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ABSTRACT

The Orbifold Landau-Ginzburg Conjecture for Unimodal and Bimodal Singularities

Natalie Bergin
Department of Mathematics

Master of Science

The Orbifold Landau-Ginzburg Mirror Symmetry Conjecture states that for a quasi-
homogeneous singularity W and a group G of symmetries of W, there is a dual
singularity W7 and dual group GT such that the orbifold A-model of W/G is iso-
morphic to the orbifold B-model of W7 /GT. The Landau-Ginzburg A-model is the
Frobenius algebra J#y ¢ constructed by Fan, Jarvis, and Ruan, and the B-model is
the Orbifold Milnor ring of W?. The unorbifolded conjecture has been verified for
Arnol’d’s list of simple, unimodal and bimodal quasi-homogeneous singularities with
G the maximal diagonal symmetry group by Priddis, Krawitz, Bergin, Acosta, et
al. [9], and by Fan-Shen [4] and Acosta [1] for all two dimensional invertible singu-
larities and by Krawitz for all invertible singularities of 3 dimensions and greater in
[8]. Based on this Krawitz posed the Orbifold Landau-Ginzburg Mirror Symmetry
Conjecture, where the A-model is still the Frobenius algebra .7y constructed by
Fan, Jarvis, and Ruan but constructed with respect to a proper subgroup G of the
maximal group of symmetries Gy and the B-model is the orbifold Milnor ring of W7
orbifolded with respect to a non-trivial group K in SL,, of order [Gy : (J)]. I verify

this Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for all unimodal and



bimodal quasi-homogeneous singularities in Arnol’d’s list with G = (J) < Gy, being
the minimal admissible diagonal symmetry group. I also discuss some axioms and

properties of these singularities.
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1 Introduction

1.1 Background and Motivation

In developing models in string theory, one often comes to a point where one must
make an arbitrary choice between two alternatives. The two choices may lead to
very different mathematical constructions—usually called an A-model and a B-model,
and yet, since the choices are arbitrary, we expect the physics they describe to be
the same. That means many of the final mathematical objects that are constructed

should be equal, or isomorphic, or otherwise equivalent.

This phenomenon has led to many exciting new discoveries in algebraic and differ-
ential geometry. One such discovery is mirror symmetry. There are several types
of mirror symmetry, but we are interested in the so-called Berglund-Huebsch mirror

symmetry involving Landau-Ginzburg models.

The Landau-Ginzburg B-model is very well understood. Among other things, it takes
a quasi-homogeneous polynomial, a polynomial with “weights” for each variable re-

sulting in each term having “weighted” degree 1, with isolated singularities and asso-

ow
ciates to it the “Chiral ring”, which is simply the Milnor ring C[zy, ..., x,]/ (0 )
Z;

of the singularity W.

Until very recently, no one knew how to construct the LG A-model mathematically.
But in [5] the LG A-model was finally put on a solid mathematical foundation and
many aspects of it were finally understood. Among other things, this A-model asso-
ciates a ring to each quasi-homogeneous singularity called the FJRW ring. Both this

FJRW ring and the (B-model) chiral ring are actually Frobenius algebras.



The general philosophy of mirror symmetry suggests that for a large class of polyno-
mials W, there should be a corresponding mirror polynomial W7 so that the A-model
of one is isomorphic to the B-model of the other. In the case of the B-model chiral
ring and the A-model FJRW ring, the obvious conjecture is that for a large class of
polynomials W, there is a choice of a mirror dual W7 so that (W7)? = W and such
that there is an isomorphism of Frobenius algebras between the FJRW ring of W and
the chiral ring of W7. Berglund and Huebsch described a construction of W7 for

certain polynomials that was conjectured to provide the mirror dual.[3]

This conjecture was verified by Acosta in [1], Fan-Shen in [4] and Krawitz in [8]. That
is, it was proved that the FJRW ring of W was isomorphic to the chiral (Milnor) ring
of WT and conversely. However, one key property of the A-model is that it depends
not only on the singularity W but also on a group of admissible symmetries GG. The
FJRW ring actually depends heavily on the choice of the group G and in fact is graded
by G.

The conjecture that was proved by Krawitz et al. was for the maximal symmetry
group of W but did not involve any group on the B-side. However, recently an in-
teresting physically motivated construction called “orbifolding” has been developed
by Kaufmann and Krawitz for the B-side in [8]. For certain choices of a group of
symmetries G of W, it constructs an orbifolded Chiral ring (orbifolded Milnor ring)
which is graded by the group G. If the group is the trivial group, the construction

reduces to the usual chiral (Milnor) ring.

Krawitz conjectured that for all the singularities that have an unorbifolded dual W7
described by Berglund-Huebsch and for all admissible groups G, there should be

a dual group G7 so that the (A-model) FJRW ring for W and G is isomorphic as

2



a Frobenius algebra, to the orbifolded (B-model) Chiral ring for W7 orbifolded by G*.

In this paper I verify this conjecture for all unimodal and bimodal singularities with

the minimal admissible group (.J).

1.2 Overview of Results

In this paper I verify the Orbifold Landau-Ginzburg Mirror Symmetry Conjecture for
Arnol’d’s list of unimodal and bimodal singularities where G = (J) < Gy [2] based

on certain restrictions to the correlators. These singularities are

Unimodal Singularities:

Py 2P+t + 2 +avyz
Xo o a4yt +baty?
Quz : =+’ +y2

Uo @ 2*+y>+ 2

Bimodal Singularities:

Zvo o 2y +y’
Q20 : 2’ +ay' 4y
Sio Pz Hyl+y°

U : o5 +a2>+9°

Qs : 2> +yL+y



The original “unorbifolded” conjecture was proven for the simple and parabolic sin-
gularities in [5] and in [9] for Arnol’d’s list of unimodal and bimodal singularities.
As mentioned above, the complete conjecture was later proved by Fan-Shen, Acosta,

and Krawitz in [1, 4, 8].

2 Construction

2.1 Review of Construction

For this paper W will always be a non-degenerate, quasi-homogeneous, invertible

polynomial in variables x1,xs, ..., xN.

Definition 2.1.1. A quasi-homogeneous polynomial W is a polynomial with weights

Quys Qg - - - 5 Gz, 10 QN (0, 1) such that any scalar A € C* satisfies

W()\qzlxl7 )\Qz2$27 ey )\qznxn) - AW('%']JIQ’ e ’xn)'

For example, the singularity known as Q5 ¢, defined by the polynomial z3 + zy* +y22,

has weights ¢, = 3,q, = . ¢: = 33-

Definition 2.1.2. Non-degeneracy of a quasi-homogeneous polynomial requires that
e the weights be uniquely determined
e there is an isolated singularity at the origin.

Each quasi-homogeneous polynomial W determines a matrix of exponents Byy .

Definition 2.1.3. The ij entry of the By, matriz is the exponent of x; from the i-th

monomial of the polynomial.



When the number of monomials equals the number of variables, the matrix By, is
square, and because of the non-degeneracy condition, By, is invertible. In this case,
rescaling the variables allows us to assume that all non-zero coefficients are 1, so
the matrix completely determines the polynomial up to rescaling. As an example of
this matrix representation W « By, the singularity Q2 : 2 + zy* + y2? has as its

corresponding matrix

3 00
1 40
01 2

Definition 2.1.4. When W has the same number of variables as monomials, i.e.,

when By is square, we say that W is wnvertible.

Remark 2.1.5. It is known that when the weights are uniquely determined (as in

our case), By has maximal rank, so By is an invertible matrix when it is square.

When W is invertible, the transpose matrix Bl corresponds to a different quasi-
homogeneous polynomial. This new polynomial will be denoted W7. Often W7 also

has an isolated singularity at the origin.

Remark 2.1.6. For any invertible singularity, we can rescale the variables so that all

non-zero coefficients are 1. Throughout this paper we will always make this rescaling.

Definition 2.1.7. For any invertible singularity W, the Berglund-Huebsch dual W7
is defined to be the polynomial with monomials determined by B” (and with all

non-zero coefficients equal to 1).

For example, (1 gives

T
300 310
Bho=11 40| =[0 41
01 2 00 2



thus ;0 sty +yte + 22

We need the Jacobean ideal to define both the A-model and the B-model rings.

Definition 2.1.8. The Jacobian ideal J is defined by

Oxy Oxs’  Oxn

oW ow ow
Jz( )

Definition 2.1.9. The Hessian of W is defined by

hess(W) = det <%)

Definition 2.1.10. The Milnor ring 2y of W, is defined to be
Dw = Clxy,x9,...,2N5]/T.

2y is finite dimensional as a vector space over C and the dimension as seen in [2] is
N
1
o1 NG

This ring 2y is graded by weighted degree. The elements of the top degree form a
one-dimensional subspace generated by hess(W). [9]

2y has a residue pairing (f, g) defined by

(f,9)

fg = -——"hess(W) + lower order terms.
L

for f,g € Qw.

For Qg we see J = (322 + y*, 4zy® + 2%, 2y2) and so

QQQ,O = C[I, y]/j = <]'7 x? IQ? y? y27y37 Z? 227 Iy? nyJ l/’U21y7332:y27‘rz7 I22> °



Definition 2.1.11. A Frobenius algebra is an algebra with a non-degnerate pairing (, )

with the property that for all «, 3,y elements of the algebra we have (a3, ) = («, 57).

