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ABSTRACT 
 
 
 

FINDING ALTERNATIVES TO THE HARD DISK DRIVE 

FOR VIRTUAL MEMORY 
 
 
 

Bruce A. Embry 

School of Technology 

Master of Science 
 
 
 

Current computer systems fill the demand of operating systems and applications 

for ever greater amounts of random access memory by paging the least recently used 

data to the hard disk drive.  This paging process is called “virtual memory,” to indicate 

that the hard disk drive is used to create the illusion that the computer has more random 

access memory than it actually has.  Unfortunately, the fastest hard disk drives are over 

five orders of magnitude slower than the DRAM they are emulating.  When the demand 

for memory increases to the point that processes are being continually saved to disk and 

then retrieved again, a process called “thrashing” occurs, and the performance of the 

entire computer system plummets.  This thesis sought to find alternatives for home and 

small business computer users to the hard disk drive for virtual memory which would 

not suffer from the same long delays.  Virtual memory is especially important for older 

computers, which often are limited by their motherboards, their processors and their  



 



 

power supplies to a relatively small amount of random access memory.  Thus, this 

thesis was focused on improving the performance of older computers by replacing the 

hard disk drive with faster technologies for the virtual memory.  Of the different 

technologies considered, flash memory was selected because of its low power 

requirements, its ready availability, its relatively low cost and its significantly faster 

random access times.  Two devices were evaluated on a system with a 512MB of RAM, 

a Pentium 4 processor and a SATA hard disk drive.   Theoretical models and a 

simulator were developed, and physical performance measurements were taken.  Flash 

memory was not shown to be significantly faster than the hard disk drive in virtual 

memory applications. 
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1 Introduction 

Computer performance is more than a numerical analysis of numbers; it is also 

an aesthetic experience. The exhilaration of having a powerful machine respond to one's 

wishes is akin to the joy experienced at a musical concert or a ballet. Like all aesthetic 

experiences, a multitude of factors contribute to this experience: 

• Computer architecture 

• Actual computer hardware 

• Operating system design 

• Operating system configuration 

• Application program design 

• Application program configuration 

• User proficiency 

• User expectations 

• User data stream 

• The interactions between all these other factors 

Part of the motivation for this thesis was a personal quest to recapture the thrill I 

experienced when I began programming in 1972.  The platform was an IBM 1130 

minicomputer, with 8kB of magnetic-core RAM.  Input was programmed via a punched 
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card reader.  Yet despite all its limitations, it was able to handle nearly any problem we 

could conceive for it.  Why do our current computers not provide the same experience? 

Our current home computers are far more powerful than the original 

supercomputers.  For example, the Cray-1 had only 8MB of 50ns SRAM for its main 

memory, and the processor ran at only 80MHz clock speed.  (Cray 1977, 1-3, 1-5).  Yet 

the Cray-1 handled large scientific applications with ease.  The question has troubled 

me:  why cannot our current computers, with 64 times more memory, and 40 times 

faster processors, perform on a par with the Cray-1?  Why do they seem so slow, 

particularly after sitting idle for a few hours, when switching tasks, or when an anti-

virus programming is running in the background?   

Part of the answers to these questions lies in the tasks that we set for our 

computers.  The IBM 1170 was a single tasking machine.  One and only one program 

could be run at a time.  Similarly, the Cray-1 was a single-tasking vector processor, 

optimized for performing calculations on large data sets.  With our complex operating 

systems, our current computers are expected to run 30-50 processes concurrently.  

Many of these processes are invoked by the operating system behind the scenes as 

services.  Each time a new version of an operating system is introduced, the numbers 

and sizes of those processes increase.  This in turn increases the demand for memory by 

the operating system.  For example, Windows 2000 had a minimum memory 

requirement of 32MB, with 64MB recommended. (Microsoft 2007(1)). Windows XP 

requires a minimum of 64MB, with 128MB recommended.  (Microsoft 2007(2)). 

Windows Vista Home Basic requires a minimum of 512MB.  All other versions of 

Windows Vista require a minimum of 1GB of RAM.  (Microsoft 2007(3)).   
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My target audience for this thesis was the home and small office computer users, 

who often cannot afford to upgrade their computers to meet the demands of their 

operating system.  I had hoped to find a solution that would allow them to attain 

acceptable performance on older existing computers, and exhilarating performance on 

current machines. 

A partial solution to the demand for larger amounts of memory is virtual 

memory, backed by the hard disk drive.  However, the hard disk drive is a poor fit for 

virtual memory, as was noted by Peter J. Denning, an early pioneer in the field.  

(Denning 1970, 170).  Its long latency delays often result in long delays for users, 

particularly when they use the multi-processing capabilities of their operating systems.  

Denning recommended the use of solid state memory devices for virtual memory, due 

to their shorter latency times.  This prompted me to seek a solid state device that could 

replace the hard disk drive for virtual memory. 

Every computer operation, at the lowest level, requires access to the storage 

system. Every instruction must be fetched from storage before it can be executed. Many 

computer instructions require fetching data from memory or storing data to storage. 

Because of its pervasiveness, the performance of the storage system affects the 

performance of every process, whether it is the operating system, a device driver or an 

application. Improving storage system performance has the potential to make dramatic 

improvement in overall computer performance.  In turn, improving computer 

performance will improve the aesthetic experience for all users, even those with older 

machines.   
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1.1 Computer Storage Systems 

The storage system of a computer would ideally have: large capacity, high data 

density, low cost, high speed access, high data transfer rate, infinite read/write cycles, 

symmetric read/write access speeds, random access, low power consumption, 

nonvolatility, long-term stability, long data life, and ruggedness. Of course, no single 

storage technology exhibits all of these traits. It is for this reason that most computer 

systems have hybrid storage systems, with a combination of devices that together 

provide as many of these characteristics as possible.   

Computer storage systems have three basic subsystems, each with differing 

purposes and requirements:  permanent memory, secondary storage and working 

memory.  Permanent memory contains the low-level code that enables the computer to 

commence operation in a known state, and requires nonvolatility, long-term stability, 

long data life, ruggedness and short read access time.  It is most often constructed of 

read-only memory (ROM), although flash memory is becoming common to allow the 

low-level code to be updated without chip replacement.  

Secondary storage stores programs and data that the computer is not currently 

using, but needs to access at some future time.  This subsystem ideally requires large 

capacity, high data density, low cost, nonvolatility, long-term stability, long data life, 

infinite read-write cycles, and random access.  Hard disk drives most often serve the 

secondary storage function, with CD-ROM or tape drives as backup.   

The working memory subsystem is critical to the performance of a computer 

system, for it contains the programs and data that the computer is currently processing.  

The most important attributes of working memory are high speed access, high data 
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transfer rate, random access, infinite read/write cycles, symmetric read/write access 

speeds, low power consumption, large capacity and low cost.  To achieve these 

attributes, working memory in most computers is constructed of multiple devices 

working together.   

1.2 Common Memory Devices 

The most common devices used in working memory systems today are of three 

types:  Static Random Access Memory (SRAM), Dynamic Random Access Memory 

(DRAM), and Hard Disk Drive (HDD).  The characteristics of these memory devices 

are dramatically different, and are summarized in Table 1-1.  The random access time is 

the delay between requesting a byte of data from a device and obtaining that datum 

from the device.  The transfer rate is the rate at which a device can transfer sequential 

gigabits (109 bits) of data once the beginning byte of the sequence has been accessed.  A 

more useful measure is sequential transfer time, which can be derived by dividing the 

transfer rate by 8 to scale it to gigabytes (230 bytes) per second and then taking the 

reciprocal, to calculate the time in nanoseconds (10-9 seconds) required to transfer a 

single sequential byte.  This calculated characteristic has been added to Table 1-1 for 

convenient reference.  

In examining this table, the reader should note that the hard drive has a dual 

function in the typical computer system.  It is the secondary storage system, storing 

programs and other files, for which it is very well suited. But it also acts as the lowest 

level of working memory, holding a paging file of active programs and data that cannot 

fit in the DRAM or SRAM. Hard drives have very few characteristics of the ideal 
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working memory.  The access time and power consumption are very high, and the 

transfer rate is very low.  Their only redeeming virtues are their enormous capacity and 

their low cost per byte, compared to DRAM.  While they are also nonvolatile, this is not 

a necessary requirement for working memory. 

Table 1-1  Characteristics of Common Memory Devices  

  SRAM DRAM HDD 

 Reference (Samsung 
2007, 10, 13) 

(Samsung 
2008, 19) 

(Western Digital 
2005) 

Capacity (MB = 220 bytes) < 1 > 1,000 > 150,000 
Data density low higher highest 
Cost highest lower lowest 
Access Time (ns = 10-9 sec.) > 6.6 > 30 > 4,000,000 
Transfer Rate (Gb/s = 109 
bits/sec) 

>21 >10 < 0.7 

Sequential Transfer Time (ns = 
10-9 sec.) 

<0.4 <0.8 >11.4 

Block size (bytes) 1 128 4,096 
Peak power consumption 
(watts) 

< 1.7 < 0.6 > 10 

Nonvolatility No No Yes 
Ruggedness Yes Yes Moderate 
Long useful life Yes Yes Yes 
Symmetric read/write access Yes Yes No 
Random access Yes Yes Yes 
Long-term stability Yes Yes Yes 

Note: Data obtained for fastest devices for which data was available.  Hard disk drive 
transfer rate is buffer-to-disk sustained transfer rate. 
 

 

The SRAM portion of working memory is called a “cache,” which calls to mind 

the places where fur traders hid their pelts prior to sale.  It thus means a nearby place to 

store something so that it can be retrieved quickly.  In most modern computer systems, 

the cache is built in to the central processing unit, and thus cannot be readily modified.  

The DRAM portion of working memory is called “main memory” or “primary storage,” 
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as this is the level of memory where most of a computer’s work is done.  The hard drive 

portion is referred to as “virtual memory,” implying that an illusion is created that main 

memory is larger than it really is.  

 To access a random byte of data in the hierarchy, the system first consults the 

cache, since if the data is found there, it can be retrieved in the minimum amount of 

time.  If the datum is not found in the cache, main memory is searched.  Only if the 

datum is not found in main memory does the system resort to the virtual memory.  It 

should be noted the different portions of working memory overlap each other, such that 

all of the data in the cache is also contained in the main memory, and all of the data in 

the main memory is also contained in the virtual memory. 

If data were only accessed a byte at a time, computer performance would be 

limited by the random access time of the level of memory where they are found.  

Indeed, the traditional calculation of average access time depends solely on random 

access times and "miss" rates. However, almost all memory devices have lower 

sequential transfer times than random access times, as illustrated in Table 1-1.  So to 

minimize average access time, data is transferred in blocks from the slower levels to the 

faster levels to take advantage of the lower transfer times.  When a faster level becomes 

full, the block least recently accessed is copied to a slower level and its place is freed 

up.  This process is called eviction.  The typical block size for each type of memory is 

listed in Table 1-1.   

The assumption is made that when a datum is requested, the other data in the 

block are more likely to be requested in the near future, and when a block has not been 

recently accessed, the data in the block are less likely to be accessed.  This assumption 
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is called locality of reference.  If it holds true, the data blocks most frequently accessed 

will migrate to the fastest level of memory, those least frequently accessed will migrate 

to the slowest level, and the average access time will approach a minimum value.  

Locality of reference is most likely to exist if data is requested sequentially.  If the 

processor requests data in a strided access pattern, such that a new block must be 

accessed for each new byte that is requested, no locality of reference will exist and the 

average access time will approach its theoretical maximum.  If data is requested in 

random order, the average access time will be somewhere between the minimum and 

the maximum.  Formulas for calculating the sequential and strided access times are 

given in the next section. 

Thus, when a datum is first accessed, not only it, but its neighboring data are 

copied from their current location into a region of the SRAM cache called a “line.”  

When any data in that line is later required, it is accessed at the speed of the SRAM.  

Gradually the lines of the cache become full.  When there is no longer any room in 

SRAM for data that the system wishes to store, the line containing the data least 

recently used is “evicted” from the cache:  its values are copied into DRAM, and its 

place in the cache is made available.  If the evicted data is then later required, its line 

must be again retrieved from DRAM, at a longer access time and a lower transfer rate. 

A similar approach is taken with regard to virtual memory.  Data in main 

memory are stored in regions called “pages.”  The system keeps the pages most recently 

accessed in DRAM, and evicts those pages that are least recently accessed to the virtual 

memory file on the hard disk drive.  If a program requests data not found in DRAM, the 

page containing the requested data must be retrieved from the virtual memory, incurring 
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a substantial delay due to its long access times and low transfer rates.  This process is 

called a “page fault,” and can have a substantial impact on the performance of the 

computer system.  It is for this reason that the most common prescription for speeding 

up a slow computer is to add more main memory, so that the system does not have to 

use virtual memory as often.   

1.3 Additional Memory Devices 

A number of innovations have begun to be implemented to improve the 

performance of computer working memory systems.  Most of them, such as Windows 

Vista ReadyBoost, USB flash drives, and solid-state disks (SSDs), are based on flash 

memory technology.  These innovations will be discussed in more detail in Chapters 2 

and 3. 

1.4 Formulas 

The following formulas give the traditional calculation of average access time 

(Atraditional), and proposed calculations of average sequential access time (Aseq), and 

average strided access time (Astride) for a three-level hierarchy as described above:  

 

Atraditional = Rc+2Rm(Pm+Pv)+ RvPv (1.1) 

 

Aseq = Rc+2(Rm/Bm+Tm)(Pm+Pv) +( Rv/Bv+Tv)Pv (1.2) 
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Astride = Rc+2(Rm+TmBm)(Pm+Pv)+(Rv+TvBv)Pv (1.3) 

where 

Atraditional is the traditional calculation of average access time from the entire 

hierarchy 

Aseq is the average time to access a byte of data from the entire hierarchy, when 

the data are accessed sequentially 

Astride is the average time to access a byte of data from the entire hierarchy, when 

the data are accessed in a strided manner 

Rc is the time to access a random byte of data in the cache  

Rm is the time to access a random byte of data in the main memory  

Rv is the time to access a random byte of data in the virtual memory  

Pm is the percentage of all unique data found in the main memory 

Pv is the percentage of all unique data found in the virtual memory 

Bm is the size in bytes of the data blocks in main memory 

Bv is the size in bytes of the data blocks in the virtual memory 

Tm is the time to transfer a sequential byte of data to or from the main memory  

Tv is the time to transfer a sequential byte of data from or to the virtual memory. 

Equation 1.1 was derived from the formula given by Patterson and Hennessy for 

a two-level cache (Patterson and Hennessy 1996, 417), by extending it to a three-level 

hierarchy with a single-level page table.  The first term, Rc, reflects that fact that all 

accesses are addressed to the cache first, since if the data can be found there, no other 

level of memory need be consulted.  The second term, 2Rm(Pm+Pv), reflects that for all 

data not found in the cache, two accesses must be made to main memory, one to consult 
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the page table to locate the data, and a second to read the data.  This must be done for 

virtual memory data as well as main memory data, as the virtual memory data is copied 

from virtual memory into main memory, and then must be read back out again. The 

third term, RvPv, reflects that for data found only on the disk, the access time of the disk 

must be included.  For simplicity, a single-level page table was assumed, located in 

main memory, which enabled the location of non-cached data to be determined with a 

single memory access. 

Equation 1.1 is inadequate for modeling real world systems, in that it does not 

take into account the lower transfer times of memory devices when data is transferred 

sequentially.  Equation 1.2 and Equation 1.3 were derived from Equation 1.1 to provide 

more realistic access times that include the transfer times and block sizes. Equation 1.2 

estimates the average access time achievable when all data is requested sequentially.  

All of the data in a block is requested before another block must be accessed from the 

slower levels.  This fully amortizes the access time of the block over the entire block.  

The first term, Rc, is identical to the first term of Equation 1.1.  The second term, 

2(Rm/Bm+Tm)(Pm+Pv), reflects that for data not found in the cache, two pages of main 

memory must be read: one from the page table to locate the page where the data is 

found, and one which contains the data.  The access time is  averaged across the entire 

page, and the time to transfer each byte in the page is the transfer time of the DRAM.  

The third term, (Rv/Bv+Tv)Pv, reflects that for data located only in the virtual memory, a 

virtual memory page is copied to main memory.  The time to locate the page is 

averaged across the entire page, and the time to transfer each byte in the page is the 

transfer time of the virtual memory. 
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Equation 1.3 was similarly derived from Equation 1.1, making the worst case 

assumption that data is accessed in a strided manner, such that a new block must be 

accessed for each byte requested.  As before, the first term, Rc,  is identical to the first 

term of Equation 1.1.  The second term, 2(Rm+TmBm)(Pm+Pv), reflects that for data not 

found in the cache, two pages of main memory must be read: one from the page table to 

locate the page where the data is found, and one which contains the data.  The access 

time and transfer time of the entire page is charged to each datum.  The third term, 

(Rv+TvBv)Pv,. reflects the access and transfer of a virtual memory page to access each 

datum located only in virtual memory. 

