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ABSTRACT

NEAR-OPTIMAL ANTENNA DESIGN FOR

MULTIPLE ANTENNA SYSTEMS

Daniel N. Evans

Department of Electrical and Computer Engineering

Master of Science

Multiple-input-multiple-output (MIMO) wireless systems use multiple an-

tenna elements at the transmitter and receiver to offer improved spectral efficiency

over traditional single antenna systems. In these systems, properties of the transmit

and receive antenna arrays play a key role in determining the overall performance

of the system. This thesis derives an upper bound on ergodic (average) channel

capacity which formally links good antenna diversity performance with good er-

godic capacity. As a result of this derivation, antenna arrays with good ergodic

capacity performance are designed in this thesis by designing antenna arrays with

near-optimal diversity gain.

Several approaches are developed to design antenna array elements which

achieve near-optimal diversity. These design methods only require an array geom-

etry and the power azimuth spectrum of the propagation environment. Examples

and analysis are included that illustrate advantages and disadvantages of each

design technique. Three different array geometries are also investigated. Diversity





performance results for each design technique and array geometry, averaged over

an ensemble of typical power azimuth spectrums, are presented and compared.

This analysis shows that the diversity gain achieved by the best design approach

is, on average, less than 1.5 dB below the optimal diversity gain.
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Chapter 1

Introduction

The use of wireless local area networks is continually increasing in our com-

plex world. One key challenge associated with these networks is that they are

typically employed in environments characterized by multipath radiowave prop-

agation, making reliable and high-rate communications very difficult. In addition,

network users demand ever-increasing throughput at a time when frequency spec-

trum is scarce.

One approach for improving the communication reliability and throughput

of networks operating in multipath environments is to employ multiple anten-

nas, referred to as multiple-input-multiple-output (MIMO) technology, to increase

spectrum efficiency. A large volume of research has appeared on this topic, and

in fact the technology has matured to the point that it is being implemented in

emerging wireless systems. Multiple antenna systems are especially interesting

because of the dramatic potential improvement they offer in capacity [1]. The suc-

cessful implementation of a MIMO system that achieves significant capacity gains

over conventional wireless systems depends on a number of key elements. One

key element to the overall performance of any MIMO system is the design of the

antenna arrays at each end of the link.

Experimental results presented in [2] verify that the design of the antenna

arrays at each end of the link dramatically influences the channel capacity. Recent

work has formulated the Intrinsic Capacity for a specific channel independent of

the transmit and receive antenna characteristics [3]. This provides an upper bound

which aids in identifying antenna elements and arrays that provide near-optimal

capacity, but does not provide a synthesis approach. Although the community
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is currently very adept at predicting the performance of a MIMO system given

a specific antenna arrangement and multipath channel [1], the question of how

to synthesize antennas that approach the optimal performance bound remains an

open topic of research [4].

Studies have demonstrated some general criteria regarding the antenna

radiation patterns that deliver good performance in typical environments. For

example, the work in [5] shows that performance is improved when antennas

direct power where most of the multipath components are concentrated, usually

the horizontal plane. In addition, it has become common practice among antenna

designers to seek antenna arrays whose element radiation patterns are orthogonal

[6]. However, this rule-of-thumb is only ideal when multipath is equally likely to

arrive from all angles. Using another approach to address this question, research

has shown that an intelligently-selected sub-array can improve performance in

relation to the performance of a fixed array [7,8]. This previous research is valuable;

nonetheless an effective and practical approach for antenna synthesis that relies

only on average propagation behavior at one end of the link has yet to be developed.

In [9] a physically impractical synthesis approach is presented that finds

antenna radiation patterns that optimize diversity, given stochastic characteristics

of the propagation environment at one end of the link and an aperture within

which each antenna must reside. This thesis builds directly onto that work. The

results in [9] are very interesting but would be more significant if there existed a

derivation relating optimal diversity performance to near-optimal capacity. Also a

physically practical synthesis approach must be devised as opposed to the optimal

but physically impossible approach described in [9].

1.1 Thesis Contributions

This thesis directly addresses the issue of creating an effective and practical

approach for the synthesis of near-optimal MIMO antenna arrays based only on

average propagation behavior at one end of the link. Specifically, the contributions

of this thesis are:
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1. The derivation of an upper bound on ergodic capacity that links good diver-

sity performance with good ergodic capacity. This upper bound on ergodic

capacity is verified through numeric simulation.

2. The development and comparison of several different practical design ap-

proaches to approximate the antenna radiation patterns that optimize diver-

sity performance. This includes a discussion of the advantages and disad-

vantages of each of the design approaches developed.

3. The analysis of three unique and practical antenna array geometries and their

performance in multipath environments.

4. A study quantifying the performance benefits of the elaborate design tech-

niques described in this thesis over very simple dipole antenna arrays. This

study also addresses how the difference in performance of these two types of

arrays is affected by the richness of the multipath.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, back-

ground information essential to the understanding of the research contained in

this thesis is introduced. This includes discussions on the modeling of multipath,

effects of channel correlation, and a single-valued performance metric of antenna

diversity. Chapter 2 also includes a section that reviews some of the work from [9]

since that work is foundational to this thesis. A derivation linking diversity and

capacity performance and sample data showing ergodic capacity as a function of

diversity is in Chapter 3.

Chapter 4 develops several different antenna design methods that achieve

near-optimal diversity performance. In Chapter 5 average results are calculated

for each of the design methods developed. Several examples are presented to

investigate the advantages and disadvantages of each design approach. Some

experiments that address the influence of array geometry on performance are also

included. Chapter 6 clearly states conclusions drawn from the previous chapters.
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In addition, it explains the contributions of this work and the recommendations for

future related research.
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Chapter 2

Background Research

There has been extensive research and excitement about the idea of using

multiple antennas at each end of a wireless communication link to obtain data

rates much higher than what is possible using traditional single antenna systems.

The fundamental idea of these multiple antenna communication systems is to

take advantage of the complexity of multipath propagation environments typical

of urban and indoor scenarios. This chapter briefly discusses the basic MIMO

model along with other important topics such as channel correlation, multipath

modeling, and previous research focused on optimal antenna design for multiple

antenna systems.

