
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

5th International Congress on Environmental
Modelling and Software - Ottawa, Ontario, Canada -

July 2010

Jul 1st, 12:00 AM

Assessing hydrological response to change in
climate: Statistical downscaling and hydrological
modelling within the upper Nile
M. Kigobe

Ann Van Griensven

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Kigobe, M. and Van Griensven, Ann, "Assessing hydrological response to change in climate: Statistical downscaling and hydrological
modelling within the upper Nile" (2010). International Congress on Environmental Modelling and Software. 538.
https://scholarsarchive.byu.edu/iemssconference/2010/all/538

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2010?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2010?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2010?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2010/all/538?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2010%2Fall%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


International Environmental Modelling and Software Society (iEMSs)
2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

Assessing hydrological response to change in
climate: Statistical downscaling and hydrological

modelling within the upper Nile

M. Kigobe a, A. van Griensvenb,

aDepartment of Civil Engineering, Makerere University Kampala, Uganda, P.O Box 7062
Kampala, Uganda (mkigobe@tech.mak.ac.ug)

bDepartment Hydroinformatics & Knowledge Management, UNESCO-IHE Institute for Water
Education P.O. Box 3015, 2601 DA DELFT, The Netherlands (A.vanGriensven@unesco-ihe.org)

Abstract: The sensitivity of several water resource components to environmental change is cru-
cial to water managers. Water resource sensitivity studies are therefore required to assess how
hydrological regimes will respond to environmental change. As a first attempt in the Upper Nile,
this study explores statistical techniques to downscale climate projections with particular empha-
sis on rainfall simulation for the Kyoga basin, using Generalised Linear Models (GLMs). Despite
noticeable bias in predicting the historical climate, the study results reveal that a warmer climate
will lead to a basin-wide increase in precipitation and subsequent increase in stream flows for the
Mpologoma basin, within the upper Nile.

Keywords:Climate Change, Statistical Downscaling, Hydrological Sensitivity Analysis.

1 INTRODUCTION

The Kyoga basin is located in the Upper Nile and is mainly characterised by inter-annual and inter
decadal variation in precipitation. Water availability in the basin is mainly important for agricul-
ture, fishing, municipal purposes and many other uses. Water availability is highly influenced by
climate variability and climate change presents many challenges for the Nile basin and Africa in
general [Conway and Hulme, 1993; Hulme, 2000; Hulme et al., 2005]. There is little doubt that
climate change will alter the hydrology of the Nile basin, therefore, there is increasing interest in
understanding how the rising concentration of greenhouse gases might affect climate (the mean
and variability of temperature, precipitation, humidity, wind and other climate variables over sev-
eral decades) at local and regional scales in the Nile basin. For the Kyoga basin, human activities
in the catchment have increased over the past century and expected to grow even more rapidly in
the future, hence, water management will become even more important with a changing climate.
The objective of this paper is to show projections of local rainfall under different emission sce-
narios. This is done by means of a sensitivity approach, analyse the associated impact on selected
hydrological variables for a case study of the Mpologoma basin, within the Upper Nile. The rest
of the paper presents a brief description of the Mpologoma basin, a sub-catchment of the Kyoga
basin in section 2, followed by the methodology in section 3 and the results and discussions in
sections 4 and 5 respectively.

2 KYOGA BASIN

The Kyoga basin (Figure 1) is 51,283km2 in size and composed of several sub-basins. The
biggest tributary inflow into the basin (approximately 90 % of the total inflow) is the Victoria Nile
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flow, which drains into the Kyoga catchment, as a controlled release at Owen Falls dam. The
average total inflow into Lake Kyoga is estimated at about 1,420m 3/s, with the Victoria Nile
contributing about 85 %. Other tributary flows contribute about 4 % and precipitation over the
lake accounts for the remaining 11 %. The most significant tributary flow is mainly from the Mt.
Elgon ranges (in the Eastern parts of the basin on the borders of Uganda and Kenya). The average
annual basin precipitation is about 1,300mm and the highest precipitation falling over the Kyoga
basin is received over the Elgon Mountain ranges. The Kyoga basin faces high evapotranspiration
from the swamp vegetation. The Lake is not regulated and the outflow from the Kyoga basin is
naturally controlled by the exit of Lake Kyoga which drains into the Kyoga Nile and later joins
Lake Albert, along the Nile river system.

