
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-05-28

Ranking Search Results for Translated Content Ranking Search Results for Translated Content

Brian Edwin Hawkins
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Hawkins, Brian Edwin, "Ranking Search Results for Translated Content" (2008). Theses and Dissertations.
1697.
https://scholarsarchive.byu.edu/etd/1697

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1697&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1697?utm_source=scholarsarchive.byu.edu%2Fetd%2F1697&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

RANKING SEARCH RESULTS FOR TRANSLATED CONTENT

by

Brian E. Hawkins

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2008

Copyright c© 2008 Brian E. Hawkins

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Brian E. Hawkins

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Christophe Giraud-Carrier, Chair

Date Sean Warnick

Date Eric Mercer

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Brian E.
Hawkins in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Christophe Giraud-Carrier
Chair, Graduate Committee

Accepted for the Department

Date Parris K. Egbert
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

RANKING SEARCH RESULTS FOR TRANSLATED CONTENT

Brian E. Hawkins

Department of Computer Science

Master of Science

Translation Memory (TM) is a valuable tool that helps human translators in

doing their job. TM consists of a collection of previously translated texts, called

translation units, that may prove useful in the translation of new text. The main

problem faced by translators who wish to take advantage of TM is that, although

search tools do exist, there is no standardized way of effectively ranking search results.

This thesis proposes a method for ranking TM search results together with a novel

approach to efficiently finding common substrings that is used in the ranking process.

ACKNOWLEDGMENTS

I would first like to thank my wife for her patience and help as I completed this

thesis. I would like to specially thank Dr. Giraud-Carrier for his time and willingness

to work with me in completing this work.

I would like to thanks all of my committee. Over the past few months I

have learned a lot from the comments and suggestions I received and I am extremely

grateful. Thank you all for helping me get to this point.

Contents

Contents vii

1 Background 1

2 Problem Formulation 5

3 Related Work 9

3.1 Similar Problems/Research . 9

3.2 Related Works . 10

3.2.1 Dynamic Programming . 10

3.2.2 Generalized Suffix Tree . 11

3.3 Fuzzy Set Equation . 12

4 Thesis Statement 15

5 All Common Substrings Algorithm 17

5.1 String representation . 18

5.2 Partial phrase matching . 18

5.3 All Common Substring Speed Comparison 23

6 TM Search Results Ranking 27

6.1 Ranking . 27

6.2 Filtering . 28

6.3 Ranking Survey Results . 29

vii

7 Conclusions 35

A Stop Word List 37

B Surveys 39

Bibliography 43

viii

Chapter 1

Background

In the language translation service industry human translators have a variety

of tools to help aid in the translation process. Human translators use such tools

as language dictionaries and machine translations, but the most coveted by content

owners is translation memory. Translation memory (TM) is a collection of previously

translated texts called translation units. Each translation unit is made up of segments

for each language the text is translated into. A segment can be as small as one word

or as large as an entire document, but the average size tends to be around one or two

sentences.

TM often comes in the form of an XML file with anywhere from a few hundred

to as many as a million segments. Human translators use search tools to search

through TM while translating new documents. translators try to leverage the existing

translated content, but the search tools that are available tend to be inconsistent in

ranking search results.

Human translators require different results than most search tools provide.

Modern data retrieval techniques tend to focus on finding documents that are similar

in content to the search query [3]. For example if I search Google for “I like to run in

the Boston Marathon”, I get search hits talking about the Boston Marathon or the

Boston Athletic Association. These types of search hits from Google are useless to

translators. When a translator searches for “I like to run in the Boston Marathon”,

they are not looking for information about the Boston Marathon, they are looking

1

for the exact phrase “I like to run in the Boston Marathon” or some portion of that

phrase. When searching through a TM, a translator would like hits for “I like to run”

or just “Boston Marathon”, if they are not able to get the entire phrase matched.

Partial results aid the translator in piecing together the translation. The problem is

that modern ranking techniques such as the Vector Space Model (VSM)1 [8] do not

consider sub phrase matching as part of the ranking algorithm.

Translators want search hits that help them to translate the document. For

a translator, the ideal search result is an exact match of the text being translated.

Exact matches can be automatically inserted by the translation tool. Unfortunately

exact match search results are not very frequent. The problem then becomes to

provide the translator enough partial match results so as to aid in the translation of

the text.

Historically, a common practice for ranking TM search results is to use

the edit distance metric [12]. The edit distance metric (EDM) is the number of

add/delete/modify operations that are required to turn one string into another. Many

TM searching tools use the EDM to determine the similarity between the text being

translated and the segments found in the TM. One of the flaws with the EDM is

when the exact text lies within a segment along with other texts. For example if the

translator is searching for “I like to run in the Boston Marathon” and the search hit

finds “I like to run in the Boston Marathon, as it keeps me healthy”. The EDM would

mark it low because of all of the deletes. Another case to consider when ranking is

when the search text is fragmented within the segment like this “I like to run in

the spring as it gets me ready for the Boston Marathon”. This segment needs to

be ranked higher than each individual substring alone but lower than an exact match.

1In the VSM a phrase is represented by a vector that is created using frequency values of the
terms found in the phrase. Similarity between phrases can be found by calculating the cosine of the
angle between the two vectors.

2

It should be noted that although in the above example the substrings “I like

to run in the” and “Boston Marathon” appear in order in the search hit, the order of

the substrings is not considered.

Simard and Langlais [7] show that by using sub-phrase matching instead of

EDM the search tool can provide better results to the translators. The search tool

developed in [7] looks for the longest match within the segment, but does not provide

a means for ranking the results.

