x2

, . . . ,
∂W

∂xN

)
.

Definition 2.1.9. The Hessian of W is defined by

hess(W ) = det
(

∂2W
∂xi∂xj

)

Definition 2.1.10. The Milnor ring QW of W , is defined to be

QW := C[x1, x2, . . . , xN ]/J .

QW is finite dimensional as a vector space over C and the dimension as seen in [2] is

µ =
N∏

j=1

(
1

qj
− 1

)
.

This ring QW is graded by weighted degree. The elements of the top degree form a

one-dimensional subspace generated by hess(W ). [9]

QW has a residue pairing 〈f, g〉 defined by

fg =
〈f, g〉
µ

hess(W ) + lower order terms.

for f, g ∈ QW .

For Q2,0 we see J = (3x2 + y4, 4xy3 + z2, 2yz) and so

QQ2,0 = C[x, y]/J =
〈
1, x, x2, y, y2, y3, z, z2, xy, xy2, x2y, x2y2, xz, xz2

〉
.

6



Definition 2.1.11. A Frobenius algebra is an algebra with a non-degnerate pairing 〈, 〉

with the property that for all α, β, γ elements of the algebra we have 〈αβ, γ〉 = 〈α, βγ〉.

The Milnor ring with its residue pairing forms a graded Frobenius algebra.[9].

We will now define the construction of the (A-model) FJRW ring. To do this, we

first need to choose an admissible group of diagonal symmetries.The choice of group

determines the structure of the FJRW ring.

Definition 2.1.12. The maximal group of diagonal symmetries is given by

GW =
{
(α1, α2, . . . , αN) ⊆ (C∗)N |W (α1x1, α2x2, . . . , αNxN) = W (x1, x2, . . . , xN)

}
.

Definition 2.1.13. For a quasi-homogeneous polynomial with weights {qxi
},the ex-

ponential grading element is J = (e2πiqx1 , e2πiqx2 , . . . , e2πiqxN ) .

GW always contains the exponential grading element. In [9] the maximal symmetry

group GW was always used and corresponds on the B-side to the trivial group (the

“unorbifolded” case). It is known that the group 〈J〉 is always admissible [5]. The

computations in this paper always will use the cyclic group 〈J〉 generated by the

exponential grading element.

Recall Krawitz conjectured that for all the singularities that have an unorbifolded dual

W T described by Berglund-Huebsch and for all admissible groups G, there should be

a dual group GT so that the (A-model) FJRW ring for W and G is isomorphic as a

Frobenius algebra, to the orbifolded (B-model) Milnor ring.

Definition 2.1.14. For h ∈ G, Fixh ⊂ CN is the fixed locus of h. The dimension of

this fixed locus will be denoted as Nh.

7



Definition 2.1.15. For any admissible group G and for each h ∈ G we define

Hh := QW |Fix h
· ω

where ω = dxi1 ∧ dxi2 ∧ · · · ∧ dxiNh
is the natural choice of volume form.

Note: The FJRW construction uses middle-dimensional relative homology of a Milnor

fibration, but that construction is isomorphic to this one.

Definition 2.1.16. Choose a cyclic admissible group G ≤ GW with generator a. If

Fix(ak) = {0} then we define

ek = 1 ∈ Hak
∼= C,

and if Fix ak = Cxi1 ⊕ · · · ⊕ CxiNa
define

ek = dxi1 ∧ dxi2 ∧ · · · ∧ dxiNa
∈ Hgk .

Note that for a = J we have Fix(J1) = {0}.

Consider Q2,0 again where G = 〈J〉 =
〈
(e2πi 1

3 , e2πi 1
6 , e2πi 5

12 )
〉
.

HJk =



〈e0, xe0, x2e0, ye0, y
2e0, y

3e0, ze0, z
2e0, xye0, xy

2e0, x
2ye0, x

2y2e0, xze0, xz
2e0〉 k = 0

〈e6, xe6, x2e6, ye6, y
2e6, y

3e6, xye6, xy
2e6, x

2ye6, x
2y2e6〉 k = 6

〈ek, xek〉 k = 3, 9

〈ek〉 otherwise.

The group G acts on Hh by acting on the coordinates. We define the h-sector H G
h to

be the vector space of G-invariants of Hh. The underlying vector space, often called

8



the state space, of the FJRW-ring is defined to be

HW,G :=

(⊕
h∈G

Hh

)G

.

For Q2,0 this vector space is HQ2,0,〈J〉 = 〈e1, e2, e4, e5, y3e6, xye6, e7, e8, e10, e11〉.

Definition 2.1.17. For each h ∈ G we define Θh
i ∈ Q ∩ [0, 1) by the fact that h can

be uniquely expressed as

h = (e2πiΘh
1 , e2πiΘh

2 , . . . , e2πiΘh
N )

Having considered Θ we can now talk about the W -degree of an element.

Definition 2.1.18. For any h ∈ G and and αh in the h-sector HG
h , the W -degree of

αh is defined by

degW (αh) := Nh + 2
N∑

j=1

(Θh
j − qj) (1)

when αh ∈ (Hh)
G.

The space HW,G is a complex vector space that is Q-graded by this W -degree. Clearly

the W-degree only depends on the G-grading.

Now we wish to define a pairing on the state space HW,G. To do this, note first that

we have an isomorphism I : Hh −→ Hh−1 .

Definition 2.1.19. Define a pairing on H G
h ⊗HG

h−1 by 〈α, I−1(β)〉 for α ∈ H G
h and

β ∈ H G
h−1 , and extend the pairing linearly to all of HW,G. It can be shown that this

pairing is non-degenerate on HW,G.

For a given choice of basis we denote by ηα,β the matrix representation of the pairing

and by ηα,β the inverse of that matrix.

9



The multiplication for the Frobenius algebra is determined by the FJRW cohomologi-

cal field theory.[5] This field theory produces classes ΛW
g,n(α1, α2, . . . , αn) ∈ H∗(M g,n)

where M g,n is the stack of stable curves of genus g with n marked points. The classes

ΛW
g,n have complex codimension D for each n-tuple (α1, α2, . . . , αn) ∈ (HW,G)n where

D := ĉW (g − 1) +
1

2

n∑
i=1

degW (αi)

and where

ĉW :=
∑

i

(1− 2qxi
)

We do not need the entire cohomological field theory to define the FJRW ring, but we

can use the genus-zero, three-point classes to define correlators which will determine

the structure constants of the algebra.

Definition 2.1.20. We define the three-point correlators as follows:

〈α1, α2, α3〉W0 :=

∫
M 0,3

ΛW
0,3(α1, α2, α3).

It is easy to see that 〈α1, α2, α3〉 is nonzero only when its codimension D is zero

because M 0,3 is a point.

When g = 0 and n = 3, then D = 0 if and only if
∑3

i=1 degW αi = 2ĉW .

The ring structure is given by these three-point correlators. Given r, s ∈ HW,G, their

product is defined to be

r ∗ s :=
∑
α,β

〈r, s, α〉 ηα,ββ (2)

where the sum is taken over all choices of α and β in a fixed basis of HW,G.[5]

In [5] it is proved that the classes ΛW
g,n satisfy certain axioms that facilitate their

computation. Below we provide a simplified form of these axioms that applies in the

10



cases that we need to compute.

Axiom 1. Dimension: If D /∈ 1
2
Z, then ΛW

g,n(α1, α2, . . . , αn) = 0. Otherwise, D is

the complex codimension of the class ΛW
g,n(α1, α2, . . . , αn). In particular, if g = 0 and

n = 3, then 〈α1, α2, α3〉 = 0 unless D = 0.

Axiom 2. Symmetry: Let σ ∈ S3. Then

〈α1, α2, α3〉 =
〈
ασ(1), ασ(2), ασ(3)

〉
The next few axioms rely on the degrees of line bundles L1, . . . ,LN endowing an

orbicurve with a so-called W -structure; however, this can be reduced to a simple

numerical criterion. Consider the class ΛW
g,n(α1, α2, . . . , αk), with αj ∈ (Hhj

)G for

each j. For each variable xj, define lj by

lj = qj(2g − 2 + k)−
k∑

i=1

Θhi
j

Axiom 3. Integer degrees: If lj /∈ Z for some j ∈ {1 . . . , N}, then ΛW
g,n(α1, α2, . . . , αn) = 0.

Axiom 4. Concavity: If lj < 0 for all j ∈ {1, 2, 3}, then 〈α1, α2, α3〉 = 1.

The next axiom is related to the Witten map:

W :
N⊕

j=1

Ch0
j →

N⊕
j=1

Ch1
j

W =

(
∂W

∂x1

,
∂W

∂x2

, . . . ,
∂W

∂xN

)

where h0
j and h1

j are defined by

h0
j :=


0 if lj < 0

lj + 1 if lj ≥ 0
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h1
j :=


−lj − 1 if lj < 0

0 if lj ≥ 0

so that both are non-negative integers satisfying h0
j − h1

j = lj + 1. The fact that the

Witten map is well-defined is a consequence of the geometric conditions on the Lj

considered in [5]. For further details, we refer readers to the original paper.

In M g,n, if ΛW
g,n(α1, α2, . . . , αn) is a class of codimension zero, then these classes are

constant and so, abusing notation, we will simply consider ΛW
g,n(α1, α2, . . . , αn) to be

a complex number. We will use this convention through the rest of the thesis.

Axiom 5. Index Zero: Consider the class ΛW
g,n(α1, α2, . . . , αn), with αi ∈ Hγi,G. If

Fix γi = {0} for each i ∈ {1, 2, . . . , n} and

N∑
j=1

(h0
j − h1

j) = 0,

then Λg,n(α1, α2, . . . , αn) is of codimension zero, and ΛW
g,n(α1, α2, . . . , αn) is equal to

the degree of the Witten map.

