
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-04-08

Improving Spreadsheets for Complex Problems Improving Spreadsheets for Complex Problems

Brian C. Whitmer
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Whitmer, Brian C., "Improving Spreadsheets for Complex Problems" (2008). Theses and Dissertations.
1713.
https://scholarsarchive.byu.edu/etd/1713

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1713?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS

by

Brian Whitmer

A master’s thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2008

Copyright © 2008 Brian C. Whitmer

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a master’s thesis submitted by
Brian Whitmer

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

_____________________ __________________________
Date Dan Olsen, Chair

_____________________ __________________________
Date Robert Burton

_____________________ __________________________
Date Kent Seamons

_____________________ __________________________
Date Parris Egbert

 Graduate Coordinator

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Brian C.
Whitmer in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

______________________________ ____________________________________
Date Dan R. Olsen

Chair, Graduate Committee

Accepted for the Department

Parris Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of
Physical and Mathematical Sciences

ABSTRACT

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS

Brian C. Whitmer

Department of Computer Science

Master of Science

Spreadsheets are one of the most frequently used applications. They are used because

they are easy to understand and values can be updated easily. However, many people try to use

spreadsheets for problems beyond their intended scope and end up with errors and

miscalculations. We present a new spreadsheet system which uses complex-values and equation

code reuse to overcome the limitations of spreadsheets for complex problems. We also discuss

the features necessary in order to make these enhancements useful and effective.

ACKNOWLEDGEMENTS

I would like to thank my wife Paula for her loving support, and my daughter Becca for
her welcome distractions. I would never have finished this without them both.

vii

TABLE OF CONTENTS

List of Figures .. viii
Chapter 1 – Introduction ... 1

Spreadsheet Limitations .. 2
ICE Sheets ... 6

Chapter 2 – Prior Work ... 9
Error Prevention/Detection ... 9
Spreadsheet Enhancements ... 11
Matlab ... 13

Chapter 3 – Complex-Valued Cells .. 15
Robust Referencing ... 15
Complex Value Creation ... 18
Complex Function Results .. 20
Viewing Large Complex Values ... 22

Chapter 4 – Templates ... 27
Copy and Paste .. 28
Using Template Code .. 30
Linking Templates .. 33

Chapter 5 – Extensibility ... 35
Extensible Functions ... 35
Extensible Formats .. 39

Chapter 6 – Conclusion .. 43
References ... 45

viii

LIST OF FIGURES

Figure 1: Complex-valued cells ... 2
Figure 2: Extensible complex-valued functions ... 4
Figure 3: Extensible formats ... 5
Figure 4: The WYSIWYT system ... 9
Figure 5: "Template" spreadsheets using ViTSL ... 10
Figure 6: The PrediCalc system .. 11
Figure 7: User-Centered Functions .. 12
Figure 8: Matlab ... 13
Figure 9: Complex referencing ... 16
Figure 10: Combining cells .. 19
Figure 11: Matrix multiply in ICE Sheets .. 21
Figure 12: Matrix multiply in Excel ... 21
Figure 13: Tearing off cells .. 23
Figure 14: Active/inactive sizes ... 24
Figure 15: Active/inactive formats .. 25
Figure 16: Data and graphs remain separate in Excel .. 25
Figure 17: Template table .. 28
Figure 18: Copy and paste can lead to errorsU.. 29
Figure 19: Templates propagate their changes ... 31
Figure 20: Data propagation in Excel ... 32
Figure 21: The Java interface for functions in ICE Sheets .. 36
Figure 22: Naïve Bayes display format ... 40
Figure 23: Extensible formats for different displays .. 41

1

CHAPTER 1 – INTRODUCTION

Spreadsheets are one of the most common end-user applications today. Everyone

from accountants to baseball coaches takes advantage of the ease of entering data and

performing calculations. The basic format of spreadsheets, a two-dimensional grid of

scalar values, has not changed much since VisiCalc was created in 1979. Because

spreadsheets are so easy to understand and develop, people still use them for simple

calculations, but also take advantage of their ease of use for things as complex as

stochastic simulation [9] and data warehousing [11]. The simple concept of a grid of

numerical values and equations translates well in some situations, but hampers ease of

development in many others. Research has shown that up to 90% of professional

spreadsheets contain errors [8], and many of those errors come from trying to fit a

complex problem into the limited expression available in conventional spreadsheets.

All the functionality available in spreadsheet programs is also available in more

advanced environments such as Java, Python or Matlab. The reason end-users continue

to prefer spreadsheets over such languages is that spreadsheets offer a visual

representation of the data that is easy to understand and modify. Programming languages

require more expertise and offer a less-intuitive presentation of results. For this reason

users continue to pour their complex problems into spreadsheet systems, even though it

often results in errors and misunderstandings.

Spreadsheet Limitations

We see three key limitations in conventional spreadsheets when dealing with

complex problems. First, spreadsheet functions and computations must evaluate to a

scalar result (some systems like Excel have array results, but these are limited and can be

confusing). Second, spreadsheets rely heavily on copy and paste, which is a poor method

of code reuse. Third, the limited set of scalar-based visual representations and

computations prevents effective formulation of complex problems.

Figure 1: Complex-valued cells and function results are useful for tasks like database
representation.

