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ABSTRACT 
 
 
 

LOCALIZED COARSENING OF CONFORMING 

ALL-HEXAHEDRAL MESHES 
 
 
 

Adam C. Woodbury 

Department of Civil and Environmental Engineering 

Master of Science 
 
 
 

Finite element mesh adaptation methods can be used to improve the efficiency 

and accuracy of solutions to computational modeling problems. For many finite element 

modeling applications, a conforming all-hexahedral mesh is preferred. When adapting a 

hexahedral mesh, localized modifications that preserve topologic conformity are often 

desired. Effective hexahedral refinement methods that satisfy these criteria have recently 

become available. However, due to hexahedral mesh topology constraints, little progress 

has been made in the area of hexahedral coarsening. This thesis presents a new method to 

locally coarsen conforming all-hexahedral meshes. The method works on both structured 

and unstructured meshes and is not based on undoing previous refinement. Building upon 

recent developments in quadrilateral coarsening, the method utilizes hexahedral sheet and 

column operations, including pillowing, column collapsing, and sheet extraction. A 

general algorithm for automated coarsening is presented and examples of models that 





 

have been coarsened are shown. While results are promising, further work is needed to 

improve the automated process. 
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1 Introduction 

The efficiency and accuracy of a finite element computational modeling solution 

are greatly influenced by the distribution of elements in the finite element mesh. In a 

given model, there are usually regions that require greater mesh density than others. A 

higher concentration of elements in these regions may be necessary to reduce error in the 

finite element approximation, increase resolution where there are high gradients, or more 

accurately represent the model geometry. Regions where high accuracy is not critical or 

where gradients are low can generally be modeled with lower mesh density. Since the 

computational time required in a finite element analysis is directly related to the number 

of elements in the model being analyzed, it is advantageous to produce a mesh that has as 

few elements as possible. Therefore, in an ideal analysis, each region in the model should 

have enough elements to produce a good solution, but no more. 

For most real-world finite element models, current mesh generation algorithms 

are unable to create an initial mesh that optimizes both accuracy and efficiency in the 

finite element solution. Although some control over mesh density is possible, an initial 

mesh will almost always contain regions that have too few elements, regions that have 

too many elements, or both. In addition, some finite element applications require mesh 

density to evolve throughout an analysis (see Figure 1-1) as areas of high and low activity 

change with time [1, 2, 3, 4]. For these reasons, much research has been devoted to the 
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development of mesh adaptation tools that make it possible to adjust element density in 

specific regions either before or during analysis.  

 

 

Figure 1-1. Evolving mesh density in a triangle mesh. 

 

Mesh adaptation consists of both refinement and coarsening. Refinement is the 

process of increasing mesh density by adding elements to a mesh, while coarsening is the 

process of decreasing mesh density by removing elements from a mesh, as illustrated in 

Figure 1-2. By refining areas that have too few elements and coarsening areas that have 

too many elements, a more accurate and efficient analysis can be performed. 

Both tetrahedral and hexahedral elements are commonly used in three-

dimensional finite element analyses. For complex model geometries, tetrahedral meshes 

are much easier to create than hexahedral meshes. In addition, localized modifications are 

generally much more straightforward in a tetrahedral mesh. However, in many modeling
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Figure 1-2. Mesh adaptation: (a) Original hexahedral mesh. (b) Refined mesh. (c) Coarsened mesh.  

 

applications, hexahedral elements are preferred over tetrahedral elements because they 

provide greater efficiency and accuracy in the computational solution [1, 5]. For this 

reason, work has been done to improve hexahedral mesh adaptation methods. As a result, 

robust hexahedral refinement algorithms are becoming available [6, 7, 8, 9]. However, 

few developments have been seen in the area of hexahedral coarsening. The lack of 
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effective coarsening methods creates a major gap in the field of hexahedral mesh 

adaptation. 

To satisfy the requirements of some finite element solvers and to effectively 

achieve the objectives of mesh adaptation, a truly general hexahedral coarsening 

algorithm should: 

1. Preserve a conforming all-hexahedral mesh 

2. Restrict mesh topology and density changes to defined regions 

3. Work on both a structured and unstructured mesh (see Figure 1-3) 

4. Not be limited to undoing previous refinement  

 

 

Figure 1-3. Two-dimensional structured and unstructured meshes: (a) A structured quadrilateral 
mesh where each interior node is shared by exactly four elements. (b) An unstructured quadrilateral 
mesh where interior nodes are shared by varying numbers of elements. 