Axiom 6. Composition: If the four-point class ΛW
g,n(α1, α2, α3, α4) is of codimension

zero, then it decomposes as sums of three-point correlators in the following way:

ΛW
0,4(α1, α2, α3, α4) =

∑
β,δ

〈α1, α2, β〉 ηβ,δ 〈δ, α3, α4〉 =
∑
β,δ

〈α1, α3, β〉 ηβ,δ 〈δ, α2, α4〉 .

Note that Fix J = {0} so HJ
∼= C. Let 1 be the element in HJ corresponting to

1 ∈ C. This element has degW (1) = 0 and it turns out to be the identity element in

the FJRW-ring. The next axiom deals with this element.

Axiom 7. Pairing: For α1, α2 ∈ HW,G, 〈α1, α2,1〉 = ηα1,α2.
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Axiom 8. Sums of singularities: If W1 ∈ C[x1, . . . , xr] and W2 ∈ C[y1, . . . , ys] are

two non-degenerate, quasi-homogeneous polynomials with maximal symmetry groups

G1 and G2, then the maximal symmetry group of W = W1 +W2 is G = G1×G2, and

there is an isomorphism of Frobenius algebras

HW,G
∼= HW1,GW1

⊗HW2,GW2

2.2 Orbifolded B-model construction

In the original “unorbifolded” Landau-Ginzburg conjecture the B-model of a singu-

larity W is simply the Milnor ring of W , that is C[x1, . . . , xn]/

(
∂W

∂xi

)
. This Milnor

ring is the same as orbifolding by the trivial group. Orbifolding for the B-models is

a very similar construction for the FJRW-ring of the A-model. First we must choose

a group K such that K < GW ∩ SLn and find the fixed locus of every element in

K. Restricting W to each fixed locus we can find the Milnor ring of that restriction.

Using the same K-action as in the A-model, one may compute invariants of each of

these restricted Milnor rings and sum these sectors over all the elements in K. This

will give us the underlying vector space of the B-model orbifolded chiral ring, but we

still need to define the multiplication in this new algebra.

2.2.1 Orbifold B-side multiplication

As discussed earlier, although the B-side as a vector space has been around for some

time, its structure as a ring has only recently been developed. This section describes

the B-side multiplication which was investigated in general by Kaufmann [6] and ex-

plicitly written out by Marc Krawitz in [8].

The underlying vector space of the Landau-Ginzburg orbifold B-model of W/G is

defined to be

13



Q =
⊕
g∈K

Qg

where Q is a G-graded C-vector space.

Now we are ready to define the multiplication on the B-model orbifolded chiral ring.

Definition 2.2.1. For g ∈ K, let Ig = { i | gi = 1g} and when let Ng := dim(Fix(g)).

γg,h

HessW |Fix(g)∩Fix(h)

dim(Fix(g) ∩ Fix(h))
=


HessW |Fix(gh)

dim(Fix(gh))
If Ig ∪ Ih ∪ Igh = {1, 2, . . . , n}

0 otherwise.

where Hess
dim

:= 1 if Fix = 0.

So γg,h is given by the determinant of the hessian of W on the newly fixed locus,

provided each variable is fixed by at least one of g, h and gh. If g = id or h = id the

newly fixed locus is empty then by convention the determinant of the empty (0× 0)

matrix is 0.

Let bg denote the element 1 in the milnor ring Qg.

Definition 2.2.2. We define the multiplication of the elements bg and bh ∈ Q by

bg ? bh = γg,hbgh and extend to the rest of Q in the obvious way.

Note that if e ∈ K is the identity in K then be is the multiplicative identity for this

multiplication. This follows from the fact that

γe,g = 1 = γg,e.

This multiplication is associative, which was proved by Kaufmann in [6]-[7]. It suffices

to check γg,hγgh,k = γg,hkγh,k.

The orbifolded Milnor ring of QT
2,0 : x3y + y4z + z2 is

〈
b0, zb0, x

2b0, y
2b0, xyb0, y

2zb0, xy
3b0, xyzb0, xy

3zb0, b1
〉

As an example of this multiplication where 〈J〉T = 〈(α, α, 1)〉 when α2 = 1 consider
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b1 ∗ b1 = γ1,1b0 where

γ1,1

HessQT
2,0|Fix((α,α,1))∩Fix((α,α,1))

dim(Fix((α, α, 1)) ∩ Fix((α, α, 1)))
=

HessQT
2,0|Fix((α,α,1)(α,α,1))

dim(Fix((α, α, 1)(α, α, 1)))

γ1,1

HessQT
2,0|Cz

dim(Cz ∩ Cz)
=

HessQT
2,0|C3

dim(C3)

γ1,1

HessQT
2,0|Cz

1
=

HessQT
2,0|C2

3

γ1,12 =
408xy3z

3

γ1,1 =
204xy3z

3
.

So b1 ∗ b1 = γ1,1b0 = 204
3
xy3zb0.

2.3 Additional Notation

This paper discusses the Orbifold Landau-Ginzburg mirror symmetry conjecture for

the invertible unimodal and bimodal singularities where the A side is orbifolded by

G = 〈J〉 and the B side is orbifolded by GT ∩ SLn, where |GT | = [GW : 〈J〉].

Definition 2.3.1. A loop and a chain are polynomials defined as

Wloop := xa1
1 x2 + xa2

2 x3 + · · ·+ xan
n x1

Wchain := xa1
1 x2 + xa2

2 x3 + · · ·+ xan
n

Definition 2.3.2. A singularity is irreducible if the polynomial associated to it is a

loop or a chain.

Proposition 2.3.3. The maximal symmetry group GW is cyclic when W is an irre-

ducible quasi-homogeneous invertible non-degenerate singularity.
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Proof. Since the singularity is irreducible it must either be a loop or a chain. Notice

that the only difference between the loop and the chain is the last term.

Choose a (β1, β2, . . . , βn) ∈ GW . By definition of GW we have

W (β1x1, β2x2, . . . , βnxn) = W (x1, x2, . . . , xn). Therefore βai
i βi+1 = 1 for every 1 ≤ i ≤

n− 1. Using this we can get each βi entirely in terms of β1 by βi = β
Qi−1

k=1(−1)i−1ak

1 .

So (β1, β2, . . . , βn) =
(
β1, β

−a1
1 , βa1a2

1 , . . . , β
Qn−1

k=1 (−1)n−1ak

1

)
.

For a loop β1 ∈ C∗ has order that divides |1 + (−1)n−1
∏n

k=1 ak|.

For a chain β1 ∈ C∗ has order that divides
∏n

k=1 ak.

Let α1 ∈ C∗ have order |1 + (−1)n−1
∏n

k=1 ak| for a loop and have order
∏n

k=1 ak for

a chain. Clearly
(
α1, α

−a1
1 , αa1a2

1 , . . . , α
Qn−1

k=1 (−1)n−1ak

1

)
is an element of GW .

We can see that β1 would have to be some power q of α1, giving

(β1, β2, . . . , βn) =
(
β1, β

−a1
1 , βa1a2

1 , . . . , β
Qn−1

k=1 (−1)n−1ak

1

)
=

(
αq

1, (α
q
1)
−a1 , (αq

1)
a1a2 , . . . , (αq

1)
Qn−1

k=1 (−1)n−1ak

)
=

(
αq

1, (α
−a1
1 )q, (αa1a2

1 )q, . . . , (α
Qn−1

k=1 (−1)n−1ak

1 )q
)

=
(
α1, α

−a1
1 , αa1a2

1 , . . . , α
Qn−1

k=1 (−1)n−1ak

1

)q

.

Therefore GW is cyclic with
(
α1, α

−a1
1 , αa1a2

1 , . . . , α
Qn−1

k=1 (−1)n−1ak

1

)
as a generator.

There are many non-degenerate invertible singularities that are reducible. These

singularities are sums of loops and chains. GW is a product of the cyclic groups for

these loops and chains by axiom 8.
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2.3.1 Orbifold Example Q2,0

The charges for Q2,0 = x3 + xy4 + yz2 are qx = 1
3
qy = 1

6
, qz = 5

12
. Therefore

〈J〉 =
〈(
e

2πi
3 , e

2πi
6 , e

10πi
12

)〉
∼= Z12

For the orbifold B-side we will need to know the index of 〈J〉 in the maximal symmetry

group of Q2,0. In order to find the maximal symmetry group we consider GQ2,0 =

〈(α, β, γ)〉 such that (αx)3 + (αx)(βy)4 + (βy)(γz)2 = x3 + xy4 + yz2. Thus we have

α3 = αβ4 = βγ2 = 1 and GQ2,0 = 〈(γ8, γ−2, γ)〉 ∼= Z24 when γ24 = 1

In order to find the fixed locus of Jk we consider what variables are fixed for k ∈

Z24 = {0, 1, 2 . . . , 23}. Everything will be fixed for k = 0 since J0 = (1, 1, 1). When

k = 6 we have J6 = (1, 1, e5πi), so only the x and y values are fixed. Following this

pattern for all values of k we get the following fixed locus

FixJk =



C3 k = 0

C2
xy k = 6

Cx k = 3, 9

0 otherwise.

Restricting Q2,0 to the fixed locus gives us

Q2,0|FixJk =



x3 + xy4 + yz2 k = 0

x3 + xy4 k = 6

x3 k = 3, 9

0 otherwise.

and thus the Milnor rings for these values of k gives
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Q|FixJk =



〈1, x, x2, y, y2, y3, z, z2, xy, xy2, x2y, x2y2, xz, xz2〉 k = 0

〈1, x, x2, y, y2, y3, xy, xy2, x2y, x2y2〉 k = 6

〈1, x〉 k = 3, 9

〈1〉 otherwise.

In order to find 〈J〉 invariants we consider xiyjzkdx∧dy∧dz. This element is invariant

if and only if i
3

+ j
6

+ 5k
12

+ 1
3

+ 1
6

+ 5
12

= 0 mod 1. Similarly the element xiyjdx ∧ dy

is invariant if and only if i
3

+ j
6

+ 1
3

+ 1
6

= 0 mod 1. So from the sector k = 6 we get

the invariants y3e6 and xye6. The element 1 in each k sector will be expressed as ek.

