
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2008-04-08 

Improving Spreadsheets for Complex Problems Improving Spreadsheets for Complex Problems 

Brian C. Whitmer 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Whitmer, Brian C., "Improving Spreadsheets for Complex Problems" (2008). Theses and Dissertations. 
1713. 
https://scholarsarchive.byu.edu/etd/1713 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1713?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


 

 

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS

by 

 

Brian Whitmer 

 

 

 

 

 

 

A master’s thesis submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

 

 

Department of Computer Science 

Brigham Young University 

August 2008 



 

 

  

 

 

 

 

 

 

Copyright © 2008 Brian C. Whitmer 

All Rights Reserved 

  



 

 

BRIGHAM YOUNG UNIVERSITY 

 
 

GRADUATE COMMITTEE APPROVAL 
 
 

of a master’s thesis submitted by 
Brian Whitmer 

 
 

This thesis has been read by each member of the following graduate committee and by 
majority vote has been found to be satisfactory. 

 
 

_____________________ __________________________ 
Date Dan Olsen, Chair 

    

_____________________ __________________________ 
Date Robert Burton 

    

_____________________ __________________________ 
Date  Kent Seamons 

    

_____________________ __________________________ 
Date Parris Egbert 

  Graduate Coordinator 
 

  



 

 

BRIGHAM YOUNG UNIVERSITY 

 
 
As chair of the candidate’s graduate committee, I have read the thesis of Brian C. 
Whitmer in its final form and have found that (1) its format, citations, and 
bibliographical style are consistent and acceptable and fulfill university and department 
style requirements; (2) its illustrative materials including figures, tables, and charts are in 
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready 
for submission to the university library. 
 
 
 
______________________________  ____________________________________ 
Date       Dan R. Olsen 

Chair, Graduate Committee 
 
 
 
 
 
 
 
 
 
 

Accepted for the Department 
____________________________________ 
Parris Egbert 
Graduate Coordinator 
 
 
 

Accepted for the College 
____________________________________ 
Thomas W. Sederberg 
Associate Dean, College of 
Physical and Mathematical Sciences 
 

 

  



 

 

ABSTRACT

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS 

 

Brian C. Whitmer 

Department of Computer Science 

Master of Science 

 

Spreadsheets are one of the most frequently used applications.  They are used because 

they are easy to understand and values can be updated easily.  However, many people try to use 

spreadsheets for problems beyond their intended scope and end up with errors and 

miscalculations.  We present a new spreadsheet system which uses complex-values and equation 

code reuse to overcome the limitations of spreadsheets for complex problems.  We also discuss 

the features necessary in order to make these enhancements useful and effective. 
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CHAPTER 1 – INTRODUCTION

Spreadsheets are one of the most common end-user applications today.  Everyone 

from accountants to baseball coaches takes advantage of the ease of entering data and 

performing calculations.  The basic format of spreadsheets, a two-dimensional grid of 

scalar values, has not changed much since VisiCalc was created in 1979.  Because 

spreadsheets are so easy to understand and develop, people still use them for simple 

calculations, but also take advantage of their ease of use for things as complex as 

stochastic simulation [9] and data warehousing [11].  The simple concept of a grid of 

numerical values and equations translates well in some situations, but hampers ease of 

development in many others.  Research has shown that up to 90% of professional 

spreadsheets contain errors [8], and many of those errors come from trying to fit a 

complex problem into the limited expression available in conventional spreadsheets. 

All the functionality available in spreadsheet programs is also available in more 

advanced environments such as Java, Python or Matlab.  The reason end-users continue 

to prefer spreadsheets over such languages is that spreadsheets offer a visual 

representation of the data that is easy to understand and modify.  Programming languages 

require more expertise and offer a less-intuitive presentation of results.  For this reason 

users continue to pour their complex problems into spreadsheet systems, even though it 

often results in errors and misunderstandings. 



Spreadsheet Limitations

We see three key limitations in conventional spreadsheets when dealing with 

complex problems.  First, spreadsheet functions and computations must evaluate to a 

scalar result (some systems like Excel have array results, but these are limited and can be 

confusing).  Second, spreadsheets rely heavily on copy and paste, which is a poor method 

of code reuse.  Third, the limited set of scalar-based visual representations and 

computations prevents effective formulation of complex problems. 

 

Figure 1: Complex-valued cells and function results are useful for tasks like database 
representation. 