The Milnor ring with its residue pairing forms a graded Frobenius algebra.[9].
We will now define the construction of the (A-model) FJRW ring. To do this, we
first need to choose an admissible group of diagonal symmetries. The choice of group

determines the structure of the FJRW ring.

Definition 2.1.12. The mazimal group of diagonal symmetries is given by

GW = {(061,(12,...,04]\[) - (C*)N | W((X1I1,OIQ$2,--'704N33N) = W(:El,ZEQ,..-,IN)}.

Definition 2.1.13. For a quasi-homogeneous polynomial with weights {¢., },the ez-

ponential grading element is J = (e2™4=1 *Mitez  e2Tian )

Gw always contains the exponential grading element. In [9] the maximal symmetry
group Gy was always used and corresponds on the B-side to the trivial group (the
“unorbifolded” case). It is known that the group (J) is always admissible [5]. The
computations in this paper always will use the cyclic group (J) generated by the

exponential grading element.

Recall Krawitz conjectured that for all the singularities that have an unorbifolded dual
WT described by Berglund-Huebsch and for all admissible groups G, there should be
a dual group G7 so that the (A-model) FJRW ring for W and G is isomorphic as a

Frobenius algebra, to the orbifolded (B-model) Milnor ring.

Definition 2.1.14. For h € G, Fixh C CV is the fized locus of h. The dimension of

this fixed locus will be denoted as Nj,.



Definition 2.1.15. For any admissible group G and for each h € G we define
S = CQW|Fixh "W
where w = dz;;, Adxy, \--- Ndz; N is the natural choice of volume form.

Note: The FJRW construction uses middle-dimensional relative homology of a Milnor

fibration, but that construction is isomorphic to this one.

Definition 2.1.16. Choose a cyclic admissible group G < Gy with generator a. If
Fiz(a*) = {0} then we define

e, =1¢€ 7 =C,
and if Fixa* = Cx;, @ --- @ Cux;,, define
ex = dryy Ndxi, N+ Ndagy, € Hr.
Note that for a = J we have Fix(J') = {0}.

Consider Q¢ again where G = (J) = <(62’”%, e2mis 62”%)>.

2 2
60,1‘60,%’ 607y607y €0, y €0, 2€0, £ 607xy607xy 6071‘ yeo,x y €0, T2€0, T2 60>

A =

€k, Tek)

<
(es, wes, T7€s, yes, Yy es, Y'es, Tyes, vy es, T7yes, 1y eq)
(
| (e

k)

The group G acts on %, by acting on the coordinates. We define the h-sector F° to

be the vector space of G-invariants of J7;,. The underlying vector space, often called

k=0
k=6
k=3,9
otherwise.



the state space, of the FJRW-ring is defined to be

heG

Ay = (@ %) ) .

. . _ 3
For @, this vector space is 7, , 5y = (1, €2, €4, €5,y €6, TYes, €7, €8, €10, €11).

Definition 2.1.17. For each h € G we define ©F € QN [0, 1) by the fact that h can

be uniquely expressed as

b= (e2m@h 2miOk

2miOn
le s, €5TON)

Having considered © we can now talk about the W-degree of an element.

Definition 2.1.18. For any h € G and and «y, in the h-sector HY, the W -degree of

ay, is defined by

degy (an) == Ny +2) (0} —¢;) (1)
when oy, € (54,)°.

The space 4y ¢ is a complex vector space that is Q-graded by this W-degree. Clearly
the W-degree only depends on the G-grading.
Now we wish to define a pairing on the state space %y, . To do this, note first that

we have an isomorphism [ : 74, — 57,-1.

Definition 2.1.19. Define a pairing on 4% @ H, by (a, I71(3)) for a € J° and
b e %’jﬁl, and extend the pairing linearly to all of Hy . It can be shown that this

pairing is non-degenerate on J&y ..

For a given choice of basis we denote by 7, 3 the matrix representation of the pairing

and by n®? the inverse of that matrix.



The multiplication for the Frobenius algebra is determined by the FJRW cohomologi-
cal field theory.[5] This field theory produces classes A} (a1, as, ..., a,) € H (M g )
where %gm is the stack of stable curves of genus g with n marked points. The classes

A}, have complex codimension D for each n-tuple (ay, s, ..., o) € (Hy,q)" where

) 1 ¢
D:=¢w(g—1)+ 3 Z.Zldegw(oci)

and where

ew =Y (11— 2qa,)

We do not need the entire cohomological field theory to define the FJRW ring, but we
can use the genus-zero, three-point classes to define correlators which will determine

the structure constants of the algebra.

Definition 2.1.20. We define the three-point correlators as follows:

<061,062,@3>gv = / A&(@17@27&3)-
Mo,3

It is easy to see that (ay, s, as) is nonzero only when its codimension D is zero
because .# 5 is a point.

When g = 0 and n = 3, then D = 0 if and only if Zg’:l degy a; = 2¢w.

The ring structure is given by these three-point correlators. Given r, s € J&y ¢, their

product is defined to be

Tk S = Z (r,s,a)n®’p (2)

a7B

where the sum is taken over all choices of @ and [ in a fixed basis of iy .[5]
In [5] it is proved that the classes A}', satisfy certain axioms that facilitate their

computation. Below we provide a simplified form of these axioms that applies in the

10



cases that we need to compute.

Axiom 1. Dimension: If D ¢ 37, then Ayn(al,ag,...,an) = 0. Otherwise, D is
the complex codimension of the class Ayn(al, g, ..., qy). In particular, if g = 0 and

n =3, then {ay,az, az) = 0 unless D = 0.

Axiom 2. Symmetry: Let o € S3. Then

(a1, a, az) = (1), Xo(2), Qa(3))

The next few axioms rely on the degrees of line bundles .7, ..., %y endowing an
orbicurve with a so-called W -structure; however, this can be reduced to a simple
numerical criterion. Consider the class A}, (o1, s, ..., o), with a; € (J4,)¢ for
each j. For each variable z;, define [; by

k

li=q(29—2+k) - O

i=1

Axiom 3. Integer degrees: Ifl; ¢ 7 for somej € {1..., N}, then A}, (a1, s, ..., an) = 0.

Axiom 4. Concavity: If l; <0 for all j € {1,2,3}, then (aq, s, a3) = 1.

The next axiom is related to the Witten map:

N N
W @ ch — @ ch
j=1 j=1

W <8W ow 8W>

81’1’81’2’.”781’]\[

where hY and hj are defined by

o 0 if l; <0
h: =

J
L+1 il >0

11



hl =

J

0 if 1, >0

so that both are non-negative integers satisfying h? — hjl- = 1; + 1. The fact that the
Witten map is well-defined is a consequence of the geometric conditions on the .Z;

considered in [5]. For further details, we refer readers to the original paper.

In A,,, if A;Vn(oq, Qa,...,0p) is a class of codimension zero, then these classes are
constant and so, abusing notation, we will simply consider Agf/n(al, Qg,...,0p) to be

a complex number. We will use this convention through the rest of the thesis.

Axiom 5. Index Zero: Consider the class Ag‘fn(al,az, co ), with o € JE, 6. If

Fixvy; = {0} for each i € {1,2,...,n} and

N
0 p1
Z(hj - hy) =0,
i=1
then Ay (o, g, ... o) is of codimension zero, and Agvn(al, g, ..., Q) 1S equal to

the degree of the Witten map.

Axiom 6. Composition: If the four-point class Ag‘fn(al, Qg, (g, ) 18 of codimension

zero, then it decomposes as sums of three-point correlators in the following way:

A(‘;I;l(ala g, (g, 054) - Z <a17 042,6> 776’6 <67 Qs, Oé4> - Z <a17 05375) 77,6’6 <57 Qg, OC4> .
B,6 8,6

Note that FixJ = {0} so ¢ = C. Let 1 be the element in J¢; corresponting to
1 € C. This element has degy, (1) = 0 and it turns out to be the identity element in

the FJRW-ring. The next axiom deals with this element.

Axiom 7. Pairing: For ay,as € v, (01,02, 1) = Nay -

12



Axiom 8. Sums of singularities: If Wy € Clxy,...,x.] and Wy € Cly, ..., ys] are
two non-degenerate, quasi-homogeneous polynomials with maximal symmetry groups
G1 and Go, then the maximal symmetry group of W = Wi+ Wy is G = G X G, and

there is an 1somorphism of Frobenius algebras

%W,G = %Wl,Gwl ® %W27GW2

2.2 Orbifolded B-model construction

In the original “unorbifolded” Landau-Ginzburg conjecture the B-model of a singu-
ow
ox;
ring is the same as orbifolding by the trivial group. Orbifolding for the B-models is

larity W is simply the Milnor ring of W, that is Clzy, ..., x,]/ < > This Milnor
a very similar construction for the FJRW-ring of the A-model. First we must choose
a group K such that K < Gw N SL, and find the fixed locus of every element in
K. Restricting W to each fixed locus we can find the Milnor ring of that restriction.
Using the same K-action as in the A-model, one may compute invariants of each of
these restricted Milnor rings and sum these sectors over all the elements in K. This
will give us the underlying vector space of the B-model orbifolded chiral ring, but we

still need to define the multiplication in this new algebra.

