
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-08-11

Optimization Constrained CAD Framework with ISO-Performing Optimization Constrained CAD Framework with ISO-Performing

Design Generator Design Generator

Kelly Eric Bowman
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Bowman, Kelly Eric, "Optimization Constrained CAD Framework with ISO-Performing Design Generator"
(2008). Theses and Dissertations. 1543.
https://scholarsarchive.byu.edu/etd/1543

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1543?utm_source=scholarsarchive.byu.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

OPTIMIZATION CONSTRAINED CAD FRAMEWORK WITH

ISO-PERFORMING DESIGN GENERATOR

by

K. Eric Bowman

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

December 2008

Copyright © 2008 K. Eric Bowman

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

K. Eric Bowman

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Christopher A. Mattson, Chair

Date C. Greg Jensen

Date Robert H. Todd

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of K. Eric Bowman
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Christopher A. Mattson
Chair, Graduate Committee

Accepted for the Department

Larry L. Howell
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

OPTIMIZATION CONSTRAINED CAD FRAMEWORK WITH

ISO-PERFORMING DESIGN GENERATOR

K. Eric Bowman

Department of Mechanical Engineering

Master of Science

Design decisions have a large impact early in the design process. Optimization

methods can help engineers improve their early decision making, however, design problems

are often ill-posed for optimization at this early stage. This Thesis develops engineering

methods to use optimization during embodiment design, despite these difficulties.

One common difficulty in designing mechanical systems is in handling the effects

that design changes in one subsystem have on another. This is made more difficult in early

engineering design, when design information is preliminary. Increased efforts have been

made to use numerical optimization methods in early engineering design – because of the

large impact early decisions have on subsequent development activities. One step toward

executing meaningful optimizations in early design is the development of an optimization

framework to be used when conditions are expected to change as the design progresses

and new information is gained. This Thesis presents a design framework that considers

such change by subjecting the parametric updating of CAD models to optimization criteria

specific to the problem at hand. Under the proposed framework, a part or subassembly

is parametrically modeled in CAD; when changes are made to the subsystems that interact

with the part or subassembly, it is then updated subject to design objectives and constraints.

In this way, the updated part or subassembly satisfies system and subsystem level optimiza-

tion criteria, reducing the need for the designer to react to design changes manually. It is

used to reduce the weight of a Formula SAE suspension rocker by 18%, demonstrating

the utility of this framework. Next, we develop methods to help engineers by giving them

options and helping them explore during configuration generation.

The design of multiple-bend, progressive-die-formed springs typically comprises

four steps: (i) functional specification, (ii) configuration generation, (iii) configuration se-

lection, and (iv) detailed shape and size optimization. Configuration generation fundamen-

tally affects the success or failure of the design effort. This presents an important problem:

by not generating potentially optimal configurations for further development in detailed de-

sign, the designer may unknowingly set the design on track for sub-optimal performance.

In response, a method is developed that improves configuration generation. Specifically, an

optimization-based spring configuration generator – without which, the generation would

typically be based solely on designer creativity, experience, and knowledge. The proposed

approach allows the designer to explore numerous optimization-generated spring configu-

rations, which feasibly satisfy the functional specifications. The feasibility study is carried

out before a final configuration is chosen for detailed development. Thus streamlining

the designer’s efforts to develop a design that avoids sub-optimality. We use the feasible-

configuration generator to identify twenty-two electrical contact spring configurations. All

twenty-two of the configurations satisfy the design’s functional specifications.

Two important concepts that improve decision making in early design were cho-

sen. First, is the concept of a paremetric CAD based framework. Second is the concept

of generating iso-performing design solutions. A numerical computer-based application

is explained that takes advantage of these two ideas. A genetic algorithm topology opti-

mization framework with the ability to converge to iso-performing solutions was integrated

with CATIA V5. This application is demonstrated on a Formula SAE frame where it de-

velops a pareto frontier of designs, expands upon one compromise design by producing

iso-performing solutions, and automatically produces designs with the same performance

after a parametric suspension change.

ACKNOWLEDGMENTS

Dr. Mattson has helped me, so have my parents Dr. and Mrs. Bowman. We ac-

knowledge ATL Technology and their engineers Marcus Darrington, Jaremy Flake, Matt

Strong, Richard Liu, and Owen Carlson for inspiring the development of an optimization-

based configuration generator for electronic contacts. Thank you to Dr. Todd and Dr.

Jensen for being members of my committee. Thanks to Matthieu Pupat from Altair Engi-

neering for the CAA/RADE tips. The authors thank the Fulton College of Engineering and

Technology at Brigham Young University for funding the project. The authors also thank

Mr. John Wakefield for his insightful comments.

Table of Contents

List of Tables . xii

List of Figures . xiv

Chapter 1 Introduction . 1
1.1 Present and Future Optimization . 1
1.2 Thesis Structure . 2
1.3 Theoretical Optimization Constrained Framework 3
1.4 Feasible Configuration Generator . 4
1.5 Practical Optimization Constrained Framework With Iso-Performance . . . 4
1.6 Chapter Summary . 5

Chapter 2 Handling Frequent Design Changes by Automatic Optimization-
Constrained Updates of Parametric CAD Models 7

2.1 Description . 7
2.2 Introduction and Literature Survey . 7

2.2.1 Literature Survey . 8
2.3 Fundamental Changes To Optimization Problems as Design Information

Increases . 12
2.3.1 Generic Optimization Problem Statement 13
2.3.2 Added or Changed Design Objectives 13
2.3.3 Added or Changed Design Constraints 15
2.3.4 Added or Changed Design Variables 15
2.3.5 A Comment on the Changing Nature of the Optimization Problem . 17

2.4 A Framework for Optimization-Constrained Updating of Parametric CAD
Models . 17
2.4.1 Optimization Applied to Parametric CAD/CAE 18
2.4.2 Flexible Structural Topology Optimization 19

2.5 Conceptual Design-Optimization of a Formula SAE Suspension Rocker . . 20
2.5.1 Formula SAE . 21
2.5.2 Assembly . 23
2.5.3 Problem Statement . 24
2.5.4 Input Preparation . 24
2.5.5 Optimization Calculations . 25

2.6 Concluding Remarks . 26

viii

Chapter 3 Feasible-Configuration Generator for Multiple-Bend Springs . . . 27
3.1 Description . 27
3.2 Introduction and Literature Survey . 27
3.3 Technical Preliminaries and Auxiliary Developments 31

3.3.1 Modeling Approach . 32
3.3.2 Design Domain, Key Parameters, and Variables 34
3.3.3 Typical Functional Requirements for Springs 35
3.3.4 General Spring Classes . 36
3.3.5 Generic Multi-Objective Optimization 37

3.4 Development of the Feasible Configuration Generator 38
3.5 Example: Configuration Generation of an Electronic Contact 42

3.5.1 Problem Context and Design Requirements 43
3.5.2 Execution of the Feasible Configuration Generator 43
3.5.3 Generation Results . 45

3.6 Concluding Remarks . 46

Chapter 4 Practical Parametric CAD Based Optimization Framework with
Iso-Performing Design Generation 49

4.1 Introduction . 49
4.2 Typical Optimization Process . 51

4.2.1 Modeling . 52
4.2.2 Meshing . 52
4.2.3 Solving . 54
4.2.4 Optimization Problem Statement Definition 55
4.2.5 Optimization Algorithm . 55

4.3 Parametric Optimization Setup . 56
4.3.1 Coupled Modeling, Meshing and Design Domain Definition 56
4.3.2 Solving Efficiently in the Optimization Context 58

4.4 Genetic Algorithm . 59
4.4.1 Fitness . 60
4.4.2 Tournament Selection with Elitism 60
4.4.3 New Generations . 61
4.4.4 Topology Optimization . 61

4.5 Iso-Performing Design Interpretation . 62
4.6 Formula SAE Frame . 63
4.7 Chapter Summary . 69

Chapter 5 Conclusions . 75
5.1 Introduction Summary . 75
5.2 Handling Frequent Design Changes by Automatic Optimization-Constrained

Updates of Parametric CAD Models Summary 76
5.3 Feasible Topology Generation For Multiple-Bend Springs Summary 76
5.4 Practical Parametric CAD Based Optimization Framework with Iso-Performing

Design Generation Summary . 76

ix

5.5 Future Work . 77

References . 79

x

xi

List of Tables

3.1 Design requirements for electronic contact configuration generation example 44
3.2 Results for electronic contact design . 46

4.1 Results for 1000 generation iso-performance optimization. 66
4.2 Results for 500 generation iso-performance optimization after a parametric

change. 68

xii

xiii

List of Figures

2.1 Decisions with the most weight are made when knowledge is the least. . . . 9
2.2 The effects of changes in an objective viewed in objective space. (a) One

objective, (b) One objective that has been changed, (c) One objective added,
and (d) One objective added and one objective changed. 14

2.3 The effects of changes in a constraint viewed in objective space. (a) One
constraint, (b) One constraint that has been changed, (c) One constraint
added, and (d) One constraint added and one constraint changed. 16

2.4 The effects of changes in the design variables as viewed in design variable
space. (a) One variable, (b) One variable that has been changed, (c) One
variable added, and (d) One variable added and one variable changed. . . . 16

2.5 The parametric optimization process . 19
2.6 The BYU FSAE Car . 21
2.7 Pushrod suspension. The rocker can be seen in the picture. 22
2.8 In this figure, the rocker, shock, and pushrod at ride height are illustrated.

Important parameters that effect motion ratio are L1, L2, the shock angle,
the push-rod angle, and the rocker angle 22

2.9 Optimized rocker arm for BYU Formula SAE car 25
2.10 Original rocker arm for BYU Formula SAE car 26

3.1 (a,b) Multiple-bend springs used as electronic contacts for hand-held com-
puters. 29

3.2 (a) Finite element model of spring shown in Fig. 3.1(a). (b) Finite element
model of spring shown in Fig. 3.1(b) . 30

3.3 (a) Finite frame element in local coordinates. (b) Finite frame element in
global coordinates. 32

3.4 Assumed design domain Γ, key parameters, and variables. 35
3.5 Configuration classification system. 37
3.6 Eight basic directions from which an element can leave a node. 37
3.7 Feasible configuration generator flow diagram. 40
3.8 Twenty-two feasible contact configurations were edentified, for the elec-

tronic contact example, using the proposed feasible-configuration genera-
tor. These feasible configurations represent eleven different classes. 42

3.9 (a) Feasible configuration number 4 in isometric view. (b) Possible physical
implementation of feasible configuration number 4. 47

4.1 The parametric optimization process . 50
4.2 A standard CATIA point creation GUI. 52

xiv

4.3 Node creation GUI . 57
4.4 Element creation GUI . 57
4.5 Property creation GUI . 58
4.6 First find a pareto set, then find iso-performing designs around one design. . 62
4.7 Initial population. 64
4.8 Design set after 250 generations . 65
4.9 Design set after 750 generations . 66
4.10 Design set after 1000 generations . 67
4.11 Lightest design after 1000 generations . 68
4.12 Stiffest design after 1000 generations . 69
4.13 Compromise design favoring weight after 1000 generations 70
4.14 Compromise design favoring stiffness after 1000 generations 71
4.15 Ten iso-performing designs expanded about a single design with perfor-

mance: 52.89 lbs. weight, 0.0669 in. deflection 72
4.16 Single keel configuration 1 with weight 54.69 lbs. and deflection 0.0296 in. 73

xv

Chapter 1

Introduction

1.1 Present and Future Optimization

Design decisions have a large impact early in the design process. Some of the

most important decisions are those related to selecting design concepts or concept fea-

tures. Many methods have been developed to help the designer in this important process

of decision making [1, 2, 3, 4, 5, 6, 7]. These methods, however, are typically limited by

the designer’s ability to distinguish between a limited number of designs. A more rapid

and comprehensive search method could be beneficial if it helps the designer find a more

suitable design. Therefore, it is worth considering numerical optimization as a decision

making tool for early design. Unfortunately, optimization at this early stage is difficult

because relatively little is known about the problem at hand. The aim of this thesis is to

propose and develop methods and tools to help engineers use the power of optimization

methods to improve decision making earlier in the design process.

Five typical steps of the design process are (i) functional specification, (ii) concept

generation, (iii) concept evaluation and selection (iv) embodiment design of the selected

concept, and (v) detailed design. Usually, engineers first complete a feasible detailed de-

sign, and then use optimization methods to improve on that design as much as possible.

Optimization could have a greater impact during early design, but there are a few factors

that currently make this impractical. The goal of this thesis is to identify problems that

keep engineers from using optimization in early design and solve them.

It is important to note at this point what we mean by early design. In Chapter 2 we

explain that the earlier we are in the design process, the greater our decision impact can be.

For this reason optimization can have the more impact the earlier it is used. At the same

1

time, the earlier we are in the design process, the less knowledge we have, and the more

problematic it is to use optimization. Currently, optimization is usually used in stage (v)

mentioned above, detailed design. Optimization is can be very succesfully implemented

at this stage already. ideally, we would want to use optimization in stage (ii), concept

generation. However, not enough knowledge has been acquired by the conceptual design

phase to use optimization unless much is already known from the beginning of the design

project. The goal of this thesis is to develop methods that can be used in stage (iv), em-

bodiment design (also called configuration generation, or conceptual design if the project

is well defined). Throughout the rest of this thesis, let it be clear that we are proposing and

developing methods to be used in this stage of design where there is a lot we do know and

can apply, but we do not know everything and we expect our knowledge to change with

time.

The first problem with using optimization earlier in design is loss of work due to

changing design requirements. It is very common for an engineer to spend time perfecting

the design of a particular component, only to see his work wasted because an interfacing

subsystem changes in a way that forces his component to change along with it. Changes

like this prevent designers from taking the time to set up an optimization problem because

they are aware that when a change is required, most work invested will be lost. It would be

useful to have a tool that prevents the loss of work that has been invested in an optimization

formulation. The second problem with using optimization earlier in design is that many

aspects of the design are still unknown and unmodeled. As a result, it is important to

present the engineer with design options and help him/her explore the design space instead

of considering a single design that may not capture important objectives and constraints.

