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Abstract: Bayesian Networks (BNs) are increasingly being used as decision support tools 

to aid the management of the complex and uncertain domains of natural systems. They are 

particularly useful for addressing problems of natural resource management by complex 

data analysis and incorporation of expert knowledge. BNs are useful for clearly articulating 

both the assumptions and evidence behind the understanding of a problem, and approaches 

for managing a problem. For example they can effectively articulate the cause-effect 

relationships between human interventions and ecosystem functioning, which is a major 

difficulty faced by planners and environment managers. The flexible architecture and 

graphical representation make BNs attractive tools for integrated modelling. The robust 

statistical basis of BNs provides a mathematically coherent framework for model 

development, and explicitly represents the uncertainties in model predictions. However, 

there are also a number of challenges in their use. Examples include i) the need to express 

conditional probabilities in discrete form for analytical solution, which adds another layer 

of uncertainty; ii) belief updating in very large Bayesian networks; iii) difficulties 

associated with knowledge elicitation such as the range of questions to be answered by 

experts, especially for large networks; iv) the inability to incorporate feedback loops and v) 

inconsistency associated with incomplete training data. In this paper we discuss some of the 

key research problems associated with the use of BNs as decision-support tools for 

environmental management. We provide some real-life examples from a current project 

(Macro Ecological Model) dealing with the development of a BN-based decision support 

tool for Integrated Catchment Management to illustrate these challenges. We also discuss 

the pros and cons of some existing solutions. For example, belief updating in very large 

BNs cannot be effectively addressed by exact methods (NP hard problem), therefore 

approximate inference schemes may often be the only computationally feasible alternative. 

We will also discuss the discretisation problem for continuous variables, solutions to the 

problem of missing data, and the implementation of a knowledge elicitation framework. 

Keywords: Bayesian networks; Integrated Catchment Management; Decision support for 

natural resource management. 
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1. INTRODUCTION 

The European Water Framework Directive (WFD) sets out an integrated perspective to 

water management where the river catchment and river basin district are the scales of focus. 

It encourages the active involvement of all affected parties within the planning process 

[Giupponi, 2007]. At these large spatial scales, there are always competing and often 

conflicting management challenges that need to be addressed, such as demands for water of 

good quality, the integrity of aquatic ecosystems and flood risk management. In turn, the 

water related objectives must be pursued within the broader context of economic, social, 

cultural and other environmental objectives for the catchment as a whole. Given these 

challenges, decision making must be supported by new tools which evaluate the potential 

impacts of planned management interventions on multiple objectives.  

These new tools are often equated with integrative models. Integrative models are typically 

developed for five main reasons: i) prediction; ii) forecasting; iii) management and decision 

making; iv) social learning; v) developing system understanding and experimentation. The 

types of models suited to integrated catchment management include system dynamics, 

Bayesian networks, metamodels, coupled complex models, agent based models and expert 

systems. In this paper we focus on Bayesian networks.  

Bayesian networks provide a useful tool to assist in the structuring and analysis of decision 

problems [Watthayu and Peng, 2004]. A Bayesian network is a decision analysis 

framework, based on Bayesian probability theory, which allows the integration of scientific 

and experiential knowledge, and the uncertainty associated with this knowledge [Castelletti 

and Soncini-Sessa, 2007]. The approach involves describing a system in terms of variables 

and linkages, or relationships between variables, at a level appropriate to the decision 

making. This is achieved through representing linkages as conditional probability tables 

and propagating probabilities through the network to give the likelihood of variable 

outcomes [Murphy, 2001]. Therefore, the approach ensures that the treatment of risks and 

uncertainties is an intrinsic part of the decision-making processes [Borsuk et al., 2004]. The 

Bayesian network is flexible and interactive, and hence if a previously developed network 

does not fit a user's conceptual understanding of the system, it can be adapted quickly and 

simply to the cognitive understanding of the user. 

The scope and feasibility of BNs in integrated catchment modelling are currently being 

investigated by the Catchment Science Centre (CSC) at the University of Sheffield. The 

model, termed the Macro-Ecological Model (MEM), is being designed to model the links 

between the technical, economic and social processes which interact within any given 

catchment. The aim is to develop a decision support tool, combining a simulation model of 

the causal relationships within catchment processes with plausible scenarios of 

management options.  The tool will estimate a set of indicators which stakeholders can use 

to inform their decisions. In this paper we discuss some of the challenges of BNs in 

developing this model. 

