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ABSTRACT

ATTITUDE ESTIMATION AND MANEUVERING FOR AUTONOMOUS

OBSTACLE AVOIDANCE BY MINIATURE AIR VEHICLES

James K. Hall

Department of Mechanical Engineering

Doctor of Philosophy

Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to

describe vehicle orientation, we develop a multiplicative, nonlinear (extended) varia-

tion of the Kalman �lter (MEKF) to fuse data from low-cost sensors. The sensor suite

is comprised of gyroscopes, accelerometers, and a GPS receiver. In contrast to the

common approach of using the complete vehicle attitude as the quantities to be esti-

mated, our �lter states consist of the three components of an attitude error vector. In

parallel with the time update of the attitude error estimate, we utilize the gyroscope

measurements for the time propagation of the attitude quaternion. The accelerometer

and the GPS sensors are used independently for the measurement update portion of

the Kalman �lter. For both sensors, a vector arithmetic approach is used to determine

the attitude error vector. Following each measurement update, a multiplicative reset

operation moves the attitude error information from the �lter state into the attitude

estimate. This reset operation utilizes quaternion algebra to implicitly maintain the

unity-norm constraint. We demonstrate the e�ectiveness of our attitude estimation





algorithm through �ight simulations and �ight tests of aggressive maneuvers such as

loops and small-radius circles.

We implement an approach to aerobatic maneuvering for miniature air vehi-

cles (MAVs) using time-parameterized attitude trajectory generation and an associ-

ated attitude tracking control law. We designed two methodologies, polynomial and

trigonometric, for creating functions that specify pitch and roll angles as a function

of time. For both approaches, the functions are constrained by the maneuver bound-

ary conditions of aircraft position and velocity. We construct a trajectory tracking

feedback control law to regulate aircraft orientation throughout the maneuvers. The

trajectory generation algorithm was used to construct several maneuvers and trajec-

tory tracking control law successfully executed the maneuvers in the �ight simulator.

In addition to the simulation results, MAV �ight tests veri�ed the performance of the

maneuver generation and control.

To achieve obstacle avoidance maneuvering, the time parameterized trajec-

tories were converted to spatially parameterized paths, which allowed for inertial

reference frame position error to be included in the control law feedback loop. We

develop a novel method to achieve the spatial parameterization using a prediction and

correction approach. Additionally, the �rst derivative of position of the desired path

is modi�ed using a corrective parameter scheme prior to being used in the control.

Using the path position error and the corrected derivative, we utilize a unit-norm

quaternion framework to implement a proportional-derivative (PD) control law. This

control law was demonstrated in simulation and hardware on maneuvers designed

speci�cally to avoid obstacles, namely the Immelmann and the Close-Q, as well as a

basic loop.
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Chapter 1

Introduction

1.1 Motivation

The use of miniature air vehicles1 (MAVs) for aerial surveillance has increased

dramatically in recent years as various technologies such as low-cost sensors and

cameras have been developed and integrated. The MAVs �own by the Brigham Young

University (BYU) Multi-AGent Intelligent Coordination and Control (MAGICC) lab

have been demonstrated in applications such as forest �re perimeter tracking, military

tactical reconnaissance, and rural search and rescue where rapid area searches are

desired. Many of these missions require the MAVs to operate in urban or mountainous

environments in which obstacles can be encountered in the �ight path. Thus, much

research has been conducted to develop autonomous obstacle avoidance technologies

for use while traversing speci�ed search regions.

For autonomous aircraft, the problem of avoiding obstacles has been addressed

using several di�erent approaches. In [1], a small, unmanned helicopter was used to

autonomously explore an unknown urban environment by generating real-time, planar

trajectories to navigate around obstacles. The work reported in [2] demonstrated the

ability to generate horizontal paths for an aircraft �ying among obstacles, and [3, 4]

demonstrated the ability to plan and control planar trajectories to avoid obstacles.

The common element in the autonomous obstacle avoidance literature is the extension

of ground robot methods to aircraft, thereby imposing an arti�cial constraint on the

maneuver space. By developing the ability to autonomously �y aerobatic maneuvers,

1We de�ne a miniature air vehicle as having a mass between 0.5 and 4 kilograms and having a
wingspan between 0.5 and 2 meters.
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we make possible the exploitation of an aircraft's inherent ability to operate in three-

dimensions.

For obstacle avoidance maneuvers, there exists a minimum possible turn radius

that provides a lower bound on the spatial operating envelope for a given aircraft. In

Anderson's [5] discussion of aircraft turning performance, he derives an expression for

turn radius as a function of the square of �ight velocity, V 2
∞, divided by the load factor,

n (de�ned as the ratio of lift to weight). Hence, for a given aircraft, the minimum

turn radius is �xed by the maximum load factor and the minimum �ight velocity.

This �xed lower-bound on the maneuver envelope can be enhanced by maneuvering

in three dimensions rather than just two. For instance, by executing a climbing, three-

dimensional turn, the aircraft trades airspeed for altitude, which maintains the total

energy of the aircraft while reducing the turn radius. Additionally, the projection of a

three dimensional maneuver onto the horizontal plane would be signi�cantly smaller

than a corresponding level turn.

1.2 Problem Description

One challenge for autonomous maneuvering aircraft is determining vehicle ori-

entation with respect to an inertial reference frame. Intrinsic to this attitude estima-

tion problem is the mathematical system used to represent attitude. In the aircraft

community, the standard attitude representation system uses the body-axis Euler

angles, φ, θ, and ψ. However, the ability to autonomously �y aerobatic maneu-

vers requires a system, such as the Euler-Rodrigues symmetric parameters (attitude

quaternion), that avoids the mathematical singularities and non-unique attitude rep-

resentations inherent to the Euler angle system [6].

The problem of aircraft attitude estimation is fundamentally one of fusing

data from various sensors in a way that accounts for uncertainty in the measurements

and the dynamic model. Although it lacks the guaranteed optimality of the linear

Kalman �lter, the extended Kalman �lter (EKF) can be used to �lter various sensors

and the dynamic model of a nonlinear system. However, the structure of the attitude

quaternion makes it awkward for usage in a standard EKF. Thus, we developed and

2



implemented a multiplicative EKF (MEKF) which used a three-component parame-

terization of attitude error as the �lter state. The attitude quaternion was propagated

and updated in parallel with the MEKF.

Another challenge to achieving autonomous aerobatic maneuver avoidance is

de�ning the desired path. When operating in an urban environment, it is conceivable

that the aircraft will encounter blind alleys or T-intersections that would result in a

crash if the MAV were con�ned to maneuvering in the horizontal plane. In contrast to

helicopters, �xed-wing aircraft have kinematic constraints, speci�cally airspeed, which

must be met when de�ning aerobatic maneuvers. Combining the airspeed constraints

with desired position and orientation in the framework of continuously di�erentiable

functions allows aerobatic obstacle avoidance maneuvers to be speci�ed.

To use aerobatic maneuvers to avoid obstacles, the paths from which the atti-

tude trajectories were generated need to be parameterized in space rather than time

so that position error can be calculated and included in the feedback loop. However,

including position error in the control law requires knowing the distance from the

aircraft to the desired path, which, in turn, requires parameterizing the path as a

function of position rather than time. Given the error in position and the error in the

�rst derivative of position allows the development of a proportional-derivative (PD)

control law. Building the control law in a unit-norm quaternion framework enables

the controller actuation commands to be e�ected directly in the body reference frame

of the aircraft.

To aid in the development of the aircraft attitude estimation algorithm and

obstacle avoidance maneuvering control technologies, a Matlab MAV �ight simula-

tion was developed. The algorithms developed and re�ned using this Matlab tool

were then imported into the Kestrel autopilot code and further re�ned in the Aviones

�ight simulator. Once the algorithms were satisfactorily re�ned and tested in the

simulations, the code can be programmed directly onto the MAV autopilot computer

processor [7, 8] for �ight validation. Using this development environment, the quater-

nion MEKF attitude estimation scheme, the trajectory tracking control law, and the

quaternion path following controller were developed and tested.

3



1.3 Related Work

The ability to autonomously �y aerobatic maneuvers to avoid obstacles re-

quires research in three broad categories: 1) MAV attitude estimation, 2) maneuver

trajectory generation and tracking, and 3) maneuver path following. The problem of

estimating orientation in the three-dimensional world has existed since humans �rst

started exploring the world. Maps, compasses, sextants, and stars were the tools of

early explorers to help them determine their heading. For MAVs, the attitude esti-

mation challenge requires fusing the data from several di�erent tools. Our suite of

attitude sensors includes low-cost gyroscopes and accelerometers with the information

from the GPS and pressure sensors. This challenge is made di�cult due to the noise

and drift inherent in these sensors, the lack of direct attitude measurements, and the

disparate operating frequencies of the various sensors. In addition to the challenge of

obtaining a single attitude estimate from multiple sensors, the aerobatic maneuvering

vehicle needs a singularity-free attitude representation, such as the Euler-Rodrigues

Symmetric Parameters (referred to herein as the attitude quaternion). However, the

axis-angle, unit-norm structure of the attitude quaternion creates di�culties for use

as the system state for a Kalman �lter. One of the seminal works in this arena is

[9] where the multiplicative extended Kalman �lter (MEKF) was �rst introduced for

spacecraft applications.

The ability to autonomously �y aerobatic maneuvers requires an understand-

ing of the kinematic constraints of the aircraft in question. These constraints are

di�erent for helicopters compared to aircraft. For example, aircraft must maintain a

minimum airspeed and have a minimum turn radius whereas the ability to hover al-

lows helicopters to maneuver in a completely di�erent spatial �ight envelope. For the

MAGICC lab �xed-wing MAVs, aerobatic maneuvers must have a continuous, smooth

transition from steady, level-�ight to the maneuver and another smooth transition

from the maneuver back to level �ight. These kinematic constraints create maneuver

boundary conditions that must be met by the trajectory generation algorithm. Ad-

ditionally, the trajectory generation algorithm needs to be able to calculate desired

MAV attitude as a function of time that does not exceed the dynamic limits of the

4



aircraft for thrust and turning rate. Whereas �fth-order polynomials can be used to

�y single-axis maneuvers such as aileron rolls or loops, a more sophisticated algorithm

that meets kinematic constraints is required to generate simultaneous pitch and roll

angles during a full three-dimensional maneuvers such as barrel rolls. The ground

breaking work on aerobatic maneuvering reported in [10] gives great insight into

modeling aircraft �ight dynamics using a di�erentially �at system of equations. The

challenge of the trajectory tracking control law is to achieve a balance between the roll

and pitch attitude to obtain acceptable tracking performance for three-dimensional

attitude trajectories. This balancing is necessary due to the pitch and roll coupling

during three-dimensional maneuvers; a small error in roll angle can cause the pitch

angle to take the aircraft in a very wrong direction.

The foremost challenge of following a curving path in space is determining the

point on the path that corresponds to the aircraft's current location and the value of

the spatial parameter that corresponds to this point on the path. This point is the

minimum distance from the aircraft to the path and the magnitude of this distance

indicates the amount of error in the path following; thus, it is of singular importance

when regulating to a curved path as was demonstrated in [11]. Calculating this point

on the path and the associated distance is particularly di�cult when the path crosses

itself as when performing a loop maneuver. A related challenge is calculating the

derivative of the path as a function of space rather than time. In the trajectory

generation algorithm, the derivative was calculated with respect to time; however,

for path following the path derivatives must be derived with respect to the spatial

parameter found in conjunction with the desired path that is minimum distance from

the aircraft location. Finally, the proportional and derivative errors are calculated

in the inertial reference frame, transformed into the path and body reference frames,

built into separate unit-norm quaternions, and then melded into a single unit-norm,

correction quaternion (see [12]).
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1.4 Contributions

The combination of singularity-free attitude estimation, maneuver path def-

inition and location, and the path following control law are enabling technologies

necessary for autonomous obstacle avoidance maneuvering for MAVs. The speci�c

contributions of this research are the following:

• the development of a multiplicative extended Kalman �lter (MEKF) for fusing

MAV-speci�c sensor data;

• the formulation of the methodology for directly computing the attitude error

quaternion for use in the MEKF for �xed-wing MAVs;

• the creation of a structured methodology for de�ning and generating aerobatic

maneuver paths using continuous, smooth polynomial and trigonometric func-

tions and boundary conditions for position and velocity;

• the formulation of a prediction-correction approach to determining the path lo-

cation and parameterization variable associated with the aircraft instantaneous

location; and

• the generalization of a quaternion control approach from tracking a �xed posi-

tion in inertial space to following a three-dimensional path.

As a secondary e�ect beyond enabling aerobatic maneuvering, the improved accu-

racy of the aircraft attitude estimation enables better geo-location from the MAV

platform and improves altitude hold performance during turns. In addition to �ying

familiar maneuvers such as the aileron roll, loop and Immelmann2, a completely new

maneuver, dubbed the Close-Q, speci�c to obstacle avoidance in urban terrain has

been de�ned and �ight tested. Additionally, the Matlab MAV �ight simulation tool

was adapted to aid in the initial development and testing of new control laws.

2Named for Max Immelmann, German pilot in World War I.
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1.5 Outline

The research presented herein can be categorized under three general topics:

attitude estimation, time-parameterized maneuver trajectory generation and track-

ing, and path following maneuver control. However, before discussing the research,

Chapter 2 will present the various tools we used to develop and test MAV control

laws. The topic of attitude estimation will be presented in Chapter 3. The con-

struction of maneuver trajectories based on boundary conditions will be discussed

in Chapter 4. We conclude with a discussion in Chapter 5 of the conversion of the

trajectory to a path and the quaternion path following control law. Some conclusions

and a discussion of possible future research are presented in Chapter 6. Disclaimer:

The views expressed in this document are those of the author and do not necessarily

re�ect the o�cial policy or position of the Air Force, the Department of Defense, or

the U.S. Government.
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Chapter 2

MAV Development Tools

The attitude estimation and autonomous maneuvering research presented herein

was conducted in the BYU MAGICC lab using various �ight simulation software en-

vironments as well as �ight test hardware. These tools have been created and re�ned

by MAGICC lab researchers during the past several years.

2.1 Matlab Flight Simulation

The �rst tool is a Matlab Simulink environment that uses the full six degree-of-

freedom (6-DOF) model of an aircraft from [13]. This �ight simulation environment

includes autopilot and plotting functions (see Figure 2.1), which enables the rapid

development and testing of new concepts for controlling autonomous aircraft.

To facilitate autonomous aerobatic maneuvering research, we modi�ed the

�rst-order di�erential equations for attitude from the Euler angle model to the atti-

tude quaternion kinematic model. With this change, the number of equations in the

complete aircraft dynamic model increase from twelve to thirteen, but the attitude

estimation is free of singularities. Additionally, the drag polar information from [14]

was used to update the drag model parameters.

