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Parameterized Vertical-Axis Wind Turbine Wake

Model Using CFD Vorticity Data

Eric B. Tingey∗ and Andrew Ning†

Brigham Young University, Provo, Utah, 84602, USA

In order to analyze or optimize a wind farm layout, reduced-order wake models are
often used to estimate the interactions between turbines. While many such models exist for
horizontal-axis wind turbines, for vertical-axis wind turbines (VAWTs) a simple parametric
wake model does not exist. Using computational fluid dynamic (CFD) simulations we
computed vorticity in a VAWT wake, and parameterized the data based on normalized
downstream positions, tip-speed ratio, and solidity to predict a normalized wake velocity
deficit. When compared to CFD, which takes about a day to run one simulation, the
reduced-order model predicts the velocity deficit at any location within 5-6% accuracy in
a matter of milliseconds. The model was also found to agree well with trends observed in
experimental data. Future additions will allow the reduced-order model to be used in wind
farm layout analysis and optimization by accounting for multiple wake interactions.

Nomenclature

D turbine diameter
F sigmoid curve decay rate
I sigmoid curve inflection point
M sigmoid curve maximum value
N number of turbine blades
R turbine radius
U∞ free stream velocity
α EMG skew parameter
γ vorticity strength
κ EMG scale parameter
λ tip-speed ratio= (ωR) /U∞
ν EMG spread parameter
ω rotation rate
σ solidity= (Nc) /R
ξ EMG location parameter
c chord length
u velocity in the downstream direction
x downstream position
xo specified downstream position for velocity calculation
y lateral position
yo specified lateral position for velocity calculation

∗Graduate Student, Department of Mechanical Engineering, AIAA Student Member
†Assistant Professor, Department of Mechanical Engineering, AIAA Senior Member
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I. Introduction

Wind energy is receiving increased interest as an alternative source of power and currently researchers
are pushing to move wind turbines to offshore locations where the wind is stronger and more consistent

than land-based locations.1 However, one of the difficulties in using turbines in offshore locations is the
large cost required to install and maintain turbines in ocean environments.2 Horizontal-axis wind turbines
(HAWTs), the type of wind turbine generally used in large-scale land-based applications, are difficult to
maintain because their drivetrain is located at the top of the tower and servicing it in offshore environments
requires the use of expensive sea vessels.3 HAWTs also require yaw and pitch systems to align the turbine
with the wind direction and regulate power, adding additional maintenance costs.4

Vertical-axis wind turbines (VAWTs) solve many of these challenges due to their simpler design and
operation. The VAWT drivetrain can be located near the base affording easier access5 and VAWTs can be
made smaller than HAWTs allowing more of them to be used in the same area as a HAWT wind farm,4

which could be beneficial for use in crowded urban environments. Additionally, VAWTs operate effectively
no matter which way the wind is blowing, eliminating the need for a complex yaw system. These features
make VAWTs a potential concept for better offshore and urban power production.5,6

However, a current problem with using VAWTs in large wind farm optimization is the lack of a simple
model to predict how wakes propagate behind VAWTs. In the wake of a turbine, wind has less momentum
and more turbulence which propagates downstream, potentially decreasing the power production of other
turbines.7–9 When optimizing the cost of energy (total cost of the turbine divided by annual energy pro-
duction) of many wind turbines in a wind farm, calculating the wake velocity deficit behind each turbine is
done to determine the optimal wind farm layout. Using higher-fidelity modeling for these calculations, while
producing accurate wake velocity results, could take large amounts of time to obtain results. This process
takes even longer as the number of turbines increases with recalculations of the complex wake interactions
done every time a turbine’s position changes. Reduced-order wake models address this problem by parame-
terizing experimental wake behavior into simple mathematical models which can accurately predict the wake
velocity deficits much more quickly than higher-fidelity modeling. Optimization of wind farm layouts with
reduced-order wake models for HAWTs has been studied extensively,10–16 but this same type of optimization
has not been done with VAWTs because a reduced-order wake model does not exist.

