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ABSTRACT 

 
 

 
A GENERALIZED TWO-DIMENSIONAL MODEL 

 TO RECONSTRUCT THE IMPACT PHASE 

 IN AUTOMOBILE COLLISIONS 

 
 
 
 

Regis A. David 
 

Department of Mechanical Engineering 
 

Master of Science 
 

 
 
 Automobile accident reconstruction has been facilitated by the development of 

computer based modules to allow evaluation of evidence gathered at the accident scenes.  

Although the computer modules are based in fundamental physical laws, an 

understanding of these laws by the user is required for proper application of the computer 

model in a given accident scenario.   

 Vehicle collision analysis techniques generally separate the collision into three 

phases: pre-impact, impact, and post impact.  The intent of the research is to provide a 

generalized model to reconstruct two dimensional impact problems in the area of accident 

reconstruction.  There are currently two modeling techniques used to reconstruct the 

impact phase: the first technique relying exclusively on impulse-momentum theory 



coupled with friction and restitution, while the second method combines impulse 

momentum with a relationship between crush geometry and energy loss.  Because each 

method requires very different inputs, the literature would have us believe that both 

methods are different.  We will show that both methods are derived using the same 

fundamental physical principles and for any given accident scenario, both methods will 

provide identical results. Each method will be presented in the form of a MathCAD 

spread sheet that will allow the user to reconstruct a wide variety of accidents controlling 

just a few parameters (i.e. mass, rotational inertia, angle of approach, etc…).  Both 

methods will provide step by step graphical representation to assure a solid approach to 

physical fundamentals.  The governing equations to the generalized energy approach will 

be non-dimensionalized and used to define all of the changes in energy (i.e. also referred 

to as an impulse in power) as a function of a characteristic velocity.  Finally, different 

methods to consistently determine the direction of the force will be presented when 

additional information from the accident scene is provided. 
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CHAPTER 1: INTRODUCTION 
 

 
Introduction 

  
 Motor vehicle crashes are reconstructed by several types of agencies.  For 

example, the Federal Government reconstructs accidents for statistical purposes and to 

fund or perform research on behalf of the general public.  Vehicle manufacturers 

reconstruct accidents to help design safer cars and restraint systems.  Insurance 

companies and litigators use consultants to reconstruct crashes to determine liability.  

Finally, law enforcement personnel reconstruct accidents to determine if any laws were 

violated.  Computer programs have been used to analyze motor vehicle accidents since 

the early seventies [8].  These programs were developed by large research institutes and 

were used by engineers and scientists who developed them.  With the introduction of the 

personal computer in the early eighties, these programs have become available for use by 

the general accident investigation community.  Just as the level of skill varies among 

investigators, the level of understanding of how the program works also varies.  When 

properly used, these computer programs are an invaluable accident investigation tool.  

When misused, these programs can produce erroneous results and a misconception of 

what actually occurred during the accident [8]. 
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Literature Review 

The literature review will begin by defining several types of computer programs 

popular within the accident investigation community.  The five most popular computer 

programs have been categorized as follow: general analysis, vehicle dynamics, impact 

dynamics, human dynamics, and photogrammetry.  [8] gives a thorough evaluation of all 

five computer types, including basic assumptions, limitations, application and how they 

can be misused. 

 As with all forms of analysis, accurate input data are required to obtain accurate 

results.  As mentioned above, each of these five types of computer programs performs a 

specific task.  The one of interest for this work is the third type.  Impact dynamics 

programs are used for studying accidents which include vehicle-to-vehicle or vehicle-to-

barrier collisions.  Although these models concentrate on the impact phase, some of them 

also analyze the pre-impact and/or post-impact phases as well.  The primary purpose of 

these programs is to estimate impact speed and delta-Vs (change in velocity).  Some of 

the most popular impact dynamics programs and their theories will be presented here.  

The first (CRASH) uses an approach different than the others.  For information on all 

other programs, refer to the existing literature. 

 CRASH - Calspan Reconstruction of Accident Speeds on the Highway- in the 

form of CRASH3 and its predecessor CRASH2 has probably been utilized more times 

than any other reconstruction program.  Originally, The National Highway Traffic Safety 

Administration (NHTSA) funded the development of CRASH as a way to compare the 

CRASH model to crash tests and establish accuracy and sensitivity in the model for the 

use in statistical analysis of accident severity [26].  CRASH uses an approach that 
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combines conservation of momentum and conservation of energy.  The procedure, which 

is based upon the method proposed by Campbell [5], requires comparative crash test data 

and crush measurements taken from the accident vehicles.  This “damage only” option of 

the program gives an estimate of the vehicles delta-V, assuming the analyst is able to 

estimate the principal direction of force (PDOF) relative to the road surface, the point of 

application of the force resultant on the cars and the distance offset between the force and 

the CG of each vehicle and the energy dissipated by crush.  CRASH does this by 

interpreting vehicle properties (mass, rotational inertia, etc…), vehicle heading, crush 

profile and PDOF relative to each vehicle [17].  The momentum calculation uses the 

assumption that there is a common velocity achieved at one point in the mutual crush 

zone (or common CG velocity in the case of a collinear collision).  The centroid of the 

crush volume of each car is selected as the common point.  The collision force is directed 

along the line of action which passes though the common point and has the direction 

specified by the user.  Thus the user must determine the principal direction of force from 

an estimation of the damaged vehicle.  Because the direction of the impulse (time integral 

of the force) is parallel to the momentum change, the direction of the delta-V vector is 

specified by PDOF.  As imagined, pre-specification of the PDOF angles is difficult due 

to the complex buckling pattern of the vehicle structure and the intricate displacement of 

metal parts during the impact.  Therefore, the analyst may only be able to give a range of 

possibilities which will produce a range of delta-V.  When the accuracy and sensitivity of 

the damage option in CRASH was studied by NHTSA [22], it was reported that 

estimation of the PDOF was the most critical measurement reported by field 

investigators, accounting for 18 % error in vehicle delta-V.  As a rule of thumb, it is 
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always appropriate to compare your results with other momentum based programs.  

Perhaps, the central disadvantage of the “damage only” approach is that it can only yield 

information regarding the changes in velocity during the collision.  Additional 

information must be specified in order to obtain initial and final velocities.   

    SMAC - Simulation Model of Automobile Collision- produces an accident 

simulation according to the laws of physics.  The program uses the investigator’s 

estimates for the initial vehicle speeds, along with vehicle data, tire/road friction data and 

driver control (acceleration, braking and steering) table.  The output is a simulated 

vehicle trajectory and damage profile for each vehicle.  The objective is to find a set of 

initial speeds which produces the best match between the simulated and actual vehicle 

trajectories and damage profiles.  One of SMAC’s most useful applications is theory 

testing [8].  Multiple scenarios can be simulated and the closest to the actual trajectories 

and damage is selected.   SMAC requires force-deflection information for each vehicle, 

which is sometimes difficult to obtain or unknown at the level of detail required. 

 IMPAC - Impact Momentum of a Planar Angled Collision is intended to provide 

a very straightforward and simple analysis of angled collision.  It is similar to CRASH in 

that it uses scene data as input.  Like SMAC, it requires estimate of initial speeds as input 

prior to impact data and uses these estimates to predict the separation condition (Velocity 

and direction) [8].  It deals only with momentum transfer and does not directly use crush 

energy. 

 PC-CRASH - A Momentum-Based Accident reconstruction Program uses a 2D or 

3D dimensional impact model that relies on restitution rather than vehicle crush or 

stiffness coefficients.  This model assumes an exchange of the impact forces within an 
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infinitely small time step at a single point called the impulse point.  Instead of resolving 

the impact forces over time, only the integral of the force-time curve (the impulse) is 

considered.  This model contains the means to calculate impacts in which a common 

velocity is reached by the contacting areas of the two vehicles (full impact) and impacts 

where no common velocity is reached (sideswipe impact).  The crash model allows the 

calculation of the post impact parameters after the definition of the pre-impact phase 

(speeds and positions) [23].  

 Other 3D programs created by Engineering Dynamics Corp are also available to 

the public and their abilities have been compared with that of PC-CRASH [9].  Since the 

focus of this thesis is not on 3D models, the reader is left to research on his own for 

further knowledge.   

 Recently, Raymond M. Brach and R. Matthew Brach published a book called 

“Vehicle Accident Analysis and Reconstruction Methods” [4].  The book is one of many 

published on the topic of accident reconstruction.  “With some notable exceptions, many 

of these books are works devoted to how the authors and perhaps a few colleagues used 

intuition and insight to decide how they thought an accident happened.  In a few cases, 

these books are collections of case histories; usually presentation of one view of the 

events” [4].   In contrast, the authors of “Vehicle Accident Analysis and Reconstruction 

Methods” affirm that their book is one of methods [4].  In Chapter 6, the authors 

developed a set of equations also known as the planar point-mass impulse-momentum 

equations.  For any two bodies placed in a fixed reference coordinate system (x-y axes), 

there exists a normal and tangential set of coordinate axis (n-t axes) dependant upon the 

geometry of the contact oriented with respect to the (x,y) system by an angle.  The (n-t) 
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axis pair is chosen so that the normal axis is perpendicular to the assumed contact 

surface.  The equations mentioned earlier are Newton’s law of impulse and momentum 

applied in the (n-t) system.  In addition, a coefficient of restitution relating the final 

relative normal rebound velocity to the initial relative normal velocity and an impulse 

ratio relating the tangential impulse component to the normal impulse component are 

introduced.  The impulse ratio mentioned above is not a coefficient of friction but can be 

related to one.  In fact it is the approach used in PC-CRASH [23] and also defined in an 

SAE paper written by Gregory C. Smith [21].  In order to apply rotational momentum, 

two more equations are added and the theory takes on new name: “Planar Impact 

Mechanics”.  Given certain information, the planar impact mechanics model provides a 

way of calculating the final velocity components and impulse components of two 

colliding vehicles.  The input information can be grouped into four physical categories: 

the initial velocity components (translational and rotational), the physical properties of 

the vehicles (masses and rotational inertias), the orientation angles (headings) and the 

collision-damage characteristics (Point of contact, orientation of n-t, restitution 

coefficient, impulse ratio).  The coefficient of restitution and impulse ratio relate to the 

level of energy loss.  Indeed, when the coefficient of restitution is 1 and the impulse ratio 

is 0, the collision is a perfectly elastic and frictionless collision with no energy lost.  