2.2.1 Orbifold B-side multiplication

As discussed earlier, although the B-side as a vector space has been around for some
time, its structure as a ring has only recently been developed. This section describes
the B-side multiplication which was investigated in general by Kaufmann [6] and ex-

plicitly written out by Marc Krawitz in [8].

The underlying vector space of the Landau-Ginzburg orbifold B-model of W/G is
defined to be

13



o= 9,

geK
where Q is a G-graded C-vector space.

Now we are ready to define the multiplication on the B-model orbifolded chiral ring.

Definition 2.2.1. For g € K, let I, = {i|g; = 1,} and when let N, := dim(Fix(g)).

HessW |pix
HeSSW’FiX(g)mFiX(h) _ Wi(g(}f)h)) It Ig Ui, U Igh = {1, 2,... ,n}
Toh Qim(Fix(g) N Fix(h))

0 otherwise.

where ij;f =11if Fix = 0.

S0 74, is given by the determinant of the hessian of W on the newly fixed locus,
provided each variable is fixed by at least one of g, h and gh. If g = id or h = id the
newly fixed locus is empty then by convention the determinant of the empty (0 x 0)
matrix is 0.

Let b, denote the element 1 in the milnor ring Q).

Definition 2.2.2. We define the multiplication of the elements b, and b, € 2 by

by * by, = Y4,nbgn, and extend to the rest of 2 in the obvious way.

Note that if e € K is the identity in K then b, is the multiplicative identity for this

multiplication. This follows from the fact that

’}/679 = 1 = fyg’e‘

This multiplication is associative, which was proved by Kaufmann in [6]-[7]. It suffices

to check vy nVgnk = Vg, hkVh k-

The orbifolded Milnor ring of Q;O sty +yte + 22 s

<b07 Zb()) J:QbOa y2b07 fﬁybo, y22b07 xygbOa xy2b07 $932b07 bl>

As an example of this multiplication where (J)" = ((a, @, 1)) when o2 = 1 consider

14



by * by = v1,1bp where

HessQJ o |Fix((a,a,1)nFix((a,a,1)) _ HessQF o|Fix((a,a,1)(asa,1)
T fim(Fix((a, a, 1)) N Fix((a, a, 1)) dim (Fix((ov, @, 1)(a, o, 1)))
Hessanhcz HeSSQ2T,0|<C3
M im(C,NC,)  dim(C?)
HessQ§0|Cz B HessQ3 o|c2
Y11 1 = 3
5 — 40813 2
Mas = 3
2042132
Y11 = 3

So b1 * bl = ’}/leo = %[EyBZbo.

2.3 Additional Notation

This paper discusses the Orbifold Landau-Ginzburg mirror symmetry conjecture for
the invertible unimodal and bimodal singularities where the A side is orbifolded by

G = (J) and the B side is orbifolded by GT NSL,,, where |G| = [Gw : (J)].

Definition 2.3.1. A loop and a chain are polynomials defined as

a a
Wisop := 21 T2 + 2573 + - - - + 2,721

Wehain = 21" T2 + 25°x3 + - - + T2"

Definition 2.3.2. A singularity is #rreducible if the polynomial associated to it is a

loop or a chain.

Proposition 2.3.3. The mazimal symmetry group Gy is cyclic when W is an irre-

ducible quasi-homogeneous invertible non-degenerate singularity.
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Proof. Since the singularity is irreducible it must either be a loop or a chain. Notice

that the only difference between the loop and the chain is the last term.
Choose a (1, 32, - - -, Bn) € Gw. By definition of Gy we have

W (11, Paa, . . ., Bun) = W(xy, xa, ..., x,). Therefore 5/ ;11 = 1 forevery 1 <i <

i1 1yi-1,
n — 1. Using this we can get each (3; entirely in terms of 3, by 3; = 3; k=t (5D o

So (ﬁl’ﬁz" c aﬁn) - <ﬁ17ﬁ1_a1a (111(127- .. 761 k;l(_l)n_ ak>.

For a loop 3 € C* has order that divides |14 (—=1)" "' [],_, axl-

For a chain 3; € C* has order that divides [[}_; a.

Let oy € C* have order |1+ (—=1)"'[],_, ax| for a loop and have order [],_, ax for

n—1 -1
. _ (=D tag \ .
a chain. Clearly (al, ay ™t aft . ,aF’“l( ) ) is an element of Gy .

We can see that 3; would have to be some power ¢q of «ay, giving

—a1 paiaz Z;ll(—l)nflak
(ﬁlaﬁ%"'?ﬁn) - ﬁl?ﬁl aﬁl 7"'751
_ q q\—a q\aia A1 —1)n1la
= (af. (@)™, (@), ..., (a0 o)
n—1 n—1
— q —ai1\q aiaz2\q w1 (—1) ak\q
= (0%(041 )4 (@) (g )
n—1 n—1 q
_ —a1 , aiaz [Tz, (=) tay
= (al,al Lot o )
3 : : —ay aias HZ:%(_l)nilak
Therefore Gy is cyclic with (g, a7, a7, ..., 0% as a generator. [

There are many non-degenerate invertible singularities that are reducible. These
singularities are sums of loops and chains. Gy is a product of the cyclic groups for

these loops and chains by axiom 8.
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2.3.1 Orbifold Example ()39

y 4z = % Therefore

=

The charges for Qa9 = 2 + xy* + y2? are ¢, = % qy =

For the orbifold B-side we will need to know the index of (.J) in the maximal symmetry
group of Q2. In order to find the maximal symmetry group we consider Gg,, =
{(or, B,7)) such that (az)® + (az)(By)* + (By)(v2)* = 2* + zy* + y2*. Thus we have
o’ = aft = By* =1 and Gg,, = (7*,77%,7)) = Zas when 7 = 1

In order to find the fixed locus of J* we consider what variables are fixed for k €
Zoy = {0,1,2...,23}. Everything will be fixed for k& = 0 since J° = (1,1,1). When
k = 6 we have J% = (1,1,e°™), so only the z and y values are fixed. Following this

pattern for all values of k£ we get the following fixed locus

(

C? k=0
C:2 k=6
FixJ* = W
C, k=39
\ 0 otherwise.

Restricting ()29 to the fixed locus gives us

oyt +y2? k=0

3 + zyt k=6
Q2,0|Fixjk =

3 k=39

0 otherwise.

\

and thus the Milnor rings for these values of k gives
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2 2 .3 2 2 .2 2,2 2 _
1,a:,x,y,y,y,z,z,$y,xy,$y,xy,:vz,xz> k=20

Q|FixJk =

4
(
(1, 2,22, y,9%, y3, vy, 2y?, 22y, 2°y?) k=6
<1,[L‘> k — 3,9
(

L (1) otherwise.

In order to find (J) invariants we consider x'y’ z*dz AdyAdz. This element is invariant
if and only if £ + 2+ % 414145 —(0mod 1. Similarly the element z'y’dz A dy
is invariant if and only if % + % + % + % = 0 mod 1. So from the sector k = 6 we get
the invariants 1%eg and xyes. The element 1 in each k sector will be expressed as ey.
For the sectors k = 0, 3,9 there are no invariant elements. For all other k-sectors the

only invariant element is e,. Thus this gives us our table of elements

k 11245 6 8110 11
T34 7 5T T 17
degy, Ol 5|53 626 L1133
invariants || e; | es | eq | e5 | YPeg, xyes | €7 | es | ewo | enn

Table 1: ()2 example for table of A side elements.

The only nonzero correlators by Axiom 1 are these the following.
Concavity axiom:

<617617€11>7 <€1767765>7 <61768764>7 <€17€107€2>7 <610768767>7 <€,€,€> all equal L.

Pairing axiom:
3 3,y _1
<elay €6,Y eﬁ) - 1
1

<ela TYyee, 'Ty66> ~ 12

Index zero axiom:

<€10,€10,€5> = -2

18



Thus using these correlators we can compute all of the multiplication for this ring.
Since e; = 1 is the identity in the ring multiplication with e; is trivial. The upper-half

multiplication table is given as

€1 €10 €3 €7 TYEg 1/366 €5 €4 €2 €11

€1 |€1 €10 €3 €7 TYEg y3€6 €5 €4 €2 €13
€10 —267 €5 €4 0 0 —262 0 €11 0
€ 0 €9 0 0 0 €11 0 0
er 0 0 0 €11 0 0 0
Tyeq 1—12611 0 0 0O 0 0
y3€6 — i@n 0 0 0 0
es 0 0 0 0
ey 0 0 0
€9 0 0
€11 0

Table 2: ()2 example for multiplication table of A side elements.

Now we will construct the Orbifold B side. We can easily see that Q{O = p3y+ytz+22
and its maximal symmetry group is also G, | = (o, a ™%, a'?)) = Zy, where o*! = 1
The group K by which the B side is orbifolded must be of order |Gy : (J)] in G%,
and also in SL3(C). Since Gg,, = Zoy and (J) = Zys, [Gg,, : (J)] = 2. Therefore
one such K is K = ((a'?, a'? 1)) = ((8,,1)) where % = 1. For notational ease we

denote K as K = (m).