2.1 MIMO Model

In a typical MIMO system there are N transmit antennas and M receive

antennas. Let the N x 1 vector x contain N complex baseband symbols, each of which

is transmitted by one of the N transmit antennas. Furthermore, let the complex

baseband transfer function between the nth transmit and mth receive antenna be

denoted as Hmn. If each element of the M x 1 vector y represents the complex

baseband signal received by each receive antenna, we can write

y = Hx + η, (2.1)

where Hmn represents the mnth element of the M x N matrix H and η is an M x 1

vector of noise consisting of zero-mean independent Gaussian random variables

with variance σ2
η. Under these circumstances, if H is known and nonsingular, the
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maximum-likelihood estimate of x can be computed at the receiver by the operation

x̂ = H−1y.

Given that the transmitter has channel state information (CSI), transmit

power can be allocated so as to maximize the capacity of the channel [10]. Trans-

mitter power allocation is characterized by the transmit covariance matrix, defined

as

Q = E
[
xx†

]
, (2.2)

where E[·] indicates expectation and (·)† denotes conjugate transpose. The total

transmit power is given by

PT = tr(Q), (2.3)

where tr(·) indicates summing the diagonal elements of the matrix (trace). The

water-filling solution [11] is a well known technique to find the Q that maximizes

the channel capacity given the maximum transmit power constraint of PT. Details

of the water-filling solution are presented in Section 3.2.

2.2 Channel Correlation

Small changes in the location of either the transmitter or receiver, or small

perturbations to the channel can dramatically change the channel matrix [12]. These

fluctuations in H create problems when attempting to design a multiple antenna

system that works well over an ensemble of channel matrices. However, it has

been shown in [13] that the channel correlation, defined as

RH = E
[
vec(H) vec(H)†

]
, (2.4)

where vec(·) indicates columnwise stacking of the matrix into a MN x 1 vector,

remains relatively constant over reasonable distances (quasi-stationary process).

Because of this, with knowledge of the channel correlation the transmitter is able

to direct energy to produce good average signal-to-noise ratio (SNR) at the receiver,
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without requiring frequent and costly updates of the channel matrix at the trans-

mitter.

Under the assumption that the correlation at the receiver is independent of

that at the transmitter, the channel correlation can be written in the simpler form

RH = RR � RT, (2.5)

where RR = E
[
HH†

]
and RT = E

[
H†H

]
are referred to as the receive and transmit

correlation matrices respectively and � indicates the Kronecker product [14]. The

Kronecker product approximation is experimentally validated in [15]. This approx-

imation is important because equation (2.5) suggests characterizing the channel

correlation matrix by the correlation at each end of the channel. Since the goal of

this work is the design of antennas for multi-antenna systems and since the corre-

lation depends on the antenna arrays as well as the propagation environment, this

separation is critical because it allows independent design of the antennas at the

transmitter and receiver.

2.3 Diversity Gain

The signal received by an antenna can vary widely in phase and magnitude

as a result of the propagation environment. The result of these variations in received

signal is that the wireless link will at times fade, resulting in a receive SNR too low

to recover the transmitted signal. Perhaps the most straightforward way to reduce

the likelihood of a deep signal fade is to have multiple receive antennas, each with

a unique position or pattern, and combine the signals received in a constructive

way. This antenna diversity method works simply because it is not likely that

all receive antennas will fade simultaneously. To achieve optimal performance,

the received signals should be combined using a method known as maximal ratio

combining [16] in which each received signal is shifted to a common phase and

then weighted such that the sum of the signals maximizes the SNR. The results in

this thesis assume the use of maximal ratio combining.
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The performance of antenna diversity systems is typically defined proba-

bilistically. Consider a diversity system with M antennas, where the signals on the

branches are uncorrelated and each has an average SNR of Γ. The probability that

the SNR of the output of a maximal ratio combiner, denoted as γ, is less than some

threshold x is given by

P(γ ≤ x) = 1 − e−x/Γ
Nr∑

k=1

(x/Γ)k−1

(k − 1)!
. (2.6)

Figure 2.1 plots this cumulative distribution function (CDF) for normalized SNR

and different numbers of antennas. As can be seen, as more antennas are used, the

probability of a deep fade reduces dramatically.

With this performance description in mind we can define a single-valued

performance metric, referred to as the diversity gain. To do so, we first set a

probability threshold. For example, acceptable operation of our system requires

that the SNR remain above a certain level 99% of the time, we let our threshold be

1 − .99 = .01 (this is the threshold used throughout this thesis). For one antenna,

Figure 2.1 reveals that the normalized SNR is above -20 dB 99% of the time. For

two antennas, the normalized SNR is higher than -9 dB 99% of the time. The

addition of the second antenna therefore produces a diversity gain of roughly 11

dB at the probability threshold of 1% (.01). Table 2.1 gives more precise numbers

for the diversity gain as a function of the number of antennas at this 1% probability

threshold. It is important to note that this example assumes that each additional

branch is completely uncorrelated with the previous branches.

Table 2.1: Diversity Gain vs. Number of Uncorrelated Antennas
at 1% Probability Threshold

Number of Uncorrelated Signals Received 2 3 4 5 6
Diversity Gain in dB (relative to one signal) 11.7 16.4 19.1 21.0 22.6
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Figure 2.1: CDF of the normalized SNR for different numbers of antennas for maximal
ratio combining.

In a multiple antenna system with correlated antennas, the channel corre-

lation matrix is the quantity needed to determine the diversity gain performance.

In [17] it is shown that for systems with correlated, unequal SNR branches, di-

versity gain can be computed by creating an equivalent system of uncorrelated

antennas with branch gains equal to the eigenvalues of the correlation matrix. This

implies that the channel correlation matrix which optimizes diversity gain should

have large diagonal elements and off diagonal elements equal to zero.

2.4 Multipath Model

When considering the design of transmit and receive antennas it is beneficial

to know the angles of departure and arrival of the signals at the transmitter and

receiver, respectively. In typical complex propagation environments, the power

arriving at a receiver varies widely in magnitude as a function of angle. In this
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thesis, this variation in power over angle is modeled using the power azimuth

spectrum (PAS) concept presented in [18]. In order to simplify modeling, the PAS

is only defined for azimuth angles, meaning that propagation is confined to the

horizontal plane. Figure 2.2 shows an example of a typical PAS.
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Figure 2.2: Typical power angular spectrum used to model arriving signals.