 

2. BN CHALLENGES IN INTEGRATED CATCHMENT MODELLING 

2.1 Building large networks 

Developing an integrated catchment model like the MEM involves many components 

which, when translated into a BN become a large network. From a practitioners’ point of 

view, the process of compiling and executing a BN, using the latest software tools and 

improved computational power, is relatively easy. Also, the accuracy and speed of current 

algorithms makes it feasible for an application in integrated catchment management. 

However, the problems of building a complete BN for a particular “large” problem remain 

a complex task. Designing the right network structure is a prerequisite for meaningful 

elicitation of any probabilities. It needs proper software and knowledge engineering 

practice during the development phase. Knowledge engineers work with experts to 

decompose the system, recognise patterns at the macro and micro level [Shaw and Garland, 

1996] and continually change the model as both sides' understanding increases. The 
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benefits of constructing software systems from components or modules are well known and 

the properties that modular systems must contain were articulated as early as 1972 [Parnas, 

1972]. However, little work has been done on applying modular structures in BN design. 

Laskey and Mahoney recognised that BN construction required a method for specifying 

knowledge in larger, semantically meaningful, units they called network “fragments” 

[Laskey and Mahoney, 1997]. Laskey and Mahoney also argued that current approaches 

lacked a means of constructing BNs from components. The available development software 

for BNs lack sophisticated software engineering tools compared to the modern software 

development tools available for the mainstream software industry where these forms parts 

of an integrated development environment. In the MEM project, we follow a “bottom up” 

approach decomposing the model into fragmented modules that, when joined together, 

form the complete system. A fragmented module, which we call a sub-network, is a set of 

related system variables that could be constructed and reasoned about separately from other 

sub-networks. However consistency must be maintained in defining the common variables 

across different sub-networks. Ideally, sub-networks must make sense to the expert who 

must be able to supply some underlying motive or reason for the variables belonging 

together.  In Figure 1 a simplified subset of the MEM network has been depicted showing 

how the developed sub-networks are linked together. The focus in Figure 1 is on the 

‘connector’ variables of “PO4 concentration” and “River discharge” that enable the 

different sub-networks to be connected. Another approach could be to use an object-

oriented methodology where fragmented modules become classes, both variables (nodes) 

and instantiated BN fragments become objects and encapsulation is implemented via an 

interface and private variables [Koller and Pfeffer, 1997]. Connector variables can be used 

to specify interfaces and intermediate variables can encapsulate private data. However this 

can be difficult to follow strictly because different sub-networks can contain the same 

connector node as an intermediate variable. When creating an object of a sub-network we 

must know whether it shares intermediate nodes with other sub-network objects in order to 

define the influence combination rule. Clearly this is not a problem when the influence 

combination rule treats all parent nodes equally irrespective of type and value, as a form of 

dynamic polymorphism, but such a combination rule would be very difficult to conceive 

and implement [Neil et al., 2000]. 

 

 

Figure 1. Subset of the MEM network showing how the developed sub-networks are linked 

together 
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2.2 Inventing hidden node 

One of the major steps in large domain modelling is structural simplification. Such 

simplification is necessary for greater compactness and to reduce the computational 

complexity. A more interesting problem is inventing hidden nodes. Hidden nodes can make 

a model much more compact (see Figure 2). Introducing hidden nodes to the network 

structure may reduce the computational complexity of a Bayesian network by reducing its 

dimensionality, and may also help to capture non-trivial (higher order) correlations between 

observed events. However hidden nodes may also be included in a Bayesian network 

structure to reflect expert domain knowledge regarding hidden causes and functionalities 

which impose some structure on the interaction among the observed variables.  

 

 

 

Figure 2. Conceptual biological quality network where light blue bubbles represent hidden 

nodes, white bubbles represent observed variables and the grey bubble represents the index 

variable (GQABio = General Quality Assessment score for Biology). 

 

Generally hidden nodes should be added in consultation with experts or they should be 

added during structural learning. One problem is choosing the cardinality (number of 

possible values) for the hidden node, and its type of Conditional Probability Distribution. 

