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ABSTRACT

BIOLOGICALLY RELEVANT MULTIPLE SEQUENCE

ALIGNMENT

Hyrum D. Carroll

Department of Computer Science

Doctor of Philosophy

Researchers use multiple sequence alignment algorithms to detect conserved

regions in genetic sequences and to identify drug docking sites for drug development.

In this dissertation, a novel algorithm is presented for using physicochemical proper-

ties to increase the accuracy of multiple sequence alignments. Secondary structures

are also incorporated in the evaluation function. Additionally, the location of the sec-

ondary structures is assimilated into the function. Multiple properties are combined

with weights, determined from prediction accuracies of protein secondary structures

using artificial neural networks.

A new metric, the PPD Score is developed, that captures the average change in

physicochemical properties. Using the physicochemical properties and the secondary

structures for multiple sequence alignment results in alignments that are more accu-

rate, biologically relevant and useful for drug development and other medical uses.



In addition to a novel multiple sequence alignment algorithm, we also propose

a new protein-coding DNA reference alignment database. This database is a collection

of multiple sequence alignment data sets derived from tertiary structural alignments.

The primary purpose of the database is to benchmark new and existing multiple

sequence alignment algorithms with DNA data. The first known comparative study

of protein-coding DNA alignment accuracies is also included in this work.
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Chapter 1

Introduction

The central dogma of biology hypothesizes that DNA is converted to RNA,

which is processed by the ribosome to create proteins that interact to create the phys-

ical features of an organism (see Figure 1.1). Changes happen randomly throughout

the DNA of an organism. Mutations that occur in unimportant regions remain, but

changes to the parts of DNA that create the active regions of a protein can cause the

organism to die and keep the mutations from being passed on to descendants of the

organism. When researchers find an area of DNA that is very similar (or conserved)

for distantly related organisms, then there is a reason to believe that this region is

important to the survival of the organism, or it would have had random mutations in

that region.

Multiple sequence alignments are useful for many areas in Bioinformatics.

They are used to predict the functional segments of a sequence (genes) and the areas of

a protein under selective pressures (Woolley et al., 2003). MSAs are also the primary

input for reconstructing phylogenetic trees, or phylogenies. Phylogenies hierarchically

relate evolutionary events and are used in diverse areas of research (e.g., epidemiology

(Clark et al., 1998; Sing et al., 1992), viral transmission (Crandall, 1996; Herring et al.,

2007), biogeography (DeSalle, 1995) and evolutionary studies (Whiting et al., 2003)).

For each of these areas, the alignment is used as a foundation and the accuracy of

further analysis is directly correlated with the quality of the alignment.

1



DNA

mRNA

Protein

Transcription

Translation

Figure 1.1: The Central Dogma of biology states that DNA is transcribed into RNA,
which is translated in proteins.

Researchers also use MSAs to predict the location of a drug docking site.

The conserved columns (or regions) identify locations on the sequences that have the

least amount of change. These areas are projected onto the tertiary structure1 of a

protein to predict potential drug docking sites (see Figure 1.2). Biologists use this

information to develop new drugs to inhibit the protein from interacting within a

biological pathway. This process has lead to drugs to treat glaucoma, inhibit COX-2

and a treatment for HIV-1.

Many Bioinformatics studies begin use a multiple sequence alignment (MSA)

as the foundation for their research. MSAs are a set of genetic sequences and their

1The tertiary structure of a protein is the three dimensional position of each of its atoms in space

2



1BINA PKLTGHAEKLFALVRDSAGQLKASGTVVADaal---GSVHAQ

1LH1 PELQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVS

1ECD APFETHANRIVGFFSKIIGELP---ni--EADVNTFVASHKP

1HLB RQMQAHAIRVSSIMSEYVEELDS-dil--PELLATLARTHDL

2LHB ADVRWHAERIINAVDDAVASMDdtekm--SMKLRNLSGKHAK

1EMY EDLKKQGVTVLTALGGILKKKG---hh--EAEIQPLAQSHAT

1LHT EEVKKHGTTVLTALGRILKQKN---nh--EQELKPLAESHAT

1HDAA AQVKGHGAKVAAALTKAVEHLD---dl--PGALSELSDLHAH

1HDAB PKVKAHGKKVLDSFSNGMKHLD---dl--KGTFAALSELHCD

1FDHG PKVKAHGKKVLTSLGDAIKHLD---dl--KGTFAQLSELHCD

1HBHB ANVAAHGIKVLHGLDRGVKNMD---ni--AATYADLSTLHSE

1A4FA AQIKAHGKKVVAALVEAVNHID---di--AGALSKLSDLHAQ

1A4FB PMVRAHGKKVLTSFGDAVKNLD---ni--KNTFAQLSELHCD

1BINA PKLTGHAEKLFALVRDSAGQLKASGTVVADaal---GSVHAQ

1ECD APFETHANRIVGFFSKIIGELP---ni--EADVNTFVASHKP

2LHB ADVRWHAERIINAVDDAVASMDdtekm--SMKLRNLSGKHAK

1EMY EDLKKQGVTVLTALGGILKKKG---hh--EAEIQPLAQSHAT

1HDAA AQVKGHGAKVAAALTKAVEHLD---dl--PGALSELSDLHAH

1FDHG PKVKAHGKKVLTSLGDAIKHLD---dl--KGTFAQLSELHCD

1A4FA AQIKAHGKKVVAALVEAVNHID---di--AGALSKLSDLHAQ

Figure 1.1: Hemoglobin (1A4FA) protein with highlighted conserved regions deter-
mined by ChemAlign. The regions are near a possible drug docking site. ChemAlign
is able to find both regions, whereas other algorithms are only able to find the one of
the left.

Second, many algorithms assume changes in sequence characters are paramount. In
medical applications, changes in physicochemical properties are more important.

... Researchers rely on alignments to identify motifs and to determine drug
compounds that could interfere with the function of this kind of pattern. Alignments
with higher accuracies can result in better identification of drug targets.

1.1 Multiple Sequence Alignment

MSAs are formally defined as a set S of n genetic sequences of lengths l1, . . . ln defined
over the alphabet

∑
DNA = {a,c,g,t} (nucleotides) for DNA. For amino acids

∑
AA =

{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. For codons, the alphabet is all combinations
of three nucleotides, namely

∑
Codons = {aaa,aac,aag,aat,aca, ...,ttt}. A multiple

sequence alignment of S is a set A of n genetic sequences defined over the alphabet∑ ∪ {-}, all of length m, where m ≥ n. The character -, a gap, represents an insertion
or deletion (indel) caused by mutations. After accurately inserting gaps, all of the
characters in a column are homologous1.

Initially, alignment algorithms focused on aligning two genetic sequences.
Needleman and Wunsch developed the classic dynamic programming algorithm that
calculates an optimal alignment for a pair of sequences (Needleman and Wunsch,
1970). While MSA algorithms exist that return optimal multiple sequence align-
ments using an n-dimensional extension of the Needleman-Wunsch algorithm (Lip-
man et al., 1989), they are limited to all but the smallest data sets since the problem
is NP-Complete (Wang and Jiang, 1994; Kececioglu and Starrett, 2004). There-
fore, heuristic methods are used to calculate alignments. The progressive multiple
sequence alignment method (PMSA) (Feng and Doolittle, 1987; Corpet et al., 1988;

1Homologous characters share a common ancestry
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Needleman and Wunsch developed the classic dynamic programming algorithm that
calculates an optimal alignment for a pair of sequences (Needleman and Wunsch,
1970). While MSA algorithms exist that return optimal multiple sequence align-
ments using an n-dimensional extension of the Needleman-Wunsch algorithm (Lip-
man et al., 1989), they are limited to all but the smallest data sets since the problem
is NP-Complete (Wang and Jiang, 1994; Kececioglu and Starrett, 2004). There-
fore, heuristic methods are used to calculate alignments. The progressive multiple
sequence alignment method (PMSA) (Feng and Doolittle, 1987; Corpet et al., 1988;

1Homologous characters share a common ancestry

2

Figure 1.1: Hemoglobin (1A4FA) protein with highlighted conserved regions deter-
mined by ChemAlign. The regions are near a possible drug docking site. ChemAlign
is able to find both regions, whereas other algorithms are only able to find the one of
the left.

6

Figure 1.2: Example of using an alignment to identify potential drug docking sites.
The first column lists the PDB ID of each of the sequences. The protein shown is
hemoglobin (PDB ID 1A4FA). The most conserved columns are highlighted on both
the ChemAlign alignment and the protein. The regions are at a possible drug docking
site. ChemAlign is able to find both regions, whereas other MSA algorithms are only
able to find the one of the left.

evolutionary relationship with each other. Existing MSA algorithms have the follow-

ing three main deficiencies:

1. Optimization for sequence similarity

2. Ignoring secondary structure information

3. Static comparison of sequences

The first limitation of current MSA algorithms is that their optimization criteria

focuses exclusively on sequence similarity. Although algorithms for calculating align-

ments that minimize changes in genetic characters are easier to develop and are com-

monplace, biologically accurate alignments minimize the change in physicochemical

properties of the amino acids (e.g., hydropathy, polarity and volume) (see section 1.4).

Second, most MSA algorithms ignore additional contextual information, such as pro-

tein secondary structures (α-helices, β-strands and loops) (see section 1.5). Secondary

structure has long been understood to be more conserved than the primary amino

acid sequence. This has been verified through a number of different experiments and

reports (Gibrat et al., 1996; Rost, 1999; Sander and Schneider, 1991). This more
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resilient information can provide a unique component to the sequence similarity cri-

teria. The third weakness of most current MSA approaches is that they treat every

position in the sequence as the “average” position. This shortcoming is eloquently

stated by Thorne et al. (1996):

A problem with the Dayhoff approach is that it effectively models the

replacement process at the “average” site in the “average” protein. There

may be no such thing as an “average” site in an “average” protein.

Although explicitly citing the Dayhoff et al. (1978) approach, this limitation gener-

alizes to the vast majority of MSA algorithms. Biologically meaningful relationships

between sequences depend on the location of the amino acid in the protein. These

three drawbacks lead current MSA algorithms to produce inferior alignments.

1.1 Thesis Statement

A multiple sequence alignment algorithm that optimizes for different physicochemical

properties in each secondary structure can create alignments with better scores, that

are more biologically relevant. A new MSA algorithm, ChemAlign, addresses the three

main limitations of existing methods, producing accurate alignments that identify

more biologically relevant features. First, it incorporates physicochemical properties

of the amino acids (e.g., hydropathy, polarity and volume). It uses these properties

as an integral part of the optimization criteria. Evaluating similarity based on these

properties incorporates more information and models the criteria that nature uses.

Second, ChemAlign explicitly combines secondary structure elements into the evalu-

ation function. Incorporating this additional information aligns the secondary struc-

tures, which are typically more conserved than the amino acids themselves. Third,

ChemAlign adjusts its evaluation function by calculating the relationship between the

amino acids differently, based on their secondary structure. This increases specificity

4



of the function and provides a dynamic comparison of the sequences. ChemAlign

integrates these three pieces of information to produce biologically accurate multiple

sequence alignments.

Data sets with very low percent identity are particularly difficult for current

MSA methods. These data sets are one of the best sources for finding drug docking

sites since they contain distantly related species and therefore conserved columns

are more obvious. The globin family is a good example of this. Due to its low

average percent identity of 25.9%, the globin family remains difficult for existing

methods to accurately align. Current algorithms align at most 38.4% of the positions

correctly. Using a physicochemical property, ChemAlign correctly aligns 90.6% of the

positions. Figure 1.2 shows part of a ChemAlign alignment of the globin domains

and a hemoglobin protein. Conserved columns are marked on the alignment and the

protein, and appear at a possible drug docking site. ChemAlign is able to find both

regions, whereas other algorithms do not.

1.2 Pairwise Sequence Alignment

Initially, alignment algorithms focused on aligning two genetic sequences. Let

g1 and g2 be genetic sequences of length l1 and l2, defined over the alpha-

bet
∑
DNA = {a,c,g,t} (nucleotides) for DNA and for amino acids

∑
AA =

{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. A pairwise alignment of g1 and g2 is the set

of sequences g′1 and g′2 defined over the alphabet
∑
DNA ∪ {-} or

∑
AA ∪ {-}. The

character ’-’, a gap, represents an insertion or deletion (indel) caused by mutations.

Furthermore, the length of g′1 and g′2 is m, where m ≥ l1 and m ≥ l2. After ac-

curately inserting gaps, columns with a high-degree of similarity indicate functional

importance for that part of the protein.

Needleman and Wunsch (1970) developed the classic dynamic programming

algorithm that calculates the optimal alignment for a pair of sequences. Their al-
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K E D L K K Q G V

0.0 -10.0 -10.2 -10.4 -10.6 -10.8 -11.0 -11.2 -11.4 -11.6
K -10.0 5.0 -5.0 -5.2 -5.4 -5.6 -5.8 -10.0 -13.2 -13.4
A -10.2 -5.0 4.0 -6.0 -6.2 -6.4 -6.6 -6.8 -10.0 -13.2
H -10.4 -5.2 -5.0 3.0 -7.0 -7.2 -7.4 -6.6 -8.8 -13.0
G -10.6 -5.4 -7.2 -6.0 -1.0 -9.0 -9.2 -9.4 -0.6 -10.6
K -10.8 -5.6 -4.4 -8.2 -8.0 4.0 -4.0 -8.2 -10.6 -2.6

(a)

KEDLKKQGV

KA----HGK
(b)

Figure 1.2: (a) Example Needleman-Wunsch matrix. The evaulation critera for
(mis)matches is the BLOSUM62 matrix. The gap open penalty is -10.0. (b) Example
pairwise alignment using the Needleman-Wunsch matrix. The alignment corresponds
with the optimal traversal of the matrix.

curately inserting gaps, columns with a high-degree of similarity indicate functional

importance for that part of the protein.

Needleman and Wunsch (1970) developed the classic dynamic programming

algorithm that calculates the optimal alignment for a pair of sequences. Their al-

gorithm determines, for every position of every possible combination of gaps, the

maximum score between 1) inserting a gap in the first sequence 2) inserting a gap

into the second sequence and 3) aligning the two characters. Figure 1.2(a) illustrates

a completed Needleman-Wunsch matrix for the sequences KAHGK and KEDLKKQGV. The

evaluation criteria for (mis)matches is the BLOSUM62 (Henikoff and Henikoff, 1992)

matrix. The gap open penalty is -10.0. Using these parameters yields the alignment

shown in Figure 1.2(b).

1.2 Multiple Sequence Alignment

The natural extension of pairwise alignment algorithms are multiple sequence align-

ment algorithms. Let S be a set of genetic sequences g1, . . . gn of lengths l1, . . . ln

defined over the alphabet
∑

DNA or
∑

AA. A multiple sequence alignment of S is

4

(a)

KEDLKKQGV

K----AHGK
(b)

Figure 1.3: (a) Example Needleman-Wunsch matrix. The evaulation critera for
(mis)matches is the BLOSUM62 matrix. The gap open penalty is -10.0 and the
gap extension penalty is -0.2. The optimal traversal is highlighted. (b) Example
pairwise alignment corresponding with an optimal traversal.

gorithm determines, for every position of every possible combination of gaps, the

maximum score between 1) inserting a gap in the first sequence 2) inserting a gap

into the second sequence and 3) aligning the two characters. Figure 1.3(a) illustrates

a completed Needleman-Wunsch matrix for the sequences KAHGK and KEDLKKQGV. The

evaluation criteria for (mis)matches is the BLOSUM62 (Henikoff and Henikoff, 1992)

matrix. The gap open penalty is -10.0. Using these parameters yields the alignment

shown in Figure 1.3(b).

1.3 Multiple Sequence Alignment

The natural extension of pairwise alignment algorithms are multiple sequence align-

ment algorithms. Let S be a set of genetic sequences g1, . . . gn of lengths l1, . . . ln

defined over the alphabet
∑
DNA or

∑
AA. A multiple sequence alignment of S is

formally defined as a set S ′ of sequences g′1, . . . g
′
n all of length m, defined over the

alphabet
∑
DNA ∪ {-} or

∑
AA ∪ {-}. Finally, ∀i (m ≥ li).

6



MSA algorithms exist that return optimal alignments using an n-dimensional

extension of the Needleman-Wunsch method (Kececioglu and Starrett, 2004; Lipman

et al., 1989). However, they are limited to all but the smallest data sets since the

problem is NP-Complete (Kececioglu and Starrett, 2004; Wang and Jiang, 1994).

Therefore, heuristic methods are used to calculate alignments.

1.3.1 Metrics

Central to algorithmic development of MSA algorithms are evaluation metrics. This

section describes the most commonly employed metrics used to evaluate MSAs. They

are presented in part to aid in explaining the MSA algorithms themselves in the

following chapter.

Self Sum Of Pairs

One of the earliest metrics of MSA is the self sum of pairs (Carrillo and Lipman,

1988). The self sum of pairs score for an alignment is the percentage of pairs of

characters that match:

self sum of pairs =
2

n2 − 1

n∑
i

n∑
j 6=i

m∑
k

δ(gi(k), gj(k)) (1.1)

δ(x, y) =


1 x = y

0 x 6= y
(1.2)

Unfortunately, such a simple scoring metric does not necessarily reflect biological

accuracy.

Reference Sum Of Pairs Score

Recently, researchers created several reference amino acid databases (Edgar, 2004b;

Letunic et al., 2004; Mizuguchi et al., 1998; Raghava et al., 2003; Subramanian et al.,
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2005; Thompson et al., 2005; Van Walle et al., 2005). Most of these databases leverage

secondary and tertiary structural alignments to provide a suite of “gold standard”

alignments. Calculated alignments are evaluated by comparing against them. They

have been well accepted by the scientific community and used in numerous studies

to compare the quality of amino acid alignments generated by MSA algorithms (Do

et al., 2005; Edgar, 2004a,b; Karplus and Hu, 2001; Lassmann and Sonnhammer,

2002, 2005a; Thompson et al., 1999b; Van Walle, 2004). These amino acid alignment

benchmarks are limited to the evaluation of amino acid alignment algorithms.

One of the most commonly applied metrics for multiple sequence alignment

algorithms is the reference sum of pairs score. It is calculated in a similar manner

to the self sum of pairs score, except that each position of a calculated alignment is

compared to the corresponding position in a reference alignment. Let r1, . . . rn be a

sequences of a reference alignment, each of length p. Let q = min(m, p).

reference sum of pairs =
1

nq

n∑
i

q∑
k

δ(gi(k), ri(k)) (1.3)

This metric is generally preferred to the self sum of pairs score since it evaluates how

close an alignment is to the “gold standard” alignment.

Column Score

Another often used metric is the column score (Karplus and Hu, 2001). The column

score is more conservative than the reference sum of pairs score in that it is the

percentage of columns of a calculated alignment that completely match a reference

alignment. Let gi(k) be the kth genetic character of the ith sequence:

column score =
1

q

q∑
k

σ(k)
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σ(k) =


1

0

∀t (gt(k) = rt(k))

otherwise

Physicochemical Properties Difference Score

In addition to existing MSA metrics, the Physicochemical Properties Difference

(PPD) score is presented in this dissertation. The score is calculated as follows for a

single physicochemical property p:

PPD score =
1

nq

n∑
i

q∑
k

Dp
si(k),ri(k)

(1.4)

Dp
i,j = 1− 2 ∗ |p[i]− p[j]|

argmaxx(p[x])− argminy(p[y])
(1.5)

Here, p[i] is the value of p for amino acid i. Dp is the normalized difference matrix of

p. The values of Dp range from -1.0 for the most dissimilar pair of amino acids to 1.0

for identical amino acids. PPD scores range from -1.0 to 1.0. In general, a negative

PPD score means that the average amino acid pairing in an alignment is worse than

the average difference in the physicochemical property values. A score of 1.0 means

the calculated alignment is the same as the reference alignment. This score takes a

step beyond sequence similarity and measures characteristics of the amino acids to

provide a more biologically relevant metric. It can be adapted to account for multiple

physicochemical properties by incorporating multiple Dp matrices into a single matrix

with weights.

1.4 Physicochemical Properties

Several researchers are using the structural and biochemical characteristics of the 20

amino acids (Goldman and Yang, 1994; McClellan et al., 2005; Xia and Li, 1998).

9



BLOSUM62
seq1: -Y

seq2: FG
(a)

Hydropathy
seq1: Y-

seq2: FG
(b)

Figure 1.4: Example amino acid alignments using BLOSUM62 (a) and hydropathy
(b) for the evaluation function. The hydropathy alignment detects that tyrosine (Y)
and phenylalanine (F) are more similar than Y and glycine (G) and therefore should
be aligned together.

These physicochemical properties, such as hydropathy (Kyte and Doolittle, 1982),

polarity (Grantham, 1974) and volume (Bigelow, 1967), better represent the molecu-

lar forces impacting the system. The genetic code seems to have evolved to minimize

differences in physicochemical properties (Xia and Li, 1998) and consequently, re-

searchers have been quantifying properties for amino acids. Repositories, such as

AAindex: Amino Acid Index Database (Kawashima et al., 1999, 2008; Tomii and

Kanehisa, 1996), catalog such properties.