As explained in [18], the PAS of a single cluster of multipaths is commonly

described by a truncated Gaussian, truncated Laplacian, or uniform distribution

function. It is shown in [19] that often, especially in urban environments, a PAS

has multiple such clusters centered at different angles. This PAS model is used

throughout this thesis in the design of optimal antennas. It is important to remem-

ber that although the PAS model may be more intuitive on the receive end of the

channel, it can be applied to the transmitter as well.
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2.5 Summary of Previous Optimal Antenna Array Design Research

The research presented in this thesis is founded on parts of the research

presented in [9]. Specifically, this thesis relies on the optimal antenna array deriva-

tion in [9]. In the presence of a known PAS, this derivation solves for multiple

unique current distributions over a given aperture, each of which is referred to as

an antenna. This derivation is constructed so that the antennas it produces achieve

the optimal diversity gain.

Throughout this thesis the solutions to this derivation are called current dis-

tributions, which implies that transmit antennas are being designed. It is important

to realize that this design approach can be used for transmit and receive antennas.

For receive antennas, the results of this approach could be called weighting distri-

butions as they represent weights applied to the received field across the receiving

aperture.

The solutions to this derivation are impractical to physically implement

because multiple unique current distributions cannot exist at the same time and

space. However, it does provide an upper bound for diversity gain performance

and a solid foundation for the ideas presented later in this thesis.

2.5.1 Summary of Optimal Antenna Array Derivation

This section is meant to give a background summary of the general design

approach described in [9]. In this derivation and throughout this entire thesis all

of the electric fields have ẑ polarization. Consequently, the vector field notation

is suppressed by expressing vector field quantities as scalar fields. The complete

vector field formulation and more extensive explanations of this derivation are

found in [9].

1. The key quantity in this derivation is the correlation matrix. In [9, 20] it is

shown that the mnth element of the correlation matrix is

Rmn = ϕ

∫
em(φ)p(φ)e∗n(φ)dφ, (2.7)
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where em(φ) is the electric field radiation pattern of the mth antenna, p(φ) is the

power azimuth spectrum,ϕ is a constant, and (·)∗ signifies complex conjugate.

The constant ϕ is not important for this derivation and is omitted from the

remaining steps.

2. Define a 2-D aperture over which any current distribution can reside. (Since

the PAS model is only defined in the xy plane, the 2-D aperture can be thought

of as the cross-section of an infinite cylinder perpendicular to that plane.)

3. Sample the current distribution with an orthonormal set of basis functions.

In this thesis, this set is chosen to be a grid covering the aperture of equally

spaced ẑ directed pulse basis functions. If Jm(r) represents the current distri-

bution for the mth antenna, this expansion can be written as

Jm(r) =
∑

n

Bnm fn(r), (2.8)

where fn is the nth basis function and Bnm is the unknown weighting coefficient

of the nth basis function in the mth current distribution.

4. Calculate the far field radiation pattern for each of the basis functions. The

radiated field from the nth basis function is given as

zn(φ) =

∫

V
g(φ, r) fn(r)dr, (2.9)

where g(φ, r) is the scalar Green’s function relating the currents to the far-field

radiation. The radiation pattern of the mth current distribution is given by [21]

em(φ) =

∫

V
g(φ, r)Jm(r)dr =

∑

n

Bnmzn(φ). (2.10)

5. To maximize diversity gain, as explained in Section 2.3, current distributions

must be found that maximize the diagonal elements of the correlation matrix

and minimize its off diagonal elements. By substituting equation (2.10) into
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equation (2.7) we obtain

R = BTCB∗, (2.11)

where (·)T indicates transpose, the mth column of B represents the mth current

distribution and the matrix C is defined as

Cnm =

∫
zm(φ)p(φ)z∗n(φ)dφ. (2.12)

To solve for B, two constraints must first be placed on the solution. First,

in order to have a meaningful result, all of the radiation patterns must be

normalized so that they have the same radiated power. Second, if each basis

function is considered lossless, impractical supergain solutions arise [22]. This

can be avoided by specifying a radiation efficiency for each basis function,

which is mathematically introduced through a loss resistance RL for each basis

function. These constraints lead to the equations

Ĉ = Â−1/2CTÂ−1/2, (2.13)

b†mÂbm = Pd, (2.14)

Â = A + RLI, (2.15)

Anm =
1

2η0

∫
z∗n(φ)zm(φ)dφ, (2.16)

where bm represents the mth column of B, Pd is the power delivered to the

array, RL is the loss resistance associated with each basis function, I is the

identity matrix, and η0 is the characteristic impedance of free space. Finally,

it has been shown in [9] that R is diagonal and its diagonal elements are

maximized when the current distributions are chosen to be

B = P1/2
d Â−1/2Σ, (2.17)

where Σ is a unitary matrix of the eigenvectors of Ĉ.

13



2.5.2 Summary of Optimal Antenna Array Results

Some results obtained using the solution method discussed previously are

presented here to establish background for this thesis. For the purposes of this

thesis, the radiation efficiency of the basis functions is always assumed to be 99%.

Before meaningful examples can be considered, the number of different an-

tennas needed to create good diversity needs to be addressed. If Nb basis functions

are used to sample each aperture, the solution yields Nb current distributions that

when taken together produce the optimal diversity gain. If Nb is large (which is typ-

ical when trying to accurately model currents), it is impractical to build a diversity

system using all Nb antennas. Fortunately, considering the current distributions

corresponding to the Ne largest eigenvalues of Ĉ yields optimal performance for a

system with Ne antennas. In addition, the diversity gain using Ne antennas quickly

approaches the diversity gain achieved using Nb antennas, even for values of Ne

much less than Nb. Figure 2.3 shows how the optimal diversity gain of a λ x

λ square aperture varies as a function of the number of antennas used. For the

results presented here Nb = 100 and the PAS is a simple truncated Gaussian.