When the coefficient of restitution is 0 and the impulse ratio is at a maximum (that is 

when the relative tangential separating velocity is 0) the energy loss is a maximum.  To 

apply planar impact mechanics, it is necessary to make assumptions.  One is that a single, 

intervehicular crush surface can be represented by one that lies in a vertical plane and a 

common point exists that represents the point of application of the intervehicular impulse.  
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That point represents an average of the distance from the center of gravity to the crushing 

region over space and time.  Whatever method is used, judgment of the analysist is 

necessary [4]. 

 

Objective 

 The objectives of this work are as follows:  First, this work will provide a more 

generalized energy model approach to reconstruct two-dimensional impact problems in 

the area of accident reconstruction.  This energy model will show that the same closed 

form solution given in CRASH3 can be obtained using an approach that does not require 

the representation of a linear spring (crush of the car modeled as a linear spring) and does 

not assume simple harmonic motion as a trivial solution.  We will establish a consistent 

sign convention that relates the physical phenomena to the modeled system. Terms 

pertinent to this approach will be defined and the governing equations will be non-

dimensionalized and used to define all of the changes in momentum and energy as a 

function of a characteristic velocity.  In addition, we will derive an expression for the 

average velocity experienced by each vehicle during impact as a function of the change in 

energy.   

We will verify that although both methods require very different inputs, they are 

derived using the same fundamental physical principals and for any given accident 

scenario, including sideswipe impact, they will provide identical results.  We will extend 

the solution provided in CRASH3 by calculating the velocity prior and after impact for 

both vehicles.  We will also present different methods to consistently determine the 

direction of the force when additional information from the accident scene is provided. 
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Approach 

  
 The generalized energy model will be derived using a bond-graph to represent the 

planar impact collision between two vehicles.  Each method will be presented in the form 

of a MathCAD spread sheet that will allow the user to reconstruct a wide variety of 

accidents controlling just a few parameters (i.e. mass, rotational inertia, angle of 

approach, etc…).  In addition, both methods will provide a step by step graphical 

representation to assure a solid approach to physical fundamentals.  Conclusions will be 

presented when the results to a similar scenario can be compared. 

 

Nomenclature 

M  Mass of vehicle 
I  Moment of inertia of vehicle 
k  Radius of gyration of vehicle 
Ψ  Angular acceleration of vehicle 
h  Moment arm of the force acting through P 
P  Centroid of crush and common velocity point 
ΔV  Change in velocity for vehicle at CG 
ΔVω  Change in velocity for vehicle due to inertial mass 
ΔVP  Change in velocity for vehicle at point P 
R  Resitive element 
0  0 junction 
f  Effort variable representing a force 
T  Effort variable representing a torque 
v  Flow variable representing a velocity 
ω  Flow variable representing an angular velocity 
TF  Transformer ratio 
Meq  Equivalent mass of vehicle  
Meff  Effective mass of system  
vcP  Closing velocity of point P 
xcP  Closing distance of point P 
ER  Net energy absorbed by R 
ε  Coefficient of restitution 
vcP before Closing velocity of point P before impact 
vcP after  Closing velocity of point P after impact 
γ   Non-dimensional term relating the properties of the CG to the point P 
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I  Impulse of system 
P  Power flowing through a branch 
M   Non-dimensional mass of vehicle 

ωM   Non-dimensional inertial mass of vehicle 
eqM   Non-dimensional equivalent mass of vehicle  
effM   Non-dimensional effective mass of system  

h   Non-dimensional moment arm of the force acting through P 
I   Non-dimensional impulse of system 

RE   Non-dimensional net energy dissipated 
ΔV   Non-dimensional change in velocity for vehicle at CG 

ωΔV   Non-dimensional change in velocity for vehicle due to inertial mass 
pΔV   Non-dimensional change in velocity for vehicle at point P 
pΔE   Non-dimensional impulse in power 

beforecPv  Non-dimensional closing velocity of point P before impact 

aftercPv   Non-dimensional closing velocity of point P after impact 
ΔE   Non-dimensional impulse in power for the translational system 

ωΔE   Non-dimensional impulse in power for the rotation system 
cPv~   Average velocity corresponding to the power impulse during the impact 

1θ   Angle relating n-t axes from x-y axes 
x ,   Coordinate of P defined relative to the CG of vehicle y
n ,   Moment arm for impulses from point P to the CG of vehicle t
WL   Width of the vehicle 
a   Length from CG to the front bumper of vehicle 
b   Length from CG to the back bumper of vehicle 
θ   Angle at which vehicle 2 is approaching vehicle 1 
v   Translational velocity of vehicles prior to impact 
ω   Rotational velocity of vehicle prior to impact 
μ   Impulse ratio 
μo  Critical impulse ratio 
Vx   Translational velocity of vehicle after impact in x direction 
Vy   Translational velocity of vehicle after impact in y direction 
Ω   Rotational velocity of vehicle after impact. 
CVx  Closing velocity of vehicle before impact in x direction 
CVy  Closing velocity of vehicle before impact in y direction 
PDOF  Principal direction of force 
ci  Crush depth measurement from origin of crush 
wi   Width measurements from origin of crush 
C  Crush matrix 
W   Width matrix 
Px   Width coordinate for the point P from origin of crush 
Py   Depth coordinate for the point P from origin of crush 
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E  Energy absorbed in plastic deformation 
E1  Adjusted energy calculation of vehicle 1 as a function of θE 
A  Spring preload coefficient 
B  Spring constant per unit width coefficient 
F  Estimated force through point P 
θE   Estimated direction of the force through the point P of vehicle 1  
θ2   Estimated direction of the force through the point P of vehicle 2 
E2  Adjusted energy calculation of vehicle 2 as a function of θ2 
d  Distance from point P to CG of vehicle   

xseparationV  Separating velocity of vehicle after impact in x direction  

yseparationV  Separating velocity of vehicle after impact in y direction  
θCV  Value of closing velocity for a given θE  
θVseparation Value of separating velocity for a given θE 
θΔV  Value of change in velocity for a given θE 
θv  Value of velocity before impact for a given θE 
θV  Value of velocity after impact for a given θE 
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CHAPTER 2:  ANALYTICAL MODEL OF THE SYSTEM 
 

 
Objective 

  
 The approach used in CRASH3 to develop a single, closed-form damage analysis 

technique that could be applicable to collision configuration is derived for the case of 

central collisions, (where the line of action of the collision passes through the centers of 

masses of the two vehicles) and a more general case of non central collision [17].  For 

either case, the two vehicles are modeled as a spring-mass system where the springs 

represent the linear peripheral crush of the area of contact for each car.  The velocity 

changes experienced by vehicle 1 and 2 during the approach period of the collision are 

obtained from the solution to the simple differential equation of the form: 

            (2.1) 0 
..

=+ xkxm

The objective of this chapter is to show that the same closed form solution can be 

obtained using an approach that does not require the representation of a linear spring 

(crush of the car modeled as a linear spring) and does not assume simple harmonic 

motion as a trivial solution.  Terms pertinent to the new approach will be defined and it 

will be shown how the energy transferred during the impact phase can be modeled as 

power impulses applied to each vehicle element, with a single force impulse for any 

given collision. 
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The Model 

 A collision can be described as a brief event in which two or more bodies come 

together resulting in an exchange of energy and momentum, including a change of 

direction.  In automobile reconstruction, a collision can either be central or non-central.  

A collision is defined central when the line of action of the collision force passes through 

the centers of the masses of the two vehicles [17].  In non-central collisions, a common 

velocity is achieved at the region of collision contact rather than at the center of gravity 

[17].  The non-central frontal collision depicted in Figure 2-1 will be used to obtain a 

solution for the velocity changes experienced by Vehicles 1 and 2.  In Figure 2-1 a 

common velocity is reached at point P although the model can include relative velocities 

between points P on each vehicle.    

 

 

 
ΔV1P 

 

P
ΔV2 ΔV2P 

M1, I1 

Ψ1 h1 
ΔV1 

Ψ2 

h2  

 

 M2, I2 

 

Figure 2-1: Non-central frontal collision 

 

Figure 2-2 illustrates the modeling of Figure 2-1 using a bond graph approach.  

Let the energy dissipated during the impact phase due to the crushing of the cars be 
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modeled as a resistive type element acting at point P.  Let the power flow from the 

resistive type element into a 0 junction.  In order to relate the power flow from the point 

P to the center of gravity of each vehicle, two other 0 junctions are created.  The inertial 

elements are represented through a transformer and in parallel with their corresponding 

mass.  Because inertia effects are analogous to masses, the equivalent inertial mass seen 

by the system is the product of the transformer ratio with the mass of the system.  The 

transformer does not create, store, or destroy energy.  It conserves power and transmits 

the factors of power with proper scaling as defined by the transformer ratio.  This 

transformer ratio is the moment arm described by Expression 2.2 for vehicle 1and 

Expression 2.3 for vehicle 2. 

1h           (2.2) 

           (2.3)  2h 

0

f

f 
v1P 

f 
v2P 

R

0

v2 M1 

0 

f 

I1 
 

T 

ω2 
T 

ω1 

f 

v1 

TF 
.. h1 

f 

TF 
.. h2 

f 

I2 

 

 

 

 M2 
 

 

Figure 2-2: Non-central collision modeling 

 

Consider the 0 junction illustrated in Figure 2-3.  0 junctions are governed by the 

following rules.  The effort variable must be equal on each branch while the algebraic 
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sum of the flow variables is zero.  In a mechanical system, the effort variable represents 

either a force or torque acting on the system while the flow variable represents the 

velocity or the angular velocity corresponding to its effort variable.  Figure 2.3 reduces to 

the identity presented in Figure 2-4.    