One of the advantages of the Matlab development tool is the ease with which

various �ight parameters can be plotted for further review. The sample snapshot of

a single data run for an aggressive aerobatic maneuver is shown in Figure 2.2. The

legend for each of the various outputs is not included so as to conserve space for the

pertinent information.
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Figure 2.1: Matlab Simulink UAV and Autopilot. The image shows the simulation
interface for Matlab Simulink model of the autopilot and generic unmanned air ve-
hicle (UAV). This environment provides a means to rapidly test new aircraft control
concepts.

Once a concept has been developed and tested in the Matlab environment,

translating the computer code into the appropriate autopilot library is quite straight

forward.

2.2 Autonomous Flight Software Tools

The Virtual Cockpit is a software program that was developed at BYU to

interface with MAVs in simulation and �ight. This interaction can include tuning

controller gains, commanding waypoints with the associated altitude and airspeed,

and monitoring aircraft status. The Virtual Cockpit has the ability to communicate

with the MAV in �ight or with an emulated MAV in a �ight simulator program.

The Virtual Cockpit presents vital telemetry data of the MAV on a heads-up

display. It also displays a geo-referenced terrain map, on which the operator can

point-and-click, de�ning a �ight path for the MAV to follow. The current position of
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Figure 2.2: Output from the Matlab UAV Simulation. The output data from a
simulated Close-Q aerobatic maneuver. Of particular interest in this data set was the
de�ections of the ailerons, elevators and throttle (δa, δe, and δt).

the MAV is also displayed on the map allowing the operator to monitor the progress

of the MAV along the path. A screen shot of these displays is shown in Figure 2.3.

The Virtual Cockpit contains a framework for accessing autopilot variables,

which can be used for in-�ight parameter and gain tuning. Additional features in-

clude the ability to stream video, record important telemetry data, and coordinate

with multiple agents. The ability of Virtual Cockpit to interface with both the simu-

lator and the actual aircraft allows for smoother development and testing of control

algorithms.

The simulation environment used in conjunction with the Virtual Cockpit is

called Aviones. It was developed at BYU and the open source code is available for
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Figure 2.3: The Virtual Cockpit Map Page. A snapshot of the Virtual Cockpit map
page shows an overhead view of the waypoint path over the local map, along with a
list of waypoints and the arti�cial horizon of the heads-up display.

download from SourceForge: http://sourceforge.net/projects/aviones. The engine

that drives the Aviones �ight simulation are the thirteen, �rst-order, nonlinear di�er-

ential equations for the motion of an aircraft. These equations allow for six degrees

of freedom for the aircraft, including translation in the three orthogonal directions

and rotations about the three axes in inertial space. These thirteen equations can

be divided into four sets: 1) force, 2) moment, 3) navigation, and 4) attitude kine-

matics. We de�ne the key variables in vector format, where
[
u v w

]T
is the

vector of velocities in the body-frame directions
[

Xb Yb Zb

]T
, respectively. The

vector
[
p q r

]T
contains the angular rates about the body-frame axes, the vector[

e0 ex ey ez

]T
is made up of the four components of the attitude quaternion, the

components of the vector
[
Fx Fy Fz

]T
are the summation of the aerodynamic and

thrust forces in the body-frame directions, g is the local acceleration due to gravity,

and �nally m is the aircraft mass. Using this nomenclature, the three force equations
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can be written as

u̇ = rv − qw + g (2exez − 2e0ey) +
Fx
m

v̇ = pw − ru+ g (2eyez + 2e0ex) +
Fy
m

(2.1)

ẇ = qu− pv + g
(
e2

0 − e2
x − e2

y + e2
z

)
+
Fz
m
.

The three moment equations use the vector of torques
[
Tx Ty Tz

]T
about the

three body-frame axes and the associated moments of inertia
[
Jx Jy Jz Jxz

]T
in

the calculation of the change in angular rates, as

ṗ =
Jxz (Jx − Jy + Jz) pq − (j2

z − JzJy + J2
xz) qr + JzTx + JxzTz

JxJz − J2
xz

q̇ =
(Jz − Jx) pr − Jxzp2 + Jxzr

2 + Ty
Jy

(2.2)

ṙ =
(J2
x − JxJy + J2

xz) pq − (JxzJx − JxzJy + JxzJz) qr + JxzTx + JxTz
JxJz − J2

xz

.

The translation and rotation information calculated in the force and moment equa-

tions can be used to propagate the aircraft position using the navigation equations

ṗN = u
(
e2

0 + e2
x − e2

y − e2
z

)
+ v (2eyex − 2e0ez) + w (2exez − 2e0ey) + VwindN

ṗE = u (2eyex + 2e0ez) + v
(
e2

0 − e2
x + e2

y − e2
z

)
+ (2eyez − 2e0ex) + VwindE

(2.3)

ṗD = u (2exez − 2e0ey) + v (2eyez + 2e0ex) + w
(
e2

0 − e2
x − e2

y + e2
z

)
,

where VwindN
and VwindE

are the components of the modeled wind. Finally, the

angular rates can be used to determine the aircraft spatial orientation from the kine-

matic equations. However, for the purposes of the aerobatic maneuvering research,

we changed the equations of motion in Aviones to propagate the attitude quaternion

parameters rather than Euler angles. The four attitude-quaternion equations can be

written as

ė0 =
1

2
(−exp− eyq − ezr)
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ėx =
1

2
(e0p− ezq + eyr)

ėy =
1

2
(ezp+ e0q − exr) (2.4)

ėz =
1

2
(−eyp+ exq + e0r) .

In Aviones, this set of thirteen di�erential equations are propagated forward in time

using a fourth-order Runge-Kutta numerical integration scheme.

Using the motion information from the integration functions, Aviones renders

MAVs �ying above three-dimensional, geo-referenced terrain maps, and also has the

ability to import city �les. A screen shot of a MAV �ying through a city in Aviones

is shown in Figure 2.4. Aviones supports the simulation of multiple UAVs, as well as

di�erent types of aircraft with their associated physics models, and sensor models. It

also allows alteration of aircraft parameters such as lift and drag coe�cients, as well

as environmental factors such as gravitational �elds and wind.

The distinguishing feature of Aviones is the autopilot emulation framework

that allows code written for the autopilot to be compiled as a dynamically linked

library (DLL). This DLL is then loaded into the simulated environment for testing.

Aviones communicates with the Virtual Cockpit over a TCP/IP socket as though

the simulated aircraft were a physical aircraft communicating via radio. The physics

engine of Aviones provides state information to the autopilot DLL and replaces the

sensors of the actual autopilot with models. The Virtual Cockpit and Aviones tools

enable algorithm development in a controlled environment prior to �ight testing.

2.3 Flight Hardware

The control algorithms developed in the Matlab Simulink tool and re�ned in

the Aviones simulation environment can be validated in the crucible of �ight test-

ing. The primary component of the �ight tests is the MAV, which is an expanded

polypropylene (EPP) �ying wing with carbon �ber rods bonded into the wings for

strength and sti�ness, as shown in Figure 2.5. The MAVs are battery powered, with

thrust coming from a speed controlled, brushless electric motor.

14



Figure 2.4: The Aviones Flight Simulation Environment. This environment can
include buildings and roads in its simulated world.

Figure 2.5: The Flight Test MAV. The MAV used in the �ight testing of the attitude
estimation and aerobatic maneuvering control laws.
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The hardware that distinguishes the MAV from a radio controlled aircraft

is the autopilot shown in Figure 2.6. The Kestrel Autopilot was developed at BYU

and includes a main processor, onboard sensors, and communication ports for external

servos, modem, and sensors. The Kestrel Autopilot is equipped with a 29 MHz Rabbit

microcontroller with 512K Flash and 512K RAM. The integrated autopilot sensors

include gyroscopes, accelerometers, and pressure sensors for measuring altitude and

airspeed.

Figure 2.6: The Kestrel Autopilot. Version 2.2 of the autopilot is shown with a
quarter for scale purposes.

To provide position and course measurements even during maneuvering, a GPS

receiver with a 4 Hz update rate and an active, omnidirectional antenna is used as an

additional onboard sensor. The GPS receiver and antenna can be seen in Figure 2.7.
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Figure 2.7: The GPS Receiver and Antenna. The MAV obtains position and course
information from the GPS receiver.

The communication link from the ground station to the aircraft is accom-

plished using two 900 MHz wireless modems, one on the aircraft and the other in

the communications box attached to the ground station. The communications box is

equipped with circuitry and connections for a radio control aircraft transmitter. Thus,

a �ying MAV can be controlled by the ground station computer running Virtual Cock-

pit or by a pilot using the radio control transmitter. This arrangement allows human

intervention to override the autopilot should a dangerous situation arise.
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Figure 2.8: MAV Flight Test Ground Station. The laptop computer is running
Virtual Cockpit and is connected to the radio control transmitter through a commu-
nications box wherein resides the 900 MHz wireless modem.

Table 2.1: MAGICC Lab Aircraft Speci�cations

CHARACTERISTIC SPECIFICATION

Processor Speed 29 MHz
Memory 512K �ash & 512 RAM
GPS 4Hz update rate

Communication 900 MHz Wireless Modem
Size 1.2 m span, 0.3 m chord

Weight 1.5 kg
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2.4 Summary

The BYU MAGICC lab has developed an e�ective set of tools to develop and

demonstrate innovative control technologies for MAVs. The high �delity of the Matlab

and Aviones software environments aids in the re�nement of the methodologies prior

to �ight validation.
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Chapter 3

Attitude Estimation

The �rst step in developing obstacle avoidance maneuvering for MAVs is to

create an attitude estimation approach that continues to function regardless of the

aircraft attitude. The challenge of estimating the attitude, or orientation, with respect

to an inertial reference frame has been a topic of research for many years.

3.1 Background

Many researchers have addressed the aircraft attitude estimation problem [15,

16, 17] by fusing data from various sensors. The current MAGICC lab attitude

estimation system [18] uses a complementary �lter (see [19]) with the �lter gain scaled

as a function of the angular rates; this algorithm is referred to as the Variable Gain

Observer (VGO). A method of data fusion that uses sensor noise statistics to improve

estimation accuracy is the Kalman �lter [20, 21, 22], which can be decomposed into

two sequential parts: the time update and the measurement update. The MEKF

[9, 23, 24, 25], which uses multiplication rather than addition in the measurement

update, has been applied to the attitude estimation problem, particularly when the

vehicle orientation is expressed using the attitude quaternion [6, 26, 27]. For our

attitude estimation algorithm, we developed an implementation of the MEKF that

fuses data from a low-cost suite of gyroscopes, accelerometers and GPS.

Although the attitude quaternion provides a singularity-free representation,

its unique, mathematical structure creates di�culties for use as the system state for

a Kalman �lter. One approach is to de�ne attitude error as the �lter state vector [28]

and propagate the attitude quaternion separately. We utilize the Euler axis/angle
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parametrization of attitude error for our state vector and propagate our attitude es-

timate based on output from the gyroscopes and updates from the measured attitude

error vector.

The measurement update portion of the MEKF provides a correction to the at-

titude quaternion propagated using the gyroscopes. The task of determining attitude

from vector observations is often referred to as Wahba's problem [29], and requires

the measurement of at least two, non-collinear vectors. Many di�erent approaches

have been used to solve Wahba's problem as applied to spacecraft attitude estima-

tion [25, 28, 30], and recently a quaternion-based EKF approach was demonstrated

for manned aircraft [31]. For our MAV attitude estimation scheme, the two vector

observations will be gravity and heading, derived from accelerometer and GPS mea-

surements, respectively. However, the distinct attributes of the GPS and accelerom-

eter measurements creates a need to employ the incremental update methodology

[32, 18]. Thus, we developed an intelligent algorithm to incrementally update the

attitude estimate using the MEKF, where the �lter state vector is the Euler axis and

angle parametrization of attitude error and the attitude quaternion is propagated in

parallel.

3.2 Attitude Representation

The attitude estimation problem is to determine the orientation of the vehicle

body reference frame (subscript b) with respect to an inertial reference frame (sub-

script i). Although many di�erent attitude representation systems (see [6]) can be

used to specify the orientation of a moving vehicle to some inertial reference frame,

only two are used in our research: Euler angles and the attitude quaternion.

3.2.1 Euler Angles

In the aeronautical community, Euler angles (φ, θ, and, ψ) are the primary

attitude representation system used to describe the orientation of the body-frame

with respect to the inertial-frame. The Euler angles provide an intuitive approach for
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visualizing the various coordinate reference frames, facilitating understanding of key

concepts, and presenting the �ight simulation results, as shown in Figures 3.1-3.3. Of

particular pertinence for understanding the aircraft orientation during maneuvers are

the pitch angle (Figure 3.2) and the roll angle (Figure 3.3).

Figure 3.1: MAV Top View. The attitude angle for heading, ψ, is measured from
local north to the nose of the aircraft. The course angle, χ, indicates the ground track
of the aircraft relative to the inertial frame x-axis (north).

Figure 3.2: MAV Side View. The aircraft pitch angle, θ, is measured from an
intermediate inertial-frame horizontal plane rotated by ψ to the line extending from
the aircraft center of mass out the right wing. Positive rotation is right-handed sense.
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Figure 3.3: MAV Rear View. The aircraft roll angle, φ, is measured relative to an
intermediate inertial-frame axis that has been rotated by ψ and θ. Positive rotation
is in the right-handed sense.

Fundamental to developing maneuver trajectories, paths, and control laws is

the ability to represent body-frame vectors in the inertial reference frame and vice

versa. The transformation of vectors from one frame to the other can be accomplished

using the Euler angle formulation of the rotation matrix, which can be written as

R(φθψ) =
[

c1 c2 c3

]
, (3.1)

where

c1 =


cos θ cosψ

− cosφ sinψ + sinφ sin θ cosψ

sinφ sinψ + cosφ sin θ cosψ



c2 =


cos θ sinψ

cosφ cosψ + sinφ sin θ sinψ

− sinφ cosψ + cosφ sin θ sinψ



c3 =


− sin θ

sinφ cos θ

cosφ cos θ

 .
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Conversely, if we know the rotation matrix, we can �nd the separate Euler angles

using the following three equations extracted from the components of Equation 3.1

θ = − sin−1 [c3 (1)] (3.2)

φ = tan−1 [c3 (2) , c3 (3)] (3.3)

ψ = tan−1 [c2 (1) , c1 (1)] . (3.4)

The primary motivation for using the attitude quaternion rather than the Euler

angles is to avoid the well-known singularity in the Euler angle kinematic equations.

This singularity is can be readily observed in the equations relating angular rates to

Euler angle rates,


φ̇

θ̇

ψ̇

 =


1 sin θ sinφ

cos θ
sin θ cosφ

cos θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ




p

q

r

 , (3.5)

where the (cos θ) term in the denominator goes to 0 as pitch angle approaches 90

degrees. In the literature, this singularity results in a phenomenon often referred to

as gimbal lock.