It is helpful to compare these formulas with those proposed by Mekhiel and 

McCracken in 1994 (Mekhiel and McCracken 1994, 612, 613). They analyzed cache 

performance, citing Patterson and Hennessy for their methodology of extending 

standard performance formulas.  Mekhiel and McCracken sought an alternative to trace-

driven simulations to predict memory system performance.  While their approach was 

specifically directed at caches, their formulas were strikingly similar to mine.  Their 

approach is general enough to be applied to any memory hierarchy.  It consists of 

building a decision graph, with a node for each decision to be made: instruction access 

v. data access, data read v. data write, instruction L1 cache hit, instruction L1 cache 

miss, instruction L2 cache hit, instruction L2 cache miss, data L1 cache read hit, data 

L1 cache read miss, data L1 cache write hit, data L1 write miss, data L2 cache read hit, 

data L2 cache read miss, data L2 cache write hit, and data L2 cache write miss. Then, 

depending on the cache organization, memory/cache operations are assigned to each 

decision node. Probabilities and latency costs are assigned to each arc between nodes. 
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Average access time is calculated by adding the latencies of each arc, weighted by the 

respective probabilities. 

The approach is almost identical to the Patterson and Hennessy approach, but is 

more generalized. The approach is best illustrated with the simplest example of a two-

level cache, where both caches are organized as "write-through" caches, that is, when 

data is written to any level of the memory, it is also written to all levels beneath it. The 

parameters of the model are: 

Pm = probability of executing a memory instruction 

Pl = probability of executing a load instruction 

Ps = probability of executing a store instruction 

Mi1 = miss rate of the L1 instruction cache 

Mi2 = miss rate of the L2 instruction cache 

Mrd1 = read miss rate of the L1 data cache 

Mrd2 = read miss rate of the L2 data cache 

Mwd1 = write miss rate of the L1 data cache 

Mwd2 = write miss rate of the L2 data cache 

Pd1 = probability of a block being dirty in the L1 data cache 

Pd2 = probability of a block being dirty in the L2 data cache 

L1 = number of clock cycles required to access the L1 cache 

L2 = number of clock cycles required to access the L2 cache 

Lim = number of clock cycles required to access the instruction memory 

Ldm = number of clock cycles required to access the data memory 

B = cache block size for the L1 or L2 cache 
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The following additional parameters were derived from those listed above: 

Hi1 = hit rate of the L1 instruction cache = 1 - Mi1 

Hi2 = hit rate of the L2 instruction cache = 1 - Mi2 

Hrd1 = read hit rate of the L1 data cache = 1 - Mrd1 

Hrd2 = read hit rate of the L2 data cache = 1 - Mrd2 

Hwd1 = write hit rate of the L1 data cache = 1 - Mwd1 

Hwd2 = write hit rate of the L2 data cache = 1 - Mwd2 

A “dirty” block refers to a block of data whose values have changed since being 

read from the main memory.  Such a block must be copied back to main memory before 

its location in the cache can be made available for other blocks.  The values of Pm, Pl, 

Ps, Mi1, Mrd1, and Mwd1 were derived from a single level cache address trace. The values 

of L1, L2, Lim, Ldm and B were design parameters, to be tested by the model. Only the 

parameter values of the L2 cache had to be estimated. Performance formulas were then 

derived from the decision graph of the model under consideration: 

 

Ncy = Ncyi + Ncyd (1.4) 

 

Ncyi=(Hi1)(1-Pm)L1+Mi1(Hi2)(1-Pm)(L1+L2)+Mi1Mi2(1-Pm)(2L2+Lim) (1.5) 

 

Ncyd=PlPm[Hrd1L1+Mrd1Hrd2(L1+L2)+Mrd1Mrd2(2L2+Lim)]+PsPmLdm (1.6) 

 

where 

Ncy = average number of cycles to access data from the entire hierarchy 
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Ncyi = average number of cycles to access the instruction cache 

Ncyd = average number of cycles to access the data cache 

On the surface, these formulas bore little resemblance to mine. However, on 

careful examination, several parallels were drawn. The process of identifying a separate 

term for each component of memory access time, and then weighting that time based 

upon percentages is almost identical to the process I used to derive my formulas. The 

latencies of the different levels of the hierarchy figured very prominently in these 

formulas, as they did in mine.  

The differences were also significant. They were targeted specifically toward 

caching systems, and did not take into account the block transfer times or other specific 

characteristics of virtual memory. Mekhiel and McCracken also relied upon simulation 

data to estimate cache miss rates, which my model did not require. 

To illustrate the application of my formulas, I configured a “typical” older 

computer.  The cache and the main memory were assumed to have the sizes listed in 

Table 1-1 and to be full of useful data.  A fully utilized virtual memory of 1.5 times the 

size of main memory was also assumed. Table 1-2 repeats the performance parameters 

from Table 1-2, gives the derived values of Pm and Pv and the resulting values of 

Atraditional, Aseq and Astride.  
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Table 1-2  Performance Characteristics of Three-Level Memory Hierarchy 

  Cache Main  
Memory 

Virtual  
Memory 

Access Time 

Size (MB = 220 bytes) 1 1,000 1,500   
(R)andom Access Time (ns) 6.6 30.0 4,000,000.0   
(T)ransfer Time (ns) 0.4 0.8 11.4   
(B)lock size (bytes) 1 128 4,096   
(P)ercentage of data .001 .666 .333   
Average Access Time (traditional calculation) (Atraditional)(μs.) 1,332.067 
Sequential Access Time (Aseq)(μs) 0.337 
Strided Access Time (Astride)(μs) 1,354.163 
Average Access Time (Aave)(μs) 677.250 

Note:  Data derived from Table 1 and from Equations 1.1, 1.2 and 1.3 
 

To calculate an accurate average access time, one must measure the access 

patterns to determine how many of the accesses fit the sequential access pattern, how 

many fit the strided access pattern, and how many fall somewhere in between.  But a 

rough estimate can be made by assuming that a random access pattern approximates the 

performance of a real virtual memory system.  This assumption seems reasonable for 

multi-threaded operating systems, such as Windows 2000 or Windows XP, where 30 to 

50 processes may be executing simultaneously, each accessing memory independently.  

The mean of the sequential and strided access patterns was taken to be an estimate of 

the access time when a random pattern is applied., as reported in Table 1-2.  This 

average access time is heavily influenced by Rv, the random access time of the virtual 

memory.  If Rv could be reduced by 1/2, the average access time would drop to 

333.810us.  This could improve computer performance significantly. 

All computer systems have a finite amount of main memory that they can 

accommodate, yet applications and operating systems continually need more working 

storage memory.  The common solution for this dilemma is to devote a portion of the 
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hard disk drive to virtual memory.  The motivation of this thesis was to find an 

alternative form of virtual memory that would have a lower random access time than 

hard disk drives.  This would enable home and small office computers to run advanced 

applications and operating systems at acceptable speeds, despite their inherent memory 

limitations. 

1.5 Objective and Delineations 

The purpose of this research was to find an alternative to the hard drive for 

virtual memory for home and small office computers that would reduce average access 

time of the entire working storage subsystem. It was assumed that such a solution would 

be based upon solid-state electronic devices of some kind rather than mechanical.  

One alternative that was not explored was simply increasing the size of main 

memory. While this is an obvious solution, it is expensive and is limited by the memory 

slots on the computer system being evaluated. Rather, a solution was sought which 

would be generally applicable to almost any computer, regardless of its memory 

constraints. 

Nor did I investigate the effects of hard drive caches.  While this is becoming 

increasingly common, the sizes of such caches are so small relative to the size of virtual 

memory, I felt that they would be of marginal benefit.  

Also excluded from the investigation were software-based solutions, such as 

Windows ReadyBoost and other operating system improvements. The purpose was to 

focus on improving the hardware, and leave to other efforts increasing the efficiency of 

the software that must run on it.  
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I also did not investigate alternative operating systems such as Linux, as most 

home and small business computers today run some version of Microsoft Windows. 

1.6 Hypothesis 

I attempted to disprove the following null hypothesis: 

The performance of a computer does not improve when hard-
drive virtual memory is replaced with other virtual memory options, such 
as solid-state memory. 

1.7 Methodology  

I developed the following procedures in pursuing this research: 

1. Analyze the datasheets and other literature of various solid-state electronic 

devices currently available for use as computer storage. The following 

candidates were identified: 

• Graphics cards, with embedded processors and memory 

• FPGA cards, with programmable logic devices and memory 

• Flash memory cards 

• USB Flash drives 

• Solid-State Disk devices, using DRAM or Flash as a simulated hard 

drive 

2. Select those of the above devices which meet the following criteria: 

• It must use a standard interface found in most commodity computers, 

such as PCI bus, USB, or IDE. 

• It must provide at least 1GB of storage capacity, as this is a minimum 

practical size for virtual memory. 
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• It must provide published or tested random access times of not more than 

1 ms, in order to provide performance improvement over a hard disk 

drive 

• It must not cost more than $200.  I chose this figure as the approximate 

cost of replacing a motherboard and adding additional system DRAM. 

This is the major competitive alternative to virtual memory. 

• It must not consume more than 15 watts of power.   This is because the 

older computers that I am targeting have limited power supplies. 

3. Acquire a representative sample of the selected devices. 

4. Develop a model which can estimate the performance of the different devices 

acquired when used for virtual memory.  The formulas presented above 

constitute this model. 

5. Develop a simulator of a virtual memory system, against which sequential, 

strided, and random access patterns are applied. 

6. Validate the model and the simulator by developing and running custom 

benchmarks to measure the actual performance of the devices that have been 

acquired. 

1.8 Overview of Remaining Chapters 

Chapter 2 summarizes related research and the datasheets and other documents 

that were evaluated to select the test devices. Chapter 3 presents details regarding the 

derivation of the formulas of the theoretical model, motivation and design 

considerations of the simulator and the physical measurement benchmarks used to 
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evaluate the selected devices. Chapter 4 sets forth the test results. Chapter 5 gives 

conclusions and proposals for future research.  The Appendices contain a Glossary of 

commonly used terms, and the source code of the custom programs that were written to 

simulate and measure virtual memory system performance. 
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2 Review of Literature 

2.1 Virtual Memory – an early pioneer 

No discussion of virtual memory would be complete without mention of Peter J. 

Denning. While he did not originate the concept, as he freely acknowledged, his was the 

first full analysis of its performance, and his "Working set model" was the first rigorous 

explanation of the phenomenon of thrashing (Denning 1968).  

Although he used a fair amount of calculus, Denning's paper on the “Working 

Set Model” was very readable.  His conclusions were clear and intuitively appealing: 

1. Each process can operate efficiently with a subset of its total memory 

requirements resident in main memory.  This subset is its "working set."  The 

working set is most conveniently measured in pages. 

2. While the contents of the working set of a process will vary with time, the size 

of the working set will remain somewhat constant over an interval 

approximately equal to twice the time that it takes to transfer a page to or from 

the auxiliary storage device.  This interval is known as the "working set 

parameter." 

3. The size of the working set of each process is best determined by the operating 

system by measuring its memory requirements over time. 
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4. Thrashing occurs when the total size of the process working sets exceeds the 

amount of main memory available. 

5. System performance can be improved by balancing the total working set size 

with the amount of main memory available. 

Although this paper did not derive concrete formulas of memory performance, it 

did set the stage by discussing "paging" in quantitative terms. 

Denning’s subsequent paper, entitled “Virtual Memory,” (Denning 1970), was a 

thorough exploration of all of the issues surrounding virtual memory.  He began with a 

history of the concept, beginning with manual memory management using overlays, and 

then static memory management using intelligent compilers.  Four developments in 

software design and six developments in system design provided more power and 

flexibility but made the problem of memory management much more difficult.  The 

software developments were: 

1. High-level programming languages insulated programmers from the details of 

the machines on which the programs were running. 

2. Machine independence, a logical extension of high-level languages, allowed 

hardware changes without reprogramming, and allowed programs to run on 

different machines. 

3. Program modules which are compiled separately and not linked together until 

run-time became the accepted method of decomposing complex programs into 

manageable pieces, allowing programming teams to work together on a single 

project, and sharing code pieces and algorithms between projects and 

programmers. 
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4. List processing languages enabled programmers to structure their data in more 

flexible ways, without predetermining the size of their data structures. 

The system developments, arising primarily from timesharing and 

multiprocessing environments were: 

1. The ability to load a program into a space of arbitrary size. 

2. The ability to run a partially loaded program. 

3. The ability to modify the amount of space used by a running program. 

4. The ability to relocate a running program into different regions of memory. 

5. The ability to schedule the execution of a program to run at a particular time. 

6. The ability to change system equipment without reprogramming or recompiling. 

The difficulties these developments created for memory management caused 

scholars to call for some form of dynamic memory management, where memory 

allocation would change at run-time, as needed.  One approach left memory 

management to the programmer, using "allocate" and "deallocate" commands.  Another 

approach held that the problem had become too difficult for programmers to manage, 

particularly in a multiprogramming environment, and thus called for some form of 

automatic memory management. 

Denning credited the Atlas project at University of Manchester with originating 

the idea of automatic management of a two-level memory hierarchy as if it were a 

single level store by dissassociating logical addresses from physical addresses.  The 

Atlas proposal inspired virtual memory systems in the IBM 360/85 and the Burroughs 

B6500 and many other computer systems. 
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But virtual memory had its own share of problems: 

1. Many programmers clung to the notion that they could improve the speed of 

their programs by increasing the memory requirements.  Yet this might not be 

the case in a virtual memory system, since the available memory is largely an 

illusion.  Unnecessarily large and carelessly organized programs increase the 

overhead for the virtual memory system. 

2. Nonpaged memory systems suffer from fragmentation of the memory space, 

which reduces the available storage capacity. 

3. Since most systems do not load pages into main memory until they are 

requested, they often suffer severe delays during program loading. 

4. Many systems are subject to thrashing, where total system performance 

collapses. 

Denning then introduced two memory performance parameters:  memory 

reference time, Δ, which represented the delay between references to main memory, and 

transport time, Τ, which represented the time needed to complete a memory transfer 

between the levels of memory.  Of particular interest was the ratio between these two 

parameters.  He contended that the ratio was approximately 104.  It should be noted that 

this has changed in the years since his paper was written.  Main memory now responds 

within 30ns, while disks have an average access time of at best 2.9ms.  If it can be 

assumed that these access times approximate Δ and T, the ratio is now closer to 105. 

Denning then calculated the optimum size for virtual memory pages for 

maximum storage efficiency.  Given the average size of a segment at 1000 bytes, the 

optimum page size would be 45 bytes, assuming the storage ratio of 104 cited above.  
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He then calculated the optimum size for the high transfer times of drums and disks, and 

concluded that disks were unsuitable for virtual memory, drums were marginal, and 

solid-state devices were the best alternative. With the widening performance gap 

between DRAMs and hard disk drives, as noted above, these conclusions are even more 

persuasive. 

He also looked at replacement policies and classified them as "local" if pages 

can only be evicted by pages from the same process and "global" if pages can be evicted 

by pages from any process.  He contended that an optimal policy would be local only, 

and that global policies would always be suboptimal, as they cannot determine when 

memory is overcrowded, or guarantee that each process will have continuous access to 

its working set, and are subject to thrashing.  He then derived a formula for calculating 

when thrashing will occur. 

Assume that k programs are in memory 

Each program i has an average workspace of mi and an expected fault rate of 

fi(mi), such that as mi decreases, fi(mi) will increase 

Let di(mi) be the "duty factor" or expected fraction of time that process i spends 

in execution, calculated as: 

 

di(mi) = [Δ/ fi(mi)]/[Δ/ fi(mi)+T] (2.1) 
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di(mi) = 1 / [ 1 + [T/Δ] fi(mi)] (2.2) 

 

Let α be T/Δ, then  

 

di(mi) = 1/(1+α fi(mi)) (2.3) 

 

If α is very large, then unless the fault rate is extremely small, the duty factor 

will be very small, and the more time the process will spend waiting for memory.  If the 

processes are all in equilibrium, such that their fault rates are at a minimum, and one 

more process is initiated, the workspace of each of the existing processes will have to be 

reduced to make room for it, which will cause the fault rates to rise sharply, the duty 

factors to fall, and thrashing to occur. 

Most research on virtual memory since Denning has focused on minimizing 

thrashing by minimizing fault rates.  The other solution would be to reduce the α factor, 

by changing the technology used for the auxiliary storage.  This was exactly what my 

thesis proposed to do. 