 

 M1 f 

0

M2 

v1 

f 

 

 

 
v2 

 

Figure 2-3: A 0 junction 

 

This is acceptable since the inverse of the equivalent mass of two objects in 

parallel is equal to the sum of their inverse.  In other words, 
21eq M

1
M
1

M
1

+=    or   

 
21

21
eq MM

MMM
+

=         (2.4) 

 

 
f 

Meq  
v1+ v2 

 

Figure 2-4: Identity 0 junction 

 

The equivalent inertial mass of vehicle 1 seen by the system is represented in 

Figure 2-5.   
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Figure 2-5: Equivalent inertial mass of vehicle 1 

 

Notice that the flow variable is also transformed and represents the velocity 

relative to the velocity of the centroid of the vehicle at point P corresponding to rotation 

of each vehicle.  If we apply the identity proposed in Figure 2-3 and Figure 2-4 to each of 

the side 0 junctions of Figure 2-2, the model simplifies to one 0 junction and 2 

equivalents masses.  The equivalent mass for each vehicle can be determined from 

Equation 2.4 as follows.  2
1

2
1

2
1

1

2
1

1
2

1
1

2
1

1
2

1
1

eq hk
kM

h
MkM

h
Mk

M
M1

+
⇒

+
=   (2.5)  

In a similar manner for vehicle 2, 

 2
2

2
2

2
2

2eq hk
kM M2
+

=        (2.6) 

Figure 2-2 transforms into Figure 2-6.  Notice that the identity proposed in Figures 2-3 

and 2-4 has also been applied to the equivalent system of both masses to reduce the 

system to one effective mass .   effM 
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Figure 2-6: Effective mass of the system 

 

The effective mass of the system is defined as: 
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 M      (2.7) 

The energy dissipated during a collision between vehicle 1 and vehicle 2 is analogous to 

the energy dissipated by one vehicle of mass into a rigid barrier.  The constitutive 

equation for the mass element of a mechanical system relates the momentum to the flow 

variable.  Stated differently, 

eff M

dtf
M
1 v ∫=  or

dt
dvMf = .  Applying Newton’s second law 

to the effective system of Figure 2-6 yields Equation 2.8. 

 
dt

dvMf cP
eff=−          (2.8) 
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where .  When we algebraically multiply  on both side of Equation 

2.8, the left hand side of Equation 2.9 becomes the power flowing through the bond on 

the left of the equation while the right hand section is the power flowing into the effective 

mass, : 

( 2P1PcP vvv +−= 

effM

) cPv

    cP
cP

effcP v
dt

dv
Mvf =−          (2.9) 

If we modify  to be the rate of change of , Equation 2.10 is created.   cPv cPx

 cPcPcPeff
cP

cP
cP

eff dxfvdvM
dt

dx
fv

dt
dv

M          −=⇒−=     (2.10) 

Integrating both sides of Equation 2.10 yields the following critical equation: 

 ( RbeforecPaftercPeff EvvM −=− 22

2
1 )           (2.11) 

Notice that is nothing more than the net energy absorbed by the resistive type element 

and its value is valid for any force vs. displacement curve, linear or not.  If we wanted to 

account for restitution, Equation 2.11 would simplify to: 

RE

 ( )
eff

R22
beforecP M

2Eε1v =−          (2.12) 

where      
beforecP

aftercP

v
v

=ε  

Note that the “ resistive” element stores some energy which is returned during spring 

back and thus acts as a combination spring and dissipative element. ε  is often seen in 

the literature as a restitution coefficient.  In our model, the coefficient of restitution acts 

in the direction of the force.   represents the closing velocity of point P of 

vehicle1 and vehicle2 which is their velocity difference before impact.    

beforecPv
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Consider h1, the moment arm of the force acting through P for vehicle 1.  The 

corresponding moment acting on vehicle 1 is: 

          (2.13) 
..

1
2

11

..

111x ψkMψIhF −=−= 

 where  is the angular acceleration and is the radius of gyration of vehicle 1.  The 

changes in velocity for each vehicle at their respective point P can be determined from 

Equation 2.12.  Equations 2.14 and 2.15 illustrate that relationship for each vehicle.   

..

1 ψ 1k

For vehicle 1, 

 
( )
( ) ( ε1

M1M2
M2

ε1M
E2ΔV

eqeq

eq
2

eff

R
1P +

+−
= )      (2.14) 

And for vehicle 2, 

 
( )
( ) ( ε1

M1M2
M1

ε1M
E2ΔV

eqeq

eq
2

eff

R
2P +

+−
= )      (2.15) 

As shown in Equations 2.5 and 2.6, the non-dimensional terms, 1γ  and 2γ  relating the 

properties of the center of gravity to the point P, is defined such that: 

  .          (2.16) 1P11 ΔVγΔV  =

where 2
1

2
1

2
1

1 hk
k

γ
+

=  and  2
2

2
2

2
2

2 hk
k

γ
+

=  

It should be noted that when γ1 = γ2 =1, the general solution to the non-central collision 

reduces to a central collision.  When 0=ε , the solution given in CRASH3 is identical to 

Equation 2.16.      
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Impulse in Power 

 Initially, we will define the force impulse of the system.  Multiplication of the 

derivative in time and integrating both sides of Equation 2.8 with respect to time helps us 

to recognize that the force impulse of the system (Figure 2-6) is the change in momentum 

of the system.    

 ( )beforecPaftercPeffcPeffcPeff vvMIdvMfdtdvMfdt −=−⇒=−⇒=− ∫ ∫       (2.17) 

Also expressed in terms of the velocity change of car1, 1P111 ΔVMγI  =  or 1eq1 ΔVM1I  = . 

21 III ==The impulse of the system is conserved, therefore .  Relating Equation 2.9 to 

one of the equivalent mass system yields: 

 
dt

dv
M1f cP1

eq=−         (2.18) 

hen we algebraically muW ltiply v  on both sides of Equation 2.18, the left hand side 1cP

e pobecomes power and represents th wer flow into the mass eqM1  

   1cP1
cP1 Pv

dv
M1vf ==−        (eqcP1 dt

2.19) 

milarly, for the second equivalent maSi ss system, 

 2  Pv
dv

M2vf cP2
cP2

eqcP2 ==−   
dt

    (2.20) 

The 0 junction in Figure 2-6 tells us that power flowing out of R equals the summation of 

the power flowing into the equivalent masses such that:

 3PPPv
dv

M2v
dv

 M1 21cP2
cP2

eqcP1
cP1

eq −=+=+

T n time is energy.  Algebraically 

dtdt
    (2.21) 

he integral of the power with respect to the derivative i

Equation 2.21 can be reduced to: 
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 dtPvdvM2vdv M1 3cP2cP2eqcP1cP1eq −=+      (2.22) 

The right hand side of Equation 2.22 when integrated becomes what is referred in this 

ork as an impulse in power.  It also represent

 

w s the energy dissipated during the impact 

phase due to the crushing of the vehicles.  Integrating both sides of Equation 2.22 gives

us the following identity:  

 ( ) ( )2222 EvvM21vvM11 =−+−   (2.23)

“trans

RaftercP2beforecP2eqaftercP1beforecP1eq 22
 

Figures 2-2 and 2-5 shows that the velocity at point P for vehicle one is the sum of a 

lational velocity”  and a “rotational velocity” .  Therefore, 

4) 

, 

1v 1ωv

  1ω11P ΔVΔVΔV +=         (2.2

To satisfy Equation 2.24 ( ) ΔVγ1ΔV  

 20

1P11ω −= , since ΔVγΔ  1P11V = .  This allows us to 

rther quantify energy as i

t that if the change i  dissipated by

fu t flows through each branch of the bond graph.  From 

Equation 2.23, it is eviden n energy  the resistive type 

element is known, the change in energy for both equivalent masses can be determined 

under one condition.  This condition will be addressed in Chapter 3.    

 



CHAPTER 3:  NON-DIMENSIONAL MODEL OF THE SYSTEM 
 

 
Objective 

  
 In Chapter 2, we used the bond-graph approach to represent a two dimensional 

planar impact collision between two vehicles.  From our model, we were able to derive 

the solution to the velocity changes experienced by vehicle 1 and vehicle 2 during the 

impact period of the collision.   We showed that the solution obtained is identical to the 

solution developed in CRASH3.  The objective of this chapter is to establish a consistent 

sign convention that relates the physical phenomena to the modeled system.  In addition, 

we will non-dimensionalize the equations found in Chapter 2 and define all of the 

changes in energy as a function of a characteristic velocity.  Finally, we will derive an 

expression for the average velocity experienced by each vehicle during impact as a 

function of their power impulse. 

 

Momentum Exchange 

 The bond-graph represented in Figure 2-2 is valid for both the pre-impact and the 

post-impact stages of the collision.  From conservation of momentum, we can relate the 

ratio of each mass to the ratio of their change in velocity as displayed in Equation 3.1. 

 
1

2

2

1

ΔV
ΔV 

M
M

=          (3.1) 
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As seen in Chapter 2, Equation 2.12 was the critical equation that was used to determine 

the change in velocity of the each vehicle.   Each branch of the system has an equivalent 



force, therefore during impact all effective masses see the same force impulse called the 

impulse of the system.  The impulse of the system is defined from Equations 2.12 and 

2.17 and can be rewritten as:   

 ( ) ( )2
eff

R
eff ε1M

2Eε1MI
−

+=       (3.2) 

The characteristic variables for the system are chosen as mass of vehicle 1 for the 

characteristic mass, the radius of gyration of vehicle 1 for the characteristic distance and 

the closing velocity of the system in the direction of the force as a substitute for the 

characteristic time.  A non dimensional variable is a variable divided by its characteristic 

variable.  In non dimensional From, 1M  becomes: 

  1
M
M

1

1 =          (3.3) 

In a similar way, 
1

2
2

M
MM = .  Recall, the equivalent inertial mass 1 M

h
kM 2

1

2
1

1ω = , its 

non dimensional form is, 

 
1

2
1

2
1

1ω
h
1

h
k

M ⇒=         (3.4) 

In a similar way, 2
2

2ω M 
h
1M = ,

1
eq

h1
1M1
+

= ,
2

2
eq

h1
MM2
+

= , and  

1MhMh
MM

2221

2
eff

+++
= .  

where 2
1

2
1

1
k
h

 h =    and   2
2

2
2

2
k
h

h = . 