For the sectors k = 0, 3, 9 there are no invariant elements. For all other k-sectors the

only invariant element is ek. Thus this gives us our table of elements

k 1 2 4 5 6 7 8 10 11
degW 0 11

6
3
2

4
3

7
6
, 7

6
1 5

6
1
2

7
3

invariants e1 e2 e4 e5 y3e6, xye6 e7 e8 e10 e11

Table 1: Q2,0 example for table of A side elements.

The only nonzero correlators by Axiom 1 are these the following.

Concavity axiom:

〈e1, e1, e11〉, 〈e1, e7, e5〉, 〈e1, e8, e4〉, 〈e1, e10, e2〉, 〈e10, e8, e7〉, 〈e, e, e〉 all equal 1.

Pairing axiom:

〈e1, y3e6, y
3e6〉 = −1

4

〈e1, xye6, xye6〉 = 1
12

Index zero axiom:

〈e10, e10, e5〉 = −2
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Thus using these correlators we can compute all of the multiplication for this ring.

Since e1 = 1 is the identity in the ring multiplication with e1 is trivial. The upper-half

multiplication table is given as

e1 e10 e8 e7 xye6 y3e6 e5 e4 e2 e11
e1 e1 e10 e8 e7 xye6 y3e6 e5 e4 e2 e11
e10 −2e7 e5 e4 0 0 −2e2 0 e11 0
e8 0 e2 0 0 0 e11 0 0
e7 0 0 0 e11 0 0 0
xye6

1
12
e11 0 0 0 0 0

y3e6 −1
4
e11 0 0 0 0

e5 0 0 0 0
e4 0 0 0
e2 0 0
e11 0

Table 2: Q2,0 example for multiplication table of A side elements.

Now we will construct the Orbifold B side. We can easily see that QT
2,0 = x3y+y4z+z2

and its maximal symmetry group is also GT
Q2,0

= 〈(α, α−3, α12)〉 ∼= Z24 where α24 = 1

The group K by which the B side is orbifolded must be of order [GW : 〈J〉] in GT
W

and also in SL3(C). Since GQ2,0
∼= Z24 and 〈J〉 ∼= Z12, [GQ2,0 : 〈J〉] = 2. Therefore

one such K is K = 〈(α12, α12, 1)〉 = 〈(β, β, 1)〉 where β2 = 1. For notational ease we

denote K as K = 〈m〉 .

Computing the fixed and Milnor ring locus in a similar way as before we get

Fixmk =

 C2 k = 0

0 otherwise.

Q|Fixmk =

 〈1, x, x2, y, y2, y3, z, xy, xy2, xy3, xz, yz, y2z, y3z, xyz, xy2z, xy3z〉 k = 0

〈1〉 otherwise.

Also computing K-invariance we get the following elements in Table 3 to be invariant.
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k 0 1
degW 0, 1

2
, 7

12
, 1

4
, 5

12
, 3

4
, 2

3
, 11

12
, 7

6
7
12

invariants b0, zb0, x
2b0, y

2b0, xyb0, y
2zb0, xy

3b0, xyzb0, xy
3zb0 b1

Table 3: Q2,0 example for table of B side elements.

Let bk represent the element 1 in the respective k sector.

Now for the B side multiplication, since b0 is the identity in the ring its multiplication

is trivial. In the Orbifold B-model multiplication section we already walked through

a multiplication example for QT
2,0. Following this same process for all pairs we get

b0 y2b0 xyb0 z0 b1 x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

b0 b0 y2b0 xyb0 z0 b1 x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

y2b0 −2zb0 xy3b0 y2zb0 0 0 −2xyzb0 0 xy3zb0 0

xyb0 0 xyzb0 0 0 0 xy3zb0 0 0

z0 0 0 0 xy3zb0 0 0 0

b1
204
3
xy3zb0 0 0 0 0 0

x2b0 −4xy3zb0 0 0 0 0

xy3b0 0 0 0 0

y2zb0 0 0 0

xyzb0 0 0

xy3zb0 0

Now the FJRW ring for Q2,0 and the orbifold ring for QT
2,0 are isomorphic as vector

spaces just by sharing the same dimension and corresponding degrees. Therefore if

they were to have the same multiplication table that would be enough to prove they

are isomorphic as rings. So instead of having b1 and x2b0 as elements we can scale

them to be 1
4
√

51
b1 and 1

4
x2b0 giving the upper half of the multiplication table as seen
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in Table 4.

b0 y2b0 xyb0 z0
1

4
√

51
b1

1
4
x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

b0 b0 y2b0 xyb0 z0
1

4
√

51
b1

1
4
x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

y2b0 −2zb0 xy3b0 y2zb0 0 0 −2xyzb0 0 xy3zb0 0
xyb0 0 xyzb0 0 0 0 xy3zb0 0 0
z0 0 0 0 xy3zb0 0 0 0
1

4
√

51
b1

1
12
xy3zb0 0 0 0 0 0

1
4
x2b0 −1

4
xy3zb0 0 0 0 0

xy3b0 0 0 0 0
y2zb0 0 0 0
xyzb0 0 0
xy3zb0 0

Table 4: Q2,0 example for multiplication table of B side elements.

Since the FJRW ring A model multiplication table and the Chiral ring B-model

multiplication table match exactly the rings are isomorphic.

2.4 Format of results

For each singularity, the information will be displayed in the following pattern:

• The name of the singularity will be given and also the polynomial that defines

it, the Jacobian ideal, the weights associated to each variable, and the central

charge. Also given will be the symmetry group used in the construction, 〈J〉.

• The fixed locus will be described for each group element.

• A basis for the Milnor ring of W restricted to each fixed locus will be given.

• Sectors with non-trivial J-invariants will be displayed in a table including the

invariant elements and their W -degrees.

• Values of the three-point correlators that are not required to vanish by Axioms

1 and 2 will be given. There are some correlators that cannot be computed
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from the axioms alone. These will be given variable labels.

• Multiplication table for both the A-side and B-side singularities will be given.

For many singularities a system of equations will be shown in order to match

these multiplication tables for an isomorphism. The solution to the systems will

be given.

3 Computations

The examples are taken from the unimodal and bimodal singularities listed by Arnol’d.

Many of these singularities are quasi-homogeneous only after fixing specific parameter

values. This will be done without further comment.

3.1 Unimodal singularities

3.1.1 P8

P8 is normally the singularity x3 + y3 + z3 + axyz however this is not invertible. We

will continue for the case where a = 0 making P8 invertible.

A model: P8 : x3 + y3 + z3

J = 〈3x2, 3y2, 3z2〉

qx =
1

3
, qy =

1

3
, qz =

1

3

GP8 = 〈(α, β, γ)〉 ∼= Z3 × Z3 × Z3 when α3 = β3 = γ3

FixJk =

 C3 k = 0

0 otherwise.
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Q|FixJk =

 〈1, x, y, z, xy, xz, yz, xyz〉 k = 0

〈1〉 otherwise.

k 0 1 2
degW 1, 1 0 2

invariants e0, xyze0 e1 e2

Table 5: P8 A side elements.

non-zero correlators:

Concavity axiom:

〈e1, e1, e2〉 = 1

Pairing axiom:

〈e1, e0, xyze0〉 = 1
27

e1 e0 xyze0 e2
e1 e1 e0 xyze0 e2
e0 0 1

27
e2 0

xyze0 0 0
e2 0

Table 6: P8 A side multiplication.

B model:P T
8 : x3 + y3 + z3

J = 〈3x2, 3y2, 3z2〉

qx =
1

3
, qy =

1

3
, qz =

1

3

K = 〈(α2, 1, α), (α2, α, 1)〉 = 〈m,n〉 when α3 = 1
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Fix(mknj) =



C3 k = 0, j = 0

Cz k = 0, j = 1

Cz k = 0, j = 2

Cy k = 1, j = 0

0 k = 1, j = 1

Cx k = 1, j = 2

Cy k = 2, j = 0

Cx k = 2, j = 1

0 k = 2, j = 2

Q|Fix(mknj) =



〈1, x, y, z, xy, xz, yz, xyz〉 k = 0, j = 0

〈1, z〉 k = 0, j = 1

〈1, z〉 k = 0, j = 2

〈1, y〉 k = 1, j = 0

〈1〉 k = 1, j = 1

〈1, x〉 k = 1, j = 2

〈1, y〉 k = 2, j = 0

〈1, x〉 k = 2, j = 1

〈1〉 k = 2, j = 2

k, j 0, 0 1, 1 2, 2
degW 0, 1 1

2
1
2

invariants b0,0, xyzb0,0 b1,1 b2,2

Table 7: P8 B side elements.
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b0,0 b1,1
1

1944
b2,2 xyzb0,0

b0,0 b0,0 b1,1
1

1944
b2,2 xyzb0,0

b1,1 0 1
27
xyzb0,0 0

1
1944

b2,2 0 0
xyzb0,0 0

Table 8: P8 B side multiplication.

3.1.2 X9

For X9 : x4 + y4 + bx2y2, X9 is not invertible as written so we must have b = 0.

Amodel: X9 : x4 + y4

J = 〈4x3, 4y3〉

qx =
1

4
, qy =

1

4

GX9 = 〈α, β〉 ∼= Z4 × Z4 when α4 = β4 = 1

FixJk =

 C2 k = 0

0 otherwise.

Q|FixJk =

 〈1, x, x2, y, y2, xy, xy2, x2y, x2y2〉 k = 0

〈1〉 otherwise.

k 0 1 2 3
degW 1, 1, 1 0 1 2

invariants x2e0, y
2e0, xye0 e1 e2 e3

Table 9: X9 A side elements.

non-zero correlators:

Concavity axiom:

〈e1, e1, e3〉 and 〈e1, e2, e2〉 both equal 1.

