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ABSTRACT 

“CHOOSE YOUR WORDS”: REFINING WHAT COUNTS AS  

MATHEMATICAL DISCOURSE IN STUDENTS’  

NEGOTIATION OF MEANING FOR RATE OF  

CHANGE OF VOLUME 

 
 
 

Christine Johnson 

Department of Mathematics Education 

Master of Arts 
 
 
 

 The purpose of this study is to describe how university honors calculus students 

negotiate meaning and language for conceptually important ideas through mathematical 

discourse. Mathematical discourse has been recognized as an important topic by 

mathematics education researchers of various theoretical perspectives. This study is 

written from a perspective that merges symbolic interactionism (Blumer, 1969) with 

personal agency (Walter & Gerson, 2007) to assert that human choice reflects, but is not 

determined by, meanings that are primarily developed through social interaction. The 

process of negotiation of meaning is identified, described, and analyzed in the discourse  

   



 

 
 
 
 

of four students and their professor as they draw conclusions about the volume of water 

in a reservoir based on graphs of inflow and outflow. Video data, participant work, and 

transcript were analyzed using grounded theory and other qualitative techniques to 

develop three narrative accounts. The first narrative highlights the participants’ use of 

personal pronouns and personal experience to negotiate meaning for the conventional 

mathematical terms “inflection” and “concavity.” The second narrative describes how the 

participants’ choices in discourse reflect an effort to represent both their mathematical 

and experiential understandings correctly as they negotiate language to describe critical 

“zero points.” The third narrative describes the participants’ process of mapping 

analogical language and meaning from the context of motion to the context of water in a 

reservoir. Analysis of these three narratives from the perspective of conventional and 

ordinary mathematical language suggests that the contextualized study of mathematics 

may provide students access to mathematical discourse if the relevant mappings between 

mathematical language and language from other appropriate contexts are made explicit. 

Analysis from the perspective of social speech (Piaget 1997/1896) suggests that specific 

uses of personal pronouns, personal experience, and revoicing (O’Connor & Michaels, 

1996) may serve to invite students to become participants in mathematical discourse. An 

agency-based definition of mathematical discourse is suggested for application in 

research and practice. 
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CHAPTER 1: INTRODUCTION 

A class of university honors calculus students was asked to draw conclusions 

about the quantity of water in the Quabbin Reservoir in Massachusetts, given qualitative 

graphs of the inflow and outflow of water in the reservoir over the period of one year 

(Figure 1, Hughes-Hallett et al., 1994, p.325).  

 
Figure 1. Graphs of inflow and outflow for the Quabbin Reservoir. 

In the transcript below, one of the students, Daniel, explains the shape of his 

created graph of volume of water in the reservoir (Figure 2).  

58 (0:13:50.1) Daniel: So, it has a negative slope. And then it starts going 
positive up to that point [July]. And so it levels off at 
zero. Cause the v-, the v- [1 sec] I don’t know what 
you call that. The velocity of the flow of the water or 
something? The velocity of this is zero. [2 sec] Which 
is correct on our velocity chart. And then it starts 
going negative again. And it starts, kind of, sloping 
out. And it has, its greatest slope is right here 
[October], so that’s its inflection point 

 

 

Figure 2. Daniel’s created graph of volume. 
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 As I investigated the mathematical discourse of these students and their instructor 

relevant to the Quabbin Reservoir Task, I had many questions about their choice of 

language. For example: 

• How does a term like “velocity” end up in a conversation about water in a 

reservoir?  

• What is the “it” of which Daniel speaks, how does he know when “it” is zero, and 

why is knowing that “it” is zero significant to Daniel? 

• Is Daniel’s switch between the third person “it” and the first person “I” reflective 

of notions of personal agency and social speech in mathematical discourse?  

• What is the role of conventional terms such as “inflection point” in student-to-

student discourse?  

In this study, I view Daniel’s statements above as a launching point for my investigation 

of these and other questions as I seek to answer the research question: “How do these 

university honors calculus students negotiate language and meaning for conceptually 

important ideas?” 

The transcript above reflects a starting point for three narratives of the negotiation 

of meaning presented in this thesis. However, it would be difficult to characterize any 

piece of data as the official starting point or ending point of the process of negotiation of 

meaning. After Blumer (1969), I view meanings as social products, held by individuals 

who are constantly revising and refining meanings for things based on how other people 

act toward such things. As such, individual and collaborative processes of negotiation of 

meaning for things are ongoing and intertwined. For example, Daniel had previously 

heard the term “inflection point” in classroom discourse before using it in the transcript 
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above. His current decision to use the term “inflection point,” and the way that he uses it, 

reflects his participation in, and interpretation of, that previous discourse. By introducing 

the term “inflection point” into the current discourse, Daniel reinitiates the social 

negotiation of meaning in which the participants question, explain, compare, agree, and 

disagree, reaching temporary closure as to how the conventional term “inflection point” 

will be used in their mathematical discourse. The first explanatory narrative in this thesis 

describes how Daniel’s initial use of “inflection point,” and the subsequent negotiation of 

meaning, is reflected in the language of another participant, Justin, as he provides an in-

depth explanation of his perspective on the group’s goals and methods for the Quabbin 

Reservoir Task. In the second narrative, I describe how the participants negotiate 

language for what Daniel eventually calls “zero points”–points which are known to many 

as the conceptually important “critical points” in differential calculus. The third narrative 

investigates the participants’ negotiation of language and meaning for the analogical 

problem solving process that enables them to not only view, but speak of, the rate of 

change of volume as “the velocity of the water.” 

 Meanings and interpretations alone, however, cannot be said to determine human 

choices in discourse. Rather, humans exercise personal agency, acting upon their 

meanings and interpretations in ways that reflect the three explanatory and sometimes 

contradictory factors of (1) experience and imagination, (2) social roles and 

responsibilities, and (3) an individual’s concern for their own mathematical 

understandings (Walter & Gerson, 2007). The roles of these explanatory factors, as 

revealed through grounded theory and other qualitative research methods, are described 

in this study. I also characterize emergent views of conventional and ordinary 
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mathematical language and Piaget’s (1997/1896) notion of social and egocentric speech. 

This study contributes to literature on inquiry-based mathematics instruction by 

highlighting language factors involved in analogical problem solving. It contributes to 

research and theories of mathematical discourse by providing an in-depth analysis of the 

social process of negotiation of meaning and by suggesting an agency-based definition of 

mathematical discourse. 
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CHAPTER 2: THEORETICAL PERSPECTIVE 

 Viewing mathematical discourse as a conduit to greater understanding of 

mathematical meaning making and learning, I combine the perspective of symbolic 

interactionism (Blumer, 1969), with the notion of personal agency (Walter & Gerson, 

2007) to frame my analysis of the mathematical discourse of four undergraduate students 

and their professor. After a brief explanation of the major premises of symbolic 

interactionism and personal agency, I introduce two continua that I use to describe and 

classify decisions made by these participants in mathematical discourse. These continua 

are characterized by the extremes of ordinary and conventional language (Walter & 

Johnson, 2007), and egocentric speech and social speech (Piaget, 1997/1896). Finally, 

although my view of agency suggests that decisions made by the participants are never 

completely determined by external factors, the perspective of symbolic interactionism 

suggests that specific explanatory factors do play a role in the participants’ exercise of 

agency. I define three categories of explanatory factors for the purpose of this study. 

Why Discourse? 

Advocates of the participationist (Sfard, 2001) perspective expound upon the 

connection between thought and language with the “thinking as communication” 

metaphor. Rather than view mathematical knowledge as an entity to be acquired and kept 

independent of the context in which it is learned, participationists view learning as 

synonymous with becoming a participant in a given activity. To learn mathematics, 

therefore, is to become a participant in mathematical discourse (Sfard, 2001). 

Aquisitionists, on the other hand, view meaning, thought, and learning as separable 

products of mathematical activity. Nevertheless, most contemporary acquisition theories, 
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including forms of constructivism, suggest that learning takes place as a result of social 

interaction (Cobb, 1994; Jones & Brader-Araje, 2002). Therefore, acquisitionists may 

regard discourse as a way of getting at mathematical meaning, thought, and learning, 

while the participationist viewpoint suggests that discourse may be the very embodiment 

of such things.  

 Whether these differing perspectives on learning are viewed as contradictory or 

complementary, both point to mathematical discourse as an important setting for studying 

mathematics learning (Sfard, 2001). Mathematics education researchers are coming to 

recognize what linguists have suggested for some time. As Goodwin (2000) put it: 

A primordial site for the analysis of human language, cognition, and action 

consists of a situation in which multiple participants are attempting to carry out 

courses of action in concert with each other through talk, while attending to both 

the larger activities that their current actions are embedded within, and relevant 

phenomena in their surround. (p. 1492)  

 Not only may discourse be viewed as an ideal setting for researchers to conduct 

their studies of mathematical language, cognition, and action, but recommendations for 

teaching practices have recently begun to suggest that mathematics may be best learned 

through greater student participation in collaborative problem solving and discourse 

(NCTM, 2000). Such recommendations, and the corresponding descriptions of ideal 

mathematical discourse, are helpful, but are also likely insufficient for the majority of 

mathematics teachers who are expected to implement such recommendations in their own 

practice. If discourse is to play such a central role in the mathematics classroom, teachers 

would be wise to have at least a working definition of what they think mathematical 
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discourse should look like. As with many movements for educational change, the 

majority of mathematics teachers do not experience such practices first-hand as students, 

and therefore require rich descriptions that analyze rather than simplify. The National 

Council of Teachers of Mathematics (NCTM, 2007) has suggested that, “to effectively 

orchestrate mathematical discourse, teachers must do more listening, and students must 

do more reasoning” (p. 46). Likewise, I believe that researchers from all perspectives 

would benefit from an in-depth discussion of what conclusions can be drawn about 

individual and collective mathematical thought, simply by listening to students speak 

about mathematics. The intent of this study is to describe what kind of discourse 

mathematics students are not only capable of, but choose to, create and participate in as 

they engage in the mathematical activities of explanation and justification. I also suggest 

how this discourse may be reflective of, and contribute to, an underlying process of 

students learning to think mathematically as the participants comment on their discursive 

choices within the activity of justifying and refining their created solution for a 

mathematical problem. 

 It should be noted that my intent in describing mathematical discourse is not to 

provide teachers with an organized checklist or line-by-line script for an ideal form of 

mathematical discourse. I believe that asking learners of mathematics to participate in a 

scripted discourse for the purpose of building mathematical understanding may be a self-

defeating enterprise. As they become participants in mathematical discourse, learners 

must have the opportunity and responsibility to act in ways that they believe will benefit 

and reflect their own mathematical understandings. As Goodwin (2000) suggests, such 

discourse should not (and I would suggest cannot) occur in a mathematical vacuum that is 
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void of social context. Because it involves the exercise of human agency and varied 

human experiences and meanings, such discourse may initially seem disorganized and 

unproductive to the teacher or mathematician who has spent a large amount of time 

learning how to present mathematical arguments in logical and organized manners. What 

I intend to do is highlight the logic and progression of mathematical ideas that arise as a 

result of the participants’ interactions and personal choices in mathematical discourse by 

focusing on the aspect of discourse that I characterize as “the negotiation of meaning.” 

Mathematical Discourse 

Before progressing further into the theoretical perspectives of symbolic 

interactionism and personal agency, I offer my working definition of mathematical 

discourse, which will be refined and refocused through data analysis and the discussion 

of results in later chapters. Concise definitions of mathematical discourse are rare in the 

literature, and even the lengthier definitions often fail to explain under what conditions 

discourse should be considered mathematical (Moschkovich, 2003). The NCTM (2007) 

has stated that “the discourse of the learning community refers to the ways of 

representing, thinking, talking, and agreeing and disagreeing that teachers and students 

use as they engage in mathematical thinking and learning” (p.16). One with a robust 

vision of “mathematical thinking and learning” might be satisfied with this definition of 

discourse, but those who are still developing theory and practice might infer from such 

broad strokes that mathematical discourse refers to “anything happening in a mathematics 

classroom.” Those with opposing visions of mathematical thinking and learning would 

likewise result in opposing visions of mathematical discourse. I believe that a more 

   



 9

focused definition of mathematical discourse should be developed by mathematics 

educators, one that both communicates theory and directs practice. 

Sfard (2001) describes two factors that one must confront in becoming a 

participant in mathematical discourse. The first factor is the set of mediating tools, such 

as language, representations, and ways of symbolizing, that are common to forms of 

discourse that are considered mathematical. Indeed, one of the most salient features for 

recognizing “mathematical” discourse may be the presence of specific mathematics 

symbols and terminology. Although the presence of mathematical terminology and 

representations in discourse may be correlated with mathematical activity and thought, I 

do not consider it a necessary or sufficient condition for defining mathematical discourse. 

In fact, the mere presence of conventional mathematics terminology is inconclusive 

evidence until further information is gathered regarding the function of such terminology 

in discourse. The use of mathematical terminology for mathematical enterprises such as 

proof, explanation, or generalization may constitute mathematical discourse. However, 

the use of unconventional terminology for mathematical enterprises may also constitute 

mathematical discourse. To determine whether discourse is mathematical, one must look 

beyond the form of language to also consider function, or how language is used 

(Halliday, 1978).  