Computing the fixed and Milnor ring locus in a similar way as before we get

' C? k=0
Fixm" =
0  otherwise.

o (1,2, 2%y, 9% y3, 2, vy, wy? oy, vz, yz, yP2, yiz, ayz, oy’ z, wyPz) k=0
Fixmk —

(1) otherwise.
Also computing K-invariance we get the following elements in Table 3 to be invariant.
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k 0

1 7 1 5 3 2 11 7
degW 072’12’4712’4’3712’6

invariants || by, 2bg, 2o, y*bo, Tybo, y>2by, Ty>by, TY2bo, TY> 2by

SR~

Table 3: ()2, example for table of B side elements.
Let b, represent the element 1 in the respective k sector.
Now for the B side multiplication, since by is the identity in the ring its multiplication

is trivial. In the Orbifold B-model multiplication section we already walked through

a multiplication example for Q;F,O. Following this same process for all pairs we get

bo  y?by  ayby 20 by 2%by 2y3bg y2zby  ayzby Y3 2by

bo |bo y?by ayby 2 by %by xyby  y?zby  ayzby  xyPzby
y2bo —2zby  wyPby  y2zby 0 0 —2xyzby 0 x5 2b 0
xybg 0  ayzby 0 0 0 213 2by 0 0
20 0 0 0 2y 2b 0 0 0
by %ac‘y“3 zbg 0 0 0 0 0
x2by —4xy32bg 0 0 0 0
x13bg 0 0 0 0
y?zbo 0 0 0
xyzbg 0 0
213 2by 0

Now the FJRW ring for ()2 and the orbifold ring for QQT,O are isomorphic as vector
spaces just by sharing the same dimension and corresponding degrees. Therefore if
they were to have the same multiplication table that would be enough to prove they
are isomorphic as rings. So instead of having b; and 22, as elements we can scale

them to be ﬁbl and 22by giving the upper half of the multiplication table as seen
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in Table 4.

bo by  wyby 20 #ﬁbl Z—llebo x1°bg yizby  wyzby xyizby

bo bo  y?by  ayby 20 ﬁﬁbl Z—llebo x13bo y?zby  ayzby Yy zbo
y2by —2zby  xyPby  y2zbo 0 0 —2xy2by 0 ayizb 0
xyby 0  xyzby 0 0 0 xy32b 0 0
20 0 0 0 213 2by 0 0 0
ﬁbl 1—12xy3zb0 0 0 0 0 0
122, —2zy2bo 0 0 0 0
x13by 0 0 0 0
y22by 0 0 0
xyzbg 0 0
x5 2bg 0

Table 4: ()2 example for multiplication table of B side elements.

Since the FJRW ring A model multiplication table and the Chiral ring B-model

multiplication table match exactly the rings are isomorphic.

2.4 Format of results

For each singularity, the information will be displayed in the following pattern:

e The name of the singularity will be given and also the polynomial that defines
it, the Jacobian ideal, the weights associated to each variable, and the central

charge. Also given will be the symmetry group used in the construction, (.J).
e The fixed locus will be described for each group element.
e A basis for the Milnor ring of W restricted to each fixed locus will be given.

e Sectors with non-trivial J-invariants will be displayed in a table including the

invariant elements and their WW-degrees.

e Values of the three-point correlators that are not required to vanish by Axioms

1 and 2 will be given. There are some correlators that cannot be computed
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from the axioms alone. These will be given variable labels.

e Multiplication table for both the A-side and B-side singularities will be given.
For many singularities a system of equations will be shown in order to match
these multiplication tables for an isomorphism. The solution to the systems will

be given.

3 Computations

The examples are taken from the unimodal and bimodal singularities listed by Arnol’d.
Many of these singularities are quasi-homogeneous only after fixing specific parameter

values. This will be done without further comment.

3.1 Unimodal singularities
3.1.1 P

Py is normally the singularity 23 + y® + 23 + axyz however this is not invertible. We

will continue for the case where a = 0 making Py invertible.

A model: Py :a® 412 + 23
J = (327, 3y%, 32%)

1 1 1

q$:§>Qy:§7QZ: g

GPS = <(Oé,ﬁ,")/)> = 73 X Z3 X Z3 when C{‘g:ﬁd:fys

C® k=0
FixJ* =
0  otherwise.
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(L,z,y,z,zy,x2,yz,xyz) k=0

Qlpixsr =
(1) otherwise.
k 0 1] 2
degy 1,1 0|2
invariants || eg, xyzeg | €1 | €

Table 5: Py A side elements.

non-zero correlators:
Concavity axiom:

<61, €1, €2> =1

Pairing axiom:

(e1, €0, TY2€0) = 2%

€1 €y TYzey €2
€1 €1 €y TYzey €9

€o 0 %762 0
TYZe 0 0
€2 0

Table 6: Py A side multiplication.

B model: P : 23 + 3 + 23
J = (322, 3y°, 32%)

1 1 1
e = 5,49y = 5,492z =

3 3 3
K = {((a*1,a),(a? a,1)) = (m,n) when o® =1
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Q’Fix(m’“nj) =

Fix(m"n?)

C* k=0,j=0
C., k=0,j=1
C. k=0,j=2
C, k=1,j=0
=00 k=1j=1
C, k=1,j=2
C, k=2,j=0
C, k=2j=1
0 k=2,j=2

\

(1, z,y,z,xy,xz,yz,xyz) k=0,7=0

(1, z) k=0,7=1

(1, z) k=0,5=2

(1,y) k=1,7=0

(1) k=1j=1

(1,z) k=1,j=2

(1,y) k=2,37=0

(1,z) k=27=1

\ (1) k=27=2
k,J 0,0 1,112,2

degy 0,1 % z

invariants || by o, xyzboo | b1,1 | b2,2

Table 7: Py B side elements.
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1

boo D11 1oggbe2 wyzbog
T

bo,o bo,o bl,l —194452,2 iEyZbo,o

b171 0 %l’yZbo’o 0
ﬁbm 0 0
xyzby o 0

Table 8: Ps B side multiplication.
3.1.2 X,

For Xy : 2* + y* + bx?y?, Xy is not invertible as written so we must have b = 0.

Amodel: Xy : 2% 4+ y*

J = (42, 4y°)
11
qg: - 47(]2,/ - 4

Gx, = (o, B) £ Zy x Zy when o* = p* =1

2 _
FixJ* = © k=0
0 otherwise.

<17x7$2>9;927xya$y27x2%x292> k - O

Qlpixsr =
(1) otherwise.
k 0 11213
degy 1,1,1 01112
invariants || x2eg, y%eq, xyey | €1 | 2 | e3

Table 9: Xy A side elements.

non-zero correlators:

Concavity axiom:
(e1,e1,e3) and (eq, ez, €2) both equal 1.

Pairing axiom:
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(e1,2%€0, y?eq) and (e1, zyeg, xyeo) both equal 1.

€1 IE2€0 y260 TYey €9 €3

€1 €1 $2€0 y2€0 TYey €2 €3
z?eq 0 3 0 0 0
y2eo 0 0 0 0
Tyeq 11—663 0 O
€9 €3 0
€3 0
Table 10: Xy A side multiplication.

Bmodel: X{ : 2zt + ¢*

J = (42°, 4%
11
Qx 4>Qy - 4

0  otherwise.

(1,2, 2%y, 9%, xy, xy?, 2y, 2*y*) k=0

Q ‘ Fixmk =

(1) otherwise.
k 0 1123
degy, 0, %, 1 % % %
invariants | bg, xybo, 2°y?bg | by | by | bs

Table 11: Xg B side elements.
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bo @bl bs @bg xyby xzyzbo

lbo bo mbl X 23 ) mbz zryby  x7y“bo
mbl 0 17677y bo 0 0 0
b3 0 0 0 0
ﬁbg 1—16x2y2b0 0 0
xybo 2212b 0
%y%by 0

Table 12: Xg¢ B side multiplication.

3.1.3 Qi

A model: Qo : 2 +9° + y2?

J = <3x2, 5yt + 22, 2yz)

1 1 2

QI:§>Qy:g>QZ:5

Ggr, = ((a,77%,7)) = Zzp when o’ =4 =1

(
C? k=0
C, 3lk
FixJ* =
2, 5k
| 0 otherwise.

L,y v vyt 2 oy, oy, oy oyt az) k=

Q’FixJ’v -
Ly, v% v vt 2) 5|k

K
(1, z) 3|k
(
(

\ 1) otherwise.
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k 11214 ) 718 10 11113 ] 14

28 [ 8 22 22 6 16 4 4 2 2 34

degW 0 15 | 5 215’ 15 5 115 3 5’5 3 5 15
mvariants €1 | €2 | €4 | Y €E5,2€5 | €7 | €] | Y €10,2€10 | €11 | €13 | €14

Table 13: Q12 A side elements.

Potential non-zero correlators:

Concavity axiom:

<61a €1, e14>7 <€1a €s, €7>, <617 €11, e4>7 <61a €13, 62) <el3a €11, 67) aﬂ equa’l 1

Pairing axiom:

<61a 92@10» y2€5> = %
(e1, zen0, 2€5) = —3

Correlator equation:

—2 = —2(ey3, €13, ze5) (€13, 2€10, €3) + 10{e13, €13, y2es) (e13, y?e10, €3)

Correlators we cannot determine with axioms alone:
€13, €13, Z€5> =
€13, 2€10, €8> = Q2

2 _
€13,€13,Y 65) = as

2 2 _
€11,Y7°€10,Y 610) = a5

(
(
(
(€13, y2eqo, eg) = a4
(
(e, 2610792€1o> = Qg
(

€11, 2€10, 2610> = ar
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6¢

e e an ze1g ye1 es e zes  yles ey ey ey
€1 €1 €13 €11 Z€10 ?/2610 €s €7 <€s5 ?/265 €4 €2 €14
e1s —2a;1ze10 + 10asy?ey  eg aser aser —2aszes + 10asy%es ey ajes  azes 0 ey O
e 0 —2arzes + 10agy?es —2agzes + 10asy’es 0 es 0 0 e4 0 0

ze1p arey ageq a9€s 0 —%614 0 0 0 O
y2erg Q564 Q469 0 0 %614 0 0 O
es 0 €14 0 0 0 0 0
e 0 0 0 0 0 0
zes 0 0 0 0O O
y2es 0 0 0 0
€4 0 0 0
€9 0 0
€14 0

Table 14: Q)12 A side multiplication.