In spreadsheets all values and results must evaluate to scalars.  This isn’t a 

problem for adding or multiplying a few numbers, but is a factor in more advanced 

computations.  For example, the product of two matrices is another matrix, but 
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spreadsheets don’t natively allow for matrix results.  Also, a large collection of values 

could function as a database.  It would be useful to have functions that resulted in 

complex values such as select, join, pivot or sort to show summaries of this database.  For 

example, Figure 1 shows a spreadsheet with a database in one cell, a version of that 

database sorted by name in another cell, and the list of class-professor pairs for that 

database in a third cell.  Functions that return these types of results can’t be written for 

spreadsheets because of the scalar-only restriction. 

Spreadsheets also lack code (or equation) reuse and abstraction.  A good way to 

highlight this limitation is to compare spreadsheets to programming languages.  If a Java 

programmer is going to use a block of code repeatedly, he abstracts it out into a separate 

class or method.  In spreadsheets when a user wants to reuse equations, he copies the 

region of values and pastes it to a new region in the sheet.  This leaves him with duplicate 

copies of the same set of equations to manage instead of abstracted, reusable code like the 

Java programmer.  In addition, values are scattered across a single grid instead of being 

modularized.  This causes referencing problems as users copy and paste regions, because 

they will often miss cells necessary for the computation.  For example, a set of equations 

may be based on constants defined somewhere else on the sheet.  Using default cell 

referencing, a copied version of the equations will no longer point to the correct 

constants, and the new results will be incorrect.  A more powerful solution would be to 

allow related values to be combined into a self-contained unit. 



Spreadsheets have a small set of possible functions and visual representations, and 

almost all of these are for scalars only.  No fixed set of functions and visualizations can 

service everyone’s needs.  Some spreadsheet systems do allow for extensible functions 

(Excel uses Visual Basic), but these systems can be confusing in their implementation 

and are still restricted to scalar-only results.  As a result, most users rely on the provided 

set of equations and assume anything beyond that is infeasible.  With an extensible 

system allowing complex results, most of the functionality of, for example, the WEKA 

machine learning suite [10] could be integrated into a spreadsheet system.  Likewise it 

would be possible to write a function that would query the online BLAST database [2] 

for related DNA sequences, or to retrieve an up-to-date list of stock quotes using a web-

request function (see Figure 2).  Such complex-valued extensibility is not readily 

available in current spreadsheet applications. 

 

Figure 2: Allowing for extensible complex-valued functions opens up new possible 
spreadsheet functions, such as a stock quote retrieval function. 

Spreadsheets also lack extensibility for their visual representations, or formats.  

Current spreadsheets allow restricted conditional formatting and a small set of charts and 
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graphs.  Formatting of a single cell is limited to scalar-based formats only.  If instead 

formatting were opened up and could handle scalar or complex values, spreadsheet 

design would become much more flexible and understandable.  Developers could design 

tree structures to represent a decision tree classifier, a pedigree view, or a binary search 

tree-sorted representation of data.  They could write formats to cater specifically to large 

or small screens (Figure 3).  It would be possible to implement something as complex as 

an interactive 3-D rendering of a data set or as simple as color-coded text.  Traditional 

spreadsheets don’t allow for these kinds of extensible formatting options.  This severely 

limits the range of possible uses for spreadsheets and makes design and comprehension 

more difficult. 

 

Figure 3: Extensible formats allow for many ways to view data.  The front format could 
be a specialized format for smaller screens such as PDAs. 
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ICE Sheets

Our solution, ICE Sheets, overcomes these limitations by incorporating complex-

valued cells and function results, the separation of data from equation code, and 

extensible functions and formatting.  Together these enhancements remedy the problems 

just discussed. 

First we augment the spreadsheet model by allowing cells to contain whole tables 

of values, either created or derived, in addition to single scalars.  This nesting can go as 

many levels deep as is needed, opening up many new possibilities for representing data.  

We also allow complex-valued function results as a way to broaden the range of possible 

functions. 

Second, we allow for code abstraction by separating equation code away from 

data values.  As users create complex values, the properties and equations are pulled out 

into what we call a template.  This template’s code can be reused on different sets of 

values to generate multiple complex cells that are all linked to the same set of equations.  

In this way we replace the less-effective copy-and-paste paradigm with the programming 

concept of abstraction. 