 

A mesh is conforming if all of the nodes and edges in the mesh are shared by each 

of their adjacent elements. Unlike a hybrid mesh, which contains more than one element 
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type, an all-hexahedral mesh contains only hexahedral elements. Figure 1-4 shows some 

two-dimensional examples of a non-conforming and hybrid mesh.  

 

 

Figure 1-4. Two-dimensional non-conforming and hybrid meshes: (a) A non-conforming 
quadrilateral mesh. (b) A hybrid mesh with both quadrilateral and triangle elements. 

 

Although hexahedral coarsening has been utilized in some modeling applications, 

no single algorithm has been developed that satisfies all the criteria listed above. This is, 

in large part, due to the topology constraints that exist in a conforming all-hexahedral 

mesh. These constraints make it difficult to modify mesh density without causing 

topology changes to propagate beyond the boundaries of a defined region [10, 11]. 

Since current hexahedral coarsening methods are unable to satisfy all the 

requirements listed above, they have limited applications. For example, to prevent global 

topology changes, some algorithms introduce non-conforming or non-hexahedral 

elements into the mesh [1, 2, 12, 13, 14]. While this is a valid solution for some types of 

analysis, not all finite element solvers can accommodate non-conforming or hybrid 

meshes. Other algorithms maintain a conforming all-hexahedral mesh, but they generally 
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require either global topology changes beyond the defined coarsening region [11, 15, 16], 

structured mesh topology where predetermined transition templates can be used [8, 15], 

or prior refinement that can be undone [2, 12, 13]. These weaknesses severely limit the 

effectiveness of these algorithms on most real-world models. 

This thesis presents a new method to locally coarsen conforming all-hexahedral 

meshes. The method works on both structured and unstructured meshes and is not based 

on undoing previous refinement. The remainder of this thesis is organized as follows. 

Chapter 2 provides an overview of some basic hexahedral mesh operations. Chapter 3 

shows how these operations have been combined to produce localized hexahedral 

coarsening and how the coarsening process has been automated. In Chapter 4, some 

examples of models which have been coarsened are shown. Finally, in Chapter 5, some 

areas of future work are discussed. 
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2 Hexahedral Mesh Operations 

In recent years, a greater understanding of hexahedral mesh topology has led to 

the development of many new hexahedral mesh operations [17, 18, 19]. In this chapter, 

three operations which are useful for hexahedral coarsening are presented. These 

operations are based on hexahedral sheets and columns, which are topology-based groups 

of hexahedra that always exist in a conforming hexahedral mesh. 

2.1 Hexahedral Sheets and Columns 

A perfectly shaped hexahedral element contains three sets of four parallel edges, 

as shown in Figure 2-1. Regardless of its shape, a hexahedral element will always have 

the same topology. For this reason, it is convenient to describe the four edges in each set 

as being topologically parallel, even if they are not geometrically parallel. Topologically 

parallel edges provide the basis for hexahedral sheets. The formation of a sheet begins 

with a single edge. Once an edge has been chosen, all elements which share that edge are 

identified. For each of these elements, the three edges which are topologically parallel to 

the original edge are also identified. These new edges are then used to find another layer 

of elements and topologically parallel edges. This process is repeated until no new 

adjacent elements can be found. The set of elements which are traversed during this 
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process makes up a hexahedral sheet. Figure 2-2 shows a hexahedral mesh with one of 

the sheets in the mesh defined. 

 

 

Figure 2-1. A hexahedral element’s three sets of topologically parallel edges. 

 

 

Figure 2-2. A hexahedral sheet: (a) A hexahedral mesh with one sheet defined. (b) A view of the 
entire sheet. 

 

A hexahedral element also contains three pairs of topologically opposite 

quadrilateral faces, as shown in Figure 2-3. Topologically opposite faces provide the 

basis for hexahedral columns. The formation of a column begins with a single face. Once 

a face has been chosen, the elements which share that face are identified. For each of 
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these elements, the face which is topologically opposite of the original face is also 

identified. These new faces are then used to find another layer of elements and 

topologically opposite faces. This process is repeated until no new adjacent elements can 

be found. The set of elements which are traversed during this process makes up a 

hexahedral column. An important relationship between sheets and columns is that a 

column defines the intersection of two sheets. This relationship is illustrated in Figure 

2-4. 