The value of using physicochemical properties for multiple sequence alignment

is illustrated in the following example. Consider the alignment of a single tyrosine (Y)

with either a phenylalanine (F) or glycine (G). Using the BLOSUM62 substitution

matrix for the evaluation function yields the alignment shown in Figure 1.4(a). The

evaluation function returns a cost of -1.0 for changing from a Y to a F and 3.0 for Y to

G (higher values denotes more similar). On the other hand, using hydropathy for the

function detects that Y and F are more similar than Y and G and should be aligned

together (see Figure 1.4(b)). The hydropathy alignment is therefore preferred to the

BLOSUM62 alignment, especially for segments of the sequences that are known to

conserve this property (e.g., on the exterior of a protein). Although this example

deals with only a few residues, similar evaluations are often made thousands of times

to calculate an alignment. At other locations in the protein, another physicochemi-

cal property could be more important. A biologically accurate alignment algorithm

weights the properties based on the their location in the structure.
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β-strands loops α-helices

AVHEVEVVIKAA NQDEGKPRS AQIKAHGKKVV

KISMLDKIYITA DEGK EDLKKQGVTVL

Figure 1.5: Amino acid alignment example of the three protein secondary structures
elements. Each sequence has a β-strand, a loop (indicated with a solid thick line)
and then an α-helix. Regions marked by the dotted lines should be aligned together.

1.5 Protein Secondary Structures Elements

Protein secondary structures elements (SSEs) are contiguous strings of α-helices, β-

strands or loops. They are usually determined by the hydrogen bonds of the amino

acids (the primary structure) using the DSSP definitions (Kabsch and Sander, 1983).

Therefore, each amino acid has an accompanying SSE. Figure 1.5 illustrates the three

SSEs and how they can be used to aid alignments of amino acids. In the figure, dotted

lines indicate regions that should be aligned together by inserting gaps.

1.6 Contributions

The main contribution of this work is a new multiple sequence alignment algorithm,

ChemAlign, that incorporates three novel pieces of information: physicochemical

properties, protein secondary structures and the location of the secondary structures.

This algorithm achieves accuracies higher than existing MSA algorithms for some

of the most difficult reference alignments benchmarks. Furthermore, the alignments

have been shown to be more biologically relevant.
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Additionally, a novel MSA metric, the Physicochemical Properties Difference

score is included in this work. This score measures the amount of similarity of one

or more physicochemical properties in an alignment. It provides a more biologically

accurate perspective than existing metrics.

Furthermore, this work also introduces a protein-coding DNA reference align-

ment database (Carroll et al., 2007). This database is a collection of 3,545 MSA data

sets derived mostly from tertiary structure alignments. Its primary purpose is to

quantitatively benchmark the accuracy of several MSA algorithms using DNA data.

The first known performance analysis of these DNA databases is included.

In summary, the main contributions of this work include the following:

• A novel algorithm that incorporates physicochemical properties to produce

biologically relevant multiple sequence alignments

• Developing an evaluation function for multiple sequence alignments that

includes secondary structures (both the structures themselves and their

location)

• A biologically sensitive multiple sequence alignment metric, the Physico-

chemical Properties Difference score

• Reference protein-coding DNA multiple sequence alignment databases

• First known performance analysis of alignment accuracies for protein-

coding DNA

1.7 Dissertation Outline

The remainder of the dissertation is as follows. Chapter 2 covers related work, detail-

ing multiple sequence alignment algorithms and physicochemical properties. Chapters

3–5 are journal papers that are detailed below. Finally, concluding remarks are given

in Chapter 6.
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Chapter 3 is the journal paper, DNA Reference Alignment Benchmarks Based

on Tertiary Structure of Encoded Proteins. Oxford University Press published it

on August 8, 2007 in the 23rd volume, 19th issue of Bioinformatics. This journal

enjoys an impact factor of 5.039. This work has already been cited by at least eight

different papers (Agrawal and Huang, 2008; Hall, 2007, 2008a,b; Katoh and Toh,

2008; Sundberg et al., 2007, 2008; Wilm et al., 2008).

The first part of this paper introduces the reference protein-coding DNA align-

ment benchmarks. It briefly explains how they are derived from reference protein

alignment databases. Statistics of the quality of the conversion are also given. These

databases are extremely useful in evaluating the quality of DNA alignments gener-

ated by existing and forthcoming MSA techniques since there are no known equivalent

benchmarks.

The second part of the paper is the published Supplementary Material and

appears directly after the main paper. It is the first known performance comparison of

alignment algorithms for both amino acids and DNA. Eight of the most common MSA

algorithms are benchmarked and ranked according to their accuracy and execution

time. The case study reveals two general points about the accuracy ranks. First,

the amino acid benchmarks generally have higher accuracy scores than the DNA

benchmarks. Second, and more importantly, the results show that certain algorithms

that achieve high accuracy scores on amino acid sequences tend to have low ranks

for DNA sequences. This is important new information for biologist using existing

algorithms to align protein-coding DNA.

Chapter 4 is the journal paper, ChemAlign: Biologically Relevant Multiple

Sequence Alignment Using Physicochemical Properties, submitted to Bioinformatics.

This paper introduces ChemAlign and details how it incorporates a physicochemical

property, secondary structures and their location to produce biologically accurate

alignments. Additionally, an in-depth analysis of alignments of the globin domain
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is presented, including using them for predicting drug docking sites. Moreover, the

PPD score is introduced and included in analysis of ChemAlign.

Using a single physicochemical property, ChemAlign calculates alignments

that are as high as 499.3% more accurate than other methods. Additionally,

ChemAlign earns the highest PPD scores. These higher accuracies translate into

more biologically correct alignments, as is shown with an example of identifying

potential drug docking sites. The improvements in accuracies of ChemAlign over

existing methods using these two metrics are statistically significant according to the

Friedman rank test, with p-values � 0.001.

Chapter 5 is the journal paper, Relative Importance of Physicochemical Prop-

erties of Amino Acids for Multiple Sequence Alignment, submitted to Nucleic Acids

Research. This paper details extending the evaluation function of ChemAlign to

incorporate multiple physicochemical properties to increase accuracy of generated

alignments. Several properties are combined using an exponentially decaying func-

tion. The weights for each property are based on the accuracies of artificial neural

networks trained to predict protein secondary structures using that property. The

specificity of the evaluation function is further increased by allowing gap penalties to

be set for each of the different secondary structures.

The accuracies of the alignments are evaluated on thirteen of the largest ref-

erence amino acid data sets. The improved version of ChemAlign performs as well

as 121.3% better on average across these data sets than other methods, and 15.8%

better than the original ChemAlign. Additionally, ChemAlign achieves the highest

average PPD score. It earns scores between a score as high as 105.3% better than

the other methods, average across several reference data set. Again, the differences

in these scores are statistically significant with a p-value � 0.001.

14



Chapter 2

Related Work

Researchers use multiple sequence alignment algorithms to detect conserved

regions in genetic sequences, which are used to identify drug docking sites for drug

development. While the base algorithms in the field have been known for decades,

there has been a continually increasing interest in development of better algorithms.

Initially, pairwise alignment algorithms were developed. A heuristic of one of these

algorithms is one of the most widely used tools in Bioinformatics (Altschul et al.,

1990). More recently, several new multiple sequence alignment algorithms have been

proposed. In this chapter, they are detailed and their accuracies are compared. Ad-

ditionally, a review of research incorporating phylogenetic properties of amino acids

is presented The algorithms detailed in this chapter are characterized according to

major algorithmic classifications in Table 3.3. The table references local and global

alignments. A local alignment of two sequences is the alignment of a contiguous

segment of each of the sequences, where the length is shorter than the longest se-

quence. Smith and Waterman (1981) presented the classic local alignment variant of

the Needleman-Wunsch method (see section 1.2). Their approach is different in that

negative cell values are replaced with zeros and the highest scoring local alignment

is chosen. Alternatively, global alignments include all of the characters from both

sequences.
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Table 2.1: Categorization of Sequence Alignment Algorithms

Algorithm Pairwise/MSA Progressive Iterative Global Local

ClustalW MSA X X
DIALIGN MSA X X
Kalign MSA X X
MAFFT-GINSI MSA X X X
MAFFT-LINSI MSA X X X
MAFFT-NS1 MSA X X
MAFFT-NSI MSA X X X
MUSCLE MSA X X X
T-Coffee MSA X X X
SAM1 MSA X
ProbCons1 MSA X X X
SAGA2 MSA X X
POY3 MSA X X X
Gonnet and Lisacek pairwise X
Gupta et al. pairwise X
Lüthy et al. pairwise X
PRALINE MSA X X X
Jennings et al. MSA X X
HSA4 MSA X X
PROMALS1 MSA X X

1Uses a hidden Markov model, 2Uses a genetic algorithm, 3Employs Optimization
Alignment, 4Graph-based approach

2.1 Progressive Multiple Sequence Alignment

The majority of MSA algorithms can be classified into two areas: progressive

and/or iterative (see Table 3.3). The progressive multiple sequence alignment method

(PMSA) (Corpet et al., 1988; Feng and Doolittle, 1987, 1990) is one of the most

common heuristics to an n-dimensional Needleman-Wunsch. The algorithm has two

main phases. First, a distance matrix is calculated from similarity scores for every

pair of sequences. Often the Wilbur and Lipman algorithm (Wilbur and Lipman,

1984) is used to calculate the scores. These similarity scores are only very general

approximations, but work as a starting point (Wilbur and Lipman, 1984). The sim-

ilarity scores are hierarchically clustered together, usually with the UPGMA or the
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Neighbor-Joining algorithm (Saitou and Nei, 1987), thereby producing a guide tree.

The second phase consists of a recursive traversal of the guide tree, starting at the

root node. The base case of the traversal is a node that only contains two leaf nodes.

The sequences associated with those nodes have a higher sequence identity to each

other than to any other sequence, and are therefore aligned first. During the post-

order traversal phase of the recursion, an alignment of alignments is calculated until

all sequences are included in the alignment.

2.1.1 ClustalW

The most commonly used implementation of the PMSA algorithm is ClustalW

(Larkin et al., 2007; Thompson et al., 1994).

2.1.2 T-Coffee

T-Coffee (Notredame et al., 2000) is another MSA algorithm that uses the progres-

sive alignment approach with two distinguishing features. First, instead of ignoring

the global pairwise alignments produced in the first phase, T-Coffee uses a library

consisting of a combination of global and local pairwise alignments (see Figure 2.1) in

its progressive alignment phase. By default, the library is populated initially by both

global and local pairwise alignments (generated with ClustalW and Lalign (Pearson

and Lipman, 1988) respectively), and a weight is assigned to each pair of aligned

residues. The global and local alignments are merged into a primary library, giving

the pairs that match in both alignments a greater weight and creating new entries for

those pairs that do not match. T-Coffee extends the primary library by comparing

triplets of aligned residues with every entry in the library. Starting with version 2.00

of T-Coffee, if the tertiary structure is known for one or more sequences, then an

alignment generated using a 3D structural alignment algorithm (e.g., SAP (Taylor

and Orengo, 1989b), DALI (Holm and Sander, 1993) or Fugue (Shi et al., 2001)) can
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Figure 2.1: Flow chart for T-Coffee. Note, square boxes are procedures and rounded
boxes are data structures. Graphic from (Notredame et al., 2000).

be incorporated into the library. The second distinguishing feature of T-Coffee is that

it does not use gap penalties during the progressive phase. Instead, gap positions are

determined by considering the weights in the library for all of the possible pairs of

characters in the two sequences. Due to these features, T-Coffee has been shown to

give high accuracy scores on the amino acid benchmarks. Unfortunately, this comes

at a great cost in computational time, and alignments of large datasets with long

sequences is very time consuming.

2.1.3 Kalign

The initial step of pairwise alignment in the progressive alignment strategy is the most

computationally intensive. Many algorithms use the k-mer counting method to speed
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up the process of finding the initial distance scores, but this method is less accurate.

Kalign (Lassmann and Sonnhammer, 2005b) follows the progressive strategy but uses

the Wu-Manber string-matching algorithm (Wu and Manber, 1992) to find the initial

distance scores, which is faster than pairwise alignment and more accurate than k-mer

counting. In the Wu-Manber algorithm, two sequences have a distance score equal

to the number of mismatches or indels that can be applied to one sequence in order

for it to match the other. Matches are found by searching three residues at a time

along the sequences. These scores are used to produce the initial distance matrix

that the guide tree is created from. Traditional progressive alignment proceeds and

sequences are clustered according to the branch order of the guide tree. Kalign is

one of the fastest MSA algorithms and shows comparable accuracy to MAFFT and

MUSCLE on amino acid benchmarks (Carroll et al., 2007). Like DIALIGN, Kalign is

shown to be more accurate than many MSA methods on amino acid sequences with

low sequence identity.

2.2 Iterative Refinement of Multiple Sequence Alignments

Iterative refinement of the MSA algorithm has been around for a number of years

(Sankoff et al., 1976). While several of the most recently proposed algorithms build

upon a progressive approach with iterative refinement (see Table 3.3), DIALIGN just

uses iterative refinement.

2.2.1 DIALIGN

The MSA algorithm DIALIGN (Morgenstern, 1999; Morgenstern et al., 1998; Sub-

ramanian et al., 2005) builds an alignment from pairwise local alignments (see Fig-

ure 2.2). Initially, all pairwise local alignments are calculated. The algorithm does not

align segments of the sequences that are not statistically similar to other sequences

in the alignment. Next, a greedy set of the best scoring consistent local alignments is
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Fig. 1. Non-consistent and consistent collections of diagonals

(segment pairs). (A) and (B) represent non-consistent collections of

diagonals. In (A), the ‘F’ in the third sequence is assigned

simultaneously to two different residues of the first sequence. In (B),

there is a ‘cross-over’ assignment of residues. By contrast, (C) is a

consistent collection of diagonals. It is possible to introduce gaps

into the sequences such that residues connected by diagonals are in

the same column of the resulting alignment (D). Residues not

involved in any of the three diagonals are printed in lower-case

letters. They are not considered to be aligned.

cussed below, reflects in a rather direct way the basic prin-

ciples of sequence evolution as seen today. Here, we present

the algorithm in general terms and describe the implementa-

tion into a program called DIALIGN 1.0.

Algorithm 

The basic idea of our algorithm is to build sequence align-

ments by comparison of whole segments (i.e. uninterrupted

stretches of residues) of the sequences rather than by com-

parison of single residues. Accordingly, alignments are com-

posed from gap-free pairs of segments of equal length. Such

pairs of segments are referred to as diagonals since they

would form diagonals in a dot-matrix comparison of two se-

quences. Diagonals of various length are considered simulta-

neously and mismatches are allowed within diagonals.

A pairwise as well as a multiple alignment comprises a suit-

able collection of diagonals meeting a certain consistency cri-

terion [a mathematical definition of consistency is given in

Morgenstern et al. (1996)]. In short, a collection of diagonals

is called consistent if there is no conflicting double or cross-

over assignment of residues (see Figure 1). We assign a so-

called weight to every possible diagonal, and then try to find

a consistent collection of diagonals with maximal sum of

weights. Gaps are not considered in the calculation of the

alignment score. An optimal alignment, i.e. a collection of di-

agonals with maximum sum of weights, can be found by a

modification of the standard dynamic programming scheme

which is feasible at least for pairwise alignments.

The weight function for diagonals is based on probabilistic

considerations [for a mathematical definition, see Morgens-

tern et al. (1996)]. To reduce the ‘noise’ of small random

diagonals, a threshold T is used as a lower cut-off criterion

for diagonals to be taken into consideration, which can be

specified by the user.

Multiple alignments are constructed as follows. In a first

step, all optimal pairwise alignments are formed. The diag-

onals incorporated into these alignments are sorted (i) ac-

cording to their weight scores and (ii) according to the degree

of overlap with other diagonals in order to emphasize motifs

occurring in more than two sequences (so-called overlap

weights ). The resulting list of diagonals is then used to as-

semble a multiple alignment in a greedy manner: the diag-

onal with the highest weight is the first one to be selected for

the alignment. Then, the next diagonal from the list is

checked for consistency and added to the alignment if con-

sistent. The algorithm proceeds in this way until the whole

list of diagonals has been processed. Once a diagonal is se-

lected, it becomes part of the alignment and cannot be re-

moved at any later stage.

The process of performing pairwise alignments, sorting di-

agonals, and incorporating them greedily into a growing

multiple alignment is repeated iteratively until no additional

diagonals can be found. [A similar greedy approach was pro-

posed independently in Abdeddaïm (1997).]

In a final step, the program introduces gaps into the se-

quences until all residues connected by the selected diag-

onals are properly arranged. In the output, these residues are

printed in upper-case letters, whereas residues not involved

in any of the selected diagonals are printed in lower-case

letters. They are not considered to be aligned (see Figure

1D). If sequences are only locally related, DIALIGN does

not attempt to generate a global alignment of sequences and

will only align residues connected by selected diagonals.

Results 

To test our method and to compare it to other methods, we

have employed four different data sets: (i) a set of 30 helix–

turn–helix proteins used in Lawrence et al. (1993) as test ma-

terial for their Gibbs sampling method; (ii) a set of 16 acetyl-

transferase proteins as described in Neuwald et al. (1994);

(iii) a set of nine protein sequences of the basic helix–loop–

helix (bHLH) family of transcription factors as described by

Atchley and Fitch (1997) (accession numbers: P41894,

Q02575, P17106, A55438, U10638, P13902, Q04635,

U11444, A48085); (iv) a set of 12 RH proteins (McClure

et al., 1994).

→
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DIALIGN [14, 36, 37]

Initially, all pairwise local alignments

Only aligns statistically significant segments

Greedily builds set of consistent local alignments

Iterates to find more local alignments

Research Area Exam Codon Sequence Alignment w/ Physicochemical Properties

Figure 2.2: Example DIALIGN alignment using pairwise local alignments. Graphic
from (Morgenstern et al., 1998).

determined from the initial alignments. Iterations of these two steps continue until all

local alignments are found. If the sequences only share local segments of similarity,

the algorithm returns a local alignment with the unrelated segments untouched. In

this way, DIALIGN can accurately align sequences with different degrees of similarity

separated by unrelated sequences. Otherwise, DIALIGN finds local alignments that

cover the entire length of the sequences and returns a global alignment. DIALIGN has

been shown to be more accurate than T-Coffee in aligning amino acid sequences with

low identity, but it is generally less accurate than T-Coffee in amino acid alignments

of high sequence identity (Lassmann and Sonnhammer, 2002).

2.2.2 MUSCLE

One of the most noteworthy recent algorithms is MUSCLE (Edgar, 2004a,b). Edgar

developed MUSCLE by first applying a progressive MSA phase and then an iterative

phase. In Figure 2.3, phases 1.1 to 2.3 are the progressive portion and phases 3.1

to 3.4 are the iterative refinement part of the algorithm. During the iterations, an

edge of the guide tree is removed, creating two trees. The alignments, or profiles,

of these two trees are realigned. Iterations continue until the self sum of pairs score

stops improving. MUSCLE typically produces a reasonable balance between speed

and accuracy.
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Figure 2.3: Flow chart for MUSCLE. Phases 1.1 to 2.3 are the progressive portion
and phases 3.1 to 3.4 are the iterative refinement part of the algorithm. Graphic from
(Edgar, 2004b).

2.2.3 MAFFT

The MSA algorithm MAFFT (Katoh et al., 2002, 2005) uses a fast Fourier transform

(FFT), to reduce computational time without a reduction in accuracy. FFT analysis

is used to quickly find peaks of similarity throughout the sequences (see Figure 2.4).

MAFFT has options to allow the user to do iterative refinement similar to MUSCLE

and ProbCons. MAFFT provides the user with different strategies to choose from,

ranging in speed and accuracy. MAFFT has been shown to be very accurate on DNA

data sets (Carroll et al., 2007).
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Figure 2.4: (Left) Example results from the FFT used in MAFFT. (Right) Position-
ing of sequences that correspond with k values. Graphic from (Katoh et al., 2002).
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Figure 1: A linear hidden Markov model and example alignment.

buildmodel Create a new model from a family of sequences, or refine an existing model.

align2model Create a multiple alignment of sequences to an existing model. The prettyalign
program will make align2model output more readable.

hmmscore Calculate the negative log-likelihood (NLL) scores for a file of sequences given a model,
as well log-odds scores and E-values in the case of reverse null models. This program is used
for discrimination experiments. Sequences that score better than (or worse than) a threshold
can be saved, as can their alignments or multiple domain alignments.

modelfromalign Use an existing multiple alignment to create an initial model. Such a model is
usually then refined using buildmodel.

target2k A script that uses SAM to iteratively create a model from a single protein sequence and
its close homologues.

A basic flowchart for using SAM is shown in Figure 2.

As a simple example, consider the task of modeling the 10 tRNAs included in the file trna10.seq
of the distribution. For this experiment, default program settings will be used: the many adjustable
parameters are described Sections 6 and 12.

3.1 Building a model

To start, we need to create a model from the sequence file using buildmodel. This program always
requires a name for the run: if the name is test, the system will create the model output file
test.mod, which will include parameter settings, iteration statistics, and CPU usage, as well as the
initial and final model.

16

Figure 2.5: A linear hidden Markov model with each node corresponding to a col-
umn in the alignment. Each sequence uses a match state (square), an insert state
(diamond) or a delete state (circle) for every column. Also, an example alignment of
sequences A and B is also shown. Graphic from the SAM manual.

2.3 Hidden Markov Models

2.3.1 SAM

MSA algorithms have been an active area of research for several years. One of the

earliest MSA algorithm is SAM (Sequence Alignment and Modeling System) (Krogh

et al., 1994). In 1994, Krogh et al. successfully used a hidden Markov model (HMM)

to produce global MSAs. Their algorithm, SAM, has been used to aid in secondary

structure prediction (Karplus et al., 1998) and is still actively maintained. The states

in their model represent the different columns in a MSA (see Figure 2.5). Transitions

are added to allow for gaps. The models are trained on a data set of sequences using
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Figure 2.6: ProbCons’ three-state pair-HMM for alignment of sequences x and y.
State M emits two letters from each sequence. State Ix emits the letter in sequence
x (and a gap for the other sequence), and state Iy does the opposite. Graphic from
(Do et al., 2005).

an expectation-maximization algorithm. Once the model has been trained, it can

either be used to produce an alignment or search a database for similar sequences.

