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Abstract: More and more, the analysis of clustering results becomes difficult as the number of
variables considered increases, and the number of classes is not low. Sometimes concept induction
methods are used to associate concepts to every class and use to be expressed as boolean expres-
sions, easy to understand and supposedly providing good support to decision making. It has been
seen that most of the concept induction algorithms priorize the compacity of the final expressions,
as well as their predictive power. However, for descriptive purposes, when the meaning of classes
has to be recognized and understood by the expert, this is not the best approach, since compacity
directly implies elimination of redundancies or strong associations, while comprehension of the
class is mainly based in understanding how variables interact among them inside the class. Here a
method to induce conceptual descriptions of classes is proposed, providing non-minimal descrip-
tions of the classes, but richer ones including the characteristics that distinguishes a class from the
others, in such a way that expert can easily recognize the essence of the class, and conceptualize
it on the bases of local interactions among all variables observed inside every class. This kind of
interpretations provide an excellent support for later decision support systems.

Keywords: Knowledge Discovery and Data Mining; Hierarchical clustering; class interpretation;
Induction rules; Waste Water treatment plants.

1 INTRODUCTION

In automatic classification where the classes composing a certain domain are to be discovered,
one of the most important required processes and one of the less standardized, is the interpretation
of the classes (Gordon [1994]), closely related with validation Volle [1985.], and critical in the
later usefulness of the discovered knowledge. The interpretation of the classes, so important
to understand the meaning of the obtained classification as well as the structure of the domain,
used to be done in an artistic-like way Hand [1996]. But this process becomes more and more
complicated as the number of classes grows. This work is involved with the automatic generation
of useful interpretations of classes in such a way that decisions about the action associated to a
new object can be modeled and it is oriented to develop, in the long term, intelligent decision
support systems.

The presented proposal integrates different findings from a series of previous works: Pérez-
Bonilla and Gibert [2007] proposed a single methodological tool which takes advantage of the
hierarchical structure of the clustering to overcome some of the limitations observed in Gibert
et al. [1998], Gibert [1996]. In the present work, for the first time, the whole proposal, named
Conceptual Characterization by Embedded Conditioning (CCEC), is applied to a real environ-
mental data set and different possibilities for integrating knowledge from one iteration to the



Gibert, K. et al./Automatic interpretation of classes for improving decision support

following one are exhaustively compared and evaluated. For the first time this work presents a
depth analysis of the quality of the solutions provided by 5 different strategies, both considering
structural quality criteria, as confidence or support of the provided descriptions as well as more
semantic criteria, as the proximity towards the descriptions provided by the experts.

This paper is organized as follows: After the introduction, the methodology is presented in §2. §3
introduces the waste water treatment plant (WWTP) of the case study and the data used. Results
of applying CCEC to the data described are given in §4. Finally in §5 the conclusions and the
future work are addressed.
2 FORMAL FRAME

The standard input of a clustering algorithm is
a data matrix with the values of K variables
X1 . . . XK (numerical or not) observed over a
set I = {1, . . . n} of individuals. Variables are
in columns, while individuals in rows. Cells
contain the value (xik), taken by individual
i ∈ I for variable Xk, (k = 1 : K). The set of
values of Xk is named Dk = {ck

1 , ck
2 , ..., ck

s}
for categorical variables and Dk = rk for nu-
merical ones, being rk = [minXk,maxXk] the
range of XK . A partition in ξ classes of I
is denoted by Pξ = {C1, ..., Cξ}, and τ =
{P1,P2,P3,P4, ...,Pn} is an indexed hierar-
chy of I. Finally, P2 = {C1, C2} is a binary
partition of I. Usually, τ is the result of a hier-
archical clustering over I, and it can be repre-
sented in a graphical way as an horizontal cut of
the corresponding dendrogram (or hierarchical
tree, see Figure 1, Pérez-Bonilla et al. [2008]).

0

2418.461

4836.922

cr360
cr358

cr362

cr357

cr353

cr361

cr363

cn78

cm36

Figure 1: Dendrogram
[τEnW,G

Lj3,R2 ].