In spreadsheets all values and results must evaluate to scalars. This isn’t a

problem for adding or multiplying a few numbers, but is a factor in more advanced

computations. For example, the product of two matrices is another matrix, but

2

3

spreadsheets don’t natively allow for matrix results. Also, a large collection of values

could function as a database. It would be useful to have functions that resulted in

complex values such as select, join, pivot or sort to show summaries of this database. For

example, Figure 1 shows a spreadsheet with a database in one cell, a version of that

database sorted by name in another cell, and the list of class-professor pairs for that

database in a third cell. Functions that return these types of results can’t be written for

spreadsheets because of the scalar-only restriction.

Spreadsheets also lack code (or equation) reuse and abstraction. A good way to

highlight this limitation is to compare spreadsheets to programming languages. If a Java

programmer is going to use a block of code repeatedly, he abstracts it out into a separate

class or method. In spreadsheets when a user wants to reuse equations, he copies the

region of values and pastes it to a new region in the sheet. This leaves him with duplicate

copies of the same set of equations to manage instead of abstracted, reusable code like the

Java programmer. In addition, values are scattered across a single grid instead of being

modularized. This causes referencing problems as users copy and paste regions, because

they will often miss cells necessary for the computation. For example, a set of equations

may be based on constants defined somewhere else on the sheet. Using default cell

referencing, a copied version of the equations will no longer point to the correct

constants, and the new results will be incorrect. A more powerful solution would be to

allow related values to be combined into a self-contained unit.

Spreadsheets have a small set of possible functions and visual representations, and

almost all of these are for scalars only. No fixed set of functions and visualizations can

service everyone’s needs. Some spreadsheet systems do allow for extensible functions

(Excel uses Visual Basic), but these systems can be confusing in their implementation

and are still restricted to scalar-only results. As a result, most users rely on the provided

set of equations and assume anything beyond that is infeasible. With an extensible

system allowing complex results, most of the functionality of, for example, the WEKA

machine learning suite [10] could be integrated into a spreadsheet system. Likewise it

would be possible to write a function that would query the online BLAST database [2]

for related DNA sequences, or to retrieve an up-to-date list of stock quotes using a web-

request function (see Figure 2). Such complex-valued extensibility is not readily

available in current spreadsheet applications.

Figure 2: Allowing for extensible complex-valued functions opens up new possible
spreadsheet functions, such as a stock quote retrieval function.

Spreadsheets also lack extensibility for their visual representations, or formats.

Current spreadsheets allow restricted conditional formatting and a small set of charts and
4

graphs. Formatting of a single cell is limited to scalar-based formats only. If instead

formatting were opened up and could handle scalar or complex values, spreadsheet

design would become much more flexible and understandable. Developers could design

tree structures to represent a decision tree classifier, a pedigree view, or a binary search

tree-sorted representation of data. They could write formats to cater specifically to large

or small screens (Figure 3). It would be possible to implement something as complex as

an interactive 3-D rendering of a data set or as simple as color-coded text. Traditional

spreadsheets don’t allow for these kinds of extensible formatting options. This severely

limits the range of possible uses for spreadsheets and makes design and comprehension

more difficult.

Figure 3: Extensible formats allow for many ways to view data. The front format could
be a specialized format for smaller screens such as PDAs.

5

6

ICE Sheets

Our solution, ICE Sheets, overcomes these limitations by incorporating complex-

valued cells and function results, the separation of data from equation code, and

extensible functions and formatting. Together these enhancements remedy the problems

just discussed.

First we augment the spreadsheet model by allowing cells to contain whole tables

of values, either created or derived, in addition to single scalars. This nesting can go as

many levels deep as is needed, opening up many new possibilities for representing data.

We also allow complex-valued function results as a way to broaden the range of possible

functions.

Second, we allow for code abstraction by separating equation code away from

data values. As users create complex values, the properties and equations are pulled out

into what we call a template. This template’s code can be reused on different sets of

values to generate multiple complex cells that are all linked to the same set of equations.

In this way we replace the less-effective copy-and-paste paradigm with the programming

concept of abstraction.

Finally, we introduce an extensible system for functions and formatting. We

implement a plugin architecture that makes it easy to create and use new packages of

functions and formats. By implementing this system on top of a set of simplified Java

interfaces, we make it possible for developers to create more specialized function and

format packages capable of handling or returning arbitrarily-complex values. We build

7

our formats on top of the XICE architecture, which we will discuss later, to simplify the

creation of formats. Because these functions and formats can be based on scalar or

complex values, they offer more expression than previous solutions.

These enhancements combined make it possible to more effectively express

complex problems in spreadsheets. They will also allow new problems to be solved

where previously the spreadsheet environment was too restrictive.

8

CHAPTER 2 – PRIOR WORK

Because of the prevalence of spreadsheet programs, much research has gone into

improving the usage experience. Spreadsheet errors are common, and it is important that

we find solutions that are capable of either finding problems or decreasing the likelihood

of the problems occurring in the first place. Spreadsheet research generally can be

separated into two broad categories: error prevention/detection, and program

enhancements.

Error Prevention/Detection

Most spreadsheet research focuses on ways to detect or decrease errors while

staying within the limits of traditional spreadsheets. What You See Is What You Test

(WYSIWYT) [3] helps users find errors by working backwards. WYSIWYT lets users

mark cells as either correct or incorrect and trace back to find the likely source of the

error (see Figure 4). This backwards trace can help in discovering existing problems, but

does nothing to remedy them. As such it doesn’t really solve the problem of complex

spreadsheet design.

Figure 4: The WYSIWYT [X3X] system uses checks and X-marks to determine testedness.

9

Type Inference [1] attempts to enforce a stronger typing for cell values. The

system notifies the user when a value’s type is different than expected. This idea offers

some usefulness, but most spreadsheet values are only strings or numbers, so type

enforcement won’t catch many problems. It also fails to propose an easier method for

developing complex spreadsheets.