To make this example more tractable, only the solutions corresponding to

the four largest eigenvalues are considered (Ne = 4). This example examines the

current distributions and radiation patterns produced by the solution method.

Consider a λ x λ square aperture, sampled by 100 equally spaced pulse functions,

in the presence of the PAS in Figure 2.2. The diversity gain of the optimal array is

20.2 dB relative to a single Hertzian dipole. Throughout this thesis, unless stated

otherwise, diversity gain is calculated relative to a single Hertzian dipole. The

optimal radiation patterns and current distributions are shown in Figures 2.4 and

2.5, respectively. As expected, an obvious correlation between the PAS and the

antenna radiation patterns can be observed.
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Figure 2.3: Diversity gain vs. number of antennas for a λ x λ aperture with 100 basis
functions.
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Chapter 3

Connection between Diversity Gain and Capacity

The synthesis approach described in [9] is optimal in the sense that it max-

imizes the diversity gain. A fundamental assumption to the work in [9] is that

maximizing the diversity gain also maximizes the capacity. Although it is intuitive

to believe that maximizing the diversity gain maximizes the capacity, a proof of

this relationship has yet to be completed. The purpose of this chapter is to show

that maximizing diversity gain produces good ergodic capacity.

3.1 Derivation of Upper Bound for Ergodic Capacity

It is well known [1, 23] that the capacity of a MIMO link is given by

C = max
Q

log
(
det

(
IM +

HQH†

σ2
η

))
, (3.1)

where IM is the identity matrix with dimensions M x M. As defined previously,

H, Q, and σ2
η represent the channel matrix, transmit covariance matrix, and noise

power, respectively. The transmit covariance matrix has the constraint that tr(Q) =

PT. The ergodic capacity of the channel is the expected value of the capacity,

Ce = max
Q

E
[
log

(
det

(
IM +

HQH†

σ2
η

))]
. (3.2)

Using the matrix identity that det(I+AB) = det(I+BA) and the fact that log(det(· ))
is a concave function [24, 25], one can use Jensen’s inequality [26] to obtain the

upper bound

Ce ≤ Cu = max
Q

log
(
det

(
IM +

E[H†H]Q
σ2
η

))
. (3.3)
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Recalling that

RT = E[H†H], (3.4)

we arrive at an upper bound in terms of the transmit channel correlation matrix

given by

Cu = max
Q

log
(
det

(
IM +

RTQ
σ2
η

))
. (3.5)

The upper bound (3.5) is very similar to the result obtained in [27] with

the difference being that in [27], Q = βI while here Q is allowed to be arbitrary.

Physically, removing this constraint on Q allows power to be allocated optimally

in order to increase capacity.

3.2 Solving for the Upper Bound

In order to solve for the capacity’s upper bound, the value of Q that maxi-

mizes (3.5) must be found. This is accomplished by using the water-filling solution.

We begin by performing an eigenvalue decomposition of RT which yields

Cu = max
Q

log
(
det

(
IM +

ξΛξ†Q
σ2
η

))
. (3.6)

By letting Q̃ = ξ†Qξ we obtain

Cu = max
Q̃

log
(
det

(
IM +

Q̃Λ

σ2
η

))
. (3.7)

Since det(A) ≤∏
i Aii,

Cu ≤ max
Q̃

T∑

i=1

log
(
1 +

Q̃iiλi

σ2
η

)
, (3.8)

where λi is the iith element of Λ. Equality is achieved when Q̃Λ is diagonal, which

implies Q̃ is diagonal. Since we want to maximize Cu, we restrict Q̃ to be diagonal.

The upper bound on the capacity becomes

Cu = max
{Q̃ii}

T∑

i=1

log
(
1 +

Q̃iiλi

σ2
η

)
, (3.9)
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with the constraint that
N∑

i=1

Q̃ii = PT, (3.10)

where PT is the maximum transmit power. Using a Lagrange multiplier formulation

[26] leads to

V =

T∑

i=1

log
(
1 +

Q̃iiλi

σ2
η

)
+ γ


T∑

i=1

Q̃ii − PT

 , (3.11)

which can be maximized by taking the partial derivative with respect to Q̃ii and

setting it equal to zero. This gives

∂V
∂Q̃ii

=

λi
σ2
η

1 + Q̃iiλi
σ2
η

+ γ = 0. (3.12)

Solving equation (3.12) for Q̃ii yields

Q̃ii = −1
γ
− σ

2
n

λi
= α −

σ2
η

λi
, (3.13)

where α is chosen so that
∑N

i=1 Q̃ii = PT. It is known that Q̃ii ≥ 0, therefore Q̃ii =(
α − σ2

η

λi

)+

where (·)+ = max(0, ·). Now equation (3.10) becomes

t∑

i=1

α −
σ2
η

λi

 = PT, (3.14)

where t ≤ N is the number of antennas used to transmit power. Solving (3.14) in

terms of α leads to

α =
σ2
η

t


PT

σ2
η

+

t∑

i=1

1
λi

 . (3.15)

Now that α and Q̃ii are known we can substitute these results into (3.9) to finally

obtain

Cu =

t∑

i=1

log


λi

t


PT

σ2
η

+

t∑

j=1

1
λ j



 . (3.16)
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3.3 Upper Bound Links Correlation and Capacity

The upper bound (3.5) is important because it provides a direct connection

between correlation and capacity. The quality of this newly derived upper bound

needs to be examined. In addition, the relationship between capacity and channel

correlation needs to be explored.

For purposes of making general observations about the effect of channel

correlation, RT is assumed to have the form

RTij = r|i− j| where 0 ≤ r ≤ 1. (3.17)

The quantity
∣∣∣i − j

∣∣∣ effectively represents the distance between antennas and r is a

measure of the decline in correlation with antenna spacing. By inspection one can

see that r = 0 yields a completely uncorrelated transmit channel while r = 1 models

a completely correlated transmit channel. This model is not meant to closely model

a specific physical situation but rather to provide insight into the effects of channel

correlation on capacity. This model is also useful in assessing the quality of the

upper bound (3.5) derived previously.