Due to SAM’s popularity, other HMMs have been introduced (see (Eddy, 1998) for

a review).

2.3.2 ProbCons

ProbCons (Do et al., 2005) combines techniques from HMMs, progressive and iter-

ative refinement methods. Initially, ProbCons calculates posterior probabilities of

nucleotide substitution values from a simple three-state pair-HMM (see Figure 2.6).

It then uses these values in a Needleman-Wunsch matrix to calculate a pairwise

alignment. A probabilistic value is calculated for each alignment and a guide tree is

produced through a greedy clustering method. Next, ProbCons uses a standard pro-

gressive alignment approach, aligning the sequences in the order dictated by the guide

tree. Then it follows the same procedure as MUSCLE and MAFFT to iteratively re-

fine the alignment with a series of bipartitions in the guide tree and re-alignment
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G0

Gn

Gn+1

Figure 2.7: The basic structure of SAGA. See text for details. Graphic from
(Notredame and Higgins, 1996).

of the two groups of sequences. ProbCons has been shown to give accuracy scores

comparable to T-Coffee (Do et al., 2005).

2.4 Genetic Algorithms for Multiple Sequence Alignment

2.4.1 SAGA

In 1996, Nortedame and Higgins developed SAGA (Notredame and Higgins, 1996),

a global MSA algorithm that optimizes the self sum of pairs objective function with
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a genetic algorithm. They evolved populations of sequences in a quasi-evolutionary

manner using 22 different operators (comprised of several block shuffling operators,

two crossover types, block searching, gap insertion and local rearrangement). These

operators are dynamically scheduled, starting with uniform probabilities. Figure 2.7

illustrates the basic structure of SAGA. The initial population of alignments is in-

dicted by G0. Subsequent generations are Gn. A parent of the nth generation is

denoted as P n
i . Children of those parents are similarly noted. Both parents and

children are alignments. Breeding is determined with by a weighted wheel selection

technique (selection without replacement). OP refers to a randomly chosen operator.

While SAGA can use any objective function, using the self sum of pairs it has been

shown to produce comparable results (Notredame and Higgins, 1996). Since the de-

velopment of SAGA, other MSA algorithms that use a genetic algorithm have been

published (Szustakowski and Weng, 2000; Zhang and Wong, 1997).

2.5 Optimization Alignment

2.5.1 POY

POY (Wheeler et al., 2003) uses a completely different approach to MSA. It uses

Optimization Alignment, a process that creates a phylogenetic tree without requiring

a multiple sequence alignment as input. In POY, the tree is created and then the

alignment inferred from the tree is calculated. Therefore, the alignment is a means

to the end and not the goal itself. Calculating an alignment for every tree analyzed

is very time consuming. Finally, POY only infers phylogenies for DNA sequences.

2.6 Benchmarking Results

To provide more insight into how these different algorithms compare, eleven of the

above MSA algorithms were recently benchmarked in terms of their execution times
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Table 2.2: Reference Sum of Pairs Score and CPU Time Ranks

Reference Sum CPU Time
MSA Algorithm of Pairs Rank (↓) Rank

ProbCons 7.68 7.44
MAFFT-LINSI 7.26 7.28
MAFFT-GINSI 6.96 7.67
MUSCLE-Default 6.67 5.44
MAFFT-NSI 6.56 7.01
T-Coffee 6.26 10.39
ClustalW 5.59 3.87
Kalign 5.49 1.43
MUSCLE-Fast 5.34 4.06
MAFFT-NS1 4.66 5.86
DIALIGN 3.52 5.56

For each category, the ranks according to the Friedman test are given. Results are
the aggregates of 3,541 alignment data sets. For the Reference Sum of Pairs scores,
the higher the rank indicates higher accuracy. For the times, a lower rank indicates
better performance in comparison to other algorithms. The alignment algorithms
that ranked the best in each column are presented in bold face. The results are
statistically significant with a P-value < 2.2× 10−16 (using a Chi-square test). Data
from (Carroll et al., 2007).

and reference sum of pairs scores (see Table 2.2). For this comparison, the BAliBASE

(Thompson et al., 2005), OXBench (Raghava et al., 2003), PREFAB (Edgar, 2004b)

and SMART (Letunic et al., 2004) databases are used. The algorithms chosen were

selected for their popularity and availability. The performance of each algorithm on

each data set is ranked. An exclusively better algorithm would have a rank of eleven

for reference sum of pairs (and one for CPU time rank). Interestingly, the ordering of

the performance of algorithms in terms of CPU time is much more discriminatory than

that of the reference sum of pairs scores. Kalign nearly universally calculates MSAs

faster then other algorithms, and T-Coffee almost always takes the most amount of

time.
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Figure 2.8: Venn diagram of some of the properties of the 20 amino acids. Amino
acids are indicated by both their single letter abbreviations and their full names.

2.7 Physicochemical Properties

In an effort to better model nature in bioinformatics analysis, several researchers are

using the structural and biochemical characteristics of the 20 amino acids (Goldman

and Yang, 1994; Xia and Li, 1998) (see Figure 2.8). Sneath published values for

134 physicochemical properties for each of the amino acids (Sneath, 1966). These

properties, such as volume, weight and hydropathy tendencies, represent the molec-

ular forces impacting the sequences. Slightly more recently, Grantham argued for

using chemical properties for amino acid exchanges (Grantham, 1974). Since then,

Xia and Li have studied ten amino acid properties and their effects on the evolution

of the genetic code (Xia and Li, 1998). Their studies include a multiple sequence

alignment of sequences and a corresponding evolutionary tree. To determine selec-

tion for a physicochemical property, they calculate the mean of the property’s values

for all the pairwise combinations of amino acids, and compare it to empirical data.

Their results suggest that the genetic code has minimized polarity and hydropathy.

Furthermore, Woolley et al. (2003) use their algorithm, TreeSAAP, to calculate the

27



difference between physicochemical property values of two amino acids to determine

selection.

2.7.1 Pairwise Sequence Alignment

While researchers are using physicochemical properties for various processes, few

have incorporated them into sequence alignment. Gonnet and Lisacek (2001, 2002)

used the physicochemical property hydrophobicity along with secondary structures

α-helices and β-strands to build regular expressions to find similar genetic sequences

in protein databases. Comparing these regular expressions against other sequences is

a form of pairwise alignment.

Gupta et al. (2005) developed a similarity scoring method using the FFT algo-

rithm to find subsequences with high similarity of a single physicochemical property,

but not character similarity. The authors suggest that it “is suited for detailed anal-

ysis of sequences in a locality and can be wrapped over by other global alignment

tools” (Gupta et al., 2005). This scoring metric has only been used to perform pair-

wise alignments.

2.7.2 Multiple Sequence Alignment

The most notable use of physicochemical properties in MSA is ClustalW’s modifica-

tion of the gap open penalty. The penalty is reduced by one third for any position

within a stretch of five or more hydrophilic amino acids1 without a gap (Thompson

et al., 1994). These stretches usually indicate regions with a loop where gaps are more

likely. While this is a step in the right direction, it does not account for the multitude

of other characteristics that can be explained with physicochemical properties. The

improvement in accuracy seen with a minimal incorporation of physicochemical prop-

1ClustalW conservatively defaults to considering the following amino acids as hydrophilic:
{D,E,G,K,N,Q,P,R,S}
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erties in ClustalW reinforces an overall strategy using physicochemical properties for

multiple sequence alignment.

2.8 Secondary Structures

Some sequence alignment algorithms incorporate secondary structure elements (SSEs)

(α-helixes, β-strands and loops). Of these, the depth of incorporation varies from

modifying the gap penalties to algorithms built explicitly for using the secondary

structure assignments.

Lüthy et al. (1991) were the first known group to use different substitution

matrices based on the secondary structures. They applied this to database searching

by extending their “profile method” (Gribskov et al., 1987). The profile method

determines if a sequence in a database belongs to a family of proteins by aligning

it to an existing alignment, or profile. While their method is reported to find more

related sequences in a database than other methods (with less false positives) (Lüthy

et al., 1991), it has not been shown to be effective for pairwise or multiple sequence

alignment. In fact, the profile (alignment) used in the database searching was not

produced by their method.

Other researchers have also developed algorithms that use secondary structures

for database searches and pairwise alignment (Fontana et al., 2005; Ginalski et al.,

2003, 2004; Jeong et al., 2006; Soding, 2005; Sturrock and Dryden, 1997; Taylor and

Orengo, 1989a). While using SSEs has improved these approaches, their algorithms

have not been extended to multiple sequence alignments.

2.8.1 PRALINE

PRALINE (Heringa, 1999; Simossis and Heringa, 2003, 2004, 2005) is a multiple

sequence alignment algorithm that incorporates secondary structure predictions to

choose substitution matrices. It uses Lüthy’s (1991) substitution matrices when the
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two amino acids have the same SSE. It also uses different gap open and gap ex-

tension penalties for the different substitution matrices. Finally, PRALINE iterates

between alignment and predicting the secondary structure elements. The first align-

ment does not use secondary structure information. While PRALINE uses different

substitution matrices for different secondary structure elements, it does not account

for the physicochemical properties of the sequences. Additionally, PRALINE is only

available through an interactive website and therefore requires substantial amounts

of human interaction for large-scale use or testing.

2.8.2 Jennings’ Method

Jennings et al. (2001) approached the problem with the attitude that “It was con-

sidered important that the computational tools employed in this work were readily

available in the public domain and that the implementation should be within the

grasp of scientists in the area” (Jennings et al., 2001). To this end, they modified the

substitution matrix supplied to ClustalW to incorporate a degenerate set of amino

acids and a secondary structure element. For example, one of the cells of the ma-

trix holds a value for the cost to align any of the aromatic residues (H,W,F,Y) that

are in an α-helix with any of the polar residues (Q,N,S,T) that are in a β-strand.

The amino acids were clustered so that the 20 by 20 substitution matrix could in-

corporate secondary structure elements. While this approach incorporates secondary

structure into amino acid alignment, it does so at the expense of the specificity of the

substitution costs.

2.8.3 Horizontal Sequence Alignment (HSA)

Zhang and Kahveci (2005, 2006) use a graph-based approach to calculate multiple

sequence alignments. They call their method Horizontal Sequence Alignment (HSA).

Additionally, they incorporate secondary structure information by modifying the edge
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weights based on the secondary structures of the two nodes. While they publish good

performance on eight BAliBASE datasets, the time complexity of their algorithm is

O(WKN+K2M2) where K is the number of sequences, W is the sliding window size,

N is the sequence length and M is the number of fragments in a protein sequence

(Zhang and Kahveci, 2006). This suggests that their algorithm is only suitable for

very small data sets.

2.8.4 PROMALS

PROMALS (Pei and Grishin, 2007) uses HMMs and probabilistic consistency-based

scoring (in a similar manner as ProbCons) to perform alignments. It uses a simple

HMM just to calculate alignments of closely related sequences (≥ 60% identity). For

the rest of the sequences, it runs PSI-BLAST (Altschul et al., 1997) and PSIRED

(Jones, 1999) to get homologous sequences and the secondary structures. The HMM

for these sequences emits both an amino acid and a SSE. This second HMM requires

about 30 minutes for 24 sequences (Pei and Grishin, 2007). Comparatively, ClustalW

executes in a matter of seconds for a data set of the same size.

2.9 Characterization of MSA Algorithms

For multiple sequence alignment algorithms to produce biologically meaningful re-

sults, there are three main characteristics that are essential:

1. Minimizes changes in physicochemical properties

2. Incorporates secondary structure information

3. Utilizes a dynamic evaluation function

Table 2.3 characterizes the MSA algorithms discussed above in terms of these at-

tributes. First, biologically relevant alignments minimize changes in physicochemical

properties. None of the existing algorithms fully incorporate physicochemical proper-

ties. As mentioned earlier, ClustalW does adjust the gap open penalty for stretches

31



of hydrophilic amino acids. Most of the optimization criteria for these algorithms

are either sequence similarity (self sum of pairs) or minimizing the summation of

substitution matrix values. Second, biologically accurate alignments account for the

contextual information found in protein secondary structures. Secondary structures

are more conserved than the amino acid sequences (Gibrat et al., 1996; Rost, 1999;

Sander and Schneider, 1991). This more resilient information reflects natural forces.

Unfortunately, most of the algorithms do not use secondary structures. Third, evolu-

tionary forces vary depending upon the context of the amino acid. PRALINE is the

only algorithm that uses a dynamic evaluation function to align sequences. For all

of the other algorithms, a static evaluation function is used over the entire length of

the sequences. This treats every position in the sequence as if it is in the “average”

position. A new MSA algorithm is needed that incorporates these three pieces of

information to produce biologically accurate alignments.

32



Table 2.3: Characterization of MSA Algorithms

Physico- Dynamic
MSA chemical Secondary Evaluation Optimization
Algorithm Properties Structures Function Criterion

ClustalW GOP No No Sub Mat
DIALIGN No No No Sub Mat
Kalign No No No Sub Mat
MAFFT-GINSI No No No SSofP/Consistency
MAFFT-LINSI No No No SSofP/Consistency
MAFFT-NS1 No No No Sub Mat
MAFFT-NSI No No No SSofP
MUSCLE No No No Sub Mat
POY No No No Phylogeny Score
ProbCons No No No SSofP
SAM No No No EM
SAGA No No No SSofP
T-Coffee No No No Consistency
PRALINE No Yes Yes Sub Mat
Jennings et al. No Yes No Sub Mat
HSA No Yes No SSofP
PROMALS No Yes No Consistency

Abbreviations: GOP = Gap open penalty; SSofP = Self sum of pairs; Sub Mat =
Minimization of substitution matrix values; Consistency = COFFEE like consistency
between multiple sequence alignment and pairwise alignments (Notredame et al.,
1998); EM = Expectation Maximization.
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Abstract

Motivation: Multiple sequence alignments (MSAs) are at the heart of bioinformat-

ics analysis. Recently, a number of multiple protein sequence alignment benchmarks

(i.e., BAliBASE, OXBench, PREFAB and SMART) have been released to evaluate

new and existing MSA applications. These databases have been well received by re-

searchers and help to quantitatively evaluate MSA programs on protein sequences.

Unfortunately, corresponding DNA benchmarks are not available, making evaluation

of MSA programs difficult for DNA sequences.

Results: This work presents the first known multiple DNA sequence alignment

benchmarks that are 1) comprised of protein-coding portions of DNA 2) based on

biological features such as the tertiary structure of encoded proteins. These reference

DNA databases contain a total of 3,545 alignments, comprising of 68,581 sequences.

Two versions of the database are available: mdsa 100s and mdsa all. The mdsa 100s

version contains the alignments of the data sets that TBLASTN found 100% sequence

identity for each sequence. The mdsa all version includes all hits with an E-value score

above the threshold of 0.001. A primary use of these databases is to benchmark the

performance of MSA applications on DNA data sets. The first such case study is

included in the supplementary material.

Availability: The databases, further details and the supplementary material are

publicly available at http://csl.cs.byu.edu/mdsas/.
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3.1 Introduction

Multiple sequence alignments (MSAs) provide the foundation for much of the analysis

in bioinformatics. They are the first step for everything from annotation of genomes to

evolutionary studies. Because of this, it is crucial for automated alignment programs

to generate highly accurate and biologically meaningful MSAs to ensure accuracy in

subsequent steps in the research process.

Recently, a number of protein sequence databases have been presented to pro-

vide a benchmark for alignment algorithms: BAliBASE (Thompson et al., 2005),

OXBench (Raghava et al., 2003), PREFAB (Edgar, 2004b), and SMART (Ponting

et al., 1999). These databases leverage structural alignments to provide a suite of

“gold standard” alignments. They are assumed to be the “true” alignments, and cal-

culated alignments are evaluated by comparing against them. They have been well

accepted by the scientific community and used in numerous studies to compare the

quality of protein alignments generated by MSA programs (Do et al., 2005; Edgar,

2004a,b; Karplus and Hu, 2001; Lassmann and Sonnhammer, 2002, 2005a; Thompson

et al., 1999b; Van Walle, 2004). These multiple protein sequence alignment (MPSA)

benchmarks are limited to the evaluation of protein alignment applications.

Rarely is a novel alignment technique assessed for its ability to align nucleotide

data accurately. The shortage of assessments of MSAs with DNA data may be due

to the lack of DNA reference alignments. Applications that work well on amino acid

sequences may not be as accurate on DNA data sets. One solution to this problem

would be to compare calculated nucleotide alignments against reference nucleotide

alignments that are based on the biological features used in protein benchmarks.

Work has been done to address this lack of reference DNA alignments. Pollard

et al. (2004) created a benchmarking tool for the alignment of non-protein coding

DNA using simulated data. While this benchmark gives researchers a starting point
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to evaluate DNA alignments, the degree to which the simulated sequences reflect

those in nature is uncertain.

A “gold standard” benchmark of DNA alignments that is 1) comprised of

protein-coding portions of DNA and 2) based on biological features such as the tertiary

structure of encoded proteins can help researchers assess the quality of DNA alignment

algorithms. This paper presents the first known collection of protein-coding DNA

benchmark alignments that meet this criteria. A computational tool, MPSA2MDSA,

was developed and utilized to convert the following MPSAs into multiple DNA se-

quence alignment (MDSAs): BAliBASE, OXBench, PREFAB, and SMART.

3.2 Materials and Methods

Estimating a MDSA from a MPSA is a straight forward procedure that requires three

steps. The first step is to find the best corresponding DNA sequence (hit) from a

protein sequence (query). We queried the September 2006 version of GenBank’s nt

database (Benson et al., 2005) with each of the protein sequences using the TBLASTN

algorithm (Altschul et al., 1990). TBLASTN provides the accession number of the

best hit. The DNA sequences are then retrieved from the nt database with fastacmd,

an NCBI tool. The second step is to account for the occasional gaps introduced by

the similarity search. The final step is to apply the alignment from the MPSA to the

MDSA. This is done by inserting gaps that correspond with the gaps in the protein

alignment. This step is important to preserve the alignment features obtained by

higher order methods (e.g., secondary and tertiary structure or chemical properties) or

in other words, to preserve the higher order benchmark alignment. By preserving the

biological information, the DNA alignment can be considered a reference alignment.

Each step is covered in more detail in the supplementary material.

Two versions of each database are publicly available. The first version,

mdsa 100s, includes only those data sets with all perfect matches (100% sequence
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identity). This version ensures the highest level of integrity in the conversion. The

second version, mdsa all, includes all hits with an E-value score above the threshold

of 0.001. This version retains more of the MPSAs and aids in comparison with the

original MPSAs.

For any heuristic, it is important to quantify the accuracy. Here the accuracy

can be measured by the sequence identity of the hit sequence. In general, as the

sequence identity increases, so does the likelihood that the two sequences share the

same tertiary structure. For this work, sequences that share 100% sequence identity

are assumed to have the same tertiary structure. Sequences with the same tertiary

structure will have the same alignment.

Using the nt database, 97.4% of the protein queries found a match with an

E-value score above the threshold of 0.001. Furthermore, 69.0% of these hits have

100% sequence identity with the query. While the tool finds a high percentage of

exact matches with a current database, databases are growing at an exponential rate,

thereby increasing the number of hits of protein queries.

In total, 3,545 DNA reference alignments, comprising of 68,581 sequences and

35,600,958 bases are publicly available at http://csl.cs.byu.edu/mdsas/.

To illustrate the usefulness of the reference DNA databases, a case study of the

performance and ranks of alignment programs on DNA data sets is included in the

supplementary material (see also Table 3.1). Alignments and their respective scores

were calculated for seven different multiple sequence alignment applications for each

of the 3,545 alignments.

3.3 Conclusion

In this work, the first known databases of reference protein-coding DNA alignments

are presented. These databases are constructed by leveraging the popular BLAST

program to find DNA sequences corresponding to those found in multiple protein
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Table 3.1: Q Score, TC Score and CPU Time Ranks

DNA Data Sets Amino Acid Data Sets
Q TC CPU Q TC CPU
Score Score Time Score Score Time

Program Rank Rank Rank Rank Rank Rank

CLUSTALW 6.35 5.94 4.81 5.99 5.59 3.87
DIALIGN 4.35 4.71 6.03 3.53 3.52 5.56
Kalign 6.77 6.05 1.69 6.04 5.49 1.43
MAFFT-GINSI 9.22 9.59 7.12 6.30 6.96 7.67
MAFFT-LINSI 9.31 9.73 6.27 6.74 7.26 7.28
MAFFT-NS1 7.70 6.96 4.77 4.84 4.66 5.86
MAFFT-NSI 8.68 8.73 6.08 5.84 6.56 7.01
MUSCLE-Default 6.63 7.43 6.02 6.66 6.67 5.44
MUSCLE-Fast 5.22 5.06 4.37 5.94 5.34 4.06
POY 4.03 3.94 9.52 - - -
ProbCons 6.24 6.38 9.96 7.64 7.68 7.44
T-Coffee 3.51 3.52 11.36 6.47 6.26 10.39

For each category, the ranks according to the Friedman test are given. For the Q
and TC scores, the higher the rank indicates higher accuracy. For the times, a lower
rank indicates better performance in comparison to other programs. The alignment
programs that ranked the best in each column are presented in bold face.

sequence alignments. The alignments of the protein sequences (which reflect higher-

order information) are applied to the DNA sequences to qualify them to be reference

alignments. High quality hits were obtained from public databases. Over two-thirds

of the queries found a perfect match in the nt database. Two versions of the converted

databases are available, the first only contains hits that perfectly matched the query,

and the comprehensive second version includes all hits above the cut-off threshold.