3.2.2 Attitude Quaternion

The attitude quaternion (e) is de�ned as a rotation about a speci�c axis ar-

ranged as a column vector of four parameters, which can be written as,

e =



e0

ex

ey

ez


≡



cos
(

Θ
2

)
Ex sin

(
Θ
2

)
Ey sin

(
Θ
2

)
Ez sin

(
Θ
2

)


. (3.6)

The �rst parameter, e0, is a scalar quantity related to the angle of rotation, Θ, and

the parameters ex, ey, and ez are the scaled components of the unit-length axis of
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rotation, E = [ExEy Ez]
T , in the inertial reference frame. One essential attribute of

the attitude quaternion is that the Euclidean norm is equal to unity,

‖e‖ =
√
e2

0 + e2
x + e2

y + e2
z

=

√
cos2

(
Θ

2

)
+
(
E2
x + E2

y + E2
z

)
sin2

(
Θ

2

)

=

√
cos2

(
Θ

2

)
+ (1) sin2

(
Θ

2

)
= 1.

This is in contrast to the strict mathematical de�nition of the quaternion as being a

column vector with four parameters.

The unity-norm constraint on the attitude quaternion allows the formulation

of a rigid-body rotation matrix from the four attitude quaternion parameters. This

matrix is written as

R(e)b←i = [c1 c2 c3] , (3.7)

where the three column vectors can be expressed as,

c1 =


e2

0 + e2
x − e2

y − e2
z

2 (exey − eze0)

2 (exez + eye0)



c2 =


2 (exey + eze0)

e2
0 − e2

x + e2
y − e2

z

2 (eyez − exe0)



c3 =


2 (exez − eye0)

2 (eyez + exe0)

e2
0 − e2

x − e2
y + e2

z

 .
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This matrix transforms vectors represented in the inertial frame to representations in

the body frame. For example, given an inertial frame vector, vi, the expression

vb = R(e)b←ivi (3.8)

yields the same vector expressed in the body reference frame. Because the rotation

matrix is unitary, its transpose can be used to transform vectors in the body frame

to the inertial frame,

vi = R(e)Tb←ivb

= R(e)i←bvb. (3.9)

The attitude quaternion can also be used to rotate vectors from one reference frame

to another by �rst de�ning the quaternion conjugate, e∗, as,

e∗ =



e0

−ex
−ey
−ez


. (3.10)

The vector transformation is achieved using the formula

vi = e⊗ vi ⊗ e∗. (3.11)

The unity-norm constraint is implicitly enforced by adhering to the rules of quaternion

algebra when composing two quaternions. The composition of two quaternions, e and

e′, is written as

e′′ = e⊗ e′
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=



e0e
′
0 − exe′x − eye′y − eze′z

e0e
′
x + exe

′
0 − eye′z + eze

′
y

e0e
′
y + exe

′
z + eye

′
0 − eze′x

e0e
′
z − exe′y + eye

′
x + eze

′
0


. (3.12)

If e and e′ both meet the unity-norm constraint, the quaternion resulting from their

composition will also be unity-norm. The composition of two attitude quaternions

represents two successive rotations, whereas the quaternion resulting from the com-

position is a single rotation that produces the same transformation. For example, if

e′ rotates from coordinate system 1 to 2 and e rotates coordinate system 2 to 3, then

the composed quaternion rotates directly from 1 to 3. In equation form, this can be

written as

e′′3←1 = e3←2 ⊗ e′2←1, (3.13)

where the order of composition is de�ned so that the multiplication of the associated

rotation matrices yields the same total rotation, which is expressed as

R (e′′)3←1 = R (e)3←2 R (e′)2←1 . (3.14)

Given this physical interpretation for the composition of attitude quaternions, it is

evident that composition is not commutative, e⊗ e′ 6= e′ ⊗ e.

One can readily see the primary advantage of the attitude quaternion com-

pared to the Euler angles by comparing Equation (3.5) with the di�erential equation

for the attitude quaternion kinematics, which can be written as

ė =
1

2

 0

ω

⊗ e, (3.15)

where ω is the vector of body-frame angular rates [p q r]T from the three gyroscopes

(one for each body-frame axis). Not only does the attitude quaternion avoid mathe-
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matical singularities, Equation (3.15) is bi-linear in the attitude quaternion parame-

ters and the gyroscope measurements.

One of the key concepts utilized in our MEKF algorithm is the ability to

construct an error quaternion from an Euler attitude error vector [28]. The three

components of the Euler attitude error vector are de�ned as the product of an or-

thogonal unit vector, Ee, and rotation angle, Θe(measured in radians) ,

ae = ΘeEe =


aex

aey

aez

 . (3.16)

From the Euler attitude error vector, we can construct a unity-norm error quaternion,

δe (ae), according to the formulation,

δe (ae) =



cos
(
‖ae‖

2

)
(
aex

‖ae‖

)
sin

(
‖ae‖

2

)
(
aey

‖ae‖

)
sin

(
‖ae‖

2

)
(
aez

‖ae‖

)
sin

(
‖ae‖

2

)


, (3.17)

where the range of the error angle is Θe ∈
[

0, 2π

]
.

3.3 Time Update

For the purposes of completeness and clarity, the standard EKF time update

equations are presented �rst, followed by an explanation of how these have been

adapted to solve the MAV attitude estimation problem.

3.3.1 Standard EKF Time Update

Using the notation for the continuous-discrete EKF from [33], the standard

form of the dynamic system of equations is written as
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ẋ = f (x,u, t) + Gw (t) (3.18)

z (k) = h (x, k) + v (k) . (3.19)

The di�erential equation for the covariance matrix, P, is written as

Ṗ = FP + PFT + GQGT , (3.20)

where G is the cross-correlation matrix, and Q is the covariance of the stationary,

zero-mean process noise, w (t). For nonlinear systems, the state transition matrix, F,

is computed at each time step from the Jacobian of Equation (3.18), as

F =
∂f (x,u, t)

∂x
. (3.21)

3.3.2 MEKF Time Update

For the MAV attitude estimation problem, we use an attitude error model

which makes two key assumptions: 1) the static bias for each gyroscope have been

estimated o�ine and 2) the transient biases are negligible. Thus our dynamic model

of attitude error can be written as

ȧe = −ω × ae + w (t) , (3.22)

where w (t) is the stationary, white noise on the gyroscopes, ω is the body-frame

angular rates from the gyroscopes, and ae (the Euler attitude error vector) is the

state vector. When implemented on the autopilot, the discrete time propagation of

the state can be accomplished using Euler integration. Because of the assumptions

of known static biases and zero-mean noise, the expected value of the attitude error

after the time update is equal to zero (âe (k + 1) = [0]) .

30



With the system model given in Equation (3.22), the state update matrix, F,

used in the propagation of the covariance matrix, is written as

F =
∂f (x,u, t)

∂x
= −ω̂ (k) , (3.23)

where ω̂ (k) is de�ned as a skew-symmetric matrix with elements equal to the body-

frame angular rates, written as

ω̂ (k) =


0 −r q

r 0 −p

−q p 0

 . (3.24)

Making the standard assumption that the process noise, w (t), is an uncor-

related, stationary, zero-mean, Gaussian process, the cross-correlation matrix, G, in

Equation (3.20), is the identity matrix. Thus, the discrete Euler integration update

equations are written as,

âe (k + 1) = 0 (3.25)

P (k + 1) = P (k) + Ts
(
F (k) P (k) + P (k) F (k)T + Q

)
, (3.26)

where Ts is the integration time step.

Concurrent with the propagation of the state and the covariance matrix, we

also propagate the attitude quaternion using Euler integration of Equation (3.15),

e (k + 1) = e (k) +
Ts
2


 0

ω (k)

⊗ e (k)

 . (3.27)

Following the time propagation of the attitude quaternion, the unity-norm constraint

can be explicitly enforced by dividing each of the parameters by the norm of the

attitude quaternion, as

e (k + 1) ← e (k + 1)

‖e (k + 1) ‖
. (3.28)
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3.4 Measurement Update

The discussion of the measurement update is also divided into a presentation of

the standard EKF formulation followed by a discussion of the necessary modi�cations

to create the MAV-speci�c version of the MEKF.

3.4.1 Standard EKF Measurement Update

In the standard EKF, the measurement update portion is divided into three

parts: calculating the Kalman gain, updating the covariance matrix, and estimating

the new system state. The key relationship for the EKF measurement update step is

the measurement output matrix, H (k) , linearized at each iteration as

H (k) =
∂h (x, k)

∂x
. (3.29)

The equation for calculating the Kalman gain matrix can be written as

K (k) = P (k)−H (k)T
(
R + H (k) P (k)−H (k)T

)−1
, (3.30)

where R represents the applicable sensor noise covariance and P (k)− is the previously

calculated covariance matrix. The Kalman gain matrix, K (k) , is used to calculate

the new covariance matrix, according to the equation

P (k)+ = (I−K (k) H (k)) P (k)− . (3.31)

In the �nal step of the standard EKF, K (k) is used to scale the state error prior

to summation with the previous state estimate to determine the new state estimate,

according to

x̂ (k)+ = x̂ (k)− + K (k)
[
z (k)−Hx̂ (k)−

]
. (3.32)
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3.4.2 MEKF Measurement Update

Incremental Update

Our attitude estimation algorithm uses an observation of the heading vector

derived from the GPS and an estimation of the wind vector (see [34]), along with an

observation of the gravity vector derived from the accelerometers, to provide the two

non-collinear vectors needed for attitude measurement. However, these two obser-

vations should be treated independently for two reasons: disparate sensor operating

frequencies and di�erent observation reference frames. Hence, our �rst modi�cation

to the standard EKF is an implementation of the incremental update concept [32],

which allows the measurement update to be completed independently for each sensor.

The �rst motive for pursuing the incremental update concept is that the ac-

celerometers and the GPS operate at di�erent frequencies. The accelerometers are

analog devices that continuously sense gravity, allowing our attitude estimation al-

gorithm to be updated with each iteration of the autopilot code, nominally 50 Hz.

Conversely, the GPS data update occurs at a �xed rate of 4 Hz, meaning that GPS-

derived heading information is used to update the attitude estimate only when new

data is available.

Additionally, the observations from the GPS and accelerometers do not occur

in the same reference frame. The GPS measurements are made in the inertial frame

and accelerometers measure in the body frame. This is important because the order

of quaternion composition is reversed for the body frame compared to the inertial

frame.

Euler Attitude Error Vector

Although several methods exist for calculating attitude error [31, 25], our

approach builds the Euler attitude error vector directly from observed vectors and

their predicted values. In generic notation, the measured and predicted vectors can be

denoted as vm and vp. Calculating the cross product of the normalized measurement
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and predicted vectors according to

Ee =
vp
‖vp‖

× vm
‖vm‖

, (3.33)

yields a unit-vector rotation axis around which the attitude estimate needs to be

rotated to correct the error. Next, the error angle is found from the dot product of

the same two vectors using the expression,

Θe = cos−1

(
vp
‖vp‖

· vm
‖vm‖

)
. (3.34)

The Euler attitude error vector is the product of the unit vector and the angle, written

as

(ae)m = ΘeEe. (3.35)

Because the time propagated expected value of the Euler attitude error vector is

de�ned to be zero (â−e = 0), the state update equation (3.32) becomes

[
â+
e

]
=

[
0

]
+ K [(ae)m − 0] . (3.36)

Additionally, since the measured Euler attitude error vector is created from the sensor

observations, the measurement output matrix, H (k) , is a 3× 3 identity matrix.

We complete the measurement update by implementing the reset operation,

which moves the attitude error information from the state vector into the attitude

quaternion. The �rst step in the reset operation is to map the Euler attitude error

vector into an error quaternion according to Equation (3.17). Next, we compose the

error quaternion with the previous estimate of the attitude quaternion,

ê+ = δe
(
â+
e

)
⊗ ê−, (3.37)

where the order of composition is reversed if the measurements have been made in

the inertial reference frame. By correcting the attitude quaternion with the error
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information, the attitude estimate is assumed to be accurate and therefore, the ex-

pected value of the error is zero. Thus, the state vector is reset to zero prior to each

iteration of the MEKF algorithm. Given the generalized MEKF measurement update

procedure outlined above, we now present our sensor-speci�c implementation.

Accelerometer Measurement Update

When in steady-level �ight, the accelerometers provide an indication of the

gravity vector, which can be compared with the inertial z-axis rotated into the body

frame, (zi)b, using the rotation matrix (Equation (3.7) based on the previous attitude

quaternion). Given these two body-frame vectors, the accelerometer-based attitude

error axis and error angle are computed as

EeA =
g

‖g‖
× (zi)b (3.38)

ΘeA = cos−1

(
g

‖g‖
· (zi)b

)
, (3.39)

where the normalized g is the observed direction of the gravity vector. The error

axis and angle are then substituted into Equation (3.35) to calculate (ae)A . The

Kalman gain matrix, K (k) , is calculated based on the measurement noise matrix,

R, applicable to the accelerometers. K (k) is used in Equation (3.31) to calculate the

new covariance matrix, P (k)+ , and in Equation (3.36) to scale the Euler attitude

error vector, â+
e . Finally, the reset operation is accomplished by �rst mapping â+

e

into an error quaternion using Equation (3.17) and then moving the attitude error

information into the attitude estimate from the previous time update according to

Equation (3.37). Once the attitude estimate has been corrected, the state vector is

reset to zero (âe = 0) in preparation for the next iteration.

GPS Measurement Update

The GPS portion of the measurement update is accomplished using a heading

vector, ψG, derived from the GPS measurement of course angle and the wind vector
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[34]. To �nd the heading error, the heading observation is compared to our predicted

heading. This prediction of heading is obtained by projecting the body reference

frame x-axis onto the inertial x− y plane using the transpose of the rotation matrix

based on the previous attitude quaternion. Again, the vector cross product and dot

product are used to calculate the error axis and angle, as

EeG =
(xb)i
‖ (xb)i ‖

×ψG (3.40)

ΘeG = cos−1

[
(xb)i
‖ (xb)i ‖

·ψG
]
, (3.41)

where (xb)i needs to be normalized after projection onto the x− y plane. The GPS-

based Euler attitude error vector, (ae)G, is then calculated. This vector is scaled by

the K (k) calculated based on the GPS noise measurement matrix to get the new

â+
e . As with the accelerometer measurement, this updated attitude error vector is

mapped into a unity-norm error quaternion and composed with the previous attitude

quaternion. Note, however, that the order of composition,

ê+ = ê− ⊗ δe
(
â+
e

)
, (3.42)

is reversed from the accelerometer measurement update due to the heading vectors

being compared in the inertial reference frame. Moving the attitude error information

into the attitude quaternion allows the state vector to be reset prior to the next

iteration of the algorithm.