Equation 2.2 can also be written in a non-dimensional form as shown in Equation 3.5. 
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 ( ) ( )2
eff

R
eff

ε1M
E2ε1MI 
−

+=       (3.5) 

where 2
beforecP1

R
R

vM
2EE =  

RE  is the non-dimensional form of the energy dissipated during impact as seen in 

Equation 2.23.  It also represents the ratio of the total actual crush energy to the crush 

energy that would be caused by vehicle 1 impacting a fixed barrier at the closing velocity 

of both vehicles.  From Figure 2-2, the non dimensional change of velocity at point P for 

vehicle 1 is   

 ( )11p h1IΔV +=         (3.6) 

Notice that the expression defined in Equation 3.6 has a different form than that of 

Equation 2.14 but their values would be identical if Equation 2.14 were non-

dimensionalized (shown below).  The other 5 non-dimensional changes of velocity are 

described as follows: 

( )
2

2
2p

M
h1IΔV +

= ,  IΔV 1 = ,  11ω hIΔV = ,  
2

2
M

IΔV = , 
 M

hIΔV 
2

2
2ω = . 

These expressions are valid and are only dependant upon the following primary variables: 

the masses, the radii of gyration, the moment arms from the direction of the force to the 

center of gravity and the total energy dissipated during the impact.  As mentioned above, 

Equation 2.14 is identical to Equation 3.6 but represented in a different form.  In non-

dimensional form, Equation 2.14 becomes  

 ( ) ( ε1
1MhhM

h1MΔV
2212

12
1P +

+++
+

= )       (3.7) 
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Equation 3.7 is much more descriptive of the system.  In other words, all of the non 

dimensional changes in velocity for all branches of any system can be determined from 

four ratios.  These four ratios are 2M , 1h , 2h , and ε .  In addition, the dimensional 

forms of those changes in velocity can be determined as long as and for that 

system is known.  Rewritten in the more descriptive form, Equation 3.7 becomes 

RE 1M 

 
( )

( ε1
γγM

γMΔV 

122

22
1P +

+
= )        (3.8) 

where 
1

1 h1
1γ
+

=  and 
2

2 h1
1γ
+

= . 

Similarly, the other 5 non-dimensional changes of velocity are described as follows: 

( )
( ε1

γMγ

γΔV 

221

1
2P +

+
= ),     1γΔVΔV 1P1 = ,      ( )11P1ω γ1ΔVΔV −= ,    

22P2 γΔVΔV = ,      ( )22P2ω γ1ΔVΔV −= . 

 

Energy Exchange 

 The impulse in power or power impulse represented by Equation 3.2 can also be 

interpreted as the change in energy experienced by the equivalent system.  As shown in 

Equation 2.23, this energy exchange is not directly proportional to the change in velocity 

but rather the change of the individual pre and post velocity squared.  Therefore, only 

knowing the change in velocities is not enough to ascertain the portion of energy change 

for each bond.  It is important to clarify the possibility for confusion.  The change in 

energy for one vehicle going from 20 mph to 10 mph will be greater than the change in 

energy for the same vehicle going from 15 mph to 5 mph even though they have similar 
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changes in velocity.  Equation 2.23 compartmentalizes the impulses in power for the 

central 0 junction of Figure 2-2.  The non-dimensional impulse in power for the 

equivalent system of vehicle 1 can be reduced to Equation 3.9. 

 ( ) ( )( )2
aftercP1

2
beforecP1eq1p vvM1

2
1ΔE −=      (3.9) 

Let us assume that the velocity before impact at point P on vehicle 1 is given the value of 

the characteristic velocity.  Therefore, 

  1v beforecP1 =          (3.10) 

and using Equation 2.6, the velocity after impact at point P is calculated as follows: 

 beforecP11paftercP1 vΔVv +=        (3.11) 

Equations 3.10 and 3.11 can be substituted back into 3.9.  As far as the non-dimensional 

impulse in power for the equivalent system of vehicle 2, two approaches leading to 

identical results can be used.  The first one satisfies Equation 2.23 as follow  

 1pR2p ΔEEΔE −=         (3.12) 

The second approach uses Figure 2-6 to evaluate the value of  from the following 

identity 

p2v

( )p2p1cP vvv +−= .  In non-dimensional form,   

( ) beforecP12
eff

R
beforecP2 v

ε1M
E2v −
−

−=       (3.13)  

Similar to Equations 3.9 and 3.11, Equations 3.14 and 3.15 are formulated as follow: 

  beforecP22paftercP2 vΔVv +=        (3.14) 

 ( ) ( )( )2
aftercP2

2
beforecP2eq2p vvM2

2
1ΔE −=      (3.15) 
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Using the same approach for the other two 0 junctions allows us to further quantify the 

change in energy into the translational and the rotational equivalent systems.  In the 

special case where vehicle 1 has no initial rotational velocity, the velocity before impact 

of the center of gravity of vehicle 1 is also given the value of the characteristic velocity 

since  .  The non-dimensional impulse in power for the translational system 

is given as: 

1ω11P v vv +=

 ( ) ( )( )2
beforecP11

2
beforecP111 vΔVvM

2
1ΔE +−=     (3.16) 

and the non-dimensional impulse in power for the rotational system of vehicle 1 is:  

 ( ) ( )( )2
1ω

2
1ω1ω 0ΔV0M

2
1ΔE +−=       (3.17) 

Under similar assumption for vehicle 2, the non-dimensional impulse in power for the 

translational system is given as: 

 ( ) ( )( )2
beforecP22

2
beforecP222 vΔVvM

2
1ΔE +−=     (3.18) 

and the non-dimensional impulse in power for the rotational system of vehicle 2 is:  

 ( ) ( )( )2
2ω

2
2ω2ω 0ΔV0M

2
1ΔE +−=       (3.19) 

It is beneficial to plot the changes in energy of each branch and see how they vary as a 

function of the velocity of vehicle 1 prior to impact.  If vehicle 1 has an initial velocity of 

value negative two times the closing velocity, vehicle 2 will be imposed an initial 

velocity of one times the closing velocity in order to maintain a closing velocity of 1.  Let 

the abscissa of the plot representing the initial velocity of vehicle 1 vary from -2 to 1.  

Figure 3-1 is a graphical representation of the plots assuming that both vehicles are 
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identical, , both radii of gyration and moment arms are identical 

 and 

3500 lbMM 21 == 

4 fth h 21 ===  Ek k 21 = -ft10,000 lbfR = . 

0.6 

 

 
Figure 3-1: Plot of the non-dimensional energy changes vs. initial velocity of vehicle 1 

 

A positive change in energy means a loss or a discharge of energy and a negative value 

represents a gain or absorbing energy.  The changes of energy vary linearly as a function 

of the initial velocity of vehicle 1.  This is explained by Equation 3.20.  Rewriting 

Equation 3.7 in a different form with the change in velocity known gives: 

 ( ) ( )( )beforecP11p
2

1peq1p vΔV2ΔVM1
2
1ΔE +=      (3.20) 

We showed earlier in Equation 2.21 that the power impulse was a function of the force 

times a velocity.  Integrating both sides allows us to define a new term 2
~

cPv .   
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1ΔE  

2ΔE  

1ωΔE  

ω2ΔE  

RE  
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 IvdtfvdtvfdtP cPcPcP 2222
~ ~  ⇒⇒= ∫∫∫      (3.21) 

2
~

cPv  is the average velocity of the branch corresponding to the power impulse during the 

impact.  In non-dimensional form,  

 branches 1..6i        with ~ ==
I
ΔE

v i
ci       (3.22) 

A similar plot to Figure 3-1 can be assembled.  However it is the same plot simply scaled 

by 
I
1 .   
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CHAPTER 4:  ENERGY APPROACH USING MATHCAD 
 

 
Objective 

  
 As mentioned in the literature review of Chapter 1, one of the approaches to 

reconstructing accidents is the momentum based approach, elaborated in a general form 

by Brachs in their book “Vehicle Accident Analysis and Reconstruction Methods” [4].  

This traditional approach uses a set of equations to calculate the velocity components of 

two colliding vehicles after impact.  The objective of this chapter is to demonstrate that 

the energy method used by CRASH3 uses the same fundamental physical principles as 

the momentum approach and that for any given accident scenario, both methods provide 

identical results.  Because the approach to both methods is different, the input 

requirements are also different.  The work will be presented in the form of MathCAD 

work sheets that will allow the user to reconstruct a wide variety of accidents while 

controlling just a few parameters (i.e. mass, rotational inertia, angle of approach, etc…).  

In addition, these modules will provide a set of graphical representations in order to 

facilitate the physical interpretation of the scenario.  In the case when there is no 

restitution and no sliding, we will extend the solution provided in CRASH3 by 

calculating the velocity prior to and after impact for both vehicles.  We will also show 

how the direction of the force between two vehicles can be determined from the ratio of 

their velocities prior to impact. 
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The Momentum Module  

 The purpose of this module is to provide a set of solutions for a given scenario.  

Because the set of equations for the momentum approach are very well defined in 

Brach’s book [4], we will not show how these equations are derived.  However, we will 

show how they are used in a modular form and how the graphical representation can be 

compared to the energy module that will be discussed hereafter.  The required input for 

the momentum method can be categorized as follows: the initial velocity components 

(translational and rotational), the physical properties of the vehicles (masses and 

rotational inertias), the orientation angles (headings) and the collision-damage 

characteristics (point of contact, orientation of n-t axes, restitution coefficient, impulse 

ratio). 