CCEC is a methodology globally described in Pérez-Bonilla et al. [2008] that takes advantage
of the existence of τ to generate conceptual interpretations of a of a given partition P ∈ τ in
terms of formal descriptions. CCEC uses the property of all binary hierarchical structure that
Pξ+1 has the same classes of Pξ except one, which splits in two subclasses in Pξ+1. The binary
hierarchical structure represented in τ is used in CCEC to discover particularities of the final
classes step by step by analyzing the hierarchy top-down. It uses Boxplot based discretization
(BbD), see Gibert and Pérez-Bonilla [2006]), as an efficient way of transforming all numerical
variable into qualitative ones in such a way that every resulting qualitative variable maximizes the
association with the reference partition. See Gibert and Pérez-Bonilla [2006] for details. Briefly,
main idea is to use as cut-points the extreme values (minimum and maximum) that the numerical
variable locally takes in every class of P . BbD is the kernel of Boxplot based induction rules
(BbIR) (presented in Pérez-Bonilla and Gibert [2007]). It is a method for inducing probabilistic
rules (r : xik ∈ Ik

s
psc−→ C, being psc ∈ [0, 1] the certainty degree of r). The produced rules

have a minimum number of attributes in the antecedent, and those are formalized on the basis
of the intervals induced by BbD for every variable. The CCEC methodology was formalized in
Pérez-Bonilla et al. [2008]. Here an algorithmic version is presented:

1. Consider the top of the tree: ξ = 1; P1 = I; AP1 = {A1 : true}
2. Go down one level in the tree, by making ξ = ξ + 1 and so considering the new Pξ. Being

τ an indexed hierarchy, Pξ is embedded in Pξ−1 in such a way that there is a single class
of Pξ−1, namely Cξ−1

t , splitting in two new classes of Pξ, namely Cξ
i and Cξ

j and all other
classes Cξ

q , q 6= i, j, are common to both partitions and Cξ
q = Cξ−1

q ∀q 6= i, j. Consider
the restricted partition P∗ξ = {Cξ

i , Cξ
j }. It holds that P∗ξ ⊂ Pξ and when ξ = 2, P∗ξ = Pξ.

As in previous iteration the class Cξ−1
t = {Cξ

i ∧ Cξ
j } was already distinguished from the

rest by proper concept, it is enough to find distinction between Cξ
i and Cξ

j .
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3. Use BbD (Gibert and Pérez-Bonilla [2006]), to find (total or partial) characteristic values
regarding P∗ξ Gibert et al. [1998] for all numerical variables.

4. Use BbIR, to induce a knowledge base R(P∗ξ ) describing both classes {Cξ
i , Cξ

j }.
5. Search the best rule for each class of the restricted partition P ∗ξ = {Cξ

i , Cξ
j }. In the next

section several criteria are presented to determine them. Name A
∗ξ

i and A
∗ξ

j the antecedents
of the rules selected for Cξ

i and Cξ
j respectively.

6. Integrate A
∗ξ

i and A
∗ξ

j with the father’s concept from previous iteration. Compound con-
cepts are associated to Cξ

i and Cξ
j :

Aξ
i = Aξ−1

t ∧A
∗ξ

i ; Aξ
j = Aξ−1

t ∧A
∗ξ

j (1)

Description of both Cξ
i and Cξ

j inherits the properties of the father class Cξ−1
t .

7. Build the concepts system:

APξ
= APξ−1\{Ct : At} ∪ {Cξ

i : Aξ
i , C

ξ
j : Aξ

j}

8. Go down one level in the tree, by making ξ = ξ + 1 and so considering Pξ+1. Return to
step 2 and repeat until Pξ = P , P target partition to be interpreted.

9. Finally, APξ
= {C : AC ∀C ∈ Pξ} and also, the concepts system can be associated to a

rules system R(Pξ) = {r tq r : A
p(r)−→ C ∀C ∈ Pξ}.

The set of concepts APξ
can, in fact, be considered as a domain model which can support later

decision-making Power [2002] on the application domain. As a standard treatment is previously
associated to every class by experts, evaluation of APξ

on new objects can help for treatment
assignment. In this context, the possibility of easily interpreting and understanding the classes is
critical. The proposed method provides simple and short rules which use to be easier to handle
than those provided by other inductive methods.

2.1 Finding best concept at every iteration

The quality of a single rule r : AC(i)
p−→ C is evaluated according to 3 criteria:

Support (Sup): is the proportion of objects in I that satisfy the antecedent of the rule, Liu et al.

[2000]. Sup(r) = card{i ∈ I tq AC(i)=true}
n . It measures the popularity of a rule.

Relative covering (CovR): is the proportion of objects in class C that satisfy the antecedent of

rule. CovR(r) = card{i ∈ C tq AC(i)=true}
nc

. It measures the coverage of the rule inside a certain
class.