Sfard’s (2001) second factor for becoming a participant in mathematical discourse 

is a set of meta-discursive rules that describe forms of communication that can be 

considered mathematical. When participationists speak of becoming a participant in 

mathematical discourse they refer not necessarily to memorizing a set of terms or 

definitions, but rather becoming a participant in a cultural practice. Gee’s (1996), notion 
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of “Discourses” (with a capital D) includes more than sentence structure and vocabulary 

(issues of form), extending to “ways of behaving, interacting, [and] valuing. . .” (p. viii) 

that may be considered mathematical within a culture.  Following Gee’s notion of 

Discourses, a description of mathematical Discourse would necessarily include a 

description of mathematical behaviors, mathematical ways of interacting, and 

mathematical values.  

 Unfortunately, “mathematical” ways of behaving, interacting, and valuing are not 

well defined. For example, Richards (1991) identified four major domains of 

mathematical discourse, that of (1) research mathematicians and scientists, (2) 

mathematically literate adults in their daily lives, (3) mathematical print journals, and (4) 

mathematics classrooms. These four domains of discourse embrace different ways of 

behaving, valuing, and interacting due to their individual goals. However, Richards was 

nevertheless able to identify these four domains of discourse as mathematical. Therefore, 

one might assume the existence of an underlying definition of mathematical activity or a 

common set of mathematical values. For example, Moschkovich (2003) suggested that 

the values of mathematical discourse might include precision, explicitness, certainty, 

abstraction, and generalization. 

For the purpose of this study, I define discourse as connected acts of speaking, 

gesturing, or symbolizing. By connected acts, I mean that individual acts are related to 

past acts or in anticipation of future acts.  For discourse to be considered mathematical, 

(1) the content or topic must be mathematical objects, operations, or properties, and (2) 

the discourse must involve mathematical processes such as reasoning, explaining, 

conjecturing, and justifying. I impose two criteria for determining mathematical discourse 
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because I recognize that one may speak of mathematical objects without engaging in 

mathematical processes (for example, consider the Initiation-Reply-Evaluation pattern 

described in the next chapter). On the other hand, a teacher may engage their students in 

reasoning (a process common to mathematical discourse) about a topic that is not 

mathematical (such as asking students to consider and explain why it is important to raise 

one’s hand before speaking), and thus the resulting discourse would not be considered 

mathematical. When I speak of mathematical discourse, both criteria must be met. For 

example, teachers and students explaining and considering why the multiplication table 

has the structure that it does would be considered mathematical discourse. 

Meaning and Symbolic Interactionism 

As this study focuses on how the participants negotiate meaning through 

discourse, the meaning of meaning is also quite relevant. Terms used in discourse may be 

considered to have specific meaning for, or to be interpreted in differing ways by, the 

various participants in discourse. Although many constructs of meaning are virtually 

impossible to observe, it is possible to observe vocabulary usage, or how a learner 

chooses to use terminology in discourse (Dörfler, 2000). Therefore, from the viewpoint 

of an observer of discourse, it may be also much more productive to consider meaning a 

matter of function rather than form. The theory of symbolic interactionism (Blumer, 

1969), which is described in further detail below, suggests that individual participants 

evaluate the way in which they believe terminology is or should be used in discourse and 

compare and contrast their own expectations with how terminology is used in the present 

discourse. Thus, participation in mathematical discourse involves participation in a 

negotiation of how terminology is and should be used. From my viewpoint as a 
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researcher and observer, this negotiation of terminology usage in discourse is an 

approximation of the negotiation of mathematical meaning. 

 The three major premises of symbolic interactionism are: (1) “Human beings act 

toward things on the basis of the meanings that the things have for them;” (2) “the 

meaning of such things is derived from, or arises out of, the social interaction that one has 

with one’s fellows;” and (3) “these meanings are handled in, and modified through, an 

interpretative process used by the person in dealing with the thing he encounters” 

(Blumer, 1969, p. 2). Blumer differentiates the methodological position of symbolic 

interactionism from that of his contemporary psychologists and sociologists in two major 

areas. Those two areas are, first, perspectives on meaning and second, perspectives on 

human action. 

 First, the theory of symbolic interactionism is at odds with theories that suggest 

that meaning is either purely intrinsic or purely psychical. The meaning of an entity does 

not “belong” to the entity itself, nor is meaning purely dependent upon an individual’s 

perception of that thing. Rather, meaning develops in the context of social interaction. 

“The meaning of a thing for a person grows out of the ways in which other persons act 

toward the person with regard to the thing. Their actions operate to define the thing for 

the person” (Blumer, 1969, p. 4-5). Therefore, meanings are viewed as flexible social 

products that reflect an individual’s interpretation of social interaction.  

 I might add that, while Blumer focused on the meaning of things as growing out 

of how other persons act toward a thing, it is also possible for persons to interact with 

things in a way that develops meaning. A simple example may be the meaning of a chair. 

While one might observe other people sitting on a chair and commenting upon the 
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comfort of that chair, this does not prohibit an individual who has observed such actions 

from sitting on the same chair and, based upon their own bodily sensation, declare that 

chair to be uncomfortable and choose to sit on the floor. Therefore, a person’s meaning 

for a thing may also grow out of that person’s interaction with such things, as well as how 

other individuals act toward those things. 

 Blumer (1969) further differentiates symbolic interactionism from other theories 

of his day with respect to the principal explainer of human action. He recognizes that, 

although his contemporaries may not disagree with his assertion that human action is 

based in meaning, they often dismiss meaning as a minor or irrelevant factor when 

explaining human behavior. The psychologists, states Blumer, prefer to focus on external 

factors such stimuli, attitudes, and conscious or unconscious motives, while the 

sociologists focus on social positions, roles, norms, and values. Without denying the 

existence of such factors, the perspective of symbolic interactionism maintains meaning 

as the principal explainer of human behavior. 

 It is important to note that I also speak of meaning as an explainer of human 

action, rather than a determiner of human action. Meaning as a social product does not 

contribute directly back to human action and society without first passing though the 

channels of interpretation and the exercise of personal agency. According to Blumer 

(1969), the interpretive process by which meaning contributes to action involves two 

parts. First, in a process of self-communication, the person must indicate the object 

toward which they are acting. Second, the person “selects, checks, suspends, regroups, 

and transforms meanings in the light of the situation in which he is placed and the 

direction of his action” (p. 5).  
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 For example, a participant in mathematical discourse may notice that another 

participant uses the term “limit” in a very different way than that which they have 

encountered in their own experience. Reflecting upon their own experience with the term 

“limit,” and their interpretation of this new use of “limit,” the participant may modify 

their own meaning to accommodate (Piaget & Inhelder, 2000/1969) this new meaning, or 

usage for the term. On the other hand, the participant may assume that they have 

encountered a case of homophony (two or more unrelated meanings for the same word), 

and assimilate (Piaget, & Inhelder, 2000/1969) the new use as a new or special case. The 

participant may also pose questions about others’ uses of the same terminology, avoid 

using a term which seems to have ambiguous meaning, suggest alternative terminology, 

or any other of a number of actions, each of which will likely contribute to further 

modification of meaning for the term “limit.”   

Personal Agency 

 This ultimate choice of how to act, although based in previous action and 

interpretation of action, is determined by the exercise of personal agency. Although not 

specifically mentioned by Blumer (1969), I believe that personal agency not only 

explains, but ultimately determines, human action. Or, in other words, although a 

person’s formative process of interpreting meanings may guide their action in a specific 

direction, a person ultimately maintains the right to determine his or her action. Bandura 

(1989) suggests that human agency is “emergent interactive,” meaning that action, 

personal factors, and the environment influence one another in a process of “triadic 

reciprocal causation” (p.1175). Ahearn (2001) gives a provisional definition for agency 

as “the socioculturally mediated capacity to act” (p. 112). After Walter and Gerson 
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(2007), I define personal agency in mathematical activity as the “requirement, 

responsibility and freedom to choose based on prior experiences and imagination, with 

concern not only for one’s own understandings of mathematics, but with mindful 

awareness of the impact one’s actions and choices may have on others” (p. 209; see also 

Levinas, 1979; Martin, Sugarman & Thompson, 2003).   

 Embedded in this definition of personal agency (Walter & Gerson, 2007) are 

references to explanatory factors for human action, namely, (1) one’s prior experiences 

and imagination, (2) one’s current meaning for the mathematics, and (3) the consideration 

of the impact of one’s decisions upon others. As these three explanatory factors may 

compel a human to act in various and contradictory ways, none can be considered the 

determiner of human action. The capacity and responsibility of each participant to 

ultimately choose their action is the single factor that can be considered the determiner of 

human action. In other words, choices in mathematical discourse are determined by 

individuals, although they may be explained by the meanings that those individuals have 

developed for their experiences, the mathematics, and their fellow participants. 

 Some choices have greater impact on the resulting mathematical discourse than 

others. One important choice is the form of participation. Although all are referred to as 

“participants” in this study, some participants choose to participate in discourse in 

different ways than others. For example, at differing times, some participants choose to 

listen, some choose to question, some choose to explain, some choose to check for 

understanding, some choose to tell jokes, some choose to laugh at those jokes, and some 

choose to create representations. It is important to note that the choice to not participate is 

also a choice that contributes to the resulting mathematical discourse. However, this 
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study focuses more specifically upon the choices that may be considered active 

participation in mathematical discourse, or the use of language and representations in 

ways that contribute to the negotiation of meaning among the participants. 

Two Continua for Characterizing Participant Choices in Discourse 

 In this study, the participants’ choices of language and non-verbal representations 

in mathematical discourse are described in terms of two continua. The first continuum is 

characterized by the extremes of conventional and ordinary language (Brown, 2001; 

Pirie, 1998; Walter & Johnson, 2007). Conventional language of mathematics includes 

technical terms along with their definitions and usages that are unique to the study of 

mathematics. These terms contribute greatly to the study of mathematics as a social 

practice (Pirie, 1998). Those who have appropriated the conventional language of 

mathematics may use it to identify abstract mathematical concepts quickly and precisely. 

Conventional mathematics terminology is often found in mathematics textbooks and 

documents that delineate core mathematical standards for mathematics educators.  

Mathematical dictionaries and glossaries also give mathematical definitions for 

conventional mathematics terminology.  

Although much effort has gone into the creation of conventional mathematics 

definitions and terminology, few words can be categorized as belonging strictly to the 

realm of mathematics (Halliday, 1978). (For example, consider the terms “limit” and 

“set.”) While it is true that language does not have to be conventional in order to function 

as mathematical, the value that certain communities of mathematical discourse attribute 

to conventional language makes such terminology a relevant issue of study. Certain kinds 

of non-verbal representations, as well, can be considered conventional within the realm of 

   



 17

mathematical discourse, while others might be considered ordinary representations 

fulfilling mathematical roles in discourse. I do not see either of these extremes as more 

valuable than the other; rather, I view them as filling different roles. Where conventional 

language may allow entrance into specific communities of discourse and has been 

designed for purposes of precision and efficiency, ordinary language may be more 

appropriate for the process of “linguistic invention towards producing structures and 

meaning” (Brown, 2001, p. 76; see also Johnson, 2005; Walter & Johnson, 2007). 

The second continuum for characterizing mathematical language and 

representation contrasts Piaget’s (1997/1896) notions of egocentric and social speech. 

Egocentric speech is characterized as speech in which the speaker “does not attempt to 

place himself at the point of view of his hearer” (p. 9). Children have been observed to 

exhibit egocentric speech through repetition, monologue, and collective monologues. 

Social speech, on the other hand, is directed toward a hearer. The speaker attempts to 

determine whether he has been understood, or attempts to interact with others in some 

manner. The speaker also adapts information in order to influence designated individuals 

to do or believe certain things. Piaget viewed criticism, requests, questions and answers 

as examples of social speech in children. Developmentally, Piaget believed egocentric 

speech to be a precursor to social speech. Vygotsky (1986/1934) also characterized 

egocentric speech and social speech, but suggested that egocentric speech was the 

developmental result of participating in social speech. 

Bartsch and Wellman (1995) studied the development of children’s conceptions 

of the mind, noting that children under the age of three years not only described their own 

action in terms of their own desires and beliefs, but were also able to explain the action of 
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other individuals in terms of those individuals’ supposed desires and beliefs. Therefore, 

even young children have exhibited the capability of reasoning and speaking about 

others’ points of view. Wertheimer (1945) described how a twelve year old boy examined 

a game of badminton from his losing opponent’s point of view, and redefined the purpose 

of the game so that both players could enjoy the outcome. Wertheimer also noted how a 

tendency to only describe relationships from one’s own point of view was reflected in a 

working woman’s egocentric description of power relationships in the office where she 

worked. 

Wertheimer (1945) described how forms of egocentric speech may be reflective 

of egocentric ways of viewing the world. “Productive thinking,” he suggested, may 

involve “reasonable reorganization, [or] reorientation, which enables the subject to view 

the given situation in a new and more penetrating perspective” (p. 124). As my interest in 

egocentric and social speech is based in my efforts to better define the negotiation of 

meaning in discourse, egocentric discourse, or the participants’ failure to consider or 

adopt the point of view of the hearer, may not be productive toward negotiating 

collaborative meaning within a group of students. On the other hand, forms of egocentric 

speech may help individual students to refine their own opinions and meanings for the 

mathematics by putting those meanings into words, and consequently contribute to the 

social negotiation of meaning. Therefore, while I do not consider either form of speech 

more productive or valuable than another, I believe that social and egocentric forms of 

speech may serve different purposes in mathematical discourse.   