Another problem is choosing where to add the new hidden node. There is no point making 

it a child, since hidden children can always be marginalized away, so we need to find an 

existing node which needs a new parent, when the current set of possible parents is not 

adequate [Heckerman, 1995]. Furthermore, interpreting the “meaning” of hidden nodes is 

always tricky, especially since they are often unidentifiable. One way is to follow fully 

automated structure discovery techniques which can be useful as hypothesis generators and 

which can then be tested by experiment. In the MEM the simplification process has been 

done in consultation with domain experts and hidden nodes are generally some proxy 

indices used by the Environment Agency. 

 

2.3 Learning with distributed datasets 

Training datasets have been classified as fully observable (which means that the values of 

all variables are known) and partially observable (meaning that we do not know the values 

of some of the variables) [Heckerman, 1995]. Partial observability might occur because 

variables are measured at different spatial points (we call this a distributed dataset), through 

a change in survey strategy (introducing or excluding some of the variables), due to missing 
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records for certain observation (called missing variables), or simply because certain 

variables cannot be measured (hidden variables). Learning approaches from partial 

observability are confined to dealing with the issue of missing values. When some variables 

are missing, the likelihood surface becomes multimodal. The problem of simple missing 

values in the dataset has been addressed very simply in Bayesian networks, because 

likelihoods can be computed using normal iterative methods (such as gradient decent or 

Expectation-Maximization (EM)) [Heckerman, 1995]. These iterative methods try to find a 

local maximum of the Maximum Likelihood (ML) or Maximum A Posterori (MAP) 

function [Murphy, 2001]. This capability of BNs has been cited as very useful as there is no 

minimum data requirement to perform the analysis and BNs take into account all the data 

available [Myllymaki et al., 2002]. However, there are many practical cases where the 

observed dataset is distributed among different sites which make a distributed 

heterogeneous dataset scenario, where each site has observations corresponding to a subset 

of the attributes. In some cases we have only a small set of overlapping data points from 

which it is not sufficient to derive casual relationships. It will be difficult or impossible 

(depending on the scenarios) to find local maxima in the ML/MAP function for such 

distributed datasets. Iterative algorithms need to use an inference algorithm to compute the 

expected sufficient statistics which will be difficult for an extreme missing value problem. 

So learning from distributed datasets is not possible with conventional learning methods.  

In the MEM project we have tried to tackle this problem using an Artificial Neural Network 

(ANN) approach. The goal was to build a constant predictor by using distributed datasets. 

Different ANN predictors were built mapping subsets of predictor variables with response 

variables which are combined into a single model over a weighted average. The weights are 

determined by training based on the small overlapping dataset and they represent the 

prediction capability of each sub-model. 

 

2.4 Discretisation of continuous variables 

A large number of the observation data required for the development of the MEM are 

continuous data (e.g. phosphate concentration). Bayesian networks can deal with 

continuous variables in only a limited manner. If continuous variables are to be 

incorporated in BNs some means must be found of optimally partitioning the values into 

sub-ranges which can then be treated as discrete categories. The way this discretisation is 

performed affects the performance of the subsequently derived BN model. 

In order to maximise the predictive power of BNs, it is necessary to discretise each of the 

continuous input variables in some optimal manner. Every continuous variable could 

require differing numbers of bins which might well also be of non-uniform width. The 

problem is thus one of identifying the optimal set of binning parameters. Genetic 

algorithms (GAs) have proved very successful at solving this sort of discrete search 

problem and we propose employing them here. GAs work by evolving a population of 

possible solutions in a manner analogous to Darwinian survival of the fittest. For N 

continuous input variables to the BN, we require some set of bin widths spanning each 

variable's range. The number of bins and their widths can differ between and indeed within 

variables. We propose constructing a GA individual (a chromosome) as a set of N lists of 

binning schedules, one list per BN input variable. At each iteration of the GA, 

stochastically-selected pairs of individuals will be crossed-over and mutated using specially 

adapted genetic operators; the objective function 'driving' the evolution will be the 

predictive power of a BN employing the binning schedule specified by a given 

chromosome. In this way, the set of bin specifications yielding the (near-) optimal 

performance will be generated. We envisage significantly improved predictive power for 

BNs. Figure 3 shows some results of this exercise where we show performance comparison 

of a GA approach with the classical 1R method proposed by Holte et al. [1989].  There is a 

marked increase in predictability of the target variable with the GA approach. The 

technique should also be applicable to decision trees which are a very widely used learning 

paradigm operating on nominal variables. 
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Figure 3. Performance of discretisation algorithms: (A) 1R method [Holte et al., 1989]; (B) 

Optimization using Genetic algorithm. 