Another approach to error prevention is spreadsheet modeling. The Visual

Template Specification Language (ViTSL) [4] separates design into two distinct steps,

equations and data. The goal is to reduce errors by generating equations without being

distracted by values (see Figure 5). The notion of code templates is very useful, but

designing abstract equations without concrete values works opposite of spreadsheet

strengths. As a result, this system can hamper as much as it helps.

Figure 5: Designing "template" spreadsheets using ViTSL [4]

All of these debugging solutions fall short of our goal to make spreadsheet design

more flexible and understandable in that they focus too specifically on traditional

spreadsheet design.

10

Spreadsheet Enhancements

Some studies have also sought to enhance spreadsheets by adding new

functionality. PrediCalc [6] makes cell evaluation omni-directional, allowing values to

be derived from their related values in any ordering (see Figure 6). This idea is useful in

its dynamic solution-finding, but breaks down when considering complex equations such

as regions of cells as values because multiple solutions are possible for any single

problem.

Figure 6: The PrediCalc [X6X] table of dependencies before and after entering scheduling
events e1 and e2. Dependent values are updated automatically.

Query By Excel (QBX) [11] ties large spreadsheet tables to a relational database

to let users more easily generate query-like calculations. The system allows for select,

union and join operations, but is based on Excel’s PivotTable structure, which uses

dynamically-sized regions of cell. If the size of the PivotTable grows then it can

overwrite other data on the same table. QBX also provides only a limited set of possible

11

summary-type complex results based on PivotTables. Computations like average and

total are useful, but do not provide the more general solution we are after.

The User-Centered Functions system [5] simplifies custom function generation

for spreadsheets. They system allows users to generate custom functions by extracting

equations from a region of related cells into a separate sub-sheet (see Figure 7). This

notion of modularity is a useful contribution which we also leverage in our solution.

However, the system is limited to a single scalar final result. The authors point out the

importance of complex-valued parameters, but only implement vector-valued inputs, not

results.

Figure 7: User-Centered Functions [X5X] let users create their own functions by pulling
calculations out onto separate sheets.

12

All of these studies enhance development in small ways, but the more general

problem of how conventional spreadsheets limit development has not been addressed in a

complete solution like the one we propose.

Matlab

Complex spreadsheet tasks can also be computed using Matlab [7]. Matlab

allows for scalar- or complex-valued calculations and results (see Figure 8). However,

since Matlab is a command prompt environment that requires working knowledge of the

system and syntax, it is much harder to learn and use than spreadsheets. As such, it does

not resolve the usability concerns we wish to address. ICE Sheets combines a power

comparable to Matlab with the user interface of spreadsheets.

Figure 8: Matlab can display complex data representations, but is managed from the
command prompt.

13

14

15

CHAPTER 3 – COMPLEX-VALUED CELLS

Our first enhancement is to augment our spreadsheet program with complex-

valued cells. In ICE Sheets complex values are represented as a table of values contained

within a cell. This enhancement is potentially too complex to be effective. We need to

address how to effectively reference within complex cells, create complex cells, and

interact with very large complex cells.

Robust Referencing

Spreadsheets need a uniform referencing mechanism. For example, consider the

complex budget cell in Figure 9a. It would be useful to retrieve specific values, such as

the total income for March. To allow for such inner-value referencing we introduce the

dot (“.”) notation to access inner values, and the carat notation “^” which lets cells access

values in their parent table. To access cell A from cell E, the user types the reference of

the cell, a dot, and the reference within the cell: =[2,2].[3,3]. He could similarly select

regions of cells using bracket notation {} (to select the region from B to A he would type

=[2, 2].{2, 1: 3, 3}).

However, numerical indexing is unsatisfactory because it doesn’t explain what is

referenced. Spreadsheet systems have named regions, but this solution becomes

unwieldy with too many or overlapping regions. We instead use named rows and

columns. A cell is referenced by its row and column numbers or names, as in Figure 9b.

We allow some special referencing as well, letting users leave values blank or use the star

(“*”) operator. If the row or column index is left blank then it is assumed to be the value

1 (cell B

values in

pointing

B is referenc

n the given ro

to, reducing

ed as [“Othe

ow or colum

g ambiguity a

er”] instead

mn. Named r

and easing sp

of [“Other”

references m

preadsheet d

”, 1]), and a

make it clear

development

star value s

what an exp

t

selects all

pression is

column

B

model ot

column D

which is

fields ([“

large cell

can sort

Figure 9:
n names.

By using nam

ther data stru

D of Figure

a record fo

“Food”], [“R

l can also be

a database c

Even complex

med row an

uctures. Fo

e 9 a. The r

or the month

Rent”], etc.).

e a database

cell by colu

cells can be understandablly referenced using their roow and

nd column

or example, t

result is a ta

h of February

 The record

e, where the

umn name, p

references w

the expressi

able with na

y. Values in

d data structu

column nam

project only

we allow sp

ion [*, “Feb

amed rows a

n the record

ure is useful

mes serve as

specific col

preadsheets

”] selects th

and a single

can be acce

in many con

s a schema.

lumns, or se

to easily

he cells in

e column,

essed like

ntexts. A

 The user

elect rows

16

17

that match some criteria (Figure 1). These data structures provide simple but effective

models for organizing data.