Ranking results is a difficult problem and no two translator search tools do

it the same. To solve this problem my solution adopts a formula from the fuzzy set

model. The formula in the fuzzy set model is used to determine similarity between

two documents. In my case I will use the formula to assign a rank to each segment

based on the number and size of each common substring.

In order to efficiently rank results for translators in a timely manner, my

solution requires a fast algorithm for finding all common substrings. In this paper I

propose a solution to the ranking problem as well as introduce a novel algorithm that

is able to find matching substrings in linear time for natural language sentences.

3

4

Chapter 2

Problem Formulation

Consider some finite alphabet of symbols A. A string is an ordered collection

of symbols from A given by sn := {(s[1], s[2], . . . , s[n]) : s[i] ∈ A, i = 1, . . . n} and

where n = |sn| is called the length of the string.

A set of all strings of length n is given by Sn. The set of all possible strings is

given by S := ∪∞

i=1S
i. A corpus Υ is a subset of S.

As a clarification, we use the subscript sj ∈ S to denote a particular string in

S, whereas sj [i] is the ith symbol in the string sj and sn
j ∈ Sn to be a particular string

in Sn. We use the notation sl[i, j](sa, sb) to denote a common substring of length l

that begins in the ith position of string sa and at the jth position of string sb, however

we may omit the notation (sa, sb) when the two strings are inferred from the context.

Given two strings sa and sb, a common substring is a string sl[i, j] such that

sl[i, j] := ({sa[i], sa[i + 1], . . . , sa[i + l − 1]} = {sb[j], sb[j + 1], . . . , sb[j + l − 1]}).

For our purposes we wish to use only the maximal common substrings. A

maximal substring at position (i, j) is defined as

s̄l[i, j] := sl[i, j] : (sa[i − 1] 6= sb[j − 1]) ∧ (sa[i + l] 6= sb[j + l]).

5

Let the set S̄a,b be a set of all maximal common substrings between the strings

sa and sb such that

S̄a,b := {S̄l[i, j] : 1 ≤ l ≤ min(|sa|, |sb|)}

Given a function f(sa, sb) : sa × sb → [0, 1] that ranks the similarity of the

string sb to sa, the optimal ranking problem is: given a corpus Υ and string sa ∈ S,

where sa is an arbitrary string and sb ∈ Υ, we want to find maxsb∈Υf(sa, sb).

In this work, we consider the function f(sa, sb) given by

f(sa, sb) := (1 −
∏

si∈S̄a,b

(1 −
|si|

|sa|
)).

Our definition of f(sa, sb) is a directed measure of the similarity of sb to sa. By our

definition of similarity the string sb is said to be similar to sa if it contains all or parts

of the string sa. The string sb can be similar to sa, but the opposite may not be true,

especially if the string sb is much larger than sa. For example say sa is “I like to run”

and sb is “I like to run in the Boston Marathon”. In the previous example sb is very

similar to sa because it contains the entire string sa, but sa is not as similar to sb

because it contains only part of the string of sb.

As part of this thesis we want to understand how this problem using the

measure f corresponds to the results of a human survey. Let the function f̃(sa, sb)

will be the result of the human survey. We will survey several translators and have

them rank some corpus Υ′ and compare those results to f using the following metric.

Our metric for measuring the similarity of f(sa, sb) and f̃(sa, sb) will consider the

top five results using f as compared to the top five results using f̃ . Let T (si) be a

function that returns the number of translators that picked the string si. Let f̃Score

6

be defined as

f̃Score :=

5∑

i=1

T (si) : (∀i : T (si) ≥ T (si+1))

We will then compute the fScore where

fScore :=

5∑

i=1

T (si) : (∀i : f(sa, si) ≥ f(sa, si+1))

The similarity of f with respect to f̃ is calculated as

u(f, f̃) =
fScore

f̃Score
→ [0, 1]

7

8

Chapter 3

Related Work

The related work is broken into three sections. In Section 3.1 we introduce

some other problems that are similar to ours and are often confused with the problems

we face in this work.

In Section 3.2 we introduce two solutions for the longest common substring.

Finally in Section 3.3 we will introduce some algorithms and concepts that we have

adapted to help solve our problem.

3.1 Similar Problems/Research

TM is often used in research, but is not known to be associated with ranking problems.

TM is widely used in Example Based Machine Translations (EBMT) [10, 5]. EBMT

uses TM to train machine translation engines in attempts to enable the computers

to translate in a way that reflects human translators. The goal of EBMT is similar

to ours in that the purpose is to provide humans better translations. Our approach,

however, is to provide better translations through accurate ranking of TM instead of

providing a machine translation.

One of the problems faced when attempting to rank translation search hits is

that of finding all of the common substrings between two strings sm and sn. This

is very similar to the longest common substring problem. The only difference being

that we want all of the substrings instead of just the longest.

9

Another similar problem is that of finding the longest common subsequence.

The longest common substring tries to find a common substring that is contiguous

in both sm and sn. The longest common subsequence however is not concerned

with whether the subsequence is contiguous or not. Hunt and Szymanski [6] solved

the subsequence problem using an algorithm that runs in O(nlog(n)) time. When

searching TM we are only concerned with words that are together so that they have

the same semantic meaning. Requiring that the words are together rules out the

usage of finding common subsequences.

3.2 Related Works

From our research no one has proposed a solution to ranking search hits from TM.

We believe our solution to be the first published method for ranking TM search hits

in a way that matches what human translators are expecting.

