Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2008-04-08

Improving Spreadsheets for Complex Problems

Brian C. Whitmer
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Whitmer, Brian C., "Improving Spreadsheets for Complex Problems" (2008). Theses and Dissertations.
1713.

https://scholarsarchive.byu.edu/etd/1713

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1713?utm_source=scholarsarchive.byu.edu%2Fetd%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS

by

Brian Whitmer

A master’s thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University
August 2008

Copyright © 2008 Brian C. Whitmer

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a master’s thesis submitted by
Brian Whitmer

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Dan Olsen, Chair
Date Robert Burton
Date Kent Seamons
Date Parris Egbert

Graduate Coordinator

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, | have read the thesis of Brian C.
Whitmer in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date Dan R. Olsen
Chair, Graduate Committee

Accepted for the Department

Parris Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of
Physical and Mathematical Sciences

ABSTRACT

IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS

Brian C. Whitmer
Department of Computer Science

Master of Science

Spreadsheets are one of the most frequently used applications. They are used because
they are easy to understand and values can be updated easily. However, many people try to use
spreadsheets for problems beyond their intended scope and end up with errors and
miscalculations. We present a new spreadsheet system which uses complex-values and equation
code reuse to overcome the limitations of spreadsheets for complex problems. We also discuss

the features necessary in order to make these enhancements useful and effective.

ACKNOWLEDGEMENTS

I would like to thank my wife Paula for her loving support, and my daughter Becca for
her welcome distractions. | would never have finished this without them both.

TABLE OF CONTENTS

TSy o) T U] TSSOSO viii
Chapter 1 — INtrodUCTIONocveiicc et 1
Spreadsheet LIMITAtIONScc.oiiiiiiiiiieie e 2
[CE SNBETS ..ottt bbb bbbt 6
Chapter 2 — PriOr WOTKooiie e 9
Error Prevention/DeteCtioNcoeieiieiiiiiinieieie e e 9
Spreadsheet ENNANCEMENTSooviiiie et nreas 11
MALIAD ... e 13
Chapter 3 — Complex-Valued CellSccceiiiiieiiie e 15
RODUSE RETEIENCINGecvviiiieii et re e e e nne e 15
Complex Value Creation..........ccoveieiiieieeieeseese e s e sie e sa e e e ae e sreeaesreesreeneens 18
Complex FUNCLION RESUILSoiieiecic et 20
Viewing Large ComplexX ValUES.........ccoiiiiiiiiiiiiieeesee e e 22
Chapter 4 — TeMPIALESccvveie et reesae e e nrees 27
COPY AN PASTE ...ttt 28
USING TeMPIALE COUE........oiieieeeciece et ne e 30
LiNKING TEMPIALEScvvieieiieecieeiccee ettt e e ne e e sreene e 33
Chapter 5 — EXTENSIDIITYooiiiiiiicee e 35
EXIENSIDIE FUNCHIONS ...ttt 35
EXIENSIDIE FOIMALS.....ccuiiiiieiice et 39
Chapter 6 — CONCIUSION........cc.oiiiiiee ettt reesaeenaesreas 43
RETEIEINCES ...ttt sttt e e e b e sbeene e beebe e 45

vii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

LIST OF FIGURES

Complex-valued CellS........cccvoiiieece e s 2
Extensible complex-valued fuNCtionS...........cccoccveveiievecicceee e, 4
EXtenSible TOrmMatScooiiiiiiic e 5
The WY SIWY T SYSTEIM ..ot 9
"Template™ spreadsheets USING VITSLcccocoviiiiiniiiniiececc e 10
The PrediCalc SYSTEIMccviiiiiiiee s 11
User-Centered FUNCLIONScooiiiiiiniiese e 12
MALIAD ... 13
Complex FefEreNCINGcccccveiecc e 16

ComBINING CEIIS ... 19
Matrix multiply in ICE SNeEets.........cccoiiiiiiiiieieeee e, 21
Matrix MUltiply IN EXCElcovoviiiiiiiiiee e, 21
Tearing Off CRIIS ..o s 23
ACHIVE/INACTIVE SIZES ...ecvviieieiieeie et enes 24
Active/iNactive fFOrmMatS..........cccocveveeiiic e 25

Figure 16: Data and graphs remain separate in EXCel..........cccccovviiniiiiinciininennn 25
Figure 17: Template table..........ooo oo 28
Figure 18: Copy and paste can lead 0 ErrorsS........cccoviiiiieiinieniieeese e 29
Figure 19: Templates propagate their Changescccccvvveiieiiiieeie s 31
Figure 20: Data propagation in EXCel.........ccceoviiiiiiii i 32
Figure 21: The Java interface for functions in ICE Sheetscccccceveviveveiiccieennenn, 36
Figure 22: Naive Bayes display fOrmat...........cccooeiiiiinn i 40
Figure 23: Extensible formats for different displaysccccovviieiniiiiiiieieen, 41

viii

CHAPTER 1 - INTRODUCTION

Spreadsheets are one of the most common end-user applications today. Everyone
from accountants to baseball coaches takes advantage of the ease of entering data and
performing calculations. The basic format of spreadsheets, a two-dimensional grid of
scalar values, has not changed much since VisiCalc was created in 1979. Because
spreadsheets are so easy to understand and develop, people still use them for simple
calculations, but also take advantage of their ease of use for things as complex as
stochastic simulation [9] and data warehousing [11]. The simple concept of a grid of
numerical values and equations translates well in some situations, but hampers ease of
development in many others. Research has shown that up to 90% of professional
spreadsheets contain errors [8], and many of those errors come from trying to fit a

complex problem into the limited expression available in conventional spreadsheets.

All the functionality available in spreadsheet programs is also available in more
advanced environments such as Java, Python or Matlab. The reason end-users continue
to prefer spreadsheets over such languages is that spreadsheets offer a visual
representation of the data that is easy to understand and modify. Programming languages
require more expertise and offer a less-intuitive presentation of results. For this reason
users continue to pour their complex problems into spreadsheet systems, even though it

often results in errors and misunderstandings.

Spreadsheet Limitations

We see three key limitations in conventional spreadsheets when dealing with
complex problems. First, spreadsheet functions and computations must evaluate to a
scalar result (some systems like Excel have array results, but these are limited and can be
confusing). Second, spreadsheets rely heavily on copy and paste, which is a poor method
of code reuse. Third, the limited set of scalar-based visual representations and

computations prevents effective formulation of complex problems.

8 TREx
: Databasein cell [2, 2] -]
MName a5 Grade Semester A
1 John Jones > 100 4 Fall 2007 Je‘
2 Sam Hansen C3 100 34 Fall 2007 3
3 Stacey Farck C3100 3.7 Fall 2007 Jo:
4 Hubble Humphrey CS 100 34 Fall 2007 To:
3 Tom Timmons Eng 316 :u 4 Fall 2007 St
6 Sandra Sully Enp21s Eall 2007 S
< =sort([2, 2] , “Name”) —
HName rCla:s Grade Semester
1 Amber Jensen 224 3 Winter 2007 D: .i
2 Erynn Bybee Eng 316 3 Winter 2007 Ee
3 Colton Dane Hum 202 3 Fall 2007 Ta
4 Devereau Mills Eng }16 4 Winter 2007 S
5 Everett Morgan En e T
< | =project([2 2], ”CEass” “Professor”)
Class
L CS 100 I?/
2 Eng 316 SMnmons
3 Eng 316 Berk
4 Hum 202 Jamison
5 Math 100 Morley v
£ ™ 1 1on TIEA -

Figure 1: Complex-valued cells and function results are useful for tasks like database
representation.

