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Abstract: The paper presents an emulation modelling approach to reduce the computational bur-
den associated with the use of process-based, distributed, dynamic models in planning and man-
agement of water resources. This approach, which relies on a procedure composed by few steps,
leads to the identification of an emulation model, namely a simplified, computationally-efficient
model built over a sample data-set produced via simulation of the original computationally ex-
pensive model. The core of the procedure is a feature ranking algorithm, based on Extremely
Randomized Trees (Extra-Trees), through which the most relevant input variables to the emu-
lation model are selected among the large set of candidate input variables associated with the
original model. The calibration of the emulation model, in the form of an input-output relation-
ship, is then performed using again Extra-Trees. The approach is demonstrated on a real-world
case study (Googong Reservoir, AUS).

Keywords: emulation modelling; feature selection; water resources management; hydrodynamic-
ecological models

1 INTRODUCTION

Increasing human pressure on water bodies and reservoirs is often causing strong quality prob-
lems, which can be effectively mitigated by adopting a combination of different rehabilitation
technologies (e.g. mixers, curtains, submerged pipes). Choosing the best technological mix and
fixing how to manage it on the medium/long run to meet a given set of criteria is a rather diffi-
cult task, which involves combining simulation models and optimization techniques. In the water
quality sector the former are usually process-based, distributed, dynamic models, whose high di-
mensional state prevent their inclusion in optimization frameworks even with the most advanced
optimization techniques (see Castelletti et al. [2010] and references therein).
A potentially interesting approach to reduce the computational burden associated with the use of
these models is to build a simplified, computationally efficient model that ’emulates’ the relevant
dynamics of the original one in a way that is accurate enough for discriminating between dif-
ferent planning/management options. The construction of an emulation model can be articulated
in different steps, through which the information provided by the large model is re-elaborated to
obtain a lower order, lumped-parameter model, which describes the output required to solve the
planning/management problem. Emulation modelling has been widely adopted in mechanical and
aerospace engineering (for a survey, see Queipo et al. [2005]), but it has only relatively attracted
researchers in the context of water resources planning and management, and on a limited number
of application fields. Yan and Minsker [2004] use emulation models to groundwater remediation,
Broad et al. [2005] developed an emulation model of a water distribution network using artificial
neural networks, and Galelli and Soncini-Sessa [2010] use emulation modelling to include the
dynamics of water demand for irrigation into reservoir operation.
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In this paper we present a procedure to identify, in a ‘data-driven fashion’, a dynamic emulation
model of a 3D coupled hydrodynamic-ecological model (ELCOM-CAEDYM) for lakes and reser-
voirs. The core mechanism of the procedure is a feature ranking algorithm, based on Extremely
Randomized Trees (Extra-Trees; Geurts et al. [2006]), through which the input variables to the
emulation model are automatically selected. ELCOM-CAEDYM is used to generate, via simula-
tion, synthetic I/O time-series of the variables of interest. Based on these I/O data, the relevant
input variables are selected with the feature ranking algorithm and the emulation model, in the
form of an I/O relationship, is then identified using Extra-Trees. The approach is demonstrated on
a real world case study (Googong Reservoir, AUS).

2 EMULATION MODELLING

As the emulation model has to be used for the resolution of planning/management problems, it
is assumed that the design objectives defining the problem and the associated step indicators (see
Soncini-Sessa et al. [2007] for more details) have already been defined. The step indicators
are the natural output of the emulation model, since they represent the most general input to
any optimal planning/management algorithm. Once these outputs are fixed, the purpose of the
emulation modelling exercise is clearly stated: to construct a simplified, computationally efficient
model that accurately computes the step indicators. The model can be identified by employing the
following procedure, composed of four steps.

Step 1. Design Of Experiments (DOE). The Design Of Experiments (DOE) is the sampling plan
in the space of the inputs (decisions and disturbances) of the process-based (PB) model, when this
is non-dynamic; while it is the sampling plan in the space of the input trajectories in the opposite
case. Since the number of samples is generally limited by the computational requirements of each
simulation, proper techniques should be employed to select the samples as to effectively explore
the state space of the PB model. DOE can be carried out either using statistical techniques (see,
for instance, Queipo et al., [2005]) or based on physical considerations and a-priori knowledge
(Galelli and Soncini-Sessa [2010] and references therein). While the former are well established
for steady-state planning problems (Queipo et al., [2005]), the latter are, up to now, the only
available solution in management problems.