Figure 1: Precipitation gauge network for 110 rainfall sites

3 METHODOLOGY

3.1 Rainfall modelling at daily time step

A number of methods are widely reported for estimating climate change. An extensive review
of the several techniques involved in representing regional and local scale processes when using
climate models is given by Fowler and Kilsby [2007]. General Circulation Models (GCM) out-
puts, especially precipitation are not suitable for use in assessing hydrological response to climate
change due to the coarse spatial resolution of the GCM outputs. To achieve better projections, one
possibility is the use of precipitation outputs from Regional Climate Models (RCM). Despite the
general absence of such models (RCMs) for the Kyoga basin, there are a number of other issues
related to the use of RCMs for the Kyoga basin, including the requirement of large numbers of
rainfall sequences. Secondly RCMs run on grid resolutions that are not adequate for local scale
studies. Therefore, this study is focused on the projection of local scale rainfall at multiple sites
in the Kyoga basin using statistical downscaling. Additionally, a detailed data set was available
in the Kyoga basin to facilitate spatial-temporal modelling. This was done by applying the GLM
models developed by Chandler and Wheater [2002]; Chandler [2006].
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Generalised Linear Models (GLMs) can be regarded as multi-state Markov models which, with
appropriate extensions, can include dependencies among multiple sites within a region. In the
framework suggested by Stern and Coe [1984] and subsequently extended by Chandler and
Wheater [2002], the application of a GLM to daily rain gauge data involves identifying, for each
day in the rainfall record, the distribution of rainfall at each site and then specifying a plausible
inter-site dependence structure that preserves the single-site distributions. The distributions them-
selves are constructed by relating the parameters of distribution functions for rainfall occurrence
and amounts to related quantities, called covariates. Typical examples of covariates include rain-
fall on previous days, the time of the year, the altitude of the site, and regional and global climate
indices. The procedure involved is a two-step approach:(a). To model the temporal pattern of wet
and dry days at a site, a logistic regression model is generally used. IfPi denotes the probability
of rainfall occurrence on theith day in a dataset of rainfall, conditioned on a covariate vectorx

′
,

the model is given by

[
Pi

1− Pi

]

= x
′

β (1)

whereβ is a vector of parameters to be estimated. Any Markov chain model can be written in the
form of Equation 1 by including binary covariates representing wet or dry states on previous days
[Chandler, 2002];(b). If the ith day is wet then the corresponding rainfall amount is generally
represented by a gamma distribution with meanμi, where

ln(μi) = ξ
′

γ (2)

For a covariates vectorξi and a coefficient vectorγ. The gamma distribution has a shape parame-
ter. The shape parameter is often fixed at a constant value for each observation. Rainfall processes
are commonly affected by the interacting effect of two or more covariates. For example, if the
autocorrelation in rainfall amounts is, say, strongest during the rainy season, the GLM coefficient
representing the effect of the previous days rainfall would vary with the seasonal covariates. In
general, this kind of interaction can be incorporated by adding an additional covariate which is
the product of two interacting covariates [Chandler, 2005; Yang et al., 2005]. The presence or
absence of such interactions may reveal valuable information about the mechanisms driving the
rainfall processes.