The star notation is especially significant for complex-valued cells, as it is no

longer necessary to know exactly how many cells are in the region. If a region were

defined in Excel as A1:A200, then inserting a cell at row 10 would update the reference

to be A1:A201, but adding a value to the end of the region would not update the reference

and the new value would be ignored. Traditional spreadsheets allow for referencing an

entire row or column, but when all the data is on a single grid, columns and rows often

contain more than one region of data (see Figure 10a, where the columns run over two

sets of data). Only when data sets can be separated out into distinct complex cells does

whole-row and whole-column referencing become useful. For example, in Figure 10c

the user could easily find the average GPA for all students by typing =average([*,

“GPA”]). This approach would not work in Figure 10a, since the region would have to

be explicitly defined.

Adding named rows and columns also makes cell referencing more robust to

changes. In traditional spreadsheets, if the user inserts or deletes a row or column then

cell references have to be updated in order to stay accurate. This approach, though

inconvenient, works because of the limited size of conventional spreadsheets. Once

spreadsheets can contain any-sized complex values, the number of possible references to

update grows very quickly. If named references are used instead of numerical references

then insertions, re-orderings and deletions will have no effect on cell references (the

18

reference [“Income”, “Mar”] is not affected by row and column index changes).

Referencing is robust to changes in the spreadsheet structure.

In traditional spreadsheets it is always clear which cell the user is selecting

because all cells are separate. Once we allow for complex-valued cells, ambiguity arises.

If a user clicks on a matrix, did they mean to select the entire matrix, or a value in the

matrix? In Figure 9a is the cursor selecting the entire budget table =[2,2], or just the cell

=[2,2].[“Income”,”Mar”]? For ICE Sheets we assume selection goes as “deep” as it can,

and in the above case would select the cell =[2,2].[“Income”,”Mar”]. If the user wanted

to select the whole table she could click outside the grid of values but still inside the table

cell itself (point F in Figure 9a). By always providing a region of the format that is not

part of any inner cell, we make either type of selection possible.

Complex Value Creation

To let users create a complex cell we add a “Create Table” option. This option

creates a new complex cell and shows a table view of that cell that can then be edited.

However, since complex values are essentially a collection of inner values, the obvious

question is “how many values do I need?” If the complex value is a database, for

example, it may not be clear at first how many entries are needed. Our answer is to make

complex value sizes dynamic, just like spreadsheet tables. By viewing complex values as

a nested table, users can scroll down or right to add as many additional values as they

need, eliminating the size problem.

However, solution formulation often occurs during development, not before.

Many users will enter a region of values, and then realize those values should be

combined into a single complex value. Our system implements this functionality with the

“Create As Table” option. Figure 10 shows this for two separate regions of data, one

above the other. The regions are combined into complex values which are placed in the

top-left cell of the selected region.

Figure 10: Users can select regions of cells and combine them into independent complex
cells.

19

20

The modularization of complex values has the added benefit of separating regions

of values away from one another. In traditional spreadsheets, inserting into one region of

values affects other regions, as does resizing or moving rows and columns. In XFigure

10Xa, the “Student Name” column needs to be very wide, but this forces the “Average”

column below to be much wider than necessary, taking up precious screen space. Once

regions are combined into complex cells (Figure 10c), the “Student Name” column in the

first complex cell can be sized without resizing the other complex cell.

Complex Function Results

Conventional spreadsheets don’t offer complex-valued results. Some array-type

results are possible, but these are still spread across regions of cells. By allowing more

native support for complex results, ICE Sheets makes complex computations more

feasible and usable. For example, since spreadsheets can now return tables of values, it is

easy to create functions that return standard 2-D geometry matrices (scale, rotate,

translate) as in Figure 11. This takes half as many equations as the same set of

calculations in Excel (Figure 12). Functions can also be written for database-like

functionality including select, project, sort and join statements as in Figure 1. Likewise,

functions can be written to take in a set of data instances and return an array of

coefficients for a linear perceptron or a least squares approximation. Functions can even

return the list of books by a given author on Amazon.com, or the list of web sites

matching a given query on Google. Many new possibilities open up when functions can

return complex results.

Figure 11: 2-D geometry matrices are a good example of function set that returns complex
results.

Figure 12: The example from XFigure 11X written in Excel takes twice as many equations,
some special key combinations, and is not as clear.

21

22

Viewing Large Complex Values

A cell can contain any number of possible values, but the user cannot

understandably interact with large numbers of values when they are contained in a small

spreadsheet cell. We introduce the notion of “tearing off” cells, where a new window

pops up containing a larger view of the cell’s data. This new window is connected to the

same model, but can be changed to whatever size is convenient for the user. For

example, a table could contain a complex value that served as a database of university

students. The entire database could be held in one cell, and cells below could be used to

write simple functional queries with results of only a few columns (say, the average GPA

per semester, or the list of all classes per semester as in Figure 13). It would be a waste

of space to expand the entire column since the queries have only a few columns, but the

actual database is too large for the column width. Instead of widening all the cells, the

user could tear off the database cell and interact with it in a separate window (Figure 13).

This notion of “tearing off” solves the problem of dealing with exceptionally large

complex values by letting the user pull out key items to view in detail.

Figure 13: Complex cells can be "torn off", allowing a larger view of the same complex
data.