Accelerometer Measurement Noise Tuning

When not in steady-level �ight, accelerometers sense linear, angular, and Cori-

olis accelerations in addition to the acceleration of gravity. This degradation of the

observed gravity vector was addressed in [31] by turning o� the measurement update

whenever the gravity measurement was corrupted beyond a certain threshold. Our

approach is to scale each component of the accelerometer measurement noise matrix,

R, to account for the decreased con�dence in the accelerometer measurements. The
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equation we use for computing the scaled, diagonal components of R can be written

as

R = R
[
1 + k (1− ‖g‖)2

]
, (3.43)

where k is a vector of tunable gains and g is the accelerometer measurements. Thus,

during steady-level �ight, the norm of the accelerometer measurements (measured

in gravity units) should be nearly equal to one, making the di�erence zero and the

components of R unchanged. Conversely, while maneuvering, the di�erence will be

non-zero, e�ectively reducing con�dence in the accelerometer measurement values.

Induced Heading Error Correction

One challenge of the incremental update methodology is that the accelerometer

measurement update can induce an error in the heading portion of the attitude esti-

mate. Noting that the gravity vector should align with the inertial z-axis, the attitude

estimate correction provided by the accelerometers provides no heading information.

Thus, any change in the heading estimate created during the accelerometer portion

of the measurement update is erroneous.

The aircraft heading vector is de�ned as the body-frame x-axis projected onto

the inertial x− y plane, denoted as
(
x−b
)
i
or
(
x+
b

)
i
, where the superscript indicates

the heading before or after the accelerometer measurement update. After normalizing

these two vectors, an Euler attitude error vector for the induced heading error can be

calculated according to

EeI =

(
x+
b

)
i

‖
(
x+
b

)
i
‖
×

(
x−b
)
i

‖
(
x−b
)
i
‖

(3.44)

ΘeI = cos−1


(
x+
b

)
i

‖
(
x+
b

)
i
‖
·

(
x−b
)
i

‖
(
x−b
)
i
‖

 (3.45)

(ae)I = ΘeIEeI . (3.46)
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We convert aeI into the error quaternion according to Equation (3.17) and compose

this error quaternion with the attitude estimate from the accelerometer update, ac-

cording to

ê+ = ê− ⊗ δe (ae)I , (3.47)

where the order of composition is as shown in Equation (3.42) since the heading error

is in the inertial reference frame.

In conclusion, our MEKF approach enforces the unity-norm constraint on the

attitude quaternion by using the multiplicative reset operation to move the attitude

error information from the state to the attitude estimate. Additionally, the incre-

mental update approach allows the attitude estimation problem to be decomposed

for disparate sensor information rates and reference frames. To validate our attitude

estimation algorithm, �ight simulations were run using the Aviones1 software.

3.5 Results

The simulation results were obtained with the Aviones software providing the

true attitude for comparison with the MEKF and VGO estimation schemes. However,

much di�culty was experienced in obtaining de�nitive hardware results due to the

lack of truth data for the �ying MAV.

3.5.1 Simulation Results

We conducted simulations to re�ne and demonstrate the quaternion MEKF

attitude estimation using the Aviones software to generate truth data for each of

the attitude parameters. Additionally, the VGO data was included to provide an

additional indication of the MEKF performance. Loop maneuvers were executed

to exercise the attitude estimation algorithm in a situation where the Euler angle

singularity would be experienced. Additionally, small diameter orbits were �own to

1The Aviones �ight simulation software is available at http://sourceforge.net/projects/

avoines
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determine performance in an extended-duration turning maneuver. During both ma-

neuvers, the simulator attitude information (truth) was used in the feedback loop,

thereby isolating the MEKF attitude estimation scheme from the control of the air-

craft. In the plots, the attitude quaternion is converted to Euler angles to clarify the

presentation.

The results for a loop maneuver, commanded using a �fth-order trajectory in

pitch angle (see Section 4.2), are shown in Figures 3.4 and 3.5. The vectors in Figure

3.4 show the MEKF estimate of pitch angle at various positions during the loop.

The inward pointing vectors demonstrate the actual pitch angle required to track

the commanded pitch angle. Note that the vectors are not plotted at regular time

intervals due to both the variation in the loop speed of the autopilot code and changing

airspeed. Referring to Figure 3.5, the MEKF estimate of pitch angle is plotted with

the commanded pitch angle and the simulator pitch angle. Throughout the loop

maneuver, the MEKF algorithm was able to consistently provide an accurate attitude

estimate compared to the simulator truth data without experiencing the mathematical

singularity problems associated with the Euler angle attitude representation. An

interesting result can be seen in Figure 3.5, where between 4 and 5 seconds the

simulator and MEKF both lead the desired angle; this is due to slight overshoot in

the feedback loop of the control law rather than an error in the attitude estimate.

39



12 14 16 18 20 22 24 26
98

100

102

104

106

108

110

A
lti

tu
de

 (
m

)

North (m)

Figure 3.4: Loop Maneuver Pitch Angle. The MEKF estimate of pitch angle is
shown plotted as a function of position during a loop maneuver.
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Figure 3.5: MEKF Pitch and Simulator True Pitch. The MEKF estimate of pitch
angle is compared to the true pitch angle from the simulator and the commanded
pitch angle from the maneuver controller.
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The plot in Figure 3.6 shows the variation of the Kalman gains during the loop

maneuver. Note that our formulation of the MEKF creates a diagonal Kalman gain

matrix where the gains for both pitch and roll are identical due to the noise charac-

teristics of the accelerometers. It can be seen that the accelerometer measurement

noise tuning has caused the gains to be signi�cantly reduced during the maneuver.

By closely examining the Kalman gain matrix formula in Equation (3.30) and mea-

surement covariance matrix in Equation (3.31), one would expect that a decrease in

the Kalman gains for the accelerometer would result in a decreased covariance matrix,

which would then produce a positive variation for the GPS-related Kalman gain. This

variation indicates an increased relative con�dence in the accuracy of the measured

heading angle.
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Figure 3.6: MEKF Kalman Gains. The MEKF Kalman gains show the e�ect of
scaling the accelerometer measurement noise matrix during the loop maneuver.

The challenge of tracking attitude while �ying small radius orbits was handled

quite e�ectively by our MEKF attitude estimation scheme. The vectors shown in
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Figure 3.7 indicate the heading angle at each position of the orbit as estimated by

the MEKF algorithm. The plots in Figure 3.8 cover three complete circuits of a 40

meter orbit, demonstrating accurate tracking of the simulator pitch and roll angles

by the MEKF attitude estimation algorithm. Examination of the pitch and roll angle

plots shows that the MEKF performs signi�cantly better than the VGO. The inability

to correctly estimate attitude during turns can negatively e�ect geo-referencing and

altitude-hold functions of the autopilot.
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Figure 3.7: MEKF Heading Angle. The plot shows the estimated heading angle of
the MEKF while �ying a 40-meter radius circle.
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Figure 3.8: MEKF Pitch and Roll Angles. The plots show the tracking of the MEKF
compared to both the true attitude from the simulator and the VGO while �ying the
40-meter radius circle.

3.5.2 Hardware Results

The hardware results were found through ground experiments and �ight tests.

The purpose of the ground tests was to demonstrate that the MEKF attitude esti-

mation algorithm functions well using real, rather than modeled, sensors. For the

ground tests, we built an experimental piece of equipment (shown in Figure 3.9),

which allowed the autopilot, including gyroscopes and accelerometers (not GPS), to

be mounted in a �xture and rotated about a single axis at a time. The static portion

of the test equipment was marked at increments of ten degrees and the rotating �x-

ture was given a zero-rotation marking. Truth data was provided by a potentiometer

with a accuracy of ±1 degree against which the MEKF attitude estimation scheme

was compared.
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Figure 3.9: Attitude Ground Test Fixture. The experimental apparatus provides
truth data for testing the MEKF on the autopilot hardware. The �xture is shown
mounted so that the axis of rotation is parallel to the �oor, allowing for rotations in
pitch or roll angle. The axis of rotation is changed by mounting the autopilot on the
�xture in speci�c orientations. The pitch angle testing orientation is shown.

For the �rst experiment, the autopilot was mounted on the apparatus �xture

so that rotations would change pitch angle only. For this experiment, the �xture

was turned one revolution so as to mimic the angular sweep of a loop maneuver. The

MEKF attitude estimate, the dotted line in Figure 3.10, tracked the motion of the �x-

ture quite accurately, thus validating its performance on the autopilot hardware. Note

that for the attitude quaternion, pitch angle is de�ned on the range θ ∈
[
−π

2
, π

2

]
and therefore the output from the MEKF attitude estimate was unwrapped onto the

domain of the �xture and then scaled into units of degrees.
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Figure 3.10: MEKF Pitch Angle Ground Test. The output angle for pitch was
plotted against the truth data generated by the test apparatus.
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Figure 3.11: MEKF Roll Angle Ground Test. The plot shows the roll attitude
estimation and truth data using the ground test equipment.
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For the second experiment, the mounting of the autopilot was changed so

that rotating the �xture would change roll angle only. To test roll angle tracking

performance, the �xture was rotated one full revolution mimicking an aileron roll

maneuver. The plots in Figure 3.11 show the MEKF attitude estimation moving

directly to desired rotation and holding that angle. The roll angle output of the

attitude quaternion is de�ned as φ ∈
[
−π, π

]
; the data plotted in Figure 3.11 has

been mapped onto
[

0, 2π

]
and converted from radians to degrees. The ground

testing demonstrated that the MEKF provides an accurate attitude estimation using

the real sensors with all of the inherent bias and noise.

Finally, the autopilot was mounted in an aircraft and �own using the MEKF

attitude estimation scheme in the feedback loop. Due to the lack of truth data during

�ight tests, Figure 3.12 shows the MEKF attitude estimation scheme compared to the

desired pitch and roll angles generated by the autopilot and the attitude estimation

produced by the VGO. The autopilot was running in waypoint-following and altitude-

hold modes, which means that pitch was being used to compensate for errors in

altitude and roll was used to correct errors in heading. Although this data lacks an

indication of the true attitude, we can assert that the MEKF attitude estimation was

su�ciently accurate and robust to allow the MAV to successfully �y and navigate

continuously for more than twenty minutes.

Although not a strict truth metric, comparing the estimated pitch angle to the

MAV altitude provides an indication of the performance of the pitch angle portion

of the attitude estimate. If the aircraft altitude sensor indicates the MAV is above

the desired altitude (100 meters in this case), then the autopilot should command a

negative pitch angle; deviations below the desired altitude should result in positive

pitch angles. As can be seen in Figure 3.13, the MEKF-derived estimate of the

pitch angle behaves as expected, decreasing when altitude goes above 100 meters and

increasing when the altitude goes below. Hence, the MEKF algorithm provides an

attitude estimate that is accurate enough to allow stable altitude hold.
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Figure 3.12: MEKF Angle Flight Data. A snapshot of �ight data comparing the
autopilot desired angles with the MEKF and the VGO attitude estimate. The MEKF
data was being used in controlling the MAV.
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Figure 3.13: MEKF Altitude Flight Data. The MEKF pitch changes to return
the MAV to the desired altitude indicating that the attitude estimation is behaving
according to expectations.
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3.6 Summary

The MEKF attitude estimation scheme adapts the quaternion attitude repre-

sentation system to MAVs by implementing several innovations to account for MAV

speci�c sensors and environmental factors. The �ight simulations demonstrate the

MEKF to be highly accurate in attitude tracking; the ground tests of the hardware

show that the MEKF algorithm functions properly when using real sensors; and the

�ight results con�rm that the MEKF can be used in actual �ight conditions. Ad-

ditionally, the quaternion MEKF attitude estimation allows for the development of

full-envelope maneuvers.
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Chapter 4

Trajectory Maneuvers

Having developed a full-envelope attitude estimation scheme, the next step is

to develop a methodology for creating desired maneuvers. Our approach is to develop

a maneuver de�nition methodology that speci�es the desired attitude as a function

of time and then develop a control law that tracks this trajectory.

4.1 Background

Aircraft aerobatic maneuvers are de�ned as a transition from one steady-state

�ight condition to another by passing through a sequence of desired locations with an

associated desired attitude [35, 36]. Therefore, the maneuvers need to meet boundary

conditions for position and heading at the beginning and end so as to smoothly

transition to and from the maneuver. With these smooth transitions, maneuvers

can connect segments of steady �ight and the concept of a library of maneuvers,

as presented in [37] for helicopters, would be desirable for autonomous, �xed-wing

aircraft. In [38], each maneuver in the library was constructed using �ight data to

build polynomial splines of position and orientation. A �fth-order polynomial [39] can

be used to generate trajectories in pitch angle or roll angle individually, that have

smooth transitions from steady to maneuvering �ight. This method can be utilized

to generate trajectories for loop and aileron roll maneuvers, and by connecting the

loop and aileron roll maneuvers in series, one can command an Immelmann or Split-S.

Similar polynomial-based aircraft maneuver trajectories were demonstrated in [40, 41]

where higher-order polynomials were generated using virtual arcs and aircraft thrust

histories. Similarly, horizontal trajectories for obstacle avoidance were generated
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using stream functions in [42]. For maneuvers that incorporate simultaneous variation

of the pitch and roll angles, a methodology for obtaining the aircraft rotation matrix

from the �rst and second derivatives of desired position, as presented in [10], can be

exploited. This approach is based on assuming that the aircraft velocity is always

aligned with the body-frame x-axis, an assumption that allows a di�erentially �at

mathematical model [43, 44, 45, 46] of aircraft �ight to be derived.

We develop an approach for constructing aerobatic maneuvers using continu-

ously di�erentiable functions subject to constraints on position and velocity at the

beginning and ending of the maneuver. Applying the maneuver boundary conditions,

we demonstrate the ability to create many di�erent aerobatic maneuvers, including

basic maneuvers such as aileron rolls and loops, as well as several MAV-speci�c obsta-

cle avoidance maneuvers. Each of these maneuvers can be commanded by generating

the desired attitude at each instant in time according to continuous functions that

meet the boundary conditions of initial and �nal position and velocity.

4.2 Attitude Trajectories

The maneuvers in our library were created using both �fth-order polynomials

and trigonometric functions. The motivation for applying both approaches is that

the aileron roll maneuver cannot be built as a trigonometric function. An idealized

aileron roll never deviates from a single heading, altitude, or velocity, meaning that

the aircraft is not experiencing any linear accelerations; because there are no linear

accelerations, the kinematic constraints allow �ight in a straight line at any roll

rate. Thus, the polynomial trajectory in roll angle is the correct way to generate the

commands for an aileron roll maneuver.