1.2 Thesis Structure

In this, the first Chapter, we outline the structure of this thesis. Chapters 2 and 3 are

published papers that deal with separate topics relating to the greater problem: using opti-

mization to improve decision making during embodiment design. Chapter 4 is an integrated

computer application that takes advantage of principles described in the two published pa-

2

pers. The final Chapter summarizes the findings from Chapters 2 through 4. The following

sections provide more detail regarding the content of the remaining Chapters.

1.3 Theoretical Optimization Constrained Framework

In the second Chapter, we present “Handling Frequent Design Changes by Auto-

matic Optimization-Constrained Updates of Parametric CAD Models” [8]. This Chapter is

critical because it introduces a theoretical framework that is used in Chapter 4 to integrate

numerical optimization with parametric CAD. A brief overview is provided. A common

difficulty in designing mechanical systems is in handling the effects that design changes in

one subsystem have on another, or on the system as a whole. This is made more difficult

in early engineering design, when frequent changes are required and design information

is preliminary. Increased efforts have been made to capitalize on the benefits of numer-

ical optimization methods (search methods) in early engineering design – because of the

large impact early decisions have on subsequent development activities. An important step

toward executing meaningful optimizations in the early stages of design is the develop-

ment of a design optimization framework that can be used when objectives, constraints,

variables, and other conditions are expected to change as the design progresses and new

information is gained. Chapter 2 presents a design framework that considers such change

by subjecting the parametric updating of CAD models to optimization criteria. Under the

framework proposed in Chapter 2, a part is generically and parametrically modeled in a

CAD system; when changes are made to the design of subsystems that interact with the

part, the part is then automatically updated subject to design objectives and constraints. In

this way, the updated part or subassembly satisfies system and subsystem level optimiza-

tion criteria. Thus reducing the need for the designer to react to design changes in one

subsystem by manually correcting the affected design of another. The framework proposed

in Chapter 2 carries practical implications that are demonstrated in the development of a

suspension rocker for a formula SAE car designed and built at Brigham Young University,

resulting in a rocker weight savings of 18%.

3

1.4 Feasible Configuration Generator

In the third Chapter we present “Feasible-Concept Generator for Multiple-Bend

Springs” [9]. The feasible configuration generator is critical because it brings the notion

of iso-performance to the Thesis albeit in the context of multiple bend springs used for

electrical connector systems. A brief overview is provided. The design of multiple-bend,

progressive-die-formed springs typically comprises four iterative steps: (i) functional spec-

ification, (ii) configuration generation, (iii) configuration evaluation and selection, and (iv)

detailed shape and size optimization of the selected configuration. The process of configu-

ration generation fundamentally affects the success or failure of the design effort. Specif-

ically, by not generating potentially optimal configurations for further development in de-

tailed design, the designer may unknowingly set the design on track for sub-optimal perfor-

mance by selecting a configuration that does not have the potential of some other configu-

ration. In response, the approach presented in Chapter 3 focuses on improving the impor-

tant process of configuration generation. Specifically, Chapter 3 presents an optimization-

based spring configuration generator – without which, the generation would typically be

based solely on designer creativity, experience, and knowledge. The approach in Chapter

3 allows the designer to explore numerous optimization-generated spring configurations,

which are generated specifically to feasibly satisfy his or her functional specifications.

Importantly, the feasibility study is carried out before a final configuration is chosen for

detailed development. Thus streamlining the designer’s efforts to develop a design that has

a high possibility of avoiding sub-optimality. As shown in Chapter 3, we use the feasible-

configuration generator to identify twenty-two specific spring configurations for the design

of an electrical contact. All twenty-two of the configurations satisfy the design’s functional

specifications.

1.5 Practical Optimization Constrained Framework With Iso-Performance

In the fourth Chapter, an integrated computer application is presented that brings the

theoretical framework described in Chapter 2 into practice. It accomplishes this by creating

CATIA V5 commands. These commands allow a designer to create a geometrical model,

4

a structural analysis model and an optimization model at the same time. This integrated

model can be parametrically linked to other CAD geometry, and when any parametric

change is made to the CAD model, the user can update the the integrated model without

repeating any previous work. In addition, it extends the method described in Chapter 3

beyond the design of electrical contact springs to the design of any structure that can be

modeled with beam elements.

1.6 Chapter Summary

In this Chapter we outlined the structure of the Thesis. The following Chapter

is a paper published in the ASME International Mechanical Engineering Conference and

Exposition in 2007, the third Chapter is a paper published at the 11th AIAA/ISSMO Mul-

tidisciplinary Analysis and Optimization Conference in 2006. Following these, a CATIA

V5 application that performs optimization constrained updates as described in Chapter 2

and can produce iso-performing designs as described in Chapter 3 is presented. Finally a

concluding Chapter presents an overall summary of conclusions as well as a list of possible

future work.

5

6

Chapter 2

Handling Frequent Design Changes by Automatic Optimization-Constrained
Updates of Parametric CAD Models

2.1 Description

This paper was published at the ASME International Mechanical Engineering Con-

ference and Exposition in 2007 by K. Eric Bowman and Christopher A. Mattson. The full

reference for the paper is: Bowman, K. E., and Mattson, C. A., 2007. Handling frequent

design changes by automatic optimization-constrained updates of parametric CAD models

Tech. Rep. IMECE2007-42379, ASME International Mechanical Engineering Conference

and Exposition, November.

2.2 Introduction and Literature Survey

Throughout the development process new information about the design-at-hand is

continually becoming available. It is the designer’s responsibility to seek out and under-

stand this information and to use it to make design decisions that bring the development

efforts to better and better designs. The development of mechanical systems carries a par-

ticular challenge when it comes to new information that arises from design change and it-

eration; the challenge of handling the effects that design changes in one subsystem have on

another, or on the system as a whole. For parts and subsystems that are not easily adaptable

physically, or not designed in a flexible way, the interdependence of parts often results in

change requests that are unwelcome and discouraged among subteams – ultimately slowing

the development progress. These problems are more difficult to handle in early engineering

design, when frequent changes are made and design information is preliminary.

7

This paper presents a design optimization framework that expects frequent changes

in design objectives, constraints, variables, and other conditions that naturally arise as the

design progresses. Under the proposed framework, a part (or component) is generically

and parametrically modeled in a CAD system; when changes are made to the design of

subsystems that interact with the part, the part is then automatically updated subject to

design objectives and constraints. This requires the parametric updating of CAD models to

happen according to the design optimization criteria related to the design at hand.

One of the main benefits of the proposed method is that it reduces the designer’s

need to react to the design changes in one subsystem by manually correcting the affected

design of another. The optimization-based framework presented herein automatically up-

dates the parametric models subject to conditions that maintain their design functionality

and optimality. Thereby allowing the designer to monitor the optimization-driven changes,

as opposed to making the changes him/herself. The following subsection reviews the liter-

ature in the areas of (i) optimization methods for early design, and (ii) methods for dealing

with uncertain information in early design.

2.2.1 Literature Survey

It is natural that a product in the detailed design phase has a more stable, more de-

veloped mathematical description than a product in the conceptual (early) design phase. As

such it is logical to use numerical optimization during detailed design when mathematical

models are stable and well posed. It is during detailed design that engineers create detailed

analytical models that describe the performance of a system, subsystem, or part. These

analytical models can then be used as objective functions or constraints in an optimiza-

tion problem statement. Using traditional optimization methods during conceptual design

is more difficult because most designs are not well posed at this early stage. However, it

would be beneficial to capitalize on the power of numerical search methods as early as pos-

sible because the conceptual design phase has a large impact on all later phases and because

optimization-based search methods are known to effectively characterize the design space.

Also, it is well-known that the final design is limited by the concept chosen at this early,

uncertain, stage. In short, we seek to select a concept in the most effective way possible.

8

Detailed Design

Decision
Impact

K nowledge

Conceptual Design

H
ig

h
L

ow

Figure 2.1: Decisions with the most weight are made when knowledge is the least.

Many have indicated that most of the product’s success-dependent characteristics

are decided in the early design phases [10]. Figure 2.2.1 illustrates this phenomena. The

horizontal axis represents time, with two major divisions noted as conceptual design and

detailed design. The vertical axis is an increasing scale from low to high. The two curves

represent increasing design knowledge and decreasing impact of decisions as time in-

creases.

Because of the important role that optimization methods can have on the success of

a product design, there have been increased efforts to use optimization during conceptual

design. Two common approaches emerge in the literature. The first approach is to gener-

alize a design. An example is Morino’s work with aircraft design [1]. Aircraft design is

a well developed field. Because it is well developed, engineers have a good feel for what

will and will not work early in the design process. They also know what kinds of analysis

will be necessary from the beginning. As a result of this early knowledge, it is possible to

create a generic airplane model that can describe numerous feasible aircraft configurations.

The parameters for a specific airplane design can then be input into this model and the con-

figuration can be optimized. This same approach has been succesfully used in other well

developed fields [2, 3].

9

The second approach is topology optimization [4, 5, 6, 7]. In topology optimization,

a design domain is descritized and each element represents a design variable. Depending

on the type of analysis being run, the design variable could represent element existence,

element density, or some other element property. This method essentially searches through

all designs that could fit within the design domain. In this way, the model is specific to an

application, and for an entire analytical discipline. This method is flexible and can often be

effectively used during conceptual design as long as the design domain can be descritized

according to a finite element or finite difference model and the boundary conditions are

known. Sometimes, however, even more flexibility than these methods allow is necessary.

The two approaches discussed above, require that the designers already have a high

level of knowledge about the product. During conceptual design, when critical design

decisions are being made, there is often a lack of design knowledge. Usually, when this is

the case, optimization is deemed by most to be impossible. Instead of using optimization,

designers have traditionally used all information available along with their experience and

engineering intuition to make decisions. While designer knowledge and experience is not to

be discredited, the use of optimization during conceptual design can help decision making

in various ways. Namely, it can identify the best design, given the information available; it

can help designers visualize a design space; it can also help eliminate feasible designs that

are not optimal, thus simplifying the decision-making process; it can be used early to set

up component design that can be automated, thereby reducing the need for the designers to

do time-consuming detailed design of certain parts.

An important step toward executing meaningful optimizations in early design is

the development of a design optimization framework that can be used when objectives,

constraints, variables, and other conditions are expected to change as the design progresses

and new information is gained. Here, we make the important connection that since future

design changes are unknown they are a significant source of uncertainty in earlier phases

of design. Therefore, in the following paragraphs we examine the literature on the topic of

handling uncertainty in design optimization.

One approach is Optimization Under Uncertainty (OUU) [11]. The most com-

mon type of uncertainty considered in OUU is stochastic uncertainty or irreducible uncer-

10

tainty [11]. This is commonly seen as a probability distribution about a mean. Stochastic

uncertainty is not treated in this paper because it is present in all parts of design. Instead,

this paper deals with uncertainty that is significantly present in conceptual design; epistemic

uncertainty or reducible uncertainty [12, 13]. Epistemic uncertainty refers to uncertainty

that comes from the lack of knowledge. One approach for handling epistemic uncertainty is

evidence theory or Dempster-Shafer theory. In this theory, upper and lower bounds to prob-

abilistic uncertainty are created. As more knowledge is acquired these bounds become the

probabilistic distribution. These treatments of epistemic uncertainty deal with it in cases

where it can be reduced to a probabilistic distribution.

While the present paper does deal with uncertainty that comes from lack of knowl-

edge, it does not attempt to reduce it to a probabilistic distribution. This paper assumes

that although the level of knowledge may not be complete in early design, as the design

process progresses any necessary knowledge will become available. Here, optimization

can be used with all available information to make the best decision possible at any given

moment. If the optimization problem statement and framework under which it is optimized

is able to accept changes later, then as more information is gathered, the decisions made

early in the process can be improved upon. This requires an optimization framework with

a notable degree of flexibility.

The need for flexibility is considered from two important perspectives; (i) from the

perspective that in early design, little is known and therefore much is subject to change;

and (ii) from the perspective that when parts of a system change interacting parts will

consequently need to adapt and change quickly. Both are discussed briefly.

It is not uncommon to enter the conceptual design phase with only a partial under-

standing of a product’s objectives and constraints. If an optimum is chosen early in the

design process without considering the possibility of future changes to the optimization

statement, then when new information is added, the optimum chosen previously is likely

no longer optimal. For example, the solution to a single objective optimization problem is

a single point. If, later on, another objective is added, the optimum is no longer a single

point, but rather a Pareto set. This Pareto set can be represented in objective space as a

Pareto frontier. The optimal point from the single-objective optimization is an endpoint,

11

or anchor point, of the Pareto frontier. While this point is Pareto optimal, it is only one

of many optimal designs and it is less likely that it would be chosen over a compromise

design.

As mentioned previously, the design of mechanical systems can be particularly

challenging as changes to one subsystem can often have adverse effects on other subsys-

tems. The effects can often require fundamental changes to the definition of other subsys-

tems. At its most fundamental level, the changes in one subsystem can result in system or

subsystem changes in design objectives, design constraints, and design variables consid-

ered.

This paper presents a design framework that is flexible and can accommodate the

kinds of changes discussed above. The framework is CAD and optimization based. As will

be shown, parametric CAD models will be updated subject to optimization conditions that

ensure that the update is favorable and that it satisfies the conditions of the design problem.

The remainder of the paper is organized as follows. In Section 2.3 we explore

the fundamental changes that an optimization problem statement may undergo as design

information increases. Section 2.4 presents the framework for automatic optimization-

constrained updating of parametric CAD models. The design of a suspension rocker arm

for BYU’s formula SAE car is presented in Section 2.5, followed by concluding remarks

in Section 2.6.

2.3 Fundamental Changes To Optimization Problems as Design Information In-
creases

One important step toward using optimization in an environment with changing

information is to understand the different ways in which an optimization problem state-

ment can change as the product progresses through its development. In this section the

different parts of an optimization statement are analyzed, and different ways in which the

optimization statement can change are illustrated. We begin by examining a generic opti-

mization problem statement (Sec. 2.3.1). We then consider changes to the design objective

(Sec. 2.3.2), the design constraint (Sec. 2.3.3), and the design variables (Sec. 2.3.4), respec-

tively.