After GLM models are developed for a particular region, they can be extended to downscale
GCM projections by means of statistical downscaling. Statistical downscaling applies empirical
(statistical) relationships to bridge the large-scale features (predictors) simulated reliably by the
GCMs (such as geopotential height fields, sea level pressure, humidity) and regional or local
climate variables (predictands, such as temperature and precipitation at a certain location). This
involves developing time-invariant relationships between large scale climate variables and local
scale climate variables with the assumption that the large scale variables are reliably simulated and
the relationships remain constant under a changing climate. The result from this strategy is daily
simulations of rainfall at multiple sites; which can them be used to assess the impact of climate
change at several sites in the Kyoga basin. The sensitivity of the basin hydrology was investigated
using a distributed hydrological model which is briefly described in the following section 3.2.

3.2 Hydrological modelling on daily time step

The SWAT model was used for this study. The model is based on three major components: (i)
the sub-basin itself; (ii) reservoir routing and (iii) channel routing. The sub-basin component is
composed of eight modules: hydrology, weather, sedimentation, soil temperature, crop growth,
nutrients, agricultural management, and pesticides. Only the hydrology and weather components
are relevant to this study. The hydrology module is able to reproduce the following processes:
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surface runoff, percolation, lateral subsurface flow, groundwater flow, evapotranspiration (ET)
and transmission losses (Figure 2).
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Figure 2: Schematic flow pathways for water movement in SWAT (adapted from Neitsch et al.
[2000])

For this study, surface runoff was simulated based on the USDA Soil Conservation Service (SCS)
Curve Number theory. The development and application of the curve number is well documented
[SCS, 1972] and it is a standard hydrologic analysis technique extensively tested in the United
States for small to medium sized catchments. Percolation is modelled with a layered storage
routing technique combined with a crack flow model; lateral subsurface flow; groundwater flow
to streams from shallow aquifers; potential evapotranspiration by the Hargreaves, PriestleyTaylor
and Penman-Monteith methods; snowmelt; transmission losses from streams; and water storage
and losses from ponds [Arnold et al., 1998].

The model operates at three spatial levels: basin, sub-basin and HRU. An HRU is a fraction of
the sub basin that can be represented by a unique combination of soil and land use and has no
physical location in the sub-basin. The program calculations follow these levels: (1) the fluxes
of each HRU (per surface unit) and (2) the fluxes (outputs of previous step) are aggregated to
sub-basin output, conditioned on the fractions of the HRUs, (3) the sub basin outputs are then
routed through river reaches according to the river network. A detailed description of the model
given by Arnold et al. [1998]; Arnold [2005] and Neitsch et al. [2000]. A detailed discussion of
previous applications is given by Gassman et al. [2007].

In the Kyoga study, model calibration and uncertainty analysis, was conducted using the sequential
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uncertainty fitting program SUFI-2 [Abbaspour, 2007; Abbaspour et al., 2008]. SUFI-2 is a tool
for sensitivity analysis, multi-site calibration and uncertainty analysis. The tool is capable of
dealing with many parameters and many variables (for example, flow, sediments, water quality,
etc) for many gauging stations simultaneously and Latin Hypercubes samplings is used to draw
independent parameter sets [Abbaspour, 2007].

4 RESULTS

4.1 GLM Model Structures for the Kyoga basin

The occurrence and amounts models fitted by rainfall zones were predominantly similar (Table 1),
except for the additional parameter required to model the spatial correlation structures. The oc-
currence and amounts models fitted to the rainfall zone B are shown in Table 1. The performance
of GLM models for rainfall zone D are shown in Figure 2. Except for the month of September
and Site-14 the model residuals lie within the 96% confidence interval (Figure 3).
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Figure 3: Pearson residuals of the occurrence model (left) and Amounts model (right) perfor-
mance by month, by site and by year, over the rainfall zone D. The dotted lines indicate the 95%
confidence intervals.

4.2 Projected climate change

Uganda is divided into several rainfall zones according to Basalirwa [1993] and the rainfall sites
in each zone have homogeneous statistical properties. The Kyoga basin is covered by seven zones.
Daily rainfall data for 30 sites was used to develop GLM models for rainfall zones D and F (Figure
2). The GLM models were later used for statistical downscaling of GCM projections. For each
site 100 simulations were run for the 2020s, 2050s, and 2080s based on several GCMs outputs of
the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) [IPCC,
2007] under the A2 emission scenarios.