In spreadsheets all values and results must evaluate to scalars. This isn’t a
problem for adding or multiplying a few numbers, but is a factor in more advanced

computations. For example, the product of two matrices is another matrix, but
2

spreadsheets don’t natively allow for matrix results. Also, a large collection of values
could function as a database. It would be useful to have functions that resulted in
complex values such as select, join, pivot or sort to show summaries of this database. For
example, Figure 1 shows a spreadsheet with a database in one cell, a version of that
database sorted by name in another cell, and the list of class-professor pairs for that
database in a third cell. Functions that return these types of results can’t be written for

spreadsheets because of the scalar-only restriction.

Spreadsheets also lack code (or equation) reuse and abstraction. A good way to
highlight this limitation is to compare spreadsheets to programming languages. If a Java
programmer is going to use a block of code repeatedly, he abstracts it out into a separate
class or method. In spreadsheets when a user wants to reuse equations, he copies the
region of values and pastes it to a new region in the sheet. This leaves him with duplicate
copies of the same set of equations to manage instead of abstracted, reusable code like the
Java programmer. In addition, values are scattered across a single grid instead of being
modularized. This causes referencing problems as users copy and paste regions, because
they will often miss cells necessary for the computation. For example, a set of equations
may be based on constants defined somewhere else on the sheet. Using default cell
referencing, a copied version of the equations will no longer point to the correct
constants, and the new results will be incorrect. A more powerful solution would be to

allow related values to be combined into a self-contained unit.

Spreadsheets have a small set of possible functions and visual representations, and
almost all of these are for scalars only. No fixed set of functions and visualizations can
service everyone’s needs. Some spreadsheet systems do allow for extensible functions
(Excel uses Visual Basic), but these systems can be confusing in their implementation
and are still restricted to scalar-only results. As a result, most users rely on the provided
set of equations and assume anything beyond that is infeasible. With an extensible
system allowing complex results, most of the functionality of, for example, the WEKA
machine learning suite [10] could be integrated into a spreadsheet system. Likewise it
would be possible to write a function that would query the online BLAST database [2]
for related DNA sequences, or to retrieve an up-to-date list of stock quotes using a web-
request function (see Figure 2). Such complex-valued extensibility is not readily

available in current spreadsheet applications.

(GOOG) (TWX) (MSFT) (YHOO)
$620.87 $15.98 $32.92 $21.92
2 ~$16.78 ~$0.25 ~$1.09 ~$0.99

/: 2.63% ~1.59% +3.19% +4.32%
=stockQuote("GO0G")

Figure 2: Allowing for extensible complex-valued functions opens up new possible
spreadsheet functions, such as a stock quote retrieval function.

Spreadsheets also lack extensibility for their visual representations, or formats.

Current spreadsheets allow restricted conditional formatting and a small set of charts and
4

graphs. Formatting of a single cell is limited to scalar-based formats only.
formatting were opened up and could handle scalar or complex values, spreadsheet
design would become much more flexible and understandable. Developers could design
tree structures to represent a decision tree classifier, a pedigree view, or a binary search
tree-sorted representation of data. They could write formats to cater specifically to large
or small screens (Figure 3). It would be possible to implement something as complex as
an interactive 3-D rendering of a data set or as simple as color-coded text. Traditional
spreadsheets don’t allow for these kinds of extensible formatting options. This severely

limits the range of possible uses for spreadsheets and makes design and comprehension

more difficult.

—_—

Entry

Entry & Entry B
Name Tom Jones Sam Foreman Trnina Wilson
Age 25 27 26
Height = 5'11" 6'1" L 108
Weight ™ 172 1bs 195 Ibs
Score 77 85
Rating = 3+ 2- Tom Jones
L 25
8 i Height 511
< I wege 170 1bs
Score 717
Rating 3+
7
5 o
e >

Figure 3: Extensible formats allow for many ways to view data. The front format could
be a specialized format for smaller screens such as PDAs.

If instead

ICE Sheets

Our solution, ICE Sheets, overcomes these limitations by incorporating complex-
valued cells and function results, the separation of data from equation code, and
extensible functions and formatting. Together these enhancements remedy the problems

just discussed.

First we augment the spreadsheet model by allowing cells to contain whole tables
of values, either created or derived, in addition to single scalars. This nesting can go as
many levels deep as is needed, opening up many new possibilities for representing data.
We also allow complex-valued function results as a way to broaden the range of possible

functions.

Second, we allow for code abstraction by separating equation code away from
data values. As users create complex values, the properties and equations are pulled out
into what we call a template. This template’s code can be reused on different sets of
values to generate multiple complex cells that are all linked to the same set of equations.
In this way we replace the less-effective copy-and-paste paradigm with the programming

concept of abstraction.

Finally, we introduce an extensible system for functions and formatting. We
implement a plugin architecture that makes it easy to create and use new packages of
functions and formats. By implementing this system on top of a set of simplified Java
interfaces, we make it possible for developers to create more specialized function and

format packages capable of handling or returning arbitrarily-complex values. We build
6

our formats on top of the XICE architecture, which we will discuss later, to simplify the
creation of formats. Because these functions and formats can be based on scalar or

complex values, they offer more expression than previous solutions.

These enhancements combined make it possible to more effectively express
complex problems in spreadsheets. They will also allow new problems to be solved

where previously the spreadsheet environment was too restrictive.

CHAPTER 2 - PRIOR WORK

Because of the prevalence of spreadsheet programs, much research has gone into
improving the usage experience. Spreadsheet errors are common, and it is important that
we find solutions that are capable of either finding problems or decreasing the likelihood
of the problems occurring in the first place. Spreadsheet research generally can be
separated into two broad categories: error prevention/detection, and program

enhancements.

Error Prevention/Detection

Most spreadsheet research focuses on ways to detect or decrease errors while
staying within the limits of traditional spreadsheets. What You See Is What You Test
(WYSIWYT) [3] helps users find errors by working backwards. WYSIWYT lets users
mark cells as either correct or incorrect and trace back to find the likely source of the
error (see Figure 4). This backwards trace can help in discovering existing problems, but
does nothing to remedy them. As such it doesn’t really solve the problem of complex

spreadsheet design.

| A | B | ¢ | b | E F G H | | J | K | L M
1 |Student I HW1 HW2 HW3 HW Average Quiz1 Quiz2 Ouiz Average Final Extra Credit Average Grade
2 |Marc 1 95.0 95.0 95.0 95.0 95.0 95.0 9.0 %0
3 |Josl 2 B50 850 85D 860] 850 850 B0l 850
4 Beth 3 75.0 75.0 75.0 L 75.0 75.0 75.0 75.0 75.0
5 |Aiden 4 65.0 B65.0 B5.0 B5.0 65.0 B5.0
6 Emily] g5.0 §5.0 §5.0 65.0 65.0 85.0
7 Averages 81.0 81.0 81.0 81.0 81.0 81.0

Figure 4: The WYSIWYT [3] system uses checks and X-marks to determine testedness.