Confidence (p(r)): proportion of objects in the antecedent (AC(i) = true) that belong to C,

Liu et al. [2000]. p(r) = card{i ∈ C tq AC(i)=true}
card{AC(i)=true} . It measures the correctness of r.

The quality of a Knowledge Base is evaluated according to 3 summarizing criteria:

Average confidence: p(R) =

∑
∀r∈R(Pξ)

p(r)

nR
=

∑
∀r∈R(Pξ)

card{i ∈ C tq AC (i)=true}
card{AC (i)=true}
nR

Total Support: SupT (R) =
∑
∀r∈R Sup(r) =

∑
∀r∈R

card{i ∈ I tq AC(i)=true}
n

Global covering: CovGlobal(R) =

∑
∀C∈Pξ

card{i ∈ C tq AC(i)=true}×nc

n

Five different methods of selecting best concepts and combining with the knowledge of previous
iteration are considered:
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Best Global concept and Close-World Assumption (BG &CWA): Restrict the search to the
set of certain rules (p(r)=1) S(P∗ξ+1) ⊂ S(R∗ξ+1). Choose the rule that maximizes the relative
covering in S(P∗ξ+1). Use a Closed-World Assumption (CWA) to conceptualize the complemen-
tary class by means of the negation of selected concept.

Best local concept and no Close-World Assumption (BL &noCWA): Choose the rule that
maximizes the relative covering inside SCi(P∗ξ+1) = {r ∈ S(P∗ξ+1) | r : AC(i)

p−→ Ci} and

SCj
(P∗ξ+1) = {r ∈ S(P∗ξ+1) | r : AC(i)

p−→ Cj}.

Best local concept and Close-World Assumption (BL &CWA): Choose the rule that maxi-
mizes the relative covering in both SCi(P∗ξ+1) and SCj (P∗ξ+1). Use a CWA to add the negation
of the concept selected for the complementary class.

Best local concept and partial Close-World Assumption (BL &partial-CWA): Includes the
same concepts as the Best local concept and Close-World Assumption except when the selected
concept refers to the same variable for the two classes. In this case the original concept is kept.

Best local-global concept and Close-World Assumption (BL+G &CWA): Includes the same
variables as the BL &partial-CWA except when the selected concepts refers the same variable for
both classes. In this case the best concept is kept and the negation is added to the complementary
class.
3 CASE STUDY

A case study in this paper was the pilot plant, located in Domd̄ale-Kamnik waste water treatment
plant in Slovenia. A scheme of the pilot plant with sensors and actuators is shown in Figure 2.
In the pilot plant the moving bed biofilm reactor (MBBR) technology is tested for the purpose
of upgrading the whole plant for nitrification and denitrification. The pilot plant with the volume
of 1125 m3 consists of two anoxic and two aerobic tanks that are filled with the plastic carriers
on which the biomass develops, a fifth tank, which is a dead zone without plastic carriers and a
settler. The total air flow to both aerobic tanks can be on-line manipulated in such a way that
oxygen concentration in the first aerobic tank is controlled at the desired value. The waste water
rich with nitrate is recycled with the constant flow rate from the fifth tank back to the first tank.
The influent to the pilot plant is waste water after mechanical treatment, which is pumped to the
pilot plant. The inflow is kept constant to fix the hydraulic retention time. The influent flow rate
can be adjusted manually to observe the plant performance at different hydraulic retention times.
The database used in this study consists of 365 daily averaged observations from the 1st of June
2005 to the 31th of May 2006. Every observation includes measurements of the 16 variables that
are relevant for the operation of the pilot plant. The variables are:

• NH4-influent: ammonia concentration at the influent of the pilot plant(pp) (3 in Fig. 2).

• Q-influent: waste water influent flow rate of the pp (7 in Fig. 2).

• TN-influent: concentration of the total nitrogen at the influent of the pp (4 in Fig. 2).

• TOC-influent: total organic carbon concentration at the influent of the pp (5 in Fig. 2).

• Nitritox-influent: measurement of the inhibition at the influent of the pp (6 in Fig. 2).

• h-waste water: height of the waste water in the tank (no Fig. 2).

• O2-1aerobic: dissolved oxygen concentration in the 1st aerobic tank (3rd tank) (12-Fig. 2).

• Valve-air: openness of the air valve (0-100%), highly related with Q-air (V2 in Fig. 2).

• Q-air: total air flow that is dosed in both aerobic tanks (1 in Fig. 2).

• NH4-2aerobic: ammonia concentration in the second aerobic tank (9 in Fig. 2).