I view these two continua (conventional vs. ordinary and egocentric vs. social) as 

possible instruments for describing choices of language and representation made by 
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participants in mathematical discourse. One might say that a participant in mathematical 

discourse exercises personal agency in choosing to use conventional language or ordinary 

language in either social speech or egocentric speech. However, this is not an exhaustive 

list of the available options. It is important to note that I have chosen my two continua as 

preliminary tools for characterizing choices made in discourse. While these choices are 

ultimately determined by the participants’ exercise of personal agency, these choices can 

often be explained in terms of the interplay between constantly changing meanings for 

the mathematics, the language, and the various participants involved in the discourse. 

Naturally, the definition of discourse as “connected acts” implies that previous choices in 

discourse contribute to each participant’s personal negotiation of meaning, and therefore 

can also be viewed as explanatory of subsequent choices in discourse.  

Explanatory Factors for Choices in Mathematical Discourse 

As mentioned before, three explanatory factors suggested by Walter and Gerson 

(2007) for the exercise of personal agency in mathematical discourse are (1) experience 

and imagination, (2) social roles and responsibilities, and (3) an individual’s concern for 

their own mathematical understandings. I view these explanatory factors as representative 

of three categories of meaning, and refer to Goodwin (2000) and Bandura (1986) to 

further develop these categories. Goodwin states that although participants in discourse 

may be participating in an activity with particular goals, they also exhibit an awareness of 

the “larger activities that their current actions are embedded within” and the “relevant 

phenomenon in their surround” (p. 1492). For our participants, the “larger activities” in 

mathematical discourse may be the participants’ meaning for the social roles and 

responsibilities that have been, and currently are, being negotiated through social 
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interaction. Goodwin’s mention of “relevant phenomena” supports the category of 

experience and imagination, as the participants build upon their personal experience in a 

physical world to reason about mathematical concepts. The relevance of social and 

experiential factors to all forms of discourse suggests that even mathematical discourse 

does not, and should not, resemble the precise, definite, and context-free communication 

of ideas that Descartes originally praised mathematics for when he described it as 

“mathesis universalis” (Cottingham, 1993, p. 7).   

Bandura (1986) identifies four “determinants” for language development and use 

that are also related to the three categories of explanatory factors suggested by Walter and 

Gerson (2007). Bandura’s four factors are (1) cognitive skills of the linguistic type 

(grammatical rules, the ability to abstract rules from exemplars. etc.), (2) non-linguistic 

knowledge (knowledge of the topic of the conversation, the ability to judge word 

meaning based on context, etc.), (3) the complexity of linguistic input (which may be too 

high or too low for optimum development), and (4) interpersonal factors (such as an 

individual’s wishes to engage in social interaction or influence the social environment 

and that individual’s interpretation of the results of his or her attempts to use language to 

do so). These factors may come to play in various combinations to explain the nature of 

the choices made in mathematical discourse. For example, although a mathematician may 

have been exposed to primarily conventional language in his mathematical career 

(complexity of linguistic input), he would be considered wise and pragmatic if he 

adjusted his language for a general interest lecture on number theory (interpersonal 

factors). An audience member at this lecture may be particularly familiar with a context 

in which a number theory problem is posed (non-linguistic knowledge), and therefore 
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engage in productive mathematical discourse with the mathematician which provides that 

mathematician with valuable insight for a challenging problem. 

To align Bandura’s (1986) four factors with three explaining factors gleaned from 

Walter and Gerson (2007), I view Bandura’s description of “non-linguistic knowledge” 

as a possible contributor to both the first factor of experience and imagination, and the 

third factor of an individual’s understanding of the mathematics. For example, the use of 

reasoning tools such as analogy, metaphor, and examples to explain mathematical 

concepts in discourse may be explained by these two factors’ incorporation of “non-

linguistic knowledge.”  Bandura’s “interpersonal factors” fit well into the second 

explanatory factor, which situates mathematical discourse in a social sphere. This factor 

may explain the participants’ choices of egocentric or social speech, and, in the case of 

social speech, may explain just how much ordinary language or conventional language a 

speaker may choose to use to best negotiate meaning with the hearer. Bandura’s 

“complexity of linguistic input” also contributes to the first explanatory factor of 

experience, as language choices often reflect previous uses of language.  

While Bandura’s (1986) mention of “cognitive skills” does not map directly to 

one of the agentive explanatory factors, the importance of such a factor to mathematical 

discourse cannot be denied, as one’s possible choices in mathematical discourse may be 

shaped by a participant’s own language abilities, or even possibly by a participant’s 

knowledge of the structure of the language within which the discourse is taking place. In 

this study, I do not attempt to characterize the participants’ linguistic knowledge or skills 

in any general sense. However, I do view improvisation (Holland, Lachicotte, Skinner, & 

Cain, 1998) for linguistic purposes as an example of a cognitive skill of the linguistic 
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type that is related to the “imagination” component of the first explanatory factor. 

Improvisation may also be considered a meta-component of the explanatory factor 

framework, as it reflects an individual’s choice based on differing, and often 

contradictory meanings for several explanatory factors. In this study, instances of 

analogical problem solving and linguistic invention serve as examples of how 

participants combine their experience with mathematical meaning to develop new ways 

to speak about mathematics. Although improvisation is one of many possible cognitive 

skills that Bandura may have intended, it is particularly relevant to this study because 

Holland et al. described the appropriation of the results of improvisations as tools of 

agency and change.  

The realization of the influence of the preexisting language structures on current 

mathematical discourse leads into a concluding discussion of the relationship between 

humans and language. Hermeneutics (Brown, 2001) suggests that the way humans 

perceive their world is influenced by the way in which they describe their world, and vice 

versa. Historically, mankind’s perception of the world, and perhaps the world itself, has 

evolved as a result of this hermeneutic cycle. Holland et al. (1998) described a similar 

cycle, stating that, “social scientists, today as in the past, are studying what their field of 

study has helped to create” (p. 24). In the next chapter, I describe how research on 

discourse in mathematics education reflects this hermeneutic cycle. Here, however, I 

consider the implications for the development of mathematical language and thought.   

Brown (2001) describes two divergent viewpoints that exist within hermeneutics. 

The first is that humans can operate on language to mold their own perceptions over time, 

and may eventually come to interpret the world in a “correct” or desirable manner. The 
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second viewpoint suggests that the reality of mankind is such a product of language that 

the hermeneutic cycle is beyond human control.  This latter viewpoint may suggest that 

the language that has been previously chosen to describe mathematics has sent us on a 

trajectory of mathematical understanding that will continue to evolve despite any efforts 

we may make to redirect our progress. While I do not attempt to suggest the existence of 

a “perfect mathematics,” I do maintain that the principle of personal agency remains the 

sole determiner of human action, including human language, speech, and thought. Inden 

(1990) defined human agency as “the realized capacity of people to act upon their world 

and not only to know about or give personal or intersubjective significance to it,” 

suggesting that human agents not only have the capacity to reiterate the world through 

agency, but also the capacity to remake the world (p. 23; in Holland et al., 1998, p. 40). 

The previous choices of the human race have shaped our current experience in a system 

of language and expression that cannot, and should not, be ignored in mathematical 

discourse. By the same token, it is us, the participants in current mathematical discourse, 

who will create and direct mathematical language and thought in our present and future. 
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CHAPTER 3: REVIEW OF RELATED LITERATURE 

 In this chapter, I first review the progression of literature that describes and 

defines mathematical discourse and examine how such literature reflects shifting 

theoretical and practical perspectives on mathematics, mathematical activity, and 

mathematics education. In a second section, I review literature related to the content area 

of calculus, specifically the role of personal experience in graph interpretation and the 

development of meaning for the concept of derivative. The emphasis on the role of 

personal experience in the development of mathematical meaning leads into a final 

discussion of how linguistic devices such as metonymy, metaphor, simile, and analogy 

can be viewed as cognitive vehicles for mathematical reasoning. 

Mathematical Discourse 

 Discourse is becoming an increasing popular topic of conversation in mathematics 

education. In the year 2000, the Principles and Standards for School Mathematics 

document published by the National Council of Teachers of Mathematics (NCTM), 

suggested that two purposes for student participation in mathematical discourse are to (1) 

communicate to learn mathematics and (2) learn to communicate mathematically. Later, 

in 2007, NCTM’s Mathematics Teaching Today document appealed to classroom 

discourse as the primary means by which students learn to define mathematical activity.  

It is interesting to note a shift in perspectives between these two documents published by 

the same organization. While the earlier document reflected a view of discourse from the 

individual cognition perspective of learning mathematics, the more recent document 

focuses on the social perspective of defining mathematical activity. These shifting 

perspectives of the NCTM documents are reflective of shifting perspectives on discourse 
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and mathematics in the research community of mathematics educators as well as in the 

larger community of mathematicians, educators, policy makers, parents, and the general 

public. These shifting perspectives are guided by, and guide, empirical research on 

mathematical discourse in a zig zag of description and definition in efforts to not only 

define mathematical discourse as it currently exists, but as many believe it should exist, 

in the schools. 

Defining Mathematical Discourse 

 Mathematical discourse has been said to differ from other forms of discourse in 

terms of vocabulary and word use. Researchers have characterized verbal communication 

in mathematics classrooms as using either mathematical or “ordinary” language (Pirie, 

1998), while recognizing that mathematical discourse does not require the use of a 

specific mathematical vocabulary (Moschkovich, 2003). Ferrari (2004) has followed the 

tradition of Halliday (1978) in a functional linguistics evaluation of differences between 

mathematical and colloquial registers, which characterize “linguistic varieties according 

to use” (Ferrari, 2004, p. 387). While mathematical discourse can include a wide variety 

of language, mathematical registers are more closely related to the literate registers of 

written texts, and consequently the interpretation of mathematical language as colloquial 

language, or vice versa, may be the source of misunderstanding among participants in 

mathematical discourse (Ferrari, 2004; Zevenbergen, 2000). The use of mathematical and 

ordinary language simultaneously may result in further ambiguity due to differences in 

syntax and explicitness (Ferrari, 2004).  

 Zandieh and Knapp (2006) noted that mathematical language structures are often 

more rigid than natural language structures. For examples, cases of polysemy, where a 
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word has multiple related meanings, occur quite frequently in ordinary language. A 

standard example is the word “foot,” which can refer to the lower part of the human leg, 

or the lower part of a mountain or hill, as in “the foot of the hill,” or “the foothills.” In 

mathematics, however, it is less common for a mathematically defined term such as 

“derivative” to have a multitude of related definitions. Students may not be aware that 

every situation dealing with a mathematical “derivative” should be isomorphic in specific 

ways (Zandieh & Knapp, 2006). While mathematical definitions may attempt to avoid the 

ambiguity of polysemy, Zaskis (1999) points out that polysemy continues to exist, 

comparing the uses of “divisor” and “quotient” in whole number division to “divisor” and 

“quotient” in number theory. While a similar root may exist for mathematical forms of 

polysemy, these similarities are not always made explicit in instruction. One might 

compare, for example, how the term “tangent” may be defined differently in an 

introductory geometry course (a line tangent to a circle), a trigonometry course (the ratio 

of two sides of a right triangle), and a calculus course (a line that has the instantaneous 

slope of a curve at a point). 

 Mathematical discourse has also been defined in terms of content.  Ben-Yehuda, 

Lavy, Linchevski, and Sfard (2005) define mathematical discourse as discourse having to 

do with mathematical objects such as shapes or quantities. Such definitions are not 

entirely useful for identifying mathematical discourse because the definition of 

mathematical objects can vary greatly in different fields of mathematics. Furthermore, 

discourse about similar mathematical content can differ drastically in form. Thompson, 

Philipp, Thompson, and Boyd (1994) identified two orientations for mathematical 

discourse that they referred to as calculational and conceptual. Calculational discourse 
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was associated with “an emphasis on performing procedures” and “a tendency to do 

calculations whenever an occasion to calculate presents itself” (p. 87). Conceptual 

discourse was driven by a teacher’s “image of a system of ideas and ways of thinking that 

[the teacher] intends the students to develop” (p. 86). Although neither orientation was 

characterized by Thompson et al. as more or less mathematical, the benefits of a 

conceptual orientation were highlighted in the discussion.   

 Other definitions of discourse go far beyond the dimensions of terminology and 

topic to define discourse as a social practice (Gee, 1996; Moschkovich, 2003). Such 

definitions imply that, in order to define mathematical discourse, mathematics educators 

need to determine what mathematical discourse currently looks like in terms of the 

dimensions of behavior, interaction, values, and beliefs. Lampert and Cobb (2003) 

characterized this decision as being related to the decision of whether to view 

communication as a means for developing mathematical understanding or 

communication as the ends of mathematical instruction, noting that the former view is 

suggested by the acquisitionist view of learning while the latter agrees with the 

participationist metaphor (Sfard, 2001). A related issue is the sorting out of whether the 

success or failure of students is evidenced by their ability to communicate, caused by 

their ability to communicate, or even correlated with the ability to communicate, and 

whether the inability to communicate understanding might be misinterpreted as 

misunderstanding.  These beliefs about what mathematical discourse does and should 

look like are strongly linked to different learning theories and philosophies of education.  
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Teacher Roles in Classroom Discourse 

 Nearly thirty years ago, researchers discovered a prevalent discourse pattern of 

teacher initiation, student reply, and teacher evaluation (I-R-E) in education (Mehan, 

1979; see also Lobato, Clarke, & Ellis, 2005). This discourse pattern placed the teacher in 

the role of an authority who asked questions to which the answer was already known. The 

purpose of such questions was an evaluative purpose. The I-R-E pattern revealed the 

prevalence of behaviorism as a theory for learning, which suggests that immediate 

positive reinforcement for correct replies helps to develop internal bonds between 

specific academic questions and their correct answers (Resnick & Ford, 1981). 