Let M = 10, N = 10, and PT
σ2
η

= 30dB. Using the correlation model (3.17), the

upper bound and ergodic capacity using optimal and uniform power allocation are

calculated for different values of r. Figure 3.1 shows the results, using Monte Carlo

simulations of (3.2) for the ergodic capacity and (3.5) for the upper bound calcu-

lation. For the Monte Carlo simulations, 5000 channel realizations are generated

by [28]

H = R1/2
R GR1/2

T , (3.18)

where G is an independent and identically distributed M x N random matrix whose

entries are zero-mean complex-normal distributed and (·)1/2 indicates the Cholesky

factorization. The matrix RR is assumed to be an M x M identity matrix.
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Figure 3.1: Upper bound and ergodic capacity for uniform and optimal power alloca-
tion for a M = 10, N = 10, and SNR = 30dB system.

These results indicate that as the correlation in the channel matrix increases

at the transmitter, the capacity of the channel decreases. It also shows that the

maximum capacity is obtained when the channel is completely uncorrelated.

It is interesting to note that in Figure 3.1 the water-filling and uniform lines

cannot be distinguished because they are so similar. This is expected because in high

SNR channels optimal power allocation tends toward uniform allocation. In lower

SNR channels the difference in capacity obtained by optimal power allocation and

uniform power allocation increases substantially. This can be observed in Figure

3.2 which plots the behavior for an SNR of 15 dB. This result can easily be explained

by examining water-filling solution plots for low and high SNR cases. In Figure

3.3 each vertical bar represents a subchannel and the distance between the top of

the vertical bar and the water level is representative of the power allocated to that

subchannel. These plots clearly illustrate the previous claim that optimal power

allocation tends toward uniform power allocation as the SNR increases.
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Figure 3.2: Upper bound and ergodic capacity for uniform and optimal power alloca-
tion for a M = 10, N = 10, and SNR = 15dB system.

It is also important to note that the newly derived upper bound (3.16) is a

fairly tight bound but also its general behavior with correlation is almost identical

to the ergodic capacity. This adds confidence in the quality of the upper bound

derived.

3.4 Correlation Reduces Diversity Gain

As explained in Chapter 2, diversity gain of correlated antennas can be

computed by creating an equivalent system of uncorrelated antennas with branch

gains equal to the eigenvalues of the correlation matrix. This implies that diversity

gain is maximized when the channel is uncorrelated [17]. To add confidence to

this result and for completeness, the diversity gain of an array of four antennas,

relative to a single antenna, is calculated for different channel correlation matrices

modeled by (3.17). The results in Figure 3.4 clearly illustrate that diversity gain
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Figure 3.3: (a) At low SNR optimal power allocation is far from uniform. (b) At high
SNR optimal power allocation is almost uniform.

is maximized when the channel is uncorrelated and dramatically decreases as the

channel becomes highly correlated.
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Figure 3.4: Diversity gain of a M = 4 and N = 4 system vs. channel correlation
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3.5 Maximizing Diversity Gain Maximizes Capacity

We have seen that both diversity gain and capacity are highly dependent

upon the correlation of the channel. The upper bound derived in Section 3.1

provides an explicit relationship between diversity gain and capacity through the

correlation of the channel. Combining the simulation techniques described in

Sections 3.3 and 3.4, sample results showing that maximizing diversity gain tends

to maximize channel capacity are calculated. Figure 3.5 shows results for a MIMO

system with M = 10, N = 10, and SNR = 20 dB. These results are only meant

to illustrate the general relationship between ergodic capacity and diversity gain.

Only a general relationship can be demonstrated here because it has only been

proven that diversity gain is directly linked to the upper bound of the ergodic

capacity but not ergodic capacity itself.
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Figure 3.5: Upper bound of ergodic capacity vs. diversity gain for a M = 10, N = 10,
and SNR = 20dB system.
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Chapter 4

Near-Optimal Design Methods

As explained in Section 2.5, the research in [9] produces optimal results

assuming that overlapping currents can exist. These results, although physically

impractical, offer an upper bound for the performance of an array and yield signif-

icant insight into practical ways to design an optimal antenna array for a multiple

antenna system. This chapter investigates methods for approximating the optimal

diversity gain without using overlapping currents.

4.1 Antenna Array Definition

For a design technique to be physically practical, each antenna must be

defined as a current distribution over a unique aperture. Before optimal or at least

near-optimal antenna array elements can be designed, the geometry of the antenna

array must be fixed. All of the apertures in the antenna arrays considered in this

thesis are squares with the length of their sides being λ/2. For all of the examples

presented in the thesis the λ/2 by λ/2 apertures are sampled by a grid of 25 equally

spaced pulse functions. Three basic arrangements of these square apertures are

examined in this chapter and Chapter 5.

In the first case, four square apertures are arranged to form a larger square

which is two apertures by two apertures (λ by λ). The second array consists of four

square apertures in a line with a spacing of s between the edges of each element.

Unless otherwise stated the spacing, s, is λ/2. In the third array there are six square

apertures equally spaced around a circle of radius ra. For the examples presented

in this thesis the radius of the circle is ra = 3
2λ. Figure 4.1 shows the three different
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array geometries that are examined in this thesis. In this chapter all of the results

are for the square array in Figure 4.1(a).
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Figure 4.1: (a) Square array. (b) Linear array. (c) Circular array.

4.2 Covariance Approach

Now that some basic antenna array geometries have been defined, ap-

proaches can be developed to approximate the optimal overlapping current results.

The first approximation approach discussed is perhaps the most straightforward.

The fundamental idea behind this approach is that optimizing the performance of

each antenna should result in near-optimal performance of the entire array.

To optimize each antenna the optimal design approach described in Section

2.5 is applied to each antenna (aperture) individually. Since overlapping currents

are not allowed, only the current distribution associated with the dominant eigen-

value is considered. This method produces the current distributions and antenna

patterns shown in Figure 4.3 given the PAS shown in Figure 4.2 and the array

geometry in Figure 4.1(a).