In order to simplify calculations, we assume that vehicle 1 is always heading in 

the y direction.  The center of gravity (CG) of each vehicle is located at the origin.  For 

graphical representation, each vehicle is defined by three parameters.  These parameters 

are: the width of the vehicle, the length from CG to the front bumper and to the back 

bumper.  It is important to mention that changing these variables from one scenario to 

another will not affect the results but are used only for graphical description.  The point 

of contact P is defined relative to the CG of each vehicle using an x and y components 

referred to as  and  as shown in Figure 4-1.  The angle relating the normal and 

tangential coordinate system set (n-t axes) from the fixed coordinate system (x-y axes) is 

specified by .  If θ  is 0 degrees, the moment arm for each impulse component from 

point P to the CG is  and .  Otherwise, their values have to be adjusted as  

changes by the following expressions: 

1x

1θ

1y

1

1x 1y 1θ
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( ) ( )11111 θcos yθsinxn   −=        (4.1) 

( ) ( )11111 θ sin yθ cosxt −=

1θ

1θ θ

       (4.2) 

From Figure 4-1, see how the moment arms for each impulse component graphically 

changes as  changes.   

In our module, vehicle 2 is always making contact with vehicle 1.  Whether the 

collision is a central impact or a non-central impact, the angle θ represents the angle at 

which vehicle 2 is approaching vehicle 1.  Specifying a value for θ is identical to 

assuming a specific direction for the velocity of vehicle 2 before impact.  The values for 

 or  are not always known accurately prior to the collision and therefore can be 
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Figure 4-1 Graphical representation of vehicle 1 
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changed independently to optimize the results.  θ  is assumed positive counter clockwise 

and negative clockwise. Figure 4-2 is a graphical representation of vehicle 2  

contacting vehicle 1 at an angle θ.  Notice that θ  remains unchanged because it is a 

common variable to the reference coordinate system (x-y).    

1
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θ1 
n-axis

t-axis

x2 
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vehicle 2 
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CG of vehicle 2

y2 X t2 
θ
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Figure 4-2 Graphical representation of vehicle 2 
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Similarly to vehicle 1, the moment arms for each impulse component for vehicle 2 can be 

graphically represented as shown in Figure 4-2.  Their directions and magnitudes can be 

calculated from Equations 4.3 and 4.4.   

 ( ) ( )22222 θ cos yθ sinxn −=        (4.3) 

( ) ( )22222 θ sin yθ cosxt −=        (4.4) 

With    ( )[ ][ ]θ2πθπθ 12 −+−−=

Now that the graphical representation of the module has been introduced, we will analyze 

the specific scenario depicted by table 1. 

 

Table 4-1: Input for momentum module 

  Vehicle 1 Vehicle 2 
M (lb) 4000 3500 
k (ft) 4.484 4.288 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 
θ (deg) 0 -150 

x (in) 24 24 
y (in) 60 60 

v (mph) 20 40 

ω (deg per sec) 0 0 
   

θ1 (deg) ε μ 

6.141 0 100% μ0 
 

The lower case v represents the translational velocity of both vehicles prior to impact but 

their value only indicates their magnitude.  The relative direction in which they are going 

is represented by θ.  The lower case ω represents the rotational velocity of both vehicles 
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prior to impact.  The symbol ε represents the coefficient of restitution right after impact 

and μ is the impulse ratio.  When the coefficient of restitution is 0 and the impulse ratio is 

at a maximum (100 percent its critical value), the energy loss is a maximum.  An impulse 

ratio at its maximum (when the relative tangential separating velocity is 0) occurs when 

both point of contact P on both vehicles obtain a common velocity during the impact 

phase.  This is an important factor for this chapter.  The results to the input found in table 

1 using the momentum approach proposed by Brach [4] are shown in table 4-2. 

 

Table 4-2: Output from momentum module 

 Vehicle 1 Vehicle 2 

Vx (mph) 2.813 16.786 

Vy (mph) -2.686 -8.714 

Ω (deg per sec) -248.378 12.697 

∆V (mph) 22.86 26.126 

   

Energy loss (lbf-ft) PDOF (deg)  

173278.146 -82.933  

   

vcPbefore (mph) CVx (mph) CVy (mph) 

56.687 -20 54.641 
 

Table 4-2 will be compared to the energy approach at a latter portion of Chapter 4.  The 

upper case V represents the translational velocity of both vehicles after impact and the 

subscripts x and y correspond to their respective components.  The upper case Ω 

represents the rotational velocity of both vehicles after impact.  CV represents the closing 

velocity of both vehicles. 
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The Energy Module  

 It was mentioned in the objective of this chapter that, due to the difference in the 

approach to both methods, their input variables were different.  The required input for the 

energy method can be categorized as follows: the energy dissipated during impact, the 

physical properties of the vehicles (masses and rotational inertias), the approach angle 

(heading of vehicle 2 toward vehicle 1) and the collision-damage characteristics (point of 

contact, direction of impact force, restitution coefficient, slip coefficient). 

 This research does not focus on the accuracy of the method used to calculate the 

energy dissipated during the collision, but the method proposed by Campbell [5] will be 

used.  When good crush profiles are available, it is more dependable to estimate a value 

for the energy dissipated than to guess different initial velocities.  On the other hand, if 

reliable energy data is not obtainable, the energy method will not give reliable results.  

The description of the energy module found below will describe how the energy and the 

point of impact P can be calculated from the damage profile of vehicle 1.  Similar to the 

momentum module, both vehicles need the same three parameters to be graphically 

represented.  Once the dimensions of the vehicle are specified, the damage profile can 

then be added.  It is highly desirable, for the purpose of achieving accurate results, to 

enter actual measured damage dimensions whenever possible.  The required dimensions 

for a complete definition of the damage are the width of the crushed region and the depth 

of the indentation.  This module does not account for architectural incompatibility; 

therefore the value of the depth of indentation for a specific width cannot vary as a 

function of the height of the vehicle.  An accurate average value for the variation in 

height must be estimated or calculated to best represent the crush depth as a single input 

 35



value.  Figure 4-3 represents a frontal crush profile.  The reference point for all frontal 

crush measurements is the front left hand corner of the vehicle.  That point corresponds to 

the origin of the crush zone.  At that point, the width is equal to zero and the crush depth 

is c0 as defined in Figure 4-3.  If no crush is visible at that point, c0 has a value of 0 

inches.  It follows that the crush depth at width w1 is c1 and for the whole width 

  

Figure 4-3: Frontal damage profile for vehicle 1 

 

WL1, its corresponding crush depth is c2 in inches.  Figure 4-3 only illustrates 3 different 

crush depths but the user is not limited to that representation. The module can be updated 

to more or less arguments according to the need of the user and the accuracy of the 

CG of vehicle 1

c1 c2 

WL1 

a1 

Direction 
of Vehicle 1 

Py1 

b1 

Y

X

w1

 Origin of 
the crush 
zone 

Px1 
c0 
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known crush profile.  The module can also be adapted for side and rear crush profiles.  

The measurements are specified in the form of an array as represented below: 
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n being the number of depth measurements.   

The crush profile for vehicle 2 is independent of the angle of approach θ, 

therefore the same method is applicable to vehicle 2.  Theoretically, during an impact two 

point masses come into contact at a single point on their outer surface area.  If the masses 

are significantly small, that point of contact can represent their overall surface area.  

However, for a large stiff body (i.e. cars), the point of contact cannot be represented 

accurately as the center of area because only a portion of the surface area comes into 

contact.  To simplify the analysis, it is suggested that the centroid (point P) which defines 

the geometric center of the projected area be used as the point of contact on each vehicle.  

This point could be adjusted by the user if better information is known.  Given the 

projected crush depth matrix and its corresponding width matrix, the projected crush area 

can be calculated using the trapezoidal rule as shown in Equation 4.7. 

∑
=

=
n1

1i
i11 ΔaArea         (4.7) 
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( ) i 11i1i1i1 ΔwCC
2
1Δa ++=        (4.8) 

where the subscript i represents the ith row value of a vector.   

( )1f Crush# of row o  n1 n1    &  1 , 2 i 1 −== K    

i11i1i1 WWΔw −= +         (4.9) 

Once the projected area is calculated, the coordinates for the centroid of the projected 

area can be determined.  The centroid for the surface area of an object such as a trapezoid 

plate, can be found by subdividing the area into simpler shapes (i.e. square or triangle) 

and computing the “moments” of these area elements about each of the coordinate axes. 

The width coordinate calculation for the point P is as follows: 

 
1
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wpp
P
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==         (4.10) 
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Likewise, the depth coordinate calculation for the point P is as follows: 

 
1
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         (4.14) i1i1i1 Δacpcpp  =
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−+= +
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As shown in Figure 4-3, the calculations for the centroid P are measured from the origin 

of the crush zone.  While this approach is correct and acceptable, the origin of the crush 
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zone is not a good reference point.  The origin of the crush zone is a function of the width 

of the car and such a parameter varies from one vehicle to another.  In order to make the 

module applicable to all vehicles and comparable to the momentum module, it is 

preferable to use the center of gravity of the car as the origin for the location of point P.  

The new coordinates x1 and y1 are obtained from Px1, Py1, a1, and WL1 as follows:  

 
2

WPx L1
x11 −=         (4.16) 

 y111 Pay −=          (4.17) 

All calculations shown above for vehicle 1 are applicable to vehicle 2.  However, for 

graphical reconstruction, all coordinates (of vehicle 2) are rotated by a rotation matrix 

about the z-axis illustrated by identity 4.18: 

 
( ) ( )
( ) ( ) ⎟⎟⎠

⎞
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=

θcosθsin
θsinθcos

Rotationmatirx       (4.18) 

In 1974, Campbell [5] estimated that the energy absorbed in plastic deformation could be 

determined using the damage dimensions and the dynamic force-deflection 

characteristics of the vehicle by expression 4.19. 
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His method used a linear approximation of the relationship between residual crush and 

impact  speed (Figure 4-4).  The values Campbell uses for the slope and intercept of the 

line are determined from frontal barrier impact test data for some different classes of cars. 