 O’Connor and Michaels (1996) suggested an alternative role for the teacher in 

discourse in which the teacher revoices the words and ideas of the students, thereby 

situating those students in specific roles in discourses that may be “a vehicle for complex 

thinking and problem solving in groups” (p.95). Forman and Ansell (2001) suggested that 

teachers use revoicing in the mathematics classroom to “repeat, expand, recast, or 

translate student explanations for the speaker and the rest of the class” in order to 

“articulate presupposed information, emphasize particular aspects of the explanation, or 

disambiguate terminology (Forman et al., 1998; O’Connor & Michaels, 1993, 1996)” (p. 

119).  

The contrast between the teacher role in the I-R-E model and the teacher role in a 

discourse practice such as revoicing highlights two different views of mathematical 

learning and activity. The first view, known as the “sage on the stage” metaphor, is one in 

which the teacher is the authoritative source of knowledge and information.  In a second 

metaphor, the teacher’s role is to guide students in developing their own voices in 
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mathematical discourse, collaboratively building ideas based on their own inquiry and 

experience; a role known as the “guide on the side” metaphor (Davis & Maher, 1997). 

Forman and Ansell (2001) found that, within one classroom, conflicting perspectives on 

mathematics could be observed in the talk of one elementary school teacher. When 

leading discussions of student strategies for solving multiplication problems, this teacher 

would respond to non-traditional student-developed strategies with delight, and would 

expound upon such strategies through revoicing. On the other hand, when students 

suggested the use of a traditional multiplication algorithm, the teacher would refrain from 

revoicing or even explaining the algorithm. The steps of traditional algorithms were 

merely allowed to be demonstrated, the teacher discounted such strategies as “confusing . 

. . to a lot of people,” and explained that when she was a student, such standard 

algorithms were all that she was allowed to use. Although the teacher commented that 

traditional algorithms should be taught when students had a greater understanding of 

place value, it is interesting that her response to what she might call a lack of agency in 

her own experience was to discourage her own students’ choice to use standard 

algorithms. 

Student Roles in Classroom Discourse 

The shift in a teacher’s role from sage on a stage to guide on the side has had 

serious implications for the nature of teacher talk in the mathematics classroom. Even 

greater, however, are the implications for the mathematics student’s role in discourse. In 

respect to the I-R-E pattern, Mehan (1979) stated, “As a result of the teacher’s search for 

the one correct answer to her question, it is difficult to determine whether [a] child’s 

answer stemmed from a mastery of the conceptual demands of the academic task, or 

   



 30

stemmed from a mastery of the conversation demands of the questioning style” (p. 293). 

In an effort to shake students from focusing simply on teacher reactions, teachers have 

been encouraged to question all student replies, asking students to explain both correct 

and incorrect answers. Despite these efforts to encourage students to focus on the 

mathematics rather than the questioning style, some students continue to expect the I-R-E 

pattern in mathematical discourse. Bills (2000) studied politeness in student-teacher 

interactions and suggested that, although teachers may ask sincere questions or questions 

designed to help the student to examine their thinking and deepen their understanding, 

some students react to such questions as politely masked signals of their incorrect 

thinking. Implicit conventions of discourse such as “the teacher only interrupts when I’ve 

done something wrong” may be considered meta-discursive rules (Sfard, 2001), or 

unspoken social rules that govern mathematical discourse in many classrooms.   

Conversational maxims, such as the assumption that given information is 

sufficient or relevant, may also be considered examples of discursive meta-rules that 

reflect each participant’s role in the social context. As verbal mathematical discourse 

cannot be separated from the social context, the goal of mathematical discourse cannot be 

viewed as simply a negotiation of meaning or usage. Learners’ relationships to each other 

and their ideas about mathematics and learning will also affect the way in which language 

is used. For example, a student may expect his instructor to have a deep understanding of 

mathematical concepts that the student is describing, and therefore accept vague 

definitions of mathematical concepts given by the instructor as sufficient (Ferrari, 2004). 

In the presence of such a wide variety of unspoken meta-rules with social and 

mathematical purposes, it is no wonder that students may misunderstand their instructors’ 
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intentions in engaging them in mathematical discourse. At an even greater disadvantage 

may be the students who encounter drastically different discourse patterns, with different 

unspoken rules, at home (Zevenbergen, 2000). Ben-Yehuda et al. (2005) analyzed 

differences in the arithmetical discourse of two girls with learning difficulties and 

suggested that students’ capacities for mathematical reasoning may be unrealized or 

undeveloped due to these students’ failure to appropriate endorsed forms of mathematical 

discourse. 

A New Definition of Discourse and Learning 

 In 1990, Lampert used the writings of Lakatos (1976) and Polya (1954) to 

reintroduce the value of the moral qualities of courage and modesty in mathematical 

discourse. Lampert and her elementary school students provided an existence proof for 

new teacher-student interactions that involved students in the mathematical activities of 

knowing, thinking, revising, and explaining in a classroom where the legitimacy of 

mathematical ideas was determined by reasoning and mathematical argument. Along 

with this new view of classroom discourse came a realization that teaching students how 

to participate in mathematical discourse involved teaching them new social behaviors. 

Cobb, Wood, and Yackel (1993) recognized that two kinds of talk could be observed in a 

second grade mathematics classroom, talking about mathematics, in which students 

verbalized and evaluated their own interpretations of, reasoning about, and solution 

processes for mathematical problems, and talking about talking about mathematics, 

which consisted in explicit instruction and commentary on the former type of talk. The 

socially negotiated meta-rules of talking about mathematics were explicated in talking 

about talking about mathematics. These studies (Cobb, Wood, & Yackel, 1993; Lampert, 
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1990) suggested that student roles in mathematical discourse do not have to be implicitly 

taught or learned; rather, they can and should be explicitly suggested, modeled, and 

negotiated by teachers and students alike. 

 Although Lampert (1990) appeared to embrace what would eventually be called 

the participationist view of learning by Sfard (2001), Lampert also recognized that 

evidence that elementary school students were capable of participation in such 

mathematical discourse may not be sufficient for those interested in measuring 

knowledge acquired by her students. Nevertheless, a new type of discourse and new 

possibilities were up for consideration. Having broken free from the traditional 

constraints of I-R-E patterns, this new discourse has been much more rich and interesting 

for researchers to study. Even the smallest details, such as students’ claims that a 

trapezoid is “half of a parallelogram” (Moschkovich, 2003, p. 329) are no longer framed 

as misconceptions to be remedied, but powerful commentaries on students’ ability to 

notice properties, generalize, and participate in a process of linguistic invention as they 

operate on language to create meaning (Brown, 2001).  

Pronouns, Power, and Politeness 

 The use of pronouns in mathematical discourse has provided powerful 

commentaries on beliefs about mathematics and power relationships in mathematics 

classrooms. Like definitions of mathematical discourse, characterizations of these beliefs 

and relationships have also evolved as research and practice have mutually contributed to 

one another. For example, the figurative use of “we” by a teacher has been identified as 

associating with a powerful group, or feigning solidarity (Pimm, 1987; Rowland, 1999). 

Ju and Kwon (2007) have suggested an alternative interpretation for a teacher’s use of 
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“we” in modern classrooms as referring in a literal sense to the students and teachers in 

the classroom, therefore generating a sense of “authorship and ownership” among  the 

community of learners for the ideas that they had collaboratively developed.  While 

teachers may refer to students as “you” in the literal sense, Rowland (1999) observed that 

students rarely refer to teachers in a reciprocal manner.  

 The figurative use of “you” as a replacement for the general “one” has been 

associated with generalization (Rowland, 1999). More currently, this figurative use of 

“you” by a student has been interpreted as a commentary on mathematics as an accessible 

practice, while the third person “it” and “that” obscure the role of agency in mathematics 

(Morgan, 2006). Wagner (2007) also associated the use of “I” with the concept of 

agency. Inspired by Fairclough’s (1992) notion of critical language awareness, Wagner 

(2007) led discussions in an 11th grade mathematics classroom regarding the use of 

language in mathematics textbooks and explanations. The 11th grade participants 

recognized a general use of “you” and “we” as “an attempt to bridge a diversity of 

perspectives” (p. 42), which may be a more positively framed interpretation of the 

findings of Pimm and Rowland on the use of “we,” or a reflection of how mathematical 

discourse has changed in comparison to those earlier findings. 

 Continuing in the tradition of critical discourse analysis, researchers have taken a 

closer look at discourse practices that may deny students’ access to discourse. Motivated 

by student comments on mathematical discourse, Wagner and Herbal-Eisenmann (2008) 

focus on relationships between discourse particles such as the word “just” and the nature 

of subsequent dialogue in mathematics classrooms. Studies of classroom discourse have 

focused on sociolinguistic factors such as markers of politeness as well as process and 
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continuity. For example, the phrase, “you know,” at the end of an explanation may 

indicate positive politeness between students to establish common ground, while an 

utterance preceded by, “I think,” may have the opposite effect, therefore distinguishing 

one’s thoughts from those that have already been expressed. In undergraduate student-led 

discussions, “I think,” has been identified as a marker of continuity, which allows a 

participant to make a comment that may not relate directly to the previous comment, yet 

contributes or responds to an overarching topic of discussion (Craig & Sanusi, 2003). 

Additional Social Factors and Implications 

 In 1987, Kagan hypothesized that there may be a link between the ability to 

“produce divergent responses to open-ended problems and the ability to perceive others 

in divergent ways” (p. 183). In order to further investigate “the social implications of 

higher level thinking skills,” she suggested that researchers reach out from their home 

field of study to collaborate with those in other fields. Researchers in mathematics 

education have built extensively on the work of the psychologists Piaget and Vygotsky in 

the development of learning theories. As discussed earlier, Piaget (1997/1896) and 

Vygotsky (1986/1934) also studied different forms of speech. Mathematics educators 

have applied the notions of private and social speech in analysis of the mathematical 

discourse of young children (Alexander, White, & Daugherty, 1997). 

Even when their intent is to study other topics such as individual cognition, 

mathematics educators are having a difficult time ignoring the social aspects of 

mathematical discourse (Cobb, Wood, & Yackel, 1993). Jirotkova and Littler (2003) 

found that two students participating in a communication task involving verbal 

descriptions of geometric solids differed in their social tendencies to build models of each 

   



 35

other’s thinking. One student would ask the other questions intended to determine how 

that student was using the terms “square” and “rectangle,” and upon determining that her 

co-participant’s meaning for such terms was different than her own, adapted her own 

language accordingly in order to collaborate effectively. This same student, however, 

rephrased the language and questions of the researcher with more precise language, in a 

possible demonstration of Goffman’s (1981) notion of footing.  The other student made 

no such attempts to modify his language. Although both students had comparable scores 

in their mathematics class, this exercise in verbal communication revealed drastic 

differences in both language and social competence. 

Another linguistic notion that has gained importance in the analysis of 

mathematical discourse is Bakhtin’s (1981) notion of dialogic discourses. After Bakhtin, 

Lewis and Ketter (2004) define a dialogic conversation as “one in which there is an 

awareness of other utterances and social meanings” (p.118). Lewis and Ketter apply their 

definition to a group of practicing teachers in a study group for the teaching of multi-

cultural literature in a rural middle school. Their view of learning as “appropriation and 

reconstruction of one’s social world” implies that the echo of one participant’s social 

view in the language of another participant may be a powerful indicator of generative 

activity (p. 140). In concluding this section, I note that the presence of dialogism in 

mathematical discourse may be a key element for defining productive mathematical 

discourse in the future. 

The Role of Personal Experience in Mathematics Learning 

 The use of personal experience in graph interpretation and reasoning about rates 

of change is the first topic of the literature reviewed here. Reform efforts in mathematics 
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education have attempted to replicate the authentic activity of graph interpretation in the 

mathematics classroom, emphasizing the “need to move beyond plotting and reading 

points to interpreting the global meaning of a graph and the functional relationship that it 

describes” (Dugdale, 1993, p. 101). Graphical representations have also played a major 

role in calculus instruction, specifically for purposes of demonstrating the relationship 

between functions and their derivatives (Zandieh, 2000).  