Type Inference [1] attempts to enforce a stronger typing for cell values. The
system notifies the user when a value’s type is different than expected. This idea offers
some usefulness, but most spreadsheet values are only strings or numbers, so type
enforcement won’t catch many problems. It also fails to propose an easier method for

developing complex spreadsheets.

Another approach to error prevention is spreadsheet modeling. The Visual
Template Specification Language (VIiTSL) [4] separates design into two distinct steps,
equations and data. The goal is to reduce errors by generating equations without being
distracted by values (see Figure 5). The notion of code templates is very useful, but
designing abstract equations without concrete values works opposite of spreadsheet

strengths. As a result, this system can hamper as much as it helps.

2005 <o« | Total
Category Qnty Cost Total Qnty Cost
| [o [o [uwen] [=P)] %]
| Total || | | “(w) | | | S(u) |

Figure 5: Designing "template" spreadsheets using ViTSL [4]

All of these debugging solutions fall short of our goal to make spreadsheet design
more flexible and understandable in that they focus too specifically on traditional

spreadsheet design.

10

Spreadsheet Enhancements

Some studies have also sought to enhance spreadsheets by adding new
functionality. PrediCalc [6] makes cell evaluation omni-directional, allowing values to
be derived from their related values in any ordering (see Figure 6). This idea is useful in
its dynamic solution-finding, but breaks down when considering complex equations such

as regions of cells as values because multiple solutions are possible for any single

problem.
event owner projection room time event owner projection room time
el amy no el amy ¥ no gloo morning
e2 bob no e2 hob no g200 | afternoon
e3| o« yes 30 al yes 9100
schedule gl00 g200 g300 schedule 9100 g200 g300
maorning marning el
afternoon afternoon e2
evening evening
room projector person faculty room projector person faculty
glo0 yes amy yes gl00 - yes amy yes
g200 no bob no g200 no bob no
g300 yes cal yes g300 no cal yes

Figure 6: The PrediCalc [6] table of dependencies before and after entering scheduling
events el and e2. Dependent values are updated automatically.

Query By Excel (QBX) [11] ties large spreadsheet tables to a relational database
to let users more easily generate query-like calculations. The system allows for select,
union and join operations, but is based on Excel’s PivotTable structure, which uses
dynamically-sized regions of cell. If the size of the PivotTable grows then it can

overwrite other data on the same table. QBX also provides only a limited set of possible

11

summary-type complex results based on PivotTables.

Computations like average and

total are useful, but do not provide the more general solution we are after.

The User-Centered Functions system [5] simplifies custom function generation

for spreadsheets. They system allows users to generate custom functions by extracting

equations from a region of related cells into a separate sub-sheet (see Figure 7). This

notion of modularity is a useful contribution which we also leverage in our solution.

However, the system is limited to a single scalar final result. The authors point out the

importance of complex-valued parameters, but only implement vector-valued inputs, not

results.

O l f2exis2 =——HH
LV - | C I
1 Fahrenheit Certigrade
Ed 40 4.4 =F2C(B2
3 50010 =F2C(B3
4 60 155 =F2C(B i
5 -
i 4 [} sneets SFzd] a0
Ready Z
. T R
1 |Input: 50 =5heet1!a7
2 | Subtract 32: 18 =B1-32
3 |Result: o =p2750 1 |
4
5 |[F2ciB1)= B3
B || This was called from Sheet1!C3
x EDIT |
4] 4] » | I}y F2C (Sheets 7 |

Figure 7: User-Centered Functions [5] let users create their own functions by pulling

calculations out onto separate sheets.

12

All of these studies enhance development in small ways, but the more general
problem of how conventional spreadsheets limit development has not been addressed in a

complete solution like the one we propose.

Matlab

Complex spreadsheet tasks can also be computed using Matlab [7]. Matlab
allows for scalar- or complex-valued calculations and results (see Figure 8). However,
since Matlab is a command prompt environment that requires working knowledge of the
system and syntax, it is much harder to learn and use than spreadsheets. As such, it does
not resolve the usability concerns we wish to address. ICE Sheets combines a power

comparable to Matlab with the user interface of spreadsheets.

File Edit View Web Window Help |

DI;;“ ;:Iliqg, gln o ﬂ ﬂ Current Directory: [fust/pe

Launch Pad a]x File Edit View Insert Tools Window Help

EEFEILY YR

@ rroduct Page (web)
=4\ Toolboxes
%ﬂ(nmmuni(atians
4\ Control system
4k Image Processing
.T:— Neural Network
#&onm mization
¢Vlf'l|!‘| Differential Equation
FroETeel cut
@help
1) Demos
@ rroduct Page (Web) ;

I workspace Current Directory _ Launch Pad

Command History A%
daspect(ll 1 11): A
view(3); axis tight; grid on;
camlight;

lighting gouraud;

%-- 7/11/03 3:10 PM --%

x = 156
sin(x)
%-- 9:54 AM 7/16/03 --%

exit = s:r:(txu"memnram(x,zs)):
- 0 143 >> shading interp;

= 000 Ay R T
surf(40¥membrane(1,25)); >» axis off vight;

shading interp; >> surf(40%membrane(1,25));
daspect([1 1 0.91) i

camlight

axis off tight;
surf(40¥membrane(1,25));

- —

4 stan |

Figure 8: Matlab can display complex data representations, but is managed from the
command prompt.

13

14

CHAPTER 3 - COMPLEX-VALUED CELLS

Our first enhancement is to augment our spreadsheet program with complex-
valued cells. In ICE Sheets complex values are represented as a table of values contained
within a cell. This enhancement is potentially too complex to be effective. We need to
address how to effectively reference within complex cells, create complex cells, and

interact with very large complex cells.

Robust Referencing

Spreadsheets need a uniform referencing mechanism. For example, consider the
complex budget cell in Figure 9a. It would be useful to retrieve specific values, such as
the total income for March. To allow for such inner-value referencing we introduce the
dot (“.””) notation to access inner values, and the carat notation “~” which lets cells access
values in their parent table. To access cell A from cell E, the user types the reference of
the cell, a dot, and the reference within the cell: =[2,2].[3,3]. He could similarly select
regions of cells using bracket notation {} (to select the region from B to A he would type

=[2, 21.{2, 1: 3, 3}).

However, numerical indexing is unsatisfactory because it doesn’t explain what is
referenced. Spreadsheet systems have named regions, but this solution becomes
unwieldy with too many or overlapping regions. We instead use named rows and
columns. A cell is referenced by its row and column numbers or names, as in Figure 9b.
We allow some special referencing as well, letting users leave values blank or use the star

(“*”) operator. If the row or column index is left blank then it is assumed to be the value
15

1 (cell B is referenced as [“Other”] instead of [“Other”, 1]), and a star value selects all
values in the given row or column. Named references make it clear what an expression is

pointing to, reducing ambiguity and easing spreadsheet development

o LU

] R
A

Figure 9: Even complex cells can be understandably referenced using their row and
column names.

By using named row and column references we allow spreadsheets to easily
model other data structures. For example, the expression [*, “Feb”] selects the cells in
column D of Figure 9a. The result is a table with named rows and a single column,
which is a record for the month of February. Values in the record can be accessed like
fields ([“Food], [“Rent™], etc.). The record data structure is useful in many contexts. A
large cell can also be a database, where the column names serve as a schema. The user

can sort a database cell by column name, project only specific columns, or select rows

16

that match some criteria (Figure 1). These data structures provide simple but effective

models for organizing data.