B model: Q7 : 2% + y52 + 22

J = (32%,5y"z,y° + 22)

1 1 1

Qm:§7qy:E7Qz:§

K = (m) = {(1, 8%, 3%)) when 8° = 1

Fixm" =

(Loz,y, v, vyt 2, ey, wy?, oy, ayt vz, yz, vP 2, vz, cyz, oz, oyPz) k=0

Q|Fixmk =
(1,z) k=1
k 0 1
I T2 8 34 1T 417 71T
degyy 055555 Es AR
invariants || by, xbo, y%bo, y*bo, xy*bo, xy*bo, yzbo, y>2by, xY2by, xY>2by | by, by

Table 15: 12 B side elements.

For Table 16 we will let

a = eb + fy'by
B = gbi+ hy'bo
v = axb + bry*b,

0 = cxby + dzy'by.
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1€

bo y2bo by o 1] xy%bg yzbo v 0 y3zby  wyzby  wyPzby
bo bo y2bo by 1] xy%bg yzbg v 0 Y3 zbg xyzby 1y zby
y2bo ot x1%bg —2fyzby —2hyzb S+ yP2by  —2bxyzby —2dxyzby 0 xy32b 0
ehfgfﬁ ﬁg
by 0 defen+ dohery 4 0 2y 2by 0 0 xyizby 0 0
af—eb 0 ah—gb 0
ad—cb ad—cb
o (30e% — 2f2)y32by  (30eg — 2fh)y3zby  —2fzyzby 0 —sxy’zby 0 0 0 0
6] (3092 — 2h?)y32by  —2hayzby 0 0 Txy?zby 0 0 0
x1y%by 0 2y 2b 0 0 0 0 0
yzbg 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
y32by 0 0 0
xyzby 0 0
213 2by 0

Table 16: Q12 B side multiplication



System of equations found by matching the multiplication tables:

ap = —2b= 2(e+—gf)
a = —2f = Q(ad—c_cb)
a3 = —2d= m
agy = —2h= m
as = 30g° —2h* = %
6 = S0eg = 2fh = =
a; = 30e* —2f% = %
30ae — 2fb = _%

30ce —2df = 0
30ag —2bf = 0

30cg — 2dh = —

Solution to these equations in terms of the a;s:

G407
a =
24/30as + 15@?l
3]
b = ——
2
ao2a1
C =
10 306L5—|—15a?1
as
d = -2
2
az\/30 x as + 15 * a3
€ =
6@1
_ _*
;= 2
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1
g = 30\/30a5 + 15a3

Q4
h = ——
2
With the relations:
ai1ao — 1
a3 = ————
5&4
w 2a,aza5 — 2a5 — a2
6 =
2a10a4
- 2a3a3as — 4ajasas — 2asaia; + 2as + a3
;7 =

2a2a?
3.1.4 Up

A model: Uy : 2® + 92 + 24
J = (3%, 3y°,42°)

1 1 1

_7Qy:§7QZ:ZL

Qx:3

Gu,, = ((a, B,7)) = Z3 x Zs x Zy when o = 3* = 4* =1

C k=
c2 3|k
FixJ* = Y |
C. 4|k
0 else.
\
(1, m,y,2, 2% zy, vz, 022 yz,y2°, vyz, 2y2*) k=0
FixJk =
(1,2,2%) Alk
<1> else.
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k 1] 2 3 ) 6 7 9 10 | 11

11 5 5 4 7T 2 2 1 7

. degW 0 6 3’3 3 6’6 1 3’3 2 3
mvariants || e; | es Tres, Y€z | €5 | T€g,Y€Eg | €7 | TEg, YEg | €10 | €11

Table 17: Uy A side elements.

Potential non-zero correlators:

Concavity axiom:

<61a €1, 611)7 <617 €7, 65>7 <617 €10, 62>7 <€107 €10, €5> are aH equa’l to ]-

Pairing axiom:

(e1,xeq, yes), (e1,yeq, Teg), (€1, yeq, xes) are all equal to %

Correlators that cannot be computed with the axioms alone:

{ )

(€10, ey, yes) = ap
(€10, yeq, TE6) = az
(€10, yeo, yes) = as
(zeg, reg, e7) = as

(xeg, yeg, e7) = ag

(

Yeg, Y€y, €7> = arz
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193

€1 €10 Yeg Ty €7 Yes TEg €5 Yesz Tez €3 €11
€1 | €1 €10 Yeg Teg €7 Yee Teg €5 Yyes Tez ey €11
€10 er  9asyes + 9asxres 9aiyes + Yasxeg 0 9asyes + 9asxres 9aiyes + Yasres es 0 0 ey O
Yeg ares ages 9agyes + 9arres 469 ases 0 0 %en 0O O
Teg ases asyes + agres o€s aiés 0 %en 0 0 0
er 0 0 0 en O 0 0 0
yeg 0 sen 0 0 0 0 0
Teg 0 0 0 0 0 0
es 0 0 0 0 0
yes 0 0 0 0
zTes 0 0 0
€9 0 0
€11 0

Table 18: Ujs A side multiplication.



B model: U] : 23 + ¢* + 2*
J = (3%, 3y°,42°)

1 1 1

Q$:§7Qy:§7q,z:zl

K = {m)={((a?3,1)) when o® = 8> =4* =1

e k=0
Fixm" =
C. k=12
<17 T, Y, %, Z2a LY, .I'Z,$Z2, Yz, yZ2, LYz, xyzZ) k=0
Q‘Fixmk =
<172722> k:1,2
k 0 1 2
R s 75 75
degy 04,35 1276 3136 3136
invariants || by, zbg, 2°bg, xybo, xyzby, TYZ2by | b1, 2b1, 2°b1 | by, 2by, 2%by

Table 19: Uy B side elements.

For Table 20 we will let

a = aby + bby

B = cby+db

v = ezby+ fzby
0 = gzby+ hzby
n = i’y + j2°by

u o= k2%by + 12°b;.
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LE

by zby a 3 22by ol 0 xyby n U xyzby Yz
bo by zbg « I} 22by ~y 0 xybo n 1 xyzby 1Yz
2by 2y ALt el + 0 G+ St zyzby 0 0 ay?hy 0
eb—a, ed—c if—je ih—j
hefgj;e hefgj}e ’L‘lffjk‘u ilfjj'lgu
e 24abxyby  12(ad + be)xyby ?ll:]’.“]fnjL 12(af + be)xyzby 12(ah + bg)xyzby 0 0 %xyz%o 0 0
ib—ja
il—;k H
1G] 24cdxybg %:%774‘ 12(cf — de)xyzby 12(ch + dg)xyzbg 0 sxyz2by 0 0 0
id—jc
iz—;k H
22by 0 0 0 xy22b 0 0 0 0
v 0 sTyz2by 0 0 0 0 0
0 0 0 0 0 0 0
xybo 0 0 0 0 0
n 0 0 0 0
i 0 0 0
xyzby 0 0
ryz2by 0

Table 20: U5 B side multiplication.



System of equations found by matching the multiplication tables:

aq

a2

as

Gy

as

Qg

a7

12(aj + bi)
12(al + bk)
12(cj + di)
12(cl + dk)
24ef

24gh

12(eh + fg)

hc — gd gl — kh

Solution to this system in terms of the a;s:

- — 12(ch +d
9(he —gf) 90l — jk) (ch +dg)
ed —cf el — kf
She — o) ~ O jk) _ L2\eS + de)
ha — gb th — jg
- — 12(ah + b
e —gf) ~ Ol — gy Lt 9)
eb—af if — je
ohe —gf) (il — gy 20 )
el — kd
2Ued = T
96— k)
al — kb 1d — je
(ad +be) = ST =51 = S = j1)
b — ja
24ab =
96— k)
0
1
9
1
9
0
0
0
1
9
_ 93
T 1o
b = 9hCL4
_ W
“T 12
d = 9ha2
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“ 7 108k
f=20
g =0
h = h
. a1
1 =
972]1(@1(14 — (lg&g)
_ hay
J 9(@1@4 — a3a2)
ko= @
~ 972h(aya4 — asas)
| — hCLQ
9(&1@4 — a3a2)
With the relations:
as = 18@2(11
ag = 9a4a1+9a3a2
ar = 18@3@4

3.2 Bimodal Singularities

3.2.1 Zyg

A model: Z; : ya® + y7
J = (32%y, 2 + 7y

2 1

QI:?’qy:?

GZI,O = <(O‘7a/_3)> = 7o when 0421 =1
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C? k=0
FixJ* =
0 otherwise.