The ability of different GCMs to simulate historical climate was investigated by using simulation
results for the 1961-1990 period for the Kyoga basin. Model performance varied by location
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Table 1: Occurence and Amounts models for rainfall zonesB

Occurrence Model Amounts Model
Model Predictor Covariate Value Covariate Value
Constant -1.699 2.219
Fourier sine component 1 for E 1 -0.509 1 0.497
Fourier sine component 1 for N 2 0.359 2 -0.359
Fourier cosine component 1 for E 3 0.383 3 -0.231
Fourier cosine component 1 for N 4 0.643 4 -0.448
Fourier sine component Altitude 5 0.143 5 -0.038
Fourier cosine component Altitude 6 0.173 6 -0.126
Monthly Indicator [Month] Jan [7] 0.184 Jul [7] 0.123

Nov [8] 0.143 Aug [8] 0.096
IOD West (Monthly) 9 0.182 9 0.070
Average Temperature (Reanalysis) 10 0.038 10 0.038
Relative Humidity (Reanalysis) 11 0.160 11 0.048
Mean Sea Level Pressure (Renalysis) 12 0.035 12 0.021
Daily half-year cycle, cosine component 13 -0.323 13 -0.099
Daily half-year cycle, sine component 14 -0.070 14 -0.023
Mean of I(Y[t-1]>0) 15 2.428 15 0.220
Mean of I(Y[t-2]>0) 16 0.591 16 -0.098
Mean of I(Y[t-3]>0) 17 0.378 17 0.068
Mean of I(Y[t-4]>0) 18 0.062 18 -0.023
2 Way Interaction [1 - 3] -1.167 [1 - 3] 0.787

[1 - 4] -0.335 [1 - 4] 0.089
[2 - 3] -0.110 [2 - 3] -0.070
[2 - 4] 0.587 [2 - 4] -0.124
[1 - 5] -0.466 [1 - 5] 0.065
[2 - 5] -0.173 [2 - 5] 0.180
[3 - 6] 0.451 [3 - 6] -0.079
[4 - 5] -0.014 [4 - 5] -0.002
[1 - 6] -0.840 [1 - 6] 0.881
[2 - 6] -0.158 [2 - 6] -0.291
[4 - 6] 0.446 [4 - 6] -0.352
[7–10] -0.020 [7–10] -0.174
[8–10] -0.209 [8–10] -0.078
[7–15] -0.067 [1–15] -0.220
[8–15] 0.029 [8–14] -0.050

[10–13] -0.016 [7–12] 0.003
[11–13] 0.001 [8–12] 0.029
[10–14] 0.018 [10–13] -0.037
[11–14] -0.010 [10–14] -0.078
[13–15] 0.295 [11–13] 0.016
[14–15] -0.177 [10–14] 0.025
[15–16] -1.105 [11–14] 0.127
[15–17] -0.500 [13–15] -0.116
[11–15] -0.130 [13–16] -0.049
[10–16] -0.303 [14–16] -0.023
[12–15] -0.279 [15–16] 0.061

‘Soft’ threshold for +ve values 0.500 0.500
Spatial dependence 7.225 0.795
Dispersion parameter 0.122

and in general GCMs have varying skills in simulating the present climate for several regions in
the Kyoga basin. Although no model is better than another, inter-model variation and regional
variations were are expected and it is reasonable to assume higher confidence in GCM models
that had the least bias (≈ 1) in simulating the historical climate. Based on this assumption,
three GCM models, that is, CSIRO.MK3 [Gordon et al., 2002], MPIM.ECHAM [Roeckner and
Coauthors, 2003], and UKMOHADCM3 [Gordon, 2000; Gordon et al., 2002] were selected to
predict changes in observed basin water resources under the A2 emission scenarios. The other
GCMs tested to estimate historical climate show that the bias in simulating the historical pattern
ranges from 0.12 to 1.17 (Table 1). There was some variations in GCM precipitation estimates of
historical pattern for the Mpologoma, the GFLD performing poorest (according to bias) among
all GCMs.