 A second, related topic of this section is the study of mathematics, particularly 

calculus, in the context of kinematics. The relationship between displacement and 

velocity has become a prototypical context for the investigation of the concept of 

derivative (Marrongelle, 2004; Zandieh, 2000). The context of the task in this study is not 

one of velocity and displacement, but the rate of flow of water and quantity of water in a 

reservoir. Nevertheless, I review literature related to student thinking about the velocity-

displacement relationship for three reasons. First, I consider the implications of drawing 

on personal experience to develop meaning for mathematical concepts to be relevant to 

my theoretical perspective of personal agency and meaning, specifically the agentive 

explanatory factor of experience and imagination. Second, previous to their work on the 

rate of flow and volume task, the participants in thus study spent 10 class sessions 

(approximately 16.5 hours) working on two tasks that are set in the context of 

displacement and velocity. Literature relevant to these two tasks, “The Desert Motion 

Task” (diSessa, Hammer, Sherin, & Kolpakowski, 1991), and “The Cat Task” (Speiser & 

Walter, 1994, 1996; Speiser, Walter, & Maher, 2003) is discussed below. Third, the 

participants in this study used the language of “velocity” and “displacement” as they 

participated in analogical reasoning about their given task. I conclude this section with an 
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abbreviated review of the wealth of literature on metaphor, metonymy, and analogy 

pertinent to mathematics education in general and to this study in particular. 

Graph Interpretation 

 Studies of graph interpretation have suggested that personal experience with the 

situation represented by graphs may either help or hinder students’ interpretations 

(Johnson, 2005; Leinhardt, Zaslavsky, & Stein, 1990; Roth, 2002). Students in the middle 

grades were found to exhibit “iconic interpretation,” or the interpretation of a graph as a 

picture of an event (Leinhardt et al., 1990). For example, students creating 

representations of a cyclist riding up and down a hill have suggested that the graph of 

speed versus time may be incorrect, because decreasing speed followed by increasing 

speed has the appearance of the shape of a valley between two hills, implying that the 

cyclist rode down a hill, and then up another hill (diSessa et al., 1991). Dugdale (1993) 

reviewed ways in which technology can create graphs of student action, resulting in 

students having immediate prior personal experience with the interpretation of the graph 

(see also Nemirovsky, 1994). These graph-creating technologies can also allow students 

to “test out” their interpretations of a given graph by acting out (and creating a graph of) 

the story that they told for the given graph. Roth (2002) reported that working 

professionals outperformed teaching professionals when asked to “read” a graph 

describing an event in their field. Roth suggested that the working professionals’ 

performance was better because they were more familiar with the phenomena that the 

graphs described. 

 Ochs, Gonzales, and Jacoby (1996) described how members of a physics research 

group would incorporate the conventions of the graphical representations of physical 
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phenomena into their gestures as they reasoned about such phenomena. For example, a 

physicist would accompany the phrase “come down [in temperature]” with a hand 

moving from right to left (p. 356). In the physical world, “down” is often associated with 

a falling vertical motion. But within the semiotic frame (Goodwin, 2000) of graphical 

representations, the direction of “down” may be determined by a vertical or horizontal 

axis. The physicists in the study were using a graph that represented temperature on the 

horizontal axis, and incorporated this convention into their discourse. The physicists also 

exhibited a discourse pattern of personal pronominal subjects combined with predicates 

of motion or change of state, as in the utterance, “When I come down I'm in the domain 

state” (p. 331). Ochs et al. suggested that such language functioned as a linguistic device 

that allowed the physicists to “symbolically participate in events” (p. 348) as they thought 

through problems together.  

 Walter and Johnson (2007) investigated the language of practicing elementary 

school teachers as they interpreted a graph of the rate of water entering a reservoir with 

respect to time. These participants spontaneously resituated the problem in the context of 

water entering and exiting a bathtub, and participated in a process of linguistic invention 

to create a story that would explain the given graph. The created story about a bathtub, 

along with abstract conventional language, served as a semantic warrant for the teachers’ 

claims about the volume, or level of water in the bathtub. Walter and Johnson defined 

linguistic invention as the linguistic process of relating mathematical concepts to personal 

experience. They defined semantic warrants as “personally meaningful, intuitive 

instantiations of mathematical concepts or examples to ground and reason from in 

building formal inferences” (p. 709; see also Weber & Alcock, 2004).  
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Velocity and Displacement in the Mathematics Classroom 

 There is not a lot of research available regarding students’ interpretations of 

graphs of water flow in mathematical contexts (Dugdale, 1993; Gerson & Walter, 2008; 

Walter & Johnson, 2007). However, many authors (diSessa et al., 1991; Marrongelle, 

2004; Nemirovsky, 1994; Sherin, 2000; Speiser & Walter, 1994, 1996; Speiser et al., 

2003; Zandieh, 2000; Zandieh & Knapp, 2006) have researched students’ interpretations 

and representations of motion, specifically relationships between distance, time, and 

velocity. Zandieh (2000) suggested that the widespread use of velocity as an instructional 

context for derivative may be due to the highly developed natural language used to 

express the ideas of displacement, velocity, and even acceleration. As experience with 

motion is common, students as young as 6th grade have demonstrated the potential of 

addressing sophisticated ideas about the relationships between time, displacement, and 

velocity (diSessa et al., 1991). Set in the context of inventing representations for verbal 

descriptions of motion, these students concluded that each of the three aspects generally 

used to describe motion, (speed, distance, and time) can be derived from information 

about the other two aspects. Therefore, a representation independently showing speed, 

distance, and time, was considered redundant by these young students. DiSessa et al. also 

observed that students preferred graphs of speed versus time to distance versus time, 

suggesting a natural inclination to treat speed as a primary quantity, rather than a rate of 

change of the primary quantity of distance. This preference of speed to distance was also 

reported by Nemirovsky (1994) in his paper about an 11th grade student who, with the aid 

of computer-based motion detector, created and interpreted graphs representing the 

motion of a toy car.  
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 In their work on “The Cat Task,” Speiser and Walter (1994, 1996) and Speiser et 

al. (2003) suggested that the implications of basing calculus instruction in authentic data 

may be substantial. University faculty and high school students were given a sequence of 

time-lapse photographs of a cat in motion (Muybridge, 1985/1885) and were asked to 

draw conclusions about the motion of a cat at given points in time corresponding to given 

photographs in the sequence. The role of students’ personal experiences with motion, 

both embodied and observed, in comprehending the relationships between position, 

velocity, and acceleration, was examined as a vehicle for sophisticated mathematical 

activity. Motivated by the comments of the various participants, these authors challenged 

one of the major traditions of calculus instruction, that of assuming continuity of 

functions.  

 The assumption of continuity of functions in traditional instructional approaches 

for the concept of derivative is not a minor one. The 6th grade students in diSessa et al. 

(1991) criticized discrete representations as not showing “what’s between the lines” (p. 

137). Nemirovsky (1994) identified additional tensions between experienced reality and 

the conventions of mathematical representations. The notion of negative velocity on a 

graph is problematic because, unlike other contexts involving rate of change (inflow and 

outflow, for example), there is no “naturally” positive direction for displacement. 

Furthermore, representing negative velocity on a velocity versus time graph results in the 

complication of interpreting decreasing velocity in the upper half-plane as decreasing 

speed, but decreasing velocity in the lower half-plane as increasing speed. The idea of 

negative velocity, combined with the assumption of continuity, suggests the existence of 

a point of zero velocity when one-dimensional motion changes direction. However, the 
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6th graders in diSessa et al. suggested that “instantaneous stopping” was a contradiction 

of terms (p. 146). 

Metonymy, Metaphor, and Analogy 

 Zandieh (2000) describes four contexts in which the concept of derivative is 

commonly represented. These contexts are (1) graphically as a slope, (2) verbally as a 

rate of change, (3) physically as velocity, and (4) symbolically as the limit of the 

difference quotient. Recognizing Zandieh’s list as not exhaustive, but a possible 

framework for evaluating student understanding, Zandieh and Knapp (2006) observed the 

roles of metonymy and metaphor in student reasoning about the derivative. For example, 

a student’s statement that “the derivative is the velocity” or “the derivative is the slope” 

would be considered paradigmatic metonymy, because one context of Zandieh’s 

framework is taken to stand for the entire concept of derivative. Presmeg (1992, 1997) 

recognized the widespread use of paradigmatic metonymy in mathematical statements 

such as “let a be any number,” where a single member of a set is used to represent a 

whole set.   

Following established literary theory, Zandieh and Knapp (2006) view metaphor 

as differing from metonymy in that metaphor compares entities from two different 

conceptual domains, while metonymy compares two entities from the same conceptual 

domain. Therefore, a student speaking of a derivative as velocity would be using 

metonymy, because velocity is an example of a derivative. On the other hand, a student 

using their knowledge of derivative as velocity to reason about the instantaneous rate of 

change of temperature would be applying metaphorical reasoning because they are 
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comparing two different contexts where one context cannot be considered a sub-context 

of the other. 

Presmeg (1997, 1992) defined metaphor, metonymies, and similes as different 

forms of analogy. Metaphor and simile differ in their explicitness; a metaphor states that 

“A is B,” while a simile states that “A is like B.” In both cases, A is not the same entity as 

B, but the comparison is implicit in the case of metaphor, and explicit in the case of 

simile. Presmeg also characterized metonymy as pertaining to symbolism and metaphor 

as pertaining to meaning. Metonymies are primarily concerned with the representation of 

a class by way of one or a small collection of key members of that class. Metaphors on 

the other hand, allow one to reason about one class (the target) by referring to knowledge 

of a different class (the source). As demonstrated by Zandieh and Knapp (2006), a 

metaphor can also operate within a class, where one member of a class (velocity as a 

derivative) can be used to reason about another member of that class (the rate of change 

of temperature as a derivative).  

Although Presmeg (1997) viewed metaphor as one type of analogy, Sfard (1997) 

suggested that metaphors be viewed as distinct from analogies in a specific way. While 

analogy may be used to reason about relationships between two extant domains or 

contexts, Sfard suggested that the term “metaphor” should be reserved for the specific act 

of creating a new domain by projecting the characteristics of previously constructed 

domain onto observed phenomena. For example, Sfard explains the emergence of 

negative numbers as the metaphorical projection of the existing positive numbers onto the 

set of symbols that included “impossible subtractions . . . such as 3-8 or 0-2” (p. 345). 

Sfard suggest that analogies are for reasoning, and metaphors are for conceptualizing. In 
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the context of derivatives, I suggest that Sfard would consider a student’s projection of 

the qualities of velocity onto the known, but slightly less familiar, context of the rate of 

change of temperature a case of analogical reasoning, while a student’s projection of the 

qualities of velocity to conceptualize the (new to the student) idea of rate of change of 

temperature would be a case of metaphorical construction. Therefore, the distinction 

between a student’s use of metaphor and a student’s use of analogy would be entirely 

dependent upon that student’s prior exposure to, or reification of, the target domain.  

For the purposes of this study, I use the term analogy to refer to the identification 

of similar qualities, properties, or internal relationships of two different domains, and 

analogical reasoning to refer to all observed cases of the linguistic projection of the 

characteristics of one domain onto another domain. When relevant, I suggest that the 

specific forms of metaphor, metonymy, and simile may be present in the data, and 

reference the respective definitions in which I may base my claims. As I continue to view 

metaphor, metonymy, and simile as different forms of analogy, I conclude this section 

with a short review of literature on analogical problem solving. 

 Alexander, Willson, White, and Fuqua (1987), developed a Test of Analogical 

Reasoning in Children around four performance components for completing classical 

analogy problems of the form A:B::C:?. These components are encoding, inferring, 

mapping, and applying. Encoding refers to identification of the given terms A, B, and C. 

Inferring is the process of identifying relationships between A and B in the source 

domain. Mapping is the step of identifying a connection or similarity between A in the 

source domain and C in the target domain. Finally, applying refers to the appropriate 
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application of the relationship A:B to identify an entity D, represented by the question 

mark, within the target domain so that C and D exhibit a relationship C:D. 

 Gholson, Smither, Buhrman, Duncan, and Price (1997), in a review of literature 

on analogical problem solving, or the process of solving a new problem by mapping it to 

a previously solved problem, concluded that four steps are generally recognized in the 

problem solving process. First, a solution to the original (base) problem in the source 

domain must be obtained. Second, correspondences must be noticed and identified 

between the base problem in the source domain and the new problem in the target 

domain. Third, the pertinent features of the base problem and solution must be 

recognized and retrieved. Fourth, these features must be mapped to the target domain, 

and the solution carried out. The four steps seem to include the components identified by 

Alexander et al. (1987) in a broader frame that allows for the solutions of more complex 

problems. 

 Gholson et al. (1997), however, remarked that an additional step is often required 

in the practical application of problem solving. Due to the fact that the pertinent features 

of different problems are not always isomorphic, analogical problem solving 

pragmatically involves a step of modification. A learner may attempt to modify and 

resolve the base problem in the source domain, make modifications during the process of 

mapping from the source domain to the target domain, or modify the solution process 

within the target domain after the process of mapping. The failure of analogical problem 

solving may be explained in terms of failure to complete one or more of the four original 

steps, or a failure to notice the need for or make appropriate modifications. 
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 English (1997) proposed, as a direction for future research, the investigation of 

students’ natural inclinations to use analogical linguistic forms as vehicles for 

mathematical reasoning. This study responds to English’s proposition as it describes data 

in which students use analogical problem solving methods and analogical language 

without prior instruction. This study also focuses on a relatively new context, that of rate 

of flow and volume of water, for the development of the concept of derivative, and how 

students spontaneously connect this new context to the more widely studied context of 

velocity and displacement, as well as other relevant phenomena in their personal 

experience.  