Step 2. Simulation of the PB model. For each sample of the inputs (decisions and disturbances)
as obtained in Step 1, the outputs (step indicators) and the state trajectories must be computed
via simulation of the computationally expensive PB model, thus obtaining the data-set of tuples
(inputs, states and outputs) for the subsequent identification of the emulation model.

Step 3. Input and state variables selection. Of the whole set of input and state variables of the PB
model, the most informative subset with respect to the emulation model output has to be selected
(spatial aggregation of the input and state variables can be performed prior to the input/state se-
lection). This operation can be done on the base of a priori knowledge or, when the number of
candidate input and state variables is too large, by adopting proper automatic techniques. Gener-
ally, considering the complexity and the underlying non-linearity of the PB model, it is advisable
to leave simple statistical techniques (e.g. cross-correlation, which is only able to detect linear de-
pendence between two variables; see Bowden et al. [2005]) and resort to more sophisticated tools,
as feature selection algorithms commonly adopted for machine learning tasks (see Das [2001]).
An example is given in Section 3.2, where the feature ranking algorithm adopted in this work is
described. For each state variable included in the selected subset, the input and state variables
selection must be repeated (assuming as new output the selected state variable), until only distur-
bances and decisions remain in the subset.

Step 4. Model selection, calibration and validation. This is a traditional model identification
problem, composed of model selection, parameter estimation (calibration) and validation. As far
as the class to which the emulation model will belong is considered, it is advisable to employ the
same class of model adopted at Step 3 when selecting the input variables to the emulation model
(in the present application, for example, Extra-Trees are adopted to build the emulation model,
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since the feature ranking algorithm is based on Extra-Trees). Parameter estimation and validation
can be finally performed by adopting suitable calibration/validation algorithms. A cascade of
emulation models is identified if more than one state variable is selected at Step 3.

3 TREE-BASED MODELLING AND FEATURE RANKING

Tree-based methods are non-parametric supervised learning methods (see Breiman et al. [1984])
that can provide modelling flexibility, computational efficiency, interpretability and good accuracy
in both regression and classification problems. They are all based on the idea of decision tree
models, which are tree-like structures representing a cascade of rules leading to numerical (or
class) values. These structures, composed of decision nodes, branches and leaves, are obtained by
first partitioning at the top decision node (or root node), with a proper splitting criterion, the set of
the input variables into two sub-sets (first branch); then repeating the splitting process recursively
on each derived sub-set, until either the numerical (or class) values belonging to a sub-set vary
just slightly or only few elements remain (termination test). When the splitting process is over,
the branches represent the hierarchical structure of the sub-set partitions, while the leaves are the
finest sub-sets associated to the terminal branches. Each leaf is finally associated with a numerical
(or class) value.

3.1 Extra-Trees

In this study we explore a new tree-based method called Extremely Randomized Trees (Geurts et

al. [2006]) that randomizes (totally or partially) both the input variable and the cut-point selection
when splitting a node, and create an ensemble of trees to compensate for the randomization, via
averaging of the constituent tree outcomes. Extra-Trees were empirically demonstrated (Geurts
et al. [2006]) to outperform other deterministic (CART) and randomized (Tree Bagging, Ran-
dom Forests; Breiman [2001]) methods in terms of both prediction accuracy and computational
efficiency. Moreover, the particular structure of Extra-Trees can be exploited to infer the relative
importance of the input variables in explaining the output and then identify the most relevant vari-
ables (features ranking) among a candidate input variables set. The Extra-Trees building algorithm
grows ensemble of M trees. Nodes are split using the following rule: K alternative cut-directions
(input variables) are randomly selected and, for each one, a random cut-point is chosen; a score
(explained variance) is then associated to each cut-direction and the one maximizing the score is
adopted to split the node. The algorithm stops partitioning a node if its cardinality is smaller than
nmin (termination test) and the node is therefore a leaf. To each leaf a value is assigned, obtained
as the average of the outputs associated to the inputs that fall in that leaf. The estimates produced
by the M trees are finally aggregated with arithmetic average (aggregation rule). The rationale
behind the approach is that the combined used of randomization and ensemble averaging provide
more effective variance reduction than other randomization methods, while minimizing the bias
of the final estimate. The values of the three parameters k, nmin and M associated to Extra-Trees
can be fixed on the basis of empirical evaluations:

• K, the number of alternative cut-directions, can be chosen in the interval [1, . . . , n], where
n is the number of inputs. When K is equal to n, the choice of the cut-direction is not
randomized and the randomization acts only through the choice of the cut-point. On the
contrary, low values of K increase the randomization of the trees and weaken the depen-
dence of their structure on the output of the training data-set. Geurts et al. [2006] have
empirically demonstrated that, for regression problems, the optimal default value for K is
n.

• nmin, the minimum cardinality for splitting a node. Large values of nmin lead to small
trees (few leaves), with high bias and small variance. Conversely, low values of nmin lead
to fully-grown trees, which may over-fit the data. The optimal value of nmin depends not
only on the risk aversion to over-fitting, but also on the level of noise in the outputs of
the training data-set: the noisier are the outputs, the higher should be the optimal value
of nmin. As for K, Geurts et al. [2006] have empirically shown that, although possibly
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slightly suboptimal, the default value of nmin = 5 appear to be robust choices in a broad
range of typical conditions in regression problems.

• M , the number of trees in the forest, influences the strength of the variance reduction and
the behavior of the estimation error, which is a decreasing function of M (Breiman [2001]).
The estimation accuracy thus increases with M and the choice of its value depends on a
trade-off between the desired model accuracy and available computing power.

3.2 Feature ranking

A part from providing good performance in terms of bias-variance reduction, the particular struc-
ture of Extra-Trees can be exploited to rank the importance of the n input variables in explaining
the output behavior and then identify the most relevant variables among n candidate inputs. This
approach, as proposed by Fonteneau et al. [2008], is based on the idea of scoring each input
variable by estimating the variance reduction it can be associated with by propagating the training
data-set over the M different tree structures composing the ensemble. More precisely, let us con-
sider a regression problem with an output variable y, n input variables {x1, x2, . . . ., xn} and a
training data-set S, composed of N input-output observations. The relevance G(xi) of each input
variable xi in explaining the output y can be evaluated as follow

G(xi) =

∑M
τ=1

∑Ω
j=1 δ(νj , xi) · Δvar(νj)|S|

∑M
τ=1

∑Ω
νj=1 Δvar(νj)|S|

(1)

where νj is the j-th non-terminal node in the tree τ , Ω is the number of non-terminal nodes
in the tree τ , δ(νj , xi) is equal to 1 if xi is used to split the node νj (and 0 otherwise), |S| is the
number of samples in the considered sub-set S, Δvar(νj) is the variance reduction when splitting
the node νj , namely

Δvar(νj) = var{y|S} − |Si,l|
|S| var{y|Si,l} − |Si,r|

|S| var{y|Si,r} (2)

where the terms Si,l and Si,r are the two sub-sets of S satisfying the conditions xi < si and xi ≥
si respectively. The input variables are finally sorted by decreasing values of their importance.

4 CASE STUDY

4.1 Googong reservoir and its management problem

Googong Reservoir is located in New South Wales and is one of the five sources supplying Can-
berra’s water. The reservoir has a full-supply volume of 121GL (1.21 x 106 m3), a surface area at
full supply of approximately 3.5 km2, an average and maximum depth of 35 and 50 m respectively.
Its waters are mainly used for potable water supply but the reservoir is also used for recreational
purposes. The reservoir has a history of low to medium levels of Cyanobacteria and metal release
(particularly of Manganese causing stain on clothes). Destratification was thought as a suitable
way to solve the problem. This technique involves increasing rates of vertical mixing via mechani-
cal means, with the objective of improving dissolved oxygen concentration at depth, which in-turn
reduces the likelihood of nutrient and metal release from the sediments under anoxic conditions.
Two pairs of 5 m diameter WEARS (brand) surface-mounted mixers have been installed for that
purpose in March 2007. However, this intervention had only limited success as the Cyanobacteria
increased and metal release is still significant, which suggests that in-depth oxygenation could be
not enough.