Denning’s analyses have proven so helpful that he continues to be cited by 

researchers today.  In 1996, the Association for Computing Machinery, which calls 

itself “the world's oldest and largest educational and scientific computing society,” 

published a special edition of ACM Computing Surveys to commemorate the 50th 

anniversary of its founding.  The focus of the issue was "strategic directions in 

computing research."  Denning was invited to present an overview of the history of 

virtual memory, which demonstrates the esteem in which his work is held. (Denning 
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1996). A year later, the Institute of Electrical and Electronics Engineers honored 

Denning by publishing a similar essay in their book, In the Beginning:  Recollections of 

Software Pioneers. (Denning 1997). 

2.2 Virtual Memory – the computer science approach 

Despite Denning's conclusions, magnetic drums became extinct. Although main 

memories grew in size, programmer demands for memory increased faster. The most 

common secondary storage system on computer systems became the magnetic or "hard" 

disk. So it was natural to use the hard disk drive for virtual memory to meet the 

demand. Because of their enormous latency, most of the early research was devoted to 

finding ways to make software exhibit more locality of reference, to minimize the 

number of page faults. 

I call this the computer science approach to virtual memory, since it was 

characterized by highly theoretical models and analysis of algorithms. Typical of this 

research was a paper published in 1987 by Aggarwal, Alpern, Chandra and Snir, 

researchers at IBM's T. J. Watson Research Center.  (Aggarwal et al. 1987)  They 

proposed a theoretical model for the study of memory hierarchies.  Rather than attempt 

to model actual systems, a simplified model was developed.  Each memory location x 

was assumed to have an access time of ceiling(log2x) units.  This would create a 

hierarchy consisting of 1 storage word with 0 access time, 1 word with access time of 1 

time unit, 2 words with access time of 2 units, etc.  They then demonstrated the need for 

locality of reference in programs in order for them to run efficiently in this hierarchy.  

They derived complex proofs of theoretical performance of various algorithms on this 
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hierarchy.  But none of these formulas translate readily into calculation of the 

performance of real systems. 

The Hierarchical Memory Model presented in Aggarwal's first paper was 

inadequate in that it did not include the effects of collecting data into blocks for transfer 

from one level to another.  Later that same year, three of the original researchers 

rectified this deficiency in a follow-up paper, (Aggarwal, Chandra and Snir 1987), 

presented at the 28th Symposium on Foundations of Computer Science.  Unfortunately, 

it suffered from the same defect as the original paper in that it is only roughly analogous 

to real systems. 

Two researchers at Leiden University extended the Hierarchical Memory Model 

even further in 1994.  They introduced the concept of parallelism, such that transfers 

between different levels may occur simultaneously.  Similar to the work of Aggarwal, 

et. al., it involves theoretical proofs of performance of various algorithms in a 

hypothetical machine, with no attempt to validate the model with measurements on a 

real machine. (Juurlink 1994). 

The computer science approach was taken to new extremes in 2002 by Albers, 

Favrholdt and Giel.  Elaborate models were developed to generate address sequences, to 

measure the working sets of these sequences, and then to calculate the fault rate of 

various virtual memory algorithms.  Again, the models were based upon abstract 

families of functions, and highly theoretical proofs of upper and lower bounds on the 

fault rate were presented.  To their credit, they sought to validate their calculations with 

real world measurements.  However, these measurements were not of performance, but 

of address sequences, working sets, and fault rates. (Albers, Favrholdt and Giel 2002). 
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2.3 Virtual Memory - an IT approach 

In 1990, Patterson and Hennessy published the first edition of their classic text, 

and presented to the world a more practical approach to the issue of computer 

performance. (Patterson and Hennessy 1990). As they stated in the Preface to their 

Second Edition, 

[W]e hope to demonstrate what we stated about computer 
architecture in our preface to the first edition:  It is not a dreary science 
of paper machines that will never work. . . .  
 
 Our primary objective in writing our first book was to change the 
way people learn and think about computer architecture. . . . The field is 
changing daily and must be studied with real examples and 
measurements on real machines, rather than simply as a collection of 
definitions and designs that will never need to be realized. (Patterson and 
Hennessy 1996, xiii).  

 
I call the Patterson and Hennessy methodology the "IT approach," as it 

emphasizes real world performance modeling and measurement, rather than theoretical 

constructs and theorems. Their text is perhaps the most actively cited source on 

computer performance today. 

Bowen Alpern, one of the co-authors of Aggarwal’s original paper on the 

Hierarchical Memory model, published a paper in 1994 that represented a similar shift 

in thinking. (Alpern et al. 1994). Alpern and his co-authors recognized the limitations of 

theoretical computer science, and its failure to address the performance characteristics 

of real computer systems.  As had Denning, Alpern and his team recognized that the 

performance of such systems was largely determined by the speed of the different levels 

of memory, and that the performance gains to be obtained by reducing the rate of page 

faults were limited by the these physical limits.  They presented a realistic assessment 
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of the characteristics of real memory systems, including such parameters as block size, 

block count, and latency.   

They proposed a model which would capture these characteristics for the 

purpose of tuning the performance of programs to particular machine architectures, the 

Memory Hierarchy model, which involves maintaining parameters for each level of 

memory:  block size, number of blocks, and transfer time of each level.  They then 

simplified the model by assuming constant packing factors and aspect ratios, and 

transfer time determined by a simple function, usually a constant, an identity or an 

exponential.  They called this model the Uniform Memory Hierarchy.  The 

communication efficiency of a program is determined by determining its RAM-

complexity and its UMH-complexity and taking the ratio.  A program is considered 

communication efficient if its ratio is greater than 0.  The ratio is largely determined by 

the transfer cost function, which is their term for transfer time of a block of data from 

one memory level to another. Unfortunately, the paper then degenerated into complex 

theoretical proofs, similar to Aggarwal's approach, with no empirical validation of their 

theories.  (Alpern et al. 1994, 15)  

Another team of investigators also recognized the need for simpler formulas for 

predicting cache performance. (Mekhiel and McCracken 1994). They analyzed cache 

performance, citing Patterson and Hennessy for their methodology of extending 

standard performance formulas.  Mekhiel and McCracken sought an alternative to trace-

driven simulations to predict memory system performance.  Trace-driven simulations 

were considered to be the most accurate method of determining system performance, 

but were very time-consuming to perform.  Prior studies of cache performance had 
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focused on only a few parameters.  Their model looked at line size, cache size, write 

strategy and latency and estimated performance based on the statistical output of a 

trace-driven simulation.  They then analyzed a two-level cache system and validated 

their results against a trace-driven simulation of a two-level cache.  While their 

approach was specifically directed at caches, their formulas were strikingly similar to 

those I derived for a complete memory hierarchy, as noted in Section 1.4  

2.4 Solid State Devices – flash memory 

Flash memory has been around a long time, and recently has been touted in 

popular computer literature as a replacement for the hard disk drive. Indeed, some 

computer systems are now being sold with flash drives instead of hard disk drives.  It 

has been investigated formally at least twice as an alternative to hard drives for portable 

computers. (Douglis et al. 1994;  Tseng, Li and Yang 2006).  The Douglis paper sought 

an alternative to the hard drive for secondary storage in mobile computers.  The main 

disadvantages of the hard drive it identified were its high power consumption and its 

slow spin-up time.  The authors investigated two forms of flash memory:  flash-based 

disk emulators and flash memory cards because of their low power consumption, low 

latency, and high throughput for read transactions.  The methodology was two-fold:  

hardware measurements using "micro-benchmarks" and trace-driven simulations.  The 

results showed that flash memory used 1/10 the power of similarly sized hard drives.  

Performance results were mixed.  While average read performance was better for flash 

memory devices, average write performance was worse, unless free space in the flash 

was kept available by aggressive erasure of deleted files.  This paper differed from my 
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thesis in that it was specifically focused on file system performance rather than virtual 

memory, and was also focused on mobile computers.  Also, the paper is somewhat old, 

and its measurements are therefore no longer relevant.  Nevertheless, their methodology 

was very helpful.  In particular, the "micro-benchmarks" were similar to my custom 

benchmarks, which I will discuss in Chapter Three.   

The Tseng paper looked at flash memory devices for their power-saving 

potential, and did not address the performance benefits.  The authors noted that 

traditionally, virtual memory has been designed assuming that a hard disk drive would 

serve as the secondary storage.  As flash memory improved its capacity, reliability, and 

power consumption, it became an increasingly feasible replacement for the hard drive in 

virtual memory systems in portable computers.  But they warned that its characteristics 

were so different from those of a hard drive, a virtual memory system needed to be 

designed differently to make it energy efficient.  Virtual memory systems typically used 

a 4kB page size, which was 8 times the size of a flash memory page.  Writing full 4kB 

pages back to the flash when they were evicted from main memory was wasteful of 

energy and flash endurance.  If virtual memory pages were divided into 512B subpages, 

50% fewer writes would be required, resulting in up to 20% energy savings.  While this 

paper was more current than the Douglis paper, it was of limited benefit to me in that it 

did not address the performance benefits of flash memory.  It does appear that the 

subpaging technique they describe could benefit performance by reducing the number 

of writes required. 

In 2002, Christopher Tacke published a white paper for Applied Data Systems 

in which he analyzed the performance of a particular flash disk emulator, FlashFX by 
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Datalight.  (Tacke 2002).  It supplemented Datalight's qualitative white paper by 

providing quantitative measurements.  The measurements were done on an embedded 

system running Windows CE.  A 32MB flash memory was partitioned to present a 4MB 

flash drive to the operating system.  The benchmark program wrote an empty file, and 

then added 256 byte additions to the file until the disk was full.  The time of each write 

operation was recorded.  The results showed that 18,117 write operations involved no 

garbage collection, and took an average of 5.5ms to complete.  555 writes required 

garbage collection and took an average of 1797ms.  The rate of garbage collection 

started at 1 per 200 writes, and increased steadily to 1 per 20 writes at 20% utilization.  

The garbage collection then started cycling between a high of 1 per 3 writes and a low 

of 1 per 40 writes.  Not only did the rate of garbage collection increase, the time 

required for garbage collection also started increasing from 1300ms to 1800ms, with 

spikes as high as 3700ms.  Tacke concluded that flash write performance reaches a 

steady state at about 25% utilization.  Nevertheless, write performance is subject to 

wide variations.  While his data was focused on embedded systems, and slow 

technology flash, his methodology was sound. 

Flash memory devices come in a variety of packages.  This thesis investigated 

both USB flash drives, because they are so common, and Compact Flash cards, because 

of their potential for higher bandwidth.  Since most desktop systems do not have 

Compact Flash connectors, I sought adapters that would allow desktop systems to use 

Compact Flash cards.  Two adapters were investigated:  the Addonics SATA CF 

adapter (Tom’s Hardware 2005) and the ACS IDE CF adapter (Ackerman Computer 

Science 2006).   
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The editors of Tom’s Hardware, a website devoted to computer hardware, 

measured the performance of the SATA CF Adapter by Addonics to compare its 

performance to that of Compact Flash card readers that connect to a computer via USB.  

The read and write performance was only slightly better than USB card readers (7.9 

MB/s v. 7.6 MB/s read, 7.4 MB/s v. 6.8 MB/s write).  However, the latency was 

significantly better (0.2ms v. 0.6ms).  While this adapter might be of interest, it was not 

selected for physical evaluation as it required a SATA interface. 

The ACS adapter was more versatile, as it did not require a SATA connector, 

but Ackerman Computer Science (ACS) provided no performance data.  Significantly, 

ACS recommended against using flash memory for virtual memory applications due to 

its limited endurance.  A number of other people have expressed similar concerns.  But 

actual measurements have shown such fears to be unfounded.  For example, Marsh, 

Douglis and Krishnan measured the expected wear rate of flash memory in a file 

caching application, and found that even the least durable flash devices should last at 

least 33 years.  (Marsh, Douglis and Krishnan 1994). 

In a press release dated April 25, 2005, Samsung announced that its OneNand 

flash memory would be featured in the first fully functional Hybrid Hard Drive (HHD) 

designed for Windows Vista.  (Samsung Electronics 2005).  It combined the data 

density of the magnetic rotating disk with the low-power, reliability and fast read/write 

access times of flash memory.  The 1Gbit (128MB) flash memory acted as a write 

buffer and boot buffer for the hard drive.  The hard drive was kept spun down while 

data is written to the flash memory.  Only when the flash memory was full did the disk 

spin up so that the data in the flash memory could be written to the disk.  By keeping 
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the disk spun down most of the time, power was reduced 95% and operating 

temperatures were minimized, enhancing disk reliability.  While faster boot times were 

claimed, no specific data was provided regarding this feature.  The HHD was 

specifically targeted toward mobile computers, where power consumption is critical.  

Samsung admitted that the HHD will be more expensive than conventional hard disk 

drives, but claimed that the benefits would be worth the additional cost.  While this 

device was not evaluated for this thesis both because of the lack of specific performance 

data and because of the high cost of the hybrid device, it did demonstrate that other 

researchers consider flash memory to be appropriate for improving the performance of 

hard disk drives. 

Flash memory devices are under constant scrutiny and testing by third parties.  

Scott Clark, Consumer Editor for Everything USB, an online magazine devoted to USB 

devices, has done a series of performance tests of flash USB drives, using SisSoft 

Sandra, an open source benchmark product.  (Clark 2005(1);  Clark 2005(2);  Clark 

2006;  Clark 2007).  Of all the published data regarding flash memory performance, 

Clark’s is the most rigorous.  He documents his benchmark program and publishes the 

full data produced by it.  As performance was important for my thesis, I relied upon his 

articles in selecting flash memory devices and benchmark software for the physical 

evaluation portion of my research.   

The first article examined Lexar's flagship product, the JumpDrive Lightning 

USB drive.  Despite its name, it was less speedy than other flash drives.  It excelled at 

transferring large files (23MB/s read bandwidth for 64MB files), but performed poorly 

on smaller files (.434MB/s read bandwidth for 512B files).  No value was given for 
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latency, but it can be estimated from the 512B file performance, since 512B represents 

the minimum block size.  Taking the reciprocal of this figure gives a latency value of 

2.3μs (10-6 seconds). 

While the Lexar JumpDrive Secure II 1GB USB drive evaluated in the second 

article is marketed primarily for its security features, it also had superior latency 

performance compared with the JumpDrive Lightning.  Read performance for 512B 

files was .545MB/s, from which I estimated the latency to be 1.8μs.  It performed even 

better in encrypted mode, probably due to the smaller cluster size used by the encrypted 

mode (4kB v. 16kB for the regular mode). 

The third article evaluated the SanDisk Cruzer Titanium 2GB USB drive.  Its 

performance is respectable, although not as fast as that of the Lexar drives, (read 

bandwidth of .397MB/s for 512B files.  Using the estimating procedure set forth above, 

I arrived at 2.5μs latency.  This access time is more than 1,000 times lower than that for 

the fastest hard drives available for personal computers.  I selected this flash drive as 

one of my test devices due to its acceptable performance and outstanding durability. 

Corsair Flash Voyager GT 4GB Flash USB Drive, reviewed in the fourth article, 

outperformed the Lightning and the Secure Disk II, even on the large file transfers, 

(32MB/s on 64MB files). Its latency was also impressive (2.669MB/s bandwidth for 

512B files, yielding an estimated 374ns latency).  Achieving this latency was no doubt 

due in large measure to its 4kB cluster size. 

Rob Galbraith, the owner of Rob Galbraith Digital Photography, maintains a 

database of Compact Flash card performance in cameras and in PCs.  (Galbraith 

2006(1);  Galbraith 2006(2)).  Last year, he evaluated the performance of the SanDisk 
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Extreme IV Compact Flash card, which at that time was twice as fast as the nearest 

competitive card.  The secret to its speediness was that its controller supports Ultra 

ATA/66 mode, otherwise known as Ultra DMA Mode 4, the first card to do so.  The 

measured speed was 38.611 MB/s in transferring data from the card to a PowerMac G5 

over a Firewire 800 port to a 500GB RAID 0 array.  The speed of transferring data from 

the flash card to RAM should be even more impressive.  I chose this Compact Flash 

card because of its speed. 

The fastest flash devices I was initially able to identify were flash disk modules 

from Adtron Corporation in Phoenix, AZ.  These modules were packaged in a case 

shaped like a hard drive, obviously designed to fit in a 3.5" drive bay, with a hard disk 

drive interface.  The datasheet listed transfer rates of 65MB/s read, 60MB/s write, and 

burst transfer rates of up to 100MB/s.  (Adtron)  This was even faster than most hard 

drives.  The endurance was also tested to be very high:  5,000,000 write/erase cycles, 

which is 5 times the endurance claimed for other flash devices.  Unfortunately, the 

datasheet gave no details of the internal structure of the device, how it attained such 

speeds, or what its latency was.  The cost is also a limiting factor:  prices start at $1,235 

for a 1GB drive.  The absence of latency data and the high cost excluded this device 

from further consideration. 