Part of our problem deals with finding the common substrings between sm and

sn. The problem of finding common substrings has been addressed and we will cover

the two main solutions in this section.

3.2.1 Dynamic Programming

Dynamic programming is a technique for solving problems that can be broken down

into a set of smaller problems. Programming a solution to these types of problems can

be easily done with recursion or nested loops. The downside of dynamic programming

solutions is that they tend to run in quadratic time.

As mentioned earlier a problem with the dynamic programming solution is

that each time a comparison is done both strings are considered in the computation.

Pre-processing one of the strings and using it over and over is not an option. Being

able to pre-process one of the strings is important as we compare one string with

several segments from the TM in order to rank them for the translator.

10

3.2.2 Generalized Suffix Tree

Figure 3.1: Suffix tree of the word “BANANA”. Often a special character is appended
to the end to mark the end of the string, in this case the string is appended with “$”.

A suffix tree is a tree where each branch off of the root represents a suffix of

the word or phrase contained within the tree. A suffix tree of the word “BANANA”

is shown in Figure 3.1. A suffix tree differs from the suffix trie1 in that nodes with

only one child are collapsed together. The collapsing creates edges with more than

one symbol in the label. Collapsing the nodes saves space and enables the tree to be

built in linear time. Most often, a symbol is a single character from the phrase, but

it does not have to be.

Suffix trees are commonly used for indexing and solving string searching prob-

lems [4, 9]. Most people think of the Boyer Moore algorithm [2] when they hear of

string searching. The Boyer Moore algorithm is well suited for finding exact matches,

but when the length of the potential match is unknown the algorithm does not do

well. The suffix tree is well designed for finding partial matches and is often used in

1The word trie comes from the word retrieval and it refers to a specifically built tree that is used
for data retrieval.

11

regular expression matching. Suffix trees provide fast look up times and can be built

in linear time using non trivial algorithms [4, 11].

A good usage for a suffix tree is searching for a substring. For the tree shown

in Figure 3.1 say we are searching for the substring “NAN”. Because all possible

suffixes of the tree start at the root the search for “NAN” begins there. From the

root we see that the substring “NAN” starts in the branch on the right. The edge

labeled “NA” contains the first two letters of “NAN”, then continuing down the tree

the lower edge labeled “NA$” contains the last “N”. Because all suffixes start at the

root the look up is done in linear time with respect to the size of the substring.

When comparing two strings to find common substrings between them, a suffix

tree can be built from the first. A look up is then performed for each symbol in the

second string and common substrings are discovered as matches are found.

Our solution for finding the common substrings can also run in linear time,

in our applications context and is easier to implement. We will discuss our solution

further in Section 5.2.

The following section covers other work that we have borrowed ideas and

concepts from to help in solving our problem.

3.3 Fuzzy Set Equation

In fuzzy set theory each member of a set has a degree of membership instead of either

included or excluded. The degree of membership is defined as a real value in the

interval [0, 1], where 0 is totally excluded and 1 is totally included. The fuzzy set

model [1] for Information Retrieval expands on the idea of fuzzy set membership to

define the similarity between two documents. In order to define the similarity between

two documents a term-term correlation matrix is created. The term-term correlation

value is calculated using Equation 3.1. In Equation 3.1, ci,l represents the correlation

factor between two terms ki and kl where ni is the number of documents that contain

12

the term ki and nl is the number of documents that contain the term kl and ni,l is

the number of documents that contain both terms.

The degree of similarity between two documents is determined by the degree

of membership of each term in one document when compared to the terms of the

second document. The degree of membership µi,j of a term ki in a given document

is calculated as shown in Equation 3.2.

ci,l =
ni,l

ni + nl − ni,l

(3.1)

µi,j = 1 −
∏

kl∈dj

(1 − ci,l) (3.2)

The degree of membership µi,j is calculated as the complement of a negated

algebraic product. The term ci,l is the correlation factor obtained from the correlation

matrix for the two terms ki and kl.

When the correlation ci,l = 1 it does not matter as to the correlation of other

terms as the degree of membership will be 1. Inversely, if the correlation of two terms

is 0 then it does not adversely effect the value of µ.

If we think of the rank of a search hit as synonymous to a degree of membership

then this equation becomes very useful for calculating rank. A µ value of 1 is the

same as a 100% match. A µ value of 0 is the same as no match. We will discuss other

advantages of this equation further in Section 6.1.

13

14

Chapter 4

Thesis Statement

Fast accurate ranking of search hits from Translation Memory can be achieved

through a combination of efficient domain-specific common substring matching and

effective ranking based on a fuzzy similarity function.

15

16

Chapter 5

All Common Substrings Algorithm

In our solution we focus on ranking the results provided by searching a TM

loaded into the Lucene search engine. Lucene is an open source search engine that

is written in Java. Lucene is very fast and does an adequate job of returning an

initial set of results that we can use our ranking technique on. Lucene ranks results

using the popular VSM [8] model where the weights are provided by using TF/IDF

(term frequency/inverse document frequency). Using the result set from Lucene as a

starting point works well as it provides search hits with the most terms as well as the

rare terms. Terms that are less frequent in the corpus have a higher chance of being

harder to translate, because they are not commonly translated and therefore could

be more important to the translator.

When discussing search results from TM the query represents the text that is

begin translated. The search hits are segments within the TM that are found to have

matching words according to the VSM ranking.