12

2.3.1 Generic Optimization Problem Statement

A general optimization statement is as follows:

min
x
{µ1(x),µ2(x), ...µn(x)} (2.1)

subject to:

gq(x)≤ 0 q = 1, ...,r (2.2)

h j(x) = 0 j = 1, ...,v (2.3)

xil ≤ xi ≤ xiu i = 1, ...,nx (2.4)

where µi(x) represents the ith objective, gq(x) and h j(x) represent the constraints, and all

xi represent the design variables. When this generic optimization problem is made specific,

there will be n objectives, r inequality constraints, v equality constraints and nx variables –

at the time of establishing the problem statement. As the design progresses, the objectives,

constraints, and variables can be modified in three ways. An objective, constraint or design

variable can be added, removed or changed. Since the effects of removing an objective

or constraint can be seen as the reverse of adding one, it is only necessary to observe the

effects of adding an objective, constraint or design variable. This creates six basic ways

in which an optimization problem can be modified. They are: an objective can be added,

an objective can be changed, a constraint can be added, a constraint can be changed, a

design variable can be added and a design variable can be changed. By studying these six

basic changes that can occur, more complex changes can be understood. The following

subsections explore these different ways in which an optimization statement can change.

2.3.2 Added or Changed Design Objectives

Because of the inherent lack of knowledge during conceptual design, there are many

reasons an objective might be changed later in the design process. If optimization is used

during conceptual design, it is important to know how the product will be effected by a

changed objective. If an objective function is changed, then the result is a potential change

13

Objective 1Objective 1

(a) (b)

Objective 1

O
bj

ec
tiv

e
2

Objective 1

O
bj

ec
tiv

e
2

(c) (d)

Figure 2.2: The effects of changes in an objective viewed in objective space. (a) One
objective, (b) One objective that has been changed, (c) One objective added, and (d) One
objective added and one objective changed.

in not only the design values that achieve the optimum result, but also in the value of the

optimum result. In the design objective space this would appear as a shifting optimum.

Figures 2.2(a) and 2.2(b) represent a single objective design space. As shown in Fig. 2.2(a)

the optimum of a single objective optimization problem is represented as a black dot. Figure

2.2(b) shows the optimum from Fig. 2.2(a) as a black dot and a shifted optimum that could

result from a changed objective as a grey dot.

In the same way that objectives can be expected to change due to the inherent un-

certainty early in design, objectives can also be added or removed. In single-objective

optimization the optimum set consists of a single point. If an objective is added, the opti-

mum set changes from a single point to many points that are called the Pareto set. These

points are often plotted in objective space as a Pareto frontier. The optimum point from

a single-objective optimization problem becomes the anchor point of the new Pareto set.

In Fig. 2.2(c) we see the bi-objective design space defined by Objective 1 and Objective

2. The figure shows the optimum (black dot) from Fig. 2.2(a) along with an open dot and

a curve connecting the two. The open dot represents the anchor point for the other ob-

jective and the curve represents the Pareto frontier or the set of optimal (non-dominated)

designs. If an objective is changed and an objective is added, the result appears as a shift

14

in the Pareto frontier in objective space. In Fig. 2.2(d) the combined effects of changing an

objective and adding an objective can be seen.

2.3.3 Added or Changed Design Constraints

The circumstances under which a constraint may change are very similar to the

circumstances under which an objective may change. The effect of changing a constraint in

the optimization problem is simply a change in the feasible design space as that constraint

moves. The feasible design space is the set of all designs that satisfy all constraints. In

Fig. 2.3(a) the dark gray portion of the oval represents the feasible design space. Just

as changing an objective appears in objective space as a shifting optimum, changing a

constraint appears in objective space as a shifting constraint. The black curve on the right-

hand side of the figure represents a constraint. The light gray portions of the oval represent

areas that are not feasible because of the constraints. In Fig. 2.3(b) the constraint has been

changed, and therefore moved in the design space, and as a result the light gray region that

represents non-feasible designs is larger.

If a new constraint is added, the effect is the addition of a new boundary in objective

space. In Fig. 2.3(c) a new black curve appears in the left-hand side of the figure. The curve

eliminates a new area of the feasible design space, which can be seen in light gray. This

boundary may or may not effect the optimum design. If a constraint is changed and a

constraint is added, the effect in objective space is a shift in the changed constraint and

the appearance of a new constraint boundary. Figure 2.3(d) shows the combined effect of

changing and adding a constraint.

2.3.4 Added or Changed Design Variables

The result of changing design variables can be observed in design variable space.

In Fig. 2.4(a) shows the design variable space for a single variable case; the horizontal axis

represents the design variable value and the vertical axis represents the objective function

value. Changing the design variables could result in different objective values for given

design variable values. This appears as a different curve in Fig. 2.4(b).

15

Constraint 1

Feasible Design
Space

Objective 1

O
bj

ec
tiv

e
2

Constraint 1

Feasible Design
Space

Objective 1
O

bj
ec

tiv
e

2

(a) (b)

Constraint 2
Constraint 1

Feasible Design
Space

Objective 1
O

bj
ec

tiv
e

2

Constraint 2
Constraint 1

Feasible Design
Space

Objective 1

O
bj

ec
tiv

e
2

(c) (d)

Figure 2.3: The effects of changes in a constraint viewed in objective space. (a) One
constraint, (b) One constraint that has been changed, (c) One constraint added, and (d) One
constraint added and one constraint changed.

x

F
(x

)

x

F
(x

)

(a) (b)

x

F
(x

)

x

F
(x

)

(c) (d)

y y

Figure 2.4: The effects of changes in the design variables as viewed in design variable
space. (a) One variable, (b) One variable that has been changed, (c) One variable added,
and (d) One variable added and one variable changed.

16

If a variable is added the result is the expansion of the design variable space into

another dimension as can be seen by the surface in Fig. 2.4(c). Figure 2.4(d) shows the

surface that results from adding a design variable and changing one.

2.3.5 A Comment on the Changing Nature of the Optimization Problem

As objectives, constraints, and design variables are added and changed, it may ap-

pear that nothing seems to stay the same in an optimization problem. As such one may

conclude that if nothing remains from one change to the next, then early optimization in-

formation is not useful. It is true that if early information is completely incorrect, then an

optimization problem would change completely as the project continued and in this case,

the early optimizations would indeed be useless. However, it is rarely the case, if ever, that

the information available early in the design is completely incorrect. Rather it is typically

somewhat correct. Our experience is that if an objective is added, it was usually suspected

early on that it may have to be considered. If it is changed, it is usually a small change,

resulting in an optimum close to the original one. The same applies to added or changed

constraints or design variables. This practical reality can be taken advantage of to cre-

ate a flexible optimization problem that can handle the most probable changes in a given

situation. The section that follows presents such a flexible framework.

2.4 A Framework for Optimization-Constrained Updating of Parametric CAD Mod-
els

If an optimization problem is created in such a way that it can accept and adapt

to change, then it could be used during conceptual design and be a valuable tool to help

engineers make the best decision possible amongst uncertain or changing information. In

this section we develop an optimization framework that can accomplish this when tied to a

parametric CAD assembly.

17

2.4.1 Optimization Applied to Parametric CAD/CAE

For the designer using optimization during early design, it would be problematic to

assume that the obtained optimum would still be optimal at the end of the product devel-

opment process. If, on the other hand, the optimization process is viewed as one that is

continuously carried out over the product development process, then it is natural to think

of the optima obtained in early design as a helpful step toward a final optimal design. We

may even consider the optima obtained in early design to be momentary optima and where

the final optimal solution is found by passing through many momentary optima as the de-

velopment process continues.

The notion of continuously carried out optimization can be accomplished by cou-

pling two of the most widely used tools in design; Parametric CAD Modeling, and Numer-

ical Optimization. This coupling can be accomplished by representing the part to be opti-

mized as a parametric CAD part whose parameters are variables in an optimization prob-

lem. The optimization problem receives inputs from the CAD assembly, processes them,

and outputs objective values back into the assembly that are interpreted as the new part. In

this manner, if the CAD assembly is changed, the optimization is simply re-evaluated. If

something inside the optimization problem is changed, the algorithm is re-evaluated and

the assembly simply receives the new output and adjusts accordingly. As long as the in-

formation interface between the CAD assembly and the optimization problem is robust,

the model will be able to accept large changes without failing. Defining interfaces in this

manner is a common practice in parametric CAD modeling of assemblies.

In a parametric CAD model, all important dimensions of a component or assembly

are variable parameters instead of fixed values. In this way, if one component must be

changed, linked components can adapt automatically instead of having to be remade from

scratch. The mathematical relationships in an optimization problem are more complex and

require more time to evaluate than the mathematical relationships in a parametric CAD

model, yet they can be formed in a similar way.

18

Done
NoYes

Model Design Domain

Mesh Design Domain

A pply B oundary Conditions

Create Optimization Statement

Solve

Import R esults

E xport Design Domain

Check: Have Optimization Inputs Changed

Update A ssembly

A ssembly Paramater Change

Check R esults

Figure 2.5: The parametric optimization process

2.4.2 Flexible Structural Topology Optimization

One way this parametric implementation could be used would be in the topology

optimization of a structure. The problem optimization statement for the flexible topology

optimization of a structure is as follows:

min
x

J =
n

∑
i=1

xivi (2.5)

subject to:

δ j ≤ δa j = 1, ...,m (2.6)

σi ≤ σy i = 1, ...,n (2.7)

Ω =
n⋃

i=1

Ωi i = 1, ...,n (2.8)

Ωi∩Ω j = /0, i 6= j i, j = i, ...,n (2.9)

0≤ xi ≤ 1 i = 1, ...,nx (2.10)

xI = 1 (2.11)

19

where J is the mass found by summing the product of the density, xi, and the volume ,vi, of

each element, Ωi, in the design domain, Ω. There are n elements in the design domain. δ j

represents the displacement of m nodes of interest, which must be less than some acceptable

displacement, δa. σi represents the stress of each element. xI is the density of any element

ΩI that lies on any interface between the part being optimized and the system it is in. The

subscript I indicates that it is at the interface.

This optimization can be carried out according to the flow diagram shown in Fig. 2.5.

First a parametric CAD model must be created that can provide the necessary inputs to the

optimization problem, namely: the design domain, the boundary conditions, the objectives,

and the constraints. The design domain for this kind of a problem could be a CAD model

that represents all necessary interfaces between the structure and its surrounding system

as well as the space available for it to occupy. The load case could be input from an out-

side source; if a change in the assembly has an effect on the load conditions, a method

for automatically updating the load case would be necessary. Once the assembly has been

updated a check is done to see if the update has effected the part in question. If it has, then

the design domain and load case should be exported to meshing software where the design

domain is meshed, and the load case is applied. Once the load case has been applied, the

objectives and constraints are associated with the model and the topology optimization is

run. The optimal design can then be returned to the outside environment along with any

necessary output values. An engineer can then check to make sure that the optimization

results are acceptable. If they are acceptable than the process is done.

2.5 Conceptual Design-Optimization of a Formula SAE Suspension Rocker

Flexible structural topology optimization can be applied to the design of a For-

mula SAE suspension rocker. First, Formula SAE will be described along with the design

problem of suspension rockers. Second, the actual implementation of this method will be

described.

20

Figure 2.6: The BYU FSAE Car

2.5.1 Formula SAE

Formula SAE (FSAE) is a student competition hosted by the Society of Automotive

Engineers (SAE). In this competition, student engineers build formula-style race cars with

limits on the car frame and engine. A student designed and built FSAE car is shown in

Fig. 2.6. The suspension types of choice for the Brigham Young University FSAE team are

pushrod and pullrod suspension. One important component of both pushrod and pullrod

suspension is the rocker (sometimes called the bellcrank). By decreasing the weight of this

part, not only the total weight of the car will be decreased but also the unsprung weight of

the suspension. An example of pushrod suspension with a rocker can be seen in Fig. 2.7.

The purpose of the rocker is to give the suspension the correct motion ratio. The

motion ratio is a the ratio of how far the suspension articulates at the wheel to how far the

damper and spring move. The motion ratio is a critical parameter in suspension design

and if it is not correct, the vehicle will not perform as predicted. There are a few ways

in which the rocker design effects the motion ratio. Fig. 2.8 shows that the most obvious

parameters that effect motion ratio are the lengths L1 and L2 of the rocker. The rocker

concept is used because it gives the designer the ability to choose these two lengths and

thus choose the best motion ratio. There are, however, other parameters that can adversely

effect motion ratio. These are the angle between the shock and the rocker at ride height and

the angle between the push-rod and the rocker at ride height. Ride height is the position

21

Figure 2.7: Pushrod suspension. The rocker can be seen in the picture.

Figure 2.8: In this figure, the rocker, shock, and pushrod at ride height are illustrated.
Important parameters that effect motion ratio are L1, L2, the shock angle, the push-rod
angle, and the rocker angle

22

of the suspension when the car is sitting still with the driver seated. If these angles are 90

degrees at ride height, than it is reasonable to make the simplifying assumption that the

motion of the pushrod and the shock are linear throughout the travel of the suspension. If

the shock angle and the push-rod angle are not close to perpendicular at ride height, then

this assumption is inaccurate. In this case the motion ratio is adversely effected. The way

to control these two angles is to change the rocker angle.

Another important part of suspension design is that interference be avoided. Often,

if components are moved or added to the car the suspension assembly must be changed.

This causes the rocker position to be changed on a very frequent basis. Each time the rocker

position is changed, it may result in a new rocker design.

The weight of any suspension component is particularly important because it con-

tributes not only to the overall weight of the car but also to the unsprung weight of the

suspension. As a result, it is desirable to use optimization on suspension components in or-

der to make them as light as possible. At the same time, because the rocker is often moved,

the optimal design of one day may not be optimal or even safe the next day. In order to

use optimization on a rocker, the optimization must be able to withstand frequent changes

to the objective functions because the loads to the rocker change when it is moved and the

optimization must be able to withstand frequent changes to the constraints because each

time it is moved the design domain changes.

2.5.2 Assembly

The first step towards an optimization problem that can survive changing objec-

tives and constraints is to create a suspension subassembly that can provide all necessary

inputs and receive any new outputs. In this case, it was necessary to create a suspension

subassembly that could be easily adjusted to meet packaging requirements without com-

promising the motion ratio. The way this was accomplished was to allow the designer to

select the position of the rocker as well as the lengths L1 and L2 on the rocker. Once

these parameters were chosen, the rocker angle automatically adjusts to a value so that the

shock and push-rod are perpendicular to the rocker at ride height. If a change in suspension

parameters results in a change in the rocker than the next step is triggered.