(1,z, 2% y9% v, v, v°, o8, oy, oy?, oy, oy,

Qlpisr = y°, 215) k=0
(1) otherwise.
k 0 1123|456
85 8 8 612 4 [ 10 16
degyy 7707 Olz |77l 7]%
invariants || x2eg, yteg, xy%eg | €1 [ ea | €3 | eq | €5 | €6

Table 21: Z; o A side elements.

Potential non-zero correlators:

Concavity axiom:

<617€1766>7 <617627€5>7 <617€47€3>7 <€4762762> all equal 1

Pairing axiom:

(e1, 2%ey, 2eg) = —

W=

<617 $y260, y4€0> = %

Correlators that cannot be computed from the axioms alone:

<€4, 64713260) = ax
<€4, 647ZJ4€0> = Q2

<€4, €4, $y2€0> = as

Correlator equation:
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—3 = —3(eq, €4, 576‘260)2 + 42(ey, 647y4€0><64, 64,$y2€0>
el ey es x%e0 wY?er yleo es es eg
er |e; ey es xley xy’er yley es es3 eg
€4 —3a1332€0 + 21a2xy260 + 21(1,3y4€0 €; aies as€es ag€3 0 €6 0
€2 €3 0 0 0 €g 0 0
z?eq —ze6 0 0 0 0 0
xy’e 0 e 0 0 0
y'eo 0O 0 0 0
es 0 0 O
€3 0 0
€g 0
Table 22: Z; o A side multiplication.
B model: Z], : 2° + zy’
J = (3% +y', Tay®)
B 1 B 2
qz’ - BaQy - 21
K = {(m) = ((8",37)) when §*' =1
N C?> k=0
Fixm" =
0 k=12
Lz, 2y, 9% 9%,y 0°, 9%, oy, oy, oy, oy, 2y,
Qlriamt = 22y, %2, 2%, 22y, 22y°) k=0
(1) k=1,2
k 0 12
T 13 56 8 11
degyy 0,7 777707 717
invariants || by, y>bo, y°bo, Tybo, Ty by, T2y?bo, T2y’bo | b1 | by

Table 23: Z; ( B side elements.
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For Table 24 let

o = ab1 + be + Cbeo
B = db +eby + fy°by

¥o= gbl + th + iy6b0
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ey

bo ¥ bo zyby «a B g xy'bo  x*y*bo 2y by
bo | bo y’bo zybo o 8 v ry'bo  x*y*bo 2y by
y3by e _{}f’atrhdbg @ wytbo —3eaty?by —3fx*y*hy —3ixty’by 0 2*y’by 0
—ceg+chd— fha—i-é‘bg—l-zae ibd ﬁ+
—ceg+chd— fha+ fbg+iae—ibd g
xyby x2y%by 0 0 0 229°by 0 0
Q ——x 295bq 0 0 0 0 0
3 0 = x2y5by 0 0 0
v 0 0 0 0
4
xy*boy 0 0 0
2%y%b, 0 0
2215, 0

Table 24: Z; ¢ B side multiplication.



System of equations found by matching the multiplication tables and correlator equa-

tions:

399ab — 3¢

%(@e +bd) — 3cf
32@(@]1 + bg) — 3ci
399de — 3>
32@(dh +eg) — 3fi
399gh — 3i*

-3

a; = —3c¢

as = —31

as = —3f

Solution in terms of the a;s:

—27¢ + 378fi

—eg + hd
—3(—ceg + chd — fah + fbg + iae — ibd)
ah — bg
 21(—ceg + chd — fah + fbg + iae — ibd)
ae — bd

21(—ceg + chd — fah + fbg + iae — ibd)

ai1Gz — Qg
a = ———
1197h
b o— a1h+h
a2
a1
c = ——=
3
J - (ap — 1)
~ 16758h
. h(a1 + 1)2
© T T 1a
_
;o= 3
g = s
1197h
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With the relation:
a?—1
14@2

3.2.2 Quo
A model: Qg : 2% + zy* + y2?

J = (32> + y*, day® + 2%, 2y2)

1 1 5

szga%zéa%zﬁ

Go,o = ((7*,77%,7)) = Zys when v** =1

C3 k=20
2 _
FixJ* = { ny k=0
Cx k= 3, 9
Ootherwise.

\

2 2 .3 2 2 .2 2,2 2
1Jx7x Y YL Y, 2 25, TY, Y, 7Y, 7Y ,xz,xz>

Q|Fixjk -

4
(
(1,2, 2% 9,92, v°, vy, 2y, 2%y, 2°y?)
(1,z)

(

1)

\
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k 11214]5 6 8|10 | 11

11 3 ! T 5 1 7

. degw Ol% |53 6° 6 11§33
Invariants || e; | es | €4 €5 y3€6, TYeEg | €7 | €8 | €10 | €11

Table 25: Q29 A side elements.

Non-zero correlators:

Concavity axiom:

(61,617611>, (61,67,65% (61768,€4>, (61,6’10762% (610,68,67% <€,€,€> all equal 1.

Pairing axiom:

<€1a y3€67 93€6> = _zlL

(61, TYee, $y€6> = 1_12

Index zero axiom:

(€10, €10, €5) = —2

€1 €10 €8 €7 ITYEq y3€6 €5 €4 €2 €11
er |er e es er xyes Yeg €5 €4 ey eq
€10 —267 €y €4 0 0 —262 0 €11 0
€ 0 €9 0 0 0 €11 0 0
€7 0 0 0 €11 0 0 0
TYEg 1—12611 0 0 0 0 0
yieg —2e1 00 0 0
es 0 0 0 0
ey 0 0 0
€9 0 0
€11 0

Table 26: Q20 A side multiplication.
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B modeleg’0 sy Fyte 4 22

J = (3x2y, x4 4y3z, y4 + 22)

7 1 1

m:ﬁaqy:_quz_

g 8 2

K = (m) = (o, ,0) when o = 1

C? k=0
Fixm" =
0  otherwise.

(1,2, y,y*, 0%, 2, w0y, xy?, ay®, vz, yz, v22, P2, ayz, ayz, xy’z) k=0

Q’Fixmk =
(1) otherwise.
k 0 1
T 7 1T 5 32 107 7
degy, 0,212,313 20 5 127 13
invariants || by, zbg, 2bo, y*bo, xyby, y* zby, Ty>by, TY2bo, TY>2bo | by

Table 27: Q29 B side elements.

bo  y?by wyby 2 ﬁﬁlﬁ 12%by xy3by  yPzby  wyzby  wyPzby

bo |bo y?by ayby 2 ﬁﬁbl 122y xy’by  yPzby  wyzby  wyPzby
y2by —2zby  xyPby  y2zb 0 0 —2zy2by 0 x5 2by 0
xyby 0  zyzby 0 0 0 x122b 0 0
20 0 0 0 x5 2b 0 0 0
ﬁbl LayPzby 1 03 0 0 0 0
77°bo —32y°2bg 0 0 0 0
x13bo 0 0 0 0
y?zbg 0 0 0
xyzbg 0 0
xy32b 0

Table 28: 2 B side multiplication.
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3.2.3 Sy

A model: S : 222 +y2? +¢°

J = (2zx,2% + 5y, 2° + 2y2)

3 1 2

$:E7Qy:_7QZ:_

g 5 5

CTYS1,0 = <(a7 a4> CY_Q» > 70 when o =1

C* k=
FixJ* = C2, 5|k

0 otherwise.

(

(L, 2y, v, 93, 9%, 2, oy, aoy?, wy?, 22y, 2%y? 2y®) k=0
Q|Fix]k = <17y7y2>y37y47z> S‘k
\ (1) otherwise.
k 112134 5 6171819
g8 [ 7 66 I T4 312
degw O 5|5 15| %5 |5l5|5]|%
invariants €1 | €2 | €3 | €y y2€5, Z€5 | €g | €7 | €] | €9

Table 29: S; A side elements.

Potential non-zero correlators:

Concavity axiom:

<617 €1, 69>7 <617 €6, €4>7 <elv €7, 63)7 <€17 €8, €2>, <687 €7, 66>7 are all equal to 1.

Pairing axiom:

<elu y2€57 92€5> = 1_10
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(e1, ze5, 2€5) = —

N |+

Index zero axiom:

(e7,er,e7) = —2

Correlators we cannot compute with the axioms alone:

<€8, 687265> =

<€8, 68>y265> = Q2

Correlator equation:

—2 = —2(es, es, ze5)* + 10(es, es, y®es5)?

€1 €s €7 €6 Z€5 y2€5 €4 €3 €2 €9

€1 €1 € €7 (&1 Z€x y2€5 €4 €3 €9 €9
es —2a1ze5 + 10asy%es  es e ajes azes 0 0 ey O
er —2e3 ey 0 0 0 e 0 O
€6 0 0 0 e 0 0 O
Z€x —569 0 0 0 0 0
y2es +eg 00 0 0
ey 0O 0 0 O
es 0O 0 O
€9 0 0
€9 0

Table 30: S;y A side multiplication.

B model:S; o : 22 + y2° + zy?

J = 2z +y?, 2° + 2zy, 5yz*)

1

Q$:§’Qy:

1

Z?q,z:

3
20

K = (m) = (1,3, 3) where 3* =1
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C? =0

i C, k=2,6,10,14,18
1Xm =

C2 k=4,8,1216

Yy

0 otherwise.