However, tearing off cells lets the user expand only one cell at a time. It does not

provide an easy way to rapidly expand multiple cells. In Figure 14a the user has a series

of matrix multiplications. He wants to review the cells one at a time, but there is not

enough room to show them all at once. It would be inconvenient to tear off all the cells,

to keep resizing rows and columns to view the cells one at a time, or to enlarge all the

cells and keep scrolling up and down within the table. Instead we introduce active and

inactive sizes for rows and columns. When the user clicks a cell, its row and column

assume their active size (see Figure 14a). When he clicks another cell the row and

column resume their inactive sizes and the new active cell expands its row and column

(Figure 14b). When a row or column is resized, it updates its active size if it contains the

active cell, otherwise it updates its inactive size. For consistency, the inactive size must

always be equal to or less than the active size.

23

In

inactive f

active or

inactive,

space tak

graph for

user defin

providing

Figure 14: Active/inactive sizes. The "Translate" row is active, while others are inactive.
The active row and column have enough size to be interactive.

n addition to

format. Thi

r inactive. F

but show th

ken in tradit

r each data

ne for each c

g a more effe

o active and

s lets the ce

For example

he table of

tional spread

set (Figure

cell a summ

fective use of

d inactive siz

ll display us

e, a series o

values when

dsheets, whi

16). The p

mary type of f

f screen spac

zes, each ce

sable inform

of point plot

n active (Fi

ch keep visi

airing of act

functionality

ce.

ell can be as

mation wheth

ts could sho

gure 15).

ible both the

tive and ina

y and an inte

ssigned an a

er it is small

w a line gra

This clears

e data value

active format

eractive func

active and

l or large,

aph when

up screen

es and the

ts lets the

ctionality,

24

Figure 15: These two complex values contain similar amounts of data. The left cell is
active and can be edited, while the right cell is inactive and displays a summary of its contents.

Figure 16: In traditional spreadsheets, data and graphs must remain separate. This takes
up twice as much space as ICE Sheets.

Formats themselves also can easily adapt to different sizes and situations. For

example, when the matrix format is sized too small to show its contents, it instead shows

its underlying equation (as in Figure 14) or a “…” if even smaller. Such adaptive

formats add to the overall flexibility of our solution.

25

26

27

CHAPTER 4 – TEMPLATES

In ICE Sheets we separate data from equation code. Every cell has a value (scalar

or complex) and a table of important properties. This property table stores the cell’s

equation, its formatting parameters (font, color, etc.) and any additional parameters used

by the cell. Having property tables makes it possible for a cell to reference the code of

another cell by linking to the other cell’s property table, while keeping its own concrete

values. For example, in Figure 17 the two lower sheets are linked to the first sheet’s

property table, and are all using the same equation, A + B. If we update that equation in

the first sheet (say, to A + 2B), the change will be propagated immediately to the lower

two sheets as well. This kind of linking introduces the notion of code reuse, which we

call a “template.” We replace the prior notion of copy and paste with a more robust

template system. However, we also have to address issues with the creation and use of

template code.

table, a
Figure 17:

allowing for reu
In this exampl
use of the “cod

le, the lower tw
de” in that shee

wo sheets are
et.

linked to the first sheet’s prroperty

Coppy and Pastee

C

reuse an

For temp

understan

mentione

“Create T

file to be

be the tem

use that

pasting, b

Code reuse in

equation or

plate code

ndable as co

ed. To link

Table”. The

e the templat

mplate. An

template (se

but has the a

n spreadshee

r region of v

in ICE Sh

opy and paste

k a cell to a

e user can cr

te, or “From

ny change to

ee Figure 1

added abstrac

ets is traditi

values, the u

heets to be

e. We addre

a template, t

reate the tab

m Cell” whic

o the origina

7). This pr

ction and mo

onally accom

user copies it

 effective,

ess this issue

the user rig

le “From Te

ch lets them

al template w

rocess is com

odularity ben

mplished by

t and pastes

it needs to

e with the pr

ght-clicks on

emplate” wh

select anoth

will be propa

mparable in

nefits of tem

y copy and p

s it to a new

o be as us

roperty table

n the cell an

hich lets them

her cell in th

agated to all

ease to cop

mplate code.

paste. To

w location.

sable and

es already

nd selects

m select a

he sheet to

cells that

pying and

28

Using templates offers a more powerful method of code reuse. Traditional copy

and paste requires an intimate understanding of spreadsheet syntax (for example, the

difference between “A4” and “A4”). It is also likely that the user will fail to select an

important cell, causing the pasted region to work incorrectly. For example, a research

team may write a spreadsheet with a sequence of computations and function calls in

separate cells (Figure 18). They would like to view this equation with different initial

values, so they copy the region and paste it into the two rows below. However, the

original sequence relied on an unnoticed value in C2, and the pasted sequences do not

compute properly. Finding and correcting these types of errors takes unnecessary time

and effort. In ICE Sheets the problem is avoided by using complex cells. Instead of

spreading values all over a large grid, related values are held in a single complex cell.

The user can reuse this cell as a template without having to worry about missing

necessary variables.

Figure 18: Copy and paste can easily lead to errors. The lower two rows are copies of the
first row, but pasting led to an incorrect reference.

29

30

Problems also exist when duplicating whole files. To reuse a spreadsheet file, the

user makes a copy of the file and changes the necessary values. The problem with file

copying is that a change to the original file will not be propagated to the sheets based on

that file. Instead the user has to manually find and correct every pasted copy of the

errored equations. A good example of this is a set of financial reports with a shared

miscalculation. In conventional spreadsheets, the problem would have to be corrected in

every instance of the report instead of just one. ICE Sheets prevents this concern through

the template system. Updating the template file will propagate the change to all sheets

based on that file.

Using Template Code

Because all complex cells have property tables, any complex cell is a potential

template. This is in contrast to previous research [4], where the user must intentionally

create a template by specifying an abstract set of equations which is later populated with

discrete values. The prior step of creating abstract code is no longer necessary since

property tables let the user define the template in the same phase as the concrete data.