The coefficient A referred to as the spring preload and B as the spring constant per unit 

width are related to b0 and b1 of Figure 4-4 [5].   

 

b

Residual Crush (in.) 

Impact Speed (mph)

b0 

  

Figure 4-4: Plot of Residual Crush v.s. Impact Speed for Frontal Barrier Tests 

 

Note that it is evident that the resolution of the energy calculation is proportional to the 

number of data point measured and the validity of the values for the coefficient A and B.  

In other words, more crush depth points per unit width will provide more accurate results.  

Also, a more detailed discussion of how to appropriately model crush energy can be 

found in [25].  The calculation for the crush energy for vehicle 2 will be similar to vehicle 

1.  The calculations shown above for the force and the crush energy are only correct in 

the condition that the force acts perpendicular to the front end of the car.  Cases where the 

principal force is not perpendicular to the front end of the car will be discussed below. 
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Even though the force during impact is distributed over the damage area, the 

energy approach assumes that within the projected damage area of each vehicle exists a 

point P that has a force equal in magnitude and opposite in direction to the force exerted 

on the point P of the other vehicle.  The angle θE represents the estimated direction of the 

force through the point P.  Because it is a challenge to accurately estimate θE, its value 

can be changed to optimize the results.  Recall that vehicle 1 is always heading along the 

y-axis.  A positive value for θE is counter clockwise from the y-axis, and a negative value 

for θE is clockwise from y-axis.  The energy calculation illustrated by expression 4.19 

corresponds to a force of angle 0 deg.  The adjusted energy calculation as a function of θ1 

is expressed by Equation 4.23. 

 ( )( )E
2

11 θtan1EE1 +=        (4.23) 

If the direction of force does not pass through the center of the vehicle, the vehicle will be 

subject to rotation.  The calculation for the value of the moment arm of the force relative 

to the CG of the car is as follows: 

 ( ) ( )E1E11 θ cos yθ cosxh +=        (4.24) 

Figure 4-5 gives a graphical representation of the significance of θE.  If the angle of 

approach θ is a varying parameter and the module requires a value for the angle of the 

force on vehicle 1, by Newton’s third law, θ2 can be computed using the  

algorithm as follows: 

        (4.25) ([[ θ2πθπθ E2 −+−−= )]]

Similarly to vehicle 1, a positive value for θ2 is counter clockwise from the heading of 

vehicle 2 and a negative value if clockwise from its heading.  The adjusted energy  

 

 41



calculation as a function of θ2  is expressed by Equation 4.26. 

 ( )( )2
2

22 θtan1 EE2 +=        (4.26) 
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Figure 4-5: Direction of the force (Vehicle 1) 
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Figure 4-6: Direction of force (Vehicle 2) 

 

The calculation for the value of the moment arm through the CG of vehicle 2 is as 

follows:  

( ) ( )22222 θ cos yθ cosxh +=        (4.27) 

Equation 2.12 is used to determine the closing velocity in the direction of F1 once the 

masses and the rotational moment of inertia are specified.  In addition, Equations 2.14 

and 2.15 provided the change in velocities for both vehicles at point P.  The change in 
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velocities at the CG of each vehicle can be obtained from the following 

expressions and 1P11 ΔVγΔV  = 2P22 ΔVγΔV  = .  

 
Pinned-Joint Constraint 

In the case when there is no restitution and no sliding, the point P on each vehicle 

reaches a common velocity.  We will show here how the change in velocities at the CG 

for both vehicles can be separated into their initial values, prior and after impact.    

First it is critical to define the expression for the change in rotational velocity of 

each vehicle.  If the angular velocity of both vehicles is 0 before impact, the change in 

rotational velocity can be reduced to the value of the rotational velocity after impact.  If 

the value is negative, the angular velocity is represented counter clockwise.  Likewise, if 

the value is positive, the angular velocity is represented clockwise.  The angular 

velocities after impact are as follows:  

 
1
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ΔVΔV

=
−

=Ω1        (4.28) 
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=Ω2        (4.29) 

The next step is to determine the components of the change in closing velocity for each 

vehicle in the x-y coordinate system.  Consider Figure 4-7.  Vehicle 1 is struck at point P 

by a force F1 causing a positive rotational velocity Ω1.   Vehicle 1 is subject to two 

changes in velocity, one translational, and one rotational and .  At this point it is 

possible to individually represent the two velocity vectors in their x and y  

1ΔV 1d Ω
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Figure 4-7: Translational components 

 

components.  The magnitude of ΔV1 oriented by the angle θE in the x direction is 

determined using simple trigonometry as follows: 

( )E11x θ sinΔVΔV =         (4.30) 

Similarly the magnitude of ΔV1 in the y direction is represented as follows: 

( )E11y θ cosΔVΔV =         (4.31) 

1d ω  represents the velocity at the point P due to rotation velocity of vehicle 1.  Its 

magnitude and direction is calculated from Equation 4.32 shown as follows: 

→→→

Ω×=Ω 11    d 1d         (4.32) 

The x component of the change in closing velocity for vehicle 1 is the sum of expression 

4.30, and the x component of 4.32 represented by Equation 4.33 
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x1xΔV 11x dCV Ω+=         (4.33) 

The y component is the sum of expressions 4.31, and the x component of 4.32 

represented by Equation 4.34. 

y1yΔV 11y dCV Ω+=         (4.34) 

A similar procedure can be followed for vehicle 2 to determine the x and the y 

components of the change in closing velocity.  The value of θ2 needs to be recalculated to 

adjust for the heading of vehicle 2.  The expression for the new θ2  is as follow: 

 θθθ 22 +=          (4.35) 

The components of the change in closing velocity for both vehicle acting in the same 

direction can be subtracted to yield a value for each of the component of the closing 

velocity.  The expressions for both components are shown in Equations 4.36 and 4.37.   

         (4.36) 1x2xx CVCVCV −=

         (4.37) 1y2yy CVCVCV −=

As mentioned earlier, the velocities before impact will be represented by the lowercase v 

notation while the velocities after impact will be referred to by the uppercase V.  Since 

the module forces vehicle 1 in the y direction, its initial velocity has no value in the x 

direction.  Therefore the value of CVx corresponds to the value of vx2.  Since 

( )θtan
x2

y2
v

v = , .    yy2y1 CVvv −=

The calculations for the velocities after impact are more tedious to obtain because of the 

quadratic equalities 4.38 and 4.39.  First consider the following equalities for vehicle 1: 

( ) ( )2
x1x1

2
y1y1 VvVv −+−=1ΔV       (4.38) 
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The system of Equations 4.38 and 4.39 can be solved but due to the quadratic nature of 

Equation 4.38, two set of solutions can be obtained for Vx1 and Vy1.  When θE is bound 

between -180 and 0 degrees, it will yield the corresponding set of solution.  If θE is not 

within the bound, it will yield the second set of solution.   

Now consider the following equalities for vehicle 2: 

 ( ) ( )2
x2x2

2
y2y2 VvVv −+−=2ΔV       (4.40) 

⎟⎟
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⎞
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⎝

⎛
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−
=

x2x2

y2y2

vV
vV

atanθE        (4.41) 

Similarly, two sets of solutions can be obtained for Vx2 and Vy2.  When θE is bound 

between -180 and 0 degrees, it will yield the corresponding solution.  Consider the 

scenario given in table 4.1.  Table 4-3 is the rearranged list of input to satisfy the energy 

method.  We substituted the initial velocities for the energy loss and the direction of the 

force found in table 4-2.   
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Table 4-3: Input for Energy module 

  Vehicle 1 Vehicle 2 
M (lb) 4000 3500 
k (ft) 4.484 4.288 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 
θ (deg) 0 -150 

x (in) 24 24 
y (in) 60 60 

   

Energy loss (lbf-ft) ε PDOF (deg) 
173278.146 0 7.067 

 

Notice that the value of the PDOF output from table 4-2 is different than the PDOF input 

from table 4-3.  The momentum module gave us the PDOF of the system from the x-axis 

but the energy method recognizes its value from the y-axis.  
2
π  is added to the 

momentum PDOF to satisfy the PDOF for the energy approach.  The results are shown 

in table 4-4. 

 

Table 4-4: Output from energy module 

 Vehicle 1 Vehicle 2 
Vx (mph) 2.813 16.786 
Vy (mph) -2.686 -8.714 

Ω (deg per sec) 248.378 -12.697 
ΔV (mph) 22.86 26.126 
v (mph) 20 40 

   
vcPbefore (mph) CVx (mph) CVy (mph) 

56.687 -20 54.641 
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Beside a sign difference on the rotational velocity, the results are astounding.  Using a 

number of decimal place to the 3rd order for both modules, every result matched exactly.  

The sign difference is a definition problem; the momentum module assumes left hand 

coordinate as positive and the energy method assumes right hand coordinate as positive.  

On the other hand, the calculations for the velocity prior and post impact are based upon 

the accuracy of the calculation of the closing velocity.  The closing velocity is determined 

entirely from the heading angle of vehicle 2 toward vehicle 1 and the changes in 

velocities of both vehicles.  Because we force the heading of vehicle 1 in the y direction, 

no solution can be obtained when vehicle 2 is aligned with vehicle 1.  In such a case, the 

component of the closing velocity in the x direction is 0 and we are left with one equation 

and two unknowns.   

 

 (a)      (b) 

 

v2 

 

 v1 v1 
Vclosing Vclosing 

 θ θ

 

 v2 

 

 

Figure 4-8: Closing Velocity when θ = -120 (a), and θ = 180 (b). 
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Therefore accurate results cannot be obtained when θ  is chosen to represent a head-on or 

a rear-on collision.  A variance of 1degree from those singular point cases can yield 

reasonable results.  Figure 4-8 gives a graphical representation of a non singular and one 

of the singular point.  