Finally, we introduce an extensible system for functions and formatting.  We 

implement a plugin architecture that makes it easy to create and use new packages of 

functions and formats.  By implementing this system on top of a set of simplified Java 

interfaces, we make it possible for developers to create more specialized function and 

format packages capable of handling or returning arbitrarily-complex values.  We build 
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our formats on top of the XICE architecture, which we will discuss later, to simplify the 

creation of formats.  Because these functions and formats can be based on scalar or 

complex values, they offer more expression than previous solutions. 

These enhancements combined make it possible to more effectively express 

complex problems in spreadsheets.  They will also allow new problems to be solved 

where previously the spreadsheet environment was too restrictive.   
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CHAPTER 2 – PRIOR WORK

Because of the prevalence of spreadsheet programs, much research has gone into 

improving the usage experience.  Spreadsheet errors are common, and it is important that 

we find solutions that are capable of either finding problems or decreasing the likelihood 

of the problems occurring in the first place.  Spreadsheet research generally can be 

separated into two broad categories: error prevention/detection, and program 

enhancements. 

Error Prevention/Detection

Most spreadsheet research focuses on ways to detect or decrease errors while 

staying within the limits of traditional spreadsheets.  What You See Is What You Test 

(WYSIWYT) [3] helps users find errors by working backwards.  WYSIWYT lets users 

mark cells as either correct or incorrect and trace back to find the likely source of the 

error (see Figure 4).  This backwards trace can help in discovering existing problems, but 

does nothing to remedy them.  As such it doesn’t really solve the problem of complex 

spreadsheet design.  

 

Figure 4: The WYSIWYT [X3X] system uses checks and X-marks to determine testedness. 
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Type Inference [1] attempts to enforce a stronger typing for cell values.  The 

system notifies the user when a value’s type is different than expected.  This idea offers 

some usefulness, but most spreadsheet values are only strings or numbers, so type 

enforcement won’t catch many problems.  It also fails to propose an easier method for 

developing complex spreadsheets.  

Another approach to error prevention is spreadsheet modeling.  The Visual 

Template Specification Language (ViTSL) [4] separates design into two distinct steps, 

equations and data.  The goal is to reduce errors by generating equations without being 

distracted by values (see Figure 5).  The notion of code templates is very useful, but 

designing abstract equations without concrete values works opposite of spreadsheet 

strengths.  As a result, this system can hamper as much as it helps.   

 

Figure 5: Designing "template" spreadsheets using ViTSL [4] 

All of these debugging solutions fall short of our goal to make spreadsheet design 

more flexible and understandable in that they focus too specifically on traditional 

spreadsheet design. 
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Spreadsheet Enhancements 

Some studies have also sought to enhance spreadsheets by adding new 

functionality.  PrediCalc [6] makes cell evaluation omni-directional, allowing values to 

be derived from their related values in any ordering (see Figure 6).  This idea is useful in 

its dynamic solution-finding, but breaks down when considering complex equations such 

as regions of cells as values because multiple solutions are possible for any single 

problem. 

 

Figure 6: The PrediCalc [X6X] table of dependencies before and after entering scheduling 
events e1 and e2.  Dependent values are updated automatically. 

Query By Excel (QBX) [11] ties large spreadsheet tables to a relational database 

to let users more easily generate query-like calculations.  The system allows for select, 

union and join operations, but is based on Excel’s PivotTable structure, which uses 

dynamically-sized regions of cell.  If the size of the PivotTable grows then it can 

overwrite other data on the same table.  QBX also provides only a limited set of possible 
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summary-type complex results based on PivotTables.  Computations like average and 

total are useful, but do not provide the more general solution we are after. 

The User-Centered Functions system [5] simplifies custom function generation 

for spreadsheets.  They system allows users to generate custom functions by extracting 

equations from a region of related cells into a separate sub-sheet (see Figure 7).  This 

notion of modularity is a useful contribution which we also leverage in our solution.  

However, the system is limited to a single scalar final result.  The authors point out the 

importance of complex-valued parameters, but only implement vector-valued inputs, not 

results. 

 

Figure 7: User-Centered Functions [X5X] let users create their own functions by pulling 
calculations out onto separate sheets. 
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All of these studies enhance development in small ways, but the more general 

problem of how conventional spreadsheets limit development has not been addressed in a 

complete solution like the one we propose. 

Matlab

Complex spreadsheet tasks can also be computed using Matlab [7].  Matlab 

allows for scalar- or complex-valued calculations and results (see Figure 8).  However, 

since Matlab is a command prompt environment that requires working knowledge of the 

system and syntax, it is much harder to learn and use than spreadsheets. As such, it does 

not resolve the usability concerns we wish to address.  ICE Sheets combines a power 

comparable to Matlab with the user interface of spreadsheets. 