The star notation is especially significant for complex-valued cells, as it is no
longer necessary to know exactly how many cells are in the region. If a region were
defined in Excel as A1:A200, then inserting a cell at row 10 would update the reference
to be A1:A201, but adding a value to the end of the region would not update the reference
and the new value would be ignored. Traditional spreadsheets allow for referencing an
entire row or column, but when all the data is on a single grid, columns and rows often
contain more than one region of data (see Figure 10a, where the columns run over two
sets of data). Only when data sets can be separated out into distinct complex cells does
whole-row and whole-column referencing become useful. For example, in Figure 10c
the user could easily find the average GPA for all students by typing =average([*,
“GPA”]). This approach would not work in Figure 10a, since the region would have to

be explicitly defined.

Adding named rows and columns also makes cell referencing more robust to
changes. In traditional spreadsheets, if the user inserts or deletes a row or column then
cell references have to be updated in order to stay accurate. This approach, though
inconvenient, works because of the limited size of conventional spreadsheets. Once
spreadsheets can contain any-sized complex values, the number of possible references to
update grows very quickly. If named references are used instead of numerical references

then insertions, re-orderings and deletions will have no effect on cell references (the

17

reference [“Income”, “Mar”] is not affected by row and column index changes).

Referencing is robust to changes in the spreadsheet structure.

In traditional spreadsheets it is always clear which cell the user is selecting
because all cells are separate. Once we allow for complex-valued cells, ambiguity arises.
If a user clicks on a matrix, did they mean to select the entire matrix, or a value in the
matrix? In Figure 9a is the cursor selecting the entire budget table =[2,2], or just the cell
=[2,2].[“Income”,”Mar”]? For ICE Sheets we assume selection goes as “deep” as it can,
and in the above case would select the cell =[2,2].[“Income”,”Mar”]. If the user wanted
to select the whole table she could click outside the grid of values but still inside the table
cell itself (point F in Figure 9a). By always providing a region of the format that is not
part of any inner cell, we make either type of selection possible.

Complex Value Creation

To let users create a complex cell we add a “Create Table” option. This option
creates a new complex cell and shows a table view of that cell that can then be edited.
However, since complex values are essentially a collection of inner values, the obvious
question is “how many values do | need?” If the complex value is a database, for
example, it may not be clear at first how many entries are needed. Our answer is to make
complex value sizes dynamic, just like spreadsheet tables. By viewing complex values as
a nested table, users can scroll down or right to add as many additional values as they

need, eliminating the size problem.

18

However, solution formulation often occurs during development, not before.
Many users will enter a region of values, and then realize those values should be
combined into a single complex value. Our system implements this functionality with the
“Create As Table” option. Figure 10 shows this for two separate regions of data, one
above the other. The regions are combined into complex values which are placed in the

top-left cell of the selected region.

[PE x
T 3 4 5 [
1 Brigham Young U:
2 Student ID Student Name Average Ltr Grade GPA
34 78-845-88 Tricia Alverson 93 A- 37
| 55-489-86 Alexander Bybee 85 B 3
all 3 41-627-25 Michael Caine 95 A 4
6 22-231-52 Lee Duncan 84 B 3
| 51-623-63 Susan Evans 75 [« 2
3
Sql Class Summary Average Lir Grade GPA
104 Average 86 B Rl
114 Highest Score 95 A | k&rﬁec.:]sl;l'abl eJ
124 [Lowest Score 75 c
e / P
FaEx
i1 2 3 4 3 [Al
14 Brigham Young [
2 Stfident Name Average Ltr Grade |GPA
3 1c1a Alverson 93 A- 3
4 exander Bybee 85 B 3
S ichael Caine 95 A 4
b 54 Lee Duncan 84 X Gbesi=nsilahley
7 51.623.63 I I CleacOele U
o B = fil—
Class Summary &
Average k|
S Highest Score M
2 Taossrast Seare
10
> = >
FREx
™ A
1 Brigham Young Umversity
| SwdentIDT] SmdftName Average | Lur Grade = GPA A
1 78-845-88 |Tricia Alverson 93 A= 137 '
;.4! 55-489-86 Alexander Bybee 85 B |E]
3 41627-35 |Michael Cane 95 A 4
2 N °2-231-52 Lee Duncan 84 B 3
C 3 151-623-63 Susan Evans 75 &) 2 v
- >
3
Class Summary Average Ltr Grade GPA
1 Average 86 B 313
2 Highest Score 95 A D
4 3 Lowest Score 75 C 2 i
3 -
§ e >

Figure 10: Users can select regions of cells and combine them into independent complex
cells.

19

The modularization of complex values has the added benefit of separating regions
of values away from one another. In traditional spreadsheets, inserting into one region of
values affects other regions, as does resizing or moving rows and columns. In Figure
10a, the “Student Name” column needs to be very wide, but this forces the “Average”
column below to be much wider than necessary, taking up precious screen space. Once
regions are combined into complex cells (Figure 10c), the “Student Name” column in the

first complex cell can be sized without resizing the other complex cell.

Complex Function Results

Conventional spreadsheets don’t offer complex-valued results. Some array-type
results are possible, but these are still spread across regions of cells. By allowing more
native support for complex results, ICE Sheets makes complex computations more
feasible and usable. For example, since spreadsheets can now return tables of values, it is
easy to create functions that return standard 2-D geometry matrices (scale, rotate,
translate) as in Figure 11. This takes half as many equations as the same set of
calculations in Excel (Figure 12). Functions can also be written for database-like
functionality including select, project, sort and join statements as in Figure 1. Likewise,
functions can be written to take in a set of data instances and return an array of
coefficients for a linear perceptron or a least squares approximation. Functions can even
return the list of books by a given author on Amazon.com, or the list of web sites
matching a given query on Google. Many new possibilities open up when functions can

return complex results.

20

Initial Vedtor
10 |
=scale2D(3, 2) Ir' | =MMult({[“Scale"], [“Initial Vector”])
| 30 0.0 00 ‘“\‘ 50
3
0.0 20 0.0 10
Scale
' 0.0 0.0 10 10
=rotate2D(30) % | =MMult([“Rotate 30"], [2, 2])
| 0866 05 0.0 5794
=9
0.5 0.866 00 7.964
Rotate 30
| 00 0.0 10 10
=rotate2D(-60) | [=Mmult([“Rotate -60"), (3, 21)
0.5 0866 00 ‘“\ o704
=3
0866 05 00 -1.036
Rotate -60
0.0 0.0 1.0 1.0

Figure 11: 2-D geometry matrices are a good example of function set that returns complex

A [s [(e =] F
i
3 | Initial Vector 3 -SiN{RADIANS{All]]I
3| 2 [=iMmuLT(B6:D8, B2:84)} |
esu1t|ng Vector
A S
5 Scag\w\.‘?\ 0 9
7| 3 0 4
- 2 0 0 1 1
] =COS(RADIANS(A11)) ={(MMULT(B10:D12, F6: F8)} [
W -
10 Rﬁrg-:n\‘ 0866025 ¥.05 0 \\5194225534
M 7 05 0B6EE025 0 7.964101615

] -SIN{RADIANS{AHH }/ 1

1

]-cos{RADmNs{Ann :] ={MMULT(B14:D16, F10: F12)}

L

2| Rede 0 |05 0866025T O \\9 794220634
e 60 086603 05 0 1035896385
]—COS{RADIANS(AIS}} | /‘
i 0 1 1

]-SIN{RADIANS{AlE}} n—COS[RADIANS[Alsn ":CDS{RADIANS(AIE}} |

21

Figure 12: The example from Figure 11 written in Excel takes twice as many equations,
some special key combinations, and is not as clear.