The rest of this chapter is laid out as follows: We first introduce, in Section

5.1, a method for query representation that will be used throughout the paper. We

then introduce, in Section 5.2, a novel technique for finding partial matches in the

search hit. In Section 6.1 we introduce the ranking algorithm and finally in Section

6.2 we describe the filtering technique used to find distinct search results.

17

A 0, 3
B 1
C 2, 4
D 5

Table 5.1: Contents of Hashm

5.1 String representation

For brevity throughout this paper we will use the following short hand to represent

strings of text. The string “I like to read books and read magazines” can be reduced

to “A B C D E F D G”. Each letter of the abbreviation is arbitrarily chosen to

represent a unique word in the string. The letter D shows up twice, once for each

occurrence of the word “read”. This way strings with repeated words can easily be

represented without the need to come up with an actual example.

5.2 Partial phrase matching

An important part of our solution is to be able to quickly find common substrings in

both the query and the search hits. In this section we describe a novel algorithm for

quickly locating all common substrings. The algorithm used here is also applicable

to the longest common substring problem [4, 9].

Given two strings sm and sn, the common substrings can be represented

as sl[i, j](sm, sn). For example take the following strings sm and sn where sm =

{ABC DE B CF} and sn = {GABC DG H}. The common substrings between

sm and sn are s4[1, 2] = {A B C D} and s2[6, 3] = {B C}.

Our solution is based upon the fact that when matching, terms of sm and sn

are placed in a matrix (see Figure 5.1), the common substrings form contiguous lines

along the diagonals of the matrix. We will locate the common substrings by placing

matching terms into queues that represent each of the diagonals. In Figure 5.2 we

show a diagram of the matrix with each diagonal labeled.

18

Figure 5.1: Matrix showing matching substrings between strings sm and sn.

We start by placing each term of sm into a hash table along with its position

in sm. We will refer to this hash table as Hashm. For example we will use the string

from Figure 5.1 where m = {A B C A C D}. After placing the contents of sm into

Hashm the table will contain the values shown in Table 5.1.

Figure 5.2: Matrix of sm and sn with each diagonal numbered.

Q = |sm| − Posm + Posn − 1 (5.1)

19

Next we consider each term t in sn. For each t we perform a look up in Hashm

to determine if t exists in sm. For each occurrence of t in Hashm we place an entry

into the appropriate queue based on Equation 5.1. To understand this process let

us consider the first term in sn, “B”. For the first term “B”, Posn = 0 and Hashm

returns Posm = 1. To calculate which queue term “B” belongs to we input the

positions of “B” in sn and sm into Equation 5.1 and we get

Q = 6 − 1 + 0 − 1 = 4

The number of queues that must be maintained at any given point in time

while processing sn is dependent upon the amount of duplicate terms in sm. In the

type of data for this project, duplicate terms tend to be very low, so instead of creating

all queues up front we only maintain the queues (the active queues) into which we

have placed entries. Maintaining the queues is done by placing the active queues into

a hash table, Hashq.

The process of considering each term ti in sn starts by performing a look up

in Hashm for the term ti. If ti exists in Hashm then an entry is made into the

appropriate queue, as described above. As an entry is added to a queue, the queue is

flagged as “updated”. After processing ti all queues that are not flagged as “updated”

are removed and placed into a saved list Saveq. Queues that are flagged “updated”

have the flag removed, but remain in Hashq. After processing all terms in sn, Saveq

will contain a list of all maximal common substrings between sm and sn.

The following pseudo code outlines the process described above.

for all terms t in sm do {Step 1: place values of sm into hash table}
Posm(t) → Hashm

end for
for all terms t in sn do {Step 2: process each term in sn}

for all t ∈ Hashm do {Step 2.1}
Compute the diagonal i

20

Insert t into Qi

Flag Qi as updated
end for
for all active queues Qa do {Step 2.2}

if Last term in sn then
Remove Qa and place in Saveq

else if Qa not updated then
Remove Qa and place in Saveq

else
Remove updated flag

end if
end for

end for
for all active queues Qa do {Step 3}

Remove Qa and place in Saveq

end for

We will prove that the algorithm runs in quadratic time and then show that

with our data set the algorithm runs in linear time. We will start by looking at each

step in the above code and examine the complexity thereof. In Step 1, the values of

sm are placed into the hash table Hashm. Inserting into a hash table can be done in

constant amortized time so this loop can be performed in O(m) time.

Figure 5.3: Best case scenario. The red lines indicate which are the active queues and
in what iteration they are processed. Only one queue is processed in each iteration.

Step 2. The outer loop in this step will run for each term in sn and performs a

look up in Hashm. The first inner loop (Step 2.1) only runs when the term t is found

in Hashm. The contents of step 2.1 computes the diagonal on which the correlation

21

Figure 5.4: Worst case scenario. The red lines indicate which are the active queues
and in what iteration they are processed. In each iteration, except the first and last,
m + 1 active queues are processed.

occurs, performs an insert into a queue and marks the queue as updated, all of which

can be done in constant time. In the worst case the loop in step 2.1 will run a total

of m times or O(m). The second inner loop (Step 2.2) will run as many times as

there are active queues. In the best case for Step 2.2 each correlated term is placed

into the same queue as in Figure 5.3 and the loop runs once. In the worst case (See

Figure 5.4) the number of active queues can be as many as m + 1, so this loop will

run in O(m). It follows that Step 2 will run, in the worst case, in O(m · n) time.

Step 3 can be considered as the last iteration of Step 2.2. Step 3 is the cleanup

step to remove any remaining active queues and can process as many as m queues.