 

Figure 8: Matlab can display complex data representations, but is managed from the 
command prompt. 
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CHAPTER 3 – COMPLEX-VALUED CELLS

Our first enhancement is to augment our spreadsheet program with complex-

valued cells.  In ICE Sheets complex values are represented as a table of values contained 

within a cell.  This enhancement is potentially too complex to be effective.  We need to 

address how to effectively reference within complex cells, create complex cells, and 

interact with very large complex cells. 

Robust Referencing

Spreadsheets need a uniform referencing mechanism.  For example, consider the 

complex budget cell in Figure 9a.  It would be useful to retrieve specific values, such as 

the total income for March.  To allow for such inner-value referencing we introduce the 

dot (“.”) notation to access inner values, and the carat notation “^” which lets cells access 

values in their parent table.  To access cell A from cell E, the user types the reference of 

the cell, a dot, and the reference within the cell: =[2,2].[3,3].  He could similarly select 

regions of cells using bracket notation {} (to select the region from B to A he would type 

=[2, 2].{2, 1: 3, 3}). 

However, numerical indexing is unsatisfactory because it doesn’t explain what is 

referenced.  Spreadsheet systems have named regions, but this solution becomes 

unwieldy with too many or overlapping regions.  We instead use named rows and 

columns.  A cell is referenced by its row and column numbers or names, as in Figure 9b.  

We allow some special referencing as well, letting users leave values blank or use the star 

(“*”) operator.  If the row or column index is left blank then it is assumed to be the value 
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that match some criteria (Figure 1).  These data structures provide simple but effective 

models for organizing data. 

The star notation is especially significant for complex-valued cells, as it is no 

longer necessary to know exactly how many cells are in the region.  If a region were 

defined in Excel as A1:A200, then inserting a cell at row 10 would update the reference 

to be A1:A201, but adding a value to the end of the region would not update the reference 

and the new value would be ignored.  Traditional spreadsheets allow for referencing an 

entire row or column, but when all the data is on a single grid, columns and rows often 

contain more than one region of data (see Figure 10a, where the columns run over two 

sets of data).  Only when data sets can be separated out into distinct complex cells does 

whole-row and whole-column referencing become useful.  For example, in Figure 10c 

the user could easily find the average GPA for all students by typing =average([*, 

“GPA”]).  This approach would not work in Figure 10a, since the region would have to 

be explicitly defined. 

Adding named rows and columns also makes cell referencing more robust to 

changes.  In traditional spreadsheets, if the user inserts or deletes a row or column then 

cell references have to be updated in order to stay accurate.  This approach, though 

inconvenient, works because of the limited size of conventional spreadsheets.  Once 

spreadsheets can contain any-sized complex values, the number of possible references to 

update grows very quickly.  If named references are used instead of numerical references 

then insertions, re-orderings and deletions will have no effect on cell references (the 
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reference [“Income”, “Mar”] is not affected by row and column index changes).  

Referencing is robust to changes in the spreadsheet structure. 

In traditional spreadsheets it is always clear which cell the user is selecting 

because all cells are separate.  Once we allow for complex-valued cells, ambiguity arises.  

If a user clicks on a matrix, did they mean to select the entire matrix, or a value in the 

matrix?  In Figure 9a is the cursor selecting the entire budget table =[2,2], or just the cell 

=[2,2].[“Income”,”Mar”]?  For ICE Sheets we assume selection goes as “deep” as it can, 

and in the above case would select the cell =[2,2].[“Income”,”Mar”].  If the user wanted 

to select the whole table she could click outside the grid of values but still inside the table  

cell itself (point F in Figure 9a).  By always providing a region of the format that is not 

part of any inner cell, we make either type of selection possible. 

Complex Value Creation

To let users create a complex cell we add a “Create Table” option.  This option 

creates a new complex cell and shows a table view of that cell that can then be edited.  

However, since complex values are essentially a collection of inner values, the obvious 

question is “how many values do I need?”  If the complex value is a database, for 

example, it may not be clear at first how many entries are needed.  Our answer is to make 

complex value sizes dynamic, just like spreadsheet tables.  By viewing complex values as 

a nested table, users can scroll down or right to add as many additional values as they 

need, eliminating the size problem. 