Viewing Large Complex Values

A cell can contain any number of possible values, but the user cannot
understandably interact with large numbers of values when they are contained in a small
spreadsheet cell. We introduce the notion of “tearing off” cells, where a new window
pops up containing a larger view of the cell’s data. This new window is connected to the
same model, but can be changed to whatever size is convenient for the user. For
example, a table could contain a complex value that served as a database of university
students. The entire database could be held in one cell, and cells below could be used to
write simple functional queries with results of only a few columns (say, the average GPA
per semester, or the list of all classes per semester as in Figure 13). It would be a waste
of space to expand the entire column since the queries have only a few columns, but the
actual database is too large for the column width. Instead of widening all the cells, the
user could tear off the database cell and interact with it in a separate window (Figure 13).
This notion of “tearing off” solves the problem of dealing with exceptionally large

complex values by letting the user pull out key items to view in detail.

22

I_;L‘ﬂ%me cormpisiis =

Name] Class!|
1 Tohn Jones o5 100
2 Sam Hansen 2100
30 Sta Farck C8 100 oW 5
4 _:Hu;?;e Humphrey 3 100 Neng : 2 i
1 50 Tom Timmons |Eng 316 1 John Jones Ccg 100 4 Fall 2007 Jones
6. Sandra Sully Eng 316 ':' Sam Hansen CS 100 34 Fall 2007 Jones
=—tagey Farck Cs 100 37 Fall 2007 Jones
=pivot({[], “Semester”, average([*, “Grade"])} |ble Humphrey C5 100 34 Fall 2007 Jones
i =Tom Timmons Eng 316 34 Fall 2007 Simmeons |
s Fall 2007 5 336363636363636 6 Sandra Sully Eng316 3 Fall 2007 Sunmons ,
Winter 2007 32076923076923072 4 1 Everett Morgan Eng 316 27 Fall 2007 Berk
. 8 Hum 02 27 Fall 2007 Tamison
Class Semester’ UM | 5 Rafe Prince Hum 202 4 Fall 2007 Jamuson
15100 Fall 2007 i 100 Percival Wells Hum 202 E] Fall 2007 Jamison
2 Eng 316 Fall 2007 ' 11 Hemman Granger Hum 202 i4 Fall 2007 Jarmison
3 Hum 02 Fall 2007 12\ Harold Potts Math 100 27 Winter 2007 (Morley
5 4 Math 100 Winter 2007 13 Ronald Wealsman Psych 100 34 Winter 2007 Willis
L TR TLFind me AT ¥ 14 .Tﬂrﬁ'ﬁy Elout ps}'ch 100 37 Winter 2007 Willis
= > iz Stacey Jensen Psych 100 17 Winter 2007 |Willis
_ o P e Amber Jensen C§ 224 3 Winter 2007 Daniels
| =prajectl], “Chiss’, “Semester) l 17 Jedediah Smith |C8 224 4 Winter 2007 Daniels
by | 18 Lawa Night CS 124 37 Winter 2007 Daniels
Eg .thg Heather Thompsor C3 224 37 Winter 2007 Daiuels

Figure 13: Complex cells can be "torn off", allowing a larger view of the same complex
data.

However, tearing off cells lets the user expand only one cell at a time. It does not
provide an easy way to rapidly expand multiple cells. In Figure 14a the user has a series
of matrix multiplications. He wants to review the cells one at a time, but there is not
enough room to show them all at once. It would be inconvenient to tear off all the cells,
to keep resizing rows and columns to view the cells one at a time, or to enlarge all the
cells and keep scrolling up and down within the table. Instead we introduce active and
inactive sizes for rows and columns. When the user clicks a cell, its row and column
assume their active size (see Figure 14a). When he clicks another cell the row and
column resume their inactive sizes and the new active cell expands its row and column
(Figure 14b). When a row or column is resized, it updates its active size if it contains the
active cell, otherwise it updates its inactive size. For consistency, the inactive size must

always be equal to or less than the active size.
23

[

ii Seal

o=

il

H

il

H

il

H
hil
nd |

II Rotate 30

il

H

il

H

il

i

Il potate &0

i te -60

il

i

il r

i f
[TR— I
i i I
i Trens
H
il
5
il E
i —
0 i
1
i @
ii

Hs
H

Figure 14: Activelinactive sizes. The "Tranglate" row is active, while others are inactive.
The active row and column have enough size to be interactive.

In addition to active and inactive sizes, each cell can be assigned an active and
inactive format. This lets the cell display usable information whether it is small or large,
active or inactive. For example, a series of point plots could show a line graph when
inactive, but show the table of values when active (Figure 15). This clears up screen
space taken in traditional spreadsheets, which keep visible both the data values and the
graph for each data set (Figure 16). The pairing of active and inactive formats lets the
user define for each cell a summary type of functionality and an interactive functionality,

providing a more effective use of screen space.

24

1 B 3
1
3 2 o m
1 2 |6 |15 . :‘;‘
o> 4 (6 |16 uc
3Nz [z |6 |4
491 (11 |7 |5 ' &
5 05 J12 |7 s
N SMc (13 |7 |1
- a7 1z 9 |2
Sl (6 9 I3
Slo |5 (8 |7 75 150
 Eeesm 9]
i |
A

Figure 15: These two complex values contain similar amounts of data. The left cell is
active and can be edited, while the right cell is inactive and displays a summary of its contents.

K8 - A

A | 8 [e T [T E T F "6 [H [=&
KRR A B C
2 | 1 2 5 EHI
E 2 4 5 15
2| 3 8 5 4
5 4 11 7 5| “
5| 5 12 7 B i
7] 5 13 7 1 ¥
s | 7 12 E] 2| " B !
9| 8 6 E] 3| ¥ 5
10| E] 5 g 7| i A
1 10 5 7 & % 4%
12 " 2 5 9 e
EH 12 3 5 2| . s
14 13 4 4 3
15| 14 3 7 Al T v i g i
15| 15 2 1 5
7]
KBRS A B C
19| 1 3 2 15
0| 2 5 2 16
21| 3 7 2 4
122 4 El 3 5
B 5 11 3 5
(24| 6 10 3 1 . -
% 7 s] 2
26| 3 3 4 3 -/J \‘“—\ .
Ed E] 7 E] 7|| (S 3.! _
El 10 B E] 5 7
El " 8 " 9| W
El 12 7 15 2| - 777%
El 13 6 7 3
H 14 2 & 1
E3 15] 5 5
E 2
W 4+ wl\Sheetl /Sheet2 / Sheet3 / [«] 3

Figure 16: In traditional spreadsheets, data and graphs must remain separate. This takes
up twice as much space as ICE Sheets.

Formats themselves also can easily adapt to different sizes and situations. For
example, when the matrix format is sized too small to show its contents, it instead shows
its underlying equation (as in Figure 14) or a “...” if even smaller. Such adaptive

formats add to the overall flexibility of our solution.