There is still the additional concern of knowing what concrete values to use when

creating a complex cell based on a template. We initialize the new complex cell with the

same concrete values as the template, and then let the user override those values as

needed. This solves the problem of understanding cells created from templates.

Template code also makes it possible to augment all instances of a template at

once. Figure 19 shows a mortgage payment calculation template. The template is being

used to compare potential mortgages side by side. Originally this table only had four

values: Mortgage, Years, Rate and Monthly Payment. Later on the user wanted to add a

fifth row, Total Interest, as another means of comparison. To do this she entered a new

equation in the next row of the template and the rest of the instances instantly added this

equation as well. This kind of after-the-fact template updating is a very compelling

feature. To accomplish the same thing in traditional spreadsheets would take multiple

copy and paste commands and possibly a row insert as well (see Figure 20).

Figure 19: Templates propagate their changes to all cells based on the template, so users
can add new data to all linked cells at once.

31

Figure 20: In traditional spreadsheets it is much more difficult to add or update similar
equation code in separate cells.

When creating cells based on a template, there may be times when it is useful to

propagate changes to concrete values from the template to all cells using that template.

For example, a mortgage company may keep a standard interest rate across all

calculations. Normally numbers are considered concrete values, and so a change would

not be propagated. However, the user can simply make the constant into an equation

(instead of the value “.046”, the user could type “=.046”) which will then allow a change

to be propagated to any cells using that template (by changing the equation in the

template to say, “=.049”).

Users can create powerful and understandable templates by making complex cells

with concrete values and computations based on those values. When a complex cell is

used as a template, the user can edit the concrete values in the new cell and see the

computational results without rewriting or copying equations. Similar code reuse is

32

33

discussed in the User-Centered Functions research [5], and can be a useful and simple

way for end-users to create reusable functions for their spreadsheets.

Linking Templates

The linking of spreadsheet templates is simple and meaningful, but it raises

synchronization concerns. For example, what happens if a user deletes the template that

is the basis for another spreadsheet? What happens if a user emails their spreadsheet to

someone else, but not the associated template file? Does the cell lose all of its equation

and formatting information, or is there some recovery mechanism? Our solution is to

allow templates to be any complex value, even within the same table file. If there are

concerns about losing connectivity to the original templates, then those templates can be

housed within the same spreadsheet file. This makes it harder to use templates, but at

least addresses the synchronization problem somewhat. The broader question of how to

handle broken template links in general we leave for future research.

34

35

CHAPTER 5 – EXTENSIBILITY

In ICE Sheets we implement an easy extensibility of both functions and formats.

With the added flexibility introduced by complex-valued cells, many new uses will be

found for spreadsheet applications. As users find increasingly specialized uses for

spreadsheets, the set of included functions will become less complete. No standard set of

functions and formats can satisfy all the possible uses of spreadsheet programs, so some

mechanism needs to be in place to allow for development of custom functions and

formats. Function (but not format) design has been a common piece of spreadsheet

programs for many years, but allowing for complex-valued cells brings up new issues

that need to be considered.

Extensible Functions

Extensible functions in ICE Sheets are capable of returning complex values. This

is a very useful feature in many cases. For example, matrix multiply and database select

and join functions all return complex results that would be difficult to retrieve using

functions in traditional spreadsheets. This added functionality has the potential to make

function design too complicated to be useful. In ICE Sheets we partly address the

problem by basing all complex values on a table structure. Tables with named rows and

columns are capable of modeling many powerful and useful types of structures, while

still being generally understandable.

There is still the more general concern of creating functions with complex results,

however. We use a Java interface to help developers write functions for ICE Sheets (see

Figure 21). Most of the interface’s methods (getHelp, parameterName, parameterHelp)

are for end-user help, giving argument explanations to the user. In general, all the

developer needs to specify is how many arguments the function takes in

handlesNParameters, the type of each argument (String, Integer, Boolean, Table, Any,

etc.) in parameterType, and a compute method which receives the specified arguments

and returns some Object as a result. This is comparable in simplicity to Excel’s Visual

Basic for Applications (VBA) solution.

Figure 21: The Java interface used to create functions for ICE Sheets.

Functions are written as Java classes, and can be added to ICE Sheets by clicking

the “Manage Extensions” menu option. To add a function, the developer adds their

package name to the list of extension packages. Each package in the list must contain an

“ICESheet.ext” text file with a list of extension class names in the package. The

functions are loaded at runtime.

36

37

This Java interface brings ICE Sheets functions to the same level as Excel, but

additional functionality is possible because of complex-valued cells. For example, one

common need will be to perform a simple calculation on all values in a table (say, the

absolute value of an array of numbers, or the upper case version of an array of strings) or

on a set of equally-sized complex values (the squared difference between value pairs in

two tables). We implement an abstract class called SheetFunctionScalar for this very

purpose. The SheetFunctionScalar class overwrites the compute method to handle both

scalar and complex arguments. The developer writes a new method, computeValue,

which computes a result for scalars only. The SheetFunctionScalar compute method

takes the actual arguments and if any of them are complex values, it breaks them up into

separate scalar values. Then the computeValue method is called once for each possible

value combination.