Although a wake model does not exist, there have been several studies involving the operation of VAWTs
and the wakes they produce. In the 1970s and 1980s, Sandia National Laboratories conducted research
comparing the performance of different types of VAWT designs.17–19 The focus of the research was to under-
stand VAWT power output and efficiency, and their efforts resulted in a compilation of blade aerodynamic
properties and power for different VAWT configurations. More recently, Delft University of Technology
in the Netherlands conducted research based on the near wake formation of VAWTs using particle image
velocimetry (PIV) which provided significant insight into the near wake development of VAWTs and a knowl-
edge of contributing factors in turbine wake behavior.20–24 Shamsoddin and Porté-Agel also conducted wake
research looking further downstream of a VAWT using large eddy simulation (LES) which showed good
agreement between the experiments and LES models.25 While all of these efforts have been significant in
helping us better understand the operation of VAWTs and how their wakes form, they have all been focused
mainly on a specific VAWT configuration. However, large-scale wind turbine analysis requires parametric
wake models that can predict a velocity profile based on different turbine parameters such as wind speed,
rotation rate, and geometry.

Research at the California Institute of Technology proposed a wake model using a single point vortex and
a doublet to simulate a VAWT (rotating cylinder flow). It also used simple expansion and decay models to
predict the wake velocity distribution.26 While this was a good first step in modeling a VAWT wake using
a simple model, it is not particularly accurate and is not able to be used in a generalized sense as it was
tuned to a specific turbine. Therefore, the purpose of our research is to create a robust parametric VAWT
wake model by studying the behavior of VAWT wakes over a large range of wind speeds, rotation rates, and
geometries. The model will be developed to allow for the optimization of a wind farm layout using VAWTs
in a reasonable amount of time.
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II. CFD Modeling

To produce a robust parametric wake model, flow around the turbine must be calculated based on varying
conditions, such as the size of the turbine and how fast it rotates. Performing a wake analysis of a specific
turbine limits a model’s ability to calculate velocity accurately for a broad range of turbines. As our wake
model was to be robust, we needed a large amount of wake data to predict how wakes propagate behind
turbines at different wind speeds, rotation rates, and turbine geometries. We used computational fluid
dynamics (CFD) software to simulate the turbines, as opposed to experimental procedures, as we needed a
wide range of configurations. Using a CFD program called STAR-CCM+, we simulated an isolated VAWT
with different tip-speed ratios (TSRs) and solidities using the unsteady 2D Reynolds-averaged Navier-Stokes
equations, each which took about a day to compute. We modeled the VAWT in 2D rather than 3D as the
fundamental process of energy conversion of a VAWT happens in the plane normal to the turbine’s axis of
rotation.21 While a 2D simulation does not account for finite blade effects, such as trailing and tip vortices,
good agreement with experimental data was observed as noted in the validation studies.

Verification and validation of the CFD model is necessary to ensure that the model’s cell size is refined
enough and is producing results comparable to experimental data. For the verification, we performed a grid
convergence study of a model based on a study of a straight-bladed VAWT conducted by Kjellin et al.27 We
also performed a validation study using a PIV wake analysis conducted by Tescione et al.20

A. CFD Mesh Verification

In order to verify that the cell size of the CFD model was sufficiently refined, we performed a grid convergence
study. To accomplish this, we modeled a turbine using the geometry specified by Kjellin et al.27 including a
straight-bladed VAWT with a 6 meter diameter and three NACA 0021 blades, each with a chord length of
0.25 meters. The wind speed was set at 15 m/s producing a Reynolds number of about 6,000,000. Keeping
the TSR at 3.25 (at about the peak of performance from the experimental study), we ran simulations ranging
from cell counts of about 400,000 to almost 5 million by reducing the base cell size of the CFD model by a
factor of 1.4. The results of this grid convergence study can be seen in Fig. 1.
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Figure 1. A plot of the grid convergence of the CFD model at a tip-speed ratio of 3.25. The converged value
calculated with Richardson extrapolation is shown as well as the error band of the converged value. The model
we used in our research is indicated by the red dot.