25

26

CHAPTER 4 - TEMPLATES

In ICE Sheets we separate data from equation code. Every cell has a value (scalar
or complex) and a table of important properties. This property table stores the cell’s
equation, its formatting parameters (font, color, etc.) and any additional parameters used
by the cell. Having property tables makes it possible for a cell to reference the code of
another cell by linking to the other cell’s property table, while keeping its own concrete
values. For example, in Figure 17 the two lower sheets are linked to the first sheet’s
property table, and are all using the same equation, A + B. If we update that equation in
the first sheet (say, to A + 2B), the change will be propagated immediately to the lower
two sheets as well. This kind of linking introduces the notion of code reuse, which we
call a “template.” We replace the prior notion of copy and paste with a more robust
template system. However, we also have to address issues with the creation and use of

template code.

27

J

)
'Ili'

[
(]

s
[

{iB
i Ore
.

ay
i
- ..]In:
i

w | @

i |
n-.'i‘-.-. -

Figure 17: In this example, the lower two sheets are linked to the first sheet’s property
table, allowing for reuse of the “code” in that sheet.

Copy and Paste

Code reuse in spreadsheets is traditionally accomplished by copy and paste. To
reuse an equation or region of values, the user copies it and pastes it to a new location.
For template code in ICE Sheets to be effective, it needs to be as usable and
understandable as copy and paste. We address this issue with the property tables already
mentioned. To link a cell to a template, the user right-clicks on the cell and selects
“Create Table”. The user can create the table “From Template” which lets them select a
file to be the template, or “From Cell” which lets them select another cell in the sheet to
be the template. Any change to the original template will be propagated to all cells that
use that template (see Figure 17). This process is comparable in ease to copying and

pasting, but has the added abstraction and modularity benefits of template code.

28

Using templates offers a more powerful method of code reuse. Traditional copy
and paste requires an intimate understanding of spreadsheet syntax (for example, the
difference between “A4” and “A4”). It is also likely that the user will fail to select an
important cell, causing the pasted region to work incorrectly. For example, a research
team may write a spreadsheet with a sequence of computations and function calls in
separate cells (Figure 18). They would like to view this equation with different initial
values, so they copy the region and paste it into the two rows below. However, the
original sequence relied on an unnoticed value in C2, and the pasted sequences do not
compute properly. Finding and correcting these types of errors takes unnecessary time
and effort. In ICE Sheets the problem is avoided by using complex cells. Instead of
spreading values all over a large grid, related values are held in a single complex cell.
The user can reuse this cell as a template without having to worry about missing

necessary variables.

A B c D E F G
1 Correct Result
2 98 Should be 22.7851
3
4 21 2.2 441 43.12 397.88 19 94693
5 25 5.4 625
6 15 3.1 225 13.64 211.3614.538225
7 Should be 12.8156 |

[+]

Figure 18: Copy and paste can easily lead to errors. The lower two rows are copies of the
first row, but pasting led to an incorrect reference.

29

Problems also exist when duplicating whole files. To reuse a spreadsheet file, the
user makes a copy of the file and changes the necessary values. The problem with file
copying is that a change to the original file will not be propagated to the sheets based on
that file. Instead the user has to manually find and correct every pasted copy of the
errored equations. A good example of this is a set of financial reports with a shared
miscalculation. In conventional spreadsheets, the problem would have to be corrected in
every instance of the report instead of just one. ICE Sheets prevents this concern through
the template system. Updating the template file will propagate the change to all sheets

based on that file.

Using Template Code

Because all complex cells have property tables, any complex cell is a potential
template. This is in contrast to previous research [4], where the user must intentionally
create a template by specifying an abstract set of equations which is later populated with
discrete values. The prior step of creating abstract code is no longer necessary since
property tables let the user define the template in the same phase as the concrete data.
There is still the additional concern of knowing what concrete values to use when
creating a complex cell based on a template. We initialize the new complex cell with the
same concrete values as the template, and then let the user override those values as

needed. This solves the problem of understanding cells created from templates.

Template code also makes it possible to augment all instances of a template at
once. Figure 19 shows a mortgage payment calculation template. The template is being

30

used to compare potential mortgages side by side. Originally this table only had four
values: Mortgage, Years, Rate and Monthly Payment. Later on the user wanted to add a
fifth row, Total Interest, as another means of comparison. To do this she entered a new
equation in the next row of the template and the rest of the instances instantly added this
equation as well. This kind of after-the-fact template updating is a very compelling
feature. To accomplish the same thing in traditional spreadsheets would take multiple

copy and paste commands and possibly a row insert as well (see Figure 20).

o
' : Template

Mortgage $250,000.00
Years 30
Rate 6.0%
Monthly Payment $1,498 .88
Total Interest $539,595.47.
£

—2_1 Manual Entry
(L 3 - 3
1

$280,000.00 & $180,000.00 M $250,000.00 M

30 20 35
6.0% 7.0% 5.0% '
n. $1,678.74 $1,395.54 $1,261.72
7 $6Q4,346.93 $334,929.14 $529,922.06
v v 4 v
¥ ™ >

Figure 19: Templates propagate their changes to all cells based on the template, so users
can add new data to all linked cells at once.

31

A B C D E

1
2 Maortgage $ 250,000.00 Morigage S 220,000.00
3 Years 0 Years 30
4 Rate 6% Rata &%
5 Monthly Payment $ 1,498.88 Monthly Payment $ 1,678.74
EF\. Total interest 4 Total Interest ﬁ. 604, 346,93
s | Rowlinsert ¢ 1300 Manual Entry H Copy & Paste | 0000
9 Years 20 Years 35
10 Rate 7% Rate 5%
11 Monthly Payment & 1,395.54 Monthly Payment % 1,261.72
12 Total Interast L

EHE.“ Total Interest 3 540, 922.06

Copy & Paste || Copy & Paste

13

Figure 20: In traditional spreadsheets it is much more difficult to add or update similar
equation code in separate cells.

When creating cells based on a template, there may be times when it is useful to
propagate changes to concrete values from the template to all cells using that template.
For example, a mortgage company may keep a standard interest rate across all
calculations. Normally numbers are considered concrete values, and so a change would
not be propagated. However, the user can simply make the constant into an equation
(instead of the value “.046”, the user could type “=.046") which will then allow a change
to be propagated to any cells using that template (by changing the equation in the

template to say, “=.049").

Users can create powerful and understandable templates by making complex cells
with concrete values and computations based on those values. When a complex cell is
used as a template, the user can edit the concrete values in the new cell and see the

computational results without rewriting or copying equations. Similar code reuse is

32

discussed in the User-Centered Functions research [5], and can be a useful and simple

way for end-users to create reusable functions for their spreadsheets.

Linking Templates

The linking of spreadsheet templates is simple and meaningful, but it raises
synchronization concerns. For example, what happens if a user deletes the template that
is the basis for another spreadsheet? What happens if a user emails their spreadsheet to
someone else, but not the associated template file? Does the cell lose all of its equation
and formatting information, or is there some recovery mechanism? Our solution is to
allow templates to be any complex value, even within the same table file. If there are
concerns about losing connectivity to the original templates, then those templates can be
housed within the same spreadsheet file. This makes it harder to use templates, but at
least addresses the synchronization problem somewhat. The broader question of how to

handle broken template links in general we leave for future research.