 

 

Figure 2-3. A hexahedral element’s three pairs of topologically opposite faces. 

 

 

Figure 2-4. A hexahedral column: (a) Two intersecting sheets. (b) The column that defines the 
intersection of the two sheets in (a). 
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2.2 Sheet and Column Operations 

Hexahedral sheet and column operations can be used to modify a hexahedral 

mesh without introducing non-conforming elements. One such operation is known as 

sheet extraction [16]. Sheet extraction removes a sheet from a mesh by simply collapsing 

the edges that define the sheet and merging the two nodes on each edge, as shown in 

Figure 2-5. Merging nodes in this manner decreases element density in the vicinity of the 

extracted sheet and guarantees that the resulting mesh will be conforming. 

 

 

Figure 2-5. Sheet extraction: (a) A sheet is selected for extraction. (b) The edges that define the sheet 
are collapsed. (c) The two nodes on each edge are merged, which eliminates the sheet and preserves a 
conforming hexahedral mesh. 

 

Another hexahedral mesh operation that involves sheets is pillowing [19, 20]. 

Unlike sheet extraction, which removes an existing sheet from a mesh, pillowing inserts a 

new sheet into a mesh. As demonstrated in Figure 2-6, pillowing is performed on a 

contiguous group of hexahedral elements which make up a “shrink” set. These elements 

are reduced in size and pulled away from the rest of the mesh, leaving a gap. A new sheet 

is then inserted into the gap by reconnecting each of the separated node pairs with a new 
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edge. The new sheet increases element density in the vicinity of the shrink set and 

ensures the preservation of a conforming hexahedral mesh. 

 

 

Figure 2-6. Pillowing: (a) A shrink set is defined. (b) The elements in the shrink set are reduced in 
size and separated from the rest of the mesh. A sheet is inserted to fill in the gap and preserve a 
conforming hexahedral mesh. (c) The newly inserted sheet. 

 

A third hexahedral mesh operation is known as column collapsing [21]. A column 

is collapsed by merging diagonally opposite nodes in each quadrilateral face that defines 

the column, as shown in Figure 2-7. Since a quadrilateral face has two pairs of diagonally 

opposite nodes, a column can be collapsed in one of two different directions.  

 

 

Figure 2-7. Column collapse operation. 
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As previously mentioned, a column defines the intersection of two sheets. When a 

column is collapsed, two intersecting sheets are altered such that they no longer intersect, 

as illustrated in Figure 2-8. The paths of the new sheets are determined by the direction of 

the collapse. Just like sheet extraction and pillowing, the column collapse operation 

always preserves a conforming hexahedral mesh. In addition, similar to sheet extraction, 

the column collapse operation decreases element density in the vicinity of the collapsed 

column. 

 

 

Figure 2-8. Redirection of intersecting sheets through column collapsing: (a) Two intersecting sheets. 
(b) The column defining the intersection is collapsed. (c) The two sheets no longer intersect. 
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3 Hexahedral Mesh Coarsening 

The hexahedral coarsening method presented in this chapter was discovered after 

many failed attempts to extend various quadrilateral coarsening methods to a hexahedral 

mesh. Not surprisingly, three-dimensional mesh modifications are much more difficult to 

localize than two-dimensional mesh modifications. While it is true that some 

quadrilateral coarsening operations can be directly extended to hexahedral coarsening, by 

themselves, these operations are not always able to prevent changes in element density 

from propagating beyond the boundaries of a defined hexahedral coarsening region.  

Utilizing the sheet and column operations described in Chapter 2, the hexahedral 

coarsening method presented here builds upon recent developments in quadrilateral 

coarsening [21, 22]. Since two-dimensional coarsening operations are generally easier to 

visualize than their three-dimensional counterparts, an explanation of the related 

quadrilateral coarsening operations is provided in Appendix A. However, as will be seen 

in this chapter, entirely localized hexahedral coarsening often requires an additional step 

that is not necessary in quadrilateral coarsening. 