Pairing axiom:
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〈e1, x2e0, y
2e0〉 and 〈e1, xye0, xye0〉 both equal 1

16
.

e1 x2e0 y2e0 xye0 e2 e3
e1 e1 x2e0 y2e0 xye0 e2 e3
x2e0 0 1

16
e3 0 0 0

y2e0 0 0 0 0
xye0

1
16
e3 0 0

e2 e3 0
e3 0

Table 10: X9 A side multiplication.

Bmodel: XT
9 : x4 + y4

J = 〈4x3, 4y3〉

qx =
1

4
, qy =

1

4

K = 〈m〉 = 〈α3, β〉 when α4 = β4 = 1

Fixmk =

 C4 k = 0

0 otherwise.

Q|Fixmk =

 〈1, x, x2, y, y2, xy, xy2, x2y, x2y2〉 k = 0

〈1〉 otherwise.

k 0 1 2 3
degW 0, 1

2
, 1 1

2
1
2

1
2

invariants b0, xyb0, x
2y2b0 b1 b2 b3

Table 11: X9 B side elements.
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b0
1

24
√

2
b1 b3

1
24
√

2
b2 xyb0 x2y2b0

b0 b0
1

24
√

2
b1 b3

1
24
√

2
b2 xyb0 x2y2b0

1
24
√

2
b1 0 1

16
x2y2b0 0 0 0

b3 0 0 0 0
1

24
√

2
b2

1
16
x2y2b0 0 0

xyb0 x2y2b0 0
x2y2b0 0

Table 12: X9 B side multiplication.

3.1.3 Q12

A model: Q12 : x3 + y5 + yz2

J = 〈3x2, 5y4 + z2, 2yz〉

qx =
1

3
, qy =

1

5
, qz =

2

5

GQ12 = 〈(α, γ−2, γ)〉 ∼= Z30 when α3 = γ10 = 1

FixJk =



C3 k = 0

Cx 3|k

C2
yz 5|k

0 otherwise.

Q|FixJk =



〈1, x, y, y2, y3, y4, z, xy, xy2, xy3, xy4, xz〉 k = 0

〈1, x〉 3|k

〈1, y, y2, y3, y4, z〉 5|k

〈1〉 otherwise.
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k 1 2 4 5 7 8 10 11 13 14
degW 0 28

15
8
5

22
15
, 22

15
6
5

16
15

4
5
, 4

5
2
3

2
5

34
15

invariants e1 e2 e4 y2e5, ze5 e7 e8 y2e10, ze10 e11 e13 e14

Table 13: Q12 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e14〉, 〈e1, e8, e7〉, 〈e1, e11, e4〉, 〈e1, e13, e2〉 〈e13, e11, e7〉 all equal 1

Pairing axiom:

〈e1, y2e10, y
2e5〉 = 1

10

〈e1, ze10, ze5〉 = −1
2

Correlator equation:

−2 = −2〈e13, e13, ze5〉〈e13, ze10, e8〉+ 10〈e13, e13, y2e5〉〈e13, y2e10, e8〉

Correlators we cannot determine with axioms alone:

〈e13, e13, ze5〉 = a1

〈e13, ze10, e8〉 = a2

〈e13, e13, y
2e5〉 = a3

〈e13, y
2e10, e8〉 = a4

〈e11, y
2e10, y

2e10〉 = a5

〈e11, ze10, y
2e10〉 = a6

〈e11, ze10, ze10〉 = a7
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e1 e13 e11 ze10 y2e10 e8 e7 ze5 y2e5 e4 e2 e14
e1 e1 e13 e11 ze10 y2e10 e8 e7 ze5 y2e5 e4 e2 e14
e13 −2a1ze10 + 10a3y

2e10 e8 a2e7 a4e7 −2a2ze5 + 10a4y
2e5 e4 a1e2 a3e2 0 e14 0

e11 0 −2a7ze5 + 10a6y
2e5 −2a6ze5 + 10a5y

2e5 0 e2 0 0 e14 0 0
ze10 a7e4 a6e4 a2e2 0 −1

2
e14 0 0 0 0

y2e10 a5e4 a4e2 0 0 1
10
e14 0 0 0

e8 0 e14 0 0 0 0 0
e7 0 0 0 0 0 0
ze5 0 0 0 0 0
y2e5 0 0 0 0
e4 0 0 0
e2 0 0
e14 0

Table 14: Q12 A side multiplication.
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B model: QT
12 : x3 + y5z + z2

J = 〈3x2, 5y4z, y5 + 2z〉

qx =
1

3
, qy =

1

10
, qz =

1

2

K = 〈m〉 = 〈(1, β15, β15)〉 when β10 = 1

Fixmk =

 C3 k = 0

Cx k = 1

Q|Fixmk =

 〈1, x, y, y2, y3, y4, z, xy, xy2, xy3, xy4, xz, yz, y2z, y3z, xyz, xy2z, xy3z〉 k = 0

〈1, x〉 k = 1

k 0 1
degW 0, 1

3
, 1

5
, 2

5
, 8

15
, 3

5
, 4

5
, 11

15
, 14

15
, 17

15
2
5
, 11

15

invariants b0, xb0, y
2b0, y

4b0, xy
2b0, xy

4b0, yzb0, y
3zb0, xyzb0, xy

3zb0 b1, xb1

Table 15: Q12 B side elements.

For Table 16 we will let

α = eb1 + fy4b0

β = gb1 + hy4b0

γ = axb1 + bxy4b0

θ = cxb1 + dxy4b0.
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b0 y2b0 xb0 α β xy2b0 yzb0 γ θ y3zb0 xyzb0 xy3zb0
b0 b0 y2b0 xb0 β xy2b0 yzb0 γ θ y3zb0 xyzb0 xy3zb0

y2b0
−g

eh−gf
α+ xy2b0 −2fyzb0 −2hyzb0

−c
ad−cb

γ+ y3zb0 −2bxyzb0 −2dxyzb0 0 xy3zb0 0
e

eh−gf
β a

ad−cb
θ

xb0 0 de−fc
ad−cb

γ+ dg−hc
ad−cb

γ+ 0 xyzb0 0 0 xy3zb0 0 0
af−eb
ad−cb

θ ah−gb
ad−cb

θ

α (30e2 − 2f 2)y3zb0 (30eg − 2fh)y3zb0 −2fxyzb0 0 −1
2
xy3zb0 0 0 0 0

β (30g2 − 2h2)y3zb0 −2hxyzb0 0 0 1
10
xy3zb0 0 0 0

xy2b0 0 xy3zb0 0 0 0 0 0

yzb0 0 0 0 0 0 0

γ 0 0 0 0 0

θ 0 0 0 0

y3zb0 0 0 0

xyzb0 0 0

xy3zb0 0

Table 16: Q12 B side multiplication
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System of equations found by matching the multiplication tables:

a1 = −2b =
g

2(eh− gf)

a2 = −2f =
c

2(ad− cb)

a3 = −2d =
e

10(eh− gf)

a4 = −2h =
a

10(ad− cb)

a5 = 30g2 − 2h2 =
ah− gb

10(ad− cb)

a6 = 30eg − 2fh =
af − eb

10(ad− cb)
=

dg − hc

−2(ad− cb)

a7 = 30e2 − 2f 2 =
de− fc

−2(ad− cb)

30ae− 2fb = −1

2

30ce− 2df = 0

30ag − 2bf = 0

30cg − 2dh =
1

10

Solution to these equations in terms of the ais:

a =
a4a1

2
√

30a5 + 15a2
4

b = −a1

2

c =
a2a1

10
√

30a5 + 15a2
4

d = −a3

2

e =
a3

√
30 ∗ a5 + 15 ∗ a2

4

6a1

f = −a2

2
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g =
1

30

√
30a5 + 15a2

4

h = −a4

2

With the relations:

a3 =
a1a2 − 1

5a4

a6 =
2a1a2a5 − 2a5 − a2

4

2a1a4

a7 =
2a2

2a
2
1a5 − 4a1a2a5 − 2a2a

2
4a1 + 2a5 + a2

4

2a2
4a

2
1

3.1.4 U12

A model: U12 : x3 + y3 + z4

J = 〈3x2, 3y2, 4z3〉

qx =
1

3
, qy =

1

3
, qz =

1

4

GU12 = 〈(α, β, γ)〉 ∼= Z3 × Z3 × Z4 when α3 = β3 = γ4 = 1

FixJk =



C3 k = 0

C2
xy 3|k

Cz 4|k

0 else.