The run time for Step 3 is O(m).

The total running time can be stated as Step 1 O(m) + Step 2 O(m·n) + Step 3

O(m) or the whole thing is O(m·n) and therefore quadratic in the worst case. Looking

closer at the algorithm we can see that run time of Step 2.1, 2.2 and 3 are not directly

dependent up on m and n but upon the number of correlating terms between sm and

sn. In Figure 5.1, Figure 5.3 and Figure 5.4 we have represented correlating terms by

placing a T in the table. We define the number of T ’s as r := |{∀(i, j) : sm[i] = sn[j]}|.

In the case of Figure 5.1 r = 14. In the best case where sm an sn have no correlating

22

terms r = 0, but in the worst case where sm and sn contain the same repeated term

then r = m · n. We can restate the speed of Step 2 as O(n + r), even if r = 0 the

outer loop will run at least n times. The entire process can then be stated as O(r).

Given the nature of our data we can put some bounds on r. One of the bounds

we can place is based on the most repeated term in sm. In general, sentences have

very few words that are repeated, if they do these words are usually articles such as

“the” and “a”. Some odd exceptions to this are the sentences “Buffalo Buffalo, buffalo

Buffalo Buffalo, Buffalo Buffalo buffalo” and “James, while John had had ‘had’, had

had ‘had had’; ‘had had’ had had a better effect on the teacher”. Fortunately such

silly sentences are rare. By analyzing the sentences in our sample TM we find that

the most frequent term in a single segment is ‘the’ and it is used 13 times. From this

we can say that r ≤ 13 · n.

We can still do better if we multiply r by n/n so we get n · r/n. The ratio

r/n is a value we can empirically sample from our data set, we will define this ratio

as r̄ := r/n. Using the 75 sample search results used in our survey - which we have

deemed as good results - the average value of r̄ is 0.6382955. Only 9 of the 75 results

have a r̄ value of greater than 1.

As mentioned above, the total running time of our search algorithm can be

stated as O(r). Since, in our data set, r̄ ≤ 1, we have that the total running time is

O(r) = O(r̄ · n) = O(n), which is linear.

5.3 All Common Substring Speed Comparison

We have shown that for our data set, our common substring algorithm can run in

linear time. In this section we will examine some empirical speed comparisons between

our algorithm and the suffix tree. We devised three tests that grow the size of the

strings being compared. In all three comparisons the timing shown is the result of

looping the algorithm one thousand times.

23

Figure 5.5: Comparison one

In the first comparison (Figure 5.5) we keep the size of sm constant at 50. To

be consistent with our data set we keep the ratio r̄ = r/n = 1. With both algorithms

there are two phases to the comparison. The first phase is that of setting up the data

(reading sm) and the second phase is that of reading sn and finding substrings. In

the first comparison we hold sm constant so time required to setup the algorithms is

constant. The first comparison shows the suffix tree to run in about half the time as

our algorithm. This makes sense if we understand how the two algorithms work.

In the second phase our algorithm allocates objects and data structures while

building each queue. The suffix tree on the other hand is just reading the tree. In

the first comparison the difference between allocating memory and just reading data

is apparent.

In the second comparison (Figure 5.6) we keep the size of sm and sn equal and

again r̄ = 1. The second comparison includes the time required to setup the data.

For our algorithm the time to setup the data is much faster than the suffix tree. In

the second comparison the setup time balances out the search time for the substrings

and both algorithms run at about the same speed.

24

Figure 5.6: Comparison two

The last comparison (Figure 5.7) is the same as the second except we set r̄ = 3.

The third comparison shows a slight curve as our algorithm begins to run in quadratic

time whereas the suffix tree continues to run in linear time.

25

Figure 5.7: Comparison three

26

Chapter 6

TM Search Results Ranking

In this chapter we look at our ranking technique and compare our results to

the results of a user study.

6.1 Ranking

Ranking is performed by looking at the length of all partial matches within the search

hit. To calculate the ranking of a particular search hit we use a formula similar to

what was introduced in Section 3.3. In our equation instead of calculating µ we will

calculate the rank of the search hit as a value bound in the interval [0,1].

Our equation is modified slightly from that in Equation 3.2. Instead of the

correlation factor ci,l, we use the ratio of the lengths1 of the substring Si to the string

sm. The equation (Equation 6.1) looks at all substrings Si within the list of substrings

found to be common between sm and sn (Saveq).

Rank(sm, sn) := (1 −
∏

si∈Saveq

(1 −
|si|

|sm|
)) (6.1)

We can use Equation 6.1 to calculate the rank of the following two strings.

Assume m = {A B C D E F} and n = {A B C X Y C D E F}. There are two common

substrings between sm and sn of lengths 3 and 4. The rank of the search hit sn is

1The length of the string is calculated as the number of words in the string.

27

calculated as 1 − ((1 − 3/6) · (1 − 4/6)) = 0.83. String sn is an 83% match of string

sm.

Some of the nice features of this equation are that the size of sn is irrelevant

to the rank. All substrings are accounted for in the rank as long as the exact match

is not found. If string sm shows up in its entirety in sn then the equation returns a

rank of 1 regardless of other possible substring matches.

Based on results from our user study we did modify our ranking algorithm in

the following ways. Common substrings of length 1 were not included in the rank.

Stop words that either begin or end a common substring are not considered as part of

the length of the substring. Theses modifications tended to be more consistent with

the results we obtained from our survey. The list of stop words used can be found in

Appendix A.