23

2.5.3 Problem Statement

The optimization problem statement is slightly modified from the generic structural

topology optimization statement.

min
x

J =
n

∑
i=1

xivi (2.12)

subject to:

δ ≤ 0.01in (2.13)

σi ≤ 31183psi i = 1, ...,nx (2.14)

Ω =
n⋃

i=1

Ωi i = 1, ...,nx (2.15)

Ωi∩Ω j = /0, i 6= j i, j = i, ...,nx (2.16)

0≤ xi ≤ 1 i = 1, ...,nx (2.17)

xI = 1 (2.18)

Each part of the optimization statement will be discussed as it is developed in this section.

2.5.4 Input Preparation

If a change in the rocker happens when the assembly is updated, than a macro

calculates all input values needed to run topology optimization. The first step is to generate

the new design domain Ω. The new L1, L2 and rocker angle are used along with established

interfaces ΩI between the rocker and the car to create a solid model that represents the new

design domain. These interfaces are the pivot where it mounts to the frame, one bolt hole

where it mounts to the shock, and one bolt hole where it mounts to the push-rod or pull-rod.

The second step is to calculate the load that is applied to the rocker. In order to

accomplish this, a CATIA [14] macro inputs the new geometry into a spreadsheet which

calculates the load case on the rocker when the suspension is fully compressed. Once these

inputs are ready, they are exported to OptiStruct [15].

24

Figure 2.9: Optimized rocker arm for BYU Formula SAE car

2.5.5 Optimization Calculations

Once the design domain has been modeled and the load cases have been calculated

the CATIA macro creates a text file with all of the information that OptiStruct needs to

perform topology optimization on the model. An OptiStruct batch file meshes the design

domain ,Ω, constrains the interface elements, ΩI , applies the load cases, adds the stress

constraint, σ , to each element and the deflection constraint, δ , to the point where the shock

interfaces with the rocker, assigns the objective function, J, and runs the topology opti-

mization. The results are output from OptiStruct to the assembly model where they can

be verified and used if acceptable. An example of the topology optimization results can

be seen in Fig. 2.9 compared to the original rocker design shown in Fig. 2.10. The opti-

mization results were checked using Finite Element Analysis and both the stress and the

deflection are within the constraints. The volume of the optimized rocker is 82% of the

volume of the original design.

25

Figure 2.10: Original rocker arm for BYU Formula SAE car

2.6 Concluding Remarks

In this paper we have developed a design optimization framework that can be used

when objectives, constraints, variables, and other conditions are expected to change as the

design progresses and new information is gained. The design framework is parametric

CAD and optimization based. By constraining the parametric updating of CAD models

to meet optimization criteria, optimization methods are linked directly to changes that

frequently occur during the development of a product. This link is fundamental to the

developed framework because it facilitates the repeated optimizations of a part of the de-

velopment of the system. In essence, if the CAD assembly is changed, the optimization

is re-evaluated. One of the main benefits of the proposed method is that it reduces the

designer’s need to react to the design changes in one subsystem by manually correcting

the affected design of another. The framework was demonstrated in the development of a

suspension rocker for a BYU formula SAE car which was reduced in weight by 18%.

26

Chapter 3

Feasible-Configuration Generator for Multiple-Bend Springs

3.1 Description

This paper was published at the 11th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference in 2006 by Christopher A. Mattson and K. Eric Bowman. The

full reference for the paper is: Mattson, C. A., and Bowman, K. E., 2006. Feasible-

Configuration Generator for Multiple-Bend Springs Tech. Rep. AIAA-2006-7094, 11th

AIAA/ISSMO Multi-disciplinary Analysis and Optimization Conference, September.

3.2 Introduction and Literature Survey

Designers are continually adapting to the increasing market demand for smaller and smaller

devices – particularly in the consumer electronics industry. One market requirement driving

adaptation has a challenging effect on mechanical springs, such as those that comprise

electronic connectors, locking latches, and switches. Specifically, the requirement is to

miniaturize the spring size, given relatively unchanged requirements for spring deflections,

normal forces, and maximum stresses [16]. To meet this requirement, some designers have

identified feasible spring configurations that involve multiple bends in the spring geometry,

such as the electronic contacts shown in Fig. 3.1.

The design of multiple-bend springs typically comprises four iterative parts: (i)

a functional specification phase, (ii) a configuration generation phase, (iii) a configura-

tion evaluation and selection phase, and (iv) a detailed design phase where shape and size

optimization is performed for the selected configuration. The process of configuration

generation fundamentally affects the success or failure of the design effort [17, 18, 19].

27

Specifically, by not generating potentially optimal configurations for further development

in detailed design, the designer may unknowingly set the design on track for sub-optimal

performance [20].

The developments presented in this paper focus on improving the important process

of configuration generation. We define feasible-configuration generation in the context of

progressive-die-formed springs as follows:

Feasible-Configuration Generation is the process of creating and/or identifying numer-

ous spring outlines that can be used to feasibly satisfy designer-defined geometric

and behaviorial requirements.

Often, during the conceptual design phase, the process of configuration generation and se-

lection is executed on the sole basis of designer creativity, experience, and knowledge [20,

21]. As a result, the feasibility of a configuration is not typically evaluated in a rigorous

way for numerous candidate configurations, rather it is often estimated based on conjec-

ture [16].

In contrast, this paper presents an optimization-based spring configuration gener-

ator that rigorously checks the feasibility of the computationally generated configuration

before presenting it to the designer as a candidate for evaluation. The proposed approach al-

lows the designer to explore numerous optimization-generated spring configurations, which

are generated specifically to feasibly satisfy his or her functional specifications. Impor-

tantly, the feasibility study is carried out before a final configuration is chosen for detailed

development. Thus streamlining the designer’s efforts to develop a design that has a high

possibility of avoiding sub-optimality.

The notion of feasible-configuration generation is closely related to two notable

research areas in the literature. They are; (i) concept generation [21, 22, 23], and (ii)

topology or layout optimization [4, 24]. Similarities and differences between feasible-

configuration generation and these two areas are briefly discussed in the remainder of this

section.

Feasible-configuration generation and concept generation are similar in that (i) both

processes are carried out separate from, and before, the important task of concept selection,

28

P

P

Clamped E nd

(b)

(a)

Figure 3.1: (a,b) Multiple-bend springs used as electronic contacts for hand-held comput-
ers.

and (ii) both processes seek to provide the designer with numerous designs possibilities –

of which one (or a few) will be selected for further development in the detailed design

phase.

One important distinction between these two methods is that feasible-configuration

generation seeks to provide the designer with only feasible design possibilities. While

traditional methods for concept generation are expected to yield roughly five percent work-

ing concepts; that is, concepts that are worth pursuing. These traditional methods include

brainstorming [25], morphology [26], and synectics [27].

Importantly, we note that as the design space becomes more constrained, the tradi-

tional methods of concept generation would yield higher percentages of working concepts.

The springs developed in this paper represent well-defined devices, and the concept gen-

eration thereof would result in much higher percentages of working concepts. It is this

well-defined space that allows us to create a generic spring model that can be used together

with optimization techniques to ensure that the generated configurations are feasible.

The feasible-configuration generator presented in this paper uses elements of both

topological and shape optimization. It is similar to both optimization methods in that it uses

numerical optimization to explore numerous shapes and topologies, respectively, where the

geometry is the design variable. As shown in Section 3.4, the developments of this paper

use a series of shape optimizations to explore the feasibility of disparate topologies.

29

P

P

(a)

(b)

Figure 3.2: (a) Finite element model of spring shown in Fig. 3.1(a). (b) Finite element
model of spring shown in Fig. 3.1(b)

One fundamental difference between feasible-configuration generation and topol-

ogy optimization is that under the approach presented in this paper the final physical im-

plementations of the generated spring configurations are meant to be and are topologically

equivalent. We note, however, that before physical implementation – during the analysis

phase – numerous disparate spring topologies are considered as part of the configuration

generation process.

For example, consider the finite element model of the spring in Fig. 3.1(a) as it is

shown in Fig. 3.2(a). This finite element model is used to evaluate the behavioral response

of the spring when exposed to an applied load P. This finite element model is of a particular

topology, while the spring model shown in Fig. 3.2(b) is of a different topology. That

is, the finite element model in Fig. 3.2(b) cannot be transformed into that of Fig. 3.2(a)

by pulling, stretching, twisting, bending, or squashing – without disassembling, adding

elements, and/or reassembling elements [28].

Notice, however, that when we consider the physical implementation (see Fig. 3.1)

of those two finite element models, we see that they are topologically equivalent. For the

30

purpose of spring design, as its presented in this paper, the topological equivalence in the

physical implementation is important because these springs will be formed in a progressive

die; where raw material will be pulled, stretched, twisted, and bent to form the final shapes.

Another important difference is that under the approach presented in this paper,

the topology is not actively modified during a single optimization routine, as is the case

with topology optimization. Rather, the topology is changed in between runs in a series of

optimizations that are performed as part of the feasible-configuration generation process.

While similar to these methods, the approach presented in this paper is developed

specifically for progressive-die-formed springs and benefits from the unique aspects pre-

sented in the following sections.

The remainder of this paper is organized as follows. In Section 3.2, we present

technical preliminaries and auxiliary developments. In Section 3.3 we develop the feasible

configuration generator for progressive-die-formed springs. Following this section, in Sec-

tion 3.4, we use the basic framework to generate numerous feasible spring configurations

for an electronic contact. Finally, concluding remarks are provided in Section 3.5.

3.3 Technical Preliminaries and Auxiliary Developments

This section provides technical preliminaries and developments that facilitate the

presentation of the feasible-configuration generator as introduced in Section 3.3. We first

describe the modeling approach used to predict spring deflections and stresses. We then

present the assumed design domain and the functional requirements typically associated

with multiple-bend spring design. A general set of spring classes, which is developed to

show diversity in the generated configurations, is then developed. Finally, we end this

section by reviewing a generic multi-objective optimization problem statement as it will be

used in the configuration generation algorithm.

31

d5 d4

d6

d2 d1

d3

(a) (b)

v1

u1

θ1

v2

u2

θ2

α1

s = 0

s = L

Figure 3.3: (a) Finite frame element in local coordinates. (b) Finite frame element in global
coordinates.

3.3.1 Modeling Approach

The multiple-bend springs considered in this paper are modeled using linear elastic,

isotropic, frame elements assembled together under a finite element methodology. The

frame elements resist both bending and axial deformations [29], and are connected end-to-

end starting at a fixed (clamped) end and continuing element-by-element to the free end of

the spring. Each node in the finite element model is shared by a maximum of two elements.

Each element has six degrees of freedom (d1,d2, ...,d6) as shown in Fig. 3.3(a).

Figure 3.3(b) shows the six degrees of freedom as defined in the global coordinate system

(u1, v1, θ1, u2, v2, and θ2). Global to local transformations are performed according to

Eq. 3.1.
d1

d2

d3

=

cosα1 sinα1 0

−sinα1 cosα1 0

0 0 1

u1

v1

θ1

 (3.1)

All elements in the structure have equal and constant rectangular cross-sections of

width b, and material thickness h. The stiffness matrix for the generic frame element is

32

K =

EA
L 0 0 −EA

L 0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI

L

−EA
L 0 0 EA

L 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI

L

(3.2)

where I = bh3/12.

Static condensation is used to create the global stiffness matrix, K. The nodal dis-

placements are obtained by solving the system of linear equations given by

D = K−1P (3.3)

where D is a column vector of global nodal displacements (ui,vi,θi,∀i ∈ 1,2, ...,nn) where

nn is the number of nodes in the model, and P is a column vector of applied loads, expressed

in global coordinates.

In this paper, we consider only the bending stress, σ , which is defined for the i-th

element as

σi(s) =
Mi(s)h

2I
i ∈ 1, ...,ne (3.4)

where the bending moment is obtained by

Mi(s) = EI
d2vi(s)

ds2 0≤ s≤ Li (3.5)

and where the elemental lateral displacements (vi) are found using Hermite interpolation

functions [29] and are

vi(s) =
(

C1i C2i C3i C4i

)

d2i

d3i

d5i

d6i

(3.6)

where C1i = 2s3

L3
i
− 3s2

L2
i

+1, C2i = s3

L2
i
− 2s2

Li
+ s, C3i = 3s2

L2
i
− 2s3

L3
i

, and C4i = s3

L2
i
− s2

Li
.

33

3.3.2 Design Domain, Key Parameters, and Variables

The design domain within which we will search for feasible spring configurations

is illustrated in Fig. 3.4. The parameters depicted in the figure are defined in the following:

Design Domain (Γ = [Γx Γy]T) is the two-dimensional space within which the search for

feasible spring configurations will take place. Γx represents the length of the design

domain in the cartesian-coordinate direction x. Likewise, Γy is the domain length in

the y direction. We assume that the bottom left corner of the design domain is located

at the origin (0, 0). Physically, this represents the window within which the spring

design must fit.

Fixed End (x1, y1) is a designer-defined point in the design domain through which the

fixed end of the spring is required to pass. All degrees of freedom at this point are

equal to zero. Physically, this represents the point where the spring will be attached

to a base structure, and is constrained by a clamped condition.

Free End (xnn , ynn) is a designer-defined point in the design domain through which the

free end of the spring is required to pass when undeflected, where nn is the number of

nodes in the finite element model of the multiple-bend spring. All degrees of freedom

at this point are free. Physically, this represents the point where the spring will make

contact with another body, or the point of actuation.

Variable Point i ((xi, yi) where nn≥ 3 and i∈ {2...nn−1}) is a variable point in the design

domain where a node in the finite element model of the spring will be located. The

coordinates of this point (xi, yi) are design variables. Physically, this represents the

point in the design domain through which the undeflected spring geometry will pass.

Desired Deflection (δ̂x, δ̂y) is the target deflected position of the free end. Note that the

actual deflection is denoted by (unn , vnn).

Load Magnitude and Direction (P, γP) is defined as applied to the free end. The load

direction, γP, is always measured counter-clockwise from the horizontal, and P is

34

Γy

Γx

(xi+1, yi+1)

(x1, y1)

P

(xn , yn)n n

(x2, y2)

α1,2

α(i,i+1)

(xi, yi)

γP

δy

δx

(0, 0)

Figure 3.4: Assumed design domain Γ, key parameters, and variables.

always positive. Physically this can be thought of as the force and direction required

to deflect the spring to the desired deflection.