However, solution formulation often occurs during development, not before.  

Many users will enter a region of values, and then realize those values should be 

combined into a single complex value.  Our system implements this functionality with the 

“Create As Table” option.  Figure 10 shows this for two separate regions of data, one 

above the other.  The regions are combined into complex values which are placed in the 

top-left cell of the selected region. 

 

Figure 10: Users can select regions of cells and combine them into independent complex 
cells. 
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The modularization of complex values has the added benefit of separating regions 

of values away from one another.  In traditional spreadsheets, inserting into one region of 

values affects other regions, as does resizing or moving rows and columns.  In XFigure 

10Xa, the “Student Name” column needs to be very wide, but this forces the “Average” 

column below to be much wider than necessary, taking up precious screen space.  Once 

regions are combined into complex cells (Figure 10c), the “Student Name” column in the 

first complex cell can be sized without resizing the other complex cell. 

Complex Function Results

Conventional spreadsheets don’t offer complex-valued results.  Some array-type 

results are possible, but these are still spread across regions of cells.  By allowing more 

native support for complex results, ICE Sheets makes complex computations more 

feasible and usable.  For example, since spreadsheets can now return tables of values, it is 

easy to create functions that return standard 2-D geometry matrices (scale, rotate, 

translate) as in Figure 11.  This takes half as many equations as the same set of 

calculations in Excel (Figure 12).  Functions can also be written for database-like 

functionality including select, project, sort and join statements as in Figure 1.  Likewise, 

functions can be written to take in a set of data instances and return an array of 

coefficients for a linear perceptron or a least squares approximation.  Functions can even 

return the list of books by a given author on Amazon.com, or the list of web sites 

matching a given query on Google.  Many new possibilities open up when functions can 

return complex results. 



 

Figure 11: 2-D geometry matrices are a good example of function set that returns complex 
results. 

 

Figure 12: The example from XFigure 11X written in Excel takes twice as many equations, 
some special key combinations, and is not as clear. 
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Viewing Large Complex Values

A cell can contain any number of possible values, but the user cannot 

understandably interact with large numbers of values when they are contained in a small 

spreadsheet cell.  We introduce the notion of “tearing off” cells, where a new window 

pops up containing a larger view of the cell’s data.  This new window is connected to the 

same model, but can be changed to whatever size is convenient for the user.  For 

example, a table could contain a complex value that served as a database of university 

students.  The entire database could be held in one cell, and cells below could be used to 

write simple functional queries with results of only a few columns (say, the average GPA 

per semester, or the list of all classes per semester as in Figure 13).  It would be a waste 

of space to expand the entire column since the queries have only a few columns, but the 

actual database is too large for the column width.  Instead of widening all the cells, the 

user could tear off the database cell and interact with it in a separate window (Figure 13).  

This notion of “tearing off” solves the problem of dealing with exceptionally large 

complex values by letting the user pull out key items to view in detail. 



 

Figure 13: Complex cells can be "torn off", allowing a larger view of the same complex 
data. 

However, tearing off cells lets the user expand only one cell at a time.  It does not 

provide an easy way to rapidly expand multiple cells.  In Figure 14a the user has a series 

of matrix multiplications.  He wants to review the cells one at a time, but there is not 

enough room to show them all at once.  It would be inconvenient to tear off all the cells, 

to keep resizing rows and columns to view the cells one at a time, or to enlarge all the 

cells and keep scrolling up and down within the table.  Instead we introduce active and 

inactive sizes for rows and columns.  When the user clicks a cell, its row and column 

assume their active size (see Figure 14a).  When he clicks another cell the row and 

column resume their inactive sizes and the new active cell expands its row and column 

(Figure 14b).  When a row or column is resized, it updates its active size if it contains the 

active cell, otherwise it updates its inactive size.  For consistency, the inactive size must 

always be equal to or less than the active size. 
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Figure 15: These two complex values contain similar amounts of data.  The left cell is 
active and can be edited, while the right cell is inactive and displays a summary of its contents. 

 

Figure 16: In traditional spreadsheets, data and graphs must remain separate.  This takes 
up twice as much space as ICE Sheets. 