6.2 Filtering

The filtering phase is where hits with duplicate terms are removed. This process is

to ensure the top hits will all help to translate the document. The filtering process

starts with the highest ranked result from the previous ranking phase. If the search

hit has a rank of 1 (exact match) it is skipped and not included in the filtering stage.

Starting with the highest non 1 ranked hit, the terms in the query are marked. Each

query term is marked if that term shows up in a search hit. The process continues

to the next lower ranked search hit. Query terms that are marked are removed from

the search hit’s ranking calculation, thus changing the ranking of the search hit. This

process continues through all of the ranked hits. Some hits may get filtered more

than once.

The process of filtering removes search hits that match the same portion of the

query. After filtering, the translator is presented with distinct search hits that offer

the greatest variety in translations for the query. For example take the query “I like

28

to run” and lets say the phrase “I like to” is translated in 50 different documents and

the term “run” only shows up once. The filtering process will eliminate the duplicate

translations of “I like to” and allows the translation of “run” to come to the top of

the search results.

6.3 Ranking Survey Results

To validate our ranking algorithm we chose a large TM consisting of over 100,000

segments and loaded the TM into the Lucene search engine using the standard ana-

lyzer. The standard Lucene analyzer searches for text using first a boolean algorithm

and then ranks the hits using the VSM. The VSM ranking provided the baseline for

our ranking test.

We then chose three segments from the TM to use as our test searches. To

narrow down the list of possible segments we searched the TM using every segment

withing the TM and ranked them using our algorithm. Using segments from the TM

that we are searching did return one exact match which we threw out. The reason for

using segments from the TM which we were searching is that we have better chances

of getting good hits, because segments within a TM tend to be similar to each other.

To narrow down the list of segments to choose for the survey we set certain criteria

on the search results through trial and error. The criteria that we settled on for

narrowing the list is that the 5th search hit ranked above a 40 (on a scale from 0 to

100) and the 17th search hit ranked a zero, this criteria ensured that we have a certain

percentage of good hits and a certain percentage of bad hits within the survey.

After the segments were chosen the search hits for each segment were put in

a random order and presented to the translator. Each translator was presented the

search hits in the same random order. The translator was then asked to choose the

top five search hits that would be most useful with aiding in the translation of the

provided segment. The translators were only presented with the English version of

29

the searches and the target language was not specified. The survey was timed so that

later we could identify those who didn’t take the time to do the survey right and their

responses could be thrown out.

We learned some interesting things about how far a translator will look to find

a good search hit. Good hits that were further down in the survey tended to get

overlooked as well as longer search hits. Unfortunately we also had several responses

that appeared random and added noise to the results. Each survey was timed and we

found that most results done in less then 60 seconds were inconsistent and random in

nature. When considering the results we first threw out all responses that were done

in less than one minute. Even after filtering the results we still have a bit of noise

to contend with, for example in every case, except hit 14 of survey 3, all hits were

chosen by at least one translator.

For each survey we present a precision table (Table 6.1, Table 6.2 and Table

6.3). The precision table shows accuracy in the ranking of our algorithm and Lucene’s

VSM algorithm when compared to the results of the survey. Although not a perfect

metric for the kind of results presented here, the precision table does help to show

how our ranking algorithm and Lucene’s VSM compare to the survey results.

Also included is a graph of the results for each survey (Figure 6.1, Figure

6.2 and Figure 6.3). The X axis represents the search hit as ranked by Lucene.

For the survey results the Y axis is the percent of the translators that chose that

particular search hit as one of their five responses and for our ranking results the Y

axis represents the rank of the search hit.

In the first survey (See Appendix B, Figure 6.1 and Table 6.1) the clear winners

are hits 1, 2 and 19. Hit 19 is a good example of how our ranking can improve search

hits returned to translators, this hit was ranked very low by Lucene but is ranked high

by both our method and the translators. The precision graph for the second survey

30

Figure 6.1: Survey one

Rank ACS Lucene
1 78% 78%
2 100% 100%
3 100% 85%
4 88% 85%
5 78% 76%

Table 6.1: Precision table for Survey 1

(Table 6.1) shows the loss of precision by Lucene because of hit 19. Our ranking,

however placed hit 19 in third place.

The second survey (See Appendix B, Figure 6.2 and Table 6.2) is a good

example of how the VSM in Lucene does not work well for ranking search hits for

translators. In the second survey hits 3, 9, 10 and 24 are the clear favorites, three

of which were ranked highest by our ranking method. Also in the second survey the

precision (see Table 6.2) of our ranking is much better than Lucene.

The third survey (See Appendix B, Figure 6.3 and Table 6.3) results shows a

case where both our algorithm and Lucene are in very close agreement with what the

31

Figure 6.2: Survey two

Rank ACS Lucene
1 92% 30%
2 95% 40%
3 94% 62%
4 81% 52%
5 70% 47%

Table 6.2: Precision table for Survey 2

translators picked. Even though our ranking is not always better than Lucene’s we

are not any worse.

32

Figure 6.3: Survey three

Rank ACS Lucene
1 76% 76%
2 78% 78%
3 100% 100%
4 94% 100%
5 86% 100%

Table 6.3: Precision table for Survey 3

33

34

Chapter 7

Conclusions

In this thesis we have presented a simple and effective means for finding com-

mon substrings and ranking search hits from Translation Memory. Although our new

algorithm for finding common substrings (ACS) is not faster than the suffix tree, it

does have some distinct advantages. The ACS algorithm has a quicker initialization

time than that of the suffix tree and it is much simpler to implement. In certain cir-

cumstances the ACS algorithm will run as fast as the suffix tree. The ACS algorithm

is well suited for comparing strings that have few common substrings.