These DNA reference alignment databases are publicly available. This benchmark will

be extremely useful in evaluating the quality of DNA alignments generated by existing

and forthcoming MSA techniques. Finally, the first case study of DNA alignments

evaluated by these reference alignments is included in the supplementary material.
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3.4 Supplementary Material

3.4.1 Introduction

Protein-coding (exonic) DNA alignments are useful for several applications, especially

where more information and sensitivity is desired than what amino acid alignments

offer. Murphy et al. (2007) have reported that “Protein-coding alignments have the

advantage of being more reliable for establishing sequence alignment orthology than

noncoding alignments”. As another example, selection studies primarily use protein-

coding DNA alignments (Chamala et al., 2007; Marques et al., 2006; Porter et al.,

2007; Zhang et al., 2004). Furthermore, gene prediction for sequences without strong

homology to known amino acid sequences can also use on DNA alignments (Mathé

et al., 2002). With all of these examples, and many others, the underlying principle

is that accurate protein-coding DNA alignments are essential for accurate analysis.

Starting with Thompson and her group publishing the BAliBASE database in

1999 (Thompson et al., 1999a), several amino acid reference benchmarks have been

released in the past few years (Edgar, 2004b; Letunic et al., 2004; Ponting et al., 1999;

Raghava et al., 2003; Subramanian et al., 2005; Thompson et al., 2005; Van Walle

et al., 2005). Most of these databases leverage structural alignments to provide a

suite of “gold standard” alignments. These benchmarks have been well accepted by

the community to provide evaluations of the accuracy of multiple sequence alignment

(MSA) programs (Do et al., 2005; Edgar, 2004a,b; Karplus and Hu, 2001; Lassmann

and Sonnhammer, 2002, 2005a; Subramanian et al., 2005; Thompson et al., 1999b;
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Van Walle, 2004). Unfortunately, researchers assessing the accuracy of MSA algo-

rithms have focused almost exclusively on amino acid alignments. This focus is due

primarily to a lack of reference DNA data sets.

Previous work addresses this lack of reference DNA alignments. Pollard et

al. ( 2004) created alignments of non-protein coding DNA using simulated data.

While this benchmark gives researchers a starting point to evaluate DNA alignments,

the degree to which the simulated sequences reflect those in nature is uncertain. Akin

to the alignments used in this study, but serving a different purpose, are those con-

structed by Gardner et al. (2005, 2004, 2007). Their database, BRAliBase, facilitates

the assessment of aligning structural RNAs.

We recently published four protein-coding DNA reference multiple sequence

alignment databases (Carroll et al., 2007). The databases allow researchers to quan-

titatively evaluate multiple sequence alignments using DNA in the same manner as

is done with amino acid sequences. In this paper, we provide the details of the pro-

cess of conversion and provide a study analyzing the accuracy of multiple sequence

alignment programs on multiple amino acid (protein) sequence alignments (MPSAs)

and these multiple DNA sequence alignments (MDSAs).

3.4.2 Methods

We have included each of the amino acid databases in Table 3.2 in our benchmark.

BAliBASE (Benchmark Alignment dataBASE) contains reference alignments that

have been manually refined and validated by superposition of known tertiary struc-

tures (Thompson et al., 2005). OXBench (from the University of Oxford) contains

automated amino acid alignments that were benchmarked using tertiary structure

associations (Raghava et al., 2003). PREFAB (Protein REFerence Alignment Bench-

mark) contains amino acid alignments based on pairs of amino acid sequences that

have been structurally aligned and supplemented with as many as 50 homologs found
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Table 3.2: Reference Protein Alignment Benchmark Suites

Name Version # of Alignments
BAliBASE (Thompson et al., 2005) 3.0 498
OXBench (Raghava et al., 2003) 1.3 672
PREFAB (Edgar, 2004b) 4.0 1682
SMART (Ponting et al., 1999) June 7, 2006 701

by PSI-BLAST (Edgar, 2004b). SMART (Simple Modular Architecture Research

Tool) alignments were also manually refined with structure comparisons, but where

no structure was available, automated alignment techniques were used (Letunic et al.,

2004).

DNA Benchmark Alignments

We estimate a DNA benchmark alignment from an amino acid alignment in three

steps (see Figure 3.1):

1. Similarity searching

2. Reconciling inconsistencies

3. Applying the multiple amino acid sequence alignment

First, we use TBLASTN (Altschul et al., 1990) to perform a similarity search of an

amino acid sequence to get a corresponding DNA sequence. Second, we reconcile any

inconsistencies in the hit sequence, in terms of length or introduced gaps, by inserting

gaps or ambiguous characters respectively. Finally, we insert the gaps dictated by the

MPSA into the MDSA to reflect biological accuracy. We implement these three steps

in a computer program called MPSA2MDSA. The details of these steps are covered

in the remainder of this section.

Step 1: Similarity Search The first step in building a multiple DNA sequence

alignment involves finding DNA sequences that correspond to the amino acid se-

quences in the MPSA. Corresponding sequences can be determined by similarity
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Figure 3.1: Flow chart for MPSA2MDSA.

searches when an appropriate statistical test is used as the metric or scheme (Kar-

lin and Altschul, 1990). We use the Basic Local Alignment Search Tool (BLAST)

(Altschul et al., 1990) for the similarity search algorithm. We choose BLAST for its

statistical scoring metric, performance, ease of use and speed (McGinnis and Madden,

2004). TBLASTN is a BLAST derivative, which translates nucleotide databases into

amino acid sequences in all six reading frames, then identifies the most statistically

probable sequences as hits (Altschul et al., 1997). The input to TBLASTN is an

amino acid sequence (the query), a database of nucleotide sequences and a cut-off

threshold for the E-value. For this work, similarity searches are performed on the

September 2006 version of the nt GenBank (Benson et al., 2005) database, which has

16.9 billion base pairs in 3.8 million sequences. The second parameter to TBLASTN

is a cut-off threshold value. In this study, matches with an E-value larger than 0.001

are ignored. This threshold is interpreted as there being 0.001 matches with a similar

score or better due to chance in the current database. The output of TBLASTN
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is the translated sequences with the lowest E-value and corresponding identification

information. As it is the DNA sequences that we are interested in, we use the NCBI

tool fastacmd to retrieve the corresponding DNA sequences from the nt database.

Step 2: Reconcile Inconsistencies The second step to building a MDSA is to

account for the occasional gaps introduced by the similarity search. BLAST, like other

similarity search programs, uses a pairwise alignment criteria for matches. Adding

gaps into the hit sequence (which account for insertions/deletions) can improve the

calculated likelihood that the query and the modified hit sequence correspond. This

produces two sources of gaps in the hit sequence: terminal gaps and interior gaps.

Terminal gaps occur when the matching portion of the hit sequence is shorter than the

query sequence (it either does not start early enough and/or it is not long enough).

The user can choose to account for interior gaps by either ignoring them or adding

additional gaps into the MDSA. Finally, if a hit sequence does not provide the DNA

for a section of the query (due to gaps), the least ambiguous characters possible are

inserted to account for the missing data. For example, if the amino acid in the query

sequence is tyrosine, then the first two nucleotides are known to be thymine and

adenine respectively, and the most resolution that the third character can have is a

pyrimidine (thymine or cytosine).

Step 3: Apply Multiple Amino Acid Sequence Alignment In the last step

to produce a MDSA, MPSA2MDSA applies the alignment from the MPSA to the

hit sequences. This step is important to preserve the alignment features obtained by

higher order methods (e.g., secondary and tertiary structure and chemical properties)

or in other words, to preserve the higher order benchmark alignment. For each gap in

the MPSA, the program inserts three gaps into the MDSA at the respective location.
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Figure 3.2: Histogram of the E-values from the hits of the protein sequences. (Note:
To conservatively correct for scores reported by BLAST to have an E-value of 0.0,
scores less than or equal to 1E-180 are reported as 1E-180.)

DNA Benchmark Alignment Conversion

In general, MPSA2MDSA finds good matches in the nt database in terms of sequence

identity and E-value. The majority (69.0%) of amino acid sequences have matches in

the database that have 100% sequence identity with the translated DNA sequences.

Furthermore, another 3.9% of the hits have only one mismatched amino acid with the

amino acid query. In terms of E-values, 98.3% of the amino acid sequences found a

DNA sequence in the database with a score of 0.001 or better. A lower E-value (for

a given length) indicates higher similarity between the query and the hit sequences.

Figure 3.2 illustrates all the E-values for the amino acid sequence hits. In the graphic,

E-values with a score better than or equal to 1E-180, are conservatively displayed at

the 1E-180 location to accommodate a logarithmic axis. This adjustment accounts

for the E-values that BLAST reports as 0.0 (8,567 of them, or 12.5% of all hits).

E-value scores are calculated from the length and similarity of the query and

hit sequences. Figure 3.3 shows the correlation between the length and the E-value

of the hits found in the nt database. The data here suggests that as a database
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Figure 3.3: E-values of all the hits plotted against the length of the protein sequence
query. (Note: To conservatively correct for scores reported by BLAST to have an
E-value of 0.0, scores less than or equal to 1E-180 are reported as 1E-180.)

increases (i.e., as longer and more corresponding sequences are included), BLAST

will find hits with greater similarity to the query. While MPSA2MDSA already finds

a high percentage of quality matches, as databases continue to grow at an exponential

rate, more and higher quality hits will match the amino acid queries.

In total, the DNA databases derived from BAliBASE, OXBench, PRE-

FAB and SMART contain 3,545 reference alignments, comprising of 68,581 se-

quences and 35,600,958 bases. These reference alignments are publicly available at

http://dna.cs.byu.edu/mdsas/.

Experimental Setup

We perform an alignment study by testing several of the leading alignment programs

on these MDSAs. The purpose of this study is to test the empirical performance of

commonly used alignment programs on protein-coding DNA. These programs have
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previously been tested on amino acid benchmarks by others and shown to be effective

at aligning amino acid sequences. Even so, their performance on DNA sequences is

virtually unknown, hence benchmarking these programs on DNA reference data sets

is important. In addition to running each alignment program on reference MDSAs, we

also run them on the reference MPSAs. This provides for a uniform method of assess-

ing each alignment algorithm on amino acid sequences and comparing these results

to the accuracy of each alignment algorithm on the corresponding DNA sequences

that are found in our DNA alignments. All test alignments and accuracy measures

were executed with the supercomputers in the Ira and Mary Lou Fulton Supercom-

puting Laboratory at Brigham Young University, using Dual-core Intel Xeon EM64T

processors (2.6GHz) with 8 GB of memory.

Alignment Programs We chose eight different alignment programs to bench-

mark: ClustalW (Thompson et al., 1994), DIALIGN (Morgenstern et al., 1998),

Kalign (Lassmann and Sonnhammer, 2005b), MAFFT (Katoh et al., 2005), MUS-

CLE (Edgar, 2004a), POY (Wheeler et al., 2003), ProbCons (Do et al., 2005), and

T-Coffee (Notredame et al., 2000). These programs use a variety of strategies to

construct a multiple sequence alignment, such as progressive alignment, iterative re-

finement, probabilistic alignment etc. (see Table 3.3). They are widely used in biology

and bioinformatics. For each alignment program, we used default parameters, unless

noted otherwise in Table 3.4).

Alignment Benchmarks The alignment programs are evaluated with the follow-

ing MPSAs: BAliBASE, OXBench, PREFAB, and SMART, as well as their respective

MDSAs. The one exception is POY, which in the version tested restricts its analy-

sis to DNA sequences. For BAliBASE, OXBench and SMART, we did not consider

alignments that have over 100 sequences in order to make the test manageable for the
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Table 3.3: Categorization of Multiple Sequence Alignment Programs

Program Progressive Iterative Local
CLUSTALW X
DIALIGN X X
Kalign X
MAFFT-GINSI X X
MAFFT-LINSI X X X
MAFFT-NS1 X
MAFFT-NSI X X
MUSCLE-Default X X
MUSCLE-Fast X
POY X X1

ProbCons/ProbConsRNA X2 X
T-Coffee X X

The progressive column indicates programs that use progressive alignment algorithm
(Feng and Doolittle, 1987). Iterative refers to programs to refine the multiple se-
quence alignment. Programs that incorporate local alignment (in addition to global
alignment) have a mark in the local column. 1Optimization Alignment, 2Markov
model

slower programs. In addition, we discard alignments that did not complete within

two weeks for one or more MSA programs.

We use reference sets 1–5 of BAliBASE for assessing each alignment algorithm

on DNA sequences. Reference sets 6–8 contain repeats, inversions and transmem-

brane helices. We exclude these reference sets because none of the chosen alignment

programs are designed to handle these cases. MPSA2MDSA, converts all of the amino

acid alignments in reference sets 1–5 to DNA alignments. We exclude eight of these

alignments because they contain more than 100 sequences, allowing 378 DNA align-

ments to be included in the study for BAliBASE. To test each alignment algorithm

on amino acid sequences, we use the 378 corresponding amino acid alignments in

BAliBASE.

For OXBench, MPSA2MDSA successfully converts all 672 MPSAs to MDSAs.

We discard four alignments that were over 100 sequences and four alignments that

aborted or did not finish after two weeks while being analyzed. In total, we include
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Table 3.4: Arguments Used For Multiple Sequence Alignment Programs

Program Version Arguments
ClustalW 1.83 defaults
DIALIGN 2.2.1 defaults
Kalign 2.0 defaults
MAFFT-GINSI 5.861 –maxiterate 1000 –globalpair
MAFFT-LINSI 5.861 –maxiterate 1000 –localpair
MAFFT-NS1 5.861 –maxiterate 0 –retree 1
MAFFT-NSI 5.861 –maxiterate 1000
MUSCLE-Default 3.6 -stable
MUSCLE-Fast 3.6 -stable -maxiters 1 -diags
POY 3.0.11 -replicates 10 -repintermediate
ProbCons/ProbConsRNA 1.10 -ir 1000
T-Coffee 4.58 defaults

664 DNA alignments in the study for OXBench. For analyzing each alignment algo-

rithm on amino acid sequences, we use 668 corresponding amino acid alignments in

OXBench.

MPSA2MDSA converts 1676 of the 1682 amino acid alignments in PREFAB

to DNA alignments. We use these alignments and all 1682 amino acid alignments.

For the SMART database, we use the June 7, 2006 version. MPSA2MDSA

converts 698 of the 701 MPSAs in SMART to MDSAs. We exclude 108 alignments

that either contain over 100 sequences or did not complete within two weeks for all

programs. This gives a total of 590 MDSAs and 592 MPSAs from SMART.

Accuracy Measurement and Statistical Analysis To ascertain the accuracy

of the alignments generated by each program we use a variety of scoring metrics

that compare a calculated multiple sequence alignment to a reference alignment.

In general, we use the scoring metrics that are provided by or suggested for each

respective database. These scoring metrics are all forms of the Q (Quality) and TC

(Total Column) scores. The Q score, previously termed as the developer score (Sauder

et al., 2000) or SPS (Sum of Pairs Score) (Thompson et al., 1999b), is defined as the
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Figure 3.4: Aggregates of the number of hits plotted against E-values. (Note: To
conservatively correct for scores reported by BLAST to have an E-value of 0.0, scores
less than or equal to 1E-180 are reported as 1E-180.)

number of correctly aligned residue pairs in the generated alignment divided by the

number of residue pairs in the reference alignment. The TC score, also known as the

CS score (Karplus and Hu, 2001), is the number of correctly aligned columns in the

generated alignment divided by the number of columns in the reference alignment.

The TC score is the same as the Q score in the case of pairwise alignment. For

BAliBASE, OXBench and SMART we use the Q and TC scores. We use only the Q

score for PREFAB since the alignments in these databases are pairwise.

For an individual database, we average each score across all of the alignments.

To measure statistical significance in the accuracy differences between alignment pro-

grams, we perform a Friedman rank test with the accuracy scores (Friedman, 1937).

This test is more conservative than the Wilcoxon test, which has also been used to

determine statistical significance in past alignment studies (Edgar, 2004b).
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3.4.3 Results

To assess the accuracies of several multiple sequence alignment programs on protein-

coding DNA, we use the protein-coding DNA benchmark alignments created by Car-

roll et al. (2007). The Friedman ranks of accuracy and CPU times for the converted

BAliBASE, OXBench, PREFAB and SMART databases are given in Tables 3.5–3.8.

The differences in ranks are statistically significant (p-value� 0.0001). Furthermore,

the differences are relevant in that the average values differ significantly. For compar-

ison purposes, the Friedman ranks for accuracy and CPU times on the original amino

acid databases are given in Tables 3.9–3.12. The average CPU times are dramatically

lower on the amino acid alignments than on the respective DNA alignments since the

amino acid sequences are one third the length of the corresponding DNA sequences.

As is the case with the ranks of the DNA alignments, the differences in ranks for

the amino acid alignment benchmarks are both statistically significant (p-value �
0.0001) and relevant.

Two general points about the accuracy ranks are worth noting as an overview.

First, the amino acid benchmarks generally have higher accuracy scores than the DNA

benchmarks. Furthermore, the range of scores cover a smaller interval for the amino

acid databases. The accuracies for the OXBench and SMART databases exemplify

this well. The average accuracy scores for amino acid data sets in OXBench only vary

between 0.82 and 0.86 (Table 3.10) and the SMART scores range from 0.76 to 0.87

(Table 3.12). For the DNA alignments of OXBench, the corresponding scores range

from 0.69 to 0.80. The range varies even more for the DNA SMART database (0.44

to 0.83). While the inherent difference in the length of the two types of data is a likely

reason for the improvement, the primary factor is unknown. Possibly, these higher

accuracy scores are due to adjustments encouraged from MPSAs during development

of these algorithms.
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Table 3.5: DNA BAliBASE scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

MAFFT-GINSI .617 11.21 .277 9.91 58.1 5.87
MAFFT-LINSI .607 10.75 .275 9.78 47.9 6.28
MAFFT-NSI .559 9.57 .207 8.30 21.7 4.02
MUSCLE-Default .516 8.02 .198 7.90 188.0 8.02
ProbCons .452 6.78 .124 6.39 3228.9 10.10
MAFFT-NS1 .459 6.68 .141 6.44 2.3 2.25
ClustalW .445 5.78 .120 5.45 52.0 6.53
Kalign .408 5.27 .105 5.40 1.7 1.44
MUSCLE-Fast .291 4.42 .099 5.05 6.3 3.11
DIALIGN .389 4.34 .099 5.24 169.7 7.80
POY .305 2.59 .045 3.79 26364.4 11.14
T-Coffee .308 2.56 .071 4.35 10453.7 11.45

The average Q scores, TC scores, and times (in seconds) for the DNA alignments of
BAliBASE. The ranks according to the Friedman test are given for each category.
A higher Q and TC score rank indicate better accuracy in comparison with other
programs. For the CPU times, a lower rank indicates better performance. The
best rank for each category appears in boldface. On this database, MAFFT-GINSI
achieves a Q score rank higher than that of any applications on any of the other
database. Furthermore, POY requires a longer average CPU time here than for any
other application on any of the other database.
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Table 3.6: DNA OXBench scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

MAFFT-LINSI .795 9.11 .699 8.72 1.4 7.29
MAFFT-GINSI .789 8.50 .687 8.07 1.2 7.67
MAFFT-NSI .789 8.33 .687 8.03 0.5 6.12
MAFFT-NS1 .782 7.97 .677 7.70 0.8 5.16
ClustalW .766 7.46 .671 7.61 1.6 4.89
MUSCLE-Default .755 6.75 .660 7.02 1.4 6.47
Kalign .756 6.30 .645 5.88 0.2 1.57
MUSCLE-Fast .743 6.02 .643 6.40 0.4 3.51
ProbCons .741 5.57 .626 5.34 8.2 9.58
DIALIGN .696 4.57 .604 5.50 1.5 5.23
POY .694 3.85 .574 3.91 79.4 8.95
T-Coffee .692 3.56 .577 3.80 49.0 11.55

Column descriptions and other details are as in Table 3.5. These runs have the
smallest difference between the highest and lowest average Q score accuracies, yet the
Q score ranks still distinguish between an clear ordering.