Formats themselves also can easily adapt to different sizes and situations.  For 

example, when the matrix format is sized too small to show its contents, it instead shows 

its underlying equation (as in Figure 14) or a “…” if even smaller.  Such adaptive 

formats add to the overall flexibility of our solution. 
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CHAPTER 4 – TEMPLATES

In ICE Sheets we separate data from equation code.  Every cell has a value (scalar 

or complex) and a table of important properties.  This property table stores the cell’s 

equation, its formatting parameters (font, color, etc.) and any additional parameters used 

by the cell.  Having property tables makes it possible for a cell to reference the code of 

another cell by linking to the other cell’s property table, while keeping its own concrete 

values.  For example, in Figure 17 the two lower sheets are linked to the first sheet’s 

property table, and are all using the same equation, A + B.  If we update that equation in 

the first sheet (say, to A + 2B), the change will be propagated immediately to the lower 

two sheets as well.  This kind of linking introduces the notion of code reuse, which we 

call a “template.”  We replace the prior notion of copy and paste with a more robust 

template system.  However, we also have to address issues with the creation and use of 

template code. 
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Using templates offers a more powerful method of code reuse.  Traditional copy 

and paste requires an intimate understanding of spreadsheet syntax (for example, the 

difference between “A4” and “$A$4”).  It is also likely that the user will fail to select an 

important cell, causing the pasted region to work incorrectly.  For example, a research 

team may write a spreadsheet with a sequence of computations and function calls in 

separate cells (Figure 18).  They would like to view this equation with different initial 

values, so they copy the region and paste it into the two rows below.  However, the 

original sequence relied on an unnoticed value in C2, and the pasted sequences do not 

compute properly.  Finding and correcting these types of errors takes unnecessary time 

and effort.   In ICE Sheets the problem is avoided by using complex cells.  Instead of 

spreading values all over a large grid, related values are held in a single complex cell.  

The user can reuse this cell as a template without having to worry about missing 

necessary variables. 

 

Figure 18: Copy and paste can easily lead to errors.  The lower two rows are copies of the 
first row, but pasting led to an incorrect reference. 
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Problems also exist when duplicating whole files.  To reuse a spreadsheet file, the 

user makes a copy of the file and changes the necessary values.  The problem with file 

copying is that a change to the original file will not be propagated to the sheets based on 

that file.  Instead the user has to manually find and correct every pasted copy of the 

errored equations.  A good example of this is a set of financial reports with a shared 

miscalculation.  In conventional spreadsheets, the problem would have to be corrected in 

every instance of the report instead of just one.  ICE Sheets prevents this concern through 

the template system.  Updating the template file will propagate the change to all sheets 

based on that file. 

Using Template Code

Because all complex cells have property tables, any complex cell is a potential 

template.  This is in contrast to previous research [4], where the user must intentionally 

create a template by specifying an abstract set of equations which is later populated with 

discrete values.  The prior step of creating abstract code is no longer necessary since 

property tables let the user define the template in the same phase as the concrete data.  

There is still the additional concern of knowing what concrete values to use when 

creating a complex cell based on a template.  We initialize the new complex cell with the 

same concrete values as the template, and then let the user override those values as 

needed.  This solves the problem of understanding cells created from templates.   

Template code also makes it possible to augment all instances of a template at 

once.  Figure 19 shows a mortgage payment calculation template.  The template is being 



used to compare potential mortgages side by side.  Originally this table only had four 

values: Mortgage, Years, Rate and Monthly Payment.  Later on the user wanted to add a 

fifth row, Total Interest, as another means of comparison.  To do this she entered a new 

equation in the next row of the template and the rest of the instances instantly added this 

equation as well.  This kind of after-the-fact template updating is a very compelling 

feature.  To accomplish the same thing in traditional spreadsheets would take multiple 

copy and paste commands and possibly a row insert as well (see Figure 20). 

 

Figure 19: Templates propagate their changes to all cells based on the template, so users 
can add new data to all linked cells at once. 
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Figure 20: In traditional spreadsheets it is much more difficult to add or update similar 
equation code in separate cells. 

When creating cells based on a template, there may be times when it is useful to 

propagate changes to concrete values from the template to all cells using that template.  

For example, a mortgage company may keep a standard interest rate across all 

calculations.  Normally numbers are considered concrete values, and so a change would 

not be propagated.  However, the user can simply make the constant into an equation 

(instead of the value “.046”, the user could type “=.046”) which will then allow a change 

to be propagated to any cells using that template (by changing the equation in the 

template to say, “=.049”). 

Users can create powerful and understandable templates by making complex cells 

with concrete values and computations based on those values.  When a complex cell is 

used as a template, the user can edit the concrete values in the new cell and see the 

computational results without rewriting or copying equations.  Similar code reuse is 
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discussed in the User-Centered Functions research [5], and can be a useful and simple 

way for end-users to create reusable functions for their spreadsheets. 