• O2-2aerobic: dissolved oxygen concentration in the 2nd aerobic tank (4th tank)(13-Fig. 2).

• TN-effluent: concentration of the total nitrogen at the effluent of the pp (no in Fig. 2).

• Temp-waste water: temperature of the waste water (14 in Fig. 2).

• TOC-effluent: total organic carbon concentration at the effluent of the pp (no in Fig. 2).

• Freq-rec: frequency of the internal recycle flow rate meter (no in Fig. 2).

• FR1-DOTOK-20s (Hz): frequency of the motor that pumps the waste water into the plant.
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The data base was clustered in a previous work in order to identify typical situations that could
improve decision making, since managing WWTP is difficult in general and requires great ex-
pertise. See Metcalf and Eddy [2003] for details on the problematics related with management
and control of WWTP and the difficulties of finding global mechanistic models. In Gibert [1996]
clustering based on rules was used with the following Knowledge Base:
KB = {r1 : ((and(>= (NH4− 2aerobic)10.0)(> (TN − effluent)18.0)) → Mmonia),

r2 : ((and(< (NH4− 2aerobic)10.0)(> (TN − effluent)18.0)) → Nitrogen)}
with 38 objects satisfying r1, 80 objects satisfying r2 and the final dendrogram of Figure
1 (see details in Pérez-Bonilla et al. [2008]). A final partition in 4 classes was P4 =
{Cr353, Cr357, Cr358, Cr360} is obtained. Experts provided the following interpretation:

• Cr353, represents the plant operation under the high load. In this case influent nitrogen concentrations
are high and also influent flow rate is quite high as well. Even though the oxygen concentration in the
aerobic tanks are high this can not decrease the effluent nitrogen concentrations. It means that, when
the plant is overloaded, high effluent concentrations at the effluent can be expected.

• Cr357, represents the situation when the influent flow rate is low, that is, when the hydraulic retention
time of the plant is high. In this case, as oxygen concentration in the aerobic tank is high enough, quite
low effluent nitrogen concentrations can be obtained. In front of low influent flow rate, the effluent
concentrations can be low if the oxygen concentration in the aerobic tanks is high.

• Cr358, explains the situation when the waste water temperature is low. In this case nitrogen removal
efficiency of the plant is rather low. This happens because microorganisms in the tanks do not work
so intensively in cold conditions and therefore higher concentrations at the effluent can be expected.

• Cr360, shows the situation when the waste water temperature is high. In warmer conditions the
microorganisms in the plant work faster, so the effluent nitrogen concentrations can be low even when
the oxygen concentrations in the aerobic tanks are quite low.

outflow

INPUT

waste sludge

88m
3

130m
3

117m
3 115m

3

after mechanical
treatment

88m
3

internal recycle

600m
3

1 Qair

air

7 Q

2 P

16-20 SC1

21-25 SC2

26

27-28

FT PT

QT

QT

FT

QT QT QT

14 T

TT

LT

Figure 2: MBBR (Moving Bed Biofilm Reactor) pilot plant with sensors and actuators.

4 RESULTS

In this section CCEC has been applied to the data of the plant by testing the 5 aggregation criteria
presented before and compared with the interpretation provided by the experts from scratch. The
descriptions obtained for every class with the different methods are shown in Table 3. Results
for intermediate iterations are presented in Pérez-Bonilla et al. [2008]. Table 1 shows quality
indicators of the results (Confidence, Support and Coverage). The method that gives the most
similar interpretation to those provided by the expert is the Best Local-Global and Close World
Assumption (BL+G &CWA), which from a technical point of view also seems to represent the
more equilibrated option with the second higher values in both global coverage and support. The
greatest Global coverage is from Best Local and Close World Assumption, but this interpretation
is redundant. So the best interpretation is the one obtained using BL+G &CWA.

5 CONCLUSIONS AND FUTURE WORK

In this paper a methodology to generate automatic conceptual interpretations of a group of classes
is presented. Concepts associated with classes are built taking advantage of hierarchical structure
of the underlying clustering. The Conceptual characterization by embedded conditioning Pérez-
Bonilla and Gibert [2007], is a quick and effective method that generates a conceptual model of
the domain, which will be of great support to the later decision making based on a combination
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Figure 3: Knowledge base induces by 5 methods
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Table 1: Comparison among the 5 proposals
Met. Ruler Concec. #{i #{A

ξ
C
∩ nc p(r) Sup(r) CovR(r)