33

34

CHAPTER 5 - EXTENSIBILITY

In ICE Sheets we implement an easy extensibility of both functions and formats.
With the added flexibility introduced by complex-valued cells, many new uses will be
found for spreadsheet applications. As users find increasingly specialized uses for
spreadsheets, the set of included functions will become less complete. No standard set of
functions and formats can satisfy all the possible uses of spreadsheet programs, so some
mechanism needs to be in place to allow for development of custom functions and
formats. Function (but not format) design has been a common piece of spreadsheet
programs for many years, but allowing for complex-valued cells brings up new issues

that need to be considered.

Extensible Functions

Extensible functions in ICE Sheets are capable of returning complex values. This
is a very useful feature in many cases. For example, matrix multiply and database select
and join functions all return complex results that would be difficult to retrieve using
functions in traditional spreadsheets. This added functionality has the potential to make
function design too complicated to be useful. In ICE Sheets we partly address the
problem by basing all complex values on a table structure. Tables with named rows and
columns are capable of modeling many powerful and useful types of structures, while

still being generally understandable.

There is still the more general concern of creating functions with complex results,

however. We use a Java interface to help developers write functions for ICE Sheets (see
35

Figure 21). Most of the interface’s methods (getHelp, parameterName, parameterHelp)
are for end-user help, giving argument explanations to the user. In general, all the
developer needs to specify is how many arguments the function takes in
handlesNParameters, the type of each argument (String, Integer, Boolean, Table, Any,
etc.) in parameterType, and a compute method which receives the specified arguments
and returns some Object as a result. This is comparable in simplicity to Excel’s Visual

Basic for Applications (VBA) solution.

@ * <prInterface defining functions for use in ICE3heets.[]
public interface 3heetFunction extends ZheetExtension
i
= * The nunkber of parsmeters the function accepts.[]
public hoolean handlesNParaweters(int nParaweters)

B # General help on what the function does.[]
public String getHelpi):

@ * Specific name for the parameter at the given index.[]
public 3tring parameterMName (int idx):

@ * Help explanation for what the parsmeter at the []
public String parawmeterHelp (int idx);

@ # Reguired type for the parameter at the given index.[]
public ExpressionType parameterTypei(int idx):

L * Performs the actual computation and returns a result [
public Chject cowpute (Parameter[] parameters, SheetTable table,
CellIndex currentCell);

Figure 21: The Java interface used to create functions for ICE Sheets.

Functions are written as Java classes, and can be added to ICE Sheets by clicking
the “Manage Extensions” menu option. To add a function, the developer adds their
package name to the list of extension packages. Each package in the list must contain an
“ICESheet.ext” text file with a list of extension class names in the package. The
functions are loaded at runtime.

36

This Java interface brings ICE Sheets functions to the same level as Excel, but
additional functionality is possible because of complex-valued cells. For example, one
common need will be to perform a simple calculation on all values in a table (say, the
absolute value of an array of numbers, or the upper case version of an array of strings) or
on a set of equally-sized complex values (the squared difference between value pairs in
two tables). We implement an abstract class called SheetFunctionScalar for this very
purpose. The SheetFunctionScalar class overwrites the compute method to handle both
scalar and complex arguments. The developer writes a new method, computeValue,
which computes a result for scalars only. The SheetFunctionScalar compute method
takes the actual arguments and if any of them are complex values, it breaks them up into
separate scalar values. Then the computeValue method is called once for each possible

value combination.

For instance, a simple function called “difference” could have a compute method
that takes two scalars and returns the difference. If this function extended the
SheetFunctionScalar class then the user would simply change the compute method to
computeValue. If the modified function received two scalars as inputs, then it would just
call computeValue and return as normal. However, if the function received a table and a
scalar, then the SheetFunctionScalar compute method would take all the values in the
table, call computeValue for each scalar pair, and return the table of results. The same
thing would happen for two tables of values. The actual change to the function was

trivial, but it made the function much more powerful. Similar functions could trivially be

37

written to return say, the absolute value of an array of numbers, the sum squared distance

between arrays, etc.

A second commonly-used functionality is to take a list of arbitrary inputs and
perform some computation based on the entire list of inputs. This is different than the
previous example, since it agglomerates all arguments into a single list instead of keeping
arguments separate. For example, an “average” function could take a collection of
numbers and arrays of numbers, in any order. This function would be difficult to write
because the argument types are not specific. We implement an abstract class called
SheetFunctionArray to accomplish the task. The SheetFunctionArray class has a special
compute method which takes in the list of scalar and complex arguments and passes the

list of all extracted scalars to an abstract computeValue method.

If we had an “average” function that took a list of scalars and returned their mean,
we could improve the function’s power by extending the SheetFunctionArray class and
renaming the compute method to computeValue. This would let the function take in
scalars and arrays of scalars. The compute method would extract out the list of all scalars
and pass this list to the computeValue method, which would return the average.

Enhancing functions is this way is simple, but powerful.

Function extensions like SheetFunctionArray and SheetFunctionScalar are not
difficult to write, and make possible all sorts of powerful capabilities for spreadsheet
functions. Most importantly, they make writing complex-valued functions the same as
writing scalar-valued functions.

38

An additional example of the benefit of easily-extensible functions comes when
using spreadsheet programs on a computationally-weak computer. In this case, functions
could be designed to gather the arguments and pass overly complicated problems across a
network to some more powerful computer. This lets even a handheld device leverage
very powerful and complicated systems of computations. Such a framework could also
be used to retrieve information such as stock quotes or to query large online repositories

such as the BLAST database [2].

Extensible Formats

In addition to extensible functions, ICE Sheets also allows for development of
custom visual representations of data, called formats. Formats can be interactive or
static, and can be designed to work on scalar values (a number slider, a currency
formatter, etc.) or on complex values (a collapsible tree view, a bar graph, a matrix view,
etc.). Multiple formats may link to the same cell, and formats are capable of reading and
assigning or updating values to their associated cell. Previous conditional formatting
solutions provide a limited set of display options such as different colored backgrounds
or icons based on threshold values. These can be useful in some settings, but not all. For
example, a research team could write a Naive Bayes classifier that takes data instances as
input and returns a complex value of the resulting probability tables. In this case it would
be useful to design a format that clearly displays the contents of those probability tables
(see Figure 22). This kind of specialized format is not possible in traditional

spreadsheets because there is no notion of extensibility. Instead of providing only a few

39

formatting options, we allow for an unlimited, unrestricted set of display formats through

extensibility.
f 1 2
1
Color Intensity Classification A
1 Red High vl
2 Orange High &
3 Blue High O
5 4 Green High =
- 5 Red High &
6 Red Low i3 v
Red Orange Blue Green
true 0.5 0.5 0.0 0.0
3 false 0.167 0.167 0.333 0.333
Feature:|Calar q :
1 Intensity) st |

Figure 22: Many new display possibilities open up when formats are extensible. The
lower cell shows Naive Bayes probabilities for data in the upper cell.