 

2.5 Expert knowledge elicitation and structuring 

Bayesian networks allow for casual relationship (probabilities) to be specified based on 

subjective assessments (“expert opinion”), empirical evidence, or a combination of both. 

Incorporating expert opinion is important because, often, there are insufficient data to learn 

and model relationships between casual factors and outcomes using population-based data 

(“machine learning”). When there is a paucity of data, domain expert opinion can be used 

to create Bayesian networks. Expert-derived probabilities can be improved over time with 

observational data from multiple sources, obviating the need for a single data repository 

that contains all casual relationships. However the number of probability distribution 

required to populate a Conditional Probability Table (CPT) grows exponentially with the 

number of parent nodes. The sheer volume of questions to be answered by the experts poses 

a considerable cognitive barrier. Also extracting knowledge in a form that can be converted 

into probability distributions may prove difficult in real life situations. This is because 

many field experts are used to working with real sampling or experimental data, and may 

find it difficult to provide any numbers without relying on data. Also they may be used to 

classical statistical analyses and feel uncertain when trying to think about their knowledge 

in terms of probability distributions rather than point estimates and confidence intervals. 

This uncertainty together with only superficial knowledge about the methodology may also 

lead to distrust towards the BNs, which easily leads to reluctance to provide the estimates.  

Some well-known methods in this area are the Noisy-OR model [Pearl, 1998] and some 

improvement and generalisation by others [Henrion, 1989; Srinivas, 1993]. These models 

can compute the distributions needed for the CPT from a small set of questions elicited 

from the expert. All these models, however, are constrained by the assumption that parents 

act independently without synergy [Srinivas, 1993]. 

For the MEM project we are implementing a modified version of the relative weight and 

compatible probability method proposed by [Das, 2004]. The input to the algorithm 

consists of a set of weights that quantify the relative strengths of the influences of the 

parent nodes on the child node and a set of compatible probability distributions. The 

number of questions grows linearly with the associated parent nodes. We introduced a 

special case when certain parent nodes are critical and have some thresholds, above or 

below which the effect of other parent nodes is none or minimal. For example in the 

biological quality network shown in Figure 4, oxygen can be a critical variable. We asked a 

few more questions to the experts to elicit the critical variables and their critical states. The 

same set of questions has also been used for cross validation and intra consistency check of 

expert knowledge. Figure 4 shows a simple outcome comparing results from the original 

approach of Das with those from the modified approach we have used in the MEM project. 

Because the variable ‘oxygen’ is a critical variable under approach B, its existence in a low 

state has a far stronger influence on the outcome of GQABio than under approach A where 

oxygen has not been identified as a critical variable. 
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Figure 5.  Dynamic Bayesian Network 

representing a feedback loop. 
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Figure 4. Results for a critical case (Oxygen low) (A) implemented with [Das, 2004] 

knowledge elicitation approach (B) Modified version of [Das, 2004] developed for MEM.

2.6 Dynamic model structure and feedback loops 

BNs are static models and as such not able to integrate system dynamics and feedback 

loops. However, there are different ways of dealing with this issue when applying BNs for 

modelling dynamic systems. The simplest approach is to assume that the system under 

consideration is in equilibrium. For example in the MEM sub-network of water quality, 

phosphate concentration in the river has been taken as annual mean PO4 concentration.  A 

more sophisticated approach to incorporate temporal and ambient aspects is the Dynamic 

Bayesian Network (DBN) approach. The predominant DBN literature [Korb and 

Nicholson, 2004; Murphy, 2002] deals with contiguous time slice models based on the 

Markov assumption that the current state of the model depends on its previous time state 

and action taken in its current state. However a known impediment of this approach is the 

exponential increase in network size apart from the knowledge acquisition problem. Figure 

5 shows a simple two-node feedback loop for 3 time steps (A0-A3 and B0-B3). Many 

solutions are being proposed to solve feedback loops in DBNs but most of them still need 

to be tested in practical applications. For example, Gossink et al. [2007] have proposed an 

extended version of DBN to ease the “intractability of knowledge acquisition” problem. 

The inference algorithm used for this approach is likelihood weighted approximation. Exact 

algorithms are still not applied with this approach and modification of the extended DBN 

may be needed [Gossink et al., 2007].  

Even if we decided to build a 

time sliced DBN, inference is 

another problem at a later stage. 