4.2.1 Polynomial Functions

A time-parameterized trajectory for a loop maneuver and an aileron roll ma-

neuver can be generated using a �fth-order polynomial function [39] in pitch angle

or roll angle, respectively. These polynomial functions have the attractive property
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of being easily generated at each time step in the autopilot code, and the desired

angle and its �rst derivative are continuous, smooth functions. For the aileron roll

maneuver, the functions for the desired roll angle and desired roll rate are

φd (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (4.1)

φ̇d (t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4, (4.2)

where the subscript d indicates the desired value. For a lateral-axis-only maneuver

(aileron roll), the derivative of the roll angle, φ̇, is approximately equal to the an-

gular rate about the body-frame x-axis, denoted as p. The polynomial coe�cients

(an, n = 1, ..., 5) are calculated from the boundary conditions on the roll angle and

its �rst two derivatives, according to the equations:

a0 = φ0

a1 = φ̇0

a2 =
φ̈0

2

a3 =
20 (φf − φ0)−

(
8φ̇f + 12φ̇0

)
tf +

(
φ̈f − 3φ̈0

)
t2f

2t3f

a4 =
30 (−φf + φ0) +

(
14φ̇f − 16φ̇0

)
tf −

(
2φ̈f − 3φ̈0

)
t2f

2t4f

a5 =
12 (φf − φ0)−

(
6φ̇f + 6φ̇0

)
tf +

(
φ̈f − φ̈0

)
t2f

3t5f
,

where the subscript 0 indicates an initial condition (t = 0) and subscript f indicates

a �nal condition (t = tf ).

With this formulation, an aileron roll maneuver can be �own by generating the

desired roll angle and �rst derivative as a function of time and specifying that φ0 = 0

and φf = 2π. Thus, the trajectory in roll angle completes a full revolution and the

aircraft tracking these angles will �y an aileron roll maneuver. The aggressiveness of

the maneuver is speci�ed by tf , where a smaller �nal time results in faster turning.

For the MAGICC lab MAVs, there is not a method to make an accurate analytical
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prediction of the maneuver envelope; hence, the limits on tf were found through

multiple trials of simulated �ight maneuvers.

Similarly, a loop maneuver can be �own by following a time-parameterized

�fth-order polynomial function for pitch angle and its time derivative, which can be

written as

θd (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (4.3)

θ̇d (t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4, (4.4)

The loop is a purely longitudinal-mode maneuver, implying that θ̇d is equal to the

body-frame angular rate about the y-axis, denoted as q. By tracking the attitude

trajectory for desired pitch angle (θd = 0→ 2π), the aircraft will �y a loop maneuver,

where the maneuver aggressiveness is again speci�ed by tf . As with the aileron roll

maneuver, the range of tf was found by trial and error using the �ight simulator.

The individual aileron roll and loop maneuvers can be combined sequentially to

create more interesting maneuvers such as the Immelmann. Fighter pilots developed

the Immelmann maneuver to trade airspeed for altitude while reversing directions; it is

accomplished by �ying a half loop (θd = 0→ π) followed by a half roll (φd = −π → 0).

As mentioned previously, the aggressiveness of these maneuvers is fully spec-

i�ed by the maneuver duration, tf , the limits of which are dictated by the turning

performance and the thrust characteristics of each individual aircraft. The primary

shortcoming of the polynomial attitude trajectories is the inability to specify a ma-

neuver that is a simultaneous combination of pitch and roll angles. Therefore, a

novel approach was developed that uses trigonometric functions to describe time-

parameterized paths from which a desired attitude can be calculated at each instant

in time.
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4.2.2 Trigonometric Functions

Building a three-dimensional aerobatic �ight maneuver requires simultaneous

knowledge of both pitch and roll angles, which can be derived from functions of

position and its derivatives in the inertial x, y, and z-axes. These time-parameterized

trigonometric functions can be created using boundary conditions for position and

velocity at the start and �nish of the maneuver.

Time-Parameterized Position Functions

For the purposes of MAV obstacle avoidance, we devised a three-dimensional

aerobatic maneuver that we refer to as the Close-Q (see Figure 4.1), which can be

thought of as a loop with a quarter twist. This maneuver would be used for making

a 90-degree turn in a minimum amount of horizontal space. The Close-Q boundary

conditions are aircraft position at maneuver start�level �ight pointing in any com-

pass direction and in the exact same position at the end of the maneuver, pointing

in a direction ±90 degrees from the initial heading, depending on the desired �nal

direction. The example boundary conditions shown in Figure 4.1 are aircraft position

at maneuver start with wings-level, pointing north and in the exact same position at

the end of the maneuver, with wings level, pointing in the negative east direction.

The vectors in Figure indicate the aircraft body-frame x and z-axes.

Given these boundary conditions, the vector of functions specifying desired

position for a Close-Q maneuver can be written as

pd =


1
2
r sin (ωt) + r sin

(
1
2
ωt
)

1
2
r sin (ωt)− r sin

(
1
2
ωt
)

−r + r cos (ωt)

 , (4.5)

where r is the maneuver radius; t is the maneuver time, which varies from (0→ 2π/ω);

and ω is the maneuver rate, which is the ratio of nominal �ight velocity and maneuver

radius (ω = V/r). Note that the z-axis function is de�ned according to the positive-

down convention and should not be confused with altitude, which is de�ned as positive
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Figure 4.1: Close-Q Maneuver Path. The Close-Q maneuver can be �own to minimize
the projected footprint when making a 90-degree turn.

up. The maneuver aggressiveness variable for the trigonometric functions is the ma-

neuver radius, r. As with the polynomial trajectories, the range of r is limited by the

aircraft �ight envelope and was computed experimentally. By analyzing the functions

in each inertial frame axis individually, as shown in Figure 4.2, we can gain insight

into the construction of the maneuver. Note that by adding trigonometric functions,

the xi position starts and ends at zero, but the slope at t = 0 is unity, indicating

that all of the airspeed is in the xi direction at the start of the maneuver. Similarly,

by subtracting the same two trigonometric functions for yi position, the maneuver

again starts and ends at zero, but the slope of the position curve at t = 0 is zero

and at t = tf , the slope is unity, indicating that all of the airspeed at the end of the

maneuver is in the yi direction. The plot of zi position starts and ends at zero, with

zero slope at both instants in time.

Given this framework of position and velocity constraints, one may derive a

functional description for many desired maneuvers, such as loops, barrel rolls, etc.
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Figure 4.2: Close-Q Manuever Path Functions. The trigonometric functions for
position in each inertial frame axis are constructed by adding various functions to
meet the boundary condition constraints. Note that the sign is reversed on the zi
plot to give a more intuitive view of the third component of the maneuver.

Additionally, the Close-Q maneuver can be used to execute a right-angle turn to the

left by simply changing the sign on the y-axis function.

Generating Combined Pitch and Roll Trajectories

The process of generating attitude trajectories that simultaneously specify

pitch and roll angles involves the following steps: 1) determine a trigonometric func-

tion that speci�es the desired time-parameterized position in inertial space and meets

the boundary conditions for position and velocity; 2) �nd the �rst and second deriva-

tives of this function and ensure attitude boundary conditions are satis�ed; 3) cal-
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culate the desired body-to-inertial reference frame rotation matrix; 4) determine the

desired pitch and roll angles; and 5) compute the desired body-frame angular rates.

The derivation of this process is based on the assumption that the aircraft velocity

vector is aligned with the body-frame x-axis and aircraft kinematics. These kine-

matic constraints are speci�cally smooth transitions to and from steady, level �ight,

maximum and minimum limits on airspeed, and limits on the curvature of turns.

Step 1 � Time-Parameterized Position Function This is accomplished by �rst

specifying the desired, inertial reference frame, x, y, and z-axis positions as continu-

ously di�erentiable functions of time subject to the boundary conditions for position

and velocity. Using the Close-Q maneuver as an example, the position functions are

as shown in Equation (4.5). As noted earlier for the Close-Q maneuver, each axis

position function starts and ends at the current aircraft north-east-altitude position,

in keeping with the position boundary conditions. The velocity boundary conditions

are met in Step 2.

Step 2 � Position Function Time Derivatives Taking the �rst and second

derivatives of the Close-Q position functions (4.5) yields

ṗd =


1
2
V cos (ωt) + 1

2
V cos

(
1
2
ωt
)

1
2
V cos (ωt)− 1

2
V cos

(
1
2
ωt
)

V sin (ωt)

 (4.6)

and

p̈d =


−1

2
ωV sin (ωt)− 1

4
ωV sin

(
1
2
ωt
)

−1
2
ωV sin (ωt) + 1

4
ωV sin

(
1
2
ωt
)

ωV cos (ωt)

 , (4.7)

where V is the nominal airspeed of the aircraft. Examining ṗd, one can see that

at time t = 0 the velocity is all in the inertial frame x-axis and at time t = tf the

velocity is in the y-axis, thus meeting the boundary conditions for velocity. Using
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the expressions for the inertial components of velocity and acceleration allows the

derivation of the tangent and normal vector of our position curve. This fact will be

exploited in the next step.

Step 3 - Rotation Matrix from First and Second Derivatives The procedure

for �nding the rotation matrix
(
R =

[
c1 c2 c3

])
is to �nd the �rst and third

columns of the matrix using kinematic relationships and then use the vector product

to �nd the remaining column. The �rst column of the rotation matrix is found by

enforcing the assumption that the velocity vector aligns with the body-frame x-axis.

This implies that c1 (a unit-length vector) points in the direction of the aircraft

velocity vector.

Rotation Matrix, Column 1 (c1) The �rst column, c1, of the rotation matrix can

be derived from the expression for the velocity vector alignment assumption. Given

an airspeed, V, and an inertial-frame unit vector êx =
[

1, 0, 0

]T
, the assumption

that the velocity vector aligns with the x-axis can be written as

ṗ = VRêx, (4.8)

which can be expanded to yield

ṗ = V
[

c1 c2 c3

]


1

0

0

 .

Performing the multiplication and solving for c1 yields

c1 =
ṗ

V
, (4.9)

where V = ‖ṗ‖ is the airspeed of the MAV.
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Rotation Matrix, Column 3 (c3) To �nd the third column, c3, we use the dy-

namic expression for the second derivative of the inertial reference frame position

vector, p, which can be written as,

p̈ = g + Rab, (4.10)

where g is the inertial frame gravity vector

([
0, 0, g

]T)
, R is the body-to-inertial

rotation matrix, and ab is the vector of body-frame accelerations. Di�erentiating the

rotation matrix orthogonality constraint
(
I = RRT

)
yields a kinematic relationship

for the time-rate-of-change of the rotation matrix,

Ṙ = Rω̂, (4.11)

where ω̂ is a skew-symmetric matrix of body-frame angular rates,

ω̂ =


0 −r q

r 0 −p

−q p 0

 . (4.12)

where p, q, and r are de�ned as the angular rates about the x, y, and z-axis, respec-

tively.The third column of the rotation matrix is found from Equation (4.10), which

can be written as

p̈− g = Rab

=
[

c1 c2 c3

]

abx

0

abz

 (4.13)

Recalling that the columns of the rotation matrix are orthogonal unit vectors, the

following two properties for inner products are true:

cTi cj = 0, if i 6= j
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cTi cj = 1, if i = j.

Thus, we can solve Equation (4.13) by multiplying both sides by the vector cT1 cal-

culated in Equation (4.9) to yield

cT1 (p̈− g) = abxc
T
1 c1 + abzc

T
1 c3

cT1 (p̈− g) = abx + 0,

which can be substituted back into Equation (4.13) to yield

p̈− g = cT1 (p̈− g) c1 + abzc3

abzc3 = p̈− g − c1c
T
1 (p̈− g)

abzc3 =
(
I− c1c

T
1

)
(p̈− g) .

Physically, it can be seen that the matrix
(
I− c1c

T
1

)
projects the acceleration vector

onto the unit vector perpendicular to c1. The magnitude of the acceleration is found

from the norm of
(
I− c1c

T
1

)
(p̈− g) and its direction is negated to account for the

aircraft de�nition of positive z-axis pointing out the aircraft belly. Thus, the third

column of the rotation matrix can be written

c3 =

(
I− c1c

T
1

)
(p̈d − g)

−‖ (I− c1cT1 ) (p̈d − g) ‖
, (4.14)

where I represents a 3× 3 identity matrix.

Finally, the second column of the rotation matrix is computed using the cross

product

c2 = c3 × c1. (4.15)

Using this procedure, the rotation matrix can be computed at each instant of time.
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Step 4 - Desired Euler Angles Once the rotation matrix is computed, Equation

(3.2) is used to compute the desired pitch angle, θ, and Equation (3.3) is used to

compute the desired roll angle, φ.

Step 5 - Desired Angular Rates We derive expressions for the body-frame an-

gular rates, p and q, starting with the derivative of the coordinated �ight condition

shown in Equation (4.8), which can be written as

p̈ = V̇Rêx + V Ṙêx. (4.16)

Setting this relationship equal to the right side of Equation (4.10) yields

g + Rab = V̇Rêx + V Ṙêx,

which can be expanded according to

g + Rab = V̇Rêx + V Ṙêx

g + R (abxêx + abzêz) = V̇Rêx + VRω̂ × êx

g + R (abxêx + abzêz) = V̇Rêx + VR (rêy − qêz)

RTg + abxêx + abzêz = V̇ êx + V rêy − V qêz

RTg + abxêx + abzêz − V̇ êx − V rêy + V qêz = 0.

This expression can be isolated into x, y, and z components, where the z-axis com-

ponent yields the desired angular rate about the body-frame y-axis. This desired

angular rate can be written as

qd =
− (gbz + abz)

V
, (4.17)

where gbz is the component of gravity in the body-frame z-axis.
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The body-frame x-axis desired angular rate, p, is derived by di�erentiating

Equation (4.10), yielding the third derivative of position,

p(3) = ġ + Ṙab + Rȧb

= 0 + R (ω × ab + ȧb)

= R




0 −r q

r 0 −p

−q p 0




abx

0

abz

+


˙abx

0

ȧbz





= R




qabz

rabx − pabz
−qabx

+


˙abx

0

ȧbz



 . (4.18)

Equation (4.18) can be rearranged and reduced to vector components (using the unit

vector êy =
[

0, 1, 0

]T
) to yield

pd =
1

abz

(
rabx + êTyR

Tp(3)
)

=
1

abz

(
rabx + p

(3)
by

)
, (4.19)

the desired body-frame angular rate about the x-axis.

Examination of the equations for the trigonometric approach to trajectory

generation makes it evident why this approach cannot be used for the aileron roll

maneuver; the roll angle is varied without changing the direction of the velocity vector

as needed in Equation (4.9) and without any body-frame accelerations as needed in

Equation (4.14). This is because in the di�erentially �at aircraft �ight model, roll

rate is independent of the body-frame accelerations as long as the velocity vector

alignment assumption holds. A complete library of maneuvers should incorporate

the ability to command aileron rolls as well as three-dimensional maneuvers, thus

both the polynomial and trigonometric approaches are important.
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Given the desired pitch and roll angles and the body-frame angular rates, we

can build a feedback control law to track the attitude trajectories to autonomously

�y aerobatic maneuvers.