4.2 The management problem

As demonstrated in a recent study (Castelletti et al. [2010]), the reallocation of existing mixers
and the installation of new ones could improve the current solution. However, the problem was
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Table 1: ELCOM-CAEDYM input and state variables giving a contribution larger than 4% in
explaining ΔMn2+,B

t behavior.
variable Fe3+,B

t−1 Mn2+,B
t−1 TE

t−1 sol. rad. env. flow
u. of meas. [mg/L] [mg/L] [°C] [W/m2] [m3/s]
ind. score 36.20 % 5.39 % 4.99 % 4.80 % 4.30 %

addressed considering a fixed thrust, while it is interesting to explore if any advantage exists in
varying the mixers’ thrust in time (i.e. in adopting a control policy). For this purpose, an optimal
control problem has to be formulated and solved, based on the step indicator gMn

t (considering
the methodological focus of this paper, just the case of manganese is issued) that is equal to the
average concentration of Manganese in the benthic area Mn2+,B

t [mg/L] (temporal mean over the
time step [t−1, t]). As the number of alternative policies is infinite, the problem can not be solved
with a simulation-based exhaustive approach, and optimal control algorithms should be adopted.
However, the use of such algorithms is precluded by the infinite dimensionality of the PB model
state. To overcome this difficulty, an emulation model must be identified and calibrated on the
data obtained via simulation of the 3D coupled hydrodynamic-ecological ELCOM-CAEDYM of
Googong reservoir.

4.3 The process-based model

The Estuary, Lake and Coastal Ocean Model (ELCOM) is a three-dimensional hydrodynamics
model used for predicting the velocity, temperature and salinity distribution in natural water bod-
ies subjected to external environmental forcing such as wind stress and surface fluxes. The Com-
putational Aquatic Ecosystem Dynamics Model (CAEDYM) consists of a series of mathematical
equations representing the major biogeochemical processes influencing water quality, including
primary production, secondary production, nutrient and metal cycling, and oxygen dynamics and
the movement of sediment. For the purpose of producing sample data for the identification of
the emulation model, the coupled ELCOM-CAEDYM model was run using a simulation step of
1 minute with a 60 x 60 m grid bathymetry with 1 m vertical grid resolution. This gives a total
of about 59000 computational cells, which, for the 24 state variables/cell, gives a total of 1.42
million data points produced for every time step.

5 IDENTIFICATION OF THE EMULATION MODEL

The practical resolution of the optimal control problem (see Section 4.2) requires the identification
of a Multi Input-Single Output (MISO) emulation model, with multiple inputs and the step indi-
cator gMn

t as output. Based on the definition of the step indicator, the concentration Mn2+,B
t is

assumed as output of the MISO emulation model. The target is to reduce as much as possible the
number of state variables involved in the PB sub-model concerning manganese in the sub-domain
of the reservoir where the effect of mixers is more evident.

5.1 DOE and simulation of the PB model

To explore the behaviour of the reservoir under different management conditions, 10 samples of
input trajectories were defined by combining five control policies with two disturbance scenarios
(the realization of meteorological processes in 2002/2003 and 2004/2005). The control policies
considered are: (1) mixers always switched off, (2) mixers always switched on and (3-5) a step-
wise variation in time of the mixers condition (on or off) (the steps, which are 3 or more months
long, are defined on the base of physical considerations).
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5.2 Input and state variables selection