Using Richardson extrapolation, we concluded that the converged power coefficient was 0.458 with an
error band of 3.73%. In ideal circumstances, one would run the CFD models as refined as possible, but
further refinement means more computational time for the CFD to reach a final solution. Therefore, a
balance must be made between computational run time and sufficient refinement. In our case, we decided
that about 630,000 cells was good enough for our CFD model as it produced a power coefficient of 0.432
(within the error band) while still running in a reasonable amount of time (this point is indicted by the red
dot in Fig. 1).
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B. Wake Velocity Validation

We also validated the wake velocity of the CFD model to ensure that the CFD cell size was refined enough
in the wake region. To do this, we used a study conducted by Tescione et al.20 in which a small turbine was
tested in a wind tunnel at Delft University and velocities were measured with PIV. The turbine consisted of
two straight NACA 0018 blades with a chord length of 0.06 meters. The turbine had a diameter of 1 meter
and solidity of 0.24. The VAWT was tested in a wind speed of 9.3 m/s, producing a Reynolds number of
about 180,000, and run at a TSR of 4.5.

The CFD model matched the PIV data well, as can be seen in Fig. 2, with the largest percent error
of 23.0% of the maximum velocity deficit at x/D = 2.0. This difference, as well as the asymmetry of the
experimental data, could be due to the differences in experimental setup as opposed to ideal wind conditions
in the CFD model. It is also reported that the asymmetry is caused by wake self-induction and stronger
vorticity on one side.20 We concluded that the CFD model was sufficiently refined to use in obtaining VAWT
wake data for our reduced-order model. This wake validation study also served as a point of reference for
validating the reduced-order model as will be described later in the paper.
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Figure 2. The wake velocity comparison between the PIV study conducted by Tescione et al.20 and our CFD
model. The velocity (u) is normalized by the free stream wind velocity (U∞) and the downstream (x) and
lateral (y) positions are normalized by the turbine diameter (D).

III. Reduced-Order Model Development

The purpose of a reduced-order wake model is to simulate wake propagation accurately and quickly. In
large-scale optimization, these benefits are used to produce results in a reasonable amount of time. As already
shown, we were able to use CFD modeling to calculate the velocity in a VAWT wake accurately in about a
day. However, when many turbines are involved and moving them to a new position requires new calculations,
large-scale applications of this method become very time-consuming. Therefore, the performance of reduced-
order wake models are an improvement to a CFD analysis when analyzing large amounts of turbines.

For our research, we used the CFD models for different VAWT simulations at TSRs ranging from 2.5
to 7.0 and solidities ranging from 0.15 to 1.0 based on the turbine diameter, airfoil shape, and Reynolds
number described by Kjellin et al.27 and each CFD simulation took about a day to compute the results.
However, as can be seen in Fig. 3(a), trying to capture trends of the CFD velocity profiles with numerical
models would be very complicated as it would require parametrically modeling the velocity profile in the
fluid domain both inside and outside of the wake region. Therefore, we decided to use the vorticity data as
seen in Fig. 3(b) with its concentrated streams which can be parametrically modeled easily. The vorticity
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(a) CFD time-averaged velocity field (b) CFD time-averaged vorticity field

Figure 3. Examples of the time-averaged velocity and vorticity fields found in the CFD model at a TSR of 4.5
and a solidity of 0.25. The velocity is normalized by the free stream velocity at this TSR of 8.87 m/s and the
vorticity is normalized by the rotation rate of 13.3 rad/s.

data was then used to reconstruct the velocity field using fluid dynamics.
Although the vorticity data is made up of concentrated streams, one can see in Fig. 3(b) that the

vorticity comes to a maximum value at the center of the stream and then decays away quickly. To analyze
this behavior numerically, we took 30 lateral cuts over the length of the domain, separated the cuts into
positive and negative vorticity sections, and trend fitted each half separately with probabilistic distributions
(see Fig. 4 for a representation of this process). To generalize the results for all turbines, both the lateral
and downstream distances were normalized by the turbine diameter and the vorticity was normalized by the
turbine’s rotation rate.

x

y γ

Lateral Cuts 

Figure 4. The lateral vorticity cuts made to analyze the vorticity data numerically seen in orange. An
exaggerated representation of the vorticity distribution is shown with the gray lines. Each of the cuts were
split into two sections for analysis based on where the vorticity changed sign (negative to positive) which
was roughly at the center line. The downstream (x) and lateral (y) positions are normalized by the turbine
diameter (D) and the vorticity is normalized by the rotation rate (ω).