3.1 Previously Developed Coarsening Techniques 

As illustrated in Chapter 2, sheet extraction decreases mesh density by removing 

elements from a mesh. Therefore, sheet extraction is a very useful tool for hexahedral 
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coarsening. However, sheet extraction by itself is generally not sufficient when localized 

coarsening is desired. This is due to the fact that sheets are rarely contained entirely 

within a region that has been selected for coarsening. As shown in Figure 3-1, extracting 

a sheet that extends beyond the boundaries of a defined region decreases mesh density in 

areas where coarsening is not desired. Therefore, before sheet extraction can occur, it is 

often necessary to modify a mesh in such a way that produces sheets which are contained 

entirely within the boundaries of a defined coarsening region. 

 

 

Figure 3-1. Global coarsening: (a) A sheet passes through a region selected for coarsening. (b) When 
the sheet is extracted, mesh density is decreased both inside and outside the defined coarsening 
region.  

 

As described in Chapter 2, the paths of intersecting sheets can be altered using the 

column collapse operation. Figure 3-2 shows how this operation can be used to create a 
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sheet that is contained entirely within a defined region. Such a sheet can then be extracted 

to coarsen the region without affecting any other part of the mesh.  

 

 

Figure 3-2. Localized coarsening: (a) Two intersecting sheets pass through a region selected for 
coarsening. (b) The column defining the intersection of the two sheets in (a) is collapsed to produce a 
sheet contained entirely within the coarsening region. (c) The sheet that will be extracted. (d) When 
the sheet in (c) is extracted, mesh density is only decreased within the defined coarsening region. 
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The coarsening region shown in Figure 3-2 extends from the top to the bottom of 

the mesh. Suppose the coarsening region is modified so that it only extends a few layers 

from the top of the mesh, as shown in Figure 3-3. In this case, the column collapse 

operation can be used twice to produce a sheet that is contained entirely within the 

coarsening region. However, as seen in the figure, the first collapse operation is 

performed on a column which extends beyond the boundaries of the region. Collapsing 

this column modifies mesh topology and density in areas where coarsening is not desired.  

This shows that entirely localized coarsening cannot always be accomplished with the 

column collapse and sheet extraction operations alone. 

3.2 Entirely Localized Coarsening 

The previous examples demonstrate that entirely localized coarsening requires all 

operations to take place within the boundaries of the selected coarsening region. 

Referring to Figure 3-3, it can be seen that the second collapse operation was performed 

on a column contained within the coarsening region. Collapsing this column produced a 

sheet contained within the region without affecting any other part of the mesh. Of course, 

the formation of this column was accomplished through a previous collapse operation 

that did affect areas outside the coarsening region. Therefore, a critical aspect of entirely 

localized coarsening is the creation of local columns. Such columns must be formed in 

the coarsening region without affecting areas outside the region.  

One way to create columns that do not extend beyond the boundaries of the 

coarsening region without affecting areas outside the region is through pillowing. As 

illustrated in Chapter 2, pillowing is a form of refinement because it increases mesh
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Figure 3-3. Semi-localized coarsening: (a) Two intersecting sheets pass through a region selected for 
coarsening. (b) The column defining the intersection of the two sheets in (a) is collapsed. A sheet 
formed by the collapse and another intersecting sheet are shown. (c) The column defining the 
intersection of the two sheets in (b) is collapsed to produce a sheet contained entirely within the 
coarsening region. (d) The sheet that will be extracted. (e) When the sheet in (d) is extracted, mesh 
density is only decreased within the defined coarsening region. 

 

density in the vicinity of the shrink set. For this reason, pillowing is not an obvious 

solution for coarsening. However, due to the topology constraints that exist in a 

conforming all-hexahedral mesh, adding elements appears to be a necessary step when 

coarsening some regions.  

Figure 3-4 shows how pillowing can be used to produce entirely localized 

coarsening. By pillowing the coarsening region, a sheet is inserted around the region. 
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This sheet intersects other sheets that pass through the coarsening region and provides 

columns which follow the boundary of the region. Such columns can be collapsed to 

form sheets contained within the coarsening region without modifying mesh topology or 

density in areas where coarsening is not desired. These sheets can then be extracted to 

locally coarsen the region. It should be noted that many of the elements added through 

pillowing are removed through sheet extraction. Only those elements which are necessary 

to transition from higher to lower mesh density are left in the mesh. As long as the 

number of elements removed through sheet extraction is greater than the number of 

elements added through pillowing, the final mesh density in the coarsening region will be 

lower than the initial mesh density. 