∈ A
ξ
C
} i ∈ C}

BG rCr353 Cr353 220 99 122 45,00% 60,27% 81,15%
rCr357 Cr357 98 46 50 46,94% 26,85% 92,00%

& rCr358 Cr358 6 6 93 100% 1,64% 6,45%
CWArCr360 Cr360 38 33 100 86,84% 10,41% 33,00%

(p(R)) 69,70%
Suma 362 184 365 99,18%
(CovGlobal(R)) 50,4%

BL rCr353 Cr353 27 27 122 100% 7,40% 22,13%
& rCr357 Cr357 1 1 50 100% 0,27% 2,00%
no rCr358 Cr358 6 6 93 100% 1,64% 6,45%

CWArCr360 Cr360 3 3 100 100% 0,82% 3,00%

(p(R)) 100%
Suma 37 37 365 10,14%
(CovGlobal(R)) 10,1%

BL rCr353 Cr353 309 122 122 39,48% 84,66% 100,00%
& rCr357 Cr357 101 48 50 47,52% 27,67% 96,00%

CWArCr358 Cr358 299 91 93 30,43% 81,92% 97,85%
rCr360 Cr360 220 99 100 45,00% 60,27% 99,00%

(p(R)) 40,61%
Suma 929∗ 360 365 254,52%∗∗
(CovGlobal(R)) 98,6%

BL rCr353 Cr353 309 122 122 39,48% 84,66% 100,00%
& rCr357 Cr357 101 48 50 47,52% 27,67% 96,00%

parc. rCr358 Cr358 114 62 93 54,39% 31,23% 66,67%
CWArCr360 Cr360 35 29 100 82,86% 9,59% 29,00%

(p(R)) 56,06%
Suma 559∗ 261 365 153,15%∗∗
(CovGlobal(R)) 71,5%

BL rCr353 Cr353 309 122 122 39,48% 84,66% 100,00%
+G rCr357 Cr357 101 48 50 47,52% 27,67% 96,00%
& rCr358 Cr358 114 62 93 54,39% 31,23% 66,67%

CWArCr360 Cr360 220 99 100 45,00% 60,27% 99,00%

(p(R)) 46,60%
Suma 744∗ 331 365 203,84%∗∗
(CovGlobal(R)) 90,7%

of BbD and an interactive combination of concepts upon hierarchical subdivisions of the domain.
Benefits of this proposal are specially interesting in the interpretation of partitions with a large
number of classes. Automatic generation of interpretations cover the important goal of KDD of
describing the domain Fayyad and et alt. [1996]. However, in this proposal a direct connection
between the generated concepts and the automatic rules generation allows direct construction
of a decision model for the later class prediction. As a matter of a fact, automatic production
of probabilistic or fuzzy classification rules regarding concepts provided by CCEC is direct, as
discussed in Gibert and Pérez-Bonilla [2005]. By associating an appropriate characteristic to every
class, a model for operating the waste water treatment plant on a concrete day is obtained upon
a reduced number of variables together with an estimation of the risk associated to that decision
(which is related with the certainty of the rule). In this work 5 different criteria for selecting
the variable to keep at every iteration are assessed and exhaustive comparison among those 5
criteria is presented, either in terms of approaching expert’s descriptions as well as validating
structural goodness of results, by means of confidence, support and covering: Best Local-Global
and Close World Assumption (BL+G &CWA), is the most equilibrated option for the technical
point of view and the one with better approaches exper’ts comprehension. Comparisons of results
provided by CCEC with BL+G &CWA and other methods are presented in Gibert et al. [2006].
Logistic Regression, Decision Trees and the Discriminant Analysis provide results much more
disconnected from the interpretation proposed by the expert than the results provided by CCEC.
Preliminary tests with other classical inductive methods evidenced the need to develop CCEC,
since, as mentioned in the abstract, traditional rules-inductive methods priorize the predictive
power of the final rules as well as the compacity, and usually, they hid redundant variables in
the final rules. This is of course a very sound approach when prediction is the main goal of rules
induction. But produces low performances for comprehensive purposes. From our experiences we
could clearly observe that one of the most informative characteristics of a class, to permit expert’s
conceptualization, is the local relationships among redundant variables appearing in the different
classes. For that reason, CCEC is a proposal that do not guarantee the most compact concepts, but
provides solutions that may include class-redundant variables. Finally the methodology guarantee
that important variables at the output are also included in the final description. In long term, the
proposal could be extended to keep more than two variables per iteration. Formal comparison
with other classical rules-inductive methods, like Prism, Rules or CN2 is currently in progress to
better show these effects.
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