Q|FixJk =



〈1, x, y, z, z2, xy, xz, xz2, yz, yz2, xyz, xyz2〉 k = 0

〈1, x, y, xy〉 3|k

〈1, z, z2〉 4|k

〈1〉 else.
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k 1 2 3 5 6 7 9 10 11
degW 0 11

6
5
3
, 5

3
4
3

7
6
, 7

6
1 2

3
, 2

3
1
2

7
3

invariants e1 e2 xe3, ye3 e5 xe6, ye6 e7 xe9, ye9 e10 e11

Table 17: U12 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e11〉, 〈e1, e7, e5〉, 〈e1, e10, e2〉, 〈e10, e10, e5〉 are all equal to 1

Pairing axiom:

〈e1, xe9, ye3〉, 〈e1, ye6, xe6〉, 〈e1, ye9, xe3〉 are all equal to 1
9

Correlators that cannot be computed with the axioms alone:

〈e10, xe9, xe6〉 = a1

〈e10, xe9, ye6〉 = a2

〈e10, ye9, xe6〉 = a3

〈e10, ye9, ye6〉 = a4

〈xe9, xe9, e7〉 = a5

〈xe9, ye9, e7〉 = a6

〈ye9, ye9, e7〉 = a7
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e1 e10 ye9 xe9 e7 ye6 xe6 e5 ye3 xe3 e2 e11
e1 e1 e10 ye9 xe9 e7 ye6 xe6 e5 ye3 xe3 e2 e11
e10 e7 9a3ye6 + 9a4xe6 9a1ye6 + 9a2xe6 0 9a2ye3 + 9a4xe3 9a1ye3 + 9a3xe3 e2 0 0 e11 0
ye9 a7e5 a6e5 9a6ye3 + 9a7xe3 a4e2 a3e2 0 0 1

9
e11 0 0

xe9 a5e5 9a5ye3 + 9a6xe3 a2e2 a1e2 0 1
9
e11 0 0 0

e7 0 0 0 e11 0 0 0 0
ye6 0 1

9
e11 0 0 0 0 0

xe6 0 0 0 0 0 0
e5 0 0 0 0 0
ye3 0 0 0 0
xe3 0 0 0
e2 0 0
e11 0

Table 18: U12 A side multiplication.
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B model: UT
12 : x3 + y3 + z4

J = 〈3x2, 3y2, 4z3〉

qx =
1

3
, qy =

1

3
, qz =

1

4

K = 〈m〉 = 〈(α2, β, 1)〉 when α3 = β3 = γ4 = 1

Fixmk =

 C3 k = 0

Cz k = 1, 2

Q|Fixmk =

 〈1, x, y, z, z2, xy, xz, xz2, yz, yz2, xyz, xyz2〉 k = 0

〈1, z, z2〉 k = 1, 2

k 0 1 2
degW 0, 1

4
, 1

2
, 2

3
, 11

12
, 7

6
1
3
, 7

12
, 5

6
1
3
, 7

12
, 5

6

invariants b0, zb0, z
2b0, xyb0, xyzb0, xyz

2b0 b1, zb1, z
2b1 b2, zb2, z

2b2

Table 19: U12 B side elements.

For Table 20 we will let

α = ab2 + bb1

β = cb2 + db1

γ = ezb2 + fzb1

θ = gzb2 + hzb1

η = iz2b2 + jz2b1

µ = kz2b2 + lz2b1.
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b0 zb0 α β z2b0 γ θ xyb0 η µ xyzb0 xyz2b0
b0 b0 zb0 α β z2b0 γ θ xyb0 η µ xyzb0 xyz2b0

zb0 z2b0
ha−gb
he−gf

γ+ hc−gd
he−gf

γ+ 0 el−kf
il−jk

η+ gl−kh
il−jk

η+ xyzb0 0 0 xyz2b0 0
eb−af
he−gf

θ ed−cf
he−gf

θ if−je
il−jk

µ ih−jg
il−jk

µ

α 24abxyb0 12(ad+ bc)xyb0
al−kb
il−jk

η+ 12(af + be)xyzb0 12(ah+ bg)xyzb0 0 0 1
9
xyz2b0 0 0

ib−ja
il−jk

µ

β 24cdxyb0
cl−kd
il−jk

η+ 12(cf − de)xyzb0 12(ch+ dg)xyzb0 0 1
9
xyz2b0 0 0 0

id−jc
il−jk

µ

z2b0 0 0 0 xyz2b0 0 0 0 0

γ 0 1
9
xyz2b0 0 0 0 0 0

θ 0 0 0 0 0 0

xyb0 0 0 0 0 0

η 0 0 0 0

µ 0 0 0

xyzb0 0 0

xyz2b0 0

Table 20: U12 B side multiplication.
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System of equations found by matching the multiplication tables:

a1 =
hc− gd

9(he− gf)
=

gl − kh

9(il − jk)
= 12(ch+ dg)

a2 =
ed− cf

9(he− gf)
=

el − kf

9(il − jk)
= 12(cf + de)

a3 =
ha− gb

9(he− gf)
=

ih− jg

9(il − jk)
= 12(ah+ bg)

a4 =
eb− af

9(he− gf)
=

if − je

9(il − jk)
= 12(af + be)

a5 = 24cd =
cl − kd

9(il − jk)

a6 = 12(ad+ bc) =
al − kb

9(il − jk)
=

id− jc

9(il − jk)

a7 = 24ab =
ib− ja

9(il − jk)

12(aj + bi) = 0

12(al + bk) =
1

9

12(cj + di) =
1

9

12(cl + dk) = 0

24ef = 0

24gh = 0

12(eh+ fg) =
1

9

Solution to this system in terms of the ais:

a =
a3

12h

b = 9ha4

c =
a1

12h

d = 9ha2
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e =
1

108h

f = 0

g = 0

h = h

i =
a1

972h(a1a4 − a3a2)

j =
ha4

9(a1a4 − a3a2)

k =
a1

972h(a1a4 − a3a2)

l = − ha2

9(a1a4 − a3a2)

With the relations:

a5 = 18a2a1

a6 = 9a4a1 + 9a3a2

a7 = 18a3a4

3.2 Bimodal Singularities

3.2.1 Z1,0

A model: Z1,0 : yx3 + y7

J = 〈3x2y, x3 + 7y6〉

qx =
2

7
, qy =

1

7

GZ1,0 = 〈(α, α−3)〉 ∼= Z21 when α21 = 1
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FixJk =

 C2 k = 0

0 otherwise.

Q|FixJk =


〈1, x, x2, y.y2, y3, y4, y5, y6, xy, xy2, xy3, xy4,

xy5, xy6〉 k = 0

〈1〉 otherwise.

k 0 1 2 3 4 5 6
degW

8
7
, 8

7
, 8

7
0 6

7
12
7

4
7

10
7

16
7

invariants x2e0, y
4e0, xy

2e0 e1 e2 e3 e4 e5 e6

Table 21: Z1,0 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e6〉, 〈e1, e2, e5〉, 〈e1, e4, e3〉, 〈e4, e2, e2〉 all equal 1.

Pairing axiom:

〈e1, x2e0, x
2e0〉 = −1

3

〈e1, xy2e0, y
4e0〉 = 1

21

Correlators that cannot be computed from the axioms alone:

〈e4, e4, x2e0〉 = a1

〈e4, e4, y4e0〉 = a2

〈e4, e4, xy2e0〉 = a3

Correlator equation:
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−3 = −3〈e4, e4, x2e0〉2 + 42〈e4, e4, y4e0〉〈e4, e4, xy2e0〉

e1 e4 e2 x2e0 xy2e0 y4e0 e5 e3 e6
e1 e1 e4 e2 x2e0 xy2e0 y4e0 e5 e3 e6
e4 −3a1x

2e0 + 21a2xy
2e0 + 21a3y

4e0 e5 a1e3 a3e3 a2e3 0 e6 0
e2 e3 0 0 0 e6 0 0
x2e0 −1

3
e6 0 0 0 0 0

xy2e0 0 1
21
e6 0 0 0

y4e0 0 0 0 0
e5 0 0 0
e3 0 0
e6 0

Table 22: Z1,0 A side multiplication.

B model: ZT
1,0 : x3 + xy7

J = 〈3x2 + y7, 7xy6〉

qx =
1

3
, qy =

2

21

K = 〈m〉 = 〈(β14, β7)〉 when β21 = 1

Fixmk =

 C2 k = 0

0 k = 1, 2

Q|Fixmk =


〈1, x, x2, y, y2, y3, y4, y5, y6, xy, xy2, xy3, xy4, xy5,

x2y, x2y2, x2y3, x2y4, x2y5〉 k = 0

〈1〉 k = 1, 2

k 0 1 2
degW 0, 2

7
, 4

7
, 3

7
, 5

7
, 6

7
, 8

7
4
7

4
7

invariants b0, y
3b0, y

6b0, xyb0, xy
4b0, x

2y2b0, x
2y5b0 b1 b2

Table 23: Z1,0 B side elements.
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For Table 24 let

α = ab1 + bb2 + cy6b0

β = db1 + eb2 + fy6b0

γ = gb1 + hb2 + iy6b0
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b0 y3b0 xyb0 α β γ xy4b0 x2y2b0 x2y5b0
b0 b0 y3b0 xyb0 α β γ xy4b0 x2y2b0 x2y5b0

y3b0
−eg+hd

−ceg+chd−fha+fbg+iae−ibd
α− xy4b0 −3cx2y2b0 −3fx2y2b0 −3ix2y2b0 0 x2y5b0 0

ha−gb
−ceg+chd−fha+fbg+iae−ibd

β+
ae−bd

−ceg+chd−fha+fbg+iae−ibd
γ

xyb0 x2y2b0 0 0 0 x2y5b0 0 0

α −1
3
x2y5b0 0 0 0 0 0

β 0 1
21
x2y5b0 0 0 0

γ 0 0 0 0

xy4b0 0 0 0

x2y2b0 0 0

x2y5b0 0

Table 24: Z1,0 B side multiplication.
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System of equations found by matching the multiplication tables and correlator equa-

tions:

399ab− 3c2 = −1

3
399

2
(ae+ bd)− 3cf = 0

399

2
(ah+ bg)− 3ci = 0

399de− 3f 2 = 0

399

2
(dh+ eg)− 3fi =

1

21

399gh− 3i2 = 0

−3 = −27c2 + 378fi

a1 = −3c =
−eg + hd

−3(−ceg + chd− fah+ fbg + iae− ibd)

a2 = −3i = − ah− bg

21(−ceg + chd− fah+ fbg + iae− ibd)

a3 = −3f =
ae− bd

21(−ceg + chd− fah+ fbg + iae− ibd)

Solution in terms of the ais:

a =
a1a2 − a2

1197h

b =
a1h+ h

a2

c = −a1

3

d =
(a1 − 1)2

16758h

e =
h(a1 + 1)2

14a2
2

f = −a3

3

g =
a2

2

1197h
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h = h

i = −a2

3

With the relation:

a3 =
a2

1 − 1

14a2

3.2.2 Q2,0

A model: Q2,0 : x3 + xy4 + yz2

J = 〈3x2 + y4, 4xy3 + z2, 2yz〉

qx =
1

3
, qy =

1

6
, qz =

5

12

GQ2,0 = 〈(γ8, γ−2, γ)〉 ∼= Z24 when γ24 = 1

FixJk =



C3 k = 0

C2
xy k = 6

Cx k = 3, 9

0otherwise.