(

<]" x? y’ Z? 227 237 247 xy? xz? x22’ l‘Zs’ yZ7 yz27 y237
ryz, vy2?, xyz3) k=0
Qlpixmt = (1) k=2,6,10,14,18
(1,z,9) k=4,812,16
otherwise.
L (1) therwi
k 0 1
T 3 3 9 62 7 4 3
degyy 0,346+ 5+ 10> 52 5+ 102 & 5
invariants || 1, z, 22, 2%, vyz, xy23, yz, 23, 222 | 1

Table 31: S; o B side elements.
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19

bo 22by yzbo xby  aby +bztby cby +d2tby  yzdby  x2%by wyzby  wy2iby

bo bo 2%by yzbo by  aby +bzlby by +dztby  y2by  x2’by  wyzby TYZby
22by ——(aby 4 bz"by) + —-(cby + dz*by)  y2°by  y?2Pby  —2bxyzby  —2dxyzby 0 0 xy23b 0
yzby —222%by  wYyzby 0 0 0 xy23b 0 0
xbg 0 0 0 xy23b 0 0 0
aby + bztbg —sxyz3by 0 0 0 0 0
cby + dz*b, Layz3by 0 0 0 0
y23bg 0 0 0 0
x2%b, 0 0 0
xyzbg 0 0
xy23b 0

Table 32: S; B side multiplication.



System of equations found by matching the multiplication tables:

c
- 9y
“ 2(ad — be)
a
- 9d=—"
2 10(ad — bc)
170 9 1
2o = =
3 ¢ 2
1
?ac —2bd = 0
170 , 9 1
—c -2 = —
3 ¢ 10
—2 = —8b* + 40d*
Solution in terms of the a;s:
S ]
a = 34(12
y W
2
P _\/aal
N 170
a2
d = ——=
2

With the relation:

3.2.4 U

A model: Uyg : 23 + 222 +9°

J = <3x2 + 22, by, 2zx)

1 1 1

QJE:§7Qy:57Qz:§

Guye = ((v2,8,7)) = Zzo when > =+° =1
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C k=0
C2, 3k

Tz

FixJF =
C, 5|k

0 otherwise.

\

(

2 2,3 2 3 .2 2,2 2,3
<17w7x 7yayay7Zal‘yaxyal‘yvmvay7$yv
2 3 —
yz,y°2,y°z) k=
OQlpixsr = ¢ (1, z,22%, 2) 3|k
2,3
Ly, y*y) 5k
(1) otherwise.
\
k 112 3 4 6 718 9 11 12 13
de Ol® Z 2 [6] 22 [2Z (2 B2 [ 42| B |1
gw 15 152 15 5 3’3 5 15 157 15 3 157 15 5
Invariants €1 | €2 | T€3,2€3 | €4 | T€g, 2€5 | €7 | €] | T€E9, ZEg | €11 | T€E12,Z€12 | €13

Table 33: Ujg A side elements.

Potential non-zero correlators:

Concavity axiom:

<€1,€1,€14>, <61764a611>7 <€17€7a68>7 <€1,€13,€2>, <€7,€7,€2>, <e7ael3aell> all equal 1.

Pairing axiom:

(e1, weq, weg) and (e, weiz, zes) both equal §.

(e1, zeg, zeg) and (e, zeja, zes) both equal —%.
Correlators we cannot compute with the axioms alone:
(e7,xe6, TE3) = Q1

(e7,weg, ze3) = as
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€7,T€19, $612> = as
€7, T€12, Z€12> = Q4
er, 266, T€3) = Qs
er, 2€g, 2€3) = ag
er, 2612, 2€12) = a7
Teg, €13, $€12> = as
Te€g, €13, 2612> = Qg
Teg, Teg, €4) = Q10
Teg, 266, €4) = 11
Z€6, €13, 56'612> = Q12
%€, €13, 2612> = 13

(
(
(
(
(
(
(
(
(
(
(
(

Z€g, 2€¢, 64> = Q14
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€1 e7 Z€g Teg €13 Z€12 HAAD) €4
€1 €1 e7 Z€g T€g €13 Z€12 HAAD) €4
ey e13 —2agzeint+ —2aszeis+ ey —2a7zes+ —2aqze3+ 0
baszes 6airels bayszes 6aszes
zeg a14€11 apen  —2ai3ze3t+ aizer a12€2 —2a13z€6+
6@1233'63 6@111’66
Teg a10€11 —2agZ€3+ g€ ageo —2@112€6+
Gagxes 6aigres
€13 0 —2a132€9+ —2G12Z€9+ 0
bagzreg 6agreg
Z€12 aresg ay€8 0
TE12 ases 0
€4 0
€11 Z€s T€s €9 Z€g T€g €g €14
€1 €11 zes xres €2 Z€g Ty €g €14
er | ea —2agrzegt+ —2aszest+  eg 0 0 ey O
basxeg 6axeq
pAT 0 g€y as5€g 0 —%eM 0 0 0
zeg | O ases ajes 0 0 %614 0O O
€13 €3 0 0 €14 0 0 0 0
zes | 0 —%614 0 0 0 0 0 O
zeyp | 0 0 ar 0 0 0 0 0
€4 | €4 0 0 0 0 0 0 0
ein | 0 0 0 0 0 0 0 O
zes 0 0 0 0 0 0 0
zes 0 0 0 0 0 0
€2 0 0 0 0 0
z€g 0 0 0O O
Teg 0 0 O
€s 0 0
€14 0

Table 34: Ui A side multiplication.
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B model: U : 23y +y? + 2°

J = (ngy,x?’ + 2y, 5z4>

1 1 1

Q$ZE>Qy:§7QZ: 5

K = (m) = ((a" a',1)) when a® =4° =1

o C k=0
Fixm" =
C, k=1
2 2 .3 2 ,..3 22, 2.2 2.3 2
(Lz, 2%y, 2, 2%, 2° xy, w2z, x2° 02°, 1%z, 0°2°  x°2° Yz, yz°,
OQlrixmt = § y2°, zyz, 1y22, Tyz>) k=20
2 .3 _
(1, 2,22, 2°) k=1
k 0 1
I 0T 123238 I 1B 1619 T & I 1
gw 3957575737150 152 152 152 152 15 3 15°15° 15
invariants || by, 22bg, zbg, 22bg, 23by, TYbo, T2 2by, ¥22%by, 12 23by, TY2by, TYZ2by, TYZ3b | b1, 2b1, 22b1, 2By

Table 35: U B side elements.

For Table 36 let

a = aby + bz?by
B = cby + dz?by
v o= ezby + fa’zby
= gzby 4+ ha’zby

n = i2%by + ja?2%bg
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§ = k2%by + 12222,

e = mz2b + nzx’2h,

v = 023b + px?ih,

bo Zb() « ﬁ 22b0
bo bo Zb() (0% ﬁ Zzbo
zby 2%b, Z;::jiz(ezbl + fx?bo)+ gg:;{zv—l— 23by
eb—af ed—cf
eh—fgl' eh=fg*

a (10a? — 2b*)zyb (3ac — 2bd)xyby ‘;ll:]].‘}fnqL
aj—bi
il]fjka

g (3 — 2 — 2d?)xyby %:?}jnﬂL
ikfjc(s
il—jk

Zzbo 0
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gl M 2%y zybo Ui

bo Y Y 2%y zybo U
I—k I—kh .y
2bg ‘Zl}jlﬁn—i- 34,—;&“ 0 xyzby Iﬁnz—‘_oojnejt
if—je ih—jg mj—in
il—jk 0 il—jk 0 pmfonrw

a | (10ae — 2bf)xyzby  (10ag — 2bh)xyzby Iﬁ—:{;l;e—i- 0 (10ai — 2bj)xyz2bg
mb—an

(8
pm—on

B | (10ce —2df)xyzby  (10cg — 2dh)zyzby =L eyt 0 (10ci — 2dj)zy=2by

pm—on
By
2*by i pet 0 wyz?by 0
mf—en mh—gn
pm—on w pm—on w
v | (10e* — 2f?)xyz?by  (10eg — 2fh)zyz2bo 0 0 —sxyz3by

U (109 — 2h?)zy2>by 0 0 0
23Dy 0 Ty 23by 0
xybg 0 0
i 0
) 2y by € W) xyz2by  xyz3by
bo 5 xy2b € ) xyz?by  xyzby

2bg Z%H— xy22b 0 0 xy23b 0

ml—kn
pmfon,(p

a (10ak — 2bl)zy=2by 0 —3xyz>by 0 0 0

g (10ck — 2dl)zy=z2bg 0 0 sxyz*by 0 0

22by 0 xy23b 0 0 0 0

N 0 0 0 0 0 0

L sxyz3by 0 0 0 0 0

23by 0 0 0 0 0 0

2ybo 0 0 0 0 0 0

" 0 0 0 0 0 0

0 0 0 0 0 0 0

xyzby 0 0 0 0 0

€ 0 0 0 0

" 0 0 0

xy22by 0 0

xy23b 0

Table 36: Uy B side multiplication.
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System of equations found by matching the multiplication tables:

3]
a2
as
Q4
as
Qg
az
as
Qg
10
ai1
12
a3

a14

10am — 2bn
10ao — 2bp
10em — 2dn

10co — 2dp

—ed+cf —ml + kn

_ = — = 10ck — 2dl
6(eh — fg) 6(—on + pm) ¢
—dg+hc — —mj+in i — 2di

—2(eh — fg) 6(—on +pm) J
—ih +jg 2 2

— I 3042 —2h
6(il — k) Y
—if + je —kh + gl

_ = =1 —2fh
6l — k) 20— k) 92

B U & T R
6(eh — fg)  —2(—on +pm)

—bg + ha —oj +pt , ,

“2(eh— fg)  —20—on+pm) T
—kf+el 9 9

TR 1062 - 2

20— gy e 2
—id + jc —mh + gn

- TIC 0eg — 2dh = — LTI
6(il — jk) “ 6(—on + pm)
—kd + cl —mf +en

e 10ce — 2df = ——— L

YT TS R A T

1062 — 242 = __—md+on

~ 6(—on+pm)
0ac — 2bd — — —mb+an  —od+ pc
~ 6(—on+pm)  —2(—on +pm)
—ib+ ja —oh + pg

———— = 10ag — 2bh =
66l — k) Y —2(—on + pm)
—kb+ al —of + pe

10 — 2bf =

o — k) el B = o

1002 — op? = b+ pa

—2(—on + pm)

_1
2

0

0

1

6

59



10ei — 2fj = —=
10gi —2hj = 0
10ek — 2fl =

10gk — 2k =

D= O

Solution to this system of equations in terms of the a;s:

asv/2(—5a;0a7 + 5a?)