Linking Templates

The linking of spreadsheet templates is simple and meaningful, but it raises 

synchronization concerns.  For example, what happens if a user deletes the template that 

is the basis for another spreadsheet?  What happens if a user emails their spreadsheet to 

someone else, but not the associated template file?  Does the cell lose all of its equation 

and formatting information, or is there some recovery mechanism?  Our solution is to 

allow templates to be any complex value, even within the same table file.  If there are 

concerns about losing connectivity to the original templates, then those templates can be 

housed within the same spreadsheet file.  This makes it harder to use templates, but at 

least addresses the synchronization problem somewhat.  The broader question of how to 

handle broken template links in general we leave for future research. 
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CHAPTER 5 – EXTENSIBILITY

In ICE Sheets we implement an easy extensibility of both functions and formats.  

With the added flexibility introduced by complex-valued cells, many new uses will be 

found for spreadsheet applications.  As users find increasingly specialized uses for 

spreadsheets, the set of included functions will become less complete.  No standard set of 

functions and formats can satisfy all the possible uses of spreadsheet programs, so some 

mechanism needs to be in place to allow for development of custom functions and 

formats.  Function (but not format) design has been a common piece of spreadsheet 

programs for many years, but allowing for complex-valued cells brings up new issues 

that need to be considered. 

Extensible Functions

Extensible functions in ICE Sheets are capable of returning complex values.  This 

is a very useful feature in many cases.  For example, matrix multiply and database select 

and join functions all return complex results that would be difficult to retrieve using 

functions in traditional spreadsheets.  This added functionality has the potential to make 

function design too complicated to be useful.  In ICE Sheets we partly address the 

problem by basing all complex values on a table structure.  Tables with named rows and 

columns are capable of modeling many powerful and useful types of structures, while 

still being generally understandable. 

There is still the more general concern of creating functions with complex results, 

however.  We use a Java interface to help developers write functions for ICE Sheets (see 



Figure 21).  Most of the interface’s methods (getHelp, parameterName, parameterHelp) 

are for end-user help, giving argument explanations to the user.  In general, all the 

developer needs to specify is how many arguments the function takes in 

handlesNParameters, the type of each argument (String, Integer, Boolean, Table, Any, 

etc.) in parameterType, and a compute method which receives the specified arguments 

and returns some Object as a result.  This is comparable in simplicity to Excel’s Visual 

Basic for Applications (VBA) solution. 

 

Figure 21: The Java interface used to create functions for ICE Sheets. 

Functions are written as Java classes, and can be added to ICE Sheets by clicking 

the “Manage Extensions” menu option.  To add a function, the developer adds their 

package name to the list of extension packages.  Each package in the list must contain an 

“ICESheet.ext” text file with a list of extension class names in the package.  The 

functions are loaded at runtime. 
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This Java interface brings ICE Sheets functions to the same level as Excel, but 

additional functionality is possible because of complex-valued cells.  For example, one 

common need will be to perform a simple calculation on all values in a table (say, the 

absolute value of an array of numbers, or the upper case version of an array of strings) or 

on a set of equally-sized complex values (the squared difference between value pairs in 

two tables).  We implement an abstract class called SheetFunctionScalar for this very 

purpose.  The SheetFunctionScalar class overwrites the compute method to handle both 

scalar and complex arguments. The developer writes a new method, computeValue, 

which computes a result for scalars only.  The SheetFunctionScalar compute method 

takes the actual arguments and if any of them are complex values, it breaks them up into 

separate scalar values.  Then the computeValue method is called once for each possible 

value combination.  

For instance, a simple function called “difference” could have a compute method 

that takes two scalars and returns the difference.  If this function extended the 

SheetFunctionScalar class then the user would simply change the compute method to 

computeValue.  If the modified function received two scalars as inputs, then it would just 

call computeValue and return as normal.  However, if the function received a table and a 

scalar, then the SheetFunctionScalar compute method would take all the values in the 

table, call computeValue for each scalar pair, and return the table of results.  The same 

thing would happen for two tables of values.  The actual change to the function was 

trivial, but it made the function much more powerful.  Similar functions could trivially be 
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written to return say, the absolute value of an array of numbers, the sum squared distance 

between arrays, etc. 