Q|FixJk =



〈1, x, x2, y, y2, y3, z, z2, xy, xy2, x2y, x2y2, xz, xz2〉 k = 0

〈1, x, x2, y, y2, y3, xy, xy2, x2y, x2y2〉 k = 6

〈1, x〉 k = 3, 9

〈1〉 otherwise.
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k 1 2 4 5 6 7 8 10 11
degW 0 11

6
3
2

4
3

7
6
, 7

6
1 5

6
1
2

7
3

invariants e1 e2 e4 e5 y3e6, xye6 e7 e8 e10 e11

Table 25: Q2,0 A side elements.

Non-zero correlators:

Concavity axiom:

〈e1, e1, e11〉, 〈e1, e7, e5〉, 〈e1, e8, e4〉, 〈e1, e10, e2〉, 〈e10, e8, e7〉, 〈e, e, e〉 all equal 1.

Pairing axiom:

〈e1, y3e6, y
3e6〉 = −1

4

〈e1, xye6, xye6〉 = 1
12

Index zero axiom:

〈e10, e10, e5〉 = −2

e1 e10 e8 e7 xye6 y3e6 e5 e4 e2 e11
e1 e1 e10 e8 e7 xye6 y3e6 e5 e4 e2 e11
e10 −2e7 e5 e4 0 0 −2e2 0 e11 0
e8 0 e2 0 0 0 e11 0 0
e7 0 0 0 e11 0 0 0
xye6

1
12
e11 0 0 0 0 0

y3e6 −1
4
e11 0 0 0 0

e5 0 0 0 0
e4 0 0 0
e2 0 0
e11 0

Table 26: Q2,0 A side multiplication.
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B model:QT
2,0 : x3y + y4z + z2

J = 〈3x2y, x3 + 4y3z, y4 + 2z〉

qx =
7

24
, qy =

1

8
, qz =

1

2

K = 〈m〉 = 〈α, α, 0〉 when α2 = 1

Fixmk =

 C2 k = 0

0 otherwise.

Q|Fixmk =

 〈1, x, x2, y, y2, y3, z, xy, xy2, xy3, xz, yz, y2z, y3z, xyz, xy2z, xy3z〉 k = 0

〈1〉 otherwise.

k 0 1
degW 0, 1

2
, 7

12
, 1

4
, 5

12
, 3

4
, 2

3
, 11

12
, 7

6
7
12

invariants b0, zb0, x
2b0, y

2b0, xyb0, y
2zb0, xy

3b0, xyzb0, xy
3zb0 b1

Table 27: Q2,0 B side elements.

b0 y2b0 xyb0 z0
1

4
√

51
b1

1
4
x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

b0 b0 y2b0 xyb0 z0
1

4
√

51
b1

1
4
x2b0 xy3b0 y2zb0 xyzb0 xy3zb0

y2b0 −2zb0 xy3b0 y2zb0 0 0 −2xyzb0 0 xy3zb0 0
xyb0 0 xyzb0 0 0 0 xy3zb0 0 0
z0 0 0 0 xy3zb0 0 0 0
1

4
√

51
b1

1
12
xy3zb0 0 0 0 0 0

1
4
x2b0 −1

4
xy3zb0 0 0 0 0

xy3b0 0 0 0 0
y2zb0 0 0 0
xyzb0 0 0
xy3zb0 0

Table 28: Q2,0 B side multiplication.
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3.2.3 S1,0

A model: S1,0 : zx2 + yz2 + y5

J = 〈2zx, z2 + 5y4, x2 + 2yz〉

qx =
3

10
, qy =

1

5
, qz =

2

5

GS1,0 = 〈(α, α4, α−2)〉 ∼= Z20 when α20 = 1

FixJk =


C3 k = 0

C2
yz 5|k

0 otherwise.

Q|FixJk =


〈1, x, x2, y, y2, y3, y4, z, xy, xy2, xy3, x2y, x2y2, x2y3〉 k = 0

〈1, y, y2, y3, y4, z〉 5|k

〈1〉 otherwise.

k 1 2 3 4 5 6 7 8 9
degW 0 9

5
8
5

7
5

6
5
, 6

5
4
5

4
5

3
5

12
5

invariants e1 e2 e3 e4 y2e5, ze5 e6 e7 e8 e9

Table 29: S1,0 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e9〉, 〈e1, e6, e4〉, 〈e1, e7, e3〉, 〈e1, e8, e2〉, 〈e8, e7, e6〉, are all equal to 1.

Pairing axiom:

〈e1, y2e5, y
2e5〉 = 1

10
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〈e1, ze5, ze5〉 = −1
2

Index zero axiom:

〈e7, e7, e7〉 = −2

Correlators we cannot compute with the axioms alone:

〈e8, e8, ze5〉 = a1

〈e8, e8, y2e5〉 = a2

Correlator equation:

−2 = −2〈e8, e8, ze5〉2 + 10〈e8, e8, y2e5〉2

e1 e8 e7 e6 ze5 y2e5 e4 e3 e2 e9
e1 e1 e8 e7 e6 ze5 y2e5 e4 e3 e2 e9
e8 −2a1ze5 + 10a2y

2e5 e4 e3 a1e2 a2e2 0 0 e9 0
e7 −2e3 e2 0 0 0 e9 0 0
e6 0 0 0 e9 0 0 0
ze5 −1

2
e9 0 0 0 0 0

y2e5
1
10
e9 0 0 0 0

e4 0 0 0 0
e3 0 0 0
e2 0 0
e9 0

Table 30: S1,0 A side multiplication.

B model:S1,0 : x2 + yz5 + xy2

J = 〈2x+ y2, z5 + 2xy, 5yz4〉

qx =
1

2
, qy =

1

4
, qz =

3

20

K = 〈m〉 = 〈1, β, β〉 where β2 = 1
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Fixmk =



C3 k = 0

Cx k = 2, 6, 10, 14, 18

C2
xy k = 4, 8, 12, 16

0 otherwise.

Q|Fixmk =



〈1, x, y, z, z2, z3, z4, xy, xz, xz2, xz3, yz, yz2, yz3,

xyz, xyz2, xyz3〉 k = 0

〈1〉 k = 2, 6, 10, 14, 18

〈1, x, y〉 k = 4, 8, 12, 16

〈1〉 otherwise.

k 0 1
degW 0, 1

2
, 3

10
, 3

5
, 9

10
, 6

5
, 2

5
, 7

10
, 4

5
3
5

invariants 1, x, z2, z4, xyz, xyz3, yz, yz3, xz2 1

Table 31: S1,0 B side elements.
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b0 z2b0 yzb0 xb0 ab1 + bz4b0 cb1 + dz4b0 yz3b0 xz2b0 xyzb0 xyz3b0
b0 b0 z2b0 yzb0 xb0 ab1 + bz4b0 cb1 + dz4b0 yz3b0 xz2b0 xyzb0 xyz3b0
z2b0

−c
ad−bc

(ab1 + bz4b0) + a
ad−bc

(cb1 + dz4b0) yz3b0 y2z2b0 −2bxyzb0 −2dxyzb0 0 0 xyz3b0 0

yzb0 −2xz2b0 xyzb0 0 0 0 xyz3b0 0 0
xb0 0 0 0 xyz3b0 0 0 0

ab1 + bz4b0 −1
2
xyz3b0 0 0 0 0 0

cb1 + dz4b0
1
10
xyz3b0 0 0 0 0

yz3b0 0 0 0 0
xz2b0 0 0 0
xyzb0 0 0
xyz3b0 0

Table 32: S1,0 B side multiplication.
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System of equations found by matching the multiplication tables:

a1 = −2b =
c

2(ad− bc)

a2 = −2d =
a

10(ad− bc)
170

3
a2 − 2b2 = −1

2
170

3
ac− 2bd = 0

170

3
c2 − 2d2 =

1

10

−2 = −8b2 + 40d2

Solution in terms of the ais:

a = − 1

34
a2

√
51

b = −a1

2

c = −
√

51a1

170

d = −a2

2

With the relation:

a1 = −
√

1 + 5a2
2

3.2.4 U16

A model: U16 : x3 + z2x+ y5

J = 〈3x2 + z2, 5y4, 2zx〉

qx =
1

3
, qy =

1

5
, qz =

1

3

GU16 = 〈(γ−2, β, γ)〉 ∼= Z30 when β5 = γ6 = 1
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FixJk =



C3 k = 0

C2
xz 3|k

Cy 5|k

0 otherwise.

Q|FixJk =



〈1, x, x2, y, y2, y3, z, xy, xy2, xy3, x2y, x2y2, x2y3,

yz, y2z, y3z〉 k = 0

〈1, x, x2, z〉 3|k

〈1, y, y2, y3〉 5|k

〈1〉 otherwise.

k 1 2 3 4 6 7 8 9 11 12 13 14
degW 0 26

15
22
15
, 22

15
6
5

2
3
, 2

3
2
5

32
15

28
15
, 28

15
4
3

16
15
, 16

15
4
5

38
15

invariants e1 e2 xe3, ze3 e4 xe6, ze6 e7 e8 xe9, ze9 e11 xe12, ze12 e13 e14

Table 33: U16 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e14〉, 〈e1, e4, e11〉, 〈e1, e7, e8〉, 〈e1, e13, e2〉, 〈e7, e7, e2〉, 〈e7, e13, e11〉 all equal 1.

Pairing axiom:

〈e1, xe6, xe9〉 and 〈e1, xe12, xe3〉 both equal 1
6
.

〈e1, ze6, ze9〉 and 〈e1, ze12, ze3〉 both equal −1
2
.