For instance, a simple function called “difference” could have a compute method

that takes two scalars and returns the difference. If this function extended the

SheetFunctionScalar class then the user would simply change the compute method to

computeValue. If the modified function received two scalars as inputs, then it would just

call computeValue and return as normal. However, if the function received a table and a

scalar, then the SheetFunctionScalar compute method would take all the values in the

table, call computeValue for each scalar pair, and return the table of results. The same

thing would happen for two tables of values. The actual change to the function was

trivial, but it made the function much more powerful. Similar functions could trivially be

38

written to return say, the absolute value of an array of numbers, the sum squared distance

between arrays, etc.

A second commonly-used functionality is to take a list of arbitrary inputs and

perform some computation based on the entire list of inputs. This is different than the

previous example, since it agglomerates all arguments into a single list instead of keeping

arguments separate. For example, an “average” function could take a collection of

numbers and arrays of numbers, in any order. This function would be difficult to write

because the argument types are not specific. We implement an abstract class called

SheetFunctionArray to accomplish the task. The SheetFunctionArray class has a special

compute method which takes in the list of scalar and complex arguments and passes the

list of all extracted scalars to an abstract computeValue method.

If we had an “average” function that took a list of scalars and returned their mean,

we could improve the function’s power by extending the SheetFunctionArray class and

renaming the compute method to computeValue. This would let the function take in

scalars and arrays of scalars. The compute method would extract out the list of all scalars

and pass this list to the computeValue method, which would return the average.

Enhancing functions is this way is simple, but powerful.

Function extensions like SheetFunctionArray and SheetFunctionScalar are not

difficult to write, and make possible all sorts of powerful capabilities for spreadsheet

functions. Most importantly, they make writing complex-valued functions the same as

writing scalar-valued functions.

39

An additional example of the benefit of easily-extensible functions comes when

using spreadsheet programs on a computationally-weak computer. In this case, functions

could be designed to gather the arguments and pass overly complicated problems across a

network to some more powerful computer. This lets even a handheld device leverage

very powerful and complicated systems of computations. Such a framework could also

be used to retrieve information such as stock quotes or to query large online repositories

such as the BLAST database [2].

Extensible Formats

In addition to extensible functions, ICE Sheets also allows for development of

custom visual representations of data, called formats. Formats can be interactive or

static, and can be designed to work on scalar values (a number slider, a currency

formatter, etc.) or on complex values (a collapsible tree view, a bar graph, a matrix view,

etc.). Multiple formats may link to the same cell, and formats are capable of reading and

assigning or updating values to their associated cell. Previous conditional formatting

solutions provide a limited set of display options such as different colored backgrounds

or icons based on threshold values. These can be useful in some settings, but not all. For

example, a research team could write a Naïve Bayes classifier that takes data instances as

input and returns a complex value of the resulting probability tables. In this case it would

be useful to design a format that clearly displays the contents of those probability tables

(see Figure 22). This kind of specialized format is not possible in traditional

spreadsheets because there is no notion of extensibility. Instead of providing only a few

formatting options, we allow for an unlimited, unrestricted set of display formats through

extensibility.

Figure 22: Many new display possibilities open up when formats are extensible. The
lower cell shows Naïve Bayes probabilities for data in the upper cell.

Another compelling format example is in Figure 23. The user has a spreadsheet

to track their finances, and he wants to edit this spreadsheet on a widescreen desktop and

also on a smaller handheld device. The spreadsheet has one row and three columns, and

the three cells hold large sub-sheets that show a summary, a log and a budget,

respectively. On the desktop screen there is enough room to view and edit the sub-sheets

side by side, but the smaller device does not have as much screen space. We could write

a special tabbed format as shown that puts each column in a different tab. This tabbed

40

v

sm

sc

iew is very s

mall screens

creen size.

similar to th

s. By allowi

he view seen

ing extensib

n in tradition

le formats, s

nal spreadshe

sheet layout

eets, and is m

can now be

more effectiv

e more flexib

ve on

ble to

Fi
devices.

gure 23: Extennsible formats allow users too interact withh data effectiveely on differennt

b

d

in

ar

The m

e complicat

esigning the

nterfaces.

rchitecture.

main concern

ted and no

eir own form

We solve

n when devel

on-intuitive.

mats becaus

this proble

loping forma

 Many de

se they don

em by imp

ats is that in

evelopers w

n’t feel capa

plementing

teractive sof

would not f

able of desig

our solutio

ftware design

feel comfor

gning intera

n in the X

n can

rtable

active

XICE

ar

ar

W

In

XICE

rchitecture f

rchitectures

Widgets no lo

nstead they

E (eXtended

for creating

because it s

onger have t

organize a

d Interactiv

g interactive

simplifies bo

to implemen

a scene grap

ve Comput

 component

oth the crea

nt a “paint” m

ph, or tree

ting Everyw

ts. It is ea

ation of widg

method to pa

of sub-wid

where) is

asier to use

gets and han

aint themselv

dgets, in a

a develop

e than tradit

ndling of ev

ves to the sc

layout whic

pment

tional

vents.

creen.

ch is

41

42

automatically painted when needed. Additionally, event handling is simplified by a

default set of actions that pass events downward through this presentation tree until some

object in the tree processes the event. This greatly simplifies development, in our case

making it easier to develop customized spreadsheet display formats.

43

CHAPTER 6 – CONCLUSION

Our ICE Sheets system adds to traditional spreadsheets the concept of complex-

valued cells. By including complex values, template code and extensibility we allow for

easier representation and manipulation of complex problems within the spreadsheet

system. This has the potential to reduce errors during development and opens up many

new uses for spreadsheet programs.