 

 

Figure 3-4. Entirely localized coarsening: (a) A coarsening region is defined. (b) The sheet that forms 
when the coarsening region is pillowed. This sheet provides columns which follow the boundary of 
the region. (c) Collapsing the columns in (b) produces sheets contained entirely within the coarsening 
region. 

 

For a given region, the process of pillowing, column collapsing, and sheet 

extraction can be repeated multiple times to achieve various levels of coarsening. Each 



 19 

iteration of this process requires a careful selection of column collapse and sheet 

extraction operations that ultimately lead to the desired mesh density. Depending on the 

size and structure of the region, it may not be possible to achieve an exact target mesh 

density, but a rough approximation is usually attainable. 

3.3 Automated Coarsening Algorithm 

To have any real value in finite element modeling applications, the coarsening 

process which has been presented would have to be performed automatically, without the 

need for a person to decide which columns to collapse, what direction to collapse them, 

etc. Fortunately, automation of this process is possible. A large part of the research which 

has been performed in relation to this new coarsening method has been devoted to the 

development of an algorithm which fully automates the coarsening process for a user 

defined region and level of coarsening. Implementing this algorithm has not only shown 

that automation is possible, but has led to more efficient discoveries of areas that need 

improvement.   

Automation of the coarsening process has proven to be a fairly complex task. 

Much of the difficulty arises from three competing objectives that must each receive 

attention. The first objective is to achieve a specified mesh density within the region 

selected for coarsening. The second objective is to maintain high element shape quality in 

the region. The third objective is to complete the coarsening process in as little time as 

possible. Obviously, not all of these objectives can be achieved simultaneously. While 

consistent improvement has been made, finding an appropriate balance between these 

objectives continues to present significant challenges. 
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As already mentioned, achieving an exact element density may not be possible for 

some regions. Even when it is possible, it may not be feasible when trying to achieve the 

other two objectives. For this reason, a mesh density tolerance has been implemented into 

the automated coarsening algorithm. By allowing a final mesh density that is within a 

certain tolerance of the desired mesh density, some flexibility in meeting the other 

objectives is provided. 

As with other mesh adaptation procedures, an unavoidable consequence of 

coarsening is a reduction in element shape quality. In general, the more coarsening a 

region undergoes, the lower the element quality in that region becomes. Usually, a region 

which has been selected for coarsening is in a less critical part of the model and can 

tolerate lower quality elements. However, even the least critical parts of a model must 

maintain an element quality above an acceptable threshold.  

One way to improve element quality in a given region is through smoothing [23]. 

Smoothing is a process of optimizing the shape of each element by moving nodes to new 

locations without altering element connectivity. Although the mesh operations involved 

in hexahedral coarsening preserve a conforming mesh, they often leave behind very 

poorly shaped elements. As shown in Figure 3-5, smoothing a region which has been 

coarsened can dramatically improve the overall element quality in the region. While 

smoothing is an essential component of the automated coarsening algorithm, it is not 

guaranteed to produce acceptable element quality for any given mesh topology. 

Therefore, additional measures to improve element quality prior to smoothing have been 

implemented into the algorithm.  
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Figure 3-5. Smoothing: (a) A coarsened mesh that has not been smoothed. (b) The mesh in (a) after 
smoothing has taken place. 

 

Before smoothing takes place, node locations are mostly affected by sheet 

extractions. As described in Chapter 2, when a sheet is extracted, pairs of nodes are 

merged into a single node. The location of the new node is the average of the two 

unmerged nodes’ locations. Therefore, before a given sheet extraction occurs, it is 

possible to know where the nodes of adjacent elements will be located after the 

extraction. With this information, it can be known in advance how a sheet will affect the 

quality of the mesh if it is extracted.  