Bend Angle (αi,i+1 where i ∈ {1...nn−1}) is the angle between adjacent elements and is

always less than or equal to 180◦. Physically this may become of particular interested

when constructing manufacturing constraints.

3.3.3 Typical Functional Requirements for Springs

As discussed in the introduction, the design of multiple-bend springs typically com-

prises four steps. The first of which is the specification of functional requirements. For

spring design, the designer would ideally be able to reach all of the design objectives listed

below.

Ideally, the spring will;

1. Fit within a specified design domain.

2. Have a fixed end at a specified location.

35

3. Have a free end at a specified location.

4. Deflect to a desired position when P is applied.

5. Have a specified safety factor.

6. Be manufacturable.

In this paper we assume that the designer seeks to generate spring configurations

that satisfy these requirements, and that any design that satisfies all of these requirements

is of potential interest to the designer. As will be shown in the next section, multiobjec-

tive optimization can be used to identify numerous geometries that can feasibly meet the

functional requirements listed above.

3.3.4 General Spring Classes

To demonstrate diversity in the generation of spring configurations, we must first

develop a spring classification system, which we do here. All springs considered in this

paper can be classified using the three digit classification number illustrated in Fig. 3.5.

The first digit in the classification number represents the direction that the first

element leaves the node at the fixed end. The second digit represents the direction that

the last element leaves the node at the free end. Eight directions are defined as shown

in Fig. 3.6. The black solid circle in the center of the figure represents the node under

consideration. The element leaving this node will leave in one of the eight directions shown.

In Fig. 3.6, the element leaves the node in direction 8. Note that 67.5◦ < Direction 1

≤ 112.5◦, 112.5◦ < Direction 2 ≤ 157.5◦, and so forth.

To be generally applicable, we use the direction of the applied load P as a reference

direction. The configuration under consideration is rotated so that the applied load is 270

degrees counter clockwise from the horizontal.

The third digit in the classification number is the number of curvature signs the

string of frame elements has from the fixed end to the free end. For example, consider the

finite element model shown in Fig. 3.2(a). Nodes 1-4 represent the first curvature sign. We

can observe an inflection point between nodes 2 and 5. Here, nodes 4 to 7 represent the

36

Class 2 4 3
Number of curvature signs
Direction of element leaving free end
Direction of element leaving �xed end

Figure 3.5: Configuration classification system.

1
2

3

4
5

6

7

8

67
.5

11
2.

5

157.5

202.5

247.5

292.5

337.5

22.5

P

R eference
Direction

E lement

Figure 3.6: Eight basic directions from which an element can leave a node.

second curvature sign. Continuing to the end we observe three other inflection points. Thus

there are 5 curvature signs in this configuration. As a note, a straight line between the fixed

and free ends has no curvature; in this case the third digit is zero.

Continuing to examine Fig. 3.2(a), we Rotate the configuration so that the applied

load is directly downward, and observe that the element leaving the fixed end leaves in

direction 1. Also, the element leaving the free end (node 16) leaves in direction 3. Thus,

this configuration belongs to Class 135. For comparison purposes, the configuration in

Fig. 3.2(b) belongs to Class 122.

3.3.5 Generic Multi-Objective Optimization

The configuration generation algorithm presented in the next section uses multi-

objective optimization to search for numerous spring configurations that satisfy all of the

37

designer’s functional requirements. Here, we provide a brief description of the generic

multiobjective optimization problem statement as presented in Problem 1.

Problem 1: Generic Multi-objective Optimization

min
x

[µ1(x) µ2(x) · · · µno(x)]T (3.7)

subject to

g(x)≤ 0 (3.8)

h(x) = 0 (3.9)

xil ≤ xi ≤ xiu i = 1, ...,nx (3.10)

where µi represents the i-th design objective, no is the number of design objectives, g and

h are inequality and equality constraint vectors, respectively, and x is a vector of design

variables.

The process of aggregating multiple objectives into one function to be minimized is

an important topic [30]. For the configuration generator presented in the next section, we

use a compromise programming [31] approach to the aggregation. Specifically,

f = w1µ
m
1 +w2µ

m
2 + · · ·+wno µ

m
no

(3.11)

where we set w1, w2, · · · , wno = 1, and m equal to a positive even number.

3.4 Development of the Feasible Configuration Generator

In this section we present an iterative six-step process for generating feasible spring

configurations using multiobjective optimization. In each iteration of the process, a shape

optimization is performed wherein the shape of the spring is nearly completely free to move

within the design domain. The topology of the finite element model used in the analysis

and the objective function formulation may also change between iterations, thus expanding

the search for feasible configurations.

38

Performed iteratively, the following six steps can result in the generation of nu-

merous spring configurations that satisfy a designer-established functional specification as

defined in Section 3.2. Each of the six steps in the process are discussed below. The

iterative nature of the process is illustrated in Fig. 3.7.

STEP 1: SPECIFY REQUIREMENTS. Specify the fixed parameters: Γx, Γy, x1, y1, xnn ,

ynn , δ̂x, δ̂y, P, γP, αmin, Lmin, E, σy, Fs, b, and h; where Lmin is the minimum element

length, E is the modulus of elasticity, σy is the yield strength, and Fs is the stress safety

factor. These parameters provide direction for the feasible-configuration generation pro-

cess. When these requirements are satisfied, the resulting configuration is considered to be

of potential interest to the designer.

STEP 2: SPECIFY GENERATOR PARAMETERS. The search for feasible spring config-

urations considers finite element models comprising two nodes to as many as N number of

nodes. Therefore, the configuration generator parameter N must be specified. We will, in

general, allow ni to be defined as ni = 2,3, ...,N. Also, the search will consider one objec-

tive function formulation to as many as M formulations. Therefore, the generator parame-

ter M must also be initialized. Specifically for the case where compromise programming is

used, we allow mk to be defined as mk = 2,4, ...,Mx2.

ALGORITHM STEP: For each ni ∈ {2, ...,N} and for each mk ∈ {2,4, ...,(Mx2)} perform

steps 3 through 6 as presented below. Each cycle of steps 3 through 6 results in either (i)

computationally identifying a geometric configuration that satisfies the functional require-

ments established in step 1, or results in (ii) not finding a feasible solution.

STEP 3: INITIALIZE VARIABLES. Initialize the design variables x and y

x =
[

x2 x3 · · · x(ni−1)

]T
(3.12)

y =
[

y2 y3 · · · y(ni−1)

]T
(3.13)

where the initial values for these variables are determined as follows. Consider the vector,

~w, whose tail is at the fixed-end node and head is at the free-end node. An evenly distributed

set of ni nodes are created along this vector. For the configuration geometry defined by

39

E ND

ST E P 1: Specify R equirements

ST E P 2: Specify Generator
Parameters, (N, M)

set i = 0 and k = 0

ST E P 3: Initialize V ariables
set i = i + 1

ST E P 4: Formulate Objective Function
set k = k + 1

ST E P 5: E stablish Design Constraints

ST E P 6: Perform ni, mk Search

k = M?

Y es

No

i = N-1?

Y es

No

Feasible
Found?

Y es

Set of Feasible
Generated

Configurations
No

Figure 3.7: Feasible configuration generator flow diagram.

nodes one through ni, the design variables are the x and y nodal coordinates for nodes two

through ni−1. Specifically,

~w =
[

xni yni

]
−
[

x1 y1

]
(3.14)

for j = 2,3, ...,ni−1 [
x j y j

]
=
[

x1 y1

]
+

j−1
ni−1

~w (3.15)

Note that the initial values for the design variables define a straight line of elements that

would be defined as belonging to Class AB0, where A and B would be based on the loca-

tions of the fixed and free-end nodes, and 0 classifies the straight line.

STEP 4: FORMULATE OBJECTIVE FUNCTION. As different objective functions will

result in potentially different optima, we allow the objective function formulation to change

during the feasible-configuration generation process. In this paper, we take a compromise

programming approach and formulate the objective function as

f (x,y) = (δ̂x−uni)
mk +(δ̂y− vni)

mk (3.16)

40

where the compromise programming power mk is changed as steps 3 through 6 are cycled

through (see Algorithm Step above).

STEP 5: ESTABLISH DESIGN CONSTRAINTS. For each of the finite element model

topologies considered, we create optimization design constraints based on the functional

requirements established in step 1. Specifically, we limit the bending stress in each element

to

σ j ≤
σy

Fs
j = 1, ...,ne (3.17)

where ne is the number of elements (ne = ni−1).

Also, we prevent bends that are unduly difficult to manufacture by limiting element

length and the angle between adjacent elements to

L j ≥ Lmin j = 1, ...,ne (3.18)

α j ≥ αmin j = 1, ...,(ne−1) (3.19)

Finally, the design variables, x and y, are permitted to move freely within the design domain

by setting

0≤ x j ≤ Γx j = 2, ...,(ni−1) (3.20)

0≤ yi ≤ Γy i = 2, ...,(ni−1) (3.21)

Note that x1, xni , y1, and yni , are constrained by the functional requirements established in

step 1.

STEP 6: PERFORM SEARCH. We now execute the shape optimization described in Prob-

lem 2k
i for the topology defined by ni and the objective function defined by mk.

Problem 2k
i : Shape Optimization for Topology Defined by ni and Objective Function mk

min
x,y

f (x,y) = (δ̂x−uni)
mk +(δ̂y− vni)

mk (3.22)

subject to subject to Eqs. 3.17–3.21.

At the completion of the iterative execution of the six-step process developed here,

the algorithm will have completed the search for feasible spring configurations by consid-

41

P P P P P

P P P P P P

P P P P P P

P P P P P

Figure 3.8: Twenty-two feasible contact configurations were edentified, for the electronic
contact example, using the proposed feasible-configuration generator. These feasible con-
figurations represent eleven different classes.

ering N different finite element model topologies, M different objective function formula-

tions, and having performed (N−1)xM shape optimizations.

3.5 Example: Configuration Generation of an Electronic Contact

In this section we apply the general approach developed in the previous section to

the design of an electronic contact. The example is presented in three sub-sections: we

first present the problem context and objective; we then present the execution of the steps

presented in the previous section; finally, we present the results and a brief discussion.

42

3.5.1 Problem Context and Design Requirements

Consider the design of a spring that will act as a conductive body to carry electronic

signals from one device to another. The spring must be fixed to one device both electrically

and mechanically at one end of the spring, and make separable mechanical and electrical

contact with the mating device at the free end. To ensure a reliable electrical connection, the

mating bodies must be pressed together with sufficient force to result in minimal electrical

contact resistance. If designed properly, the spring will provide the force required to ensure

electrical conductivity, given a physical mating of the two devices. The objective of this

example is to show that we can generate various disparate contact configurations that meet

the functional requirements (specified in the following paragraphs).

3.5.2 Execution of the Feasible Configuration Generator

The six-step process presented in Section 3.3 is now carried out for the contact

design problem described above.

Step 1: This step calls for the establishment of functional requirements. According

to the generic functional requirements for spring design, as described in Section 3.2, we

assume that the following parameters are known by the designer: The design domain, the

fixed-end position, the free-end position, the desired design deflections of the free end,

the load (or reaction force) magnitude and direction at the free end, the material and cross

section properties, and any other manufacturing constraints. Table 3.1 lists the parameter

values used for the design of the electronic contact.

Step 2: In this step we specify the generator parameters N and M. For this example

we consider topologies with as little as two nodes to as many as nine nodes. Therefore, we

set N = 9. For the objective function formulation, we use the compromise programming

powers of 2, 4, 6, and 8. Therefore, we set M = 4.

Step 3: This step requires that we initialize the design variables x and y. We con-

struct the vector ~w as defined by Eq. 3.14 and generate ni ∈ {2, ...,N} number of evenly

distributed nodes along the vector ~w. The coordinates for the nodes between the fixed and

free ends are starting positions for the variables x and y.

43

Table 3.1: Design requirements for electronic contact configuration generation example

Requirement Symbol Value
Design Domain (x) Γx 11.0 mm
Design Domain (y) Γy 15.0 mm

Fixed End Position (x) x1 4.0 mm
Fixed End Position (y) y1 4.0 mm
Free End Position (x) xnn 9.0 mm
Free End Position (y) ynn 14.0 mm

Desired End Deflection (x) δ̂x 1.0 mm
Desired End Deflection (y) δ̂y -1.0 mm

Force at Free End P 0.73 N
Direction of Applied Force γP 270◦

Safety Factor on Stress Fs 1.5 min
Modulus of Elasticity E 120.7e9 Pa

Yield Strength σy 1.172e9 Pa
Cross-sectional width b 1.8 mm
Cross-sectional height h 0.25 mm

Steps 4 and 5: These steps involve formulating the optimization problem state-

ments that will be executed in Step 6. The resulting problem statement is described in

Problem 3.

Problem 3: Generic Optimization Problem Statement for Contact Configuration Genera-

tion Example

min
x,y

f (x,y) = (1.0−uni)
mk +(−1.0− vni)

mk (3.23)

subject to

σ j ≤ 781 Pa j = 1, ...,ne (3.24)

Li ≥ 2.0 mm i = 1, ...,ne (3.25)

αi ≥ 100◦ i = 1, ...,(ne−1) (3.26)

x1 = 4.0 mm (3.27)

xnn = 9.0 mm (3.28)

y1 = 4.0 mm (3.29)

44

ynn = 14.0 mm (3.30)

0.0 mm≤ xi ≤ 11.0 mm i = 2, ...,(nn−1) (3.31)

0.0 mm≤ yi ≤ 15.0 mm i = 2, ...,(nn−1) (3.32)

where the nodal deflections and elemental stresses are obtained according to the modeling

approach described in Section 3.2.

Step 6: In this step, Problem 3 is carried out to search for a feasible spring con-

figuration given the topology and objective function formulation defined by ni and mk.

Note that steps 3 through 6 are executed iteratively as shown in Fig 3.7. For this example,

Problem 3 is solved a total of 32 times; once for each combination of mk and ni. These

optimizations resulted in 22 specific design configurations from 11 different classes.