Table 3.7: DNA PREFAB scores, times, and ranks

Q Score CPU Time
Program Avg. Rank Avg. Rank

MAFFT-LINSI .380 8.39 1.1 7.41
MAFFT-NS1 .376 8.15 0.7 5.44
MAFFT-GINSI .376 8.15 1.0 7.66
MAFFT-NSI .375 8.03 0.8 6.70
Kalign .344 7.19 0.33 1.88
ClustalW .351 6.88 0.34 3.94
ProbCons .298 5.82 4.5 10.11
MUSCLE-Fast .297 5.73 0.4 3.80
MUSCLE-Default .297 5.73 1.5 6.44
POY .254 4.74 2.4 8.59
DIALIGN .248 4.70 0.77 4.90
T-Coffee .254 4.50 7.2 11.14

Column descriptions and other details are as in Table 3.5. TC scores are omitted since
the data sets only have two sequences each. Here, the average Q score accuracies are
the lowest of any of the database, yet the same general ordering of applications is still
preserved.
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Table 3.8: DNA SMART scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

MAFFT-GINSI .833 11.08 .468 10.81 9.6 6.19
MAFFT-LINSI .812 10.67 .460 10.65 0.5 2.55
MAFFT-NSI .790 9.93 .415 9.70 8.2 6.00
MUSCLE-Default .700 7.71 .331 7.48 1.3 3.15
ProbCons .701 7.49 .301 7.38 544.4 9.86
Kalign .687 7.27 .294 6.68 0.5 1.52
MAFFT-NS1 .673 7.07 .288 6.62 4.2 4.60
ClustalW .577 4.41 .224 4.68 10.7 5.61
MUSCLE-Fast .550 3.79 .194 3.78 19.3 7.48
POY .555 3.51 .200 4.07 4163.6 11.15
DIALIGN .515 3.29 .183 3.58 37.3 8.23
T-Coffee .444 1.77 .146 2.67 2507.1 11.66

Column descriptions and other details are as in Table 3.5. For all of the DNA
databases, MAFFT-GINSI achieves the highest average Q score accuracy here than
any other application. Furthermore, not all of the applications are able to achieve
high accuracies for this database as is shown by the largest difference between the
highest and lowest Q score ranks for any of the DNA or amino acid database.

The second point about the accuracy ranks, and more important of the two,

is that the results show that certain programs that achieve high accuracy scores on

amino acid sequences tend to rank low for DNA sequences. T-Coffee and ProbCons,

for example, rank very high on amino acid benchmarks but they are the least accurate

of all the alignment methods for many of the DNA databases. Conversely, other align-

ment algorithms achieve higher ranks on the DNA databases then on the amino acid

databases. The MAFFT strategies (MAFFT-LINSI, MAFFT-GINSI, and MAFFT-

NSI) have lower accuracies than ProbCons and MUSCLE on the amino acid bench-

marks, but achieve the highest accuracy scores on every DNA benchmark. These two

points indicate that there is room for improvement of the existing multiple sequence

alignment algorithms for protein-coding DNA data.
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Table 3.9: Amino Acid BAliBASE scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

ProbCons .866 9.06 .620 8.76 250.0 9.86
MAFFT-LINSI .860 8.59 .616 8.20 6.8 6.56
MAFFT-GINSI .847 7.88 .586 7.51 8.8 6.83
MAFFT-NSI .832 6.79 .571 6.87 3.8 5.32
T-Coffee .815 6.74 .557 6.68 150.6 10.46
MUSCLE-Default .828 6.43 .550 6.33 7.0 6.65
Kalign .811 5.37 .526 5.16 0.3 1.21
MUSCLE-Fast .776 4.37 .473 4.52 1.4 3.27
MAFFT-NS1 .784 4.20 .484 4.33 0.6 3.15
ClustalW .755 3.59 .447 4.22 5.1 4.94
DIALIGN .743 2.97 .435 3.42 20.3 7.75

Column descriptions and other details are as in Table 3.5 except that here the average
Q and TC scores only cover the core blocks. Two general differences between the
performance of the alignment applications on the amino acid and corresponding DNA
databases are evident here: First, the alignment applications achieved higher average
accuracy scores for the amino acid databases. Second, the general ordering of the
applications, in terms of their accuracies, is significantly different.

Table 3.10: Amino Acid OXBench scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

MUSCLE-Default .861 6.78 .775 6.88 0.81 6.33
ClustalW .861 6.78 .772 6.78 0.93 3.68
MUSCLE-Fast .859 6.66 .772 6.74 0.79 4.90
ProbCons .859 6.47 .768 6.21 0.91 5.95
MAFFT-LINSI .852 6.42 .766 6.36 0.57 7.25
T-Coffee .856 6.29 .767 6.31 4.45 10.24
Kalign .854 6.18 .766 6.25 0.05 1.19
MAFFT-GINSI .853 5.67 .760 5.52 0.51 7.53
MAFFT-NSI .852 5.64 .760 5.56 0.83 7.78
MAFFT-NS1 .847 5.06 .752 5.07 0.50 6.67
DIALIGN .823 4.04 .733 4.31 0.58 4.48

Column descriptions and other details are as in Table 3.5. The runs for this database
have the smallest range of average accuracy scores, and not surprisingly the smallest
range of ranks too. This suggests that the accuracies of the alignment applications is
less distinguishable here than for other databases.
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Table 3.11: Amino Acid PREFAB Q scores, and ranks

Q Score CPU Time
Program Avg. Rank Avg. Rank

ProbCons .590 7.18 0.43 6.54
ClustalW .585 6.99 0.59 3.64
T-Coffee .583 6.69 1.76 10.21
MUSCLE-Fast .584 6.62 0.38 4.32
MUSCLE-Default .584 6.62 0.32 4.53
Kalign .588 6.53 0.19 1.58
MAFFT-LINSI .571 5.89 0.64 7.80
MAFFT-GINSI .558 5.14 0.65 8.27
MAFFT-NS1 .558 5.14 0.49 7.15
MAFFT-NSI .558 5.14 0.41 7.58
DIALIGN .513 4.07 0.73 4.38

Column descriptions and other details are as in Table 3.5. TC scores are omitted since
the data sets only have two sequences each. This also contributes to this database
having the fastest average CPU times of the databases.

Table 3.12: Amino Acid SMART scores, times, and ranks

Q Score TC Score CPU Time
Program Avg. Rank Avg. Rank Avg. Rank

ProbCons .873 8.87 .550 8.32 39.49 9.32
MAFFT-GINSI .871 8.57 .549 7.95 2.25 6.95
MAFFT-LINSI .858 7.78 .533 7.46 2.04 6.57
MAFFT-NSI .853 7.04 .534 7.29 1.34 6.10
MUSCLE-Default .851 6.80 .520 6.72 1.86 5.89
T-Coffee .836 5.90 .490 5.91 78.03 10.91
Kalign .830 5.23 .478 5.00 0.27 1.45
MUSCLE-Fast .823 4.73 .461 4.59 0.52 3.18
ClustalW .819 4.55 .481 5.43 1.31 3.85
MAFFT-NS1 .818 4.38 .460 4.49 0.53 3.90
DIALIGN .766 2.15 .395 2.84 6.18 7.87

Column descriptions and other details are as in Table 3.5. Here, MAFFT-GINSI has
the highest average Q score for any application on any of the databases.
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MSA Program Discussion

In this section, each of the alignment applications benchmarked in this study are

discussed in alphabetical order.

ClustalW Even though ClustalW (Thompson et al., 1994) is the oldest alignment

application tested, it consistently produced alignments with high accuracies for the

amino acid database. In fact, for the OXBench database, it achieved the highest Q

score rank (shared with MUSCLE-Default). For the DNA alignments however, its

rank is typically in the middle of all of the programs. An exception of this is on

the DNA OXBench database, in that it achieves the next best rank after all of the

MAFFT strategies.

DIALIGN DIALIGN (Morgenstern et al., 1998) is consistently the least accurate

on amino acid sequences with an overall rank of 3.53 (Carroll et al., 2007). Using

DNA data sets, DIALIGN does better in the rankings (4.35 (Carroll et al., 2007)).

DIALIGN is not particularly fast either. On amino acid and DNA sequences, DI-

ALIGN ranges in rank from the third to the ninth fastest alignment program. It

is worth noting that the benchmarks are global alignments and DIALIGN calculates

local alignments. DIALIGN only truly calculates a global alignment if the local align-

ment spans the entire length of all of the sequences.

Kalign Kalign (Lassmann and Sonnhammer, 2005b) is extremely fast and consis-

tently ranks number one in execution time on all databases. The longest average time

for Kalign on a database is only 1.7 seconds (BAliBASE MDSAs). This is inordi-

nately fast, considering T-Coffee averages over 7,000 seconds and ProbCons averages

3,900 seconds on the same database. This would seem to indicate that Kalign takes

a great reduction in accuracy in order to achieve this type of speed, but the results

suggest otherwise. Kalign consistently takes first place in CPU time while maintain-
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ing moderately high accuracy scores on DNA and amino acid sequences and a decent

“middle ground” ranking according to Q and TC scores. This is important to many

biologists who are interested in aligning large data sets quickly without taking a large

reduction in accuracy.

MAFFT MAFFT (Katoh et al., 2005) does well on amino acid sequences, but

is surpassed in accuracy ranks in many instances by ProbCons and MUSCLE. On

the DNA benchmarks, MAFFT maintains its high accuracy scores. MAFFT-GINSI,

MAFFT-LINSI and MAFFT-NS1 rank first, second and third respectively on all DNA

benchmarks. In the case of the DNA alignments from PREFAB, all four MAFFT

strategies do better than any other alignment method. MAFFT does this without a

significant loss in execution time, generally ranking around fifth or sixth. For these

reasons, MAFFT is a good choice for any biologist interested in aligning either DNA

or amino acid sequences in a decent amount of time.

MUSCLE The MUSCLE (Edgar, 2004a) strategies (MUSCLE-Fast and MUSCLE-

Default) consistently rank well on the amino acid benchmarks. Even MUSCLE-

Fast, which does not include iterative refinement, does better than many alignment

programs. MUSCLE retains its accuracy on DNA but is surpassed by the MAFFT

strategies.

POY POY (Wheeler et al., 2003) was chosen in order to assess the quality of DNA

alignments that are produced as it performs optimization alignment and creates a tree

without the use of a MSA as input. The accuracy of the DNA alignments produced by

POY to build a tree has been virtually unknown due to the lack of DNA benchmarks

in the past. The results show that POY has low accuracy scores compared to most of

the other alignment methods tested. POY consistently ranks second or third to last in

accuracy. The goal of the POY analysis is to eliminate errors produced by preliminary
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alignment programs. It does this by producing the alignment in conjunction with

the phylogenetic tree. Though this is a worthy goal, these results suggest that the

alignments of POY are not as accurate as other alignment programs, and this may

affect the resulting tree that is produced. POY’s lower accuracy ranks may be due

in part to it focusing on building a refined phylogeny for non-coding DNA, while we

tested it with protein-coding DNA.

ProbCons ProbCons (Do et al., 2005) does very well in the alignment of amino

acid sequences. It ranks first in accuracy on three of the four amino acid databases.

ProbCons requires large amounts of time to accomplish this, making it one of the

slowest methods tested. For DNA data sets, ProbCons drops in the rankings and

in general places around seventh in terms of accuracy. This suggests that ProbCons

has been optimized for amino acid sequences but it may not be the best choice for

aligning DNA sequences.

T-Coffee T-Coffee (Notredame et al., 2000) also does well on amino acid bench-

marks but at a great cost in time. T-Coffee is ranked last on amino acid benchmarks

in the rankings according to CPU time. When tested on DNA, T-Coffee, like Prob-

Cons, drops in accuracy and consistently ranks the lowest. It also gets the lowest rank

for execution time on the DNA benchmarks. These results suggest that the current

version of T-Coffee is an undesirable choice for the alignment of DNA even though it

does well in aligning amino acid sequences.

3.4.4 Conclusion

The results of this study show that many alignment programs appear to be optimized

and/or trained on amino acid sequences, but vary greatly in accuracy when applied

to DNA sequences. Not only are accuracies generally lower for the DNA databases,

but the most accurate applications for the amino acid database are not the most
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accurate for the DNA databases. The MAFFT-LINSI, MAFFT-GINSI, and MAFFT-

NSI strategies are the most accurate on DNA sequences while T-Coffee, DIALIGN

and POY are the least accurate.
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Abstract

Motivation: Physicochemical properties (e.g., polarity, hydropathy, etc.) quanti-

tatively characterize the 20 amino acids. Researchers use these properties to under-

stand the underlying mechanisms influencing amino acid exchanges. We present a new

algorithm, ChemAlign, that uses physicochemical properties to achieve biologically

relevant multiple sequence alignments.

Results: ChemAlign achieves higher accuracies (reference sum of pairs scores) than

the other programs analyzed (ClustalW, MAFFT, ProbCons and PRALINE) for two

different classes of data sets. First, we consider some of the largest data sets in the

BAliBASE, HOMSTRAD, OXBench and SMART databases. Second, we include

data sets in the “Midnight Zone” (very low sequence identity (< 25%)). These two

classes represent the major challenges for current alignment programs. Additionally,

we introduce the Physicochemical Property Difference (PPD) score. This score is

the normalized difference of physicochemical property values between a calculated

and a reference alignment. It takes a step beyond sequence similarity and measures

characteristics of the amino acids to provide a more biologically relevant metric.

ChemAlign earns the highest PPD scores for both classes of data sets. These higher

accuracies translate into more biologically correct alignments, as is shown with an

example of identifying potential drug docking sites.

Availability: ChemAlign is implemented in the PSODA package. PSODA is open

source, free and available for Mac OS X, Linux, Windows and other operating systems

at http://dna.cs.byu.edu/psoda.
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4.1 Introduction

Multiple sequence alignments (MSAs) are at the heart of several bioinformatics re-

search areas. For example, alignments are used to identify conserved regions, which

are crucial to finding drug docking sites. Current methods can miss biologically rel-

evant features such as these because they only consider sequence similarity. Most of

them are further limited because they do not incorporate secondary structure infor-

mation. Particularly difficult for these methods are data sets with very low percent

identity. These data sets are one of the best sources for finding drug targets since they

contain distantly related species and therefore conserved regions are more obvious.

The globin family is a good example of this. Even though myoglobin was the first

protein to have its structure determined (Kendrew et al., 1958), the globin family

remains difficult for existing methods to align correctly. The HOMSTRAD database

(Mizuguchi et al., 1998) includes a data set with globin domains. This data set is at

the bottom of the “Twilight Zone” (Doolittle, 1994) with an average percent identity

of 25.9%. Of the algorithms tested here, the best one only aligns 38.4% of the po-

sitions correctly. On the other hand, using a physicochemical property, ChemAlign

correctly aligns 90.6% of the positions. Figure 4.1 shows an example hemoglobin pro-

tein with marked conserved regions. The regions are determined from an alignment

using ChemAlign, and appear at a possible drug docking site. ChemAlign is able to

find both regions, whereas other algorithms do not.

ChemAlign uses physicochemical properties to produce biologically relevant

alignments. Researchers have used these properties in other areas (Goldman and

Yang, 1994; Grantham, 1974; Xia and Li, 1998). The AAindex database (Kawashima

et al., 2008) has numerical values for each of the amino acids for over 500 proper-

ties. These properties include volume (Bigelow, 1967), polarity (Grantham, 1974) and

hydropathy (Kyte and Doolittle, 1982). The purpose of the properties is to quantita-

tively capture the differences between the amino acids. They have been used to iden-
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Figure 4.1: Hemoglobin (1A4FA) protein with highlighted conserved regions deter-
mined by ChemAlign. The regions are at a possible drug docking site. ChemAlign is
able to find both regions, whereas other algorithms are only able to find the one of
the left.

tify sites under selection (Woolley et al., 2003), in phylogeny reconstruction (Thorne

et al., 1996), to correlate and approximate the most commonly used substitution ma-

trices (Méndez et al., 2008; Pokarowski et al., 2007; Rudnicki and Komorowski, 2005),

to identify characteristics of alignments (Afonnikov and Kolchanov, 2004; Thorvald-

sen et al., 2005; Wrabl and Grishin, 2005), for protein secondary structure prediction

(Lim, 1974; Periti et al., 1967), pairwise alignment (Gonnet and Lisacek, 2002; Gupta

et al., 2005) and to identify particular proteins (Kim et al., 2000).

Physicochemical properties have a varying effect depending on the secondary

structure where they occur. ChemAlign incorporates knowledge of the secondary

structure elements (SSEs) (α-helices, β-strands and loops) to capitalize on this and
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address one of the problems with current alignment techniques as stated by Thorne

et al. (1996):

A problem with the Dayhoff approach is that it effectively models the

replacement process at the “average” site in the “average” protein. There

may be no such thing as an “average” site in an “average” protein.

Each amino acid in a protein belongs to one of the SSEs. Typically they are deter-

mined from tertiary structure information, if it is known (Kabsch and Sander, 1983),

or are predicted (e.g., using PSIRED (Jones, 1999)). Protein secondary structure has

long been understood to be more conserved than the amino acid sequence. This has

been verified through a number of different experiments and reports (Gibrat et al.,

1996; Rost, 1999; Sander and Schneider, 1991). Using this more resilient information

has improved the accuracy of sequence alignments (Heringa, 1999; Jennings et al.,

2001; Lüthy et al., 1991; Sturrock and Dryden, 1997; Zhang and Kahveci, 2006).

In this paper, we explore the hypothesis that using physicochemical proper-

ties and secondary structures produces biologically relevant multiple sequences align-

ments. To do so, we introduce ChemAlign, which incorporates both physicochemical

properties and secondary structures.

The remainder of this paper is as follows. First, we discuss alignment methods

related to ChemAlign. Next, we detail how physicochemical properties and secondary

structures are used in alignment. This is followed by comparisons of accuracy mea-

surements of ChemAlign and other programs for several data sets, with an in-depth

look at the globin domain family. We close this paper with some concluding remarks

and future directions of this work.
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4.2 Related Work

Multiple sequence alignment is an active area of research (Edgar and Batzoglou,

2006). Related to ChemAlign are sequence alignment algorithms that fit into three

categories:

1. Uses primary sequence information

2. Incorporates secondary structure elements

3. Integrates physicochemical properties

Each of these categories are reviewed in this section.

4.2.1 Alignment Using Primary Sequence Information

Among the primary sequence alignment applications, MAFFT (Katoh et al., 2005)

and ProbCons (Do et al., 2005) deserve special attention. In a benchmarking study

performed previously (Carroll et al., 2007), these two applications performed the best.

The defining characteristic of MAFFT is that it uses a fast Fourier transformation

(FFT) to quickly find peaks of similarity throughout the sequences. ProbCons on the

other hand combines techniques from hidden Markov models, progressive and itera-

tive refinement methods. While both ProbCons and MAFFT obtain high accuracies

scores from benchmark testing, they only use sequence similarity for alignment. Data

sets with low sequence identity are difficult for these algorithms to align correctly

since they do not leverage physicochemical properties and secondary structures. Fur-

thermore, regions of the alignment that are governed by a physicochemical property

more than sequence similarity will be missed using sequence information alone.

4.2.2 Alignment Using Secondary Structure

ChemAlign builds upon the success of other algorithms that use secondary struc-

ture information to improve the biological relevance of alignments. These alignment

algorithms either modify the gap penalties based on the secondary structure or ex-

68



plicitly incorporate the elements. ClustalW(Thompson et al., 1994) allows the user to

input secondary structure information only when aligning two sub-alignments (pro-

file alignments). It uses this information to adjust gap penalties, based on the SSEs.

Unfortunately, the secondary structures are not used for multiple sequence alignment.

Lüthy et al. (1991) were the first known group to use different substitution ma-

trices based on the SSEs. They calculated these matrices by gathering data sets with

known tertiary structure, and partitioned them according to their secondary struc-

tures. Other researchers have also developed algorithms that use secondary structures

for database searches and pairwise alignment (Fontana et al., 2005; Ginalski et al.,

2003, 2004; Jeong et al., 2006; Soding, 2005; Sturrock and Dryden, 1997; Taylor and

Orengo, 1989a). While using SSEs has improved these approaches, their algorithms

have not been extended to multiple sequence alignments.

PRALINE (Heringa, 1999) on the other hand is a MSA algorithm that incorpo-

rates secondary structure. First, it builds an alignment without secondary structure

information, then uses that alignment to predict the SSEs. PRALINE continues by

iterating between alignment and predicting the SSEs. Once it has the structures, it

uses Lüthy’s substitution matrices when the two amino acids have the same SSE.

Unfortunately, the SSEs are not incorporated in the initial alignment. PRALINE is

also subject to the same limitation as the primary sequence alignment algorithms—

that of not being able to correctly produce alignments governed by physicochemical

properties. Additionally, PRALINE is only available through an interactive website

and therefore requires substantial amounts of human interaction for large-scale use

or testing.

4.2.3 Alignment Using Physicochemical Properties

While researchers are using physicochemical properties for various analyses, few have

incorporated them into sequence alignment. Those that do, use them:
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1. In pairwise alignments

2. To find matching subsequences

3. To adjust gap penalties

ChemAlign extends these ideas to produce multiple sequence alignments. First,

Gonnet and Lisacek (2002) used both the physicochemical property hydrophobic-

ity and secondary structure assignments to build regular expressions (motifs). They

use these motifs to find similar genetic sequences in protein databases. Second, Gupta

et al. (2005) developed a pairwise similarity scoring method using a FFT algorithm to

find subsequences with high similarity for a single physicochemical property. Third,

the most notable use of physicochemical properties in MSA is ClustalW’s modifica-

tion of the gap open penalty. The penalty is reduced by one third for any position

within a stretch of five or more hydrophilic amino acids without a gap (Thompson

et al., 1994). These stretches usually indicate regions with a loop where gaps are more

likely. While this is a step in the right direction, it does not account for the multitude

of other characteristics that can be accounted for with physicochemical properties.

The improvement in accuracy seen with a minimal incorporation of physicochemical

properties in ClustalW reinforces an overall strategy using physicochemical properties

with secondary structures.