We have shown that our ranking technique is able to identify good hits that

were missed by the commonly used VSM ranking. Our ability to identify good search

hits and rank them appropriately will greatly aid a translator’s effectiveness as trans-

lators will not spend the time to dig through search hits in order to find a good

translation. We also observed that translators could greatly benefit from the TM

tool highlighting matching terms in the search hit. Highlighting search terms will

help when good hits are found within long segments.

35

36

Appendix A

Stop Word List

The following is a list of stop words used to modify the ranking of segments.

This list was obtained from a speculated list of stop words that Google uses.

i, a, about, an, are, and, as, at, be, by, com, de, en, for, from, how, in, is, it,

la, of, on, or, that, the, this, to, was, what, when, where, who, will, with, und, the,

www

37

38

Appendix B

Surveys

39

Regenerate–Update modified part and assembly dimensions.
Hit Num Search Hit

25 For Part–The part can make external references to other parts that are in the
same subassembly object anywhere in the assembly as the part being modified, to
subassemblies and their subcomponents that are in the same subassembly as the
part being modified, and to the skeleton model of the subassembly to which the
part being modified belongs.

10 Part–Erase dimensions for a part at the selected assembly location.
23 In an assembly drawing, you can show and erase assembly and part dimensions.
4 To Edit Dimensions of a Part in an Assembly
22 After you have modified dimensions of the weld using Mod Dim in the MOD WELD

menu or dimensions of the assembly, regenerate the model with the Regenerate
command in the WELDING menu.

6 When an assembly feature has intersecting components, they are named (part and
assembly are modified):

9 d#–Dimensions in Part or Assembly mode.
2 RegenerateUpdates modified part and assembly dimensions (also reassembles after

exploding).
16 Mod Part-Allows modification of the assembly component dimensions.
21 All of the pipelines in the active assembly filter out existing pipe solids and allow

the part name and Start Part to be modified.
18 Ad#–Driven dimensions in Part, Assembly, or Drawing mode.
24 For example, if the specified model is a part, the system shows only dimensions of

the part in the assembly.
3 To Modify Dimensions of a Part in an Assembly
11 Lock Modified Dimensions-Lock or unlock modified dimensions.
5 The assembly instance in the assembly family table is modified to include the part

instance.
20 The dimensions, attributes, scheme, and so on of read-only features can not be

modified and are not regenerated when the part is regenerated.
13 The on-screen display always accurately presents the default dimensional tolerances

for the object being modified, whether that object is a part, an assembly, or a part
being modified in the context of an assembly.

12 The system creates the feature in the object (part, skeleton, or assembly) currently
being modified.

1 Edit > RegenerateUpdates modified part and assembly dimensions.
14 The dimensions for locations that can be modified are:
15 The welding feature dimensions are modified.
7 The dimensions can be section, part, or assembly dimensions.
17 rd#–Reference dimensions in part or top-level assembly.
8 Showing Dimensions in Part and Assembly Modes
19 Regenerate–Opens the PRT TO REGEN menu on which you can update modified

objects and assembly dimensions.

Table B.1: Survey 1. Results are shown in the order as they were presented in the
survey.

40

Mechanica deactivates the Display Options tab and the Display Locations tabs.
9 The Display Options tab displays some or all of these items depending on the design

study and the selections you make on the Quantity tab and the Display Options
tab:

16 Use the Display Options tab on the Result Window Definition dialog box to deter-
mine the appearance of your results window display.

19 Using the Grids and Settings tabs, specify the display.
11 Then select Contour from the Common Settings section of the Display Options tab.
7 When you select Animate on the Display Options tab, these options become avail-

able:
13 Select the Display Options tab.
6 The tabs display the following fields:
20 Display Location Tab
14 Display Options
8 Display Location tab - Select specific locations on your model to display in the

results window.
3 Selecting one of these display types determines the options available on the Display

Options tab:
24 The display options available on the Display Options tab vary depending on the

display type you choose from the Display Type option menu.
4 Use the Options and Preview tabs to define what and when the bend notes display.
17 When you select Fringe from the Display Type option menu, these items become

available on the Display Options tab:
21 Click the Drawing Display tab.
5 Use the Options and Preview tabs to define when and what symbols will display.
18 Display Arrows - Use the options on this tab to select measures and input loads.
1 When you select P-Level from the Quantity menu, the Display Options and Display

Locations tabs are unavailable.
25 When you select Vectors from the Display Type option menu, the options available

on the Display Options tab become specific to vector result window displays.
12 Select Deformed from the Common Settings section of the Display Options tab.
2 Display Options Tab
10 When you select Graph from the Display Type option menu, the Display Options

tab and the Display Location tab become unavailable.
23 Click the Display tab.
22 Graph Display Tab
15 Use the Graph Location area on the Quantity tab to select specific locations for

your graph result window display.

Table B.2: Survey 2. Results are shown in the order as they were presented in the
survey.