3.5.3 Generation Results

Figure 3.8 shows the generated feasible configurations. The shaded area represents

the design domain. The solid lines are the pre-deflected geometries and the dashed lines

are the deflected geometries. The solid circle at the end of the deflected spring is a plot of

the desired design deflection. For context, we have provided Fig. 3.9 showing a possible

physical implementation of feasible configuration number 4.

Table 3.2 provides the data for the generated configurations. Column 1 of Table 3.2

corresponds to the configuration number as shown in the bottom left corner of the design

domains for the configurations in Figure 3.8. Column 2 is the class into which the configu-

ration fits. Columns 3 and 4 are the actual (analysis) deflections that the configuration will

undergo, when exposed to P. Column 5 is the RMS error between the target and actual

defections at the free end; note that the units are mm. Column 6 is the safety factor on

bending stress.

At this point in the design process, the designer has 22 feasible spring configurations

that will meet his or her requirements as specified in step 1 of the generator. The important

process of configuration evaluation and selection would now be carried out. Importantly,

because the main functional objectives have been satisfied by the optimization based search,

45

Table 3.2: Results for electronic contact design

Config. Class un vn Error FS
1 241 0.9995 -0.9999 0.0005 1.8
2 242 0.9993 -0.9987 0.0015 1.7
3 241 1.0012 -1.0013 0.0018 1.8
4 252 1.0001 -1.0003 0.0003 1.8
5 843 1.0007 -1.0005 0.0008 1.8
6 241 0.9994 -0.9997 0.0006 1.7
7 242 1.0006 -1.0007 0.0009 1.7
8 242 0.9990 -0.9983 0.0019 1.8
9 233 0.9997 -0.9987 0.0014 1.9

10 634 0.9995 -1.0003 0.0006 2.0
11 663 0.9992 -1.0001 0.0008 1.9
12 241 0.9994 -1.0016 0.0017 1.7
13 242 1.0021 -1.0016 0.0026 1.7
14 241 1.0024 -0.9973 0.0036 1.8
15 244 0.9737 -1.0203 0.0332 1.9
16 743 0.9975 -1.0020 0.0033 1.8
17 653 1.0019 -1.0005 0.0020 1.8
18 241 0.9718 -1.0279 0.0397 1.7
19 242 0.9846 -1.0182 0.0238 1.8
20 242 1.0092 -1.0130 0.0159 1.8
21 653 0.9760 -1.0023 0.0241 1.8
22 632 1.0162 -0.9778 0.0275 1.9

the designer can focus on selection criteria that were not modeled analytically. For example,

the designer may wish to select the configuration that is the most simple, or one that satisfies

an unmodeled constraint such as not deflecting out of the design domain (see configuration

11 in Fig. 3.8).

3.6 Concluding Remarks

In this paper we developed a feasible-configuration generator for multiple-bend,

progressive-die-formed springs. The process of configuration generation can fundamen-

tally affect the success of the design effort, especially if potentially optimal configurations

are not at all generated. The purpose of the feasible-configuration generator presented in

this paper is to provide the designer with feasible spring configurations during the spring

46

P

(a)

P

(b)

Figure 3.9: (a) Feasible configuration number 4 in isometric view. (b) Possible physical
implementation of feasible configuration number 4.

conceptualization phase of the design process. In this way, the designer may consider a

diverse set of feasible configurations before focusing on the detailed design of a select

few. By combining principles from concept generation activities, and topology and shape

optimization methods, we have developed a process that was able to generate 22 specific

spring designs from 11 unique spring classes – all of which feasibly satisfy the functional

requirements established for the design of an electronic contact.

47

48

Chapter 4

Practical Parametric CAD Based Optimization Framework with Iso-
Performing Design Generation

4.1 Introduction

In Chapter 2, we explored a variety of concepts and methods that could help engi-

neers use optimization to improve decision making during embodiment design. A frame-

work that links optimization methods to parametric CAD was proposed in Section 2.4.

The purpose of this framework is to allow engineers to invest time in an optimization

model early in design with reduced the fear that later changes will invalidate the model.

In Chapter 3, we explored optimization methods, classification schemes and viewing meth-

ods that could be used in embodiment design. The configuration generator created in Sec-

tion 3.4 gives a designer feasible, iso-performing options (multiple designs with equal per-

formance) to work with early in the design process. This helps the engineer explore the

design space and gives insights into how to improve the design. In this chapter we de-

scribe a practical framework that further develops the theoretical framework with the idea

of an instantaneous optimum and enhances the configuration generator with its concept of

iso-performance by combining them in a CATIA V5 framework. We then demonstrate the

utility of this framework by using it to design a Formula SAE frame.

The framework is embodied in a CATIA V5 toolbar that consists of seven com-

mands. The commands listed in the order in which they should be used are: Create Node,

Create Property, Create Element, Create Boundary Condition, Create Critical Displace-

ment, GA Setup (with a the option to form either a pereto set or an iso-performance set),

and Solve. These individual executibles combine into an application that fills the theoretical

framework developed in Chapter 2. The theoretical framework is reproduced in Fig. 4.1.

49

Done
NoYes

Model Design Domain

Mesh Design Domain

A pply B oundary Conditions

Create Optimization Statement

Solve

Import R esults

E xport Design Domain

Check: Have Optimization Inputs Changed

Update A ssembly

A ssembly Paramater Change

Check R esults

Figure 4.1: The parametric optimization process

The first steps of making an assembly parameter change and updating the assembly are

common to parametric CAD, so in order accomplish them we based our application on the

CATIA V5 API. Any command that creates CAD geometry does so through Visual Basic

CATIA API calls that already exist. This allows the new Node and Element features to

reside and be parameterized in the CATIA environment. The analysis and optimization

portion are coded in object oriented Visual C++, and the two are linked through a combina-

tion of Microsoft Excel spreadsheets and input and output text files that emulate input and

output decks from commercial FEA software.

We decided to write our own analysis and optimization applications for a few rea-

sons. The main reason that we chose to write our own algorithms is because we are adding

functionality that is not available in commercial structural analysis and optimization soft-

wares. The main feature that is not available in commercial software is the ability to create

a single object that contains its geometric and structural definitions. An additional benefit

from writing our own solver was increased speed. Because the kinds of problems our solver

solves are limited, we can make a very specific solver that runs fast. The optimization al-

50

gorithm is also be faster because it is specifically designed to do structural optimization by

working directly with the analysis objects behind the scenes in C++.

The Create Node, Create Property, and Create Element commands fulfill the Model

Design Domain and Mesh Design Domain steps. Because the geometry has the mesh defi-

nition included in it, the export design domain step is not necessary. Please note that these

steps could be replaced with surfaces or solids associated with 2D or 3D meshes. The

Create Boundary Condition command fulfills the apply boundary condition step. The Cre-

ate Critical Displacement and GA Setup commands satisfy the create optimization state-

ment step including the choice if the application should generate a pareto set or an iso-

performance set, and the Solve command completes the solve step. The Solve command

in this case uses finite element analysis and a genetic algorithm. These could be replaced

with another kind of analysis and a different optimization algorithm. The import and check

results steps are also based on the CATIA V5 API. The solve, import results, and check

results commands in this application have the added ability to produce iso-performing de-

signs similar to the feasible concept generator demonstrated in Chapter 3.

The remainder of the paper is organized as follows. In Section 4.2 we explore

the fundamental components required to link CAD to topology optimization. Section 4.3

presents the model definition for automatic optimization-constrained updating of paramet-

ric CAD models. Finally the Chapter’s concluding remarks are presented in Section 4.7.

4.2 Typical Optimization Process

The development of a new parametric modeling paradigm is complex, so it is help-

ful to break the project down into smaller tasks. In this section the different parts that link

between parametric CAD and topology optimization are analyzed. Each task is outlined

along with its important features. We begin by examining the basic traits of a modeling

package (Sec. 4.2.1). We then consider meshing (Sec. 4.2.2), solving (Sec. 4.2.3), set-

ting up the optimization problem (Sec. 4.2.4), the optimization algorithm (Sec. 4.2.5), and

demonstrate an example of the application in use (Sec. 4.6) respectively.

51

Figure 4.2: A standard CATIA point creation GUI.

4.2.1 Modeling

An image of the standard CATIA point creation graphical user interface (GUI) can

be seen in fig. 4.2. A few important things to note about this point creation method are that

it is intuitive, the user can change the origin from which the point is based, and the user can

change the coordinate systems in which the point is made. Two additional and important

features are the ability to associate any of the three point coordinates through parametric

functions and a consistent dialog when creating, and later editing, the point. These features

allow the user to create points in a variety of ways, edit them easily, and associate them

directly with other geometry. Any new point creation commands should have a similar

performance so that any link between design and analysis does not come at the expense of

proper parametric design.

4.2.2 Meshing

Meshing 1-D elements is very straight forward from the user’s end. They simply

have to select a line or two points, and a 1-D element is formed. There is quite a bit,

however, that goes on behind the scenes. Whenever a beam element is created, its stiffness

matrix must also be created. The local member stiffness matrix (k̂) of a beam element is

formed as follows [32]:

52

k̂ =

â b̂ −â ĉ

b̂T d̂ −b̂T f̂

−â −b̂ −â −ĉ

ĉT f̂ −ĉT ê

 (4.1)

where

â =

EA
L 0 0

0 3EIz
L3 (ez1 + ez2 +2ez1ez2) 0

0 0 3EIy
L3 (ey1 + ey2 +2ey1ey2)

 (4.2)

b̂ =

0 0 0

0 0 3EIz
L2 (ez1 + ez1ez2)

0 3EIy
L2 (ey1 + ey1ey2) 0

 (4.3)

ĉ =

0 0 0

0 0 3EIz
L2 (ez2 + ez1ez2)

0 3EIy
L2 (ey2 + ey1ey2) 0

 (4.4)

d̂ =

GJ
L 0 0

0 3EIy
L (ey1 + ey1ey2

3) 0

0 0 3EIz
L (ez1 + ez1ez2

3)

 (4.5)

ê =

GJ
L 0 0

0 3EIy
L (ey2 + ey1ey2

3) 0

0 0 3EIz
L (ez2 + ez1ez2

3)

 (4.6)

f̂ =

−GJ

L 0 0

0 2EIyey1ey2
L 0

0 0 2EIzez1ez2
L

 (4.7)

The member stiffness matrix in local coordinates is then multiplied by its respective

transformation matrix to form the member stiffness matrix in global coordinates, or the

members stiffness matrix in the global coordinate system:

53

R =

Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

 (4.8)

The member stiffness matrix in global coordinates for each member is assembled

into a global stiffness matrix according to nodes. With a large finite element model, this

matrix can become very large and time consuming to assemble. In a later section, one way

to speed up the meshing process will be shown.

Forces at each node are assembled into a global force vector (F) and any applied or

restrained displacements are assembled into a global displacement vector (U).

An undesirable aspect of most meshers is that first, line geometry must be created,

after which it can be meshed. Once each line has been meshed, any points must be projected

onto the mesh, and all mesh connections must be defined by hand. This is inefficient

because a line has the same geometric definition as a beam element, and the end-points

of the elements are coincident points. A unified modeling method that performs all these

steps concurrently can save time.

4.2.3 Solving

Now that F , K, and U have been formed, the following equation can be made:

F = KU (4.9)

Where F and K are known, and U is unknown.

One desired characteristic of a finite element solver is that it be fast. In some Finite

Element Analysis textbooks [29], this equation is solved by simply inverting the stiffness

matrix K and solving for U . This method can be very time consuming because matrix in-

version is computationally very expensive at N3
d FLOPS where Nd is the number of degrees

of freedom. In the optimization of large finite element models, solving the system of equa-

tions is the most time consuming part of the process. A faster method will be demonstrated

later.

54

4.2.4 Optimization Problem Statement Definition

A general optimization problem statement is as follows:

min
x
{µ1(x),µ2(x), ...µn(x)} (4.10)

subject to:

gq(x)≤ 0 q = 1, ...,r (4.11)

h j(x) = 0 j = 1, ...,v (4.12)

xil ≤ xi ≤ xiu i = 1, ...,nx (4.13)

where each equation µ is a function of x, g is a set of r inequality constraints, h is a set of

v equality constraints, and the design domain for each x is bounded by a lower bound, xl ,

and an upper bound, xu.

Each part of the optimization problem statement must be carefully formed. If this is

not done properly, then the wrong equations will be solved, and the result is the wrong so-

lution. This process is often prone to human errors. Streamlining the optimization problem

statement formulation step would be very helpful.

4.2.5 Optimization Algorithm

There are two main criteria for an optimization algorithm, speed and flexibility.

Usually, if speed is most important, gradient based algorithms may be used. Non-gradient

based methods like simulated annealing and genetic algorithms do not converge as quickly

as gradient based algorithms and have the added disadvantage of no optimality criteria.

Because non-gradient methods do not need gradient computations they can deal

with discrete variable design spaces, noisy design spaces, and ill-posed design spaces bet-

ter than gradient based methods. In these situations where flexibility is most important,

non-gradient based algorithms should be used. In fact, in these situations gradient-free

algorithms can converge to optimum solutions faster than newton or quasi-newton meth-

ods. Genetic algorithms have the added benefit of dealing very well with multi-objective

55

design spaces because they can converge to a pareto frontier without carrying out a series

of optimization runs.

4.3 Parametric Optimization Setup

If an optimization problem is created in such a way that it can accept and adapt

to change, then it could be used during conceptual design and be a valuable tool to help

engineers make the best decision possible amongst uncertain or changing information. In

this section we develop an optimization-constrained parametric CAD model definition that

can help in this process.

4.3.1 Coupled Modeling, Meshing and Design Domain Definition

Meshing is often the most time intensive, most difficult step in the process of creat-

ing a finite element model from the user end. In order to keep this Thesis inside a reasonable

scope, it does not propose being able to mesh any kind of geometry, which is reasonable

since early designs are typically lower resolution than later ones. This Thesis develops

methods for one kind of element, the beam element, that can later be applied to shell and

solid elements. Since beam elements are very simple, it is reasonable to expect to be able

to accomplish their geometric modeling, meshing, and design domain definition all at the

same time.

There are three main components that a beam topology optimization mesh requires.

First, they require nodes. Optimization-constrained nodes can be created with the following

GUI which is very similar to the point creation GUI in Fig. 4.3: With this GUI, when a

point is created, it is automatically recognized as a node and its design domain for shape

optimization is defined. This is the nature of an optimization-constrained node. Once nodes

have been created, they can be linked with elements.