4.3 Methods

ChemAlign is a multiple sequence alignment algorithm that uses the physicochemical

property values and secondary structures of amino acids. It employs a traditional

dynamic programming (Needleman and Wunsch, 1970) approach during both the

pairwise and the progressive phases. After calculating all of the pairwise “distances”

between sequences, ChemAlign clusters them to produce a guide tree (Saitou and

Nei, 1987). This tree directs the order that sequences and alignments of sequences

are aligned in the progressive stage (Feng and Doolittle, 1987). ChemAlign also uses

70



affine gap penalties. Instead of using a substitution matrix based solely on log-odds

probabilities from an amino acid database, ChemAlign combines amino acid exchange

counts with normalized differences of a physicochemical property. Additionally, differ-

ent substitution matrices are employed for different SSEs. In the rest of this section,

we explain ChemAlign’s use of physicochemical properties and secondary structures,

how it calculates gap costs and PSODA, the package that ChemAlign is implemented

in.

4.3.1 Substitution Matrices

ChemAlign uses a hybrid substitution matrix comprised of both observed amino acid

exchanges and differences between physicochemical properties. First, to obtain the

observed amino acid exchanges, we build a reference database of alignments with their

secondary structures. We combined the OXBench database (Raghava et al., 2003)

with the respective secondary structures from the RCSB Protein Data Bank (PDB)

(Berman et al., 2000). To avoid adding noise, only those sequences in OXBench that

have an exact match in the PDB are retained. We count the number of each set of

amino acid pairs (for each column in the alignment), according to their SSEs (i.e.,

both α-helices, both β-strands, both loops or mismatch) producing four matrices

of observed amino acid exchanges Oα, Oβ, Ol, and Om. We calculate a normalized

difference matrix Dp for a physicochemical property p using Equation 4.1.

Dp
i,j = 1− 2 ∗ |p[i]− p[j]|

argmaxx(p[x])− argminy(p[y])
(4.1)

Here, p[i] is the value of a physicochemical property for amino acid i. The values

of Dp range from -1.0 for the most dissimilar pair of amino acids to 1.0 for identical

amino acids. For this work, we use the Effective Partition Energy (Miyazawa and

Jernigan, 1985) for its aggregate characteristics as an illustrative physicochemical

property (see Figure 4.2). This property includes hydrophobic, hydrogen bonding
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Figure 4.2: Values for the physicochemical property effective partition energy
(Miyazawa and Jernigan, 1985).

and electrostatic energies. Each of the O matrices are multiplied element-wise with

Dp to get Mα,Mβ,M l, and Mm, for α-helices, β-strands, loops and mismatches.

Combining the O matrices with Dp aggregates the benefits of each. Finally, as is

commonly done elsewhere (e.g., BLOSUM (Henikoff and Henikoff, 1992)), the log-

odds probabilities of the values in each of the M matrices are calculated to get the

substitution matrices Sα, Sβ, Sl and Sm:

Si,j =
1

λ
log

(
li,j
fifj

)
(4.2)

Here, li,j is the likelihood that amino acids i and j appear aligned in the database

and fi is the background frequency of amino acid i. Also, λ allows for scaling the

matrix. For each of the S matrices, λ is set to one. This results in four substitution

matrices: Sα, Sβ, Sl and Sm. These matrices are significantly different from each

other. Figure 4.3 reports the similarity distance for each pair of the S matrices,

BLOSUM62 (Henikoff and Henikoff, 1992) and GONNET80 (Gonnet et al., 1992)(two

of the most commonly used substitution matrices). The distances are calculated as
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Figure 4.2: a) Distances between the ChemAlign substitution matrices for α-helices
(Sα), β-strands (Sβ), loops (Sl), all others (Sm), BLOSUM62 (B62) and GONNET80
(G80). Distances are calculated as one minus the inner product. b) The minimum
spanning tree for the similarity scores. BLOSUM62 and GONNET80 are more similar
to each other than to any other matrix. Also, it is not surprising that the S matrices
cluster around the default substitution matrix Sm. Note, GONNET80 is the default
substitution matrix for ClustalW.

Figure 4.3. N is the log-odds ratios of the observed matches of the SSEs in the
OXBench-PDB database. Incorporating N into the Needleman-Wunsch values aligns
secondary structures, which are typically more conserved than the amino acids them-
selves.

An example calculation of the (mis)match score for two columns from two
sub-alignments using the S and N matrices is illustrated in Figure 4.4. In the figure,
each amino acid in the highlighted column of the first sub-alignment is matched with
each amino acid in the column of the other sub-alignment. ChemAlign uses the S
matrices to incorporate physicochemical properties and the N matrix to align the
SSEs. In the calculations, scalers for both the S and N matrices are used to reflect
a performance optimization in ChemAlign of aggregating identical amino acid-SSE
pairs. The (mis)match score is compared against affine gap scores to determine the
alignment.
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Figure 4.3: a) Distances between BLOSUM62 (B62), GONNET80 (G80) and the
ChemAlign substitution matrices for α-helices (Sα), β-strands (Sβ), loops (Sl) and
mismatches (Sm). Distances are calculated as one minus the inner product. b) The
minimum spanning tree for the similarity scores. BLOSUM62 and GONNET80 are
more similar to each other than to any other matrix. Also, it is not surprising that the
S matrices cluster around the mismatch substitution matrix Sm. Note, GONNET80
is the default substitution matrix for ClustalW.

α-helix β-strand loop
α-helix 7.11
β-strand -12.81 2.97

loop -2.42 -3.33 1.95

Figure 4.4: Secondary structure scoring matrix N . The values are log-odd ratios
based on observed counts in the OXBench-PDB database.

one minus the inner product of the two respective matrices. The figure also shows

the minimum spanning tree for these distances. Of all the matrices, BLOSUM62

and GONNET80 are the most similar. Additionally, the S matrices cluster around

the mismatch substitution matrix Sm. These observed differences in substitution

matrices shows the importance of customizing the matrices for each of the secondary

structures.

4.3.2 Incorporating Secondary Structure

ChemAlign uses a straightforward approach to incorporate protein secondary struc-

tures into both pairwise and progressive alignment. The secondary structure influ-

ences the alignment in two ways:
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(mis)match score =
Sm

N,D + Sm
N,S + Sm

N,H+
2Sl

N,R + 2Sα
N,D + 2Sα

N,S+ (a)
2Sm

N,H + 2× 2Sm
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+
Nl,α + Nl,α + Nl,β+
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ChemAlign

Sα Sβ Sl So BLOSUM62
Sβ 0.86
Sl 0.87 0.82
So 0.93 0.95 0.93

BLOSUM62 0.86 0.79 0.85 0.85
GONNET80 0.90 0.84 0.87 0.89 0.95

Fig. 1. Inner product of several substitution matrices. Note, GONNET80 is
the default substitution matrix for ClustalW.

secondary structures. It employs a traditional dynamic programming
(Needleman and Wunsch, 1970) approach during both the pairwise
and the progressive phases. It calculates a guide tree by clustering
pairwise “distances” (Saitou and Nei, 1987). This tree guides the
order that sequences and alignments of sequences are aligned in
the progressive stage (Feng and Doolittle, 1987). ChemAlign also
uses affine gap penalties. Instead of using a substitution matrix
based solely on log-odds probabilities from an amino acids database
(e.g., BLOSUM (Henikoff and Henikoff, 1992)) it combines
mutation counts with normalized differences of a physicochemical
property. Additionally, different substitution matrices are employed
for different secondary structure elements. In the rest of this section,
we explain ChemAlign’s use of physicochemical properties and
secondary structures, how it calculates gap cost and PSODA, the
package the ChemAlign is implemented in.

3.1 Substitution Matrices
ChemAlign uses a hybrid substitution matrix comprised of
both observed amino acid exchanges and differences between
physicochemical properties. First, to obtain the observed mutations,
we build a reference database of alignments with their secondary
structures. We combined the OXBench database (Raghava et al.,
2003) with the respective secondary structures from PDB (Berman
et al., 2000). To avoid adding additional noise to the sequences,
only those sequences in OXBench that have an exact match (based
on 100% sequence identity) in PDB are retained. We count the
number of each set of residue pairs (for each site in the alignment),
according to their secondary structure elements (both α-helices,
both β-strands, both loops or other) producing four matrices of
observed amino acid exchanges Oα, Oβ , Ol, and Oo, for α-
helices, β-strands, loops and all others respectively. We calculate
a normalized difference matrix Dp for a physicochemical property
p as in Equation 1.

Dp
i,j = 1− 2 ∗ abs(p[i]− p[j])

argmaxx(p[x])− argminy(p[y])
(1)

Here, p[i] is the value of a physicochemical property for amino acid
i. The values of Dp range from the most -1.0 for the most dissimilar
pair of amino acids to 1.0 for identical residues. For this work,
we use p = effective partition energy (Miyazawa and Jernigan,
1985) as an illustrative physicochemical property for its aggregate
characteristics. “The contact energies are effective interaction
energies between residues including not only hydrophobic energies
but other interaction energies specific to proteins such as hydrogen
bonding and electrostatic energies as well” (Miyazawa and Jernigan,
1985). Each of the O matrices are element-wise multiplied with Dp

to combine the benefits of each to get Mα, Mβ , M l, and Mo, for
α-helices, β-strands, loops and all others respectively. Finally, as
is commonly done elsewhere (Henikoff and Henikoff, 1992), the

α-helices β-strands loops
α-helices 7.107
β-strands -12.810 2.974

loops -2.417 -3.325 1.949

Fig. 2. Scoring matrix used for secondary structure elements. The values
log-odd ratios based on observed counts in the OXBench-PDB database (see
section 3.1).

N (loop)
N (α-helix)
N (α-helix)

D (α-helix)
S (α-helix)
H (β-strand)
R (loop)
R (loop)

9>>>>>>>>>>>>=>>>>>>>>>>>>;

(mis)match score =
So

N,D + So
N,S + So

N,H+

2Sl
N,R + 2Sα

N,D + 2Sα
N,S+ (a)

2So
N,H + 2× 2So

N,R
+
Nl,α + Nl,α + Nl,β+
2Nl,l + 2Nα,α + 2Nα,α+ (b)
2Nα,β + 2× 2Nα,l

Fig. 3. Example calculation of the (mis)match score using secondary
structure elements during the last step of the progressive phase for two
columns (NNN and DSHRR) of sub-alignments. The resulting alignment
is the 58th column in the final alignment of the CHROMO data set (see
Figure 4).

log-odds probability of the values in M are calculated to get the
substitution matrix S:

Si,j =
1

λ
log

„
li,j
fifj

«
Here, li,j is the likelihood that residues i and j appear aligned
in the database and fi is the background frequency of residue
i. These steps are repeated for each of the four partitions of
the database, α-helices, β-strands, loops and all others. The
resulting four substitution matrices Sα, Sβ , Sl and So are included
in the supplementary material. These matrices are significantly
different from each other. Figure 1 reports the inner product
between each pair of matrices. Talkaboutinnerproducts :
e.g., valuesbelow0.9aresignificantlydifferentfromeachother

3.2 Incorporating Secondary Structure
Thorne et al. wrote about one of the problems with current
substitution matrices:

A problem with the Dayhoff approach is that it effectively
models the replacement process at the “average” site in the
“average” protein. There may be no such thing as an “average”
site in an “average” protein. (Thorne et al., 1996)

ChemAlign uses a straightforward approach to address this problem
by incorporating protein secondary structures into both pairwise
and progressive alignment. The secondary structure influences the
alignment in two ways: first, the choice of a substitution matrix
and second, an additional score for (mis)match of the SSEs. First,
it uses a substitution matrix according to the SSEs of the two
residues currently being considered. If the SSEs are the same (either
both α-helices, both β-strands or both loops), then the respective
matrix is used (see section 3.1). If the SSEs are not the same, then
the default matrix, So, is used (see section 3.1). ChemAlign also
incorporates secondary structures by adding a (mis)match score for
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Figure 4.4: Example calculation of the (mis)match score using secondary structure
elements during the last step of the progressive phase for two columns (NNN and
DSHRR) of two sub-alignments. Part (a) uses the S substitution matrices and part
(b) the log-odds secondary structure matrix N .

4.3.4 PSODA

ChemAlign is implemented in the software package PSODA (?). PSODA is a compre-
hensive alignment and phylogenetic search package. It includes analysis under both
parsimony and maximum likelihood, visualization and analysis tools. PSODA uses a
NEXUS-based format file for commands and sequence data. It is open source, free
and available for Mac OS X, Linux, Windows and other operating systems. To invoke
ChemAlign, use the method ssalign (see section ?? for a more complete example).

4.4 Results

To quantitatively assess the performance of ChemAlign, its accuracy is compared with
that of ClustalW, MAFFT, ProbCons and PRALINE. These programs are chosen for
their ubiquity and performance (?). Both the reference sum of pairs score and the
Physicochemical Property Difference (PPD) scores are used in our evaluation. An
aggregate analysis of several data sets and an in-depth look at the globin domain
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Figure 4.4: Example calculation of the (mis)match score using secondary structure
elements during the last step of the progressive phase for two columns (NNN and
DSHRR) of two sub-alignments. Part (a) uses the S substitution matrices and part
(b) the log-odds secondary structure matrix N .

4.3.3 Gap Penalties

ChemAlign implements affine gap penalties with a user specified gap open penalty
(GOP) and gap extension penalty (GEP). Additionally, a user may specify a gap
distance penalty (GDP) (Thompson et al., 1994). This penalty increases the weight
of opening a gap as follows:

gap penalty(d) =


GEP d = 0

GOP
(
4− 2d

GDP

)
1 ≤ d ≤ GDP

GOP d > GDP

(4.4)

where d is the distance to the last gap. Using the gap distance penalty promotes align-
ments with gaps that are not close to other gaps, or in other words, more biologically
agreeable alignments.
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Figure 4.5: Example calculation of the (mis)match score using secondary structure
elements during the last step of the progressive phase for two columns (GNN and
DSHRR) of two sub-alignments. Part (a) uses the S substitution matrices and part
(b) the log-odds secondary structure matrix N .

distance penalty (GDP) (Thompson et al., 1994). This penalty increases the weight
of opening a gap as follows:

gap penalty(d) =


GEP d = 0

GOP
(
4− 2d

GDP

)
1 ≤ d ≤ GDP

GOP d > GDP

(4.4)

where d is the distance to the last gap. Using the gap distance penalty promotes align-
ments with gaps that are not close to other gaps, or in other words, more biologically
agreeable alignments.

4.3.4 PSODA

ChemAlign is implemented in the software package PSODA (Carroll et al., 2008a).
PSODA is a comprehensive alignment and phylogenetic search package. It includes
analysis under both parsimony and maximum likelihood, visualization and analysis
tools. PSODA uses a NEXUS-based format file for commands and sequence data. It
is open source, free and available for Mac OS X, Linux, Windows and other operating
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Figure 4.5: Example calculation of the (mis)match score using secondary structure
elements during the progressive phase for two columns (GNN and SHRR) of two
sub-alignments. Part (a) uses the S substitution matrices and part (b) the log-odds
secondary structure matrix N .

1. The choice of a substitution matrix

2. An additional score for (mis)matching of the SSEs

First, it uses a substitution matrix according to the SSEs of the two amino acids

currently being considered. If they are the same (either both α-helices, both β-

strands or both loops), then the Sα, Sβ or Sl matrix is used. If the SSEs are not the

same, then the mismatch matrix, Sm, is used. ChemAlign also incorporates secondary

structures by adding a (mis)match score for the SSEs to the (mis)match score for the

amino acids. The SSE scores are specified by the matrix Nc,d (where c and d are

SSEs) as shown in Figure 4.4. N is the log-odds ratios of the observed matches of the

SSEs in the OXBench-PDB database. For example, if the SSEs for two amino acids

are an α-helix and a β-strand, then 12.81 is subtracted from the (mis)match score.

Alternatively, if both SSEs are α-helices, then 7.11 is added. Incorporating N into

the Needleman-Wunsch values aligns secondary structures, which are typically more

conserved than the amino acids themselves.

An example calculation of the (mis)match score for two columns from two

sub-alignments using the S and N matrices is illustrated in Figure 4.5. In the figure,

each amino acid in the highlighted column of the first sub-alignment is matched with

each amino acid in the column of the other sub-alignment. For example, the first
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term in the calculation, SmG,S, is the value for aligning the glycine (G) in the upper

sub-alignment with the serine (S) in the lower sub-alignment. The Sm matrix is used

because the SSEs of this glycine and serine are not the same. Furthermore, the third

term, 2SlG,R, accounts for aligning the same glycine with the two arginines (R) in the

lower sub-alignment. Both the glycine and the set of arginines are in loop regions, so

the Sl matrix is used. The scaler in this term illustrates a performance optimization.

In ChemAlign, identical amino acid-SSE pairs are treated as a single pair with a

weight. This is a very common scenario, resulting in large reductions in execution

times.

4.3.3 Gap Penalties

ChemAlign implements affine gap penalties with a user specified gap open penalty

(GOP) and gap extension penalty (GEP). Additionally, a user may specify a gap

distance penalty (GDP) (Thompson et al., 1994). This penalty increases the weight

of opening a gap as follows:

gap penalty(d) =



GEP d = 0

GOP
(

4− 2d
GDP

)
1 ≤ d ≤ GDP

GOP d > GDP

(4.3)

where d is the number of amino acids in a sequence since the last gap. Using the gap

distance penalty promotes alignments with gaps that are not close to other gaps, or

in other words, more biologically agreeable alignments.

4.3.4 PSODA

ChemAlign is implemented in the software package PSODA (Carroll et al., 2008a).

PSODA is a comprehensive alignment and phylogenetic search package. It includes

analysis under both parsimony and maximum likelihood, visualization and analysis
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tools. PSODA uses a NEXUS-based format file for commands and sequence data. It

is open source, free and available for Mac OS X, Linux, Windows and other operating

systems. Inside of PSODA, the method ssalign is used to invoke ChemAlign (see

section 4.4.1 for a more complete example).

4.4 Results

To quantitatively assess the performance of ChemAlign, its accuracy is compared with

that of ClustalW, MAFFT, ProbCons and PRALINE. These programs are chosen for

their ubiquity and performance (Carroll et al., 2007). Both the reference sum of

pairs score and the Physicochemical Property Difference (PPD) scores are used in

our evaluation. An analysis of several data sets and an in-depth look at the globin

domain family are presented. In summary, ChemAlign achieves higher accuracy scores

and a more biologically meaningful alignment than the other programs tested.

4.4.1 Experimental Setup

To analyze the accuracy of ChemAlign, we look at two different classes of data sets.

The first class consists of thirteen of the largest data sets in the BAliBASE (Thompson

et al., 2005), HOMSTRAD, OXBench and SMART (Letunic et al., 2004) databases

(see Table 4.1). For the other class, we collect fourteen data sets with very low

sequence identity (< 22%) from the HOMSTRAD and SMART databases (see Ta-

ble 4.1). This range is commonly referred to as the “Midnight Zone” for sequence

alignment (Rost, 1997). While the two classes overlap in definition, each is considered

to explicitly address the two most difficult scenarios for MSAs. We combine each of

these data sets with the SSEs from the PDB. Sequences that did not have a perfect

sequence match in the PDB are filtered out.

The arguments we use for testing the different programs are given in Table 4.2.

For ChemAlign, we use the default gap distance penalty of four (see section 4.3.3).
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Table 4.1: Data Sets

Class Database Data Set Num. Taxa Ave. Chars % ID

L
ar

ge

BAliBASE BBS20008 17 90.2 20.6
BAliBASE BBS30025 19 89.8 17.5
BAliBASE BBS20036 20 71.4 35.2
BAliBASE lrr ref6 centre 115 23.6 20.0
HOMSTRAD az 27 232.7 22.4
HOMSTRAD globin 29 113.1 25.9
HOMSTRAD sermam 41 146.1 25.9
OXBench 12 52 98.0 27.7
OXBench 22 87 112.5 19.7
SMART FN3 37 83.2 16.2
SMART IG 41 94.5 12.5
SMART RRM 44 71.7 19.6
SMART WD40 54 41.0 17.3

M
id

n
ig

h
t

Z
on

e

HOMSTRAD Acetyltransf 6 224.0 16.0
HOMSTRAD ABC tran 6 351.8 15.0
SMART AAI 5 93.4 16.1
SMART C2 5 108.2 21.2
SMART CBS 12 50.0 19.1
SMART CHROMO 8 60.3 15.0
SMART CYCLIN 9 87.7 15.3
SMART HRDC 5 80.8 19.9
SMART HTH XRE 10 56.2 21.4
SMART HX 11 44.8 18.5
SMART PUA 5 76.2 17.9
SMART Pumilio 8 36.3 21.1
SMART SANT 7 52.2 17.9
SMART SPEC 8 103.1 16.0

Additionally, a range of GOP and GEPs are considered. For the GOPs, we explore

ten values from one tenth of the maximum value in Sm to the maximum value. For

each GOP, the GEPs range from one tenth of the GOP to the GOP itself. The next

set of arguments specify files containing the substitution matrices Sα, Sβ, Sl and

Sm. The last argument is a file containing the SSEs defined by DSSP (Kabsch and

Sander, 1983). For the other programs, we use the default arguments, as is commonly
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Table 4.2: Arguments Used For Alignment Programs

Program Version Arguments

ChemAlign 1.0 ssalign( gapdist=4 gapopen=<GOP>
gapext=<GEP> subMatA=Sα subMatB=Sβ

subMatL=Sl subMat=Sm ss=<SSE file>)
ClustalW 2.06 <defaults>
MAFFT 6.240 <defaults>
ProbCons 1.12 <defaults>
PRALINE - secondary structure prediction: PSIPRED

done. The exception to this is PRALINE, in which the secondary structure prediction

program PSIPRED is used.

To measure the statistical significance of the differences in accuracies between

alignment algorithms, we perform a Friedman rank test (Friedman, 1937) with both

the reference sum of pairs and PPD accuracy scores. This test is more conservative

than the Wilcoxon test, which has also been used to determine statistical significance

in other alignment studies (Edgar, 2004b).