41

The reference is displayed in the collector on the dialog.
19 Depth1 Reference Collector
12 Direction reference summary collector
22 The second direction reference collector.
23 Direction reference collector
15 Placement Reference Collector
25 Depth box and Reference collector
1 The view name is displayed in the reference collector on the dialog.
5 Reference collector
14 Depth2 Reference Collector
3 The reference name is displayed on the dialog box.
16 Direction Reference collector
8 This command is available if a transition collector is displayed.
9 The selected edge is displayed in the Edge collector.
4 The selected reference (surface or datum plane) is displayed in the From collector.
2 Reference status is displayed in the collector and in the Troubleshooter dialog box.
11 The name of the selected subassembly is displayed in the Subassembly Reference

area of the dialog box.
6 The reference you select appears in the References collector in the DATUM PLANE

dialog box.
7 Depth Reference CollectorActivates the Depth Reference collector located on the

dialog bar and on the Shape slide-up panel enabling you to select a depth reference.
18 A missing reference is marked in the collector.
13 Collector Reference Commands
17 Primary reference collector
21 Reference Plane collector
24 The first direction reference collector.
10 The selected entity is displayed in the Surface collector.
20 Angle box/Reference collector

Table B.3: Survey 3. Results are shown in the order as they were presented in the
survey.

42

Bibliography

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

Addison Wesley, 1999.

Annotation: In chapter two of this book it covers different kinds of

information retrieval modeling. Covered in chapter two is the fuzzy set

model. The fuzzy set model uses a formula to compute the similarity

between two documents by looking at the similarity of each term in

the documents. The fuzzy set formula was adapted and used in my

project to rank search hits from a TM.

[2] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Com-

mun. ACM, 20:762–772, 1977.

Annotation: This paper introduces the Boyer Moore string searching

algorithm. The Boyer Moore algorithm is an extremely fast method

for finding strings, but it doest not perform well well trying to find

common substrings. When searching for common substrings a common

brute force method is to find a single word and then grow the search

to see how big the substring is. The Boyer Moore algorithm could be

used to find the first word but would not work well as the search string

grows to find a match.

[3] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation

methods for the web. pages 613–622, Hong Kong, Hong Kong, 2001. ACM.

Annotation: This document shows several different ranking tech-

niques used on the web. All of the ranking schemes in this work look

at finding similarity between the query and the search hit. This is un-

like the ranking performed in this work where ranking is based on sub

string matches.

[4] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science

and. Cambridge University, 1997.

43

Annotation: This book contains five chapters on the construction

and use of suffix trees. The book covers the longest commons substring

problem as well as covers constructing a suffix tree in linear time using

Ukkonen’s algorithm.

[5] G. Hodász, T. Grobler, and B. Kis. Translation memory as a robust example-

based translation system. Proceedings of the Ninth EAMT workshop, pages 82–

89, 2004.

Annotation: This paper introduces a technique where by Transla-

tion Memory (TM) segments are broken up into sub-sentence unites

according to rules based on syntax. The sub-sentences are then used

to build up translations of larger sentences when exact matches are

not found. The proposed solution is very language specific, but is be-

ing aided by advancements in grammar acquisition methods that will

speed up the grammar preparation for additional languages.

[6] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing

longest common subsequences. Commun. ACM, 20:350–353, 1977.

Annotation: Hunt Szymanski algorithm

[7] Philippe Langlais Michel Simard. Sub-sentential Exploitation of Translation

Memories. EAMT Geneve, 2001.

Annotation: This paper talks about using substring matches when

searching TM. The paper breaks phrases into chunks based on a lan-

guage model. Each chunk is then searched for in the TM. Substring

searching finds better matches then using existing edit distance metric

[8] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Commun. ACM, 18:613–620, 1975.

Annotation: This is the first paper I could find that talks about the

VSM. The vector space model or VSM is a ranking technique that

determines how similar one phrase is to another. The technique is very

fast to compute and offers a good indexing and ranking technique for

determining similarity.

[9] Graham A. Stephen. String Searching Algorithms. World Scientific, 1994.

44

Annotation: This book describes several string searching techniques.

The algorithm of most interest to this work is the solutions to the

longest common substring problem. Chapter three of this book covers

string distance and common sequences.

[10] Eiichiro Sumita. Example-based machine translation using dp-matching between

word sequences. pages 1–8, Toulouse, France, 2001. Association for Computa-

tional Linguistics.

Annotation: This paper introduces an approach to machine trans-

lation where by results are taken from a Translation Memory (TM)

and combined with results from a bilingual dictionary and thesaurus

to produce a translation of the content. This paper is a good example

of Example Based Machine Translation and exemplifies the use of TM

in current research.

[11] Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

Annotation: This paper presents Ukkonen’s suffix tree algorithm.

Ukkonen’s algorithm provides a way to build a suffix tree on-line. The

ability to build the tree on-line means it can build the tree using

the tokens in the string in the same order as they appear. Ukkonen’s

algorithm can build a suffix tree in linear time.

[12] Robert A. Wagner and Michael J. Fischer. The string-to-string correction prob-

lem. J. ACM, 21:168–173, 1974.

Annotation: This is the paper that introduces the edit distance met-

ric. The edit distance metric is the number of edit operations to trans-

form one string into another string. The number of edits are used to

determine the similarity between the two strings.

45

	Ranking Search Results for Translated Content
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	1
Background
	2
Problem Formulation
	3
Related Work
	3.1
Similar Problems/Research
	3.2
Related Works
	3.2.1
Dynamic Programming
	3.2.2
Generalized Suffix Tree

	3.3
Fuzzy Set Equation

	4
Thesis Statement
	5
All Common Substrings Algorithm
	5.1
String representation
	5.2
Partial phrase matching
	5.3
All Common Substring Speed Comparison

	6
TM Search Results Ranking
	6.1
Ranking
	6.2
Filtering
	6.3
Ranking Survey Results

	7
Conclusions
	A
Stop Word List
	B
Surveys
	Bibliography