Along with describing the role of personal experience as an explanatory factor for 

choices made in mathematical discourse, I also describe how the additional explanatory 

factors of one’s meaning for social roles and responsibilities, and one’s concern for their 

own understanding of the mathematics are also reflected in the process of negotiating 

mathematical meaning and language. In doing so, I suggest new ways of characterizing 

mathematical language and social speech. Finally, this study contributes to the ongoing 

process of defining mathematical discourse by suggesting how evidence of the exercise 

of personal agency (Walter & Gerson, 2007) might serve as a criterion for defining 

mathematical discourse. 
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CHAPTER 4: METHOD 

In this section, I describe the setting, participants, task, and data collection 

procedures for this study. I then explain how I combined grounded theory techniques 

with other qualitative methods as I used my data to develop two sets of codes for 

characterizing the process of negotiation of meaning in terms of my continua of 

conventional and mathematical language and egocentric and social speech. The 

development of these codes then led to the development of more complex codes based on 

emergent phenomena in the data. 

Setting 

 This study takes place in a university honors introductory calculus classroom at a 

large private university in the Rocky Mountain Region of the United States. About 20 

students met with two professors three mornings a week for two hours throughout the 

Fall Semester of 2006. Students sat at hexagonal tables in groups of four or five. 

Learning was task-based and investigative, and the students spent the majority of their 

time in class participating in small group and whole class working discussions about 

challenging mathematics problems and related mathematical concepts. A working 

discussion is characterized by progress toward shaping a solution for a designated task 

interlaced with discussion of goals, definitions, and implications of specific plans of 

action toward a solution process. 

Participants 

The research participants are four university students enrolled in the calculus 

course that sat and worked together as a group, and one of two co-instructors for the 

course. At the time of the course, Daniel was a sophomore majoring in actuarial science 
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who took a statistics course and Advanced Placement calculus courses in high school. 

Jamie was a senior majoring in Geology who had previously taken a first-semester 

calculus course from another instructor at the same university. Julie was in her first 

semester at the university and was planning to major in mathematics education. Justin 

was a junior who had not declared a course of study but expressed interest in engineering, 

mathematics, and mathematics education. Dr. Walter was an assistant professor at the 

university who taught secondary mathematics for 13 years in public schools before 

completing her doctoral work and joining the university faculty.  

After a month of working together, the participants appeared to work comfortably 

with one another, as well as in the presence of a video camera.  In their discussions, the 

students posed and answered questions about the current task, and often developed and 

recounted verbal explanations with the help of graphs and other inscriptions. The 

participants were careful not to interrupt one another and would pause in their 

explanations to check for understanding and agreement by other members in the group. 

The mood was never very heavy, and the students would joke with one another and laugh 

at intervals throughout their discussions. 

The Quabbin Reservoir Task 

On October 18, 2006, the participants had a working discussion of the Quabbin 

Reservoir Task (Figure 3), which the instructors adapted from Hughes-Hallett et al. 

(1994). In the task, the participants are given graphs of inflow and outflow of water in a 

reservoir over the period of one year, and asked describe and create graphs of the volume 

of water in the reservoir for that year. 
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 It should be noted that, prior to the instructors’ decision to adapt the Quabbin 

Reservoir Task for use in the calculus class described here, the Quabbin Reservoir graph 

originally appeared at another university as part of a calculus assessment item in which 

students were asked to justify whether there was more water in the reservoir in January 

1993 or January 1994. Hughes-Hallett et al. incorporated the task into a Calculus 

textbook as an exercise, asking slightly different questions. In this study, the instructors 

of the calculus course adapted the Quabbin Reservoir Task based on the previous work 

and emergent ideas of the students in the course.  

The Quabbin Reservoir in the western part of Massachusetts provides 
most of Boston’s water. The graph below represents the flow of water in and out 
of the Quabbin Reservoir throughout 1993. 

 
 a. Sketch a possible graph for the quantity of water in the reservoir, as a function 
of time. 
 b. Explain the changes in the quantity of water in the reservoir in terms of the 
relationships between outflow and inflow during each quarter of the year. How 
are these changes evident in your graph in part (a)? 

 

Figure 3. Quabbin Reservoir Task. 

 The Quabbin Reservoir Task was given to the students in the calculus course on a 

sheet of paper as shown in Appendix A. The students had no previous experience with 

the Quabbin Reservoir Task, and were given no additional instruction beyond the 

instructions printed on the task sheet. The instructors’ purpose in using the task in this 

course was not as an assessment or exercise, but for developing students’ conceptual 

   



 49

understandings of the derivative in a new context. The instructors also anticipated that the 

Quabbin Reservoir Task would elicit discussion of important calculus concepts such as 

anti-derivatives, extrema, concavity, points of inflection, and an interpretation of the area 

between curves. As mentioned earlier, the participants had previously spent 10 class 

periods working on tasks set in contexts of motion, and had interpreted velocity as the 

rate of change of displacement with respect to time. What became problematic for these 

students, then, was determining how to interpret the relationship between the given 

graphs of inflow and outflow and the desired graph of quantity, and connecting this 

relationship to their previous interpretations of the derivative as an instantaneous rate of 

change.   

Data Collection 

A team of graduate and undergraduate student researchers videotaped each 

classroom session. The student at the camera focused primarily on the discourse of the 

focus group mentioned previously, except in instances of group presentations and whole 

class discussions. During such presentations and discussions, the camera operator would 

focus on capturing the words and inscriptions of students at the white board and any 

questions directed toward those students. If members of the focus group engaged in 

mathematical conversations with each other during whole-class discussions or student 

presentations, the camera operator was faced with the decision of determining whether 

the conversation of the focus group or the activity of the larger class discussion was more 

relevant to the research interests of the research team. Thus, although the camera was 

placed in the classroom to capture as much detail as possible, the creation of video data 

by nature resulted in an edited version of the actual events that occurred in the classroom. 
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During the collection of the data presented in the next chapter, the participants’ 

discussion was not interrupted by any whole class activity. However, there were stretches 

of time when the participants would hold two separate conversations simultaneously. In 

these instances, although the microphone could capture the overlapping talk of the two 

conversations, for the sake of continuity the camera operator focused on the interactions, 

gestures and inscriptions of just one conversation for the duration of the overlapping 

conversations.  

As part of their regular coursework, the participants were required to submit a 

written summary of their solution and solution process, along with brief narratives of 

their developmental understandings of key mathematical ideas that emerged for them 

individually, in group work, or in class discussion of the task. These student write-ups 

served along with the video as sources of data. 

Along with my presence as a student researcher in the classroom, survey 

responses and a follow-up interview also informed my analysis in peripheral ways. The 

participants completed an initial survey about their beliefs on mathematics, mathematics 

learning, and responsibilities of teachers and students at the beginning of this course. I 

present some of the responses from this initial survey at the beginning of Chapter 5 to aid 

the reader in developing a sense for Justin’s meaning for mathematics and social roles 

and responsibilities in a mathematics classroom.  

Most of the participants were quite vocal in the mathematical discourse, providing 

ample opportunities for analysis of their language use in the negotiation of meaning. 

Julie, however, was not as vocal (see Appendix B for information about the amount of 

participation in discourse) and analysis of her language left me with many questions. For 
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this reason, I conducted a follow-up interview with Julie during the final stages of 

analysis. During this interview, I showed Julie a ten-minute segment of video and asked 

if she could elaborate on what her intent was in making a particular statement in that 

video. As this interview occurred nearly two years after the original data was collected, 

Julie admitted that she was not entirely certain of her intent. However, her statements in 

this interview seemed to support, and did not contradict, emergent explanations based on 

the video data. 

Transcript Creation and Conventions 

I transcribed approximately one hour of video from the first full day of the 

participants’ work on the Quabbin Reservoir Task. As the participants often created and 

referred to their inscriptions as part of their discussion, I used photocopies of these 

inscriptions to help clarify and annotate utterances in the transcript. Research team 

members verified the transcript. 

In creating and annotating the transcript, the following conventions were used. 

Interrupted speech is notated by a hyphen (-) at the point of the interruption. The next line 

of transcript indicates the interrupting portion. If the interrupted speech is continued, the 

next line with the same speaker begins with a hyphen (-) to indicate this continuation. 

Gestures are shown in normal font in square brackets. My personal interpretations as to 

the referents of pronouns used in discourse are also in square brackets, but in italicized 

text. Pauses in speech are also notated in square brackets by the number of seconds of the 

pause, for example: [2 sec]. 

For navigation purposes, I labeled references in the transcript to specific intervals 

on the graph according to letter labels developed by Daniel late in the transcript. As 
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shown in Figure 4, Daniel labeled January 1993 as point A; B was the first “zero point,” 

at the first intersection of the inflow and outflow; C was at April; D was approximately at 

the maximum of the inflow; E was at either July or the second zero point; F was at 

October; and G was at January 1994. 

 
Figure 4. Daniel’s letter labels for the horizontal axis.  

I originally separated the transcript into turns, or segments of uninterrupted 

speech by a speaker. Exceptionally long turns (greater than 30 seconds) were broken into 

smaller segments at natural pauses in speech or changes in topic. For example, Turn 58 

(below) is an uninterrupted segment of Daniel’s speech that describes related ideas.  

58 Daniel: So, it has a negative slope. And then it starts going positive up to that 
point [point E, July, on the rate graph]. And so it levels off at zero [point 
E, July, on the volume graph]. Cause the v-, the v- [1 sec] I don’t know 
what you call that. The velocity of the flow of the water or something? 
The velocity of this is zero. [2 sec]  Which is correct on our velocity 
chart. And then it starts going negative again. And it starts, kind of, 
sloping out. And it has, its greatest slope is right here [point F, October, 
on the original graph], so that’s its inflection point [point F, October, on 
the volume graph]. 
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However, as eventual coding and data analysis focused more closely on individual 

words and phrases, the length of this turn obscured the detail of the coding. Therefore, I 

broke this turn into two parts, 58a and 58b. The choice of where to split the turn was 

based on the natural change in Daniel’s attention to different intervals on the graph when 

he finishes describing the point where the “velocity of the flow of the water is zero,” and 

then begins describing the next interval on the graph, where “[the velocity] starts going 

negative again.” The majority of long turns occurred in similar situations in which the 

participants were describing the shapes of various graphs or narrating the changes in the 

graph with respect to time. Verbal cues such as Daniel’s “and then” helped me to 

determine when narrative speech was moving forward to describe the next interval of the 

graph and I used these verbal cues to break turns into smaller portions when necessary. 

58a Daniel: So, it has a negative slope. And then it starts going positive up to that 
point [point E, July, on the rate graph]. And so it levels off at zero [point 
E, July, on the volume graph]. Cause the v-, the v- [1 sec] I don’t know 
what you call that. The velocity of the flow of the water or something? 
The velocity of this is zero. [2 sec]  Which is correct on our velocity 
chart.  

58b Daniel: And then it starts going negative again. And it starts, kind of, sloping out. 
And it has, its greatest slope is right here [point F, October, on the 
original graph], so that’s its inflection point [point F, October, on the 
volume graph]. 

 
I used Transana software (Fassnacht & Woods, 2008) to link each of these shorter 

turns in transcript to corresponding video clips. When all of the turns were 30 seconds or 

less, I named these new segments of transcript “clips,” both to be consistent with the 

convention of Transana, and also as a way of reminding myself of the importance of 

using transcript to aid my analysis of my primary source of video data, rather than 

demoting the video to the secondary position of merely supporting my analysis of the 

written transcript.  
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Data Analysis 

 I combined grounded theory methodology (Strauss & Corbin, 1998) with my 

original interests in social and egocentric speech and conventional and ordinary 

mathematical language to conduct a constant comparative analysis of the data. Grounded 

theory methodology implies the use of codes to interpret data. Open codes were initially 

used to identify and delineate categories of language use and events in mathematical 

discourse. As subcategories developed within open codes, I identified relationships 

between different subcategories, which led to the development of new codes and coding 

cycles. As I continuously reviewed my data during these coding cycles, I identified 

patterns and processes in the negotiation of mathematical meaning. I also focused in on 

codes that I felt were most difficult to explain, viewing apparent contradictions in coding 

and data as opportunities for me to take a different or closer look at the data. In the 

following section, I describe two initial sets of open codes that were based on my 

theoretical perspective. 

Pronoun Codes 

As I was interested in the role of egocentric and social speech in mathematical 

discourse, I initially attempted to code the various clips as involving either egocentric or 

social speech. However, I soon found this coding process quite arbitrary and subjective as 

it was difficult to determine whether a speaker was attempting to “place himself at the 

point of view of the hearer” (Piaget, 1997/1896, p. 9). To further confound matters, the 

participants in my study were so attentive to one another that even if a comment was 

made with no designated “hearer,” the other participants treated the comment as if it were 

social speech and, “hearing” each other, would attempt to interpret or respond to the 
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comment. For example, Daniel’s coining of the phrase “concavitivi-ness-es” appeared to 

be a verbal accompaniment of a personal attempt to label his graph, or an instance of 

“thinking out loud.” However, Jamie, upon hearing Daniel’s supposedly egocentric 

speech commented “Good word!” which was responded to by Daniel with, “I like to 

make up words.” I reasoned that if I was aware of the participants’ attentiveness to one 

another, they were probably also aware of the fact that virtually nothing they ever said 

would go unnoticed by the other participants. Justin’s singing, “Inflection, flection, 

what’s your-” seemed related to Piaget’s repetitive “echolalia” (p. 12) category of 

egocentric speech,  but when Jamie and Daniel chimed in “-flection,” they revealed that, 

even if Justin had intended to sing for his own benefit, he definitely had an audience. On 

the other hand, Julie would often make quiet statements that could have been interpreted 

as her personal summary of the current discussion, or a request for verification of her 

summary of the current discussion. Piaget had identified social and egocentric speech in 

terms of the intent of the speaker, and at this point in my analysis I did not feel as though 

I was familiar enough with my data to draw conclusions about the intents of my 

participants. For this reason, I abandoned the notion of objectively coding social speech 

and egocentric speech. In Chapters 6 and 7, I describe how other emergent codes revealed 

ways in which these participants chose language that reflected the point of view of the 

hearer, suggesting that these participants used social speech in specific ways in the 

process of negotiation of meaning. 