Another compelling format example is in Figure 23. The user has a spreadsheet
to track their finances, and he wants to edit this spreadsheet on a widescreen desktop and
also on a smaller handheld device. The spreadsheet has one row and three columns, and
the three cells hold large sub-sheets that show a summary, a log and a budget,
respectively. On the desktop screen there is enough room to view and edit the sub-sheets
side by side, but the smaller device does not have as much screen space. We could write
a special tabbed format as shown that puts each column in a different tab. This tabbed

40

view is very similar to the view seen in traditional spreadsheets, and is more effective on
small screens. By allowing extensible formats, sheet layout can now be more flexible to

screen size.

RN R A

580l s |

Credit Card

Figure 23: Extensible formats allow users to interact with data effectively on different
devices.

The main concern when developing formats is that interactive software design can
be complicated and non-intuitive. Many developers would not feel comfortable
designing their own formats because they don’t feel capable of designing interactive
interfaces. We solve this problem by implementing our solution in the XICE

architecture.

XICE (eXtended Interactive Computing Everywhere) is a development
architecture for creating interactive components. It is easier to use than traditional
architectures because it simplifies both the creation of widgets and handling of events.
Widgets no longer have to implement a “paint” method to paint themselves to the screen.
Instead they organize a scene graph, or tree of sub-widgets, in a layout which is

41

automatically painted when needed. Additionally, event handling is simplified by a
default set of actions that pass events downward through this presentation tree until some
object in the tree processes the event. This greatly simplifies development, in our case

making it easier to develop customized spreadsheet display formats.

42

CHAPTER 6 — CONCLUSION

Our ICE Sheets system adds to traditional spreadsheets the concept of complex-
valued cells. By including complex values, template code and extensibility we allow for
easier representation and manipulation of complex problems within the spreadsheet
system. This has the potential to reduce errors during development and opens up many

new uses for spreadsheet programs.

When compared to traditional spreadsheet programs, ICE Sheets accomplishes the
same tasks with fewer cell entries (Figure 11), more understandable references (Figure
9), and greater flexibility of expression. Users can also replace fragile copy and paste
with abstract code reuse through the use of complex cell templates (Figure 17).
Developers can write much more powerful functions and display formats than were
previously possible, and can focus these solutions toward specific problem sets. This lets
users more effectively solve their complex problems by leveraging solutions custom
tailored to those problems (Figure 22). In all, these enhancements make complex

spreadsheet development a more powerful and understandable experience.

43

44

REFERENCES

1.Abraham, R. and Erwig, M. (2006). Type inference for spreadsheets. In Proceedings of
the 8th ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming ’06, 73-94.

2.BLAST (2007). BLAST: Basic Local Alignment Search Tool.
http://www.ncbi.nIm.nih.gov/BLAST/.

3.Carver, J., Fisher, M., and Rothermel, G. (2006). An empirical evaluation of a testing
and debugging methodology for Excel. In Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering 06, 278-287.

4.Erwig, M., Abraham, R., Cooperstein, 1., and Kollmansberger, S. (2005). Automatic
generation and maintenance of correct spreadsheets. In Proceedings of the 27th
international Conference on Software Engineering ’05, 136-145.

5.Jones, S. P., Blackwell, A., and Burnett, M. (2003). A user-centred approach to
functions in excel. In Proceedings of the Eighth ACM SIGPLAN international
Conference on Functional Programming 03, 165-176.

6.Kassoff, M., Zen, L., Garg, A., and Genesereth, M. (2005). PrediCalc: a logical
spreadsheet management system. In Proceedings of the 31st international Conference
on Very Large Data Base ’05, 1274-1250.

7.Matlab (2007). MATLAB - The Language of Technical Computing.
http://www.mathworks.com/products/matlab/.

8.Panko, R. R. (2005). What We Know About Spreadsheet Errors.
http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm.

45

9.Seila, A. F. (2006). Spreadsheet simulation. In Proceedings of the 37th Conference on
Winter Simulation 06, 11-18.

10.Weka (2007). Weka 3 — Data Mining with Open Source Machine Learning Software
in Java. http://www.cs.waikato.ac.nz/ml/weka/

11.Witkowski, A., Bellamkonda, S., Bozkaya, T., Naimat, A., Sheng, L., Subramanian,
S., and Waingold, A. (2005). Query by Excel. In Proceedings of the 31st international
Conference on Very Large Data Bases "05, 1204-1215.

46

	Improving Spreadsheets for Complex Problems
	BYU ScholarsArchive Citation

	IMPROVING SPREADSHEETS FOR COMPLEX PROBLEMS
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1 – INTRODUCTION
	Spreadsheet Limitations
	Figure 1: Complex-valued cells and function results are useful for tasks like database representation.
	Figure 2: Allowing for extensible complex-valued functions opens up new possible spreadsheet functions, such as a stock quote retrieval function.
	Figure 3: Extensible formats allow for many ways to view data. The front format could be a specialized format for smaller screens such as PDAs.

	ICE Sheets

	CHAPTER 2 – PRIOR WORK
	Error Prevention/Detection
	Figure 4: The WYSIWYT [3] system uses checks and X-marks to determine testedness.
	Figure 5: Designing "template" spreadsheets using ViTSL [4].

	Spreadsheet Enhancements
	Figure 6: The PrediCalc [6] table of dependencies before and after entering scheduling events e1 and e2. Dependent values are updated automatically.
	Figure 7: User-Centered Functions [5] let users create their own functions by pulling calculations out onto separate sheets.

	Matlab
	Figure 8: Matlab can display complex data representations, but is managed from the command prompt.

	CHAPTER 3 – COMPLEX-VALUED CELLS
	Robust Referencing
	Figure 9: Even complex cells can be understandably referenced using their row and column names.

	Complex Value Creation
	Figure 10: Users can select regions of cells and combine them into independent complex cells.

	Complex Function Results
	Figure 11: 2-D geometry matrices are a good example of function set that returns complex results.
	Figure 12: The example from Figure 11 written in Excel takes twice as many equations, some special key combinations, and is not as clear.

	Viewing Large Complex Values
	Figure 13: Complex cells can be "torn off", allowing a larger view of the same complex data.
	Figure 14: Active/inactive sizes. The “Translate” row is active, while others are inactive. The active row and column have enough size to be interactive.
	Figure 15: These two complex values contain similar amounts of data. The left cell is active and can be edited, while the right cell is inactive and displays a summary of its contents.
	Figure 16: In traditional spreadsheets, data and graphs must remain separate. This takes up twice as much space as ICE Sheets.

	CHAPTER 4 – TEMPLATES
	Figure 17: In this example, the lower two sheets are linked to the first sheet’s property table, allowing for reuse of the “code” in that sheet.
	Copy and Paste
	Figure 18: Copy and paste can easily lead to errors. The lower two rows are copies of the first row, but pasting led to an incorrect reference.

	Using Template Code
	Figure 19: Templates propagate their changes to all cells based on the template, so users can add new data to all linked cells at once.
	Figure 20: In traditional spreadsheets it is much more difficult to add or update similar equation code in separate cells.

	Linking Templates

	CHAPTER 5 – EXTENSIBILITY
	Extensible Functions
	Figure 21: The Java interface used to create functions for ICE Sheets.

	Extensible Formats
	Figure 22: Many new display possibilities open up when formats are extensible. The lower cell shows Naïve Bayes probabilities for data in the upper cell.
	Figure 23: Extensible formats allow users to interact with data effectively on different devices.

	CHAPTER 6 – CONCLUSION
	REFERENCES