After exploring several different skewed probabilistic distributions, such as the skewed normal and Weibull
distributions, we found that the best fit was attained using the exponentially modified Gaussian (EMG)
distribution. This distribution is defined by four parameters: the location (ξ; the position of the peak), the
spread (ν; how wide or narrow the peak was), the skew (α; amount of skewness of the distribution), and
the scale (κ; how high the peak reached). These parameters were used to calculate the vorticity strength
(γ(y/D)) as a function of normalized lateral position (y/D) in the equation:

γ(y/D) = κ

[
α

2
exp

(α
2

(
2ξ + αν2 − 2(y/D)

))
erf

(
ξ + αν2 − (y/D)√

2ν

)]
(1)
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Each of the lateral cuts were fitted with the EMG distribution and an example of positive vorticity cuts can
be seen in Fig. 5.
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Figure 5. An example of positive lateral vorticity cuts from the center of the turbine wake going out to one
side showing the CFD data compared to the trend fit. The vorticity is normalized by the rotation rate (ω)
and the downstream (x) and lateral (y) positions are normalized by the turbine diameter (D) at each cut.

After all of the vorticity data was fit with the EMG distribution, each of the four parameters were plotted
over the normalized downstream distance, as seen in Fig. 6. The location data was fit with a quadratic curve
(cyan and magenta lines in Fig. 6(a)) and the spread and skew data were fit with linear curves (cyan and
magenta lines in Fig. 6(b) and (c)). Because the data became increasingly turbulent and random as the the
vorticity decayed, the curve fits were only applied until the location where spread data sharply increased
or decreased and the skew data became increasingly spread out. From the average of these downstream
locations to the end of the data set, the turbulent EMG parameter data was neglected. We made this
decision as the vorticity strength decays rapidly after its onset and trying to accurately capture the spread
and skew was not necessary to predict the vorticity profile.

In an effort to make the trend fitting as accurate as possible, we calculated the total vorticity strength
of each lateral cut using integration. Because the unscaled EMG distribution has an area of one, the scale
parameter, κ, corresponds to the total vorticity strength (the area under the vorticity data curve). Instead
of letting κ be a free parameter in the trend fitting, we set it to the value of the calculated total vorticity
strength and let the other parameters adjust to fit the shape of the curve. The scale data was then fit with
a sigmoid curve defined by:

S(x/D) =
M

(1 + exp(F ((x/D)− I)))
+ Y (2)

The sigmoid curve can be translated up or down by Y to limit the decay to a specific value, but in our case
we allowed the vorticity to decay to zero (Y = 0). This curve fit can be seen in Fig. 6(d) by the cyan and
magenta lines.

We took averages of each of the curve fits for each side of the vorticity and plotted it in Fig. 6 with
dotted black lines. Because the data was observed to be nearly symmetric, we assumed our model to be fully
symmetric in order to reduce the number of parameters by half. In making the assumption of symmetry
rather than using actual values, we effectively forced the final velocity profile to be symmetric as well. While
this did not pose significant problems in velocity calculation, we did see some slight variations between the
CFD data and the reduced-order model, which we will discuss later on.
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The quadratic, linear, and sigmoid curve fits all together resulted in 10 variables needed to define the
wake vorticity as a function of the normalized downstream distance. This same process was repeated 95
times over the range of TSRs (2.5 to 7.0) and solidities (0.15 to 1.0) to produce a database of vorticity
measurements as functions of TSR and solidity. As these vorticity measurements were made at discrete TSR
and solidity values, we used a rectangular bivariate spline to interpolate the values we did not calculate.
This allowed our vorticity database to be used for any TSR and solidity within the calculated range.
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Figure 6. The different parameters used in the EMG distribution fitting of the lateral vorticity cuts. The blue
and red dots represent the values found from the CFD data trend fitting, cyan and magenta lines represent
quadratic, linear, and sigmoid curve fits of each data set and the dotted black line represents an average of the
two (showing near symmetry in the data). The downstream (x) position is normalized by the turbine diameter
(D). The spreading of data points near the far downstream end is caused by increasing turbulence.