In the automated coarsening algorithm, element quality is calculated using a shape 

quality metric, fshape, proposed by Knupp [24]. This metric has a value of 1.0 if the 

element is a perfect cube and a value of 0.0 if the element is degenerate. The metric is 

mathematically defined in Equation 3-1. 
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where k
ijλ  = the ijth component of the kth metric tensor  

kα  = the determinant of the kth Jacobian matrix 

 

Using this shape quality metric, sheets are ranked according to how they will affect the 

mesh if they are extracted. Sheets that will produce a higher quality mesh are given 

higher priority in the coarsening process. 

Sometimes mesh operations can produce elements that are forced to have 

unacceptable shape quality. Such elements are usually confined by the geometry of the 

model or by the topologic connectivity they share with adjacent elements. One example 

of this is found in the formation of doublets [20]. In a quadrilateral mesh, doublets are 

formed when two quadrilateral elements share two edges, as shown in Figure 3-6. It can 

be seen from the figure that no matter how the nodes are moved, at least one of the 

elements will always be poorly shaped.  

 

 

Figure 3-6. A Doublet. 
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Doublets and other constrained elements can easily form in a hexahedral mesh 

during the coarsening process if certain precautions are not taken. For this reason, several 

checks have been implemented into the automated coarsening algorithm in an attempt to 

prevent such elements from forming. These checks are generally effective, but in some 

cases they severely limit the amount of coarsening that can take place. 

Each time the coarsening region is pillowed, columns are collapsed to produce 

sheets which are then extracted. In order to determine the very best combination of 

column collapse operations for a given iteration of the coarsening process, every possible 

combination would have to be analyzed. However, as shown in Equation 3-2, the number 

of possible column combinations, N, increases exponentially with each additional column 

that exists in the pillow sheet. Therefore, for most coarsening regions, an exhaustive 

search to determine the best combination is not feasible.  

 

N = ∑
−

=

1

0
2

n

i

i               (3-2) 

where n = the number of columns that exist in the pillow sheet 

 

In the automated coarsening algorithm, the number of column combinations 

analyzed never exceeds the number of sheets passing through the coarsening region. This 

relatively small sample of combinations gives priority to sheets that will produce higher 

element quality when extracted. While this method is somewhat limiting, it generally 

proves to be effective and provides a much more feasible approach than analyzing every 

possible combination. 
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The automated coarsening algorithm was initially developed for regions that 

require pillowing to produce entirely localized coarsening. However, to make the 

algorithm more general, the pillowing step is left out in cases where existing sheets are 

already contained entirely within the coarsening region. The overall structure of the 

algorithm is shown in Figure 3-7 and described by the following steps. 

1. A coarsening region is defined and a target mesh density for that region is 

determined based on input given by a user. 

2. Every sheet that passes through the coarsening region is found. Sheets contained 

entirely within the coarsening region are distinguished from those that extend 

beyond the region. 

3. Due to a variety of geometry and mesh topology constraints, each sheet is 

examined to see if it will facilitate valid collapses and extractions during the 

coarsening process. Sheets that are unable to facilitate valid collapses and 

extractions are ignored from this point on. 

4. For each acceptable sheet, the shape quality metric defined in Equation 3-1 is 

used to estimate how the quality of the mesh will be affected if that sheet, or the 

portion of that sheet contained in the coarsening region, is extracted. Sheets that 

will potentially produce a higher mesh quality are given higher priority. 

5. If there are any sheets contained entirely within the coarsening region, then valid 

combinations of those sheets are analyzed. The combination that, when extracted, 

will produce a mesh density that is closest to the target mesh density without 

over-coarsening is saved. If no acceptable combination is found, the algorithm 
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moves to step 6. Otherwise, steps 6 through 8 are skipped because no other 

operations are needed before sheet extraction. 

6. If there are any sheets that extend beyond the coarsening region, then valid 

combinations of those sheets are analyzed. For each combination, two coarsening 

options are possible, as shown in Figure 3-8. These two coarsening options are 

distinguished by which direction the columns are collapsed. The combination that 

will produce a mesh density that is closest to the target mesh density without 

over-coarsening is saved. If no acceptable combination is found, steps 7 through 9 

are skipped. 

7. A sheet is inserted around the boundary of the coarsening region through 

pillowing. 

8. Columns in the pillow sheet are collapsed in directions which were previously 

determined when the best sheet combination was saved. These collapses form 

sheets which are contained entirely within the coarsening region. 