When compared to traditional spreadsheet programs, ICE Sheets accomplishes the

same tasks with fewer cell entries (Figure 11), more understandable references (Figure

9), and greater flexibility of expression. Users can also replace fragile copy and paste

with abstract code reuse through the use of complex cell templates (Figure 17).

Developers can write much more powerful functions and display formats than were

previously possible, and can focus these solutions toward specific problem sets. This lets

users more effectively solve their complex problems by leveraging solutions custom

tailored to those problems (Figure 22). In all, these enhancements make complex

spreadsheet development a more powerful and understandable experience.

44

45

REFERENCES

1.Abraham, R. and Erwig, M. (2006). Type inference for spreadsheets. In Proceedings of
the 8th ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming ’06, 73-94.

2.BLAST (2007). BLAST: Basic Local Alignment Search Tool.
http://www.ncbi.nlm.nih.gov/BLAST/.

3.Carver, J., Fisher, M., and Rothermel, G. (2006). An empirical evaluation of a testing
and debugging methodology for Excel. In Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering ’06, 278-287.

4.Erwig, M., Abraham, R., Cooperstein, I., and Kollmansberger, S. (2005). Automatic
generation and maintenance of correct spreadsheets. In Proceedings of the 27th
international Conference on Software Engineering ’05, 136-145.

5.Jones, S. P., Blackwell, A., and Burnett, M. (2003). A user-centred approach to
functions in excel. In Proceedings of the Eighth ACM SIGPLAN international
Conference on Functional Programming ’03, 165-176.

6.Kassoff, M., Zen, L., Garg, A., and Genesereth, M. (2005). PrediCalc: a logical
spreadsheet management system. In Proceedings of the 31st international Conference
on Very Large Data Base ’05, 1274-1250.

7.Matlab (2007). MATLAB – The Language of Technical Computing.
http://www.mathworks.com/products/matlab/.

8.Panko, R. R. (2005). What We Know About Spreadsheet Errors.
http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm.

46

9.Seila, A. F. (2006). Spreadsheet simulation. In Proceedings of the 37th Conference on
Winter Simulation ’06, 11-18.

10.Weka (2007). Weka 3 – Data Mining with Open Source Machine Learning Software
in Java. http://www.cs.waikato.ac.nz/ml/weka/

11.Witkowski, A., Bellamkonda, S., Bozkaya, T., Naimat, A., Sheng, L., Subramanian,
S., and Waingold, A. (2005). Query by Excel. In Proceedings of the 31st international
Conference on Very Large Data Bases ’05, 1204-1215.

	Improving Spreadsheets for Complex Problems
	BYU ScholarsArchive Citation

	IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1 – INTRODUCTION
	Spreadsheet Limitations
	Figure 1: Complex-valued cells and function results are useful for tasks like database representation.
	Figure 2: Allowing for extensible complex-valued functions opens up new possible spreadsheet functions, such as a stock quote retrieval function.
	Figure 3: Extensible formats allow for many ways to view data. The front format could be a specialized format for smaller screens such as PDAs.

	ICE Sheets

	CHAPTER 2 – PRIOR WORK
	Error Prevention/Detection
	Figure 4: The WYSIWYT [3] system uses checks and X-marks to determine testedness.
	Figure 5: Designing "template" spreadsheets using ViTSL [4].

	Spreadsheet Enhancements
	Figure 6: The PrediCalc [6] table of dependencies before and after entering scheduling events e1 and e2. Dependent values are updated automatically.
	Figure 7: User-Centered Functions [5] let users create their own functions by pulling calculations out onto separate sheets.

	Matlab
	Figure 8: Matlab can display complex data representations, but is managed from the command prompt.

	CHAPTER 3 – COMPLEX-VALUED CELLS
	Robust Referencing
	Figure 9: Even complex cells can be understandably referenced using their row and column names.

	Complex Value Creation
	Figure 10: Users can select regions of cells and combine them into independent complex cells.

	Complex Function Results
	Figure 11: 2-D geometry matrices are a good example of function set that returns complex results.
	Figure 12: The example from Figure 11 written in Excel takes twice as many equations, some special key combinations, and is not as clear.

	Viewing Large Complex Values
	Figure 13: Complex cells can be "torn off", allowing a larger view of the same complex data.
	Figure 14: Active/inactive sizes. The “Translate” row is active, while others are inactive. The active row and column have enough size to be interactive.
	Figure 15: These two complex values contain similar amounts of data. The left cell is active and can be edited, while the right cell is inactive and displays a summary of its contents.
	Figure 16: In traditional spreadsheets, data and graphs must remain separate. This takes up twice as much space as ICE Sheets.

	CHAPTER 4 – TEMPLATES
	Figure 17: In this example, the lower two sheets are linked to the first sheet’s property table, allowing for reuse of the “code” in that sheet.
	Copy and Paste
	Figure 18: Copy and paste can easily lead to errors. The lower two rows are copies of the first row, but pasting led to an incorrect reference.

	Using Template Code
	Figure 19: Templates propagate their changes to all cells based on the template, so users can add new data to all linked cells at once.
	Figure 20: In traditional spreadsheets it is much more difficult to add or update similar equation code in separate cells.

	Linking Templates

	CHAPTER 5 – EXTENSIBILITY
	Extensible Functions
	Figure 21: The Java interface used to create functions for ICE Sheets.

	Extensible Formats
	Figure 22: Many new display possibilities open up when formats are extensible. The lower cell shows Naïve Bayes probabilities for data in the upper cell.
	Figure 23: Extensible formats allow users to interact with data effectively on different devices.

	CHAPTER 6 – CONCLUSION
	REFERENCES