Recently, more reasonably priced solid-state flash drives have become popular.  

One of the most interesting was the X-25M, by Intel.  It was tested by the researchers at 

Tom’s Hardware to have read transfer rates of 200 MB/s, write transfer rates of 70 

MB/s and read latency of less than 100μs.  It achieved the astounding read 

characteristics by use of a controller with ten data channels, one to each of ten flash 
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memory chips, and a 16MB DRAM cache.  (Schmid and Roos 2008).  They reported 

that Intel was intending to sell it for $595 in quantities of 1,000.  A quick check of 

current prices showed it selling for $324 for an 80GB drive.  While it is priced too high 

for use solely as a virtual memory device, it would certainly be of interest as a hard 

drive replacement for laptop computers.   Other solid state drives are more moderately 

priced, but have performance characteristics similar to the Compact Flash cards which I 

had already acquired.  (Newegg 2009) 

While not strictly speaking a flash technology, I cannot ignore ReadyBoost, a 

software feature built into the Windows Vista operating system.  This technology uses a 

USB flash drive as a read cache for the hard disk drive, hoping to capitalize on the 

lower latency of flash memory.  Tests of ReadyBoost have shown it to be of marginal 

benefit for systems with 512MB of RAM, and of almost no benefit for systems with 

1GB of RAM or more.  (Sun 2007).  This was not considered for serious investigation 

as Windows Vista is not commonly found on home or small office computers.  As a 

sidelight, Windows 7 beta testers have reported that ReadyBoost makes a much bigger 

impact than it did in Vista.  (Kneen 2009). 

2.5 Solid State Devices – other options 

Other solid-state devices were investigated for feasibility.  I evaluated a 

hardware RAMdisk, called "i-RAM," manufactured by Gigabyte of Taiwan. Patrick 

Schmid, writing for Tom's Hardware, evaluated the i-RAM as a replacement for hard 

drives.  (Schmid 2005)  While the concept was not new, the price of this particular unit 

was.  Prior DRAM-based devices had been targeted at commercial applications, costing 
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thousands of dollars.  i-RAM was packaged as a PCI form factor card, with four DIMM 

slots and backup battery for $150.00.  This made it possible to populate it with spare 

memory modules for a very low price.  The interface was SATA-I, so it could be 

installed in current commodity PCs, but not in older computers that relied on the IDE 

interface for their hard drives.  Its memory controller was a Xilinx FPGA. The backup 

battery only preserved the data for a maximum of 16 hours, but was only called upon if 

power was interrupted to the case.  The computer did not have to be powered up for the 

i-RAM to remain powered.  The memory clock ran at 100MHz, allowing a DDR data 

rate of 200MHz.  Maximum speed was obtained when only one or two modules were 

installed.   

Several installation problems were identified. First, the card required a 5 volt 

PCI slot, while current computers have 3.3 volt slots, often in a PCI-X configuration.  

Second, the card was so wide that it overlapped the neighboring slot, making it 

unusable.  Finally, the card required the host computer to have a spare SATA interface.   

These installation difficulties were overcome, and the performance benefits were 

enormous.  The latency of i-RAM was measured at 50ns, compared to 5.75ms for the 

fastest hard drive in the study, a Maxtor Atlas 15K drive, with a spindle speed of 15,000 

rpm.  Average read throughput of i-RAM was 126MB/s, compared to 64MB/s for the 

Maxtor. 

Because of the installation issues, which would make it less practical for 

commodity personal computers, I did not purchase an i-RAM for performance 

evaluation.   
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3 Methodology 

3.1 Triangulation 

To assure validity of the results of this research, a triangulation approach was 

applied. First, a theoretical model of performance of a memory hierarchy was 

developed. This model was derived from standard cache performance formulas 

presented by Patterson and Hennessy in their classic text. (Patterson and Hennessy 

1996, 417). Second, a simulator based upon this theoretical model was designed to 

project performance of typical software applications on memory hierarchies of different 

criteria. Actual performance parameters of different devices were researched from 

independent testing websites for use in this simulator. Third, two actual flash memory 

devices with representative performance characteristics were acquired and their 

performance was measured using industry standard benchmark software to verify the 

published data. Finally, the benchmark software used in the simulator was also applied 

to these devices to validate the accuracy of the simulator. More details of each leg of 

this approach are presented below. 



 42 

3.2 Theoretical Model 

The model began with the formula given by Patterson and Hennessy for two-

level caches, for the reason that they gave no formula for virtual memory performance, 

implying that the formula would be analogous to that for caches: 

 

Amem = HL1 + ML1 x ( HL2 + ML2 x PL2 ) (3.1) 

 

where: 

Amem = Average memory access time 

HL1 = Hit time for first level cache 

ML1 = Miss rate for first level cache 

HL2 = Hit time for second level cache 

ML2 = Miss rate for second level cache 

PL2 = Miss penalty for second level cache 

This formula was adjusted for a number of reasons. First, the term "miss rate" 

seemed inappropriate for virtual memory. Instead, a more generic term "Percentage of 

Data" was chosen for the model. One obvious advantage of this term was that it was 

easily calculated from the size of the various levels of the memory hierarchy. Using 

miss rates would have required measurement from a simulator using address traces. For 

cache design, miss rates are very important. Much literature has been devoted to 

classifying miss rates into "compulsory miss rate," "capacity miss rate," and "conflict 

miss rate," and analyzing the impact of various cache organizational parameters such as 

cache size and associativity on these rates. In virtual memory systems, the 
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organizational issues are different. All virtual memory systems are fully associative, in 

that virtual memory pages may be located anywhere in main memory. The size of the 

main memory, which acts as a cache for the virtual memory, is generally fixed by issues 

which have little relation to virtual memory. Instead it is the virtual memory that is 

adjusted to match the amount of physical memory. Thus, for all of these reasons, it was 

deemed not necessary to analyze the miss rate of virtual memory, but simply the 

percentage of data that resides in each level. 

Second, the above formula did not take into account the fact that virtual memory 

pages cannot be located in parallel with accessing them, as can be done with caches. 

Even for pages located in main memory, each virtual memory access requires at least 

two accesses to main memory, one to determine the location of the page, and then one 

to actually retrieve the page. 

Third, the Patterson and Hennessy formula did not include the effect of block 

transfer rates. While this effect may be unimportant in analyzing caches, it can be 

highly significant in virtual memory systems. Hard disk drives may have terribly long 

access times, but they have much lower transfer times. Once data have been located on 

a disk, they are transferred at the speed of rotation of the disk. Competing technologies, 

such as flash memory, have better access times but higher transfer times than hard disk 

drives. To evaluate the effect of using different technologies for virtual memory, it was 

vital to include block transfer times in the final formula. 



 44 

As presented in Chapter 1, two final formulas for this model were derived: 

 

Aseq = Rc+2(Rm/Bc+Tm)(Pm+Pv) +( Rv/Bv+Tv)Pv (1.2) 

 

Astride = Rc+2(Rm+TmBm)(Pm+Pv)+(Rv+TvBv)(Pm+Pv) (1.3) 

 

where 

Aseq = average time to access a byte of data from the entire hierarchy, when it is 

accessed sequentially 

Astride = average time to access a byte of data from the entire hierarchy, when it 

is accessed in a strided manner, with the strides equal to size of a virtual memory page 

Rc = time to access a random byte of data in the cache (SRAM) 

Rm = time to access a random byte of data in the main memory (DRAM) 

Rv = time to access a random byte of data in the virtual memory (HDD) 

Pm = percentage of all unique data found in the main memory 

Pv = percentage of all unique data found on the disk 

Bm = size in bytes of the data blocks in main memory 

Bv = size in bytes of the data blocks in the virtual memory 

Tm = time to transfer a sequential byte of data to or from the main memory  

Tv = time to transfer a sequential byte of data from or to the virtual memory 

It was necessary to derive two formulas for performance, as the impact of the 

two primary parameters depended totally upon the pattern of accessing the data. 

Sequential access tended to minimize the impact of access time and transfer time, while 
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strided access maximized the impact of access time and transfer time. Real systems 

represented a more random pattern of access, neither fully sequential nor fully strided, 

but a mixture of both. The standard approach used by other researchers involves 

recording the access patterns of a particular system and then re-using the addresses thus 

obtained to test their models. However, such measurements are very time-consuming 

and of questionable validity. The pattern of access of one system would not be fully 

representative of the pattern of access of a different system. Therefore, several 

hypotheses were proposed regarding the access pattern of a real system: 

1. The access pattern would be almost exclusively sequential, and thus its 

performance would be best approximated by Aseq. 

2. The access pattern would be almost exclusively strided, and thus its performance 

would be best approximated by Astride. 

3. The access pattern would exhibit a uniform discrete distribution between the two 

extremes, and thus its performance would be best approximated by the 

arithmetic mean of the Aseq and Astride. 

These hypotheses were tested using a custom benchmark as a part of the 

physical testing portion of the research. 

Applying the formulas derived from my model and using performance data 

referred to in Section 3.3 allowed prediction of sequential access time, strided access 

time, and average access time, as reported in Chapter 4. 
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3.3 Published Data and Benchmarking 

In order to apply the theoretical model and the simulator, it was necessary to 

select devices to be used for virtual memory, and then determine the performance 

characteristics of the devices.  Two hard disk drives were available to me:  a Seagate 

Barracuda 7200.1, a typical drive with a  SATA interface, and a Maxtor DiamondMax 

3400, a slower drive with an IDE interface.  Two flash devices were also chosen.  The 

criteria used were the cost, as well as the feasibility for use in commodity computers. 

Specifically: 

1. The cost must be reasonable, to make it commercially viable for 

installation in an older computer, as an alternative to a motherboard upgrade.  An 

arbitrary cutoff of $200 was chosen. 

2. It must use either a USB, IDE, or PCI interface, allowing it to be 

installed in commodity computers. 

3. It must have a capacity of at least 1GB, as this is the smallest practical 

size for virtual memory. 

Two devices met these criteria: the SanDisk Cruzer Titanium 2GB USB flash 

drive, and the SanDisk Extreme IV 2GB Compact Flash card, with a CF-to-IDE adapter 

from Ackerman Computer Sciences. 

Published performance data for each of these devices was consulted. To verify 

the accuracy of this data, an industry standard benchmark, SiSoftware Sandra was 

used. Sandra was chosen because it was the same software used by Scott Clark in 

measuring the performance of USB flash drives, (Chapter 2, p. 15), and thus would 

give results comparable to the data published by him.  As will be reported in Chapter 4, 
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the published data was insufficient to apply either the model or the simulator, so the 

data generated by SiSoftware Sandra was used instead. 

3.4 Virtual Memory Simulation 

A simulator was also developed for this thesis that could simulate the 

performance of various devices for virtual memory.  This was deemed useful as, if it 

proved accurate, it could be applied to predict the performance of devices other than 

those tested.  The simulator design called for two pieces of software, called the "master 

program," representing the processor in normal computer systems, and the "slave 

program," representing the virtual memory system. Custom programs were written for 

each role and then merged together to create the simulator 

The master program performed repeated accesses to memory in different access 

patterns. The simplest was a strict sequential access pattern, where data was requested 

in address order, from the lowest address to the highest address. This represented the 

best case scenario for a virtual memory system, and corresponded to the sequential 

access time (Aseq) in the theoretical model. The second pattern was strided access, such 

that each access required retrieval of a new page from the virtual memory. This was a 

worst case scenario, corresponding to the strided access time (Astride) in the theoretical 

model. A third pattern used a pseudo-random access pattern, in an effort to model the 

access pattern of a real system. This was comparable conceptually to the average of the 

sequential and strided access times. The source code of the master program was 

attached as Appendix B. 
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The slave program was implemented as a library of functions called by the 

master program to perform its memory accesses.  These functions accepted address 

requests from the master, and then translated those requests into physical addresses in a 

cache, a main memory and a secondary storage device. The source code of the slave 

program is reported in Appendix C. To focus on the benefits of improving the speed of 

secondary storage, the characteristics of the cache and main memory were kept 

constant, and only the characteristics of secondary storage were varied. The parameters 

which were varied were average random access time, which is the time to access a 

random byte of data, average read transfer time, which is the time to read a byte of data 

as part of a block of data, average write transfer time, which is the time to write a byte 

of data as part of a block of data, and cluster size, which is the minimum amount of data 

transferred by the device.  

Two base systems were simulated, as described in Chapter 4.  The simulation 

results are reported in Chapter 4. 

3.5 Physical Measurement 

As I was unable to find software that could directly measure the performance of 

a virtual memory system, I undertook to write custom benchmarks using the same 

master software as the simulator, with the same memory access patterns: sequential, 

strided, and pseudo-random. The testing was conducted on a single  base system, as will 

be described in Chapter 4.  The slave software was compiled as a library of functions on 

the master computer, accessing the hard drive, the USB flash drive and the Compact 

Flash card in turn. Unlike the simulation phase of this research, each configuration was 



 49 

tested for sequential and random access patterns thirty times. Because of the long 

execution time involved in the strided access pattern testing, these tests were conducted 

only eight times.  The source code for the physical testing software is reported in 

Appendix D.  The results of the physical testing are reported in Chapter 4. 
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4 Results 

This chapter presents the results of the various calculations, simulations and 

measurements performed.  The first section presents the computer systems which were 

modeled by the theoretical calculations and simulation studies, and then physically 

measured.  The second section presents the calculation results of the theoretical 

models. The third section presents the simulator results.  The fourth section presents 

results of the physical testing.  The fifth section compares and analyzes the results.   

Several statistical methods were used in analyzing these data, including linear 

regression and t-score computation.  As these statistical methods are in common use, I 

will not present detailed explanations of the methodology. 

4.1 Model Systems 

Two test platforms were modeled and simulated.  One, denominated System 1, 

was a typical Windows XP home computer. The other, denominated System 2, was an 

older business-class computer, typical of those for which Windows 95 was the 

operating system of choice.  These computers were chosen for this study because they 

presented an interesting range of performance characteristics.  Because of the long 

measurement times on System 2, and because it was deemed to be less relevant to 
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current system performance, no physical measurements were made of System 2 

performance. 

To perform the theoretical calculations and simulation studies, it was necessary 

to first determine the performance characteristics of the hard disk drives, the DRAM 

devices and the caches.  These characteristics were obtained from SiSoftware Sandra 

Lite 2005.1.10.37, an industry-standard system information and benchmarking 

program. (SiSoftware) It was necessary to use an older version of this software so that 

it would run on the older computer.  The performance characteristics of these systems 

are as follows: 

Table 4-1  Initial Information and Performance Data 

 System 1 System 2 
CPU Model  Intel® Pentium® 4 Intel® Pentium® II 
CPU Speed (MHz) 3,190 334 
L2 Cache Size (kB) 1,024 512 
L2 Cache Speed (MHz) 3,190 334 
RAM Type Samsung unbuffered 

DDR2 SDRAM  
SDRAM 

RAM Size (MB) 512 128 
RAM Data Rate (MHz) 532 67 
Hard Disk Drive Model Seagate Barracuda 

7200.7 
(ST3160023AS) 

Maxtor 
DiamondMax 3400 
(90680D4) 

HDD Random Access Time 
(ns)(File System Performance) 

7,000,000 12,000,000 

HDD Average Transfer Rate 
(MB/s)(File System Performance) 

51 10 

Operating System Microsoft Windows 
XP/2002 Home (Win32 
x86) 5.01.2600 
(Service Pack 2) 

Microsoft Windows 
2000 Professional 
(Win32 x86) 
5.00.2195 (Service 
Pack 4) 

USB version 2.0 1.1 
Disk interface bandwidth (MB/s) 3,200 67 
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Sandra did not report random access times for the DRAM, so published industry 

data was consulted.  From this, I determined that DRAM of almost any type has a 

random access time of 30.0 ns. (Samsung2). 

The flash devices which were tested with each of these test platforms were the 

SanDisk Cruzer Titanium, a USB 2.0 flash drive, and the SanDisk Extreme IV Compact 

Flash card.  I could not find published data for the random access times of these 

devices, nor software programs that were capable of accurately measuring the random 

access times.  However, SiSoftware Sandra reported total access times across blocks of 

varying sizes from 512 bytes to 64MB.  By applying the linear regression feature of 

Microsoft Excel to these total access times and block sizes, I estimated the random 

access times and data transfer rates with a high degree of confidence.   