4.4.2 Reference Sum of Pairs Score

Probably the most commonly applied metric for MSA algorithms is the reference

sum of pairs score. It reports the percentage of positions in a calculated alignment

that match the same character in a reference alignment. Let s1, . . . sn be sequences

of a calculated alignment, each of length l. Let r1, . . . rn be sequences of a reference

alignment, each of length p. Let q = min(l, p).

reference sum of pairs score =
1

nq

n∑
i

q∑
k

δ(si(k), ri(k)) (4.4)

δ(x, y) =


1 x = y

0 x 6= y
(4.5)
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This metric is generally preferred to the self sum of pairs score (Carrillo and Lipman,

1988) (the percentage of amino acids in each column that match for all pairs of

sequences within a single data set) since it evaluates how close an alignment is to the

“gold standard” alignment.

ChemAlign achieves significantly better reference sum of pairs scores than the

other methods tested. Figure 4.6 reports the scores for both the Large and Midnight

Zone data sets. The difference in scores are statistically significant according to the

Friedman rank test, with p-values of 3.7 × 10−6 and 4.2 × 10−6 for the Large and

Midnight Zone classes. ChemAlign performs between 48.7–91.1% and 44.8–80.4%

better on average for the Large and Midnight Zone data sets, and as much as 499.3%

better on a single data set (lrr ref6 centre). To put this in perspective, ChemAlign is

able to correctly align between 11,685–16,012 and 2,380–2,964 more positions in the

Large and Midnight Zone data sets respectively than the other methods.

4.4.3 Physicochemical Property Difference (PPD) Score

In addition to using the reference sum of pairs score, we also look at the normal-

ized difference in physicochemical properties values, or the PPD score. The score is

calculated as follows:

PPD score =
1

nq

n∑
i

q∑
k

Dp
si(k),ri(k)

(4.6)

where Dp is the normalized difference matrix of a physicochemical property p (see

section 4.3.1). PPD scores range from -1.0 to 1.0. A score of -1.0 means that all

of the amino acids in the calculated alignment are in the same respective position

as the amino acid that is the most dissimilar in terms of the physicochemical prop-

erty. For example, using the Effective Partition Energy, this would mean that all

of the sequences consist of only lysines (K) and phenylalanines (F), and that all of

the lysines in the calculated alignment match up with phenylalanines in the reference
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Figure 4.6: Reference Sum of Pairs Scores for the Large and Midnight Zone data
sets. This score is probably the most commonly employed accuracy measurement
of multiple sequence alignments. ChemAlign achieves the highest scores on all of
the data sets except for Pumilio—in which it is the second highest. The differences
between it and the other programs are as high as 499.3% (lrr ref6 centre).
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alignment since Dp(K,F) = −1.0. In practice, this is impossible, but serves as an

absolute minimum. In general, a negative PPD score means that the average amino

acid pairing in an alignment is worse than the average difference in the physicochem-

ical property values. A score of 1.0 means the calculated alignment is the same as

the reference alignment. This score takes a step beyond sequence similarity and mea-

sures characteristics of the amino acids. It can be adapted to account for multiple

physicochemical properties by incorporating them into D, with weights for each one.

We also evaluate the alignments generated from ChemAlign, ClustalW,

MAFFT, ProbCons and PRALINE using the PPD score (with the physicochemi-

cal property Effective Partition Energy) for the Large and Midnight Zone data sets.

ChemAlign achieves the highest average PPD score for each class, with the Large

data sets proving more difficult (see Figure 4.7). The differences in scores are statis-

tically significant according to the Friedman rank test, with p-values of 1.8 × 10−6

and 1.3 × 10−6 for the Large and Midnight Zone classes. ChemAlign performs be-

tween 50.8–64.0% and 26.1–76.1% better on average for the Large and Midnight Zone

classes, and as high as 1,049.6% better for a single data set (Acetyltransf). Addition-

ally, ChemAlign earns the best PPD score for each of the Large data sets, and for all

but the Pumilio data set in the Midnight Zone class. While the Effective Partition

Energy generally captures the forces of mutation here, researchers can also use the

PPD score to evaluate additional properties (i.e., polarity or volume) affecting their

alignments.

4.4.4 Globin Domain Alignment

The globin data set, used here for the purpose of example, was taken from the HOM-

STRAD database, and is composed of 41 protein sequences, all of which have repre-

sentative crystal structures in the PDB. Seven different categories of globin proteins

are represented:
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Figure 4.7: Physicochemical Property Difference Scores for the Large and Midnight
Zone data sets. ChemAlign achieves the highest scores on all of the data sets except
for Pumilio—in which it is the second highest. The differences between it and the
other programs are as high as 1,049.6% (Acetyltransf).
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• Two plant leghemoglobins (1BIN and 1LH1)

• Seven invertebrate hemoglobins (1ECD, 1HLB, 1HLM, 1ITH, 1MBA,

2HBG, and 3SDH)

• A curiously divergent lamprey hemoglobin (2LHB)

• Seven vertebrate myoglobins (1EMY, 1LHT, 1MBS, 1MYT, 1PMB, 1YMB,

and 2MM1)

• Eight vertebrate α-globins (1HDA, 1HDS, 1OUT, 1PBX, 1SPB, 2HHB,

2MHB, and 2PGH)

• Nine vertebrate β-globins (1FDH, 1HBH, 1HDA, 1HDS, 1OUT, 1SPG,

2HHB, 2MHB, and 2PGH)

• Seven globins that are derived copies or adapted to an extreme habitat

condition (1A4FA, 1A4FB, 1A6M, 1A9WE, 1CG5A, 1CG5B, and 1HBRA)

Such protein diversity, in terms of primary and secondary structure, as well as overall

function, makes accurate alignment notoriously difficult.

As mentioned in the introduction, the globin data set has a low percent identity

of 25.9%, making it difficult for current methods to correctly align. ChemAlign is

able to produce an alignment with 90.6% of the positions correct, while MAFFT only

achieves 21.2% of the characters correct (ClustalW: 38.4%, ProbCons: 23.6% and

PRALINE: 24.4%). In terms of percentages, ChemAlign is between 135.9–328.8%

better (3,727–4,951 more positions) than the other methods. ChemAlign earns a PPD

score of 0.79, which is between 76.2–242.6% better than the other methods. These

scores reflect that ChemAlign produces alignments with columns of higher Effective

Partition Energy similarity than the other algorithms. This is a characteristic of

biologically relevant alignments.

The first globin protein from each of the seven categories listed above are used

to illustrate the quality of alignments produced by ChemAlign. Figure 4.8 shows the

ChemAlign, ClustalW and PRALINE alignments of the first six α-helices of these
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ChemAlign
SS α1 α2 α3 α4 α5 α6
1BINA EKQDALVSSSFEAFK IPQYSVVFYTSILEK PAAKDL dp--- PKLTGHAEKLFALVRDSAG VVADaal---GSVHAQ

1ECD ADQISTVQAS-fdkv ---DPVGILYAVFKA PSIMAK LESIK APFETHANRIVGFFSKIIG i--EADVNTFVASHKP

2LHB AAEKTKIRSAWAPVY YETSGVDILVKFFTS PAAQEF ADELK ADVRWHAERIINAVDDAVA m--SMKLRNLSGKHAK

1EMY DGEWELVLKTWGKVE IPGHGETVFVRLFTG PETLEK EGEMK EDLKKQGVTVLTALGGILK h--EAEIQPLAQSHAT

1HDAA AADKGNVKAAWGKVG AAEYGAEALERMFLS PTTKTY ----- AQVKGHGAKVAAALTKAVE l--PGALSELSDLHAH

1FDHG EEDKATITSLWGKV- VEDAGGETLGRLLVV PWTQRF ASAIM PKVKAHGKKVLTSLGDAIK l--KGTFAQLSELHCD

1A4FA AADKTNVKGVFSKIS AEEYGAETLERMFTA PQTKTY ----- AQIKAHGKKVVAALVEAVN i--AGALSKLSDLHAQ

cons % 434522623284652 213283458284523 927333 21222 3255597348425541444 4 2325218524*52

ClustalW
SS α1 α2 α3 α4 α5 α6
1BINA EKQDALVSSSFEAF ipqysv--VFYTSILEK PAAKDL -vdpt -kltghaeklfalvrdsag TVVADaal---GSVHA

1ECD ADQISTVQASFDKV -dpvgi----LYAVFKA PSIMAK lesik apfethanrivgffskiig ieadvntfv---ASHK

2LHB AAEKTKIRSAWAPV yetsgv--DILVKFFTS PAAQEF adelk advrwhaeriinavddava msmklrnLs--gkhak

1EMY DGEWELVLKTWGKV ipghge--TVFVRLFTG PETLEK egemk edlkkqgvtvltalggilk heaeiqpla--qshat

1HDAA AADKGNVKAAWGKV aaeyga--EALERMFLS PTTKTY -dlsh aqvkghgakvaaaltkave lpgalsels--dlhah

1FDHG EEDKATITSLWGKV vedagg--ETLGRLLVV PWTQRF asaim pkvkahgkkvltslgdaik lkgtfaqls--elhcd

1A4FA AADKTNVKGVFSKI aeeyga--ETLERMFTA PQTKTY -dlqh aqikahgkkvvaalveavn iagalskls--dlhaq

cons % 43452262328466 223283 458284523 927333 14222 3255597348425541444 423243185 24742

PRALINE
SS α1 α2 α3 α4 α5 α6
1BINA EKQDALVSSSFEAF anipqysvvfytsilek paakdl vd--p pkltghaeklfalvrdsag tvvadaalgsv---ha------

1ECD ADQISTVQASFDK- ---kgdpvgilyavfka psimak lesik apfethanrivgffskiig ieadvntfvas---hk------

2LHB AAEKTKIRSAWAPV Y--etsgvdilvkffTs paaqef adelk advrwhaeriinavddava tekmsmklrnlsgkha-----k

1EMY DGEWELVLKTWGKV adipghgetvfvrlftg petlek egemk edlkkqgvtvltalggilk heaeiqplaqs---ha-----t

1HDAA AADKGNVKAAWGKV ghaaeygaealermfls pttkty ---sh aqvkghgakvaaaltkave lpgalselsdl---ha-----h

1FDHG EEDKATITSLWGKV V--edaggetlgrllvv pwtqrf asaim pkvkahgkkvltslgdaik lkgtfaqLsel---hc-----d

1A4FA AADKTNVKGVFSKI ghaeeygaetlermfta pqtkty ---qh aqikahgkkvvaalveavn iagalsklsdl---ha-----q

cons % 43452262328465 21213283458284523 927333 22222 3255597348425541444 42324318524 95 2

Figure 4.8: ChemAlign, ClustalW and PRALINE alignments of the globin data set.
Uppercase letters denote amino acids that match the reference data set. ChemAlign
is able to align the vast majority (90.6%) of the positions correctly. ClustalW accu-
racy is 38.4%. PRALINE correctly aligns only the first of the eight helices (24.4%).
The highlighted columns correspond with the conserved regions shown in Figure 4.1.
ChemAlign is able to find both of them, while ClustalW and PRALINE only find the
first one. Due to space constraints, only the first six helices are shown. Additionally,
only seven of the 41 species are included.

’average’ protein” (Thorne et al., 1996). Leveraging this additional information, it is
able to find more potential drug docking sites. ChemAlign achieves higher accuracies
for alignments with very low percent identity. It also obtains higher reference sum of
pairs accuracies for the largest data sets in the BAliBASE, HOMSTRAD, OXBench
and SMART databases. Additionally, we introduce the Physicochemical Property
Difference (PPD) score. This score measures the average difference in values for
a physicochemical property for a pairs of amino acids in an alignment. It takes
a step beyond sequence similarity and measures characteristics of the amino acids.
ChemAlign achieves the highest PPD scores for both classes of data sets.

ChemAlign is implemented in the open source package PSODA. PSODA is
free, and available for Mac OS X, Linux, Windows and other operating systems.

44

Figure 4.8: ChemAlign, ClustalW and PRALINE alignments of the globin data
set. The secondary structure and conservation percentage (divided by ten) are shown
above and beneath each alignment. Uppercase letters denote amino acids that match
the reference data set. ChemAlign is able to align the vast majority (90.6%) of the
positions correctly. ClustalW’s accuracy is 38.4%. PRALINE correctly aligns only
the first of the eight α-helices (24.4%). The columns with colored boxes correspond
with the conserved regions shown in Figure 4.1. ChemAlign is able to find both of
them, while ClustalW and PRALINE only find the first one. Due to space constraints,
only the first six α-helices are shown. Additionally, only seven of the 41 species are
included.

sequences. ChemAlign is able to correctly align the vast majority of the amino acids

throughout the data set. ClustalW aligns the first, part of the second and the third

α-helices correctly. PRALINE correctly aligns only the first of the eight α-helices.

Highlighted on the alignments are the most conserved regions (using a sliding window

of size three). ChemAlign is able to find both regions, while ClustalW and PRALINE

only find the first one. These regions correspond to the highlighted regions on the
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hemoglobin protein in Figure 4.1. The positions of these regions on the protein is

a potential drug docking site. Alignment methods that do not incorporate physico-

chemical properties and secondary structure information can obfuscate discovery of

such regions.

4.5 Conclusion

Multiple sequence alignments are the foundation for several bioinformatics research

areas. For example, identifying genes for drug development relies on an accurate

alignment of sequences. Current methods struggle to accurately align data sets with

low percent identity. ChemAlign is a new algorithm that addresses these problems

by using a physicochemical property to produce biologically relevant MSAs. It also

incorporates SSEs to overcome limitations employed by traditional approaches that

use the “’average’ site in the ’average’ protein” (Thorne et al., 1996). Leveraging

this additional information, it is able to find more potential drug docking sites than

other algorithms (see Figures 4.1 and 4.8). Furthermore, ChemAlign achieves higher

accuracies for data sets with very low percent identity. It also obtains higher reference

sum of pairs accuracies for the largest data sets in the BAliBASE, HOMSTRAD,

OXBench and SMART databases. Additionally, we introduce the Physicochemical

Property Difference (PPD) score. This score measures the average difference in values

for a physicochemical property for all pairs of amino acids in an alignment. It takes

a step beyond sequence similarity and measures characteristics of the amino acids.

ChemAlign achieves the highest PPD scores for both classes of data sets.

ChemAlign is implemented in the open source package PSODA. PSODA is

free, and available for Mac OS X, Linux, Windows and other operating systems.
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4.6 Future Work

There are several directions that we are working on in regards to ChemAlign. First,

we are extending the difference in physicochemical properties matrix, D, to handle

multiple properties with weights. Additionally, we are looking at increasing the speci-

ficity of the substitution matrices by using different physicochemical properties for

each of the secondary structures.
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Chapter 5

Relative Importance of Physicochemical Properties of Amino

Acids for Multiple Sequence Alignment

Hyrum D. Carroll, Kenneth A. Sundberg, Mark J. Clement, Quinn O. Snell and

David A. McClellan

Submitted to Nucleic Acids Research

Abstract

ChemAlign is a multiple sequence alignment algorithm that uses a single physico-

chemical property (e.g., residue volume, polarity, hydropathy) and secondary struc-

ture elements (α-helices, β-strands or loops) to create biologically meaningful align-

ments. In this paper, alignment accuracies are dramatically improved by ranking

physicochemical properties for each of the secondary structures. To establish the or-

derings, artificial neural networks are trained to predict protein secondary structures

found in the PDB database. The orderings are based on the Q3 scores for the de-

fault case, and the correlation coefficients for each of the secondary structures. The

most important properties are used to calculate substitution matrices. Using the

matrices along with an improved version of ChemAlign yields alignments with higher

accuracies.

Key words : multiple sequence alignment, physicochemical properties,

protein secondary structure prediction
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Figure 5.1: Values for the physicochemical property Helix coil equilibrium constant
(Ptitsyn and Finkelstein, 1983).

5.1 Introduction

Physicochemical properties of the amino acids are important to a number of areas in

bioinformatics. The AAindex database (Kawashima et al., 2008) has over 500 physic-

ochemical properties, such as volume (Bigelow, 1967), polarity (Grantham, 1974) and

hydropathy (Kyte and Doolittle, 1982). Using a single property to generate multiple

sequence alignments (MSAs) has significantly increased their accuracy compared to

other methods (Carroll et al., 2008b). A natural extension of this approach is to

combine multiple properties to further improve accuracy. A hurdle to accomplishing

this is knowing which properties to use. Testing and using all of these properties in

an analysis is usually time consuming and is not typically feasible. Instead, what

is needed is an ordering of these properties so that a subset can be used that best

summarizes and aggregates the net effect of several properties. An ordering is cal-

culated and used to produce MSAs with dramatically improved accuracies—15.8%

better compared to the original version of ChemAlign, and 72.2–121.3% better than

the other methods tested.
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A physicochemical property is an attribute of the amino acids that is numeri-

cally quantified as a rational number (see Figure 5.1 for an example). These properties

are important to a number of areas in bioinformatics research and analysis (Goldman

and Yang, 1994; Grantham, 1974; Lim, 1974; Xia and Li, 1998). In particular to the

area of multiple sequence alignments, researchers have used physicochemical proper-

ties in three different ways. First, they have correlated and approximated the most

commonly used substitution matrices with a few physicochemical properties (Méndez

et al., 2008; Pokarowski et al., 2007; Rudnicki and Komorowski, 2005). Second, oth-

ers have used the properties to calculate pairwise and multiple sequence alignments

(Carroll et al., 2008b; Gonnet and Lisacek, 2002; Gupta et al., 2005). Finally, other

studies have focused on identifying characteristics of the calculated alignment (Afon-

nikov and Kolchanov, 2004; Thorvaldsen et al., 2005; Woolley et al., 2003; Wrabl and

Grishin, 2005). Using multiple physicochemical properties for MSA builds upon the

successes of these researchers.

Accuracies of MSAs can be dramatically improved by using an ordering of the

physicochemical properties. To quantify the influence of each property, an artificial

neural network (ANN) is developed to predict the protein secondary structure of an

amino acid using that property. Instead of amino acids as inputs to the ANNs, they

are encoded by the values of a physicochemical property. Using ANNs to determine

the ordering of the properties is based on the idea that, with the input data constant,

there is a correlation between the encoding of that data and the accuracy of the net-

work. In more colloquial terms, this idea is known in the negative form as “garbage

in, garbage out”. There are two main characteristics of amino acids supporting this

idea. First, secondary structure is more conserved than the primary sequence. This

statement has been verified through a number of different experiments and reports

(Gibrat et al., 1996; Rost, 1999; Sander and Schneider, 1991). Second, the secondary

structure is a reliable attribute of an amino acid. In other words, it can be determin-
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istically assigned given the tertiary structure (Kabsch and Sander, 1983). Leveraging

these two advantages provides a vehicle to determine the relative importance of the

properties.

In the remainder of this paper, details of constructing and training the ANNs

are given. Next, the metrics for determining the orderings are specified, followed by

our method to construct the substitution matrices for alignment. The metrics for

the accuracy of a MSA are also presented. This is followed by the results of the

secondary structure predictions—the ordering of the physicochemical properties—

and the accuracies of the MSAs. We close this paper with some concluding remarks.

5.2 Methods

This section details the six steps to calculate multiple sequence alignments using four

orderings of the physicochemical properties (see Figure 5.2):

1. Secondary Structure Prediction

2. Q3 and Correlation Coefficients Orderings

3. Normalized Physicochemical Property Difference Matrices

4. Observed Amino Acid Exchanges

5. Physicochemical Property Substitution Matrices

6. Weighted Physicochemical Property Difference Matrices

7. Multiple Sequence Alignments

Each step is addressed in a subsection.

5.2.1 Secondary Structure Prediction

With the goal of calculating an ordering for all of the physicochemical properties,

ANNs are employed to predict the secondary structure of protein sequences. ANNs

are machine learning algorithms inspired by the human nervous system. In an ANN,

nodes (representing neurons) are connected together, and weights are assigned to
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1: Secondary
Structure
Prediction

Physicochemical
Properties

2: Q3 & Correlation 
Coefficients Orderings

(Rα, Rβ, Rl, Rm)

RCSB
PDB

5: Substitution 
Matrices

(S{α-p, β-p, l-p, m-p})

7: Multiple 
Sequence

Alignments

6: Weighted 
Substitution Matrices 

(Wα, Wβ, Wl, Wm)

Reference
Alignments & SSEs

4: Observed
AA Exchanges
(Oα, Oβ, Ol, Om)

3: Difference 
Matrices (Dp)

Figure 5.2: The process to calculate multiple sequences alignments using the four
orderings of physicochemical properties. Numbers subsections within section 5.2 that
detail the given step. Weights and matrix variables are shown in parenthesis.

the edges between the nodes. These weights are adjusted, or learned, by looking at

training data. ANNs typically have one or more layers of hidden nodes in between

the input and output node layers. After a network is trained, the weights are fixed

and the network is used to calculate predicted output for new data.

For the secondary structure predictions, cascade-correlation artificial neural

networks (Fahlman and Lebiere, 1990) (CCANNs) are used. CCANNS typically learn

the underlying function from the training data in less time than traditional ANNs.