4.2.3 Additional Maneuvers

As described previously, the functions shown in Equations (4.5), (4.6), and

(4.7) are the trajectory and derivatives for a Close-Q maneuver. Similarly, the func-

tions for a loop maneuver can be written as

pd =


r sin (ωt)

0

−r + r cos (ωt)



ṗd =


V cos (ωt)

0

−V sin (ωt)

 (4.20)

p̈d =


−ωV sin (ωt)

0

−ωV cos (ωt)

 ,

where the aggressiveness of the maneuver is determined by the radius, r, and the

duration is 2π/ω. The �rst portion of an Immelmann maneuver uses the exact same

equations as the loop, however, the duration is cut in half, π/ω, and the controller

commands a half roll based on a polynomial trajectory in roll angle.

4.3 Attitude Tracking Feedback Control Law

De�ning a maneuver as the transition between two steady-state �ight condi-

tions leads naturally to a simple and e�ective proportional-derivative (PD) maneuver

control law (see Figure 4.3) that can be tuned for a speci�c aircraft and maneuver

aggressiveness.
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Figure 4.3: Trajectory Tracking Controller Block Diagram. The trajectory generation
and tracking control law for autonomous trajectory tracking aerobatic maneuvers.

The control law can be written as

δel = kθ (θd − θ) + kq (qd − q) (4.21)

δail = kφ (φd − φ) + kp (pd − p) (4.22)

where the actual values of θ, φ, p and q are aircraft state variables, and kθ, kq, kφ

and kp are the feedback gains. These four gains must be tuned for the speci�ed

maneuver aggressiveness and airframe turn rate and thrust characteristics. For loop,

aileron roll, and Immelmann maneuvers, the δel and δail are entirely independent of

each other so only two gains are tuned for each of these maneuvers. However, for the

Close-Q maneuver, all four gains need to be adjusted simultaneously to achieve good

tracking of the desired aircraft orientation. In addition to tuning the controller gains,

the maneuver aggressiveness variables (maneuver duration or maneuver radius) need

to be adjusted to ensure the aircraft has su�cient thrust and control authority to

complete the maneuver. For example, the MAV used in this research cannot turn

a loop faster than 2 seconds for lack of control authority and has insu�cient thrust

available to �y a 5-second loop.

4.4 Results

The trajectory generation algorithms and maneuver tracking controller were

developed in simulation where the gains were tuned prior to being �ight tested.
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4.4.1 Simulation Results

Flight simulations of various maneuvers commanded by the attitude trajectory

generation algorithms and tracking controller were conducted using the Aviones �ight

simulator. The aileron roll maneuver was executed using the polynomial functions to

generate the attitude trajectories, and the loop, Immelmann and Close-Q maneuvers

were performed using the combined attitude trajectory based on trigonometric func-

tions. The maneuver aggressiveness variables are annotated with each �gure. For

each maneuver the starting altitude was 100 meters, the �ight airspeed was 13 meters

per second, and the initial heading was north.

The simulation results for the aileron roll maneuver show that this idealized

model is not completely accurate; because the velocity vector is not perfectly aligned

with the body-frame x-axis, it produces a loss of altitude when the aircraft is inverted.

Additionally, there is a loss of lift when the roll angle approaches 90 and 270 degrees,

contributing to the loss of altitude shown in Figure 4.4.
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Figure 4.4: Trajectory Tracking Aileron Roll Simulation. An aileron roll maneuver
(tf = 2) was �own autonomously in the �ight simulator. The bi-colored triangles
indicate the aircraft orientation at various positions.
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As mentioned, the aileron roll maneuver was accomplished using the �fth-

order polynomial trajectories, however, the loop, Immelmann and Close-Q maneuvers

shown in Figures 4.5- 4.7 were generated using the trigonometric functions for desired

attitude and angular rates. The results for a loop maneuver are shown in Figure 4.5.

Note that although a loop maneuver was �own, the shape of the path followed by the

aircraft is not a perfect circle and the �nal altitude is below the initial level. This

re�ects the fact that the controller has worked to match the attitude speci�ed by the

trajectory generation algorithm, not necessarily to follow a circular path.
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Figure 4.5: Trajectory Tracking Loop Simulation. An autonomous loop maneuver
(tf = 2) is shown using bi-colored triangles to indicate the aircraft orientation at
various locations.

By combining the half loop with the half aileron roll in series, two new maneu-

vers can be performed, the Split-S and the Immelmann. Flying half of a loop followed

by an half roll results in an Immelmann maneuver as shown in Figure 4.6. Notice

that the aircraft was in an inverted, slightly nose-down attitude when the aileron roll
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portion of the maneuver was executed, causing a rapid decrease in altitude back to

the nominal �ight level.

The tuning of the gains to achieve accurate attitude tracking of both roll and

pitch angles was extremely sensitive to errors in roll angle; a small error in roll angle

resulted in greatly degraded maneuver performance. Therefore, the controller gains

were tuned iteratively to ensure accurate tracking of the desired aircraft attitude

during all four maneuvers with a single set of gains.

4.4.2 Flight Results

The polynomial trajectory generation algorithm was used to generate roll an-

gle and rate commands to �y an aileron roll maneuver. The aircraft was �ying a

constant altitude, waypoint navigation, �ight plan when the aileron roll maneuver

was commanded. Referring to Figure 4.8, the pitch and roll angles (θ and φ) are

plotted as a function of time. The roll maneuver can be seen in the angle φ rapidly

increasing to 180 degrees, wrapping around to -180 degrees and proceeding back to

0. It is important to note that the same gains found through simulations were used

for the �ight test. The greater control authority of the actual MAV as compared to

the simulator model resulted in turning the maneuver in less than two seconds and

the large overshoot, as can be seen in Figure 4.8.
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Figure 4.6: Trajectory Tracking Immelmann Simulation. An Immelmann maneuver
with combined half loop maneuver duration (tf = 2) and half roll maneuver duration
(tf = 2).
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Figure 4.7: Trajectory Tracking Close-Q Simulation. The autonomous Close-Q ma-
neuver (r = 5) is demonstrated making a right-hand turn. The bi-colored triangles
shown the aircraft orientation throughout the maneuver.
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Figure 4.8: Trajectory Tracking Aileron Roll Flight Data. An autonomous aileron
roll maneuver (tf = 2) was �own by the MAV. The plot shows φ increasing up to 180
degrees, wrapping to -180 degrees and continuing back to 0, indicating a complete
revolution about the x-axis.

The MAV experienced large control surface de�ections immediately after the

maneuver, see Figure 4.9, to compensate for the large overshoot in roll angle and

the loss of altitude. By aggressively actuating the ailerons and elevator, the MAV

was able to quickly recover to the desired altitude and course after completing the

maneuver.
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Figure 4.9: Actuator De�ections for the Trajectory Tracking Aileron Roll. The
aileron and elevator de�ections during the �ight test of the aileron roll maneuver
show the large de�ection necessary to track the desired roll angle. The control sur-
face de�ections immediately after maneuver completion were caused by the aircraft
working to rejoin the waypoint path and altitude.

4.5 Summary

The simulation and �ight results for the various maneuvers demonstrated the

ability of the two trajectory generation algorithms, polynomial and trigonometric, to

command maneuvers using time-parameterized trajectories of attitude. The results

also validate the performance of the attitude tracking control law in commanding the

aircraft through the maneuvers. However, it should be noted that because position

error is not included in the control law, this approach is inappropriate for obstacle

avoidance maneuvering, where disturbances such as wind would cause the aircraft to

track a di�erent path than the desired one.
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Chapter 5

Path Following

The goal of aerobatic maneuvering for MAV obstacle avoidance is to minimize

the footprint of the maneuver. The maneuver footprint is de�ned as the projection of

the maneuver onto the horizontal plane. The desired minimization must be accom-

plished while still adhering to the kinematic and dynamic constraints of the aircraft.

Anderson [5] de�nes the turning performance of an aircraft in terms of the load factor,

n = L/W, where L is the lift produced by the aircraft and W is the aircraft weight.

If an aircraft has a maximum n that is much greater than unity, the equation that

models an aircraft turn radius can be written as

R =
V 2
∞
gn

, (5.1)

where V∞ is de�ned as the magnitude of the aircraft velocity. Given that a speci�c

airframe will have a maximum load factor, n, there is a minimum turn radius that is

independent of the plane in which the turn is made. From simple intuition one can

think of the shadow cast by a coin onto a table; if the coin is �at the shadow is large

but if turned on its edge, the shadow is much smaller. Similarly, a minimum-radius

turn in the horizontal plane will have a larger footprint than one in which the vertical

direction is exploited.

5.1 Background

Several di�erent approaches have been investigated to solve the problem of

following a speci�ed path in space. Both straight and curved horizontal paths were
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followed using a sliding mode control law in [47, 11], which has been demonstrated

extensively in autonomous �ights of MAVs. A proportional-navigation control law

based on visual tracking of roads was demonstrated in [48]. The pure-pursuit method

demonstrated in [4] uses a nonlinear proportional navigation control law. Nonlinear

backstepping was utilized in [49] to create a controller for maneuver regulation along

sinusoidal paths. In [38], the path was bisected by control planes that tracked the

aircraft progress along the path. For the innovative work in [12], the desired path was

a single hover point and the control law was a PID controller built in a unit-norm

quaternion formulation. The common link for each of these approaches is the control

law was based on the error between the aircraft position and the desired path. We

develop a methodology to compute the position error and its �rst derivative in the

inertial reference frame. These error vectors are transformed into the body-frame and

used to create a PID control law. The three control elements, proportional, integral

and derivative, are mapped into a unit-norm quaternion and composed together using

quaternion algebra to form the MAV controller commands.

5.2 Path Position and Derivative

5.2.1 Minimum Distance Position Parameter

The keystone of the path following control law is determining the location of

the path that is nearest to the aircraft's actual position. To do this, the path is

parameterized by

s (t) = (0→ 1) ,

which can be thought of as a spatial, rather than temporal, variable. The challenge is

to compute the value of the path parameterizing variable s at the point on the path

that is the minimum distance, Dmin, from the aircraft position. Our approach to

solving this problem is to use the value of s and the aircraft location, pa, from the

previous time step combined with the rate of change of the path with respect to s and
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the aircraft velocity to predict the change in the path parameter, ∆s. A graphical

representation of the predictive-corrective path parameter calculation problem set-up

is shown in Figure 5.1.

Figure 5.1: Path Parameter Calculation. The path parameter is calculated using
a predictive-corrective algorithm that uses the minimum distance to determine the
path location with respect to the aircraft.

Given the position of the aircraft at some instant in time, pa (tk), the change

in position during the interval of time, ∆t = tk+1 − tk, can be written as ∆pa =

(pa (tk+1)− pa (tk)). For the next instant in time, the minimum distance can be

found from the squared di�erence between the previous aircraft position plus its

change in position and the corresponding previous path location, p (s (tk)), plus the

corresponding change in desired path location, ∂p
∂s

∆s. The equation for the minimum

squared distance is given by

Dmin (s) = min
∆s
‖ (pa (tk) + ∆pa)−

(
p (s (tk)) +

∂p

∂s
∆s

)
‖2

= min
∆s
‖ − ∂p

∂s
∆s+ (−p (s (tk)) + pa (tk) + ∆pa) ‖2
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= min
∆s

(∂p
∂s

)T (
∂p

∂s

)
∆s2 − 2

(
∂p

∂s

)T
(−p (s (tk)) + pa (tk) + ∆pa) ∆s

+

[
(−p (s (tk)) + pa (tk) + ∆pa)

T (−p (s (tk)) + pa (tk) + ∆pa)
]
. (5.2)

The value of ∆s that yields the minimum distance can be found by setting the deriva-

tive of Equation (5.2) with respect to ∆s equal to zero, yielding

2

(
∂p

∂s

)T (
∂p

∂s

)
∆s− 2

(
∂p

∂s

)T
(−p (s (tk)) + pa (tk) + ∆pa) = 0. (5.3)

Simplifying and solving Equation (5.3) for ∆s yields

∆s =

(
∂p
∂s

)T
(−p (s (tk)) + pa (tk) + ∆pa)(

∂p
∂s

)T (∂p
∂s

) . (5.4)

We can �nd the time rate of change of the path parameter, ṡ, by dividing by ∆t and

�nding the limit as ∆t→ 0, which yields

ṡ = lim
∆t→0

(
∆s

∆t

)

= lim
∆t→0


(
∂p
∂s

)T
(−p (s (tk)) + pa (tk) + ∆pa)(

∂p
∂s

)T (∂p
∂s

)
∆t



=

(
∂p
∂s

)T
ṗa

‖∂p
∂s
‖2

+ Γ

(
∂p

∂s

)T
(−p (s (tk)) + pa (tk)) , (5.5)

where Γ is de�ned as

Γ = lim∆t→0

 1(
∂p
∂s

)T (∂p
∂s

)
∆t


=

 KΓ(
∂p
∂s

)T (∂p
∂s

)
∆t

 , (5.6)

and the gainKΓ = lim∆t→0 allows for tuning. The �rst part of Equation (5.5) predicts

where the path should be at the next time step and the second term corrects for errors
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in the prediction and compensates for inevitable numerical errors. Finally, we ensure

that the path only moves in a forward direction by setting

ṡ = max {0, ṡ} . (5.7)

The actual value of s (tk+1) is found by using numerical integration to propagate

Equation (5.5) subject to the constraint in Equation (5.7). This value of s is then

substituted for t in the maneuver function to obtain a value for the instantaneous

desired path location.

5.2.2 Desired Path Derivatives

The objective of the path following control law is to drive the error between

the aircraft position and the desired path measured in the inertial reference frame

to zero. However, due to the nature of the quaternion control law, the derivative of

desired position needs to be determined so that a derivative error can be computed.

We de�ne the error in the position as p̃ = p − pd and the error in the derivative

of position as ˙̃p = ṗ − ṗd. However, for the spatially-parameterized path, the path

function should be written as p (s (t)) , although were drop the (s (t)) for succinctness.

The �rst two derivatives of the path can be written as

ṗd = ṡ
dpd

ds
(5.8)

p̈d = ṡ2d
2pd

ds2
+ s̈

dpd

ds
. (5.9)

It is important to note that in these equations the derivatives of the path-

parameterizing variable are those related to the desired path. However, if the aircraft

is o� the path, we must calculate the true value of the path variable. Using the

subscript t to denote true, the algorithm then recomputes Equations (5.8) and (5.9)

with st and ṡt. The values of ṗ
d and p̈d thus calculated provide compensation for the

aircraft being away from the path. The true path parameters can be found using the
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state-space formulation

 s̈t

ṡt

 =

 −Kst −Kst

1 0


 ṡt

st

+

 Kst Kst

0 0


 ṡ

s

 , (5.10)

where Kst is selected to ensure fast convergence of the st parameter. Given the

values of the path position and its derivatives, we can now formulate a proportional-

derivative (PD) control law as a unit-norm quaternion to create body-frame control

commands given position error in the inertial reference frame.