Here is the linear regression formula: 

 

 Ttotal = Taccess + Ttransfer ∙ B (4.1) 

 

where  

Ttotal, the dependent variable, is the total time in nanoseconds required to read a 

block of data from a particular device, 

B, the independent variable, is the size in bytes of the block to be read 

Taccess, the intercept of the regression line, is the time in nanoseconds required to 

locate a byte of data 

Ttransfer, the slope of the regression line, is the time in nanoseconds required to 

transfer a single byte of data once it has been found. 
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SiSoftware Sandra gave the values of Ttotal for each of five values of B.  The 

tests were run six times, for a total of 30 data points for the regression.  The regression 

then gave values for Taccess and Ttransfer.  The correlation was nearly perfect to three 

decimal places.  Each device was tested on each test platform, as the USB ports and 

disk interfaces were different, yielding notable performance differences.  The results 

were so encouraging that I applied the same methodology to measure the performance 

of the hard drives.  For comparison with the published data, the read transfer time in 

nanoseconds (Ttransfer) was converted to a read transfer rate in MB/s (Rtransfer) using this 

formula: 

 

Rtransfer = 109/220/ Ttransfer  (4.2) 

 

Here are the results of these calculations: 

Table 4-2  Regression Results of SiSoftware Sandra Measurements 

 Taccess 
(Random 
Access 

Time) (μs) 

Ttransfer 
(Read 

Transfer 
Time) (ns) 

R2
 

(Correlation 
Coeff.) 

Rtransfer 
(Read 

Transfer 
Rate) 

(MB/s) 
System 1     
Hard Disk Drive 7,772 17 0.99989 55.5 
USB flash drive  1,861 53 1.00000 18.1 
Compact Flash  402 34 1.00000 28.4 
System 2     
Hard Disk Drive 14,697 81 0.99995 11.8 
USB flash drive  125,611 892 0.99998 1.1 
Compact Flash card 184 64 1.00000 14.9 
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Note how the USB 1.1 port in System 2 dramatically impacted the performance 

of the USB flash drive.   

I used these estimated performance data for the theoretical calculations and 

simulation studies. 

4.2 Theoretical Calculations 

Three theoretical models were developed, to approximate the performance of a 

virtual memory system under different assumptions.  Aseq is the theoretical access time 

obtained when the entire virtual memory is addressed in sequential page order.  In this 

model, each page is retrieved once and only once from virtual memory, and then 

accessed from main memory or cache once for each byte in the page.  Astride symbolizes 

the theoretical access time obtained from a worst-case scenario, where a new page is 

retrieved from virtual memory every time a byte is accessed.  Aave represents the 

arithmetic mean of Aseq and Astride.  The formulas for these models have already been 

presented in Section 1.3. 

Applying the data set forth above to these formulas I obtained the following 

results, scaled to nanoseconds (ns): 
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Table 4-3  Theoretical Calculations 

 Aseq 

 (Sequential 
Access Time)  

(ns) 

Astride 

 (Strided 
Access Time)  

(ns) 

Aave 
(Average of  

Aseq and Astride) 
(ns) 

System 1    
Hard Disk Drive Virtual Memory 641 2,625,994 1,313,317 
USB flash drive performance 173 706,734 353,453 
Compact Flash card performance 48 194,972 97,510 
System 2    
Hard Disk Drive Performance 1,253 5,121,533 2,561,193 
USB flash drive performance 10,540 43,161,673 21,586,107 
Compact Flash card performance 53 203,906 101,979 

 

4.3 Simulator Results 

To validate the results of the theoretical calculations, a simulator was developed 

to estimate the performance of the two test systems with the above virtual memory 

devices.  The simulator featured a one-level write-through cache, and a two-level write-

back paging file, which is very similar to actual systems.  “Write-through” means that 

any data that is changed in the cache is also immediately written to memory, to keep 

their data consistent.  “Write-back” means that any data changed in memory is not 

written to the paging file until the page is evicted from memory.  This sacrifices data 

consistency but minimizes the time spent writing to the disk.  Only read activities were 

measured, since writing can always be buffered and performed asynchronously, and 

thus does not impact system performance. 

As with the theoretical calculations, the different access patterns were applied to 

each of the test systems, with each of the virtual memory devices set forth above.  In 
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addition, a random access pattern was also applied for comparison with the calculated 

access patterns, and in an effort to estimate the performance of real software processes. 

Since the simulator reproduces the same results for a given device for sequential 

and strided access patterns, I did not run the simulator more than once for these access 

patterns.  Since the “random” access pattern is actually pseudorandom, based upon a 

random number generator provided by the C compiler, I ran the simulator 30 times, 

with a different seed each time, and calculated the mean and standard deviation of the 

results.  The random number generator was tested and verified that it did not repeat the 

same exact sequence within the test sequence of addresses.  Here are the results of the 

simulation studies, rounded to the nearest nanosecond.   

Table 4-4  Simulator Results 

 Aseq  
(Sequential 

Access 
Time) (ns) 

Astride  
(Strided 
Access 

Time) (ns) 

Arand 
(Random 

Access 
Time) (ns) 

Mean 

Arand 
(Random 

Access 
Time) (ns) 

St. Dev. 
System 1     
Hard Disk Drive 
Virtual Memory 

960 3,922,187 826 0.066 

USB flash drive 
performance 

256 1,039,262 826 0.061 

Compact Flash card 
performance 

68 270,767 826 0.066 

System 2     
Hard Disk Drive 
Performance 

1,852 7,521,614 410,372 182.542 

USB flash drive 
performance 

15,795 64,633,406 3,482,285 1,689.670 

Compact Flash card 
performance 

71.673 230.052 18,052 4.263 
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One anomaly appears in this data which deserves a comment.  The random 

access times for the System 1 devices are uniform across all three devices.  This is not 

an error but is perhaps an artifact of the simulator methodology.  Before the 

measurements are made on each sequence, the page table is warmed by a sequence of 

addresses.  This restores the page table to a consistent state prior to measurement.  In 

the case of the random access test, the warming sequence is a random sequence with a 

fixed seed.  It is possible that this warming sequence has artificially “primed” the page 

table, such that an unreasonably high number of accesses go to the main memory, rather 

than to the virtual memory device.  Yet the System 2 data does not suffer from this 

defect.  Perhaps the smaller virtual memory size or the exaggerated differences between 

the devices under test overcame the priming effect.  This is but one example of the 

many eccentricities in the data which caused me to reject the simulator as a predictive 

device.  ( See Section 4.5) 

4.4 Physical Measurement Results 

For comparison with the simulator results, I undertook physical measurements 

of the performance of three of the four devices available for testing.  As mentioned 

above, the measurements took such an unreasonably long time on System 2 that no 

measurements were made on that system.  System 2 represents such an old generation 

of computer that any measurements made on it were deemed to be no longer relevant to 

today’s computers.  The USB flash drive and the Compact Flash card were both 

attached to System 1.   

A figure or table may 
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To isolate the effects of generating addresses from the consumption of the 

addresses, the addresses were generated for a particular access pattern and then saved to 

the virtual memory file.  The addresses were then read back in 4MB chunks, and then 

applied one by one to the measurement software. Thus the timing represents as much as 

possible the actual time required to access the data across a particular set of virtual 

addresses, independent of how those addresses were generated.  The same access 

patterns and the same paging algorithm were used as for the simulator to mimic the 

performance of a real virtual memory system.  The random access pattern was 

calculated with the rand() random number generator provided by the gcc compiler, and 

a different seed was applied for each iteration, to avoid possible bias in the generator.   

No effort was made to measure the performance of the main memory or of the 

cache because the amount of time added to a process by cache or memory accesses is 

miniscule when compared with the time added by the virtual memory system.  Also, I 

assumed that the cache and memory effects would be the same on a given machine, 

regardless whether the hard drive or a flash device was being tested. 

The measurements were made using the time() instruction in the C language, 

which was accurate to 1 second.  While Pentium processors provided a timestamp 

counter that could theoretically be used to measure performance more accurately, they 

also used out-of-order execution to optimize their performance.  Thus, it was impossible 

to guarantee the order in which instructions would be executed.  Input-output 

instructions, in particular, were so slow that the time measurement instructions were 

executed before them, making it impossible to measure the timing of those instructions.  

This is a recognized problem with Intel Pentium processors.  (Intel 1997). 
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To overcome this problem, I measured the time required to access a data set of a 

known size.  All measurements of the sequential and random access patterns were 

repeated with the same size data set thirty times.  Because of the long execution times 

of the strided access patterns, the measurements were only repeated eight times.  The 

means and standard deviations were calculated and then converted to average access 

times by dividing by the data set size and scaling the result in nanoseconds.  The 

conversion was done after the statistical computations, as it had a tendency to skew the 

results artificially if it was performed before. Then 95% confidence intervals were 

calculated. The measurement results are all reported in Table 4-5. 

 

Table 4-5  Physical Performance Measurements 

Virtual 
Memory 
Device 

 Aseq 
(Sequential 

Access 
Time) (ns) 

Astride (Strided 
Access Time) (ns) 

Aramd (Random 
Access Time) 

(ns) 

Hard Disk 
Drive 
 

Mean 10 624,008 15 
St. Dev. 0.054 19,660.040 0.066 
95% conf. int. 10-10 607,570-640,447 15-15 

USB Flash 
Drive 

Mean 9 1,179,330 15 
St. Dev. 0.054 99,845.043 0.068 
95% conf. int. 9-9 1,095,844-1,262,816 15-15 

Compact 
Flash Card 

Mean 9 698,339 15 
St. Dev. 0.057 33,748.751 0.083 
95% conf. int. 9-9 670,120-726,558 15-15 

 
 

The null hypothesis of this thesis was that using flash memory devices would 

make no significant difference in computer performance.  To test this hypothesis, I 

compared the hard disk drive performance to each of the flash devices in turn, as shown 
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in Table 4-6.  Two sample t-scores were calculated to test whether the corresponding 

means were significantly different, and 95% confidence intervals were calculated 

around the hard disk drive mean values. The 95% confidence interval represents the 

interval of values around the hard drive average access time which would be expected 

to occur 95% of the time by chance.  If the access time for the flash device fell within 

this interval, the null hypothesis was considered proven, and the speed of the flash 

device was considered equal to that of the hard drive.  If the access time for the flash 

device fell outside the confidence interval, the null hypothesis was rejected, and a 

significant difference in speed was shown.  The percentage change gives perspective to 

the importance of the speed change.  Note that the strided access times have been scaled 

in microseconds to make the table more compact. 

 

Table 4-6  Physical Performance Comparisons 

Virtual 
Memory 
Devices 

 Aseq 
(Sequential 

Access Time) 
(ns) 

Astride  
(Strided Access 

Time) (μs) 

Aramd (Random 
Access Time) 

(ns) 

Hard Disk 
Drive  

v.  
USB Flash 

Drive 

Hard Disk 
Drive  

9.565 624.008 15.107 

USB Flash 
Drive 

9.115 
 

1,779.330 15.250 

t-score -32.156 15.435 6.818 
95% conf.. int. 9.545 – 9.585  607.570 – 640.447 15.025 –15.189 
% incr. (decr.) -4.7% 89.0% 0.9% 

Hard Disk 
Drive  

v.  
Compact 

Flash Card 

Hard Disk 
Drive 

9.565 624.008 15.107 

Compact 
Flash  

9.154 698.339 15.239 

t-score -28.570 5.383 8.265 
95% conf.. int. 9.545 – 9.585 607.570 – 640.447 15.007 – 15.207 
% incr. (decr.) -4.3% 11.9% 0.9% 
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4.5 Interpretation of Results 

For ease of comparison, I have reproduced the theoretical, the simulated and the 

actual results for System 1 in Table 4-7. 

Table 4-7  Comparison of Results 

   System 1 
    HDD1 USB1 CF1 

Aseq 
(ns) 

Calc. 641 173 48 
Sim. 960 256 68 
Meas. 10 9 9 

Astride 

(ns) 

Calc. 2,625,994 706,734 194,972 
Sim. 3,922,187 1,039,262 270,767 
Meas. 624,008 1,179,330 698,339 

Arand 
(ns) 

Calc. 1,313,317 353,453 97,510 
Sim. 826 826 826 
Meas. 15 15 15 

 

The theoretical calculations did not accurately predict the simulated access times 

or the measured times.  Nor did the simulator accurately predict the physical 

measurements.  Obviously, the model oversimplified reality too much, and hence was 

not useful.  Examining the physical measurements more closely gave some clues where 

the model should be adjusted. 

In all cases, the hard disk drive was measured to be significantly faster than 

predicted either by the theoretical model or by the simulator.  This suggested that the 

model may need to be modified to take into account the effect of the caches that are a 

feature of all modern hard disk drives. 
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The physical measurements are of value by themselves.  Figures 4-1 through 4-3 

illustrate graphically the differences between the hard drive and the two flash memory 

devices across the three access patterns.   

For the sequential access pattern, surprisingly, the hard disk drive was slower 

than either one of the flash memory devices.  This may be accounted for by the large 

page sizes used by the flash memory devices.  Both devices use a page size of 32KB, 

while the hard disk drive uses a standard virtual page of 4KB.  This large page size 

would cause sequential access times to drop, as larger pages are retrieved for each 

access. While the differences are not dramatic in absolute terms, only 4%, they are 

statistically significant, with t-scores of -32.156 and -28.570. 
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Figure 4-1  Sequential Access Times 
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The strided access pattern presents a totally different picture.  Here the 

differences are dramatic and statistically significant, with t-scores of 15.435 and 5.383.  

Unfortunately for my purposes, the results were the opposite of my expectations:  the 

hard disk drive was the fastest of the three devices.  I theorize that the small block size 

of the hard drive reduced the penalties incurred to retrieve pages to access single bytes, 

as was forced by this access pattern.  On the other hand, the flash devices, with their 

larger block size, incurred larger penalties.  This chart also illustrates the severe penalty 

incurred by the USB drive as a result of the limited bandwidth of the USB interface. 
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Figure 4-2  Strided Access Times 

 

The random access pattern presented a strange result.  The access times were 

almost identical across all three devices. Neither the large block sizes, nor  the 
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difference in latency across the different devices seem to have any effect on the random 

access pattern.  One might suspect a bias in the random number generator that produced 

clustered addresses, although this was controlled for in the experimental design by 

using different seeds for generating the sequences. 
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Figure 4-3  Random Access Times 

 

Overall, the theoretical calculations and simulations did not consistently predict 

the actual performance of the virtual memory systems under study.  This is clearly 

shown in Table 4-7.   For example, Aseq for the hard disk drive was predicted to be over 

600ns by both the theoretical model and the simulator.  Yet the physical measurement 

of Aseq for the hard disk drive was only 10ns with 95% confidence.  For the USB flash 

drive, the measurements of Aseq were also anomalous.  The model predicted a value 
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close to 173ns, and the simulator predicted a value of 256ns.  The physical 

measurement was 9ns, with 95% confidence.  Similar eccentricities are observable 

throughout the calculated and simulated data.  

However, the physical measurements did demonstrate statistically significant 

differences in performance between the hard disk drive and the flash devices across 

both the sequential and strided access patterns. This can be shown by close examination 

of the measurements reported in Table 4-6.  For the sequential access pattern, the 

performance measurements of both flash devices were less than the lowest value in the 

95% confidence interval around the performance measurements of the hard drive. This 

demonstrated that it was at least 95% certain that the flash devices were faster than the 

hard disk drive for this access pattern. The percentage decreases in access times for 

these devices were not dramatic, only 4.7% for the USB flash drive and 4.3% for the 

Compact Flash card.  For the strided access pattern, the situation was reversed The 

performance measurements of the flash devices fell far above the 95% confidence 

interval, proving with 95% confidence that they performed much worse than the hard 

drive in this access pattern.   

For the random access pattern, all three devices performed almost identically. 

Taken together, these results demonstrated that my physical measurement 

methodology was sound, but that improving the latency of a virtual memory device has 

no significant impact on overall system improvement. 
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5 Conclusions and Recommendations 

5.1 Conclusions 

Surprisingly, the performance of nearly all the devices was faster than was 

predicted by the model or the simulator.  This suggested that the computer system was 

somehow compensating for the latency of the virtual memory devices.  Whether this is 

due to out-of-order execution, branch prediction or the caches built into the hard disk 

drives, one can only speculate.  (Section 4.5).   

Contrary to my expectations, the physical measurements demonstrated the 

particular flash memory devices tested were faster than the hard disk drive in sequential 

access, were slower in strided access, and were nearly identical in random access.  I had 

expected the flash memory devices to lag behind the hard drive in sequential access, 

and to best the hard drive in both strided and random access, due to its lower latency.  