10a1+/—az
b a13\/§
2y/—az
_ /2(-5a,0a7 + 5a3)
c 10y=ar
d = a9\/§
1/ —ar
e = 0
1
f = —=sqrt—2a,
2
_ /2(-5a,0a7 + 5a3)
g = 6001/ —a;
ho— a4\/§
2y/~az
. 3611@4\/§
P =
2v/—az(—5a,0a7 + 5a?)
. V2
T W
o= a1v/—2az

24/ —5a,0a; + 5a3
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a1agy/ —2(17

m =
4y/~=5a10az + 5a5(—asay + a1a:3)
_ a1v/—2az
" 4(—asag + a1a,3)
0o = a1a13\/Ta7
12\/_5@10‘7‘7 + 5a3(—asag + a1a13)
p = asy/—2az

12(—asag + aya;3)

With the relations:

_ —ag + b6agay

Ay = 2—6L7

36ajai + a10a7 — ag
o 36(aza?)

—a13 + 6&4&5
ag = 2—a7
a 6asaag + a10ar; — a3

g =

6(a7a1)

3.2.5 Qg

A model: Q6 : 23 + y2% +y°

J = <3x2, 22 4 7y6, 2yz)

1 1 3

q$:§7qy:?7q,z:?

GQ16 = <(a> '7_27 '7)> & Z4o when o’ = 714
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4
C? k=
C2 7k
FixJ* = v |
C. 3lk
\ 0 else.

L, y, % v, vt v, 08, 2 vy, ay?, oy, oyt oy® wyoaz) k=0

4
{
Ly, v*v% vt v 2) 7|k
Olpixst =
(1, ) 3|k
L (D) else.
k 112145 7 8110|111 13 14 16 | 17 |1 19 | 20
I (L B O B B - R U e )
Sw 91 | 7 | 91 07 31 7 1921 |7 21 21 7 12l 7 ;1
invariants || e; | ey | €4 | €5 | yPer, zer | es | €19 | €11 | €13 | YPe1q, z€14 | €16 | €17 | €19 | €20

Table 37: Q16 A side elements.

Potential non-zero correlators:

Concavity axiom:

<€1,€17€20>7 <61;687€13>7 <€1,€10,€11>, <€1,€167€5>, <€1,€177€4>, <€1,€197€2>, <€10;€87€4>,

(6107610762% <€10,€17,€16>, <€19>€8>€16>7 <€,€7€> are all equal to 1.

Pairing axiom:

(61, 93677 ?/3614>

_ 1
T 14

<ela zer, 2614> = _%

Index zero axiom:

(€19, €19, €5) = —2
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€10, €19, 2614> =a
€10, 2€7, 65) = Qg
€10, €19, Y 614> = a3

€10, Y 67,€5> = Qa4

€19, Y 677617> = Qg
3 3 _

es,yerny 67) = ar
3 _

es, zer, y’er) = ag

(
(
(
(
(€19, zer, €17) = aj
(
(
(
(

es, 267, Z2€7) = ag
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e e e1g es zer yler e e es es  zey Yew €13 e e ey
€1 €1 €10 €19 €s zer 9367 €17 €16 €5 €4 Z€14 y3614 €13 €2 €11 €2
€10 €19 —2a12€7—|— €7 a9€16 a4€16 €s €4 —2a22614+ 613 a1€o as3€o 0 €11 620 0

l4asy>er 14ay13e14
€19 —2e16 €5 a5€4 a6€yq —2aszep+ e3 —2e9 0 ajey; aze;;r 0 ey 0 0
14a6y3614
€g 0 —2@92614+ —2CL82614+ 0 €9 0 €11 0 0 €920 0 0 0
l4agy®ern  ldaryPery
zer a9€13 age1s a5€9 0 a92€11 0 —%620 0 0 0 0 0
y3€7 ar€13 (07 1&) 0 a4€11 0 0 ﬁego 0 0 0 0
e17 0 €11 0 €920 0 0 0 0 0 0
€16 0 €20 0 0 0 0 0 0 0
es 0 0 0 0 0 O 0 0
ey 0 0 0 O 0 0 0
ze14 0 0 0 O 0 0
ylews o0 0 0 0 0
€13 0 O 0 0
€9 0 0 0
€11 0 0
€20 0

Table 38: 16 A side multiplication.



B model: QT : 23 + y27 + ¢?

J = (322,27 + 2y, Ty="%)

1 1 1

QI:§7Qy:§:QZ:ﬂ

K = (m) = ((1,7*",7*")) when o’ =y =1

Fixm" =

(1,m,y,2,2% 23, 24, 25, 28 w2, 222 w23 22t 125, 228,

OQlriamt =\ yz,y2%, y2°, yzt, Y2, xyz, vy, xy2®, xyz*, vy°) k=0
(1, ) k=1
k 0 1
I 0l 1230 B 61556 2% 3 16
gw 130 70 70 7219210 210 70 70 70 210 210 21 7021
invariants | by, xbg, 2°bg, 2*bg, 2°bg, 122y, 12 by, 125bg, y2bo, y2>bo, y2°bo, TYZby, TYZ by, TYZ by | b1, TbY

Table 39: Q16 B side elements.

For Table 40 we will let

a = ab, + bz%,
B = cby +dz5by
v = exb + fr2tb

n = gxb, + hxzby
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by #%b 24D by « I} x22by yzbo
by |by 2%bg 24D by « 1] x2°bgy yzbo
22bg 'y ——Sat x2%by —2byzbg —2dyzby r2%b y23bo
adgbcﬁ
24b, —2uyzby  xz*by —2by23by —2dy23by ne—gf )T y2°by
heigfn
aby 0 padbry+ syt 0 wy2by
eb—af ed—cf
he—gf77 he—gf
e (18202 — 20%)y2°by  (222ac — 2bd)y2°by  —2bayzby 0
3 18202 _2d%)yz°by  —2dxyzby 0
x2%bg 0 xy23by
yzby 0
x24by yz3bg ~y n y2°by  ayzby wyziby Y2 by
bo x2*by y23bo ~y n yz°by  wyzby wyz’by xYy2°by
22by gVt yz°by  —2fxyzby —2hwzyzby 0 xy23by  1yz°by 0
il
2by | —2xyzby 0 —2fxyz3by —2hayz3by 0  ay2’by 0 0
xbg 0 xy23b 0 0 xy2°b 0 0 0
a —2bxyz3by 0 —s2y2°by 0 0 0 0 0
164 —2dzyz3b 0 0 ﬁxyz‘r’bo 0 0 0 0
x2%bg 0 xy2°b 0 0 0 0 0 0
yzbg xy2°by 0 0 0 0 0 0 0
x24bg 0 0 0 0 0 0 0 0
y23by 0 0 0 0 0 0 0
0 0 0 0 0 0 0
n 0 0 0 0 0
y2°by 0 0 0 0
xyzby 0 0 0
xy23b 0 0
xy2°by 0

Table 40: Q16 B side multiplication.
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System of equations found by matching the multiplication tables:

CE A T
g
ay = —2b= m
a3 = —2h= m
" M g
g
as = —2b= m
ag = —2d= m
ap = M?Ze;—cjgcf) = %02 — 2d*
ag = ¢b—af = he — gd :@ac—%d

14(he —gf)  —2(he—gf) 3
ha—gb 182 ,

= — = — 2b?
0 —2(he — gf) 3 "
182 1
%ae —-2bf = —3
182
%ag —2bh = 0
182
%ce —2df = 0
182 1
g —9 -
3¢9 dh 4
—2 = —8fb+ 56hd

Solution of the system of equations in terms of the a;s:

a = é 546ag + 273a3
5]
b= 3
_ 3ai1n/2ay + a3
R VPRNOTE
d = 1
2
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With the relations:

ai

a7

as

21asay

2./546ay + 27303

a1

2
3&3&2

24/546aq9 + 273a3

as

2

7&3@4 + 1
a2
a1a40a9 + G204 + ag
Tasas
2a1a9 + ao
14@3
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