Second, elements must be defined between two nodes, just as a line is defined be-

tween two points. A beam element must have its cross sectional properties defined. In this

case, cross sectional properties must be defined by the user with a GUI that will be shown

shortly before an element can be created. The user can define which cross sections are

56

Figure 4.3: Node creation GUI

Figure 4.4: Element creation GUI

acceptable for use by changing the upper and lower cross section index. In this way, the

line, the element, and the cross sections for size optimization are all defined concurrently

as can be seen in Fig. 4.4 This GUI is very similar to the standard CATIA line creation GUI

so CATIA users will already be familiar with how it works.

Finally, material properties must be defined. This can be done with the simple GUI

in Fig. 4.5. It is patterned after the material properties command in CATIA Structural Anal-

ysis with a few enhancements. By using these three GUI’s nodes, elements, and element

57

Figure 4.5: Property creation GUI

properties can be created with their respective geometries and optimization components in

a direct, intuitive way.

4.3.2 Solving Efficiently in the Optimization Context

An important feature for the efficiency of this solver is that the solver does not

use simple matrix inversion to solve the finite element system, instead it uses a modi-

fied Cholesky decomposition algorithm that requires only N3
d

6 FLOPS [33]. The modified

Cholesky algorithm is similar to LU decomposition in which any matrix A can be substi-

tuted with a lower and upper triangular matrix. LU decomposition will work on any square

matrix. Cholesky’s method, on the other hand, will only work for symmetric, positive defi-

nite matrices. Since all non-singular stiffness matrices are symmetric and positive definite,

we can use Cholesky’s method, which is faster. Modified Cholesky’s method equates

A = LDLT (4.14)

where L is a lower triangular matrix with ones for each diagonal entry, and D is a diagonal

matrix with zero’s for all non-diagonal elements.

Once we have the lower and diagonal matrices, we can use back substitution to

solve the system instead of matrix multiplication. This does not add or save any FLOPS

58

beyond those saved by using modefied Cholesky decomposition; it is simply the way to

solve a system that uses modified Cholesky decomposition.

KU = F (4.15)

Now, set

K = LDLT (4.16)

So,

LDLTU = F (4.17)

We can substitute e for DLTU solve the following system with relative ease.

Le = F (4.18)

following which we substitute d for LTU and solve the following set of equations.

Dd = e (4.19)

finally, we solve the final system for the vector U.

LT c = d (4.20)

4.4 Genetic Algorithm

The genetic algorithm used in this Thesis is based on Richard Balling’s Computer

Structural Optimization [32]. The computer program proposed by Balling is presented in

non-object oriented psuedo code based from C. Non-object oriented code of this kind does

not integrate well with an object orietned API like CATIA V5’s. So, a whole new object

structure had to be created with C++ classes that was compatible with an object oriented

API. In addition, care was taken to insure that the object structure would lend itself to

organized user interaction.

59

4.4.1 Fitness

For each generation, each member of the generation is analyzed. The weight, de-

flection, and stress can be simultaneously considered. After each member has been ana-

lyzed, they are compared with a fitness function. This application uses the max-min fitness

function [32]:

max
j 6=i

(
min

k

(
f i
k− f j

k

))
(4.21)

where f i
k is the value of the kth objective of the ith design. This objective function gives

good fitness to any pareto optimal design and gives better fitness values to those designs

that are far separated from the rest of the group.

Inequality and equality constraints are handled in a similar manner. For an inequal-

ity constraint, the difference between the current value and the constraint limit is added to

the fitness if the constraint is violated. For an equality constraint, the difference between

the current value and the constraint value is always added to the fitness.

Diversity is also encouraged by penalizing similar designs. Each design is com-

pared to the other designs before it in the current design array. The application counts how

many of the elements between the two designs have matching cross sectional properties.

The number of common cross sections with the most similar design is added to the fit-

ness value, penalizing a design if it is very similar to another design with respect to cross

sectional properties. Designs are not penalized for having similar nodal positions.

4.4.2 Tournament Selection with Elitism

After the fitness has been evaluated, the parents are selected for the next generation

using tournament selection. First, the latest set of designs is combined with the best designs

from all previous generations. Then, a user defined number of members are selected at

random. The member selected with the best fitness is then chosen as a parent for the next

generation. This is repeated until all parents are chosen.

60

4.4.3 New Generations

Once all parents have been chosen, they are combined to create the children for the

next generation. First, crossover is performed, then mutation is performed on each variable

of each design.

For crossover, a random number is generated and compared with a user defined

crossover probability for each design variable. If the random number is larger than the

crossover probability, then a random number r is generated. The variable r is used in the

following blend crossover equations [32]:

y1 = (r)x1 +(1− r)x2 (4.22)

y2 = (1− r)x1 +(r)x2 (4.23)

where y1 and y2 are the new design variables from design one and design two respectively,

and x1 and x2 are the old design variables from design one and two respectively. The ad-

vantage of this form of crossover over simply swapping design variables is that this method

brings about smooth design changes rather than large design changes, which usually leads

to faster convergence.

For mutation, a random number is generated and compared with a user defined

mutation probability for each design variable. If the random number is larger than the

crossover probability, then mutation is performed. Mutation is performed by replacing the

design variable at hand with a random number within that variable’s design domain.

4.4.4 Topology Optimization

Topology optimization is accomplished by allowing the cross sectional area of those

members eligible for topology optimization to approach zero. Any element with near-zero

cross sectional area can be ignored. Because the topology optimization is done by manip-

ulating cross-sectional properties. Equal topologies are penalized by the fitness function

described in Section 4.4.1

61

Objective 1

O
b

je
ct

iv
e

2
Design 1

Design 4

Design 2

Design 3

Design 5

Design 6

Figure 4.6: First find a pareto set, then find iso-performing designs around one design.

4.5 Iso-Performing Design Interpretation

This framework produces iso-performing designs by using equality constraints in

the genetic algorithm while penalizing for duplicate topologies. With multi-objective op-

timization, instead of having only one optimal design, the engineer can be presented with

a pareto set of optimal solutions. Selecting the appropriate configuration is often a diffi-

cult decision with little criteria to choose from. In the application created here, instead of

forcing the designer to only keep one pareto optimal design, the application will keep the

pareto frontier and let the designer change between different pareto optimal designs. Once

a design has been chosen, the solver can produce a set of designs with similar performance,

giving the engineer even more options with the desired characteristics. This concept is vi-

sually demonstrated in Fig. 4.6 where a pareto frontier is shown, along with an expansion

on one point of that pareto frontier.

62

4.6 Formula SAE Frame

In this section, the optimization framework is used to design a Formula SAE chas-

sis. It is demonstrated that the tools created speed up finite element model creation and op-

timization problem formulation. It is also demonstrated that this framework can deal with

parametric changes driven by an outside source, and that it can produce iso-performing

designs with a weight and stiffness of choice.

Using the programmed tools, it took 3 hours to create (1) a CAD model, (2) a finite

element model, and (3) an optimization problem for the FSAE frame. In a similar situation

it would take about 4 hours to create a CAD model and finite element model and another

hour to set it up for optimization. However, discrete cross sectional properties could not be

optimized, and topology optimization would not be possible. Both of which can be done

with this framework.

The CAD mode mentioned above comprises points, lines, sweeps, and thickened

surfaces that represent all major pieces of tubing in front of the engine. each of these lines is

meshed with tubular steel cross sectional properties. Each is allowed to change to a variety

of standard tubing sizes. Each member is only allowed to be as small as the minimum

tubing required by FSAE rules. The engine mounts were then fixed in all translational

directions and a mixed cornering, braking load case was applied to the suspension points

for both a right and a left hand turn. The deflections minimized are those of the front upper

right and left suspension pickup points. The value listed is the sum of the X, Y, and Z

deflections of both the right and the left suspension point.

The genetic algorithm takes about 45 seconds per generation. It forms a pareto

frontier in about 100 generations, or in about 90 minutes run time. 1000 generations pro-

duce a number of solutions that are pareto optimal along with the current design. If allowed

to continue, the algorithm would eventually converge to the current design, but it cannot

find a lighter solution than the current design because the current design is made to meet

the bare minimum material requirements governed by race rules. It can, however, find de-

signs that are much stiffer but are not much heavier. The initial population can be seen

in Fig. 4.7. The pareto frontier after 250 and 750 generations can be seen in Fig. 4.8 and

63

Initial Generation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight (lb)

D
ef

le
ct

io
n

(in
)

Figure 4.7: Initial population.

Fig. 4.9 respectively. The final generation after 1000 generations can be seen in Fig. 4.10.

The Current design’s performance is plotted as an open circle in Fig. 4.10.

The lightest design from the optimization run can be seen in Fig. 4.11 with its per-

formance circled. The stiffest design can be seen in Fig. 4.12 with its performance high-

lighted in the same way. Fig. 4.13 and Fig. 4.14 show examples of compromise solutions

that favor weight and stiffness respectively. Their performance is also circled.

In less time than it takes to make a geometric model, mesh it, and apply boundary

conditions, an engineer can have a meshed model that has been optimized. The optimiza-

tion algorithm returns not just one design, but a pareto set of designs that the engineer can

use to become more familiar with the design space. The frames produced with this frame-

work have counterintuitive design features that improve all of the designs from the lightest

to the stiffest. In addition there are differences between the lightest and stiffest designs the

engineer can learn from. Since the framework is integrated into a commercial CAD system,

64

250 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight (lb)

D
ef

le
ct

io
n

(in
)

Figure 4.8: Design set after 250 generations

the designer can keep working with the results through the end of the design process. Next,

we will demonstrate the utility of the iso-performance aspect of the framework.

In order to demonstrate the iso-performing design generation ability of the applica-

tion, we chose to expand on a compromise design that favors weight. This design weighs

52.89 lbs. and has a deflection of 0.0669 in. Images of the final designs can be seen in

Fig. 4.15. In addition, the performance of each design can be seen in Table 4.1.

An engineer can use the iso-performing configuration generator to further refine his

or her knowledge of the design space at hand. Once the desired performance of a structure

has been identified, the designer can produce multiple designs with the same performance.

This can lead to the discovery of objectives and constraints that should have been included,

or it could lead to a design that satisfies not only written constraints, but also unwritten

constraints like aesthetics. The end result is not just one optimum that may or may not be

satisfactory, but a set of optima that are much more informative. Next, we will demonstrate

65

750 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight (lb)

D
ef

le
ct

io
n

(in
)

Figure 4.9: Design set after 750 generations

Table 4.1: Results for 1000 generation iso-performance optimization.

Config. Weight Deflection
1 52.82 0.0775
2 53.33 0.0897
3 53.74 0.0880
4 53.40 0.0665
5 54.11 0.0862
6 53.67 0.0907
7 53.42 0.0686
8 54.35 0.0875
9 52.97 0.1019

10 54.67 0.0856

66

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

(in
)

Figure 4.10: Design set after 1000 generations

how the optimization framework can be used to handle changes brought on by outside

influences.

In order to demonstrate the ability of the framework to deal with parametric change,

the suspension geometry was changed to a single-keel design. This means that the lower

control arms nearly come to the centerline of the car as can be seen in Fig.4.16. Ten new

iso-performing designs were found around the same design that weights 52.89 lbs. and has

a deflection of 0.0669 in. This run consisted of 500 generations, showing that the algorithm

at first converges very quickly, followed by slower progress. The design performances can

be seen in Table 4.2. Note that in half the generations, the solutions are nearly as good as

they were after 1000 generations.

This final feature of the optimization framework can allow designers to invest more

effort into their geometric and analysis models early in the design process. Since the frame-

work can react to standard parametric updates, the engineers can use standard parametric

67

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

Figure 4.11: Lightest design after 1000 generations

Table 4.2: Results for 500 generation iso-performance optimization after a parametric
change.

Config. Weight Deflection
1 54.69 0.0296
2 55.67 0.0233
3 55.91 0.0239
4 55.56 0.0279
5 55.68 0.0274
6 55.90 0.0282
7 56.41 0.0240
8 54.82 0.0407
9 55.32 0.0375

10 56.42 0.0279

68

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

Figure 4.12: Stiffest design after 1000 generations

methods and take advantage of not just a geometric model update, but also of an optimiza-

tion based update. Instead of being forced to react to changes from other groups, designers

can focus on improving their model to include as much data as possible so that their final

instantaneous optimum is as accurate as possible.

4.7 Chapter Summary

In this chapter we have developed an application that integrates the framework de-

veloped in Chapter 2 with the iso-performance concept presented in Chapter 3. This appli-

cation has been integrated into CATIA V5 in such a way that a CATIA user experienced

with line and point creation would be familiar with the geometry creation process. Ad-

ditional commands necessary to complete a finite element model and optimization setup

have also been created. This finite element solver takes advantage of Modified Cholesky’s

69

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

Figure 4.13: Compromise design favoring weight after 1000 generations

decomposition and removes constrained degrees of freedom in order to reduce runtime.

A Genetic Algorithm that uses max-min fitness is used to develop pareto optimal designs

and equality constraints are used to develop iso-performing designs. This application was

then used to develop a FSAE frame. First, a pareto set of frames was found. Then, one

design was selected and iso-peforming designs were found. Finally, a parametric change

was made to the suspension geometry and a new set of frames with equal peformance to

that found previously was found.

70

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

Figure 4.14: Compromise design favoring stiffness after 1000 generations

71

1000 Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

40 50 60 70 80 90 100

Weight

D
ef

le
ct

io
n

Figure 4.15: Ten iso-performing designs expanded about a single design with performance:
52.89 lbs. weight, 0.0669 in. deflection

72

Figure 4.16: Single keel configuration 1 with weight 54.69 lbs. and deflection 0.0296 in.

73

74

Chapter 5

Conclusions

Chapter 1 serves as a preview of the chapters that followed. A theoretical frame-

work for coupling parametric CAD and optimization was presented in Chapter 2. In Chap-

ter 3 a practical configuration generator was programmed. This configuration generator

could find multiple, iso-performing, feasible electrical contact springs. In Chapter 4, the

goals of the two previous papers were combined in a single computer application.