This contrary result may be explained due to the large block size (32KB) used by both 

of these flash devices.  A large block size favors sequential access, as the large page is 

read only once and then all the remaining bytes of the page will be found in main 

memory.  By contrast, a large block size penalizes strided access, since a larger page 

must be read each time a byte is sought.  The hard disk drive uses a standard page size 

of 4KB, so it is at a relative disadvantage in sequential access, and a relative advantage 

in strided access.  In any event, it would seem that these particular flash memory 
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devices are not well suited to virtual memory, unless the access pattern is primarily 

sequential. 

This caused me to wonder if Denning was wrong in advocating solid state 

devices instead of hard disk drives for virtual memory.  (Denning 1970).  I conclude 

that his conclusions may have to be qualified, at least with regard to the devices I tested.  

First, the hard disk drives of 1970 did not have caches as most have today.  These 

caches are undoubtedly causing the hard disk drives to perform better, and improving 

their usefulness for virtual memory.  To compete, a flash device should also incorporate 

a DRAM cache, as does the Intel X-25-M solid state drive.  (Schmid 2008).  Second, as 

stated above, these particular flash devices may not have been the best choice for virtual 

memory, due to their large block size.  Other flash devices, with smaller block sizes, 

may show improved random access performance, and prove Denning right. 

My testing methodology specifically excluding writing, as virtual memory is 

primarily written once and read many times.  Also, writing data to virtual memory can 

be buffered and done asynchronously, not impacting system performance.  

Nevertheless, in a real world system, writing would have to be taken into account.  Not 

all systems provide the necessary buffering to hide the latency of writing to flash.  Flash 

devices are notoriously slow in writing, although the NAND flash design lags less in its 

writing than does the older NOR flash technology.  If a particular system is dependent 

on the write speed of its virtual memory, flash devices may not be the best choice. 

My search for alternatives to the hard disk drive for virtual memory for home 

and small office computers has been temporarily frustrated.  The null hypothesis has not 

been disproven.  These particular flash devices are not feasible for virtual memory.    
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But the testing methodology appears sound, and could be applied to test other devices 

whose characteristics more perfectly match the demands of virtual memory. 

Some of the new solid state drives may prove to be more successful, particularly 

those with DRAM caches.  But these are more expensive, and may not be feasible for 

the home and small business computer owner.  The most practical solution for them 

may be living with the limitations of their current computers until they can afford to 

replace them. 

My personal quest for improved performance from older computers has led me 

to some changes in the way I configure my current computer.  I have deactivated all of 

the operating system services that are not absolutely essential to the work that I do.  

Further, I have reduced the size of my paging file to be no more than the size of my 

RAM.  These changes have resulted in a computer that is more responsive and 

exhilarating than the IBM 1170. 

5.2 Recommendations  

The physical measurements reported above indicate that the internal page size of 

a device may have greater impact on its performance that I previously suspected.  

Testing of additional flash devices with smaller page sizes would be fruitful to test this 

hypothesis. 

None of the procedures set forth in this thesis test the performance of actual 

virtual memory systems.  A further testing algorithm was developed to test the actual 

virtual memory system of Windows XP and Windows 2000.  Unfortunately, Windows 
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refused to place its virtual memory files on "removable" drives, and both of the flash 

devices tested identified themselves to Windows as "removable." 

Since the commencement of this research, Transcend Information, Inc. and other 

manufacturers have began advertising, for reasonable prices, solid state drives, utilizing 

flash memory to exactly emulate hard disk drives.  (Newegg 2009).  Such devices 

would undoubtedly appear to the operating system as nonremovable, and thus could be 

tested using the algorithm referred to above. 

It would also be fruitful to investigate the access patterns of actual virtual 

memory systems, to test directly whether such accesses are primarily sequential, strided, 

random, or some combination of the other patterns.  Much work has been done to create 

address traces for simulation studies.  Perhaps such traces could be analyzed for the 

access patterns they contain. 
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Appendix A. Glossary 

access time - The time that it takes to locate a random byte of data in a particular 

level of memory. 

cache - A memory structure constructed of high-speed memory device(s) 

located closely to a processor so that data can be retrieved quickly when needed. It 

usually relies on a variation of LRU (least recently used) replacement policy to keep the 

most active data in the cache. 

dynamic random access memory (DRAM) - A computer memory device that is 

most often used for main memory in computer systems. Each bit is stored as a charge 

on a capacitor, with a transistor controlling whether it is being accessed. It is not ideal in 

any particular respect, but bridges the speed gap between the processor and its caches 

and the hard drive.  

electrically erasable programmable read only memory (EEPROM) - A form of 

nonvolatile memory that can be erased and rewritten when necessary. Most EEPROMS 

require a special programming device to be erased and rewritten. Flash memory is a 

special form of EEPROM that can be erased and rewritten using a normal computer 

circuit. 

eviction - The process of copying a block of data from a faster level of memory 

to a slower level in order to make room for another block in the faster level. 
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flash card - A particular form of flash memory that is integrated with a 

controller into a small form factor that can be inserted into cameras, portable music 

players, personal digital assistants, portable computers and similar devices. Because of 

its popularity, it is often less expensive than other forms of flash memory. It is usually 

constructed with NAND flash to have relatively equal read and write access times. 

flash disk - A particular form of flash memory that is integrated with a controller 

into a form factor similar in size and interface format to a hard disk drive. It can be 

interfaced to nearly any type of computer. Like flash cards, it is usually constructed of 

NAND flash. However, the market is more limited, so flash disks tend to be much more 

expensive and have lower performance than flash cards of similar capacity. 

flash drive - The smallest and best known form of flash memory, usually packed 

as a small device that plugs directly into a USB port. The price and speed is similar to 

that of flash cards, but it is limited by the speed of the USB 2.0 port, currently 60MB/s. 

flash memory - A form of EEPROM that allows in-circuit erasure and 

programming of its contents. It is constructed with a floating gate field-effect transistor. 

It comes in two versions: NOR flash and NAND flash. Random access read times are 

up to 2200 times faster than the fastest hard drives, depending upon the interface. Write 

times tend to be less impressive at up to 220 times faster. Transfer rates of large data 

sets lag behind at 1/3-2/3 the rate of the fastest hard drives. 

hard disk drive - The most common form of secondary storage in personal 

computers today. It is a mechanical device, consisting of a set of rapidly rotating 

platters of magnetic material and an electromagnetic head that scans across the platters 

to find data. While great advances have been made in the size, cost and transfer rates of 
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hard drives, their random access times are still measured in milliseconds. This is 

adequate for secondary storage of data, but is not acceptable for virtual memory 

applications. A page fault in the main memory can result in a significant delay in the 

performance of the entire computer. Even secondary storage can suffer from serious 

delays if file fragmentation causes the hard disk to seek the pieces of a file from random 

locations on the disk. 

locality of reference - The principle upon which almost all caches and virtual 

memory systems depend. It is the assumption that data is accessed most often in a 

sequential manner, so that the data required next is most likely to be located physically 

near the data that was most recently accessed. There are serious questions whether this 

assumption holds true for virtual memory systems, which tend to distribute data in 

relatively random locations, or for multiprocessing systems, which tend to access data 

in relatively random order. 

least recently used (LRU) - A policy to determine which data in a level of faster 

memory can be migrated to a slower level of memory, when more room needs to be 

made available in the faster memory. It is often implemented by tagging data regions 

with access times so that the oldest data can be easily identified. While simple in theory, 

it has proven difficult to implement. Further, it has often been shown to produce 

suboptimal results without significant modifications.  

main memory - The main segment of the working memory subsystem of a 

computer. It acts as a buffer between the SRAM caches that actually provide the data to 

the processor, and the hard drive where programs and data are permanently stored. 
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Main memory is most often constructed of DRAM, which is slower and less expensive 

than SRAM, but is 100,000 times faster than the fastest hard disk drives. 

NAND flash - A new form of flash memory that is accessed at a page level, and 

features relatively equal read and write times. It is also much denser than NOR flash, 

and thus is cheaper to manufacture. Most flash cards and flash drives are now 

constructed of NAND flash. The popularity of these devices has created a huge market, 

which has made the price lower than DRAM.  NAND flash read times are about 5 times 

slower than the read times of NOR flash devices. 

NOR flash - The original form of flash memory that is accessed on the byte 

level. Its read times are nearly as fast as DRAM, but it is much more expensive. Write 

times tend to be much longer than read times.  But the read times are much lower than 

for NAND flash. 

Programmable Read-Only Memory (PROM) - This form of memory consists of 

fuses which can be opened to create circuits, thus representing binary data. It is 

extremely inexpensive and rugged. But once the data is stored, it cannot be erased or 

rewritten. 

RAMDisk - A software or hardware device which uses DRAM to emulate a disk 

drive. Software versions were very popular in personal computers which had more 

memory than the operating system could use effectively. Since operating systems and 

applications now can make use of memory up to the addressable limit of the processor, 

RAMDisks are rarely seen except in specialized devices to boost performance of 

servers. They typically include some form of battery backup to protect them from data 

loss in the event of power interruption. 
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secondary memory - The memory subsystem that stores programs and data when 

they are not being used by the computer. It must be nonvolatile, so that the data can be 

retained when the computer is powered down. It is most often constructed of one or 

more hard disk drives. 

solid-state disk - A hardware device that emulates a disk drive. They can be 

constructed of flash memory or of battery-backed DRAM. They are often used in 

industrial environments where hard disk drives are too fragile to be practical. Generally, 

they are expensive due to the industrial packaging. 

Static Random Access Memory (SRAM) - A form of computer memory that is 

characterized by extreme speed. It is constructed of circuits similar to those used in 

microprocessors, and so can maintain a speed similar to processors. Like DRAM, it is 

volatile, meaning that it can maintain data only as long as power is supplied. The 

density of SRAM is quite low, so it is much more expensive than DRAM. The most 

common application of SRAM is the caches which keep data close to the processor. 

transfer rate - The rate at which data can be transferred to or from a particular 

memory device. It is separate from access time, which measures the time that a memory 

device requires to locate a particular datum. Most memory devices can transfer data 

sequentially much faster than they can locate random data. It is most often measured in 

Mb/s (millions of bits per second). 

transfer time - The time that a memory device requires to transfer one byte of 

data, in a sequential access after the beginning of the sequence has been found. It is 

usually much shorter than access time. It may be calculated by taking the reciprocal of 

the transfer rate. 
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virtual memory - The portion of the working storage subsystem that creates the 

illusion that a computer has more working storage than its physical main memory. Most 

modern operating systems and applications expect to be able to use memory up to the 

addressable limit of the processor (4GB = 232 bytes for a 32-bit processor), while most 

computers are sold with a maximum of 2GB of DRAM. The gap is bridged by 

addressing a portion of the hard disk drive, called a “swap file,” or a “page file” as if it 

were main memory. Hard disk drives have such long access times and such low transfer 

rates that accessing virtual memory can slow the performance of computers 

considerably. This thesis sought alternatives to the hard drive for virtual memory that 

would speed up the performance of ordinary personal computers. 



83 

Appendix B. Master Simulator Program Source Code 

The following C program was compiled with the Bloodshed Dev-C++ Version 

4, a Mingw compiler, compatible with gcc, available as open source software from 

www.bloodshed.net/devcpp.html.  It was written to use command-line parameters to 

describe the virtual memory device simulated, so that batch file programs could be 

written to run the various tests.  The header file, “sim.h”, is reproduced in Appendix A. 

#include "Sim.h" 
/***************************************************** 
This program is defined with command line parameters: 
 
vName 
a string representing the name of the virtual memory device being 
simulated 
 
lineBits 
an integer representing the number of bits needed to address the bytes 
within a single cache line.  The size of a cache line is derived from 
this value 
 
cacheBits 
an integer representing the number of bits needed to address the bytes 
within the entire cache.  The size of the cache is derived from this 
value 
 
cacheAccessTime 
a real number representing the number of nanoseconds required to 
access a byte of data from the cache 
 
pageBits  
an integer representing the number of bits needed to address a byte 
within a memory page. The size of a page is derived from this value.  
Both main memory and virtual memory use the same size pages. 
 
memoryBits 
an integer, representing the number of bits needed to address a byte 
within the main memory of the model.  The size of main memory and 
virtual memory is derived from this value 
 
memoryTransferRate 
a real number, representing the peak MB/s that can be transferred 
to/from the main memory.  The memoryTransferTime, in ns/B is derived 
from this value 
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virtualAccessTime 
a real number, representing the number of nanoseconds required to 
access a byte of data from the virtual memory device 
 
virtualTransferRate 
a real number, representing the peak MB/s that can be transferred 
to/from the virtual memory device.  The virtualTransferTime, in ns/B 
is derived from this value 
 
The virtual memory is calculated to be twice the size of the main 
memory.  The cacheTransferRate is calculated to be the same as the 
access time, as bytes are all transferred from the cache at the speed 
of the processor.  The memoryAccessTime is fixed at 30.0ns, as almost 
all DRAM devices have a latency of this value. 
 
**********************************************************/ 
int main(int argc, char *argv[]) 
{ 
 unsigned int lineBits,pageBits,memBits,cacheBits; 
 char vName[30]=""; 
 *argv++; 
 strcpy(vName,*argv++); 
  lineBits=atoi(*argv++); 
    cacheBits=atoi(*argv++); 
  cacheAccessTime=strtod(*argv++,0); 
    pageBits=atoi(*argv++); 
     memBits=atoi(*argv++); 
     memoryTransferRate=atoi(*argv++); 
     virtualAccessTime=strtod(*argv++,0); 
     virtualTransferRate=strtod(*argv++,0); 
 
     lineSize=1<<lineBits; 
     cacheSize=1<<cacheBits; 
     cacheLines=1<<(cacheBits-lineBits); 
 pageSize=1<<pageBits; 
     memorySize=1<<memBits; 
     virtualSize=1<<(memBits+1); 
 memoryPages=1<<(memBits-pageBits); 
 virtualPages=1<<(memBits-pageBits+1); 
 
     cacheTransferRate=lineSize/cacheAccessTime; 
 memoryAccessTime=30.0; 
 
     initModel(); 
     runSimulator(vName); 
     return 0; 
} 
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Appendix C. Slave Simulator Program Source Code 

The following code is a library of functions that were called by the master 

program (See Appendix A) to perform the simulations. 

/*********************************************************************
* 
This simulator models the page table as noninverted. This  simplifies 
the logic and speeds up the performance, at the cost of some accuracy 
and a larger memory footprint. 
Neither the cache, the virtual memory nor the main memory are 
represented by any actual structures in this simulator.  This allows 
the simulator to run faster on any machine, as long as its actual 
memory capacity is sufficient to contain the page table,  the tag 
table, and other auxiliary structures. 
 
The virtual memory uses a write-back policy.  When values are just 
being stored for the first time, it creates a page in main  memory, 
without storing it to virtual memory. It only stores values to virtual 
memory when the main memory is full and a page needs to be evicted. 
 
Measuring time in whole nanoseconds is not enough to accurately 
capture the transfer times. All access and transfer times are 
therefore calculated as floating point numbers and then converted to 
integers for display. 
 
Writes to main memory and virtual memory are ignored in calculating 
access times, as these writes can be buffered and performed 
asynchronously. 
 
The program is written with static memory objects, rather than 
dynamic, in order to maximize execution speed of the simulator 
 
The sequential and strided access simulations are performed only once, 
as the result is determinable and does not vary. 
 
The random access simulation is performed thirty times, each time 
with a different random seed.  The mean and standard deviation are 
then calculated. 
 