5.3 Path Following Maneuver Control Law

As mentioned, the objective of the path following control law is to drive the

error in the inertial-frame to zero. Based on the method used for determining posi-

tion relative to the path, the aircraft should lie on a point orthogonal to the path,

meaning the path reference frame y − z plane. The path reference frame is the or-

thogonal coordinate frame de�ned by c1, c2, and c3 from Section 4.2.2, where the

vectors c2 and c3 lie in the y − z plane. Thus, three-dimensional path following is

an instantaneous, two-dimensional problem in the path reference frame. Knoebel [12]

presents a quaternion control law for regulating an autonomous hovering vehicle to a

given inertial north-east position. By transforming the error vectors from the inertial

reference frame to the path reference frame, the quaternion control approach can be

generalized for three-dimensional paths. There are two components that comprise

the path following control law: 1) building the quaternion PD control law and 2)

transforming and scaling these controller outputs into changes in the throttle setting

and control surface de�ections.

5.3.1 Quaternion Control Law

To construct the quaternion PID control law, the error in position and the

�rst derivative of position need to be calculated. From the path function presented

in Section 5.2.2, we have the desired position and �rst derivative, pdi and ṗdi , in the
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inertial reference frame. From the aircraft position estimation, we have values for the

vector of aircraft position in inertial, world coordinates, pi =
[
pn, pe, pd

]T
. To

obtain ṗi, we again impose the assumption that the aircraft velocity vector is aligned

with the body-frame x-axis.1 This can be written as ṗb =
[
V 0 0

]T
, where V is

the airspeed of the aircraft. Using the aircraft attitude quaternion, this vector can

be transformed into the inertial reference frame using the quaternion algebraic vector

transformation, which can be written as

ṗi = e⊗ ṗb ⊗ e∗, (5.11)

where e and e∗ are the attitude quaternion and inverse described in Chapter 3. Given

these four vectors, the error and derivative error vectors can be computed as,

p̃i = pi − pdi (5.12)

˙̃pi = ṗi − ṗdi . (5.13)

For path following, we measure the position error in the inertial reference frame, and

the controller commands are e�ected in the body-frame of the aircraft. Therefore,

the next step in the control law is to transform the two error vectors into the path

reference frame and then into the body-frame. However, the two rotations can be

e�ected as a single rotation of the error vectors directly from the inertial-frame to the

body-frame, as was discussed in Section 3.2.2. This is accomplished by applying the

aircraft attitude quaternion for both error vectors in the following form:

p̃b = e∗ ⊗ p̃i ⊗ e (5.14)

˙̃pb = e∗ ⊗ ˙̃pi ⊗ e. (5.15)

The build up of the control quaternion follows this concept; the path has

an orientation at each point in time that can be expressed as a quaternion, ep. At

1The velocity vector alignment assumption is valid as long as the aircraft side-slip and angle of
attack is small (less than 5 degrees).
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the same instant in time, there exists an unit-norm correction quaternion, ec, that

re�ects the di�erence between the path and the aircraft attitude quaternion, eb; this

relationship can be written as ep = ec ⊗ eb. The quaternion path following control

law computes the correction quaternion that drives the body to the path orientation

at the instantaneous location.

In general, the typical PD control law is the summation of proportional and

derivative errors, each scaled by a separate gain. For the quaternion control law, one

constructs a unit-norm quaternion for each PD element and then composes the three

together according to the formula,

ec = ec(P ) ⊗ ec(D). (5.16)

The unit-norm quaternion for each PID element is constructed using the Euler for-

mulation,

e ≡



cos
(

Θ
2

)
Ex sin

(
Θ
2

)
Ey sin

(
Θ
2

)
Ez sin

(
Θ
2

)


, (5.17)

where the control law is de�ned by calculating a rotation angle, Θ, and the compo-

nents of a unit-length rotation vector, Ex, Ey, and Ez. For the proportional element

of the path following control law, Θ is computed from the scaled magnitude of the

body-frame position error as

Θ(P ) = K(P )

√
p̃2
yp + p̃2

zp. (5.18)

The unit-length vector, E, for the proportional element of the control law is made up

of the components of the body-frame position error divided by the magnitude of the
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error, which yields

E(P ) =
[

−p̃yb√
p̃2

yp+p̃2
zp

−p̃zb√
p̃2

yp+p̃2
zp

0
]T
, (5.19)

where each component of the E(P ) vector corresponds to a body-frame rotation. Error

in the body-frame y-axis produces rotation about the body-frame x-axis (roll angle)

and error in the body-frame z-axis produces rotation about the body-frame y-axis

(pitch). The typical MAGICC lab MAVs do not have a rudder, meaning that rolling

about the body-frame x-axis is used for turning rather than using skid-to-turn, which

causes the last component of E(P ) to equal zero. The rotation angle and vector for

the proportional error can be mapped into a unit-norm correction quaternion to yield

ec(P ) =



cos
(

Θ(P )

2

)
Ex(P ) sin

(
Θ(P )

2

)
Ey(P ) sin

(
Θ(P )

2

)
Ez(P ) sin

(
Θ(P )

2

)


(5.20)

=



ec0(P )

ecx(P )

ecy(P )

ecz(P )


. (5.21)

In the proportional element of the correction quaternion, the ecx(P ) term is the nor-

malized error transformed into the body-frame and scaled by the sine of half the

rotation angle. This component corresponds to a body-frame x-axis rotation, which

is produced by aileron de�ections. Thus, ecx(P ) will be part of the command to the

ailerons and in a similar manner, ecy(P ) will be part of the command to the elevator

once the entire correction quaternion is composed.

The derivative element of the quaternion PID control law is built in a manner

similar to that used for the proportional element. The rotation angle for the derivative
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element of the control law is computed as

Θ(D) = K(D)

√
˙̃p

2

yp + ˙̃p
2

zp, (5.22)

and the unit-norm rotation axis can be found from the expression

E(D) =

[
− ˙̃pyb√
˙̃p
2
yp+ ˙̃p

2
zp

− ˙̃pzb√
˙̃p
2
yp+ ˙̃p

2
zp

0
]T
, (5.23)

with the derivative element correction quaternion constructed as in Equation (5.20).

As with the vector components of the proportional element of the correction quater-

nion, the unit-norm quaternion built from the derivative error has vector components

that relate directly to the commands for aileron and elevator.

It is important to remark that given this formulation, the control e�ort dimin-

ishes if the magnitude of the rotation angles (Θ) for any of the PID elements exceeds

π and the control e�ort reverses sign if the magnitude exceeds 2π. Additionally, if the

aircraft is too far away from the maneuver path, it would be natural to abandon the

maneuver. Therefore, the gains for each element were constructed as

K(P ) = Kd(P )
π

p̃max
(5.24)

K(D) = Kd(D)
π

˙̃pmax

, (5.25)

where the value of each design gain, Kd(P ) and Kd(D), must be on the range 0 → 1,

and the values of p̃max and ˙̃pmax are selected according the �ight envelope of the

aircraft. For example, p̃max was selected to be twice the maneuver radius and ˙̃pmax

was selected as the nominal maximum airspeed of the MAVs. Once the correction

quaternion for the individual elements�proportional, and derivative�are constructed,

they are composed together according to Equation (5.16).
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5.3.2 Lyapunov Stability of the Quaternion Control Law

We de�ne the subscript p to denote to the path reference frame, subscript b to

denote to the body-frame, and subscript c to denote to the rotation that corrects the

error between the two. We will make three simplifying assumptions for this proof: 1)

the desired path is straight, level, and heading north
(
ep =

[
1 0 0 0

])
; 2) the

desired body reference frame orientation is equal to the actual aircraft body-frame(
eb = edb

)
; and 3) the control law will be comprised of only the proportional control

quaternion
(
ec = ec(P )

)
. We de�ne the correction quaternion as the rotation between

the path-frame and the desired body-frame, which can be written as

eb = ec ⊗ ep.

For the path error dynamics, we de�ne the position error as

p̃ = pp − pb,

and the derivative of the position error can be written as

˙̃p = ṗp − ṗb.

Applying the �rst assumption results in ṗp =
[
ṗpx 0 0

]
. The expression for ṗb

can be written as the aircraft velocity vector rotated into the inertial reference frame,

yielding

ṗb = Ri←b


Va

0

0



=


e2
b0 + e2

bx − e2
by − e2

bz

2 (ebxeby + ebzeb0)

2 (ebxebz − ebyeb0)

 .
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Having de�ned these two expressions, the derivative of the position error can be

written as

˙̃p =


ṗpx − Va

(
e2
b0 + e2

bx − e2
by − e2

bz

)
−2Va (ebxeby + ebzeb0)

−2Va (ebxebz − ebyeb0)

 .

The Lyapunov candidate function can be written as

V =
1

2
p̃T p̃,

whose derivative can be written as

V̇ = p̃T ˙̃p

= p̃T


ṗpx − Va

(
e2
b0 + e2

bx − e2
by − e2

bz

)
−2Va (ebxeby + ebzeb0)

−2Va (ebxebz − ebyeb0)

 .

Given the correction quaternion of

ec =



cos
(
K(P )‖p̃p‖

2

)
−p̃yp

‖p̃p‖p̃zp
sin

(
K(P )‖p̃p‖

2

)
−p̃zp

‖p̃p‖ sin
(
K(P )‖p̃p‖

2

)
0


(5.26)

and applying assumptions 1) and 2) allows us to compute the second and third terms

of ˙̃p as

˙̃p2 = −2Va
p̃yp
‖p̃p‖

sin2

(
K(P )‖p̃p‖

2

)

˙̃p3 = −2Va
p̃zp
‖p̃p‖

sin

(
K(P )‖p̃p‖

2

)
cos

(
K(P )‖p̃p‖

2

)
,
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which can be multiplied by p̃T to yield

V̇ = −2Va
p̃2
yp

‖p̃p‖
sin2

(
K(P )‖p̃p‖

2

)
− 2Va

p̃2
zp

‖p̃p‖
sin

(
K(P )‖p̃p‖

2

)
cos

(
K(P )‖p̃p‖

2

)
.

For the quaternion control law, the sine and cosine function are both restricted to

quadrant one, implying that both are guaranteed positive, and thus the expression

for V̇ is negative de�nite and shows that p̃→ 0.

We can validate the second assumption by treating the desired quaternion as

an input to an inner loop controller. If we de�ne an error quaternion as

eb = ee ⊗ edb ,

then to show that eb → edb we need ee →
[

1 0 0 0

]
. If we assume that the

ailerons and elevators can have a �rst-order response to the control input
(
ee = exp−Kt

)
,

then the error dynamics can be written as ėe = −Kee.We de�ne the Lyapunov func-

tion for the inner loop control law as

V =
1

2
eTe ee,

where the derivative is

V̇ = eTe ėe

= −KeTe ee

which is negative de�nite, and thus we assert that eb → edb .

5.3.3 MAV Control Actuation

The typical BYU MAGICC lab MAV has only two control surfaces, called

elevons, which combine the functions of ailerons and elevators. De�ecting the elevons

in opposite directions creates a torque about the body-frame x-axis while de�ecting

the elevons in the same direction produces torque about the body-frame z-axis. The
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elegance of the control commands generated by the correction quaternion is that

they are decomposed into the individual axes. Thus, the command for the aileron

de�ection is not a function of roll angle but lateral error and the elevator command

is not a function of pitch angle but vertical error. Finally, the throttle command is

decoupled from the path following control law; the sole function of the throttle is to

prevent aircraft stall by maintaining the desired airspeed.

Thus, the position error that has been de�ned in the path reference frame

must be transformed into the body-frame. These error terms are used to convert the

control law commands into actual control surface de�ections by merely scaling the

correction quaternion relevant to that particular body-frame axis. This scaling is a

function of the control authority of the separate actuators, which is determined by

the size and placement of the control surfaces and the time constant of the servos and

in the case of the throttle, the speed control system. Thus, for the commands to the

three typical MAV actuators, we can write

δth = Kth (V c − V ) (5.27)

δail = Kail (ecx) (5.28)

δel = Kel (ecy) , (5.29)

where ecx and ecy are the components of the complete correction quaternion related

to rotations about the body-frame x- and y-axes, respectively. The three gains (Kth,

Kail, and Kel) are each tuned separately for the available thrust and control authority

of the speci�c aircraft.

5.4 Results

The path following maneuver control law was re�ned and demonstrated using

a sequential process of increasing �delity. The �rst step used pure �ight simulation

in Aviones, which was followed by hardware-in-the-loop simulations, and �nally �ight

tests.
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5.4.1 Aviones Simulation Results

The quaternion PID control law was used to control the MAV through sev-

eral maneuvers that could be employed for avoiding obstacles. As with the attitude

tracking controller, the control law was veri�ed in the Matlab Simulink tool and the

Aviones �ight simulation software.

For the simulated path following maneuvers, the initial �ight velocity was

north at 13 meters per second, at a starting altitude of 100 meters, and the nominal

maneuver radius was 4 meters. As noted in Section 4.2, many di�erent maneuvers

can be de�ned and �own, however, we have limited our testing to three maneuvers,

speci�cally the loop, the Immelmann and the Close-Q. Although loops are not a useful

maneuver for avoiding obstacles, they can be employed as a simple means for testing

the control law.

Figure 5.2 shows the position and orientation of the MAV, represented as the

blue line and bi-colored triangles, and the desired maneuver path, the red line. As can

be seen in the plot, the quaternion path following control law was able to regulate the

aircraft position along the desired path throughout the maneuver. The tracking of

the loop was made more di�cult due to the changing airspeed; as airspeed decreased,

the turning radius causing the aircraft to more rapidly correct the path error.

Figure 5.3 shows the position error for the MAV �ying a simulated loop ma-

neuver. As can be seen in the plot, the control law was able to maintain the aircraft

to within 4 meters of the desired position throughout the maneuver.

The path following Immelmann maneuver is accomplished by �rst executing

half of the path following loop maneuver and then half of the trajectory tracking

aileron roll maneuver. The simulated MAV follows the half-loop portion of the path

quite well. However, the half-roll portion of the Immelmann maneuver is commanded

as an attitude trajectory (see Section 4.2), not a path following maneuver; this results

in the MAV having to recover altitude and heading after the aileron roll portion of

the maneuver, as can be seen in Figure 5.4. The desired path for the Immelmann

maneuver shows a discontinuity at the end of the maneuver where the desired path
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Figure 5.2: Path Following Loop Simulation. The bi-colored triangles provide an
indication of aircraft attitude throughout a path following, 4-meter radius, loop ma-
neuver.
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Figure 5.3: Loop Maneuver Position Error. The position error for the loop maneuver
using the quaternion path following control law.
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Figure 5.4: Path Following Immelmann Simulation. The bi-colored triangles provide
an indication of aircraft attitude throughout a path following Immelmann maneuver.
The aircraft recovers to the pre-maneuver waypoint for altitude and heading.
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Figure 5.5: Immelmann Maneuver Position Error. The position error during the
path following portion of the Immelmann maneuver is plotted as a function of time.
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transitions from the half-loop portion of the maneuver back to the previously tracked

waypoint direction and altitude.