Correlators we cannot compute with the axioms alone:

〈e7, xe6, xe3〉 = a1

〈e7, xe6, ze3〉 = a2
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〈e7, xe12, xe12〉 = a3

〈e7, xe12, ze12〉 = a4

〈e7, ze6, xe3〉 = a5

〈e7, ze6, ze3〉 = a6

〈e7, ze12, ze12〉 = a7

〈xe6, e13, xe12〉 = a8

〈xe6, e13, ze12〉 = a9

〈xe6, xe6, e4〉 = a10

〈xe6, ze6, e4〉 = a11

〈ze6, e13, xe12〉 = a12

〈ze6, e13, ze12〉 = a13

〈ze6, ze6, e4〉 = a14
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e1 e7 ze6 xe6 e13 ze12 xe12 e4
e1 e1 e7 ze6 xe6 e13 ze12 xe12 e4

e7 e13 −2a6ze12+ −2a2ze12+ e4 −2a7ze3+ −2a4ze3+ 0
6a5xe12 6a1xe12 6a4xe3 6a3xe3

ze6 a14e11 a11e11 −2a13ze3+ a13e2 a12e2 −2a13ze6+
6a12xe3 6a11xe6

xe6 a10e11 −2a9ze3+ a9e2 a8e2 −2a11ze6+
6a8xe3 6a10xe6

e13 0 −2a13ze9+ −2a12ze9+ 0
6a9xe9 6a8xe9

ze12 a7e8 a4e8 0
xe12 a3e8 0
e4 0

e11 ze3 xe3 e2 ze9 xe9 e8 e14
e1 e11 ze3 xe3 e2 ze9 xe9 e8 e14

e7 e2 −2a6ze6+ −2a5ze6+ e8 0 0 e14 0
6a2xe6 6a1xe6

ze6 0 a6e8 a5e8 0 −1
2
e14 0 0 0

xe6 0 a2e8 a1e8 0 0 1
6
e14 0 0

e13 e8 0 0 e14 0 0 0 0
ze12 0 −1

2
e14 0 0 0 0 0 0

xe12 0 0 1
6
e14 0 0 0 0 0

e4 e14 0 0 0 0 0 0 0
e11 0 0 0 0 0 0 0 0
ze3 0 0 0 0 0 0 0
xe3 0 0 0 0 0 0
e2 0 0 0 0 0
ze9 0 0 0 0
xe9 0 0 0
e8 0 0
e14 0

Table 34: U16 A side multiplication.
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B model: UT
16 : x3y + y2 + z5

J = 〈3x2y, x3 + 2y, 5z4〉

qx =
1

6
, qy =

1

2
, qz =

1

5

K = 〈m〉 = 〈(α15, α15, 1)〉 when α6 = γ5 = 1

Fixmk =

 C3 k = 0

Cz k = 1

Q|Fixmk =


〈1, x, x2, y, z, z2, z3, xy, xz, xz2, xz3, x2z, x2z2, x2z3, yz, yz2,

yz3, xyz, xyz2, xyz3〉 k = 0

〈1, z, z2, z3〉 k = 1

k 0 1
degW 0, 1

3
, 1

5
, 2

5
, 3

5
, 2

3
, 8

15
, 11

15
, 14

15
, 13

15
, 16

15
, 19

15
1
3
, 8

15
, 11

15
, 14

15

invariants b0, x
2b0, zb0, z

2b0, z
3b0, xyb0, x

2zb0, x
2z2b0, x

2z3b0, xyzb0, xyz
2b0, xyz

3b0 b1, zb1, z
2b1, z

3b1

Table 35: U16 B side elements.

For Table 36 let

α = ab1 + bx2b0

β = cb1 + dx2b0

γ = ezb1 + fx2zb0

µ = gzb1 + hx2zb0

η = iz2b1 + jx2z2b0
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δ = kz2b1 + lx2z2b0

ε = mz3b1 + nx2z3b0

ψ = oz3b1 + px2z3b0

b0 zb0 α β z2b0
b0 b0 zb0 α β z2b0

zb0 z2b0
ha−bg
eh−fg

(ezb1 + fx2b0)+
hc−dg
eh−fg

γ+ z3b0
eb−af
eh−fg

µ ed−cf
eh−fg

µ

α (10a2 − 2b2)xyb0 (3ac− 2bd)xyb0
al−kb
il−jk

η+
aj−bi
il−jk

δ

β (3− c2 − 2d2)xyb0
cl−kd
il−jk

η+
ik−jc
il−jk

δ

z2b0 0
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γ µ z3b0 xyb0 η
b0 γ µ z3b0 xyb0 η

zb0
el−kf
il−jk

η+ gl−kh
il−jk

η+ 0 xyzb0
pi−oj

pm−on
ε+

if−je
il−jk

δ ih−jg
il−jk

δ mj−in
pm−on

ψ

α (10ae− 2bf)xyzb0 (10ag − 2bh)xyzb0
pa−ob
pm−on

ε+ 0 (10ai− 2bj)xyz2b0
mb−an
pm−on

ψ

β (10ce− 2df)xyzb0 (10cg − 2dh)xyzb0
pc−od
pm−on

ε+ 0 (10ci− 2dj)xyz2b0
md−cn
pm−on

ψ

z2b0
pe−of
pm−on

ε+ pg−oh
pm−on

ε+ 0 xyz2b0 0
mf−en
pm−on

ψ mh−gn
pm−on

ψ

γ (10e2 − 2f 2)xyz2b0 (10eg − 2fh)xyz2b0 0 0 −1
2
xyz3b0

µ (10g2 − 2h2)xyz2b0 0 0 0
z3b0 0 xyz3b0 0
xyb0 0 0
η 0

δ xyzb0 ε ψ xyz2b0 xyz3b0
b0 δ xyzb0 ε ψ xyz2b0 xyz3b0

zb0
pk−ol

pm−on
ε+ xyz2b0 0 0 xyz3b0 0

ml−kn
pm−on

ψ

α (10ak − 2bl)xyz2b0 0 −1
2
xyz3b0 0 0 0

β (10ck − 2dl)xyz2b0 0 0 1
6
xyz3b0 0 0

z2b0 0 xyz3b0 0 0 0 0
γ 0 0 0 0 0 0
µ 1

6
xyz3b0 0 0 0 0 0

z3b0 0 0 0 0 0 0
xyb0 0 0 0 0 0 0
η 0 0 0 0 0 0
δ 0 0 0 0 0 0

xyzb0 0 0 0 0 0
ε 0 0 0 0
ψ 0 0 0

xyz2b0 0 0
xyz3b0 0

Table 36: U16 B side multiplication.
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System of equations found by matching the multiplication tables:

a1 = − −ed+ cf

6(eh− fg)
= − −ml + kn

6(−on+ pm)
= 10ck − 2dl

a2 =
−dg + hc

−2(eh− fg)
= − −mj + in

6(−on+ pm)
= ci− 2dj

a3 = − −ih+ jg

6(il − jk)
= 30g2 − 2h2

a4 = − −if + je

6(il − jk)
=

−kh+ gl

−2(il − jk)
= 10eg − 2fh

a5 = − −eb+ af

6(eh− fg)
=

−ol + pk

−2(−on+ pm)
= 10ak − 2bl

a6 =
−bg + ha

−2(eh− fg)
=

−oj + pi

−2(−on+ pm)
= 10ai− 2bj

a7 =
−kf + el

−2(il − jk)
= 10e2 − 2f 2

a8 = − −id+ jc

6(il − jk)
= 10cg − 2dh = − −mh+ gn

6(−on+ pm)

a9 =
−kd+ cl

−2(il − jk)
= 10ce− 2df = − −mf + en

6(−on+ pm)

a10 = 10c2 − 2d2 = − −md+ cn

6(−on+ pm)

a11 = 10ac− 2bd = − −mb+ an

6(−on+ pm)
=

−od+ pc

−2(−on+ pm)

a12 = − −ib+ ja

6(il − jk)
= 10ag − 2bh =

−oh+ pg

−2(−on+ pm)

a13 =
−kb+ al

−2(il − jk)
= 10ae− 2bf =

−of + pe

−2(−on+ pm)

a14 = 10a2 − 2b2 =
−ob+ pa

−2(−on+ pm)

10am− 2bn = −1

2

10ao− 2bp = 0

10cm− 2dn = 0

10co− 2dp =
1

6
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10ei− 2fj = −1

2

10gi− 2hj = 0

10ek − 2fl = 0

10gk − 2hl =
1

6

Solution to this system of equations in terms of the ais:

a =
a5

√
2(−5a10a7 + 5a2

9)

10a1

√
−a7

b =
a13

√
2

2
√
−a7

c =

√
2(−5a10a7 + 5a2

9)

10
√
−a7

d =
a9

√
2

1
√
−a7

e = 0

f = −1

2
sqrt−2a7

g =

√
2(−5a10a7 + 5a2

9)

60a1

√
−a7

h =
a4

√
2

2
√
−a7

i = − 3a1a4

√
2

2
√
−a7(−5a10a7 + 5a2

9)

j = −
√

2

4
√
−a7

k =
a1

√
−2a7

2
√
−5a10a7 + 5a2

9
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l = 0

m =
a1a9

√
−2a7

4
√
−5a10a7 + 5a2

9(−a5a9 + a1a13)

n =
a1

√
−2a7

4(−a5a9 + a1a13)

o =
a1a13

√
−2a7

12
√
−5a10a7 + 5a2

9(−a5a9 + a1a13)

p =
a5

√
−2a7

12(−a5a9 + a1a13)

With the relations:

a2 =
−a9 + 6a4a1

2a7

a3 =
36a2

4a
2
1 + a10a7 − a2

9

36(a7a2
1)

a6 =
−a13 + 6a4a5

2a7

a8 =
6a4a1a9 + a10a7 − a2

9

6(a7a1)

3.2.5 Q16

A model: Q16 : x3 + yz2 + y7

J = 〈3x2, z2 + 7y6, 2yz〉

qx =
1

3
, qy =

1

7
, qz =

3

7

GQ16 = 〈(α, γ−2, γ)〉 ∼= Z42 when α3 = γ14
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FixJk =



C3 k = 0

C2
yz 7|k

Cx 3|k

0 else.