In general all GCM tend to under-simulate the June – July precipitation amounts. The seasonal
and annual changes in precipitation changes are summarised in Table 2. Average projections
of precipitation vary by season. The projected annual changes in precipitation over the entire
basin vary from 3 – 19 % for 2020s, -1 – 35% for 2050s and -6 – 65% for 2080s. There are
substantial differences in the simulated quantities of annual precipitation change for each rainfall
site. All predictions show a relative increase in annual precipitation for 2020s, 2050s, 2080s,
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except for the HADCM3. For the HADCM3, precipitation predictions are highest during the
2050s. The HADCM3 generally predicts a decline in precipitation for the 2080s. The reason
for the disparate predictions of the HADCM3 for the 2080s is unclear. The highest percentage
increase in precipitation is observed for the MAM and SON seasons, which also correspond to the
two rainfall seasons.

Table 2: [Left] Percentage change in seasonal precipitation for Mpologoma basin (Rainfall zone
D and F in Figure 2); [Right] Bias from GCM experiments simulations of historical precipitation
for the 1961–1990 period for Mpologomabasin.

CSIRO.MK3 GCM BIAS (1960-1990)
Season↓ 2020s 2050s 2080s Season↓

DJF 9 -1 3 DJF 0.91
MAM -4 0 34 MAM 1.00

JJA -2 -2 -7 JJA 0.61
SON -11 -2 51 SON 0.88

ANNUAL 3 -1 26 ANNUAL 0.88
MPIM.ECHAM GCM BIAS (1960-1990)

Season↓ 2020s 2050s 2080s Season↓
DJF 12 7 4 DJF 1.03

MAM 41 69 116 MAM 1.17
JJA -10 -10 -12 JJA 0.52

SON 14 39 87 SON 1.13
ANNUAL 19 35 65 ANNUAL 1.02

UKMO.HADCM3 GCM BIAS (1960-1990)
Season↓ 2020s 2050s 2080s Season↓

DJF -7 -9 0 DJF 1.61
MAM 27 56 -19 MAM 1.18

JJA -3 -6 -1 JJA 1.14
ANNUAL 19 36 -6 ANNUAL 1.16

4.3 Sensitivity of hydrological variables

Daily hydrological model runs were made using an existing/calibrated SWAT model for the Mpol-
ogoma basin [Kigobe, 2009]. Calibration statistics for the Mpologoma model are shown Table 3.
Daily simulations were run for the current period (1960 - 1990) - referred to as the baseline period,
and for the future periods, i.e (2010 – 2040, 2040 – 2070 and 2070 – 2100) - referred to as the
climate projection periods. Simulated variable were aggregated to give monthly statistics of water
resources variables (including stream flow, evapotranspiration, soil water, deep aquifer recharge
and water yield). The scope of this paper is limited to stream flows and evapotranspiration alone.

Sensitivity of Evapotranspiration. Evapotranspiration rates are controlled by several variables
including the the available water and energy. A temperature increase leads to higher energy
available for evapotranspiration. Although a warmer atmosphere can hold more water, the actual
changes in evapotranspiration will depend on the humidity levels and the wind patterns. Due to
data limitations, using the Hargreaves method, the simulations for the Mpologoma basin suggest
that annual estimates of evapotranspiration are predicted to increase with increase in temperature
and precipitation. The projected increase in evapotranspiration is on average 6 - 20% for the 2020s
and 2050s, and about 10 - 25% for the 2080s.