 

Velocity Ratio 

 θE is a difficult parameter to estimate using the energy approach and often its 

selected value is justified by the experience the reconstruction expert has.  We will show 

how the direction of the force between two vehicles during impact can be accurately 

calculated if the ratio of their velocities prior impact can be estimated. 

 We showed in Chapter 4 that using the correct direction of the force on an 

appropriate contact point between two vehicles that are subject to no restitution nor 

sliding was enough to determine the direction of the closing velocity prior to impact.  It 

follows that using the same energy approach, if the direction of the closing velocity were 

known before impact, the direction of force during impact could be determined 

accurately.  Figure 4-8 illustrates graphically what the closing velocity represents.  The 

heading angle of vehicle 2 toward vehicle 1 and the magnitude of each velocity are 

necessary to entirely define the closing velocity.  However, the ratio  
1

2

v
v

  along with the 

heading angle of v2 toward v1 are sufficient to specify the heading of the closing velocity.  

The components of the closing velocity can be calculated from expression 4.42 and 4.43.    

( )θsin 
v
v

CV
1

2
x =         (4.42) 
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( )⎟⎟
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⎛
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v
v

1CV
1

2
y        (4.43) 

Recall Equations 4.36 and 4.37.  If a similar approach is used with the closing velocity in 

the direction of F1 defined by Equation 4.44 

( ) ( )EE θsinθcos  CV CV xy −        (4.44) 

there exist only one value for θE such that the value for expression 4.42 equals expression 

4.36 and expression 4.43 equals expression 4.37.  This method is valid as long as both 

vehicles experience a pinned-joint constraint during impact.  This approach provides a 

reliable method to determine the direction of the force when the ratio of their velocities 

prior to impact is available or accurately estimated. 
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CHAPTER 5:  PHYSICAL CONSTRAINTS AND BOUNDARY CONDITIONS 
 

 
Objective  

 In Chapter 4, we introduced the first type of physical constraint that can take 

place during an accident.  That physical constraint was expressed by forcing the point of 

impact P of both vehicles to have the same velocity.  In other words, the 2 points 

remained connected and did not separate during impact.  We also showed that the 

velocities prior and post impact for both vehicles for that first case could be determined.  

Unfortunately not all collisions can be represented by this pinned-joint constraint.  In this 

chapter, we will present three additional cases for the energy module and we will identify 

under which conditions they are identical to the momentum approach.  We will show 

how the velocities prior and post impact can be obtained from the changes in velocity.  

The first additional case represents two vehicles that experience restitution but are not 

allowed to slide during the impact.  The second and third additional cases will introduce 

sideswipe impact with and without restitution.  Additionally, plots of the velocities are 

provided to create a visual representation of their magnitude and directions as the 

parameter θE varies from 0 to 360 degrees. 

 

Pinned-Joint Constraint with Restitution 

In Chapter 8 of “Vehicle Accident Analysis and Reconstruction Methods” [4], the 

authors specify the limitations of the CRASH3 model.  They affirm that results are valid 
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as long as “the collision is perfectly inelastic, that is, there can be no rebound or  

restitution of the vehicles at and perpendicular to the crush surface” [4].  In the case when 

a restitution coefficient is introduced, the results will only be consistent between both 

approaches when the n-axis of the momentum is aligned with the PDOF of the energy 

module.  This hypothesis is logical since the restitution in the energy module is specified 

in the direction of F1 and along the n-axis for the momentum module.  What does a 

coefficient of restitution physically represent and how does it affect the calculations to 

obtain the velocity prior and post impact?  Consider a coefficient of restitution of 0.15.  

Such a coefficient of restitution states that an additional fifteen percent of the velocity 

prior to impact is imparted to the velocity after impact.  The assumption that the point P 

on each vehicle has the same velocity is no longer correct because the vehicles bounce 

apart during impact.  However, the method used in Chapter 4 to calculate the closing 

velocity components can still be used as long as the relative velocity of both points P due 

to the separating velocity is accounted for.  The separating velocity is the product of the 

closing velocity with the coefficient of restitution.  Therefore, this separating velocity 

term can directly be subtracted from the changes in velocity at the center of gravity of 

either one of the vehicles.  Equations 5.1 and 5.2 are used to replace Equations 4.30 and 

4.31.  The magnitude of ΔV1 oriented by the angle θE in the x direction can be redefined 

as follows: 

 ( ) ( )EcPbefore11x θ sinv-ΔVΔV    ε=       (5.1) 

Similarly the magnitude of ΔV1 in the y direction is represented as follow: 

( ) ( )EcPbefore11y θ cosv-ΔVΔV    ε=       (5.2) 
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Notice that when , expressions 5.1 and 5.2 become expression 4.30 and 4.31 

subsequently.  Using Equations 5.1 and 5.2 inside of 4.36 and 4.37 satisfies both the 

pinned-joint constraint and the pinned joined constraint with restitution.   

0ε =

Consider the scenario depicted by table 5-1.  

 

Table 5.1: Input for momentum module 

  Vehicle 1 Vehicle 2 
M (lb) 4000 3500 
k (ft) 4.484 4.288 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 
θ (deg) 0 90 

x (in) 24 -24 
y (in) 60 60 

v (mph) 10 35 

ω (deg per sec) 0 0 
   

θ1 (deg) ε μ 

-61.946 0.15 100% μ0 
 

Table 5-2 shows the results of Table 5-1 using the momentum module. 
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Table 5-2: Output from momentum module for ε = 0.15 

 Vehicle 1 Vehicle 2 
Vx (mph) -13.07 -20.063 

Vy (mph) 3.035 7.96 

Ω (deg per sec) 214.873 -45.373 
ΔV (mph) 14.81 16.925 

   
Energy loss (lbf-ft) PDOF (deg)  

59908.387 -151.946  
   

vcPbefore (mph) CVx (mph) CVy (mph) 

35.591 35 10 
 

Table 5-3 is the rearranged list of input to satisfy the energy method. 

 

Table 5-3: Input for Energy module 

 
  Vehicle 1 Vehicle 2 

M (lb) 4000 3500 
k (ft) 4.484 4.288 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 
θ (deg) 0 90 

x (in) 24 -24 
y (in) 60 60 

   

Energy loss (lbf-ft) ε PDOF (deg) 
59908.387 0.15 -61.946 

 

 

 

 

 

 

 

 

The results of Table 5-3 using the energy module are shown in table 5-4. 
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Table 5-4: Output from energy module for ε = 0.15 

 Vehicle 1 Vehicle 2 
Vx (mph) -13.07 -20.063 
Vy (mph) 3.035 7.96 

Ω (deg per sec) -214.873 45.373 
ΔV (mph) 14.81 16.925 
v (mph) 10 35 

   
vcPbefore (mph) CVx (mph) CVy (mph) 

35.591 35 10 
 

The results for both modules are identical.  This approach will always be consistent as 

long as the PDOF for the energy module is aligned with the value chosen for the n-axis 

of the momentum module.   

 

Sideswipe Impact 

 Another limitation of the CRASH3 model found in Chapter 8 of “Vehicle 

Accident Analysis and Reconstruction Methods” [4], is that results are valid as long as 

“the relative sliding velocity of the vehicles along (tangent to) the crush surface ends 

(becomes zero) before or at the time the vehicles separate” [4].  A sideswipe collision 

occurs when the vehicles continue to slide over the contact surface throughout the contact 

duration.  In the momentum module, the critical impulse ratio  μo  is calculated when no 

relative tangential velocity at end or prior to separation at point P of each car exists.  By 

definition when  μ = μo , no sliding exists and when  | μ < μo |  sliding exists at 

separation.  The absolute value sign is necessary because the sign of  μ  determines the 

direction of the tangential impulse.  A convenient way of handling the selection of a 
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value of  μ  is to express it as a percentage of  μo  that ranges between 0% and 100%.  In 

the energy model, Equation 2.11 is the critical equation that governs the impulse of the 

system.  It is valid for any collision (including sideswipe) as long as all of the values are 

accounted for in the direction of the force.  For the pinned-joined case, the separation 

velocity at point P is 0, therefore Equation 2.11 became Equation 2.12 with 0=ε .  

Written in different form Equation 2.12 can be represented by Equation 5.3.  

 2
aftercP

eff

R
beforecP v

M
2E

v +=         (5.3) 

When sliding or restitution is introduced to the system, the separating velocity in the 

direction of the force needs to be added and the impulse of the system changes.  This 

point is illustrated graphically using Figure 5-1.  Let Vs be the sliding velocity vector 

along the t-axis and Vr be the restitution velocity vector along the n-axis.  The separating 

velocity, Vseparating  is the resultant of those two vectors.  The direction of the force is 

defined by the value of the adjusted impulse ratio μ.   

  

    

Vr 

Vs VSeparating

θ = tan(μ) 

vcP after

Direction of force 

n 

t 

Figure 5-1: Representation of the separating velocity in the momentum module. 
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As mentioned above, it is clear that if Vs and Vr are 0, Vseparating is also 0 and Equation 

2.12 is valid.  That situation represents a pinned-joint constraint.  When Vs is 0, Vseparating 

is Vr and that situation is representative of a pinned-joint constraint with restitution.   

For this case, Vr is 0 so Vseparating is Vs.  Because the format of Equation 2.12 changed, 

Equations 2.14 and 2.15 also need to be redefined.  They are replaced by Equations 5.4 

and 5.5.    