It needs to unroll the network to 

represent dependencies between 

nodes from two consecutive time 

slices. Further, it needs to 

preserve conditional 

relationships between nodes as 

well as influence that evidence 

nodes have on hidden nodes (if 

there are any). Parameter 

learning can be difficult and the 

main reason is unquantified 

uncertainty in the elicited 

probabilities. Further, a dynamic network can have a static node which creates a problem of 

dependency and representation. [Schafer and Weyrath, 1997] claimed that the problems in 

this type of model can be differentiated in two classes: (a) the dependency between 

dynamic child node and static parent node, and (b) the initial value of static node is not 

known with certainty, and we can only estimate this node’s value which could be changed 

as time progresses. Schafer and Weyrath claimed that the dependency can be interpreted by 

incorporating the effect of the static node in the dynamic node, so the dynamic node will 
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convey all of the information needed for inference. Problem (b) can be solved if we 

compromise accuracy for efficiency in a way that can delay rollup until we receive the 

exact probability of the static node. 

 

2.7 Belief updating 

BNs for a large domain like ICM are implemented as a modular network consisting of 

many subnets joined together to form the complete system. Consistency among subnets in 

an integrated BN is achieved by communication. When a subnet updates its belief, it 

communicates with an adjacent subnet to maintain the consistency across the system. 

Large-scale models generally have high-order stochastic dependencies. The computational 

complexity of treating these dependencies exactly can be characterized in terms of the size 

of the maximal clique of the “moralized” graph [Murphy, 2002]. Existing inference 

algorithms [Xiang, 1995] require repeated belief propagations (which is proportional to the 

number of linkages between the subnets) within the receiving subnet.  It has been stated 

that singly connected BNs are tractable and have time algorithm linear in the number of 

nodes in a network or the size of the network for exact inference [Cooper, 1990]. On the 

other hand, multiply connected Bayesian networks are intractable and do not admit efficient 

algorithms for exact inference in the worst case which makes the exact inference in BNs to 

be NP-hard [Cooper, 1990]. Others [Murphy, 2002; Xiang, 2000] believe that inference in a  

BN can be performed effectively using its junction tree (JT) representation. However, the 

junction tree propagation method cannot compute p(X|e) when X is not contained in a node 

of the junction tree. Also, the local propagation procedure has to be applied whenever new 

evidence is observed. [Xiang, 2000] has worked on extending junction trees beyond single 

BNs and tried to prove that two local propagations are sufficient for propagating evidence 

from one JT to an adjacent one no matter how many linkages there are between the two 

JTs. This results in big computational savings which are particularly significant for a large 

domain with subnets comprising multiple linkage JTs. 

The complexity of the exact inference algorithm does not mean that we cannot solve 

inference in large BNs. It implies that we cannot find a general procedure that works for all 

networks. However, depending on the network complexities, we can have an efficient 

algorithm either exact or approximate. Various algorithms e.g. approximate, heuristic, 

hybrid or special case algorithms should be taken into consideration for a large domain 

network. A future research goal should be that of identifying effective approximate 

algorithms that work well for large domain problems. Also the integration of various kinds 

of exact and approximate algorithms exploiting the best of each can be an interesting area 

of research. 

There are other problems which we have not discussed in this paper but which are relevant 

for ICM modelling. In the missing value problem there is a particular case reported by 

[Rubin, 1978]: failure to observe a variable may in itself be informative about the true state 

of the system. For example, in habitat survey data, failure to report a population of a certain 

species may suggest that system state is not suitable for survival of that species. In medical 

science, researchers have worked on this problem and proposed methods for dealing with 

such situations [Chickering and Pearl, 1996; Robins, 1986; Rubin, 1978]. 

 

3. CONCLUSION 

Bayesian networks are still a relatively new approach but they are gaining popularity in 

many application areas, including environmental applications. Many easy-to-use BN 

development software packages are available but they are still lacking the sophistication 

and robustness of a standard development environment. Also they are not updated with the 

ongoing developments in the field of BN research. Integrated Catchment Management 

modelling provides its own set of challenges to BNs. Questions that need to be addressed in 

the context of applying BNs for ICM are: Do we have data of sufficient quantity and 

quality? Is expert knowledge sufficient for model characterisation? Which algorithm should 

we use for inference, in order to extract valuable information and keep the computational 

complexity low? There are number of promising research avenues, challenges, and needs 
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that directly concern the usefulness of Bayesian networks and their impact on real world 

environmental applications. 
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