The PB model state variables were aggregated in space by considering their spatial mean over
three layers defined on the basis of physical considerations: (B) the benthic layer, defined as
the volume of water in the reservoir near the bottom, subject to anaerobic and anoxic processes
leading to metals and nutrients releases; (E) the euphotic layer, defined as the volume reached
by at least 1% of the incoming light (i.e. where the photosynthetic processes take place); (M)
the middle layer, which is the remaining volume in the water body. A mean over 72 hours was
considered for the aggregation in time. This post-processing of the PB simulations leads to a
total of 87 variables to be considered when selecting the input variables to the emulation model:
72 are ELCOM-CAEDYM state variables (24 for each layer) and 15 are ELCOM-CAEDYM
input variables (meteo and mixers’ thrust). This number is still large and the most informative
subset can not be identified simply relying on physical considerations. For this reason, the feature
ranking algorithm based on Extra-Trees (see Section 3.2) was employed. Following Geurts et

al. [2006], K and nmin were posed equal to 87 and 5 respectively, while for M a value of 100
was adopted. As for the output to be considered when running the ranking algorithm, we did not
consider Mn2+,B

t , but ΔMn2+,B
t , defined as Mn2+,B

t −Mn2+,B
t−1 , to account for the high inertia

characterizing the system’s dynamics. In order to select the most informative variables, different
criteria can be adopted to analyze the ranking results, e.g. choosing the variables ranked in the
first p positions (with p equal to a pre-defined value), selecting the variables contributing to reach
a (pre-defined) cumulated explained variance or the variables giving an individual score larger
than a (pre-defined) value. In the present application the last criterion was adopted, employing a
threshold on the individual score equal to 4 %.
The ranking of the variables giving a contribution larger than 4 % is reported in Table 1. The
dynamics of ΔMn2+,B

t is mainly dominated by the concentration of iron (positive ion 3+) in the
benthic layer (Fe3+,B

t−1 ), the concentration of Manganese itself (Mn2+,B
t−1 ) in the benthic layer,

the euphotic temperature (TE
t−1), the solar radiation (sol. rad.) and the release from the dam

for environmental protection (env. flow.). Among these variables (and a part from the auto-
regressive term Mn2+,B

t−1 ) Fe3+,B
t−1 and TE

t−1 are ELCOM-CAEDYM state variables (bold symbols
in Table 1), whose dynamics must thus be described. The ranking algorithm must thus be re-
applied assuming as new output variables ΔFe3+,B

t and ΔTE
t . The ranking of the variables

with a contribution larger than 4 % in describing ΔFe3+,B
t and ΔTE

t behavior is shown in Table
2 (first two panels): the former variable, a part from the auto-regressive term, depends on the
concentration of iron (positive ion 2+) in the benthic layer (Fe2+,B

t−1 ) and the temperature in the
euphotic and middle layer (TE

t−1, TM
t−1). This result requires to describe also the dynamics of

ΔFe2+,B
t and ΔTM

t . As for ΔTE
t , it depends on many ELCOM-CAEDYM input variables and

on Fe2+,B
t−1 and Mn2+,B

t−1 . The ranking of ΔFe2+,B
t and ΔTM

t (see the two lower panels of Table
2) permits to close the ranking exercise, since both ΔFe2+,B

t and ΔTM
t depend on ELCOM-

CAEDYM input variables and on state variables whose dynamics was already accounted during
the previous ranking runs. At the end of this Step, 5 state variables and 8 input variables from the
initial subset of 87 ELCOM-CAEDYM input/state variables were thus selected.

5.3 Model calibration and validation

To give consistency to the emulation modelling procedure, an ensemble of Extra-Trees was se-
lected to model ΔMn2+,B

t , ΔFe3+,B
t , ΔFe2+,B

t , ΔTE
t and ΔTM

t . As for the Extra-Trees pa-
rameters, the same setting adopted during the ranking was adopted (M = 100, nmin = 5, K =
number of input). As for the input variables to the five Extra-Trees to be calibrated, the results ob-
tained at the previous Step were slightly modified, on the basis of physical considerations, in order
to avoid the presence of circular dependencies (e.g. ΔTE

t depends on Mn2+,B
t−1 and ΔMn2+,B

t

depends on TE
t−1). The final structure of the model is thus a cascade of emulation models (see Eqs.

(3) that was calibrated and validated with a k-fold cross-validation (with k = 10) by employing
the 10 different simulations produced at Steps 1 and 2 (see Section 5.1).