9. Sheets contained entirely within the coarsening region are extracted. 

10. Steps 2 through 9 are repeated until the target mesh density is achieved (within a 

certain tolerance) or no more valid sheet combinations are found. 

11. If coarsening took place, the remaining elements in the region are smoothed to 

improve mesh quality. 



 26 

 

Figure 3-7. Automated coarsening algorithm flowchart.
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Figure 3-8. Two coarsening options: (a) Columns selected for collapsing. (b) The sheets that will form 
if the columns are collapsed one way. (c) The sheets that will form if the columns are collapsed the 
other way. 
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4 Examples 

The following three examples show some results of the automated coarsening 

algorithm described in Chapter 3. In each example, the goal was to remove 25, 50, and 75 

percent of the elements in the region selected for coarsening, while maintaining 

acceptable element quality. Quality was measured using the scaled Jacobian [25], which 

ranges from -1.0 to 1.0. An element is generally considered acceptable if it has a scaled 

Jacobian greater than 0.2.  

The first example was performed on a structured mesh of a cube, as shown in 

Figure 4-1. The second example was performed on an unstructured multiple-source to 

single-target swept mesh of a mechanical part, as shown in Figure 4-2. The final example 

was performed on an unstructured mesh of a human head generated with an octree based, 

sheet insertion algorithm [26], as shown in Figure 4-3 and Figure 4-4. For both the 

mechanical part and human head models, refinement was performed prior to coarsening 

to create a higher starting mesh density.  

Table 4-1, Table 4-2, and Table 4-3 provide element removal, element quality, 

and coarsening time results for each model. In almost every case, acceptable element 

quality was maintained and a density that very nearly reflects the target mesh density was 

achieved. 
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Table 4-1. Coarsening Results for Cube Model 

Target % Elements in Actual % Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 1331 -- 1.00 --
25 1056 20.7 0.47 0.7
50 684 48.6 0.41 0.9
75 355 73.3 0.34 1.1  

 

 

Figure 4-1. Structured cube example: (a) Original mesh with coarsening region defined. (b) 25 
percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening. 



 31 

 

Figure 4-2. Unstructured mechanical part example: (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.
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Table 4-2. Coarsening Results for Mechanical Part Model 

Target % Elements in Actual % Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 7641 -- 0.77 --
25 5807 24.0 0.59 5.3
50 4057 46.9 0.32 9.6
75 2205 71.1 0.22 12.5  

 

 

 

Table 4-3. Coarsening Results for Human Head Model 

Target % Elements in Actual % Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 10080 -- 0.48 --
25 7953 21.1 0.29 13.0
50 5129 49.1 0.17 17.9
75 2615 74.1 0.22 22.5
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Figure 4-3. Unstructured human head example (side view): (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening. 
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Figure 4-4. Unstructured human head example (top view): (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.



 35 

5 Future Work 

The automated coarsening algorithm described in Chapter 3 takes advantage of 

sheets already existing entirely within the coarsening region which can be extracted 

without any previous operations. However, it does not take advantage of columns already 

existing entirely within the coarsening region which can be collapsed without any 

previous operations. Modifying the algorithm to take advantage of such columns would 

improve the efficiency and effectiveness of the coarsening process in certain situations. 

While the automated coarsening algorithm guarantees a topologically conforming 

mesh, it does not guarantee that the final quality of the mesh will be acceptable. Further 

research is needed to ensure that hexahedral coarsening does not degrade mesh quality 

below an acceptable threshold. This might be accomplished through more sophisticated 

methods which prevent poor quality elements from forming, or through cleanup 

operations which fix bad elements without significantly affecting mesh density. Many 

effective methods to cleanup a quadrilateral mesh have recently been developed [22]. It is 

hoped that further research will lead to similar methods for a hexahedral mesh. 

The coarsening method presented in this thesis has been shown to work on 

unstructured meshes. However, even though these meshes are considered to be 

unstructured, they are usually structured in one dimension. Little work has been done to 

test this method on completely unstructured meshes. In theory, the method should work 
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for any hexahedral mesh. However, it is likely that some meshes cannot be coarsened 

without degrading element quality below an acceptable level. 