It is interesting to note that the antenna patterns and current distributions

are identical for each antenna. This is expected because each antenna has the same

shape and PAS impinging on it. To gain more insight into the effectiveness of this

approach we must refer back to equation (2.11). This approach does a good job of
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maximizing the diagonal elements of R because each antenna is designed to receive

the maximum possible power. However, this approach does not attempt to satisfy

the design constraint that the off diagonal elements of R should be zero. In fact,

since each antenna pattern is the same, the off diagonal elements are actually close to

the same magnitude as the diagonal elements for this antenna geometry. Physically

this means all of the diversity in this system is coming from the array geometry,

not the antenna patterns. This technique can still offer substantial diversity gain

improvement over standard dipole arrays, especially when the array elements are

well spaced.
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Figure 4.2: Power azimuth spectrum used for the examples in Chapter 4.
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Figure 4.3: Covariance approach approximations of optimal current distributions and
antenna patterns.

4.3 Modified Covariance Approach

The covariance approach is appealing because the true optimal design (in

terms of power) for each individual antenna can be determined. However, as

illustrated previously, the covariance approach does not optimize the array for di-

versity performance. This section discusses a modified covariance approach which

attempts to approximate optimal element antenna patterns while minimizing the

correlation among antennas.

First, like in the covariance approach, we solve for the optimal current

distributions of an individual aperture given a PAS. For the first antenna designed

in the array, the current distribution with the largest eigenvalue is selected. So that

this method is tractable, the current distributions of the remaining antennas are

constrained to be one of the current distributions associated with the four largest

eigenvalues. To know which one of these four current distributions should be

selected, the diversity gain is calculated with the first antenna’s current distribution

being fixed and the second antenna’s current distribution being each of the possible

current distributions. The algorithm then selects the distribution resulting in the
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largest diversity gain. Using similar logic, the current distribution for the third

antenna is selected to maximize the diversity gain of a three element array. This

same procedure is completed for each of the remaining elements of the array.

This design approach is still suboptimal but has a fundamental advantage

over the covariance approach. This approach allows diversity to come from the

element radiation patterns and the array geometry. It ensures the diagonal elements

of R are large while attempting to minimize the off diagonal elements of R. Note

that the average size of the diagonal elements of R is smaller using this method

than with the covariance method, yet its diversity gain performance is always either

equal or superior. Physically this means that power received by each antenna needs

to be balanced with the correlation between antennas.

Figure 4.4 shows the current distributions and antenna patterns produced

by this method for a square array and the PAS shown in Figure 4.2. In this example

the modified covariance approach has a 2.3 dB improvement in diversity gain over

that obtained with the covariance approach.
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Figure 4.4: Modified covariance approach approximations of optimal current distribu-
tions and antenna patterns.

29



4.4 Current Approach

The current approach attempts to approximate the first D optimal overlap-

ping current distributions for the array with one single current distribution. This is

fundamentally different from the previous approach of optimizing each individual

antenna independently.

To begin with, the optimal overlapping current approach is performed on

the array. Recall that the notation bm represents the mth current distribution over

the array. Now let bm,a refer to the mth current distribution over the ath antenna

(aperture). For each antenna, a vector ca needs to be chosen which approximates

the set of vectors {b1,a b2,a ... bD,a}. To accomplish this a performance metric Pa is

defined to be

Pa = max
D∑

i=1

Γi cos2 θi,a, (4.1)

where Γi is a scalar and θi,a is the angle between bi,a and ca. By design, this

performance metric is maximized when ca points in the average direction of the bi,a

vectors. Γi is chosen to be defined as

Γi = λi

∥∥∥bi,a

∥∥∥2

‖bi‖2
, (4.2)

where λi is the power received by the ith current distribution and ‖·‖ denotes

the 2-norm [26]. The λi is included in Γi so that dominant current distributions

are weighted more heavily. Scaling by ‖bi,a‖2

‖bi‖2
emphasizes basis functions that are

important to representing a given optimal current distribution. Using the fact that

cosθi,a =
<bi,a,ca>

‖bi,a‖ ‖ca‖ , it can be seen that

cos2 θi,a =
c†abi,ab†i,aca
∥∥∥bi,a

∥∥∥2
c†aca

. (4.3)

By substituting (4.3) and (4.2) into equation (4.1), Pa becomes
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Pa = max
D∑

i=1

λi

‖bi‖2
c†abi,ab†i,aca

c†aca
. (4.4)

Pa needs to be maximized by the choice of ca. This can be written as

c∗a = arg max
ca

D∑

i=1

λi

‖bi‖2
c†abi,ab†i,aca

c†aca
. (4.5)

This problem can be solved relatively easily if a few terms are rearranged. Let

Ba =
∑D

i=1
λi

‖bi‖2
bi,ab†i,a. The problem can now be written as

c∗a = arg max
ca

c†aBaca

c†aca
. (4.6)

The vector that maximizes this expression is the eigenvector of Ba corresponding

to the largest eigenvalue of Ba.

This approach is used for each antenna in the array. For the examples

presented in this thesis D = 4. Figure 4.5 shows the current distributions and

antenna patterns produced using this method for a square array and the PAS

shown in Figure 4.2.

4.5 Numerical Optimization

The optimal diversity gain, provided that overlapping currents are not al-

lowed to exist, has yet to be calculated. Each of the design approaches presented in

this chapter disallows overlapping current but is also suboptimal. To investigate

the difference between the theoretical and practical diversity gain limits, numeri-

cal optimization is employed. The optimization performed in this section is done

using the Nelder-Mead simplex method, with the results from the modified co-

variance approach as the initial values. Figure 4.6 shows the current distributions

and antenna patterns produced using numeric optimization for a square array and

the PAS shown in Figure 4.2. In this situation, disallowing overlapping currents

lowered the optimal diversity gain by .59 dB.
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Figure 4.5: Current approach approximations of optimal current distributions and
antenna patterns.
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Figure 4.6: Numerically optimized approximations of optimal current distributions
and antenna patterns.

The use of this numeric optimization method in this setting is fraught

with difficulties. It is extremely computationally intensive compared to the other
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methods, especially as the number of basis functions increases. In addition, in this

situation, there is no guarantee that the Nelder-Mead simplex method converges

to the absolute maximum solution. Surely the efficiency and effectiveness of the

numeric methods used here could be improved, but that is not the focus of this

work. The purpose of presenting numeric optimization in this thesis is to provide

insight into the decreased diversity gain by disallowing overlapping currents.