A second commonly-used functionality is to take a list of arbitrary inputs and 

perform some computation based on the entire list of inputs.  This is different than the 

previous example, since it agglomerates all arguments into a single list instead of keeping 

arguments separate.  For example, an “average” function could take a collection of 

numbers and arrays of numbers, in any order.  This function would be difficult to write 

because the argument types are not specific.  We implement an abstract class called 

SheetFunctionArray to accomplish the task.  The SheetFunctionArray class has a special 

compute method which takes in the list of scalar and complex arguments and passes the 

list of all extracted scalars to an abstract computeValue method.   

If we had an “average” function that took a list of scalars and returned their mean, 

we could improve the function’s power by extending the SheetFunctionArray class and 

renaming the compute method to computeValue. This would let the function take in 

scalars and arrays of scalars.  The compute method would extract out the list of all scalars 

and pass this list to the computeValue method, which would return the average.  

Enhancing functions is this way is simple, but powerful. 

Function extensions like SheetFunctionArray and SheetFunctionScalar are not 

difficult to write, and make possible all sorts of powerful capabilities for spreadsheet 

functions.  Most importantly, they make writing complex-valued functions the same as 

writing scalar-valued functions. 
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An additional example of the benefit of easily-extensible functions comes when 

using spreadsheet programs on a computationally-weak computer.  In this case, functions 

could be designed to gather the arguments and pass overly complicated problems across a 

network to some more powerful computer.  This lets even a handheld device leverage 

very powerful and complicated systems of computations.  Such a framework could also 

be used to retrieve information such as stock quotes or to query large online repositories 

such as the BLAST database [2]. 

Extensible Formats

In addition to extensible functions, ICE Sheets also allows for development of 

custom visual representations of data, called formats.  Formats can be interactive or 

static, and can be designed to work on scalar values (a number slider, a currency 

formatter, etc.) or on complex values (a collapsible tree view, a bar graph, a matrix view, 

etc.).  Multiple formats may link to the same cell, and formats are capable of reading and 

assigning or updating values to their associated cell.  Previous conditional formatting 

solutions provide a limited set of display options such as different colored backgrounds 

or icons based on threshold values.  These can be useful in some settings, but not all.  For 

example, a research team could write a Naïve Bayes classifier that takes data instances as 

input and returns a complex value of the resulting probability tables.  In this case it would 

be useful to design a format that clearly displays the contents of those probability tables 

(see Figure 22).  This kind of specialized format is not possible in traditional 

spreadsheets because there is no notion of extensibility.  Instead of providing only a few 



formatting options, we allow for an unlimited, unrestricted set of display formats through 

extensibility. 

 

Figure 22: Many new display possibilities open up when formats are extensible.  The 
lower cell shows Naïve Bayes probabilities for data in the upper cell. 

Another compelling format example is in Figure 23.  The user has a spreadsheet 

to track their finances, and he wants to edit this spreadsheet on a widescreen desktop and 

also on a smaller handheld device.  The spreadsheet has one row and three columns, and 

the three cells hold large sub-sheets that show a summary, a log and a budget, 

respectively.  On the desktop screen there is enough room to view and edit the sub-sheets 

side by side, but the smaller device does not have as much screen space.  We could write 

a special tabbed format as shown that puts each column in a different tab.  This tabbed 
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automatically painted when needed.  Additionally, event handling is simplified by a 

default set of actions that pass events downward through this presentation tree until some 

object in the tree processes the event.  This greatly simplifies development, in our case 

making it easier to develop customized spreadsheet display formats. 
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CHAPTER 6 – CONCLUSION

Our ICE Sheets system adds to traditional spreadsheets the concept of complex-

valued cells.  By including complex values, template code and extensibility we allow for 

easier representation and manipulation of complex problems within the spreadsheet 

system.  This has the potential to reduce errors during development and opens up many 

new uses for spreadsheet programs. 

When compared to traditional spreadsheet programs, ICE Sheets accomplishes the 

same tasks with fewer cell entries (Figure 11), more understandable references (Figure 

9), and greater flexibility of expression.  Users can also replace fragile copy and paste 

with abstract code reuse through the use of complex cell templates (Figure 17).  

Developers can write much more powerful functions and display formats than were 

previously possible, and can focus these solutions toward specific problem sets.  This lets 

users more effectively solve their complex problems by leveraging solutions custom 

tailored to those problems (Figure 22).  In all, these enhancements make complex 

spreadsheet development a more powerful and understandable experience. 
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