One thing that I felt could be coded a little more objectively in this initial process 

of getting to know my data was the actual words used in clips of discourse. I anticipated 

that first, second, and third person pronoun use might be indicative of types of speech 
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related to certain varieties of social and egocentric speech. For example, the literal use of 

you, as in “you worked backwards [to solve the problem]” might serve as strong evidence 

of the speaker taking on the point of view of the hearer. Therefore, my first set of codes 

described the use of pronouns in each clip. (A list of pronoun codes and the number of 

clips in which they occurred can be found in Appendix C).  

Impersonal pronouns with a known or unknown referent were coded according to 

their form. Personal pronouns, specifically “I” and “you” were coded according to their 

referent. If “I” was used to refer to the speaker, this was coded as “I-personal.” If “I” was 

used to express the imagined speech of a mathematical object, this was coded as “I-

personifying.”  There were similarly two types of “they;” “they-inanimate” referred to 

mathematical objects as in “where they [the lines on the graph] meet,” and “they” 

referred to known or unknown human beings as in “they gave us this graph.” Four codes 

for “you” emerged from the data. “You-the hearer” was the most common form of you, 

as in “Will you explain it to me?” When “you-the hearer” was directed at multiple 

hearers, as in “you guys,” these instances were also coded as “you-plural.” Another form 

of “you” was present in the data, which did not seem to refer to any particular participant 

in the discussion, but rather appeared to function as the word “one” functions in “this is 

what one does.” Although the participants never used “one” in this manner in the data, 

there were many instances of “you” in the same function, as in “this is what you do.” 

Clips including this general use of “you” were coded as “you-one.” Finally, there was a 

form of “you-personified” that paralleled “I-personified,” in that it functioned as if one 

were speaking to a mathematical object. These personal pronoun codes were also applied 

to their possessive adjective forms (my, your, our, their, her, his). These forms were 
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reflected in the codes by the additional assignment of the “possessive” code to clips of 

discourse in which they occurred. 

Vocabulary Codes 

As I was also interested in the role of conventional and ordinary language in the 

negotiation of mathematical meaning, I coded significant vocabulary words that were 

used to describe the mathematical concepts and process in the discourse. In nearly 900 

clips of video data, 183 vocabulary codes emerged. A list of these codes and their 

frequencies can be seen in Appendix D.  These codes were developed based on specific 

words in their various grammatical forms and functions. For example, one code, “flow,” 

was assigned to both noun and verb functions as well as the various verb forms such as 

“flowing.” Individual codes were developed for words that were unique to the data, such 

as “positivity.” Although there already were codes for “positive,” and “negative,” I 

considered Daniel’s unique use of “positivity,” and “negativity,” to be important in the 

development of mathematical language and meaning through discourse. 

In the next chapter I describe how I built upon these two initial sets of codes to 

create new sets of codes that reflected the emerging phenomena in the data, and then used 

all of my codes to construct narratives of the negotiation of meaning. 
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CHAPTER 5: DATA AND ANALYSIS 

 I used grounded theory techniques to build upon my pronoun codes and 

vocabulary codes to develop additional sets of codes. In this chapter, I describe the 

development of concept codes, which may be considered axial codes in that they help to 

identify relationships between the various vocabulary codes. I also describe the 

emergence of a set of language awareness codes that reflected the participants’ subtle 

verbal cues and more explicit acknowledgements of their participation in processes of 

negotiation. I finish this chapter by briefly describing how the presence of language 

awareness codes in an eight minute long segment of the video data that I named “The 

Gospel According to Justin,” directed a comparative analysis of concept codes and 

vocabulary codes which resulted in the construction of three narratives of the negotiation 

of meaning. These narratives are primarily told through the language of Justin, and 

converge in his language choices in “The Gospel According to Justin.” Because the 

narratives suggest how Justin’s (1) experiences and imagination, (2) meaning for social 

roles and responsibilities, and (3) mathematical understandings may explain his choices 

in discourse, this section begins with a review of peripheral data about Justin that 

informed analysis. After presenting this peripheral data, I also orient the reader with a 

timeline and short descriptions of major segments of discourse. 

Justin’s Initial Participant Survey 

 On the first day of the calculus course, all of the participants were asked to 

complete a background information survey. This survey asked the participants what they 

like most about mathematics. Justin’s response was, “Unlike some other fields of study, 

the solutions to problems in math are definite and exact.  There may be an infinite 
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number of solutions but that is itself a definite answer.  In most cases, personal bias does 

not play a factor in math.” When asked to list three qualities of an excellent mathematics 

learner, Justin listed, “patience,” “keeping it simple,” and “humility.” He said that, of 

these three qualities, patience was the quality he considered his strength, and “keeping it 

simple” was the area in which he was the weakest. He wrote, “I definitely have a problem 

keeping things simple.  I always want to make things more difficult than they need to be, 

which almost always complicates the problem and makes discovering the solution all that 

much more difficult.” In the data presented here, Justin makes choices that simplify and 

organize the language and ideas encountered in mathematical discourse. 

 When asked on the initial survey what he felt were the responsibilities of a student 

in the course, Justin replied, “Learn, pay attention, teach, and not disturb the learning 

atmosphere of others.” Justin expressed hesitancy about group work, listing it as the thing 

he found least appealing about mathematics. He wrote, “Unfortunately, I’m not a big fan 

of working in groups.  But, since this class appears to work extensively in groups I’m just 

gonna have to deal with it and learn to like it.  I have a hard time trusting the work that 

other people do or trusting that they will do the work asked of them.  It’s a bad habit, but 

I need to work on it so this should be a good class for me.” Over the course of the 

semester, Justin emerged as a co-operative leader in his group. He would organize group 

activity, asking the group where they currently were and where they were going. 

Initial Work on the Quabbin Reservoir Task 

Although I have focused my analysis on student discourse from October 18, 2006, 

some details from the previous class period, October 16, 2006, are particularly relevant to 

my results. With approximately 20 minutes remaining in the 2 hour class period on 

   



 60

October 16, the participants were given the Quabbin Reservoir Task, with the only verbal 

instruction being to “spend the remainder of class time working on this and then your 

homework is not necessarily to finish this, but maybe think through and work on it.”  

Making Sense 

 During these initial 20 minutes of collaboration on the task, the participants’ 

language suggests that their choices were guided by the general principle of “making 

sense.” Daniel initially sketched a graph of volume (Figure 5), Julie sketched a graph that 

averaged the values of the inflow and outflow graphs (Figure 6), and Justin used his pen 

as a measuring tool to sketch a graph of the difference between the values of the inflow 

and outflow graphs (Figure 7).  

 

Figure 5. Daniel’s graph of volume sketched underneath the original graph. 

 

   



 61

Figure 6. Julie’s graph (reproduction). 

In the transcript that follows, Justin explains to Andrew, a student who was absent 

for the next class period and therefore not a participant in the major portion of data 

analyzed here, that it “makes the most sense,” to subtract the outflow from the inflow, 

rather than the other way around. 

 Justin: It would just depend on how you look at it. If you want to take, let’s see. 
You would take the inflow minus the outflow. You have to decide if you 
want it to be the inflow minus the outflow or the outflow minus the inflow. 

 Andrew: Mm hmm. 
 Justin: So probably go with inflow minus outflow because that makes the most 

sense. 
 Andrew: Okay. 
 
 The majority of the discussion among the participants was toward the goal of 

determining how the graphs that they had constructed were related to one another. Justin 

conjectured that Julie’s graph was a vertical translation of Daniel’s graph, and that the 

only difference was the initial amount of volume in the reservoir. Claiming that his graph 

represented the change of water in the reservoir, Justin attempted interpret his graph in 
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terms of relative amounts of water in the reservoir, but abandoned his interpretation 

because it didn’t “make sense.” 

 

Figure 7. Justin’s graph. 

 Justin:  So that’s the change in the water and so it doesn’t really matter how much 
water’s in there, that’s just how much it changes. So if your starting point, 
this is how much water there is [horizontal axis of Justin’s rate graph], after 
your first month it’s going to be well, this point’s lower than what your 
regular is [initial value of Justin’s rate graph]. And then up here it’s [first x-
intercept of Justin’s rate graph], wait no, that doesn’t make sense. Yeah, 
anyways. 

 
 Shortly before the end of the class, Daniel connected Justin’s graph to his own 

graph by comparing the signs of the values on Justin’s rate graph to the signs of the 

slopes of Daniel’s volume graph. Daniel also explained that the maximum value on his 

volume graph corresponded with the second x-intercept on Justin’s rate graph. Because 
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Daniel’s comparisons “made sense,” Justin suggested that he “accidentally” took the 

derivative of Daniel’s graph. 

 Justin: Well that would make sense. So I accidentally took the derivative of that. 
 
 As the participants left the classroom Justin confidently stated that they had 

“accidentally discovered the whole plan of this whole paper [the Quabbin Reservoir 

Task].” Although the current solution may have “made sense” to Justin, there was still 

much recounting, explaining, justifying, and negotiation of meaning and language that 

would take place before the four group members were comfortable with their solution. 

These processes, which primarily involved decisions about language, justification, and 

explanation, all occurred during the second day of work on the Quabbin Reservoir Task, 

which is the data that I focus on in this study.  

Analogical Language 

 During this initial period of work on the task, Justin, Daniel, Jamie, and Andrew 

frequently referred to “velocity graphs” and “displacement graphs.” This choice of 

language may be best explained by the students’ shared experience working on tasks in 

which they had developed the concept of derivative by analyzing situations that involved 

velocity and displacement. Justin appeared to be particularly comfortable with this 

metaphorical language. When the group began to work on the task, Andrew asked about 

the interpretation of the graph given in the task. 

 Andrew: So is this, what is this graph then? Is this a displacement? 
 Justin: It’s rate, rate of flow. So it would be- 
 Andrew: Displacement? 
 Justin: No, it would be like velocity.  
 
 It is interesting that Justin noted that the graph would be “like” velocity, using the 

linguistic device of simile, while Andrew spoke more metaphorically, asking if the graph 
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was “a displacement [graph].”  There were initially comments that “velocity” may not be 

the appropriate term. Daniel, at one point said, “I hesitate to say that. It’s not really 

velocity of the water but . . .” With time, however, comments of this nature began to 

diminish and the participants used the terms “velocity”  when speaking of rates of change 

and “displacement” when speaking of graphs of quantities without reservation. The 

following exchange between Jamie and Daniel demonstrates how the members of the 

group drew on their shared mathematical experiences to create a paradigmatic metonymy 

(Zandieh & Knapp, 2006) of the velocity-displacement relationship to communicate 

about the concept of derivative. 

 Jamie:  But remember how displacement and velocity graphs, velocity graph was 
the derivative of our displacement graph.

 Daniel:  Yeah. 
 Jamie:  So they can’t be, one can’t be, hers can’t be velocity and yours be 

displacement. 
 Daniel:  Why not? 
 Jamie:  ‘Cause they’re the same graph. Yes? No?
 
 In the second day of work on the Quabbin Reservoir Task, the participants 

negotiate language and meaning as they come to a consensus on what their various 

graphs represent, how they want to talk about the graphs, how the graphs are related to 

one another, and how the graphs represent progress toward a solution to the task. 

Overview of Mathematical Discourse  

 Before looking at the second day in detail, I present a chronological storyline of 

the first hour of the second day of discourse about the Quabbin Reservoir Task. This 

storyline breaks the 48 minutes of video data into 14 segments which I named, when 

possible, after key phrases from the student discourse.  The names, duration, and clips 

included in each segment are shown in Table 1. 
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Table 1 
Timeline of Discourse Segments 
Segment Name Clips Duration 
1 Getting Started 21-41 00:48.5 
2 Working Backwards 42-50 00:31.0 
3 Daniel and Julie 49-64 01:33.2 
4 Daniel and Jamie 62-140 04:43.1 
5 The Inflection Idea and the Concave Thing 141-187 02:51.3 
6 Zero Points 188-233 04:02.4 
7 What Are We Trying to Find? 234-283 01:53.1 
8 Language for Quantity 284-329 03:50.5 
9 The Gospel According to Justin 330-452 08:40.6 
10 Monkey Wrench 451-555 05:22.0 
11 Anti-derivative vs. Integral 556-621 03:00.6 
12 Labeling 622-665 01:53.8 
13 Breaking it into Quarters 666-884 08:53.2 
14 Comparing Volumes 885-906 01:38.9 
 
I now provide a brief narrative of the discourse in each segment. 
 