4.6 Summary of Results

Table 4.1 contains a summary of the diversity gain achieved, in the presence

of the PAS shown in Figure 4.2, by each of the design methods explained in this

chapter relative to the optimal overlapping current distributions. A more detailed

analysis of each design method is presented in Chapter 5.

Table 4.1: Diversity Gain of Each Design Method Relative to the Optimal
Overlapping Antennas

Method Diversity Gain in dB (relative to optimal)
Covariance -3.7
Modified Covariance -1.4
Current -2.3
Numeric Optimal -0.6
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Chapter 5

Analysis of Near-Optimal Design Methods

Now that several different approximation techniques have been presented,

each must be analyzed in terms of performance. This chapter attempts to il-

lustrate advantages and disadvantages of the approximation techniques for the

array geometries presented in Chapter 4. The effects of array size and multipath

characteristics are explored. In addition, the average performance of each design

technique and geometry is calculated.

For purposes of comparison and analysis three simple arrays of pulse func-

tions are considered in this chapter. These arrays have the same geometries as the

arrays found in Figure 4.1, but have only a single pulse function in the center of

each of the apertures. Throughout this chapter, these simple arrays are referred to

as dipole arrays because each small pulse function models a Hertzian dipole.

5.1 Effect of Array Size

It is interesting to investigate how the diversity gain produced by each

technique varies as a function of the size of the array. To examine this behavior,

the diversity gain is calculated using each method on the linear array geometry

described in Section 4.1 for values of s between 0 and 3λ, where s is the edge-to-

edge spacing of the apertures in the array. For each value of s, the diversity gain

of each technique is calculated for an ensemble of 1000 PASs and then averaged to

find the mean diversity gain of each technique. Each PAS is randomly generated

with 1 to 4 Laplacian clusters. The width of each cluster randomly ranges from 15

to 50 degrees. For this example and throughout this chapter the center angles of

the clusters are uniformly distributed over angle and the normalized magnitude of
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each is randomly chosen to be between 1 and 10. The PASs are randomly generated

this way so that the effects of changing s can be observed over a broad range of

PAS shapes. A similar approach is used for analysis throughout the chapter.

The results of this experiment are shown in Figure 5.1. These results show

that as the edge-to-edge spacing increases the diversity gain achieved by the mod-

ified covariance approach converges to that obtained by the covariance approach.

This indicates that once the array size increases beyond a certain value, the element

antenna patterns only need to maximize the received power because the antennas

in the array receive sufficient diversity from their position alone. Consequently,

as the total array aperture size increases, the covariance approach becomes much

more useful. It is also interesting to note that the diversity gain of the dipole array

and that of the optimal array remain constant after the aperture spacing is larger

than one wavelength. This result is intuitive because it implies that diversity gain

cannot be increased by an arbitrary amount simply by making the array arbitrarily

large for PAS clusters which have a non-zero angle spread. It is surprising how

similar the results are for the current and covariance approaches. This is interesting

because the two approximation techniques are fundamentally different, yet in this

case they yield very similar results.

5.2 Effect of Multipath Characteristics

It would be beneficial to know how the performance of each technique

is impacted by basic characteristics of the impinging PAS, such as the number

of clusters or the average angular spread of each cluster. In this section the data

presented is for an antenna array with the circular geometry as explained in Section

4.1 and shown in Figure 4.1(c). In order to explore trends in performance based on

PAS characteristics, two ways of generating the random PAS shapes are considered.

The first investigation focuses on the effect of the number of clusters in the

PAS. For this analysis, each PAS is generated using the technique described in Sec-

tion 5.1, with the exception that the number of clusters is specified deterministically

rather than randomly. Figure 5.2 shows the average diversity gain achieved using
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Figure 5.1: Average diversity gain of each approximation technique as a function of
the edge-to-edge spacing of apertures in a four element linear array.

each technique as a function of the number of peaks in the PAS, with the average

taken over 1000 PAS realizations. These results clearly show that as the number

of clusters increases, the diversity gain achieved by the approximate techniques

decreases while the diversity gain achieved by a simple dipole array gradually

increases. This result is intuitive, since an increase in the number of clusters effec-

tively makes the PAS more uniform over angle. For such a uniform shape, the gain

enabled by the subapertures (as compared to the dipole) becomes less beneficial.

The second investigation focuses on the impact of the cluster angular spread

on the achievable diversity gain. In this example each PAS has four Gaussian

clusters of a set angular spread. Using a process similar to that in the previous

examples, for each fixed width of the clusters the diversity gain results are created

by averaging the results from 1000 PAS realizations. Figure 5.3 shows the results

which are generally similar to those from Figure 5.2. Again, it is seen that as the
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Figure 5.2: Average diversity gain of each approximation technique as a function of
the number of clusters in the PAS.

impinging PAS tends to be constant over angle, the performance obtained from

all of the approximate techniques begins to converge to that obtained with the

simple dipole array. The results also show that the performance of all approximate

techniques suffers for narrow clusters, since the antennas are unable to provide

narrow beams achieving high gains coupled with the fact that the spatial richness of

the multipath decreases. The optimal antennas do not suffer this degradation since

each antenna current spans the entire aperture and can therefore offer increased

gain which compensates for the reduction in multipath and therefore achievable

diversity.

5.3 Comparison of Array Geometries

It is clear from the previous examples that the modified covariance approach

has the best average performance, but the question of which array geometry has
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Figure 5.3: Average diversity gain of each approximation technique as a function of
the angular spread of clusters in the PAS.

the best performance remains. It is therefore interesting to explore which geometry

is best suited for a rich or sparse multipath environment.

In this experiment, instead of calculating the diversity gain relative to a

single Hertzian dipole, the diversity gain is calculated relative to a dipole array

with the same geometry. This effectively normalizes the diversity gains so that

meaningful comparisons can be made between array geometries with varying

numbers of elements. To simplify the comparison of the three geometries, only the

diversity gains produced using the modified covariance approach are considered.