***********************************************************/ 
#include <fcntl.h> 
#include <unistd.h> 
#include <sys\time.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#define VIRTUAL_SIZE (unsigned int)1<<31 
 //virtual memory is limited to 2GB 
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#define INVALID_TAG -1 
#define INVALID_PAGE -1 
#define NONRESIDENT_PAGE -2 
#define MEMORY_SIZE (unsigned int)1<<23 
 //page table is limited to 8Meg (2^23) pages 
 //this is suffiicient to accomodate a 4GB virtual memory 
 //if page size is no less than 512B 
#define CACHE_SIZE (unsigned int)1<<20 
 //cache is limited to 1Meg (2^20) lines 
#define true 1 
#define false 0 
 
/******************************************************** 
    GLOBAL VARIABLES 
********************************************************/ 
const double TIME_SCALE_FACTOR = (double)1.0e9/(double)(1<<20); 
 //constant to scale transfer rates into transfer times in ns 
const unsigned int MAXIMUM = (unsigned int)1<<31; 
 
int lineTag[CACHE_SIZE]; 
 //the cache tags, which contain the high order bits of 
 //the address of the cache line in main memory 
      //It has the value INVALID_TAG if the line does not contain 
valid data 
int pageTable[MEMORY_SIZE]; 
    //a table indexed by memoryPages, which contains the virtual page 
stored 
    //in a given memory page frame;  the virtual page may not have 
been 
    //actually written 
    //If the frame has never been used, it will have the value 
INVALID_PAGE 
unsigned int pageAccess[MEMORY_SIZE]; 
    //the page access table, with relative access times of each 
    //page frame 
int virtualTable[MEMORY_SIZE]; 
    //a table indexed by virtualPages, containing the main memory page 
    //where a virtual page is stored 
    //value will be INVALID_PAGE if the virtual page has been evicted  
clock_t startTime; 
 //start time for calculating access times 
clock_t currentTime; 
 //holds the current time 
double elapsedTime; 
    //the elapsed time since the beginning of the run 
double elapsedTimeSquared; 
 //used to calculate the standard deviation 
double bytesAccessed; 
    //total number of bytes accessed since beginning of run 
unsigned int cacheAccesses; 
unsigned int memoryAccesses; 
unsigned int virtualAccesses; 
double minAccessTime; 
double seqAccessTime; 
double maxAccessTime; 
double aveAccessTime; 
/****************************************************************** 
    MODEL PARAMETERS 
******************************************************************/ 
unsigned int lineSize; 
 //size in bytes of cache lines 
unsigned int cacheLines; 
 //number of cache lines 
unsigned int memoryPages; 
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 //number of pages in main memory 
unsigned int pageSize; 
 //size in bytes of memory pages 
unsigned int virtualPages; 
    //number of pages in virtual memory 
double cacheAccessTime; 
 //time in ns to access a random byte in the cache 
double memoryAccessTime; 
 //time in ns to access a random byte in main memory 
double virtualAccessTime; 
 //time in ns to access a random byte in virtual memory 
double cacheTransferRate; 
 //rate in MB/s at which the cache transfers sequential bytes 
double memoryTransferRate; 
 //rate in MB/s at which main memory transfers sequential bytes 
double virtualTransferRate; 
 //time in MB/s at which virtual memory transfers sequential 
bytes 
/****************************************************************** 
    DERIVED PARAMETERS 
******************************************************************/ 
unsigned int cacheSize; 
 //size in bytes of modeled cache 
unsigned int memorySize; 
 //size in bytes of modeled main memory 
unsigned int virtualSize; 
 //size in bytes of modeled virtual memory 
double cacheTransferTime; 
 //time in ns to transfer one byte of data from cache 
double memoryTransferTime; 
 //time in ns to transfer one byte of data from memory 
double virtualTransferTime; 
 //time in ns to transfer one byte of data from virtual memory 
double virtualPageTime; 
    //time in ns to transfer a page of data from virtual memory 
double memoryLineTime; 
    //time in ns to transfer a line of data from main memory to cache 
double cacheLineTime; 
    //time in ns to transfer a line of data from cache to processor 
 
/****************************************************************** 
  HELPER FUNCTIONS 
******************************************************************/ 
unsigned int timer(){ 
    return bytesAccessed; 
} 
 
double calcMemoryLineTime(){ 
    return memoryAccessTime+memoryTransferTime*lineSize; 
} 
 
double calcVirtualPageTime(){ 
    return virtualAccessTime+virtualTransferTime*pageSize; 
} 
 
double calcLineAddress(unsigned int line){ 
    return line*lineSize; 
} 
 
unsigned int calcMemoryAddress(unsigned int memoryPage, unsigned int 
offset){ 
    return (memoryPage*pageSize)+offset; 
} 
 
/****************************************************************** 
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    VIRTUAL MEMORY FUNCTIONS 
    Contrary to custom, this model uses an noninverted page table to  
    simplify and speed up 
    the code at the expense of a larger memory footprint. 
    A virtual address is divided into two fields: 
        Page:   (pageAddressBits bits wide) 
            this identifies the page number 
        Offset: (pageOffsetBits bits wide) 
            this identifies the bytes within a page 
 
    The page table is implemented with three arrays: 
    1.  the memory page frames for the virtual pages, 
    2.  the access time values of the memory frames for a LRU  
    replacement policy. 
    3.  the virtual page addresses for the memory pages, which allows  
    fast lookup of this information. 
    
    If a virtual page is not currently resident in main memory, the 
    page table entry will have the value INVALID_PAGE 
 
    The function getPage calculates the time needed to perform the  
    requested operations and returns it to the calling function 
************************************************************/ 
unsigned int calcVirtualPage(unsigned int virtualAddress){ 
    return virtualAddress/pageSize; 
} 
 
//RETRIEVE MEMORY PAGE FROM PAGE TABLE 
int calcMemoryPage(unsigned int virtualPage){ 
    return virtualTable[virtualPage]; 
} 
 
//SET A PAGE FROM MAIN MEMORY TO VIRTUAL MEMORY 
void evictMemoryPage(unsigned int memoryPage ){ 
    int virtualPage=pageTable[memoryPage]; 
    pageTable[memoryPage]=INVALID_PAGE; 
    virtualTable[virtualPage]=NONRESIDENT_PAGE; 
} 
 
//GET A PAGE FROM VIRTUAL MEMORY TO MAIN MEMORY 
void getVirtualPage(unsigned int virtualPage, unsigned int 
memoryPage){ 
    virtualTable[virtualPage]=memoryPage; 
    pageTable[memoryPage]=virtualPage; 
    pageAccess[memoryPage]=timer(); 
} 
 
unsigned int findNextPageFrame(){ 
    unsigned int i, virtualPage; 
    unsigned int oldestPage=0; 
    unsigned int oldestAge=MAXIMUM; 
    for(i=0;i<memoryPages;i++){ 
        if(pageTable[i]<0){ 
            return i; 
        } 
        if(pageAccess[i]<oldestAge){ 
            oldestPage=i; 
            oldestAge=pageAccess[i]; 
        } 
    } 
    evictMemoryPage(oldestPage); 
    return oldestPage; 
} 
 
//GET THE MEMORY PAGE NUMBER WHICH CONTAINS THE GIVEN VIRTUAL ADDRESS 
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double getPage(unsigned int virtualAddress){ 
    unsigned int i; 
    double x; 
    unsigned int virtualPage=virtualAddress/pageSize; 
    int memoryPage=virtualTable[virtualPage]; 
    x=memoryAccessTime;      //time to consult page table 
    memoryAccesses++; 
    if(memoryPage>=0){                   //if virtual page is resident 
in memory 
        pageAccess[memoryPage]=timer(); 
        memoryAccesses++; 
        return x+x; 
    } 
    else {   //if the virtual page is not resident 
        memoryPage=findNextPageFrame(); 
        getVirtualPage(virtualPage,memoryPage);  //get it from virtual 
memory 
  virtualAccesses++; 
        return x+virtualPageTime; 
    } 
} 
 
/*********************************************************************
*    CACHE FUNCTIONS 
    These functions model a directly mapped cache. 
    A virtual address is divided into three fields: 
        Tag:(tagBits bits wide) 
            identifies the virtual page or portion thereof containing 
            the cache line. 
        Line:(lineAddressBit bits wide) 
            identifies the cache line 
        Offset:(lineOffset bits wide) 
            identifies the bytes within the cache line 
 
    A tag table maintains the tag for each line of the cache.  If 
there 
    is no valid data in a particular line, the tag table entry has the 
    value INVALID_TAG. 
 
    The cache uses a write-through policy, which keeps the cache and 
    main memory consistent without the need to track the validity of 
    memory pages 
 
    The functions getLine and getMemoryLine calculate the time needed 
    to perform the requested operations and return this value to the 
    calling function 
**********************************************************************
/ 
 
unsigned int calcLine(unsigned int address){ 
    unsigned int lineAddress=address%cacheSize; 
 //clear tag bits 
    return lineAddress/lineSize; 
 //convert lineAddress to line # 
} 
 
unsigned int calcTag(unsigned int address){ 
    return address/cacheSize; 
} 
 
unsigned int calcTagAddress(int line, int tag){ 
    return tag*cacheSize+line*lineSize; 
} 
 
double calcCacheLineTime(){ 
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    return (double) cacheAccessTime; 
} 
 
//SET A LINE FROM THE CACHE INTO MEMORY 
unsigned int setMemoryLine(unsigned int line){ 
    unsigned int tag=lineTag[line]; 
    unsigned int virtualAddress=calcTagAddress(line, tag); 
    unsigned int virtualOffset=calcOffset(virtualAddress,pageSize); 
   //get the page from main memory, or virtual memory if necessary 
    unsigned int memoryPage=getPage(virtualAddress); 
    return 0; 
} 
 
//GET A LINE FROM MEMORY INTO THE CACHE 
double getMemoryLine(unsigned int line, unsigned int tag){ 
    unsigned int virtualAddress=calcTagAddress(line, tag); 
        //get the page from main memory, or virtual memory if 
necessary 
    double x=getPage(virtualAddress)+memoryLineTime; 
 lineTag[line]=tag; 
 return x; 
} 
 
//GET LINE FROM CACHE CONTAINING A PARTICULAR ADDRESS 
double getLine(unsigned int address){ 
    unsigned int line=calcLine(address); 
    unsigned int tag=calcTag(address); 
    double x=cacheAccessTime; 
    //if cache line does not contain given address 
    if(lineTag[line]!=tag){ 
        x+=getMemoryLine(line,tag); 
        // get line from main memory, or virtual memory if necessary 
    } 
 else {  
  cacheAccesses++; 
 } 
 
    return x;  // return line access time 
} 
 
/*********************************************************************
* 
    API Functions 
     
**********************************************************************
/ 
 
double calcSeqAccessTime(){ 
 double result; 
 double memoryTime=memoryAccessTime/lineSize+memoryTransferTime; 
    double virtualTime=virtualAccessTime/pageSize+virtualTransferTime; 
    result=cacheAccessTime; 
    result+=memoryTime*(double)(memorySize-cacheSize)/virtualSize; 
    result+=virtualTime*(double)(virtualSize-memorySize)/virtualSize; 
    return result; 
} 
 
double calcMaxAccessTime(){ 
    double result; 
    double memoryTime=memoryAccessTime+memoryTransferTime*lineSize; 
    double virtualTime=virtualAccessTime+virtualTransferTime*pageSize; 
    result=cacheAccessTime; 
    result+=memoryTime; 
    result+=memoryAccessTime+memoryTransferTime*pageSize; 
    result+=virtualTime; 
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    return result; 
} 
 
 
int calcAddress(int x, int y, int rowSize){ 
    return y*rowSize+x; 
} 
 
int calcOffset(int address, int size){ 
    return address%size; 
} 
 
void setValue(unsigned int address, char value){ 
    unsigned int line=getLine(address); 
    setMemoryLine(line); 
    bytesAccessed++; 
} 
 
void getValue(unsigned int address){ 
    double x=getLine(address); 
    elapsedTime+=x; 
    bytesAccessed++; 
} 
 
double inputVariable(char *variableLabel, double variableValue){ 
    double variable; 
    printf("%-35s\t%10.0f ?",variableLabel,variableValue); 
    scanf("%f",&variable); 
    return variable; 
} 
 
void outputVariable(char *resultLabel, double result){ 
    printf("\n%-35s\t%13.3f",resultLabel,result); 
} 
 
void 
initModel(){ 
    int i; 
    cacheTransferTime=(double)TIME_SCALE_FACTOR/cacheTransferRate; 
    memoryTransferTime=(double)TIME_SCALE_FACTOR/memoryTransferRate; 
    virtualTransferTime=(double)TIME_SCALE_FACTOR/virtualTransferRate; 
    cacheLineTime = calcCacheLineTime(); 
    memoryLineTime = calcMemoryLineTime(); 
    virtualPageTime = calcVirtualPageTime(); 
    seqAccessTime=calcSeqAccessTime(); 
    maxAccessTime=calcMaxAccessTime(); 
    aveAccessTime=(minAccessTime+maxAccessTime)/2.0; 
    for(i=0;i<virtualPages;i++){ 
        virtualTable[i]=INVALID_PAGE; 
    } 
    for(i=0;i<memoryPages;i++){ 
        pageTable[i]=INVALID_PAGE; 
        pageAccess[i]=MAXIMUM; 
    } 
    for(i=0;i<cacheLines;i++){ 
        lineTag[i]=INVALID_TAG; 
    } 
} 
 
void 
resetModel(){ 
    elapsedTime=0.0; 
    elapsedTimeSquared=0.0; 
    bytesAccessed=0.0; 
    cacheAccesses=0; 
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    memoryAccesses=0; 
    virtualAccesses=0; 
} 
 
void runModel(char *label, unsigned int value){ 
    printf("\n\n%s:%u min:%.0f seq:%.0f max:%.0f\n", 
          label,value,minAccessTime,seqAccessTime,maxAccessTime); 
    printf("------------------------------------------\n"); 
    printf("%-15s %15s\n","ACCESS PATTERN","ACTUAL TIME"); 
} 
 
void closeModel(char *label){ 
    double aveTime=elapsedTime/bytesAccessed; 
    printf("%-15s %15.3f %15d %15d %15d\n", 
          label,aveTime,cacheAccesses,memoryAccesses,virtualAccesses); 
} 
 
void showModel(char *label){ 
    unsigned int i,j,k; 
    char buffer[10]; 
      
printf("\n\n**********************************************************
"); 
    printf("\nMEMORY HIERARCHY PERFORMANCE SIMULATOR:%s",label); 
    
printf("\n**********************************************************")
; 
    printf("\nThe model will run with the following parameters:"); 
    outputVariable("Cache lines:",cacheLines); 
    outputVariable("Line size (bytes):",lineSize); 
    outputVariable("Memory pages:",memoryPages); 
    outputVariable("Page size (bytes)",pageSize); 
    outputVariable("virtual pages:",virtualPages); 
    outputVariable("Cache access time (ns)",cacheAccessTime); 
    outputVariable("Memory access time (ns)",memoryAccessTime); 
    outputVariable("Virtual access time (ns)",virtualAccessTime); 
    outputVariable("Cache transfer rate (MB/s)",cacheTransferRate); 
    outputVariable("Memory transfer rate (MB/s)",memoryTransferRate); 
    outputVariable("Virtual transfer rate 
(MB/s)",virtualTransferRate); 
 
    printf("\n\nThe following parameters have been derived:"); 
    outputVariable("Cache size:",cacheSize); 
    outputVariable("Memory size:",memorySize); 
    outputVariable("Virtual size:",virtualSize); 
    outputVariable("Cache transfer time (ns/B):",cacheTransferTime); 
    outputVariable("Memory transfer time (ns/B):",memoryTransferTime); 
    outputVariable("Virtual transfer time 
(ns/B):",virtualTransferTime); 
     
} 
 
void runSimulator(char *label){ 
    unsigned int i,j,k; 
    double total,totalSq,mean,var,x; 
    printf("\n\nSimulated Performance Measurements: %s\n",label); 
    printf("------------------------------------------\n"); 
    printf("%-15s %15s %15s\n","ACCESS PATTERN","AVERAGE TIME","ST. 
DEV."); 
    resetModel(); 
    for(i=0;i<virtualSize;i++){      //warm the page table 
       getValue(i); 
    } 
    resetModel(); 
    for(i=0;i<virtualSize;i++){ 
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        getValue(i); 
    } 
    closeModel("Sequential"); 
 
    for(i=0;i<virtualSize;i=i+pageSize){        //warm the page table 
        getValue(i); 
    } 
    resetModel(); 
    for(i=0;i<virtualSize;i=i+pageSize){ 
        getValue(i); 
    } 
    closeModel("Strided"); 
 
    srand(1); 
    for(i=0;i<virtualSize;i++){                 //warm the page table 
        j=(rand()<<16+rand())%virtualSize; 
        getValue(j); 
    } 
    total = 0.0; 
    totalSq = 0.0; 
    for(k=0;k<30;k++){ 
        resetModel(); 
        srand(time(0)); 
        for(i=0;i<virtualSize;i++){ 
            j=(rand()<<16+rand())%virtualSize; 
            getValue(j); 
        } 
 
        x = elapsedTime/bytesAccessed; 
        total += x; 
        totalSq += x*x; 
 } 
    mean = total/30.0L; 
    var = (totalSq - total*mean)/29.0L; 
    printf("%-15s %15.3f %15.3f\n","Random",mean,sqrt(var)); 
} 
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Appendix D. Physical Measurement Program Source Code 

This program also consists of a main program, similar to Appendix A and a 

library of functions, similar to Appendix A.  The cache and main memory were 

assumed to have minimal and equal impact on performance, regardless of the virtual 

memory device that was measured, and so were ignored for the purpose of physical 

measurement. I used the same page table I used in Appendix A.  To ensure that the 

measurements did not include the time needed to calculate addresses, whether 

sequential, strided, or random, the sequences were generated independently and stored 

to the virtual memory file.  Then the addresses were read back from the file in large 

(4MB) chunks, and the addresses were then fed to the measurement program.  Thus 

generating the addresses was isolated from the consumption of addresses, and timing 

was applied only to consumption. 