Using the parameterized vorticity measurements in both the downstream (x) and lateral (y) directions,
we computed the velocity profile with the equation:

u(xo, yo) = U∞ +

[∫ b

a

∫ w

−w

γ(x, y, λ, σ)

2π

[
y − yo

(x− xo)2 + (y − yo)2

]
dy dx

]
(3)

The whole equation is integrated both in the lateral direction from −w to w and in the downstream direction
from a to b. These distances were based on where the vorticity had fully decayed, which we found to be 4
diameters laterally (−w and w) and 35 diameters downstream (a to b). Because this model was made to
be generalized for all turbines, the length values are normalized by the turbine diameter, the vorticity is
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normalized by the turbine’s rotation rate, and the velocity is normalized by the free stream wind speed in
the final wake model. Fig. 7 shows an illustration of the variables used in this equation.

(xo , yo)

a b

w

-w x

y
γ(x,y,λ,σ)

γ

λσ

λσ

λσ

λσ

Figure 7. The vorticity profile behind a VAWT as defined by Eq. 3 with the vorticity magnitude shown by
the gray lines.

IV. Results

Using our developed reduced-order VAWT wake model, we compared the model’s calculated velocity
deficit with the CFD data and experimental results. These were done to ensure the model’s calculations
produced reasonable results compared to higher-fidelity methods. As shown in Fig. 8, the greatest difference
between the CFD data and the reduced-order model occurs closer to the turbine. This is due to the CFD data
deviating slightly from the scale parameter data of the EMG distribution close to the turbine (see Fig. 6(d))
causing the reduced-order model to predict a slightly lower vorticity strength. We plan to investigate this
effect further and improve our wake model to account for the difference in vorticity, but overall the reduced-
order model predicted a velocity deficit with a percent error of 5-6% of the CFD data neglecting the near
turbine data. This quality shows very good comparison and confidence in using the reduced-order model in
wind farm layout optimization applications.

Another difference that can be seen between the CFD data and the reduced-order model is that the
reduced-order model has a slight flattening near the center as opposed the the CFD’s rounded profile. One
issue that was encountered when fitting the EMG curve to the CFD data was that near a y/D of 0.0, the
EMG curve went to a normalized vorticity of 0.0 slightly faster than the CFD data closer to the turbine
(see Fig. 5). Because of this behavior, less vorticity than is actually present was predicted causing the slight
flattening in the velocity profile. From the trends we observed in wake decay and expansion, we found that
parameterizing the vorticity using an EMG distribution was the best way to capture the CFD vorticity data.
While the EMG distribution was not perfect, it produced reasonable velocity results.

As mentioned above, we assumed a symmetric vorticity distribution in order to eliminate variables needed
in our final wake model and allow it to be simpler. As a result, the wake model produced a symmetric
velocity deficit while the CFD tended to become slightly asymmetric further downstream of the VAWT (as
seen especially in Fig. 8(f)). We plan to look into the affect of symmetry on the VAWT wake velocity results
to see how much of an impact that error has on large-scale VAWT analysis, but for now we determined that
the simplicity of symmetric velocity deficits outweighed the need for the complexity of asymmetry.
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Figure 8. The velocity profiles of the CFD data and the reduced-order model split up by the normalized
downstream distance. Percent error of the maximum velocity deficit between the CFD and reduced-order
model is also indicated.
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The reduced-order model was also compared to the experimental PIV study conducted by Tescione et
al.20 The velocity profiles of the PIV, CFD, and reduced-order models were overlaid and can be seen in
Fig. 9. The reduced-order wake model was created based only on the CFD data using the specifications
of Kjellin et al.,27 which demonstrates the wide applicability of the wake model. Looking at the velocity
deficits, the reduced-order model predicted the maximum velocity deficit with a percent error of 19.6% at
x/D = 2.0 varying slightly from the CFD, as described above, which had 23.0% at this same location. The
reduced-order model also matched the shape of the CFD data rather than the significant asymmetry of the
PIV data.
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Figure 9. The wake velocity comparison seen in Fig. 2 with our reduced-order model based on the CFD model
added.