Sensitivity of Stream flows. The sensitivity of the average annual runoff using the calibrated
hydrological model is shown in Figure 4. This was obtained using an ensemble of several precip-
itation simulations for three GCM projections for the 2020s, 2050s and 2080s and multiple model
parameter sets. On a monthly scale, the associated prediction uncertainty estimates by the differ-
ent GCM models generally suggest higher uncertainty for high flow simulations (Figure 4). The
projected changes in stream flows differ with GCMs. Simulated stream flows show a consistent
increase in stream flow volumes especially for April to July and October to November. For the
2080 the HADCM predicts the least increase in stream flows.
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To have an indication of water resource availability in the Mpologoma basin, the change in mean
annual runoff was examined. Simulations show a remarkable increase in stream flow and stream
flow variance for the 2050s and 2080s (Table 4). The results suggest that the daily mean flow,
variance of daily flows and skewness of daily flows increases The variance shows a slight increase
for the 2020 periods and a great increase for the 2050s and 2080s. The skewness tends to decrease
for simulated flows at Mpologoma suggesting a reduction in the frequency of extreme events.
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Figure 4: Simulated mean monthly stream flow at Mpologoma for the 2020s, 2050s, 2080s. The
box plots show the spread of simulation ensembles at the 5%, 25%, 50%, 75% and 95% per-
centiles. The shaded area shows the 95PPU for the simulated flows for 1960 – 1990 period.

Table 3: Calibration statistics for Mpologoma basin using apriori parameters.Thep-factor is the
percentage of observations bracketed by the 95% prediction uncertainty. Thed-factor is the aver-
age thickness of the 95PPU band divided by the standard deviation of the measured data;NSE is
Nash Sutcliffe efficiency, andbR2- is an objective function whereb is the slope of the regression
line between measured and simulated variable andR2 is the coefficient ofdetermination.

Flow station (location) Uncertainty Estimate Objective Function
p-factor d-factor R2 NSE MSE br2

apriori parameter set 0.50 1.53 0.38 0.1 373 0.17
calibration period 0.55 0.86 0.60 0.65 291 0.43
validation period 0.65 0.65 0.47 0.45 138 0.19

5 CONCLUSIONS AND DISCUSSIONS

This paper demonstrates the use of GLM models in downscaling projections of local and regional
rainfall in the Mpologoma basin within the Upper Nile using the A2 emission scenario. The biases
across the different GCMs give a general indication of the simulation strengths and weaknesses,
when using different GCMs to simulate the historical climate. GCMs are still limited in simulating
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Table 4: Comparison of basic annual statistics (mean, variance and skewness) of daily stream flow
for Mpologoma basin. The values are averages for CSIRO, ECHAM and HADCM models at the
50th percentile.

Simulation Period Mean (m3/s) St.Dev (m3/s) Skewness
1960 – 1990 10.7 7.4 2.0

2020s 12.1 8.7 1.8
2050s 13.3 9.2 1.7
2080s 17.5 13.5 1.4

the chaotic nature of climate and additional work is required to refine GCM models for climate
prediction [Dessai et al., 2009; Harrison Stainforth, 2009].

The sensitivity of the Mpologoma basin to changes in climate has been investigated using the
SWAT model, a semi-distributed hydrological model. This was achieved by driving the hydro-
logical model with projected temperature and downscaled daily precipitation sequences for three
GCM projections for the A2 scenario. Simulated evapotranspiration rates and stream flow suggest
major shifts in hydrological regimes, with a tendency to result in significantly higher monthly
average flows and higher evapotranspiration rates. This may subsequently lead to variation in the
timing of floods and droughts. Using the 95% prediction uncertainty, the results generally suggest
higher uncertainty for high flows. The simulation results presented suggest that even with a high
increase in precipitation, excessive evapotranspiration might lead to a decline in other hydrologi-
cal variables such as soil moisture. This may pause serious concerns for food security and water
resource sustainability. Therefore, adaptation strategies in and around the Mpologoma basin have
to be developed in the context of other regional challenges that might contribute to water conflicts.
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