 
#include "independ.h" 
 
int main(int argc, char *argv[]) 
{ 
    int i; 
    unsigned int memoryBits,pageBits; 
    char vName[30]=""; 
    char trace[4]=""; 
 
    *argv++; 
    modelRuns=atoi(*argv++); 
    memoryBits=atoi(*argv++); 
    pageBits=atoi(*argv++); 
    virtualRatio=atof(*argv++); 
    calculateParameters(memoryBits,pageBits,virtualRatio); 
 
    strcpy(filename,*argv++); 
    strcat(filename,"\\virtualMemory.dat"); 
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    strcpy(vName,*argv++); 
    strcpy(trace,*argv++); 
    showModel(); 
    resetModel(); 
 runModel(vName,trace); 
    return 0; 
} 

/****************************************************** 
 filename: independ.h 
 
This benchmark system models the page table as noninverted. This 
simplifies the 
logic and speeds up the performance, at the cost of some accuracy 
and a larger memory footprint. 
 
Neither the cache, nor the main memory are represented by any actual 
structures 
in this benchmark system.  This allows the benchmark to run faster on 
any machine, as long as its actual memory capacity is sufficient to 
contain the page table, the tag table, and other auxiliary structures. 
 
The virtual memory uses whatever device is passed to it as being the 
hard drive. 
  
The virtual memory uses a write-back policy.  When values are just 
being stored, it creates a page in main memory, without storing it to 
virtual memory.  It only store values to virtual memory when the main 
memory is full and a page needs to be evicted. 
 
Because the cache and main memory are only simulated, the actual cache 
and memory access and transfer times cannot be captured by this 
benchmark, and are therefore ignored.   
 
Because the virtual memory is simulated by a file, rather than by 
memory-mapping, the actual disk times should be somewhat larger than 
in a real virtual memory system.  It is assumed that this extra time 
approximates the missing cache and memory access and transfer times. 
  
Writes to virtual memory are ignored in measuring access times, as 
these writes can be buffered and performed asynchronously. 
***********************************************************/ 
#include <stdio.h> 
#include <sys\time.h> 
#include <string.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <math.h> 
#include <errno.h> 
#define VIRTUAL_SIZE (unsigned int)(1<<31) 
 //virtual memory is limited to 2GB 
#define INVALID_PAGE -1 
#define MEMORY_SIZE (unsigned int)(1<<23) 
 //page table is limited to 8Meg (2^23) pages 
 //this is suffiicient to accomodate a 4GB virtual memory 
 //if page size is no less than 512B 
#define TLB_SIZE (unsigned int)(1<<6) 
 //TLB is limited to 64 (2^6) lines 
#define PAGE_SIZE (unsigned int)(1<<20) 
    //page size is limited to 1 Megabytes (2^023 bytes) 
#define ADDRESS_LIST_SIZE (unsigned int)(1<<23) 
#define true 1 
#define false 0 
#define MAXIMUM (unsigned int)1<<31 
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#define CYCLES_PER_NSEC 3.2L 
#define TIME_SCALE_FACTOR 1.0e9L 
/******************************************************** 
    GLOBAL VARIABLES 
********************************************************/ 
int modelRuns; 
double timeScaleFactor; 
int virtualTable[MEMORY_SIZE]; 
int pageTable[MEMORY_SIZE]; 
    //a table indexed by memoryPages, which contains the virtual page 
stored 
    //in a given memory page frame;  the virtual page may or may not 
have been 
    //actually written 
    //If the frame has never been used, it will have the value 
INVALID_PAGE 
unsigned int pageAccess[MEMORY_SIZE]; 
    //the page access table, with relative access times of each 
    //page frame 
int virtualMemory; 
 //file descriptor for virtual memory file 
char filename[30]; 
    //filename for virtual memory file 
char pageBuffer[PAGE_SIZE]; 
    //a page buffer for reading and writing pages in virtual memory 
unsigned int addressList[ADDRESS_LIST_SIZE]; 
unsigned int addressLoads; 
    //number of address loads to address entire virtual memory 
unsigned int elapsedTime; 
    //the elapsed time since the beginning of the run 
double elapsedTimeSquared; 
 //used to calculate the standard deviation 
unsigned int bytesAccessed; 
    //total number of bytes accessed since beginning of run 
unsigned int cacheAccesses; 
unsigned int memoryAccesses; 
unsigned int virtualAccesses; 
 
/****************************************************************** 
    MODEL PARAMETERS 
******************************************************************/ 
unsigned int pageSize; 
 //size in bytes of memory pages 
unsigned int memorySize; 
 //size in bytes of modeled main memory 
float virtualRatio; 
    //ratio of virtual memory to main memory 
/****************************************************************** 
    DERIVED PARAMETERS 
******************************************************************/ 
unsigned int memoryPages; 
 //number of pages in main memory 
unsigned int virtualSize; 
 //size in bytes of modeled virtual memory 
unsigned int virtualPages; 
    //number of pages in virtual memory 
double ns_per_cycle=1.0L/CYCLES_PER_NSEC; 
 
/****************************************************************** 
  HELPER FUNCTIONS 
******************************************************************/ 
unsigned int timer(){ 
    return elapsedTime; 
} 
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unsigned int calcMemoryAddress(unsigned int memoryPage, unsigned int 
offset){ 
    return (memoryPage*pageSize)+offset; 
} 
 
 
/****************************************************************** 
VIRTUAL MEMORY FUNCTIONS 
This model uses the traditional inverted page table to simplify the 
logic 
and minimize the memory footprint. 
A virtual address is divided into two fields: 
        Page:   (pageAddressBits bits wide) 
            this identifies the page number 
        Offset: (pageOffsetBits bits wide) 
            this identifies the bytes within a page 
 
    The page table is implemented with three arrays: 
    1.  the memory page frames for the virtual pages, 
    2.  the access time values of the memory frames for a LRU  
    replacement policy. 
    3.  the virtual page addresses for the memory pages, which allows  
    fast lookup of this information. 
    
    If a page frame does not contain a virtual page, the page table 
entry will have the value INVALID_PAGE 
 
************************************************************/ 
unsigned int calcVirtualPage(unsigned int virtualAddress){ 
    return virtualAddress/pageSize; 
} 
 
//SET A PAGE FROM MAIN MEMORY TO VIRTUAL MEMORY 
void evictMemoryPage(unsigned int memoryPage ){ 
    unsigned int virtualPage = pageTable[memoryPage]; 
    pageTable[memoryPage] = INVALID_PAGE; 
    virtualTable[virtualPage] = INVALID_PAGE; 
} 
 
//GET A PAGE FROM VIRTUAL MEMORY TO MAIN MEMORY 
void getVirtualPage(unsigned int virtualPage, unsigned int 
memoryPage){ 
    int test; 
    test=lseek(virtualMemory,virtualPage*pageSize,SEEK_SET); 
    if(test == -1){ 
        perror("Error seeking to page location"); 
        return; 
    } 
    test=read(virtualMemory,pageBuffer,pageSize); 
    if(test == -1){ 
        perror("Error reading page"); 
        return; 
    } 
 
    virtualTable[virtualPage]=memoryPage; 
    pageTable[memoryPage]=virtualPage; 
    pageAccess[memoryPage]=timer(); 
} 
 
unsigned int findNextPageFrame(){ 
    unsigned int i, virtualPage; 
    unsigned int oldestPage=0; 
    unsigned int oldestAge=MAXIMUM; 
    for(i=0;i<memoryPages;i++){ 
        if(pageTable[i]==INVALID_PAGE){ 
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            return i; 
        } 
        if(pageAccess[i]<oldestAge){ 
            oldestPage=i; 
            oldestAge=pageAccess[i]; 
        } 
    } 
    evictMemoryPage(oldestPage); 
    return oldestPage; 
} 
 
//GET THE MEMORY PAGE NUMBER WHICH CONTAINS THE GIVEN VIRTUAL ADDRESS 
unsigned int getPage(unsigned int virtualAddress){ 
    unsigned int i; 
    unsigned int virtualPage=virtualAddress/pageSize; 
    int memoryPage=virtualTable[virtualPage]; 
    memoryAccesses++; 
    if(memoryPage>=0){                  //if virtual page is resident 
in memory 
        pageAccess[memoryPage]=timer(); 
        memoryAccesses++; 
    } 
    else if(memoryPage==INVALID_PAGE){  //if the virtual page is not 
resident 
        memoryPage=findNextPageFrame(); 
        getVirtualPage(virtualPage,memoryPage); 
        virtualAccesses++; 
    } 
    return memoryPage; 
} 
 
 
/*********************************************************************
********* 
    API Functions 
**********************************************************************
*********/ 
 
void getValue(unsigned int address){ 
    unsigned int page=getPage(address); 
    elapsedTime++; 
} 
 
double inputVariable(char *variableLabel, double variableValue){ 
    double variable; 
    printf("%-35s\t%10.0f ?",variableLabel,variableValue); 
    scanf("%f",&variable); 
    return variable; 
} 
 
void outputVariable(char *resultLabel, double result){ 
    printf("\n%-35s\t%15.3f",resultLabel,result); 
} 
 
void calculateParameters(unsigned int memoryBits, unsigned int 
pageBits, double virtualRatio){ 
    memorySize = 1<<memoryBits; 
    pageSize = 1<<pageBits; 
    virtualSize = memorySize*virtualRatio; 
    memoryPages = memorySize/pageSize; 
    virtualPages = virtualSize/pageSize; 
    timeScaleFactor = 1.0e9L/(double)virtualSize; 
    addressLoads = virtualSize/(ADDRESS_LIST_SIZE*4); 
} 
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unsigned int 
generateSequentialAddress(unsigned int address){ 
    unsigned int i = address + 1; 
    if(i<virtualSize){ 
        return i; 
    } 
    else { 
        return 0; 
    } 
} 
 
unsigned int 
generateStridedAddress(unsigned int address, unsigned int *start){ 
    unsigned int i = address + pageSize; 
    if(i<virtualSize){ 
        return i; 
    } 
    else { 
        *start++; 
    } 
    if(*start<virtualSize){ 
        return *start; 
    } 
    else { 
        return 0; 
    } 
} 
 
void 
resetModel(){ 
    int i; 
    for(i=0;i<virtualPages;i++){ 
        virtualTable[i] = INVALID_PAGE; 
    } 
    for(i=0;i<memoryPages;i++){ 
        pageTable[i] = INVALID_PAGE; 
        pageAccess[i] = 0; 
    } 
} 
 
void closeModel(char *label, double totalTime, double totalTimeSq, 
double totalBytes, double modelRuns){ 
    double aveTime, aveTimeSq, mean, var; 
    aveTime = totalTime*TIME_SCALE_FACTOR/totalBytes; 
    aveTimeSq = totalTimeSq*TIME_SCALE_FACTOR*TIME_SCALE_FACTOR/ 
(totalBytes*totalBytes); 
    mean = aveTime / modelRuns; 
 var= ( aveTimeSq - aveTime * mean) / (modelRuns-1); 
    printf("\n%-15s %5.0f %13.3f 
%13.3f",label,modelRuns,mean,sqrt(var)); 
} 
 
void showModel(){ 
    
printf("\n\n**********************************************************
"); 
    printf("\nMEMORY HIERARCHY PERFORMANCE MEASUREMENT"); 
    
printf("\n**********************************************************")
; 
    printf("\nThe model will run with the following parameters:"); 
    outputVariable("Memory size:",memorySize); 
    outputVariable("Page size (bytes)",pageSize); 
    outputVariable("Virtual Ratio",virtualRatio); 
 
    printf("\n\nThe following parameters have been derived:"); 
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    outputVariable("Virtual size:",virtualSize); 
    outputVariable("Memory pages:",memoryPages); 
    outputVariable("virtual pages:",virtualPages); 
 
} 
 
double 
getDuration(unsigned int loads, int repetitions){ 
    int i,j,k,test; 
    double startTime, duration = 0.0; 
    test=lseek(virtualMemory,0,SEEK_SET); 
    if(test == -1){ 
        perror("Error seeking to beginning of file"); 
        return -1.0; 
    } 
    for(i=0;i<loads;i++){ 
        test=read(virtualMemory,addressList,ADDRESS_LIST_SIZE); 
        if(test == -1){ 
            perror("Error reading address list"); 
            return -1.0; 
        } 
        startTime = time(0); 
        for(k=0;k<repetitions;k++){ 
            for(j=0;j<ADDRESS_LIST_SIZE;j++){ 
                getValue(addressList[j]); 
            } 
        } 
        duration += (double)time(0) - startTime; 
     } 
     return duration / repetitions; 
} 
 
void runModel(char *label, char *trace){ 
    int i,j,k,strideStart,address,test; 
    double startTime, duration; 
    double totalSeqTime = 0.0, totalSeqTimeSq = 0.0; 
    double totalRanTime = 0.0, totalRanTimeSq = 0.0; 
    double totalStrTime = 0.0, totalStrTimeSq = 0.0; 
    double totalRSSTime = 0.0, totalRSSTimeSq = 0.0; 
    printf("\n\nMeasured Performance: %s",label); 
    printf("\n------------------------------------------"); 
    printf("\n%-15s %5s %13s %13s","ACCESS PATTERN","RUNS","MEAN","ST. 
DEV."); 
 
    virtualMemory=open(filename, O_RDWR); 
    if(virtualMemory == -1) { 
        perror("Error opening file"); 
        return; 
    } 
    k = 0; 
    for(i=0;i<addressLoads;i++){ 
        for(j=0;j<ADDRESS_LIST_SIZE;j++){ 
            addressList[j] = k; 
            k = generateSequentialAddress(k); 
        } 
        test = write(virtualMemory,addressList,ADDRESS_LIST_SIZE); 
        if(test == -1){ 
            perror("Error writing sequential address list"); 
            return; 
        } 
    } 
    duration = getDuration(addressLoads,1);          // "Warm" the 
page table 
    for(i=0;i<modelRuns;i++){ 
        duration = getDuration(addressLoads, 8); 
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        totalSeqTime += duration; 
        totalSeqTimeSq += duration*duration; 
        if(!strcmp(trace,"yes"))  
  printf("\n%-15s %5d %13.3f","Sequential",i+1,duration); 
    } 
    
closeModel("Sequential",totalSeqTime,totalSeqTimeSq,virtualSize,modelR
uns); 
 
    test=lseek(virtualMemory,0,SEEK_SET); 
    if(test == -1){ 
        perror("Error seeking to beginning of file"); 
        return; 
    } 
    k = 0; 
    strideStart = 0; 
    for(i=0;i<4;i++){ 
        for(j=0;j<ADDRESS_LIST_SIZE;j++){ 
            addressList[j] = k; 
            k = generateStridedAddress(k,&strideStart); 
        } 
        test=write(virtualMemory,addressList,ADDRESS_LIST_SIZE); 
        if(test == -1){ 
            perror("Error writing strided address list"); 
            return; 
        } 
    } 
    duration = getDuration(4,1);              // "Warm" the page table 
    for(i=0;i<8;i++){ 
        duration = getDuration(4,1); 
        totalStrTime += duration; 
        totalStrTimeSq += duration*duration; 
        if(!strcmp(trace,"yes"))  
  printf("\n%-15s %5d %13.3f","Strided",i+1,duration); 
    } 
    
closeModel("Strided",totalStrTime,totalStrTimeSq,4*ADDRESS_LIST_SIZE,8
); 
 
    for(i=0;i<modelRuns;i++){ 
        test=lseek(virtualMemory,0,SEEK_SET); 
        if(test == -1){ 
            perror("Error seeking to beginning of file"); 
            return; 
        } 
        srand(i); 
        for(j=0;j<addressLoads;j++){ 
            for(k=0;k<ADDRESS_LIST_SIZE;k++){ 
                addressList[k] = (rand()<<16+rand())%virtualSize; 
            } 
            test=write(virtualMemory,addressList,ADDRESS_LIST_SIZE); 
            if(test == -1){ 
                perror("Error writing random address list"); 
                return; 
            } 
        } 
        duration = getDuration(addressLoads,1);      //"warm" the page 
table 
        duration = getDuration(addressLoads,8); 
        totalRanTime += duration; 
        totalRanTimeSq += duration*duration; 
        if(!strcmp(trace,"yes")) printf("\n%-15s %5d 
%13.3f","Random",i+1,duration); 
    } 
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closeModel("Random",totalRanTime,totalRanTimeSq,virtualSize,modelRuns)
; 
 
    printf("\n"); 
    close(virtualMemory); 

} 
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