While the coarsening method presented in this thesis works, it involves steps 

which may not be necessary. For example, most of the elements that are added to the 

mesh through pillowing are later removed. It is hoped that further research will lead to a 

more efficient method which only inserts elements that are necessary to transition from 

higher to lower mesh density. 

Finally, the ultimate goal of this research is to develop an effective hexahedral 

coarsening method that can be combined with existing refinement methods in a fully 

automated mesh adaptation process. Currently, the automated coarsening algorithm relies 

on a user to define a coarsening region and level of coarsening. Further work is needed to 

link this algorithm with finite element software that can dictate which areas of a mesh 

need to be coarsened and by how much. 

 



 37 

6 Conclusion 

By utilizing sheet and column operations such as pillowing, column collapsing, 

and sheet extraction, entirely localized coarsening can be achieved in conforming all-

hexahedral meshes. This method of coarsening works on both structured and unstructured 

meshes and is not based on undoing previous refinement. Although not fully developed, 

automation of this hexahedral coarsening method has already shown promising results. 

However, further work is needed to more effectively achieve the main objectives of an 

automated coarsening algorithm. These objectives include achieving a target mesh 

density, maintaining high element quality, and completing the coarsening process in as 

little time as possible. It is hoped that future research will lead to better methods of 

balancing these objectives. It is also hoped that the development of this new hexahedral 

coarsening method will lead to an effective coupling of refinement and coarsening in a 

fully automated mesh adaptation process. 
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Appendix A. Quadrilateral Coarsening Operations 

The hexahedral coarsening method presented in this thesis grew out of recent 

developments in quadrilateral coarsening. Since two-dimensional coarsening operations 

are generally easier to visualize than their three-dimensional counterparts, an explanation 

of the related quadrilateral coarsening operations is given in this Appendix. While these 

operations can be directly extended to hexahedral coarsening, by themselves, they are not 

always able to prevent changes in element density from propagating beyond the 

boundaries of a defined hexahedral coarsening region. Entirely localized hexahedral 

coarsening often requires an additional step that is not necessary in quadrilateral 

coarsening. 

A quadrilateral element can be represented by two line segments that connect the 

midpoints of opposite edges, as shown in Figure A-1. In a conforming quadrilateral mesh, 

these line segments combine to form chords, as seen in Figure A-2.  

Using an operation known as chord extraction [21], the nodes associated with a 

given chord are merged together, as demonstrated in Figure A-3. Chord extraction is a 

valuable coarsening tool because it not only decreases mesh density, but it also 

guarantees the preservation of a conforming mesh. However, in many situations, chords 

extend beyond the boundaries of a defined region. The removal of such chords would 

decrease mesh density in areas where coarsening is not desired. Therefore, it is often
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Figure A-1. A quadrilateral element with two line segments connecting the midpoints of opposite 
edges. 

 

 

Figure A-2. Quadrilateral chords: (a) A quadrilateral mesh with one chord shown. (b) All the chords 
representing the mesh are shown.   

 

necessary to modify the mesh in such a way that produces chords which are confined to 

the coarsening region. 

Several operations have been developed to locally modify the topology of a 

quadrilateral mesh [21]. One such operation is an element collapse, which is illustrated in
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Figure A-3. Chord extraction: (a) A chord is selected for extraction. (b) The chord is extracted by 
collapsing the edges that define the chord and merging the two nodes on each edge. 

 

Figure A-4. As seen in the figure, this operation alters the paths of two intersecting 

chords, preserves a conforming mesh, and only affects the elements immediately 

surrounding the collapsed element.  

 

 

Figure A-4. Element collapse: (a) An element representing the intersection of two chords is selected 
for collapse. (b) The two nodes in (a) are merged and the two intersecting chords no longer intersect. 
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As shown in Figure A-5, the element collapse operation can be used at multiple 

chord intersections to form a chord which is contained entirely within the boundaries of a 

defined region. This chord can then be extracted to coarsen the region without affecting 

any other part of the mesh. 

 

 

Figure A-5. Formation of a localized chord: (a) Three intersecting chords pass through a region 
selected for coarsening. (b) The elements representing the chord intersections in (a) are collapsed to 
produce a chord which is contained entirely within the boundaries of the coarsening region.  
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