T̂E
t = TE

t−1 + Δ̂T
E

t (sol. rad., wind speed, wind dir., month, Qinfl, Tinfl) (3a)
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Table 2: ELCOM-CAEDYM input and state variables giving a contribution larger than 4% in
explaining ΔFe3+,B

t , ΔTE
t , ΔFe2+,B

t , ΔTM
t behavior.

variable Fe3+,B
t−1 Fe2+,B

t−1 TM
t−1 TE

t−1

u. of meas. [mg/L] [mg/L] [°C] [°C]
ind. score 22.4 % 7.42 % 5.67 % 4.36 %

variable sol. rad. Fe2+,B
t−1 wind speed Mn2+,B

t−1 wind dir. month Qinfl Tinfl
u. of meas. [W/m2] [mg/L] [m/s] [mg/L] [°] [-] [m3/s] [°C]
ind. score 9.37 % 8.71 % 7.52 % 6.95 % 5.38 % 4.91 % 4.73 % 4.12 %

variable Fe3+,B
t−1 Mn2+,B

t−1 Fe2+,B
t−1 TM

t−1 TE
t−1

u. of meas. [mg/L] [mg/L [mg/L [°C] [°C]
ind. score 29.30 % 9.66 % 8.45 % 6.02 % 5.19 %

variable Fe2+,B
t−1 Mn2+,B

t−1 mixer month wind speed wind dir. sol. rad.
u. of meas. [mg/L] [mg/L] kW/h [-] [m/s] [°C] [w/m2]
ind. score 15.60 % 11.70 % 4.91 % 4.66 % 4.11 % 4.09 % 4.04 %

T̂M
t = TM

t−1 + Δ̂T
M

t (mixer, month, wind speed, wind dir., sol. rad.) (3b)

F̂ e
2+,B

t = Fe2+,B
t−1 + ˆΔFe

2+,B

t (Fe2+,B
t−1 , TM

t , TE
t ) (3c)

F̂ e
3+,B

t = Fe3+,B
t−1 + ˆΔFe

3+,B

t (Fe3+,B
t−1 , Fe2+,B

t−1 , TM
t , TE

t ) (3d)

M̂n
2+,B

t = Mn2+,B
t−1 + ˆΔMn

2+,B

t (Fe3+,B
t−1 , Mn2+,B

t−1 , TE
t , sol. rad., env. flow) (3e)

The whole model shows good performances both in one-step ahead prediction and simulation (see
Fig. 1), with a coefficient of determination R2 equal to 0.998 in prediction and 0.904 in simulation
for Mn2+,B

t .
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Figure 1: A specimen of the trajectories for the Manganese concentration in the benthic area
Mn2+,B

t computed by ELCOM-CAEDYM (solid line) and the emulation model (one-step ahead
prediction, dashed line). The figure also reports the coefficient of determination R2 [-] in one-step
ahead prediction and simulation (10-fold cross-validation) for the five state models of Eqs. (3).
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6 CONCLUSIONS

The paper presents a four step procedure for the identification of a dynamic emulation model to
reduce the complexity of process-based, distributed, dynamic models commonly adopted to de-
scribe the quality conditions of water bodies. The procedure, which relies on a feature ranking
algorithm for the selection of the most informative variables, is tested on a real-world case study,
namely to predict/simulate the Manganese concentration in Googong reservoir (Australia). The
emulation model performances are quite satisfactory, and the complexity reduction with respect
to the original model (ELCOM-CAEDYM) is remarkable (from 1.42 milion to 5 state variables).
This suggests the approach can be successfully applied to any environmental management prob-
lem involving large process-based models, for which ’what-if’ analysis over a very small number
of alternative decisions was the only feasible way of supporting decision-making.
Further research will concentrate on the development of a more rigorous DOE on a larger data-set,
on the analysis of the different criteria available to manage the ranking algorithm results and on
a more accurate analysis of the circular dependencies identified by the ranking algorithm. Re-
search effort will finally be devoted to very scope of this emulation modelling exercise, namely
the design of an optimal control policy for the mixers.
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