For further validation, we also compared our reduced-order model’s results to a wind tunnel study
conducted by Battisti et al.28 In this study, a three-bladed VAWT with a 1.03 meter diameter was placed
in a wind tunnel with a wind speed of about 16 m/s resulting in a Reynolds number of about 1,000,000.
The wind tunnel had a removable test room in which the VAWT could be placed and tests were run in both
a closed configuration (the test room enclosed over the VAWT) and an open configuration (the test room
removed and the VAWT open to the outside air). As VAWTs are generally operated in the open, we decided
that the open configuration would be the best data to compare to our wake model. The wake velocity was
recorded 1.5 diameters downstream of the turbine.

Extrapolation of our reduced-order model was needed as this test was run at a TSR of 1.6, outside of the
range of CFD models tested. However, as seen in Fig. 10, our wake model matched well with the experimental
results with a percent error of 11.2% of the experimental data. Extrapolation proved to produce reasonable
results in this case, but we plan to continue expanding our CFD wake data to include TSRs lower than 2.5
to match this type of experimentation better. From these two validations, we can see that our reduced-order
wake model gives reasonable velocity predictions that match well with experimental results.
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Figure 10. The wake velocity comparison between the wind tunnel study conducted by Battisti et al.28 and
our reduced-order model. The velocity (u) is normalized by the free stream wind speed (U∞) and the lateral
(y) position is normalized by the turbine diameter (D). This velocity profile was taken at 1.5 diameters
downstream.

V. Conclusion

Using CFD data at different TSRs and solidities, we were able to compile large amounts of VAWT wake
data which we parameterized with an EMG distribution and used to create a reduced-order model. The
velocity profiles that the model predicted showed good agreement with the validated CFD data as well as
PIV experimental data from Tescione et al.20 and wind tunnel experimental data from Battisti et al.28 These
validation studies show, from an initial standpoint, that our reduced-order model provides accurate results
much more quickly than experimental or CFD analysis for Reynolds numbers between about 180,000 and
6,000,000. It also has the potential of producing effective results in large-scale wind turbine analysis. For
about a 5-6% accuracy loss compared to the CFD data, our reduced-order model produced velocity deficit
results at any location in milliseconds for what would take a CFD simulation about a day to compute.

However, the model’s ability to account for multiple wake interactions still needs to be developed. When
multiple wakes interact, the velocity distribution behind the turbines is affected by the interference of wind
momentum changes. As wind farms generally have many turbines, this wake interaction must be considered
in order to ensure that velocity deficits in the wake regions are modeled accurately.

We plan to add this ability to our reduced-order model by looking at how other researchers have modeled
wind turbine wake interaction. One study conducted by Gebraad et al.14 studied the wake interaction of
HAWTs and used the sum of the squares of wake velocity deficits to compute an effective wake velocity
deficit. We have also considered using an actuator cylinder method to calculate the velocity deficits at
discrete points around the turbine based on the interacting wakes affecting the turbine, as demonstrated
by Ning.29 Ultimately, we will produce a reduced-order wake model that will be used in wind farm layout
optimization of VAWTs.

Originally we decided to use the vorticity as a means of calculating the wake velocity deficit due to the
concentrated streams of vorticity that decayed downstream. We realized, however, that the vorticity data
needed to be captured by means of trend fit analysis to produce accurate results. Because of this realization,
we are looking into the possibility of capturing the velocity data directly with a form of distribution fitting.
By doing this, the method of calculating the wake velocity deficit will be simpler and more intuitive instead of
using complex calculations of the vorticity data. It will also allow us to model the slight asymmetry found in
the CFD data easier which could be important in rotation direction analysis. We plan to study this method
in future iterations of the parametric wake model. The VAWT CAD models used in the CFD simulations,
the CFD wake data and the EMG parameters at each TSR and solidity, and a working parameterized wake
model can be accessed at: http://flow.byu.edu/publications/
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