Additionally, they learn the size and topology of the network instead of assuming

a fixed architecture (see Figure 5.3). A CCANN begins with a minimal network

topology of just input and output nodes. The weights are set to maximize the accuracy

of the output for the training data. In the second iteration, a hidden node is added,
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Figure 5.3: Graphical representation of the first three training iterations of a cascade-
correlation artificial neural network. The inputs are a window of the physicochemical
property values for thirteen amino acids. The output is either an α-helix, β-strand
or a loop. Solid dark edges between nodes are repeatedly trained. Dashed edges are
trained only in the current iteration. Gray lines are fixed.

and all of the weights are adjusted. At the end of this iteration, the weights to the

hidden node are fixed. For the third iteration, an additional hidden node is added,

and all but the fixed weights are adjusted. This process continues until the error is

reduced to a specified amount or for a specified number of iterations or time.

The ANNs are trained using the sequences in the RCSB Protein Data Bank

(PDB) (Berman et al., 2000) that are annotated with secondary structures. A testing

set of 96 sequences from the CASP7 (Trapane and Lattman, 2007) competition are
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removed. For each amino acid in either the training or the test set, a window of amino

acid positions is included, adding the closest neighbors on each side (if present). A

window size of thirteen is employed, as is commonly done for secondary structure

predictions (e.g., for PHD (Rost and Sander, 1993)). After removing ambiguous

instances from the training set, additional instances are randomly filtered out so that

there is a even distribution of each of the secondary structures. In all, 14,220 training

instances are used.

Crucial to the success of an ANN is the encoding of data for input. For each of

the training and test instances, instead of using the amino acid, the physicochemical

property value is used. Typically, predictors use an orthogonal encoding of the amino

acids, requiring 20 inputs for each position. Using the physicochemical properties

reduces the number of inputs to be learned during training since they are already ra-

tional numbers. The ANNs are trained to predict one of the three secondary structure

elements (SSEs) (α-helix, β-strand or loop).

5.2.2 Q3 and Correlation Coefficients Orderings

To calculate the ordering of the physicochemical properties for the default case, the

Q3 score is used to evaluate the predictions on the CASP7 test sequences. In general,

the Q3 score is the percentage of predictions that are correct. Let i and j be the

predicted and actual SSE respectively. Let Bij be the number of occurrences of i and

j. The score is calculated as in Equation 5.1.

Q3 = 100

3∑
i=1

Bi,i

3∑
i=1

3∑
j=1

Bi,j

(5.1)

The scores are sorted by their rank and assigned to Rm (the m stands for mismatch,

since these rankings are used when the SSEs do not match) (see Figure 5.2).
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While the Q3 score aggregates the predictions of α-helices, β-strands and loops,

the Pearson correlation coefficients is used to order the physicochemical properties for

each SSE. For secondary structure predictions, it is often referred to as the Matthews

correlation coefficient (Matthews, 1975) since he was the first to apply it to this area.

It is calculated as in Equation 5.2 where T Pe , TNe , F P
e and FN

e are the true positive,

true negative, false positive and false negative values for the SSE e.

Ce =
T Pe T

N
e − F P

e F
N
e√

(T Pe + FN
e ) (T Pe + F P

e ) (TNe + F P
e ) (TNe + FN

e )
(5.2)

This metric measures how strongly the average prediction correlates with the given

assignment. Again, the orderings are sorted by rank and assigned to Rα, Rβ and Rl

respectively.

In addition to the applicability of these ordering to MSAs, they can also be used

in many of the other areas of bioinformatics that leverage physicochemical properties.

5.2.3 Physicochemical Property Difference Matrices

A normalized difference matrix, Dp, is calculated for each physicochemical property

p, as in Equation 5.3.

Dp
i,j = 1− 2 |p[i]− p[j]|

argmaxx(p[x])− argminy(p[y])
(5.3)

Here, p[i] is the value for amino acid i for the physicochemical property p. The values

of Dp range from -1.0 for the most dissimilar pair of amino acids to 1.0 for identical

amino acids. As an example, DHelix coil equilibrium constant
D,G = 0.91, since aspartic acid

(D) and glycine (G) are very similar in terms of the property Helix coil equilibrium

constant (see Figure 5.1).
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5.2.4 Observed Amino Acid Exchanges

To obtain the observed amino acid exchange counts, a reference database of align-

ments is built with their secondary structures. The OXBench database (Raghava

et al., 2003) is combined with the respective secondary structures from the PDB. To

avoid adding noise, only those sequences in OXBench that have an exact match in

the PDB are retained. The number of each set of amino acid pairs (for each column

in the alignment) is tabulated, according to their SSEs (i.e., both α-helices, both

β-strands, both loops or mismatch) producing four matrices of observed amino acid

exchanges: Oα, Oβ, Ol, and Om.

5.2.5 Physicochemical Property Substitution Matrices

To calculate the substitution matrices, the Dp is multiplied element-wise with each

of the Oα, Oβ, Ol and Om matrices to produce Mα-p,Mβ-p,M l-p, and Mm-p, for α-

helices, β-strands, loops and the mismatch case (see Figure 5.2). Combining the

physicochemical properties difference matrix and the Oα, Oβ, Ol, Om matrices, merges

a theoretical and data-driven approach. Furthermore, the combined matrices achieve

more accurate MSAs than using either component individually. Next, the log-odds

ratios of Mα-p,Mβ-p,M l-p, and Mm-p are calculated (see Equation 5.4).

SSSE-p
i,j =

1

λ
log

 lSSE-p
i,j

fSSE-p
i fSSE-p

j

 (5.4)

Here, lSSE-p
i,j is the likelihood that amino acids i and j appear aligned in the database,

and are both in the same secondary structure, SSE. Also, fSSE-p
i is the background

frequency of amino acid i, for the same criteria. Both lSSE-p
i,j and fSSE-p

i are derived

from the MSSE-p matrix.

Taking the log-odds ratios aids the alignment process to identify amino acids

that are less common, and therefore are more likely to be aligned together. This prac-
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tice is employed to calculate the most commonly used current substitution matrices

(Dayhoff et al., 1978; Gonnet et al., 1992; Henikoff and Henikoff, 1992).

5.2.6 Weighted Substitution Matrices

Weights, wp, are assigned for each physicochemical property p, for each of the four

orderings, Rα, Rβ, Rl and Rm. The weight is determined by the exponentially de-

caying function:
(

1
2

)n
, with n being the rank of p. This function combines multiple

properties and favors the best performing ones. It performs better than other ana-

lyzed functions (i.e., weights proportional to the rank, etc.) (data not shown). Due

to the inherent reduction in the values for the weights, only the top ten properties in

each ordering are given weights.

Weighted substitution matrices are the summation of the product of the top

ten weights and the respective physicochemical property substitution matrix (see

Equation 5.5).

SSSE
i,j =

10∑
k=1

wpk
SSSE-pk
i,j (5.5)

Here, pk is the kth ranked physicochemical property. This step is repeated for each of

the orderings, producing Sα, Sβ, Sl, and Sm (see Figure 5.2).

5.2.7 Multiple Sequence Alignments

ChemAlign version 1.4 (ChemAlign-weights) uses the Sα, Sβ, Sl, and Sm substitution

matrices to produce multiple sequence alignments of thirteen of the largest data sets

in the BAliBASE (Thompson et al., 2005), HOMSTRAD (Mizuguchi et al., 1998),

OXBench and SMART (Letunic et al., 2004) databases. These data sets range from

having 17–115 taxa. The average length of the sequences in each data set ranges

from 23.6–232.7 amino acids. Also, the percent identity is very low with all of the

data sets ranging from 12.5–27.7%, except for one that has 35.2%. It incorporates
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physicochemical properties and secondary structures to align multiple sequences of

amino acids. It uses a different substitution matrix when the secondary structures

of the sequences match, and a default matrix when they do not. Additionally, affine

gap penalties are used for each of the secondary structures and the default case.

The reference sum of pairs score is used to evaluate the accuracy of the align-

ments. It reports the percentage of positions in a calculated alignment that match

the same character in a reference alignment. Let s1, . . . sn be sequences of a calculated

alignment, each of length l. Let r1, . . . rn be sequences of a reference alignment, each

of length p. Let q = min(l, p).

reference sum of pairs score =
1

nq

n∑
i

q∑
k

δ(si(k), ri(k)) (5.6)

δ(x, y) =


1 x = y

0 x 6= y
(5.7)

This metric is generally preferred to the self sum of pairs score (Carrillo and Lipman,

1988). The self sum of pairs measures the percentage of amino acids in each column

that match for all pairs of sequences within a single data set. The reference sum

of pairs score is favored because it evaluates how close an alignment is to the “gold

standard” alignment.

In addition to the the reference sum of pairs scores, the Physicochemical Prop-

erties Difference (PPD) score (Carroll et al., 2008b) is calculated. This score is ex-

tended to measure the average difference in values for multiple physicochemical prop-

erties for all pairs of amino acids in an alignment using the weighted physicochemical

property difference matrices for mismatches:

PPD score =
1

nq

n∑
i

q∑
k

10∑
k=1

wpk
Dpk

si(k),ri(k)
(5.8)
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It takes a step beyond sequence similarity and measures characteristics of the amino

acids, making it more biologically relevant. PPD scores range from -1.0 to 1.0, with

higher scores meaning that there is more similarity in the alignment in terms of the

physicochemical properties.

5.3 Results

5.3.1 Secondary Structure Predictions

To obtain an ordering of physicochemical properties that improves multiple sequence

alignments, cascade-correlation artificial neural networks are employed with amino

acid sequences encoded with the values of a physicochemical property. The Q3 score

and the correlation coefficients are used to obtain four orderings of the properties:

one for a default case and one for each of the secondary structures. Table 5.1 reports

the rank and the property used to build the best ten predictors for each case. Almost

all of the best predictors of α-helices include properties that explicitly capture helical

properties. The same is true for β-strands and, to a slightly lesser degree, loops. This

serves as an informal validation of the prediction process. Some of the properties

with the highest Q3 scores are the same properties that achieve the best correlation

coefficients. This is to be expected.

5.3.2 Multiple Sequence Alignment Accuracies

The substitution matrices calculated from the ordered lists of physicochemical proper-

ties are used to generate multiple sequence alignments using ChemAlign-weights. The

alignments achieve higher reference sum of pairs scores than other algorithms tested,

including ChemAlign. Figure 5.4 illustrates these scores for ChemAlign-weights,

ChemAlign(Carroll et al., 2008b), ClustalW (Larkin et al., 2007), and PRALINE

(Heringa, 1999). ClustalW is included because it is probably the most commonly used
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Table 5.1: Physicochemical Properties Of The Best Secondary Structure Predictors

Rank Physicochemical Property AAindex ID
α

-h
el

ic
es

1 Free energy in α-helical region MUNV940102
2 Weights for α-helix at the window position of -1 QIAN880106
3 Free energy in α-helical conformation MUNV940101
4 Helix coil equilibrium constant PTIO830101
5 Normalized positional residue freq. at helix termini C1 AURR980115
6 α-helix propensity of position 44 in T4 lysozyme BLAM930101
7 Normalized positional residue freq. at helix termini C4 AURR980112
8 Information measure for middle helix ROBB760103
9 Side chain angle θ(AAR) LEVM760103

10 Normalized positional residue freq. at helix termini C3 AURR980113

β
-s

tr
an

ds

1 Thermodynamic β-sheet propensity KIMC930101
2 Average relative probability of β-sheet KANM800102
3 8 Å contact number NISK800101
4 β-coil equilibrium constant PTIO830102
5 Average surrounding hydrophobicity MANP780101
6 Surrounding hydrophobicity in folded form PONP800101
7 Normalized frequency of β-sheet with weights LEVM780102
8 Free energy in β-strand conformation MUNV940103
9 Normalized frequency of β-sheet from CF PALJ810104

10 Average relative probability of inner β-sheet KANM800104

L
oo

ps

1 Helix coil equilibrium constant PTIO830101
2 α-helix propensity of position 44 in T4 lysozyme BLAM930101
3 Information measure for coil ROBB760112
4 Weights for coil at the window position of 1 QIAN880134
5 Smoothed υ steric parameter FAUJ880102
6 Thermodynamic β-sheet propensity KIMC930101
7 Weights for coil at the window position of -1 QIAN880132
8 δ G values for the peptides extrapolated to 0 M urea ONEK900101
9 Weights for coil at the window position of -2 QIAN880131

10 Normalized frequency of reverse turn, with weights LEVM780103

D
ef

au
lt

1 Helix coil equilibrium constant PTIO830101
2 Thermodynamic β-sheet propensity KIMC930101
3 Weights for coil at the window position of 0 QIAN880133
4 δ G values for the peptides extrapolated to 0 M urea ONEK900101
5 α-helix propensity of position 44 in T4 lysozyme BLAM930101
6 Zimm Bragg parameters at 20◦C SUEM840101
7 Information measure for C-terminal helix ROBB760104
8 Weights for coil at the window position of -1 QIAN880132
9 Information measure for middle helix ROBB760103

10 Helix formation parameters (δ δ G) ONEK900102
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Figure 5.4: Reference Sum of Pairs scores. Combining several physicochemical prop-
erties into a different substitution matrix for each of the secondary structure elements
and another one for the default case yields more accurate alignment using ChemAlign.

MSA program, and PRALINE because it incorporates SSEs into MSAs. ChemAlign-

weights performs between 72.2–121.3% better on average across these data sets than

these methods, and 15.8% better than ChemAlign. To help put this in perspective,

ChemAlign-weights correctly aligns between 17,588–21,916 more amino acids than the

other algorithms for these data sets, and 5,904 more amino acids than ChemAlign.

While aligning one additional amino acid correctly can change the conclusions of an

analysis using a multiple sequence alignment, certainly 21,000 more amino acids can

have a larger impact. The differences in scores are statistically significant according

to the Friedman rank test (Friedman, 1937), with a p-value � 0.001.

ChemAlign-weights performs better than ChemAlign in all but two cases. For

the llr ref6 centre data set, ChemAlign-weights adds an additional column of gaps

near the end of the sequences, in one of the later progressive phases. For the globin

data set, differences in the alignments are mostly in the mis-alignment of a single
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Figure 5.5: PPD scores. Combining several physicochemical properties into a differ-
ent substitution matrix for each of the secondary structure elements and another one
for the default case yields more accurate alignment using ChemAlign.

column in between the first and second α-helices. However, ChemAlign-weights is

backwards compatible with ChemAlign, allowing for previous techniques to be used,

producing the alignments with the higher accuracies.

The alignments generated from ChemAlign-weights and ChemAlign, ClustalW

and PRALINE are also evaluated using the PPD score using the physicochemical

property orderings Om. ChemAlign-weights achieves the highest average PPD score

(see Figure 5.5). It earns scores between 88.8–105.3% better on average than the other

methods, and 25.2% better than ChemAlign. These score differences are statistically

significant (Friedman Rank Test) with a p-value � 0.001.

5.4 Conclusion

Multiple sequence alignments generated using a single physicochemical property have

been shown to be more accurate than existing methods (Carroll et al., 2008b). Here,
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multiple properties are combined to substantial improve accuracies. To do so, four

orderings of the physicochemical properties are calculated—one for a default case

and one for each of the three secondary structures. Each ordering is established by

the Q3 score and the correlation coefficients of artificial neural networks trained to

predict protein secondary structures. The results presented here quantify the relative

importance of over 500 chemical properties in the AAindex database. Weights are

assigned to the properties according to their rank, and four substitution matrices are

calculated. These matrices are used by ChemAlign-weights to align thirteen of the

largest data sets in the BAliBASE, HOMSTRAD, OXBench and SMART databases.

ChemAlign-weights correctly aligns as many as over 21,000 more amino acids than

the other methods tested and achieves the highest average accuracy.
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Chapter 6

Conclusion

Multiple sequence alignments are the foundation of analysis in bioinformat-

ics. An example application of alignments is finding drug docking sites. Conserved

columns are identified from the alignments and the corresponding areas are analyzed

on the tertiary structure of a protein. When a suitable candidate is found, drugs can

be developed to change the function of that protein.

There are three main deficiencies with calculating biologically relevant MSAs

using current approaches:

1. Optimization for sequence similarity

2. Ignoring secondary structure information

3. Static comparison of sequences

First, current MSA algorithms are mostly based on sequence similarity and miss

some conserved columns. Without the conserved columns identified, the potential

drug docking site is overlooked. Second, secondary structures provides pertinent

information to producing biologically accurate alignments. Additionally, different

positions on a protein have different exchangabilities due to their location. Current

methods use the “’average’ site in the ’average’ protein” (Thorne et al., 1996) by

using a static evaluation function, limiting their sensitivity.
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6.1 ChemAlign

ChemAlign is a MSA algorithm that incorporates physicochemical properties and pro-

tein secondary structures to overcome the three main challenges of current algorithms.

First, it identifies similarity with physicochemical properties. Since the exchangabilil-

ity of amino acids is based on their physicochemical properties, ChemAlign uses these

properties to evaluate scores for matching amino acid pairs during alignment. It is

the first known multiple sequence alignment algorithm to account for physicochemical

properties. Second, ChemAlign explicitly incorporates secondary structure elements

into its evaluation function. Third, ChemAlign utilizes a dynamic evaluation func-

tion, based on the secondary structures of the amino acids to account for different

properties having different effects in different secondary structures. These three char-

acteristics allow ChemAlign to produce biologically relevant alignments.

ChemAlign leverages physicochemical properties to achieve higher accuracies

than existing MSA algorithms. The initial version uses a single property to earn

significantly better reference sum of pairs scores than the other methods tested (see

Figure 4.6). The difference in scores are statistically significant according to the

Friedman rank test, with p-values � 0.001. ChemAlign performs as well as 91.1%

better on average for the Large data sets, and as much as 499.3% better on a single

data set. This means that it correctly aligns 16,012 more positions in the Large data

sets.

Additionally, a new MSA metric, the Physicochemical Property Difference

(PPD) score, is introduced that captures the average difference between physico-

chemical properties of a calculated alignment and a reference alignment. ChemAlign

achieves the highest average PPD score (see Figure 4.7). The differences in scores are

again statistically significant, with p-values� 0.001. The differences are also relevant

with ChemAlign performing as well as 64.0% better on average for the Large class,

and as high as 1,049.6% better for a single data set.
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Furthermore, an example of using an alignment of globin domains to predict

drug docking positions is included (see Figure 1.2). For this data set, ChemAlign

is able to detect the two conserved columns, whereas PRALINE and ClustalW only

find one of them. This illustrates just one of the many effects derived from having a

more accurate alignment.

While the accuracy of the initial version of ChemAlign is impressive, incorpo-

rating multiple physicochemical properties yields further improvement in accuracies.

With over 500 properties cataloged in the AAindex database, the challenge is which

subset of properties to use to best summarize and aggregate the net effect of several

properties. In all, 544 properties are analyzed, bringing the total number of possible

combinations of ten properties to 5.76 × 1020. Since a brute force approach is not

feasible, for each property, an artificial neural network is trained to predict protein

secondary structures for sequences in the PDB. Instead of using a window of amino

acids for the input—as is commonly done—the numerical value of the physicochemi-

cal property is used. The Q3 scores and correlation coefficients are sorted, and used

to identify the most important properties. The normalized difference matrices for

the top ten properties are combined with observed amino acid exchanges to produce

four substitution matrices—one for each of the three secondary structures and one

for the default case. Using these substitution matrices with an improved version of

ChemAlign (v1.4) yields even higher accuracies (see Figure 5.4). ChemAlign v1.4

performs as well as 121.3% better on average than the other methods tested, and

15.8% better than ChemAlign v1.0. This corresponds to correctly aligning 21,916

more amino acids than the other algorithms, and 5,904 more than ChemAlign v1.0.

Again the differences in scores are statistically significant, with a p-value � 0.001.

Additionally, ChemAlign earns the highest average PPD score, which is as much as

105.3% better on average than other methods and 25.2% better than chemAlign v1.0
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(see Figure 5.5). These score differences are statistically significant with a p-value

� 0.001.

ChemAlign is implemented in the open source package PSODA. PSODA is

free and available for Mac OS X, Linux, Windows and other operating systems at

http://dna.cs.byu.edu/psoda.

6.2 DNA Reference Multiple Sequence Alignment Database

In addition to a novel MSA algorithm, the first known reference alignment database

for protein-coding DNA has been published. Several reference amino acid alignment

databases exist (e.g., BAliBASE, OXBench, PREFAB, SMART) to evaluate new and

existing MSA algorithms. However, these database can only evaluate amino acid

sequences.

Included in this work is the first known multiple DNA sequence alignment

benchmark databases that are:

1. Comprised of protein-coding portions of DNA

2. Based on biological features such as the tertiary structure of encoded pro-

teins

The databases contain a total of 3,545 alignments, comprising of 68,581 sequences.

They are divided into two categories: mdsa 100s and mdsa all. The mdsa 100s ver-

sion contains the alignments of the data sets that TBLASTN found 100% sequence

identity for each sequence. The mdsa all version includes all hits with an E-value

score above the threshold of 0.001. A primary use of these databases is to bench-

mark the performance of MSA applications on DNA data sets. The first such case

study is included in this work. The results show that the most accurate MSA appli-

cations on protein sequences are not the most accurate for protein-coding DNA data

sets. This is important information for researchers using these alignment methods for

protein-coding DNA.
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In conclusion, this dissertation details a multiple sequence alignment algo-

rithm, ChemAlign, that optimizes for different chemical properties in each secondary

structure. ChemAlign achieves more accurate alignments than other algorithms.

Furthermore, these alignments are more biologically relevant. Additionally, this

dissertation introduces a biologically sensitive multiple sequence alignment metric,

the Physicochemical Properties Difference score. Finally, the first known reference

protein-coding DNA multiple sequence alignment database and accompanying case

study of the accuracy of several alignment algorithms using DNA are presented.
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