To test the performance of each array geometry in different multipath envi-

ronments the experiment described in Section 5.2 is again performed. Figures 5.4

and 5.5 show how the diversity gain achieved by each array changes as the number

of clusters increases and the angular spread of each cluster increases, respectively.
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The results indicate that these two variations in the PAS have almost an identical

impact on the performance for each array.
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Figure 5.4: Average diversity gain of the modified covariance approach for each ge-
ometry as a function of the number of clusters in the PAS.

The average diversity gain performance of each array geometry is calculated

by averaging the diversity gain achieved by each geometry for 5000 randomly gen-

erated PAS realizations, with the realizations being generated using the approach

outlined in Section 5.1. Table 5.1 contains the results of these computations. The

results indicate that of the array topologies considered, the linear array is best

able to provide diversity gain over a large ensemble of environments. However,

it should be emphasized that these results are dependent on the geometries of

the apertures used to make up the array. The interdependence of the array and
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Figure 5.5: Average diversity gain of the modified covariance approach for each ge-
ometry as a function of the angular spread of clusters in the PAS.

aperture geometries makes it impossible to say, without further analysis, that a

linear array is always best for diversity applications.

Table 5.1: Diversity Gain Using the Modified Covariance Approach For Different
Array Geometries

Array Geometry Square Circle Linear
Diversity Gain in dB (relative to array of dipoles) 2.61 3.70 3.98

5.4 Overall Comparisons

A number of examples have been presented in this chapter to investigate the

influence of array size or key multipath characteristics on diversity performance.
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This section concludes the analysis by presenting average results for each method

and array type in the presence of random PASs.

The PASs considered consist of 1 to 7 Laplacian, Gaussian, or Uniform

clusters, with the width of each cluster being randomly chosen to lie between

15 and 50 degrees. Table 5.2 summarizes the average results. Each of the design

techniques in the table was performed for 5000 PAS realizations except the numeric

optimization technique which was performed on 500 realizations due to its intense

computational requirements. It is shown that on average the numeric optimization

technique achieves a diversity gain about .8 dB below the diversity gain upper

bound given by the overlapping current distributions. The results indicate that for

the array geometries considered, the modified covariance approach has the best

diversity gain performance given this ensemble of multipath environments. Over

this ensemble, the diversity gain performance of the modified covariance approach

is 1.4 dB below that of the overlapping currents and 3.3 dB higher than that of the

simple Hertzian dipole arrays. The circular array offers the highest diversity gain,

which is expected because it has six antennas as opposed to four. However, the

performance of each of the approximate design methods is most near optimal for

the linear array topology.

Table 5.2: Average Diversity Gain of Each Design Technique and Array Geometry
Array Type Square Linear Circular
Overlapping Optimal 22.1 23.5 26.6
Numeric Optimal 21.4 22.6 25.7
Dipoles 18.0 18.4 21.8
Covariance 18.5 21.6 24.5
Modified Covariance 20.7 22.3 25.3
Current 19.5 21.5 24.2
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Chapter 6

Conclusion

A key contribution of this work is the derivation and verification of an er-

godic capacity upper bound that directly links good diversity performance to good

ergodic capacity. This bound is verified by simulation and used to prove that maxi-

mizing diversity gain is a valid technique to achieve good ergodic capacity. Among

other things, proving this direct correlation between diversity and ergodic capacity

adds validity to the design goal of maximizing diversity gain and reinforces the

importance of the work presented in [9].

The optimal design approach derived in [9] is reviewed here. This approach

is the basis of most of the work presented in this thesis. Although the solutions

to this optimal design approach are impossible to implement, they provide both

an upper bound for diversity performance and a starting point for practical closed

form design methods.

Another contribution of this thesis is the development of several different

design approaches to approximate the optimal non-overlapping current distribu-

tions in the presence of a known PAS. Although each one of the developed design

methods is a suboptimal approximation, some of the methods achieve near-optimal

diversity performance. Multiple approximation techniques are presented because

each approximation method is fundamentally different.

This thesis clearly explains how each design technique attempts to maximize

diversity gain and develops insight into the effectiveness of each approach. The

covariance approach attempts to maximize diversity gain by maximizing the power

received by each antenna. For this approach to work well the array geometry

must create significant diversity because no diversity is introduced through the

43



antenna patterns. An approach which is a modification to the covariance approach

balances maximizing the power received by each antenna with minimizing the

cross-correlation of the antennas to maximize diversity gain. Significant gains

are achieved by this approach over the covariance approach when the antenna

elements are closely packed. The current approach attempts to create a current

distribution that effectively spans the space defined by the four dominant optimal

current distributions. This approach is particularly ill-suited to form narrow beams,

but its performance is similar to that of the covariance approach on average.

The optimal design approach from [9] is used as a theoretical upper bound

in this thesis. This thesis contributes to this bound by showing that currents

restricted to be non-overlapping can come on average to within 0.8 dB of the

theoretical optimal diversity gain, although numeric optimization is used to achieve

this performance.

The performance of three different array geometries is investigated. From

the analysis performed, each geometry appears to react very similarly to variations

in the richness of the multipath. Overall, the circular array offers the highest

diversity gain because it contains two more antennas than the other arrays. In a

more meaningful comparison, the linear aperture array is shown to be the array

that outperforms its corresponding dipole array by the most.

A noteworthy contribution of this thesis is that in very rich multipath en-

vironments an array of dipoles can produce diversity gains within 2 dB of the

diversity gains achieved by much more complicated arrays of the same geometry.

In typical multipath environments arrays designed with the modified covariance

approach outperform dipole arrays by about 3 dB. In sparse multipath environ-

ments the improvement is even greater, averaging about 5 dB. These figures could

be very useful to someone deciding whether it is worth investing time and effort

to create an array with near-optimal diversity gain.

In addition to what is presented in this thesis, significant future work could

be completed. Work could be done to improve the numeric optimization technique

implemented both to improve efficiency and to guarantee that the optimizer will
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converge to an absolute maximum. If this numeric optimization technique were

developed it could become a practical design approach, especially for situations

where the PAS is constant. In this thesis all of the antennas have a λ/2 by λ/2

aperture, but future research could be focused on the diversity performance of

each design approach as a function of aperture size and shape. Further research

could also be conducted to explore the interdependence of the aperture and array

geometries. Using this information, the array and aperture geometries that yield

the best diversity when combined could be determined.
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