The performance of the path following control law during the half-loop portion

of the Immelmann maneuver is shown in Figure 5.5. The deviations from the subse-

quent desired heading and altitude seen in Figure 5.4 is due to the controller switching

from path following control to attitude trajectory tracking during the aileron roll por-

tion of the Immelmann maneuver.

One of the strengths of the quaternion PD path following control law compared

to the trajectory tracking controller was in �ying the three-dimensional Close-Q ma-

neuver. The balancing of the elevator and the aileron actuation was much more

straight forward. The elevator control gains that would allow the aircraft to �y the

loop and Immelmann maneuver were found �rst and then the aileron gain was tuned

upwards until the Close-Q path tracking was acceptable. Figure 5.6 shows a Close-Q

maneuver executing a 90-degree right turn by turning upwards to the left. A slight

overshoot in altitude is evident as the aircraft recovers after the maneuver and the

control mode switches from quaternion PD path following to the standard waypoint

navigation and altitude hold.

The aircraft de�ection angles for the ailerons and elevator during the Close-Q

maneuver are presented in Figure 5.7. The proper balancing of the aileron and elevator

gains produces a smooth, well-controlled maneuver. Note that the throttle is plotted

as a percent of maximum and saturates through the maneuver as the throttle works

to maintain desired airspeed. Also, the elevator de�ection saturates temporarily as

the control law works bring the aircraft onto the path.

One measure of the performance of the quaternion control law is the distance

from the path as a function of time. The simulation results shown in Figure 5.8 show

that the controller maintains the position of the aircraft within less than a total of 4

meters of the desired path.
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Figure 5.6: Path Following Close-Q Simulation. The Close-Q maneuver is plotted
against the desired path. The maneuver was commanded in conjunction with the
right angle turn from a northerly heading to an easterly heading. The bi-colored
triangles on the blue line indicate the aircraft orientation and path and the red line
is the desired path.
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Figure 5.7: Close-Q Actuator De�ections. The throttle setting and control surface
de�ections during the simulated Close-Q maneuver are plotted as a function of time.
Note that the throttle is plotted as a percentage of maximum throttle and the actuator
de�ections are measured in degrees.
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Figure 5.8: Close-Q Position Error. The magnitude of the inertial position error is
plotted as a function of time during the Close-Q maneuver.

5.4.2 Hardware-in-the-Loop Simulation Results

As an intermediate step between the Aviones simulations and the actual �ight

tests, the quaternion PD control law was tested using the aircraft hardware as a simu-

lation environment. These hardware-in-the-loop simulations were achieved by having

the autopilot simulate sensor inputs based on evaluating the six-degree-of-freedom

aircraft equations of motion. Throughout the hardware-in-the-loop simulations, the

MAV autopilot is directly connected to the ground station computer through two

cables, one for the Virtual Cockpit interface and the other for receiving output vari-

ables from the autopilot. The hardware-in-the-loop simulations demonstrated that

the autopilot was calculating and sending the proper responses to the actuators and

throttle during the various path following maneuvers.

The system of equations for the motion of the aircraft include three for lin-

ear velocities, three for angular velocities, three for the navigation variables (north,

east, and altitude) and four equations for the kinematics of the attitude quater-

nion. Thus, the full equations of motion consist of thirteen nonlinear di�erential

equations. Whereas Aviones uses a fourth-order Runge-Kutta method to numerically

propagate the thirteen state variables from equations (2.1 - 2.4), this approach is too
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computationally costly to implement on the autopilot. However, a simple Newton

integration was deemed insu�ciently accurate for tracking aerobatic maneuvers. As

a compromise between accuracy and computational cost, a �rst-order Heun's method

was implemented, which in generalized form can be written as

xk+1 = xk +
1

2
(ẋk + ẋk+1) . (5.30)

Using the autopilot to propagate the aircraft position and attitude sensor information

allowed the various path following maneuvers to be simulated. Throughout the ma-

neuvers, the MAV control surfaces de�ected in accordance to the control commands

from the quaternion PD control law.

In Figure 5.9, the hardware-in-the-loop simulation was used to �y a loop ma-

neuver with a four meter radius. One bene�t of the hardware-in-the-loop simulation

was that it allowed control law gains to be tuned without endangering the aircraft.

It was found that the gains found using Aviones were too aggressive for the actual

aircraft actuators and caused instability in the various maneuvers.

Figure 5.9: Path Following Loop Hardware-in-the-loop Simulation. The bi-colored
triangles indicate aircraft attitude throughout a 4-meter radius loop.
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Figure 5.10: Loop Actuator Commands. For the Hardware-in-the-loop simulation
of the loop maneuver, the elevator, aileron and throttle de�ections are plotted in
response to control law commands during a 4-meter radius loop maneuver.
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Figure 5.11: Loop Maneuver Position Error. The total position error during a
Hardware-in-the-loop simulation of a path-following, 4-meter radius, loop maneuver.
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One of the critical pieces of data gathered during the hardware-in-the-loop

simulations was the movement of the aircraft control surfaces during the maneuvers.

These de�ections for the loop maneuver are shown graphically in Figure 5.10. Note

that according to convention, positive de�ection of the elevator is trailing edge down,

which produces a negative pitching moment. Thus, the negative de�ection shown in

Figure 5.10 is what one should expect for a standard loop maneuver. The throttle

response also follows the expected trend; increasing to 100% during the pull-up por-

tion of the loop and then decreasing to zero during the second half of the maneuver

as velocity of the aircraft exceeds the �xed preset value. The position error, mea-

sured in the inertial reference frame was plotted as a function of time during the loop

maneuver. This total position error can be seen in Figure 5.11.

The hardware-in-the-loop simulation was also used to demonstrate the Immel-

mann and Close-Q maneuvers, as can be seen in Figures 5.12 and 5.13.

Figure 5.12: Path Following Immelmann Hardware-in-the-loop Simulation. The
bi-colored triangles indicate the aircraft attitude throughout a 4-meter radius Immel-
mann.

The �gures for the Immelmann and the Close-Q maneuvers both show the

discontinuity as the desired path (smooth red line) switches from the maneuver path
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Figure 5.13: Path Following Close-Q Hardware-in-the-loop Simulation. The bi-
colored triangles indicate the simulated aircraft attitude throughout a 4-meter radius
Close-Q maneuver.

back to the waypoint-following path with its associated altitude. Throughout both of

these maneuvers, the �ight control surfaces on the MAV were moved about according

to the commands from the autopilot.

5.4.3 Flight Test Results

Subsequent to the development and re�nement work completed in using Aviones

and Hardware-in-the-loop simulations, the maneuver algorithm was �ight tested on

the MAV. The quaternion path following control law was successful in controlling

the MAV through a loop, an Immelmann, and a Close-Q maneuver. Since the loop

maneuver is the simplest representative of class of path following maneuvers, only the

�ight results for the loop will be presented and discussed. The results of the �ight

testing demonstrate the validity of the quaternion path following approach to con-
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trolling a MAV though three-dimensional paths. The results also bring to light some

shortcomings that need to be addressed prior to implementation on an operational

aircraft.
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Figure 5.14: Path Following Loop Flight Data. The large, hollow diamonds indicate
the aircraft location and the small, solid diamonds track the desired position of the
aircraft before, during, and after a 4-meter radius loop maneuver.

Figure 5.14 shows the position and orientation of the MAV as it �ew a loop

maneuver. The desired path (shown in small, solid diamonds) is at 100 meters prior to

the start of the maneuver, but at the instant the maneuver is triggered, the desired

position is set to the actual aircraft location to allow for smooth transition to the

maneuver. As can be seen in the large, hollow diamonds in Figure 5.14, the quaternion

path following control law successfully guided the MAV through a complete loop

maneuver. However, the tracking performance could be improved by increasing the

gain on position error to a higher value. In addition to the path tracking performance,
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several key features of Figure 5.14 bear further discussion, namely: 1) the spacing of

the data points in the desired maneuver path, 2) the truncation of the desired path,

and 3) the uncertainty in the MAV position.

The algorithm we developed for generating the desired path is dependent on

the actual location of the aircraft. Thus, the data points for the desired path become

closer together as the MAV moved further away from the path without increasing

following the perfectly circular path. The key point is that each data point on the

desired path re�ects the shortest distance from the actual MAV location to the path.

Hence, the path generation algorithm is functioning exactly as designed.

Additionally, data points for the loop path do not form a complete circle,

stopping at approximately the eleven o'clock position. This is due to the safety feature

in the maneuver algorithm, which computes an time limit for each maneuver based

on path length and maneuver velocity. If the time limit is exceeded, the maneuver

is aborted and the aircraft control reverts back to waypoint following. Because the

MAV was not tracking the maneuver very closely, the time limit for the loop was

exceeded and the maneuver terminated exactly as designed.

Finally, the high frequency movement in the indicated position of the MAV

re�ects a small amount of uncertainty in the static pressure sensor and GPS readings

which provide the basis for the MAV position estimation algorithms. Certainly one

of the dangers in creating a path following maneuver control law is that the position

estimation system has inherent uncertainties. For waypoint following �ight regimes

characterized by steady-level �ight, these uncertainties are small enough to be insignif-

icant. However, the errors in position are of greater importance when attempting to

track a tightly turning three-dimensional path. The results indicate that the position

estimation accuracy is su�cient for maneuvers with a radius on the order of 8 meters

as shown here. However, if the aircraft were capable of turns with a radius less than

a meter, the position uncertainty would be a limiting factor.

The elevator portion of the actuator de�ection graph shown in Figure 5.15

gives evidence to indicate that more control authority is available for executing loop

maneuvers. This con�rms the assertion that increasing the position error gain would
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allow for tighter tracking of the desired path and improve maneuver performance. As

expected, the commanded aileron de�ections during the loop maneuver were practi-

cally zero, and the throttle cut back during the second half of the loop as the MAV

increased velocity while returning to the waypoint altitude of 100 meters.
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Figure 5.15: Actuator De�ections for the Path Following Loop. The �ight data
for the aileron and elevator de�ections measured in degrees are plotted with the
throttle setting measured in percent of maximum are shown for the path following
loop maneuver.

5.5 Summary

The quaternion PD control law performs the task of regulating the aircraft

to eliminate the error between the aircraft position and the desired path for various

maneuvers. The key to success was the innovative approach to determining the loca-

tion on the path along with the associated path parameter that corresponded to the
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actual aircraft position. The transformation of the inertial frame errors to the body-

frame allowed the actuation to be commanded directly without regard for the aircraft

attitude, which eliminated issues related to pitch angle range de�nition for aerobatic

maneuvers. The error of less than four meters in path following performance indicates

that this approach is appropriate for applying to the obstacle avoidance maneuvering

problem.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

For the estimation of aircraft attitude, we developed a quaternion-based MEKF

procedure to fuse data from the avionics suite used by the MAGICC lab MAVs, i.e.

low-cost gyroscopes, accelerometers, and GPS. The direct calculation of the attitude

error quaternion is what allowed the use of the quaternion attitude representation

in the EKF framework. From the simulation, ground, and �ight tests, we conclude

that the parallel propagation of the attitude quaternion and the attitude error in

the MEKF provided an accurate and functional approach to attitude estimation that

allows for three-dimensional maneuvering.

Using the quaternion MEKF attitude estimation, we next developed two struc-

tured methodologies for specifying maneuvers: �fth-order polynomials in a single an-

gle and angular rate and the trigonometric functions for simultaneous pitch and roll

speci�cation as functions of time. The key to both of these approaches was enforc-

ing the maneuver boundary conditions to ensure smooth transition from steady-level

�ight as part of the maneuver de�nition. This structured methodology was used

to create aileron roll, loop, and Immelmann maneuvers, as well as to de�ne a com-

pletely new maneuver, the Close-Q. These maneuvers were �own in simulation and

the trajectory tracking aileron roll was demonstrated in �ight test by the MAV.

Using the idealized trajectories generated using the trigonometric boundary

condition approach, we developed an innovative prediction-correction methodology for

determining the path location closest to the current aircraft location at each instant

during a maneuver. This knowledge of path location and the path parameter was es-
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sential to developing the quaternion PID control law for following three-dimensional

paths. Computer simulations and hardware �ight tests demonstrated the ability to

track the speci�ed paths, validating this approach for the obstacle avoidance maneu-

vering problem.

6.2 Future Work

Three areas of potential future work include: 1) attitude estimation re�nement,

2) altitude hold during the aileron roll maneuver, and 3) obstacle avoidance maneu-

vering integration into the MAV navigation algorithms. In addition to the control

law research, the most tedious hardware problems experienced during �ight testing

were caused by the lack of robustness in the GPS receiver and antenna combination;

e�ort should be made to develop and implement a more robust solution.

Before replacing the MAGICC lab default attitude estimation scheme (VGO)

with the MEKF, it would be valuable to develop a truth metric for the �ight test

data. Speci�cally, the attitude angles could possibly be extracted from the rotation

matrix built from the knowledge of position and altitude. This would utilize the same

alignment of the body-frame x-axis and the velocity vector assumption discussed in

Section 4.2.2. Additionally, the test �xture used for ground testing the MEKF could

be used to test and verify a static gyroscope bias estimation routine to populate the

�Reset Gyro� button on the airplane page in Virtual Cockpit. Currently, pressing this

button sets the attitude estimate to zero without running any calculations. The other

re�nement in the MEKF attitude estimation would be to research the normalization

of the attitude quaternion subsequent to the time update. It might be possible to

convert the second term in Equation 3.27 into a unit-norm quaternion and compose it

with the previous quaternion to maintain the unit-norm constraint. Beyond aerobatic

maneuvering, the improved attitude estimation accuracy enables better geo-location

from the MAV platform and improves altitude hold performance during turns, there-

fore I would like to demonstrate that the MEKF works for any airframe used by the

MAGICC lab.
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As was remarked in relationship with the aileron roll maneuver and the second

portion of the Immelmann maneuver, these maneuvers do not hold a desired altitude

and heading. This is due to the velocity vector alignment assumption and the lack

of feedback of desired altitude and heading. Further research time could be spent to

develop control laws that would hold altitude and heading during these maneuvers.

Naturally, the next step would be to integrate the attitude estimation and

path following maneuver control into a complete obstacle avoidance system. This

integration would necessarily include sensors to locate obstacles in the �ight path, as

well as maneuver selection logic based on the locations of the objects in the immediate

vicinity. Additionally, algorithms for path planning after avoiding the obstacle need

to be developed so as to ensure mission completion.

Although it seems whimsical to consider aerobatic maneuvering in the context

of public �ight demonstrations, the US Air Force and Navy spend millions of dollars

each year for public relations, especially air shows. The motivation and rationale

behind the Air Force Thunderbirds and Navy Blue Angels is to increase the public

awareness and pride in the military aircraft technology. This is an important source of

recruits and funding. Therefore, it would be natural to extend my research to develop

a methodology for controlling synchronized, cooperative path following maneuvers for

MAVs to perform at air shows.
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