 ( )
eqeq

eq
aftercPbefprecP1P M1M2

M2
vvΔV

+
−=      (5.4) 

 ( )
eqeq

eq
aftercPbeforecP2P M2M1

M1
vvΔV

+
−=      (5.5) 

As seen with the pinned-joined case with restitution, the method used in Chapter 4 to 

calculate the closing velocity components can also be used when sliding is present.  The 

separating velocity components due to sliding can directly be subtracted from the changes 

in velocity at the center of gravity of either one of the vehicles.  Equations 5.6 and 5.7 are 

used to replace Equations 5.1 and 5.2.  The magnitude of ΔV1 oriented by the angle θE in 

the x direction can be redefined as follow: 

       (5.6) ( )
xseparationV−= E11x θ sinΔVΔV

Similarly the magnitude of ΔV1 in the y direction is represented as follow: 

( )
yseparationV−= E11y θ cosΔVΔV       (5.7) 

where and are the components of Equation 5.9.  In order to compare 

results between both models, we will use the momentum model to assume a third 

arbitrary scenario.  The components of the separating velocity of point P and the 

xseparationV
yseparationV
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magnitude of the separating velocity in the direction of the force will be calculated from 

the momentum model and used as an input for the energy model.  In Chapter 3, we used 

Equation 3.11 to determine the velocity after impact from the change in velocity and the 

velocity before impact.  Similarly, the velocity after impact for point P of each vehicle 

can be written as follows: 

        (5.8) beforeP11PafterP1 vΔVv +=

where  from Equation 2.24.  Because both vehicles are assumed to 

not have rotational velocities before impact, the velocity of point P on each vehicle 

before impact is the velocity of their center of gravity.  The changes in velocity due to 

angular rotation after impact can be seen from Figure 4-6. 

1ω11P ΔVΔVΔV += 

 

Table 5-5: Input for momentum module for μ = 80% μo 

  Vehicle 1 Vehicle 2 
M (lb) 2600 2000 
k (ft) 4.975 4.912 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 

θ (deg) 0 110 

x (in) 30 -30 

y (in) 70 70 
v (mph) 10 51 

ω (deg per sec) 0 0 

   

θ1 (deg) ε μ 

253 0 80% μ0 
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The velocity after impact of point P for vehicle 2 and for vehicle 1 can be reduced to a set 

of x-y components and the difference between each component in their respective axis 

defines the separating velocity components.  

afterP1afterP2 vv −=separationV         (5.9) 

Once the critical impulse ratio is calculated, it is adjusted to simulate sliding conditions.  

In addition to the energy dissipated and the PDOF corresponding to the adjusted impulse 

ratio, the magnitude of the separating velocity in the direction of the PDOF ( in 

Equation 5.3) is used as an input for the energy model.  Notice that the equations found in 

this sideswipe impact case encompass all the equations for the previous two cases. 

aftercPv

Consider the scenario chosen in table 5-5.  Table 5-6 shows the results of Table 5-

5 using the momentum module.  Table 5-7 is the rearranged list of input to satisfy the 

energy method.  The results are shown in table 5-8.  The results for both modules are 

identical.  
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Table 5-6: Output from momentum module for μ = 80% μo 

 Vehicle 1 Vehicle 2 

Vx (mph) -12.88 -31.18 

Vy (mph) 0.204 -4.708 

Ω (deg per sec) 171.951 48.136 
ΔV (mph) 16.182 21.037 

   

Energy loss (lbf-ft) PDOF (deg)  
92149.233 -142.744  

   

vcPbefore (mph) CVx (mph) CVy (mph) 
54.758 47.924 27.443 

   

vcPafter (mph) Vseparationx (mph) Vseparationy (mph) 
10.76 3.876 12.677 

 

 

Table 5-7: Input for energy module 

  Vehicle 1 Vehicle 2 
M (lb) 2600 2000 
k (ft) 4.975 4.912 
a (in) 80 80 
b (in) 60 60 

WL (in) 80 80 
θ (deg) 0 110 

x (in) 30 -30 
y (in) 70 70 

   

Energy loss (lbf-ft) ε PDOF (deg) 
92149.233 0 -52.744 

   

vcPafter (mph) Vseparationx (mph) Vseparationy (mph) 
10.76 3.876 12.677 
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Table 5-8: Output from energy module 

 Vehicle 1 Vehicle 2 
Vx (mph) -12.88 -31.18 

Vy (mph) 0.204 -4.708 

Ω (deg per sec) -171.951 -48.1 

ΔV (mph) 16.182 21.037 

v (mph) 10 51 

   
vcPbefore (mph) CVx (mph) CVy (mph) 

54.758 47.924 27.443 
 

Sideswipe Impact with Restitution 

 The calculations and the approach for a sideswipe impact with restitution are 

identical to the sideswipe impact discussed above.  As shown in Figure 5-1, the 

momentum module presented by Brach [4] provides restitution in the direction of the n-

axis and slip along the t-axis.  When calculating the separation velocity along the 

direction of the PDOF from the momentum model, both components to both axes are 

accounted for.  Equations 5.6 and 5.7 along with Equations 4.36 and 4.37 are still valid.  

Table 5-9 and 5-10 represent the solution to both module of the scenario presented in 

table 5-5 with a coefficient of restitution on 20%.  Once again the results are identical.   
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Table 5-9 Output from momentum module for ε = 0.2 and μ = 80% μo 

 Vehicle 1 Vehicle 2 

Vx (mph) -14.476 -29.106 

Vy (mph) 0.062 -4.524 

Ω (deg per sec) 202.36 76.563 

ΔV (mph) 17.559 22.826 
   

Energy loss (lbf-ft) PDOF (deg)  
92556.657 -145.53  

   

vcPbefore (mph) CVx (mph) CVy (mph) 
55.042 47.924 27.443 

   

vcPafter (mph) Vseparationx (mph) Vseparationy (mph) 
5.606 -3.375 14.822 

 

 

Table 5-10 Output from energy module for ε = 0.2 

 Vehicle 1 Vehicle 2 
Vx (mph) -14.476 -29.106 

Vy (mph) 0.062 -4.524 

Ω (deg per sec) -202.36 -76.563 

ΔV (mph) 17.559 22.826 

v (mph) 10 51 

   
vcPbefore (mph) CVx (mph) CVy (mph) 

55.042 47.924 27.443 
 

 
Plots of Velocities as a function of  θE  from 0 to 360 degrees 

 As addressed earlier, the energy method requires two parameters in its model that 

are very difficult to accurately assess by only looking at the residual crush of two 
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impacted vehicles.  Using these parameters as variables, the model algebraically obtains 

values for estimated changes in velocity at a point P relative to the crushed energy 

dissipated during the impact.  Even though the value for the two varying parameters (the 

angle θ1 representing the estimated direction of the force at impact through the point P of 

vehicle 1 and the angle θ at which vehicle 2 approaches vehicle 1) can individually be 

changed, the outcome of the module will only represent the results for those individually 

changed values.  A graphical representation of the results as a function of a varying 

abscissa can be useful for two reasons. First, they provide a physical meaning for the 

results and whether these results are reasonable or not.  Second they allow the user to 

accurately define the correct value of the direction of the force, θE, given the accident 

scene provides additional information.  Information such as the heading of vehicle 1 after 

impact, the heading of vehicle 2 after impact, the closing velocity heading or the 

separating velocity heading.  It is not suggesting that such information is always 

obtainable from any given accident, but knowing one of them would be sufficient to 

back-track θE as seen in Figures 5-2 or 5-3.  Notice that this approach is valid for all four 

cases with different constraints.     

Consider the following scenario. 2600 lbM 1 = , 2000 lbM 2 = , , 

, , 

4.975 ftk1 = 

t4.912 fk2 = 30 inx1 = 70 iny1 = , 30 inx2 −= , 70 iny2 = , 110 degθ = , 0 ε = , 

and, . t 1 lbf-fER =
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Figure 5-2:  Plot of velocities difference as a function of θE from 0 to 30 

degrees 

 

Figure 5-2 shows the closing velocity, the separating velocity and the changes in velocity  

of vehicle 1 and vehicle 2 in the direction of θE as a function of θE from 0 to 360 degrees.   

For a given value of θE, the corresponding results are represented by the solid vector 

lines.  For the scenario depicted in Figure 5-2, the specific value of θE is -45 degrees. 

Figure 5-3 shows the velocities prior and post impact for vehicle 1 and vehicle 2 as a 

function of θE from 0 to 360 degrees.   For the specific value of θE used in Figure 5-2, the 

corresponding results are represented by the solid vector lines. 
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Figure 5-3:  Plot of velocities as a function of θE from 0 to 360 degrees 

 

As mentioned in Chapter 3, the energy dissipated during the impact does not affect the 

direction of the velocities but rather it is needed to scale their magnitude.  Each plot 

updates as the user varies θ.          
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CHAPTER 6:  CONCLUSION 
 

 
Objective of the Paper  

The objective of this paper is threefold.  First, create a general energy model to 

reconstruct the impact phase in automobile collision.  Second, non-dimensionalize the 

model and determine all the power impulses from the energy dissipated.  Third, establish 

a constituent approach to show that a momentum approach model [4] is identical to this 

general energy model for any given scenario.   

 
New Insight for Both Approaches  

 It is apparent from the work shown above that both methods can provide identical 

results to any given scenario when using the correct set of inputs.  One method is not 

considered better than the other; neither can it be said that one method is more accurate 

than the other.  Both methods have their set of different assumed input but they also share 

similar input.  The conclusion is the following:  both methods should be used in any 

given scenario but the scenario that provides the more accurate set of inputs will yield 

more accurate results to its corresponding method.   

 
Contributions  

 It is evident that accident reconstruction has been subject to much research over 

the last 40 years and there have been a lot of papers and articles written.  This thesis  
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contributes added insight into the two current methods of reconstructing the impact phase 

of a collision.  The energy method has been redefined in a more general approach and the 

energy dissipated during the collision is used as an impulse in power to identify the 

changes in energy propagated into both vehicles.  The limitation of the CRASH3 solution 

to calculate the changes in velocity have been studied and extended to allow sideswipe 

and restitution to be accounted for.  In addition to the revised assumptions, a method was 

developed to accurately separate the velocity prior to and post impact for both vehicles 

from their changes in velocity.  Finally, different methods to consistently determine the 

direction of the force are presented when additional information from the accident scene 

is provided. 
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