Q|FixJk =



〈1, x, y, y2, y3, y4, y5, y6, z, xy, xy2, xy3, xy4, xy5, xy6, xz〉 k = 0

〈1, y, y2, y3, y4, y5, y6, z〉 7|k

〈1, x〉 3|k

〈1〉 else.

k 1 2 4 5 7 8 10 11 13 14 16 17 19 20
degW 0 38

21
10
7

26
21

6
7
, 6

7
2
3

2
7

44
21

12
7

32
21

32
21

8
7

20
21

4
7

50
21

invariants e1 e2 e4 e5 y3e7, ze7 e8 e10 e11 e13 y3e14, ze14 e16 e17 e19 e20

Table 37: Q16 A side elements.

Potential non-zero correlators:

Concavity axiom:

〈e1, e1, e20〉, 〈e1, e8, e13〉, 〈e1, e10, e11〉, 〈e1, e16, e5〉, 〈e1, e17, e4〉, 〈e1, e19, e2〉, 〈e10, e8, e4〉,

〈e10, e10, e2〉, 〈e10, e17, e16〉, 〈e19, e8, e16〉, 〈e, e, e〉 are all equal to 1.

Pairing axiom:

〈e1, y3e7, y
3e14〉 = 1

14

〈e1, ze7, ze14〉 = −1
2

Index zero axiom:

〈e19, e19, e5〉 = −2
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〈e10, e19, ze14〉 = a1

〈e10, ze7, e5〉 = a2

〈e10, e19, y
3e14〉 = a3

〈e10, y
3e7, e5〉 = a4

〈e19, ze7, e17〉 = a5

〈e19, y
3e7, e17〉 = a6

〈e8, y3e7, y
3e7〉 = a7

〈e8, ze7, y3e7〉 = a8

〈e8, ze7, ze7〉 = a9
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e1 e10 e19 e8 ze7 y3e7 e17 e16 e5 e4 ze14 y3e14 e13 e2 e11 e20
e1 e1 e10 e19 e8 ze7 y3e7 e17 e16 e5 e4 ze14 y3e14 e13 e2 e11 e20

e10 e19 −2a1ze7+ e7 a2e16 a4e16 e5 e4 −2a2ze14+ e13 a1e2 a3e2 0 e11 e20 0
14a3y

3e7 14a4y
3e14

e19 −2e16 e5 a5e4 a6e4 −2a5ze14+ e13 −2e2 0 a1e11 a3e11 0 e20 0 0
14a6y

3e14

e8 0 −2a9ze14+ −2a8ze14+ 0 e2 0 e11 0 0 e20 0 0 0
14a8y

3e14 14a7y
3e14

ze7 a9e13 a8e13 a5e2 0 a2e11 0 −1
2
e20 0 0 0 0 0

y3e7 a7e13 a6e2 0 a4e11 0 0 1
14
e20 0 0 0 0

e17 0 e11 0 e20 0 0 0 0 0 0

e16 0 e20 0 0 0 0 0 0 0
e5 0 0 0 0 0 0 0 0
e4 0 0 0 0 0 0 0
ze14 0 0 0 0 0 0
y3e14 0 0 0 0 0
e13 0 0 0 0
e2 0 0 0
e11 0 0
e20 0

Table 38: Q16 A side multiplication.
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B model: QT
16 : x3 + yz7 + y2

J = 〈3x2, z7 + 2y, 7yz6〉

qx =
1

3
, qy =

1

2
, qz =

1

14

K = 〈m〉 = 〈(1, γ21, γ21)〉 when α3 = γ14 = 1

Fixmk =

 C3 k = 0

Cx k = 1

Q|Fixmk =


〈1, x, y, z, z2, z3, z4, z5, z6, xz, xz2, xz3, xz4, xz5, xz6,

yz, yz2, yz3, yz4, yz5, xyz, xyz2, xyz3, xyz4, xyz5〉 k = 0

〈1, x〉 k = 1

k 0 1
degW 0, 1

3
, 1

7
, 2

7
, 3

7
, 10

21
, 13

21
, 16

21
, 4

7
, 5

7
, 6

7
, 19

21
, 22

21
, 25

21
3
7
, 16

21

invariants b0, xb0, z
2b0, z

4b0, z
6b0, xz

2b0, xz
4b0, xz

6b0, yzb0, yz
3b0, yz

5b0, xyzb0, xyz
3b0, xyz

5b0 b1, xb1

Table 39: Q16 B side elements.

For Table 40 we will let

α = ab1 + bz6b0

β = cb1 + dz6b0

γ = exb1 + fxz6b0

η = gxb1 + hxz6b0
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b0 z2b0 z4b0 xb0 α β xz2b0 yzb0
b0 b0 z2b0 z4b0 xb0 α β xz2b0 yzb0
z2b0 z4b0

−c
ad−bc

α+ xz2b0 −2byzb0 −2dyzb0 xz4b0 yz3b0
a

ad−bc
β

z4b0 −2yzb0 xz4b0 −2byz3b0 −2dyz3b0
−g

he−gf
γ+ yz5b0

e
he−gf

η

xb0 0 ha−gb
he−gf

γ+ hc−gd
he−gf

γ+ 0 xyzb0
eb−af
he−gf

η ed−cf
he−gf

η

α (182
3
a2 − 2b2)yz5b0 (182

3
ac− 2bd)yz5b0 −2bxyzb0 0

β (182
3
c2 − 2d2)yz5b0 −2dxyzb0 0

xz2b0 0 xyz3b0
yzb0 0

xz4b0 yz3b0 γ η yz5b0 xyzb0 xyz3b0 xyz5b0
b0 xz4b0 yz3b0 γ η yz5b0 xyzb0 xyz3b0 xyz5b0
z2b0

−g
he−gf

γ+ yz5b0 −2fxyzb0 −2hxyzb0 0 xyz3b0 xyz5b0 0
e

he−gf
η

z4b0 −2xyzb0 0 −2fxyz3b0 −2hxyz3b0 0 xyz5b0 0 0

xb0 0 xyz3b0 0 0 xyz5b0 0 0 0

α −2bxyz3b0 0 −1
2
xyz5b0 0 0 0 0 0

β −2dxyz3b0 0 0 1
14
xyz5b0 0 0 0 0

xz2b0 0 xyz5b0 0 0 0 0 0 0
yzb0 xyz5b0 0 0 0 0 0 0 0
xz4b0 0 0 0 0 0 0 0 0
yz3b0 0 0 0 0 0 0 0
γ 0 0 0 0 0 0
η 0 0 0 0 0

yz5b0 0 0 0 0
xyzb0 0 0 0
xyz3b0 0 0
xyz5b0 0

Table 40: Q16 B side multiplication.
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System of equations found by matching the multiplication tables:

a1 = −2f =
c

2(ad− bc)

a2 = −2b =
g

2(he− gf)

a3 = −2h =
a

14(ad− bc)

a4 = −2d =
e

14(he− gf)

a5 = −2b =
g

2(he− gf)

a6 = −2d =
e

14(he− gf)

a7 =
ed− cf

14(he− gf)
=

182

3
c2 − 2d2

a8 =
eb− af

14(he− gf)
=

hc− gd

−2(he− gf)
=

182

3
ac− 2bd

a9 =
ha− gb

−2(he− gf)
=

182

3
a2 − 2b2

182

3
ae− 2bf = −1

2
182

3
ag − 2bh = 0

182

3
ce− 2df = 0

182

3
cg − 2dh =

1

14

−2 = −8fb+ 56hd

Solution of the system of equations in terms of the ais:

a =
1

182

√
546a9 + 273a2

2

b = −a2

2

c =
3a1

√
2a9 + a2

2

14a3

√
273

d = −a4

2
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e =
21a3a4

2
√

546a9 + 273a2
2

f = −a1

2

g =
3a3a2

2
√

546a9 + 273a2
2

h = −a3

2

With the relations:

a1 =
7a3a4 + 1

a2

a7 =
a1a4a9 + a2a4 + a8

7a2a3

a8 =
2a1a9 + a2

14a3

68



References

[1] P. Acosta. Fjrw rings and landau-ginzburg mirror symmetry in two dimensions.

Arxiv.org, 2009.

[2] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of differen-

tialbe maps. 1:382, 1985.

[3] P. Berglund and T. Hubsch. A generalized construction of mirror manifolds.

Nuclear Physics B, 393:377, 1993.

[4] Huijun Fan and Yefeng Shen. Quantum ring of singularity xp + xyq. Arxiv.org,

2009.

[5] Huijun Fan, Tyler J. Jarvis, and Yongbin Ruan. The witten equation, mirror

symmetry and quantum singularity theory. Arxiv.org, 2007.

[6] R. Kaufmann. Singularities with symmetries, orbifold frobenius algebras and

mirror symmetry. math.AG/0312417.

[7] R. Kaufmann. Orbifolding frobenius algebras. Internat. J. Math., 6, 2003.

[8] M. Krawitz. Fjrw rings and landau-ginzburg mirror symmetry. Arxiv.org, 2009.

[9] M. Krawitz, N. Priddis, P. Acosta, N. Bergin, and H. Rathnakumara. Fjrw-rings

and mirror symmetry. Arxiv.org, 2009.

[10] Maximilian Kreuzer. The mirror map for invertible lg models. Physics Letters

B, 328:312, 1994.

69


	The Orbifold Landau-Ginzburg Conjecture for Unimodal and Bimodal Singularities
	BYU ScholarsArchive Citation

	Title Page
	Signatures: Graduate Committee Approval
	Signatures: Department and College Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Overview of Results

	2 Construction
	2.1 Review of Construction
	2.2 Orbifolded B-model construction
	2.3 Additional Notation
	2.4 Format of Results

	3 Computations
	3.1 Unimodal Singularities
	3.2 Bimodal Singularities

	References