5.1 Introduction Summary

In Chapter 1 we outlined the structure of the this thesis. Chapter 2 is a paper pub-

lished in the ASME International Mechanical Engineering Conference and Exposition in

2007; in Chapter 2 we developed a design optimization framework that can be used when

objectives, constraints, variables, and other conditions are expected to change as the design

progresses and new information is gained. The third Chapter is a paper published at the

11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference in 2006; in

Chapter 3 we developed a feasible-configuration generator for multiple-bend, progressive-

die-formed springs. Following them in Chapter 4 is the description of a CATIA V5 appli-

cation that performs optimization constrained updates as described in Chapter 2 and can

produce iso-performing designs as described in Chapter 3. Finally is this concluding chap-

ter with an overall summary of conclusions as well as a list of possible future work.

75

5.2 Handling Frequent Design Changes by Automatic Optimization-Constrained
Updates of Parametric CAD Models Summary

The design framework in Chapter 2 is parametric CAD and optimization based.

By constraining the parametric updating of CAD models to meet optimization criteria,

optimization methods are linked directly to changes that frequently occur during the de-

velopment of a product. This link is fundamental to the developed framework because it

facilitates the repeated optimizations of a part of the development of the system. In essence,

if the CAD assembly is changed, the optimization is re-evaluated. One of the main benefits

of the proposed method is that it reduces the designer’s need to react to the design changes

in one subsystem by manually correcting the affected design of another. The framework

was demonstrated in the development of a suspension rocker for a BYU formula SAE car

which was reduced in weight by 18%.

5.3 Feasible Topology Generation For Multiple-Bend Springs Summary

The process of configuration generation can fundamentally affect the success of the

design effort, especially if potentially optimal configurations are not at all generated. The

purpose of the feasible-configuration generator presented in Chapter 3 is to provide the de-

signer with feasible spring configurations during the spring configuration selection phase

of the design process. In this way, the designer may consider a diverse set of feasible con-

figurations before focusing on the detailed design of a select few. By combining principles

from concept generation activities, and topology and shape optimization methods, we have

developed a process that was able to generate 22 specific spring designs from 11 unique

spring classes – all of which feasibly satisfy the functional requirements established for the

design of an electronic contact.

5.4 Practical Parametric CAD Based Optimization Framework with Iso-Performing
Design Generation Summary

The application in Chapter 4 has been integrated into CATIA V5 in such a way that

a CATIA user experienced with line and point creation would be familiar with the geometry

76

creation process. Additional commands necessary to complete a finite element model and

optimization setup have also been created. This finite element solver takes advantage of

Modified Cholesky’s decomposition and removes constrained degrees of freedom in order

to reduce runtime. A Genetic Algorithm that uses max-min fitness is used to develop pareto

optimal designs and equality constraints are used to develop iso-performing designs. This

application was then used to develop a FSAE frame. First, a pareto set of frames was

found. Then, one design was selected and iso-performing designs were found. Finally,

a parametric change was made to the suspension geometry and a new set of frames with

equal performance to that found previously was found.

The end result is a practical framework that can help engineers use what information

they have to make the best decisions possible. They can have a geometric model with a

coupled analytical model and optimization setup ready in the same time it takes to make

just a geometric model. They can then use the optimization routine to explore the design

space. They can start broad, finding a pareto frontier of designs, and later narrow in on the

performance that they decide is best. They can do all this without worrying about losing

their work when someone else makes a change that effects them. They can go to the effort

of making a robust parametric model in the beginning. When changes occur, instead of

repeating the work they have done before, they can continue adding information to the

analytical model and exploring the design space so that they come up with a true global

optimum in the end.

5.5 Future Work

The current version of the optimization framework uses the CATIA V5 Visual Basic

API, integrated with a C++ genetic algorithm based topology optimization application. In

order for this to work, a few intermediate Microsoft Excel [34] and text files must be used.

It would improve the speed and robustness of the algorithm if the CATI V5 C++ API were

used and directly integrated with the C++ optimization algorithm. In addition, vectors

were used instead of arrays throughout the optimization application. In the future, it would

be better to use vectors only when dynamic memory allocation is necessary. In a finite

element solver, there are many matrices that do not require dynamic memory allocation;

77

the application would run faster if these were arrays, not vectors. The current Optimization

routine begins with a random first generation. The algorithm may converge faster if the first

generation were seeded with one design consisting of all members with their lightest cross

sectional property, and another design consisting of all members with their stiffest cross

sectional property. A similar feature that could improve the utility of the solver would be

if it input the latest generation from the last optimization run, and started from that non-

random point. A break command that would stop the optimization run and output the results

mid-run would also be beneficial. Once the beam element application is more directly

integrated into the CATIA V5 C++ API and is solving more efficiently, the next steps would

be to upgrade it to handle 2D and 3D elements as well as support displacements, distributed

loads, contact, and other different boundary conditions. This would require writing a new

solver and replacing the solver component of the framework with the new one.

78

References

[1] Morino, L., Bernardini, G., and Mastroddi, F., 2006. “Multi-disciplinary optimization
for the conceptual design of innovative aircraft configurations.” Computer Modeling
in Engineering and Sciences, Vol. 13 No. 1. 1, 9

[2] Hassan, R. A., and Crossley, R. A., 2002. “Multi-objective optimization of con-
ceptual design of communication sattelites with a two-branch tournament genetic al-
gorithm.” 43rd AIAA/ASME/ASCE/AHS/ASC Structurs, Structural Dynamics, and
Materials Conference, 2. 1, 9

[3] Qazi, M., and Linshu, H., 2005. Rapid trajectory optimization using computational
intelligence for guidance conceptual design of multistage space launch vehicles Tech.
rep., ”AIAA Guidance, Navigation and Control Conference”. 1, 9

[4] Eschenauer, H., and Olhoff, N., 2001. “Topology optimization of continuum struc-
tures: A review.” ASME Appl Mech Rev, 54(4), July. 1, 10, 28

[5] Sigmund, O., 2001. “A 99 line topology optimization code written in matlab.” Struc-
tural and Multi-Disciplinary Optimization, 21. 1, 10

[6] NishiWaki, S., Frecker, M., Min, S., and Kikuchi, N., 1998. “Topology optimization
of compliant mechanisms using the homogenization method.” International Journal
for Numerical Methods in Engineering, 42, pp. 535–559. 1, 10

[7] Bharti, S., and Frecker, M., 2004. “Optimal design and experimental characteriza-
tion of a compliant mechanism piezoelectric actuator for inertially stabalized rifle.”
Journal of Intelligent Material Systems and Structures, 15, February. 1, 10

[8] Bowman, K. E., and Mattson, C. A., 2007. Handling frequent design changes by
automatic optimization-constrained updates of parametric cad models Tech. Rep.
IMECE2007-42379, ASME International Mechanical Engineering Conference and
Exposition, November. 3

[9] Mattson, C. A., and Bowman, K. E., 2006. Feasible-configuration generator for
multiple-bend springs Tech. Rep. AIAA-2006-7094, 11th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference, September. 4

[10] Mattson, C. A., and Messac, A., 2002. A non-deterministic approach to concept
selection using s-Pareto frontiers Tech. rep., ASME 2002 Design Engineering Tech-
nical Conference and Computers and Information in Engineering Conference, Design
Automation Conference, Montreal, Canada, September. 9

79

[11] Giunta, A., Eldred, M., Swiler, L., Trucano, T., and Wojtkiewicz, S., 2004. Perspec-
tive on optimization under uncertainty: Algorithms and applications Tech. rep., 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, April. 10,
11

[12] Mourelatos, Z., and Jun, Z., 2006. “A design optimization method using evidence
theory.” Journal of Mechanical Design, 128, July, pp. 901–908. 11

[13] Youn, B., and Wang, P., 2006. Bayesian reliability based design optimization un-
der both aleatory and epistemic uncertainties Tech. Rep. AIAA-2006-6928, 11th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September.
11

[14] , 1994-2005. CATIA®Version 5.16 ©Dassault Systémes. All Rights Reserved. 24

[15] , 2008. OptiStruct®Version 8.0 ©Altair Engineering Inc., All Rights Reserved. 24

[16] Mattson, C. A., 2006. Rapid optimization-based conceptualization of multiple-bend
spring concepts Tech. Rep. AIAA-2006-2049, AIAA 47th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics, and Materials Conference, April. 27, 28

[17] Crossley, W. A., and Laananen, D. H., 1996. “Conceptual design of helicopters via
genetic algorithm.” Journal of Aircraft, 33(6), Nov–Dec, pp. 1060–1070. 27

[18] Mattson, C. A., and Messac, A., 2003. “Concept selection using s-Pareto frontiers.”
AIAA Journal, 41(6), pp. 1190–1198. 27

[19] Simpson, T. W., Rosen, D., Allen, J. K., and Mistree, F., 1998. “Metrics for assess-
ing design freedom and information certainty in the early stages of design.” ASME
Journal of Mechanical Design, 120, pp. 628–635. 27

[20] Hassani, B., and Hinton, E., 1999. Homogenization and Structural Topology Opti-
mization: Theory, Practice, and Software. Springer-Verlag. 28

[21] Deiter, G. E., 2000. Engineering Design: A Materials and Processing Approach.
McGraw Hill 3rd Edition. 28

[22] Pahl, G., and Beitz, W., 1996. Engineering Design: A Systematic Approach., sec-
ond ed. Springer-Verlag, London. 28

[23] Ullman, D. G., 2003. The Mechanical Design Process. McGraw-Hill, Inc., New
York, pp. 177–207. 28

[24] Rozvany, G. I. N., Bendsoe, M. P., and Kirsch, U., 1995. “Layout optimization of
structures.” Applied Mechanics Review, 48, pp. 41–119. 28

[25] Osborne, A., 1953. Applied Imagination. Charles Scribner and Sons, New York. 29

[26] Zwicky, F., 1948. The Morphological Method of Analysis and Construction. Wiley-
Interscience, New York Courant Anniversary Volume. 29

80

[27] Gordon, W. J. J., 1961. Synectics. Harper and Row, New York. 29

[28] Firby, P. A., 1991. Surface Topology. Ellis Horwood, Chichester. 30

[29] Bhatti, M. A., 2005. Fundamental finite element analysis and applications: with
Mathematica and Matlab computations. John Wiley and Sons, Hoboken, New Jersey.
32, 33, 54

[30] Messac, A., Melachrinoudis, E., and Sukam, C. P., 2000. “Required relationships be-
tween aggregate objective functions and pareto frontiers, with practical implications.”
Optimization and Engineering, 1(2), June, pp. 171–188. 38

[31] Chen, W., Wiecek, M. M., and Zhang, J., 1999. “Quality utility - a compromise
programming approach to robust design.” ASME Journal of Mechanical Design, 121,
June. 38

[32] Balling, R., 2007. Computer Structural Optimization. BYU Academic Publishing.
52, 59, 60, 61

[33] Balling, R., 2007. Computer Structural Analysis. BYU Academic Publishing. 58

[34] , 1985-2003. Microsoft®Office Excel 2003 (11.8211.8202) SP3 ©Microsoft Corpo-
ration. All Rights Reserved. 77

81

	Optimization Constrained CAD Framework with ISO-Performing Design Generator
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Present and Future Optimization
	1.2 Thesis Structure
	1.3 Theoretical Optimization Constrained Framework
	1.4 Feasible Configuration Generator
	1.5 Practical Optimization Constrained Framework With Iso-Performance
	1.6 Chapter Summary

	Chapter 2 Handling Frequent Design Changes by Automatic Optimization-Constrained Updates of Parametric CAD Models
	2.1 Description
	2.2 Introduction and Literature Survey
	2.2.1 Literature Survey

	2.3 Fundamental Changes To Optimization Problems as Design Information Increases
	2.3.1 Generic Optimization Problem Statement
	2.3.2 Added or Changed Design Objectives
	2.3.3 Added or Changed Design Constraints
	2.3.4 Added or Changed Design Variables
	2.3.5 A Comment on the Changing Nature of the Optimization Problem

	2.4 A Framework for Optimization-Constrained Updating of Parametric CAD Models
	2.4.1 Optimization Applied to Parametric CAD/CAE
	2.4.2 Flexible Structural Topology Optimization

	2.5 Conceptual Design-Optimization of a Formula SAE Suspension Rocker
	2.5.1 Formula SAE
	2.5.2 Assembly
	2.5.3 Problem Statement
	2.5.4 Input Preparation
	2.5.5 Optimization Calculations

	2.6 Concluding Remarks

	Chapter 3 Feasible-Configuration Generator for Multiple-Bend Springs
	3.1 Description
	3.2 Introduction and Literature Survey
	3.3 Technical Preliminaries and Auxiliary Developments
	3.3.1 Modeling Approach
	3.3.2 Design Domain, Key Parameters, and Variables
	3.3.3 Typical Functional Requirements for Springs
	3.3.4 General Spring Classes
	3.3.5 Generic Multi-Objective Optimization

	3.4 Development of the Feasible Configuration Generator
	3.5 Example: Configuration Generation of an Electronic Contact
	3.5.1 Problem Context and Design Requirements
	3.5.2 Execution of the Feasible Configuration Generator
	3.5.3 Generation Results

	3.6 Concluding Remarks

	Chapter 4 Practical Parametric CAD Based Optimization Framework with Iso-Performing Design Generation
	4.1 Introduction
	4.2 Typical Optimization Process
	4.2.1 Modeling
	4.2.2 Meshing
	4.2.3 Solving
	4.2.4 Optimization Problem Statement Definition
	4.2.5 Optimization Algorithm

	4.3 Parametric Optimization Setup
	4.3.1 Coupled Modeling, Meshing and Design Domain Definition
	4.3.2 Solving Efficiently in the Optimization Context

	4.4 Genetic Algorithm
	4.4.1 Fitness
	4.4.2 Tournament Selection with Elitism
	4.4.3 New Generations
	4.4.4 Topology Optimization

	4.5 Iso-Performing Design Interpretation
	4.6 Formula SAE Frame
	4.7 Chapter Summary

	Chapter 5 Conclusions
	5.1 Introduction Summary
	5.2 Handling Frequent Design Changes by Automatic Optimization-Constrained Updates of Parametric CAD Models Summary
	5.3 Feasible Topology Generation For Multiple-Bend Springs Summary
	5.4 Practical Parametric CAD Based Optimization Framework with Iso-Performing Design Generation Summary
	5.5 Future Work

	References