Segment 1: Getting Started 

 The class period begins with a short survey about limits. After the surveys were 

collected and the students commented about how they responded to some of the items on 

the survey, Justin encourages his group to continue their work on the Quabbin Reservoir 

Task by clapping his hands together in front of him and saying, “Let’s go. So, how, what 

did we learn?” Jamie, Daniel, and Justin all admit that they did not work on the task since 

their last class. Justin moves the conversation along by summarizing the work that the 

group had done collectively on the task during the previous class period.   

 This discussion is briefly interrupted as one of the instructors approaches the table 

and informs the group that they will be asked to present on what they feel are “key 

points” of the Quabbin Reservoir Task in approximately 30 minutes.  
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Segment 2: Working Backwards 

 In this short segment, Justin briefly describes his interpretation of what happened 

in the previous class period. He says that he spent his time consolidating the inflow and 

outflow graphs to see what “the derivative will look like,” and that Daniel, Julie, and 

Jamie “worked backwards” to find what the water level would look like. Daniel asks if 

everyone understood this previous work. 

Segment 3: Daniel and Julie  

 As a response to Daniel’s checking for understanding, Julie begins to ask Daniel 

questions about his approach to the task. Assuming that Julie has created a similar graph 

of net rate, Daniel begins to explain how he interpreted the values of the net rate graph as 

slopes of the volume graph. He uses the term “velocity,” speaking of a point where the 

“velocity is zero,” and also identifies the point with the greatest slope as an “inflection 

point.” During this time, Dr. Walter, one of the two professors teaching the course, comes 

to the table and begins to observe the discussion. 

Segment 4: Daniel and Jamie  

 After Daniel has explained the process of creating a net rate graph and a volume 

graph to Julie, Jamie asks Daniel to help her understand “the labeling.” In order to 

explain which graph is which, Daniel recounts the solution process of consolidating the 

inflow and outflow graphs to create a net rate graph. Daniel then re-explains how he used 

the net rate graph, which he calls “the happy flow chart of our velocity” to construct a 

volume graph. Daniel claims that the point with the greatest outflow will be a point of 

inflection. Jamie asks Daniel why she can’t see the point of inflection on his volume 

graph. Daniel emphasizes the shape of the point of inflection as “where it just goes down 
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and then starts to level off.” Daniel says that the inflection point is also “where the 

velocity is the highest.” Later, Daniel also recognizes that an inflection point can be 

where the velocity is the lowest, demonstrating a more complete view of inflection points 

of a function as extrema of the derivative of the function. 

Segment 5: The Inflection Idea and the Concave Thing 

 Julie states that she doesn’t think that she understands the inflection idea. Using 

his previous idea of inflection point as “where the velocity is the highest,” Daniel invites 

Julie to think of riding down a playground slide and imagining where her speed would be 

the highest. Daniel also invites Julie to draw a curve, attempting to “feel” where the curve 

starts “to curve off.” Julie asks if there is a connection between inflection points and 

concavity. Daniel admits that he does not remember “the concave thing,” but Justin 

reaches across the table and identifies the concave down and concave up intervals on the 

curve that Daniel has been drawing. 

Segment 6: Zero Points 

 Julie asks Daniel for some help in refining her volume graph. Daniel identifies 

what he calls “zero points” (conventionally referred to as critical points, or the zeros of 

the derivative function) as important in shaping the volume graph. Dr. Walter, one of the 

two instructors for the calculus course, asks Daniel to clarify what he means by “zero 

points.” Justin, Daniel, and eventually Jamie all voice their interpretations of “zero 

points.” 

Segment 7:  What Are We Trying to Find? 

 Julie states, “I think I’m still confused with the idea that it’s velocity,” sparking a 

discussion of alternative vocabulary for the task. This discussion quickly leads into a 
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discussion of what the goals of the task are. Justin re-reads the instructions for part (a), 

“sketch a possible graph for the quantity of water in the reservoir, as a function of time,” 

and offers his interpretation of what they have been asked to do. 

Segment 8: Language for Quantity 

 The discussion returns to the topic of vocabulary as Dr. Walter asks the students 

to consider appropriate terminology for a graph of quantity of water. After considering 

the fact that the given inflow and outflow graphs are in terms of “millions of gallons per 

day,” Justin concludes that the quantity graph should be in terms of volume. Recalling 

that there is special language for derivatives in the contexts that have been previously 

encountered in the calculus course, Daniel wonders whether there is a special name for 

the “derivative of volume.” 

Segment 9: The Gospel According to Justin 

 As Daniel begins pursuing a name for “the derivative of volume” in his textbook, 

Justin begins an in-depth conversation with Julie about the goals and processes of the 

Quabbin Reservoir Task. Justin calls his explanation, “The Gospel According to Justin.” 

First, Justin explains the process of adding the inflow and outflow graphs together. Next 

he explains how the shape of the net rate graph dictates the shape of the volume graph. 

He describes this process of constructing a function from its derivative as “working 

backwards.” Finally, Justin summarizes his work on the Quabbin Reservoir Task and 

Julie identifies the critical zero points on the rate graph as extrema on the volume graph. 

Segment 10: Monkey Wrench 

 “The Gospel According to Justin” ends as Daniel introduces a “monkey wrench” 

that he has found in the calculus book. In his quest to find an official name for the 
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“derivative of volume,” Daniel has noticed that if you take the derivative of the formula 

for the volume of certain geometric solids, you end up with the formula for the surface 

area of the solid. Although this connection is only true for derivatives with respect to the 

radii of these solids, the participants attempt to interpret surface area as a rate of change 

of volume. They finally give up, partially because they can’t agree on a definition for 

surface area, and partially because they feel as though they would have to know the shape 

of their reservoir in order to implement Daniel’s idea in a useful way.  

Segment 11: Anti-derivative vs. Integral 

 Dr. Walter questions Daniel’s use of the term “anti-derivative,” and asks if “anti-

derivative” is connected to what Justin has described as “working backwards.”  Justin 

comments that he understood anti-derivatives as “integrals.” Basing his description in his 

previous calculus experience, Daniel suggests that “integral” refers to a symbolic process 

of “how you find the anti-derivative.” 

Segment 12: Labeling 

In this segment, the participants decide that the derivative graph should be labeled 

“rate of change in volume” and that the quantity graph should be called a “volume 

graph.” 

Segment 13: Breaking it into Quarters 

The participants move on to part (b) of the Quabbin Reservoir Task, which asks 

them to “Explain the changes in the quantity of water in the reservoir in terms of the 

relationships between outflow and inflow during each quarter of the year,” relating these 

changes to the volume graph that they have created. The students determine that each 
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member of the group should focus on explaining one of the four quarters of the year, 

since there are four quarters, and four group members. 

Segment 14: Comparing Volumes 

 Dr. Walter asks the participants to compare the amount of water in the reservoir 

on January first to the amount of water in the reservoir on April first. Justin begins to 

interpret the area between the inflow and outflow curves on the given graph as volume. 

Development of Concept Codes 

 After coding my data for pronouns, and vocabulary, I hypothesized that the 

participants were using more than one word to communicate similar concepts. I wanted to 

see if I could consolidate my vocabulary codes into concept categories. While reviewing 

the chronological occurrences of codes in discourse, I observed that the term “velocity” 

was used quite frequently (in 29 clips, on average 1.8 clips per minute) for the first 15 

minutes of the discussion, but after that point (clip 277) the term “velocity” was used 

quite sparsely (in only 8 clips for the remaining 33 minutes of discussion, or .25 clips per 

minute). The term “volume,” on the other hand, was not used for the first 15 minutes of 

the discussion, but was used frequently for the remaining 33 minutes (it first appeared in 

clip 286 and continued to appear in an average 1.9 clips per minute for a total of 57 clips 

in the last 33 minutes). Although numerically, “volume” seemed to have filled a role that 

“velocity” may have vacated, this conclusion didn’t seem to agree with my initial reviews 

of the data because it didn’t seem like the two words were analogous in their use. The 

participants generally used velocity to talk about a rate of change of a quantity, but 

volume represented a quantity that wasn’t necessarily changing. It didn’t seem possible 

that the concept of “volume,” could have taken on the conceptual role in discourse 
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formerly filled by “velocity.” I wondered if I could make a collection of words that did 

fulfill certain conceptual roles. To pursue my questions about the role of “velocity,” and 

“volume,” I first tried to determine if there was a collection of words that were used to 

portray the same idea as volume, or more generally, quantity. The words that I initially 

looked at were: amount, displacement, gallons, how much, quantity, volume, water, and 

water level. I wanted to know if these words were being used in a similar way, so I used 

the search function of Transana to find clips where these words were used in conjunction 

with one another. I now examine some of these clips in detail to describe the 

development of concept codes. 

Clip 891  

 I found that the terms “amount,” “gallons,” “volume,”, and “water level,” were all 

used together in clip 891. This clip occurs in Segment 14, when Justin is comparing the 

amount of volume in the reservoir on January first to the amount of volume in the 

reservoir on April first. 

891 Justin: I would say, hmm, they’re probably about equal, like it would be at the 
same, wherever you start, your water level at January first, or your, the 
amount of volume [motioning as in holding a quantity with arms wide], 
excuse me, the uh, millions of gallons, will be approximately the same, 
as in April. 

 
  “Amount” was used in conjunction with “volume,” in the phrase “amount of 

volume.” This amount of volume was static, as it was the amount of volume at one point 

in time, on January first. Justin also uses the terms “water level,” and “millions of 

gallons,” in a sequence with “amount of volume.” Justin often would clarify his language 

by using one word and then providing a series of replacements, or what appeared to be 

synonyms, for the original word. At this point in the analysis, I was unsure whether he 
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intended these to be synonyms for the sake of explanation and richer interpretation, or if 

he considered them to vary in precision or meaning in significant ways.  

Clip 339 

 The search found both “amount” and “water” used in clip 339, when Justin is 

explaining to Julie how he consolidated the inflow and the outflow graphs. 

 339 Justin: So like, so you take the, you start, start with the income, uh, inflow I’m 
sorry, the inflow and you subtract the outflow from that part right, 
that’s gonna give you the amount of water that’s either “coming in” or 
“leaving,” [making quotation marks in the air with his fingers] if it’s 
negative it’s leaving if it’s positive it’s, it’s coming in. 

 
Here Justin uses “amount” in the phrase “amount of water.” Although “amount of water,” 

may seem similar to “amount of volume,” this clip was coded differently from clip 891. 

In clip 891, Justin used “amount of volume” to refer to the volume of water in the 

reservoir at a given time. In clip 339, however, Justin is not referring to the amount of 

water that is in the reservoir, but “the amount of water that’s either ‘coming in,’ or 

‘leaving’” to describe a rate of change or how the volume of the reservoir changes.  The 

use of “amount,” in clip 339 was coded as rate of change in volume, while “amount” in 

clip 891 was coded as volume.  

 Again, in clip 339 we see Justin correct his language, replacing “income,” with 

“inflow,” in a manner that seems somewhat different from clip 891. He is apologetic, as 

if “income,” is inappropriate or confusing for the situation. I considered this another 

example of Justin’s language awareness, making a note that I should definitely return to 

investigate Justin’s language substitutions. These substitutions and other verbal cues were 

later summarized in a set of language awareness codes (see page 78). 
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Clip 260 

 As Justin attempts to explain the goals of part (a) of the Quabbin Reservoir Task, 

he juxtaposes the terms “how much” and “water” in clip 260.  

260 Justin: So they’ve given us a rate of flow graph. Which means it’s telling us how 
much water is entering [pulling right hand to the right in front of body] 
this reservoir and how much it’s filling up [lifting raising right hand 
while holding left hand steady below it], but also how much is leaving 
[pushing right hand away from self to the right] the reservoir at that exact 
same time, and so how much it’s going down [lowering right hand to 
meet left hand held steady]. 

 
 Again, although he refers to a volume of water, Justin describes the particular 

volume of water that represents the change in the overall volume at a given time. Clip 

260 was therefore coded as rate of change in volume. As I reviewed instances of “how 

much” and “amount,” I found that these terms were generally used in conjunction with 

“water is leaving/entering the reservoir” to describe a rate of change of volume rather 

than a specific measurement of volume in the reservoir. 

Clip 281  

 In clip 281, Julie has just stated that rate of flow, or velocity, is not “what they are 

trying to find.” Justin again rephrases his interpretation of the task. 

281 Justin:  No, we’re trying to find, we’re trying to take this graph [points to the 
original graph], they’re telling us how much the water level is changing 
[moving hands together and apart vertically with palms facing] and make 
uh, our “best guess” [making quotation marks in the air with his fingers] 
at what the water level looks like [holding two hands with palms facing 
as before], a graph of how, [drops the left hand and just moves the left 
hand slowly up and down with palm facing downward] the water level 
change over time. Does that make sense? 

 
Justin’s reply suggests that there is a difference between a graph that “tells us how 

much the water level is changing” (his description of the information that was given in 

the problem) and “a graph of . . . the water level change over time” (his description of 
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what they are trying to find). Both descriptions employ the terms “water level,” and 

“change.” These two descriptions may seem like they are descriptions of the same thing, 

and one might question why the other participants respond in the affirmative to Justin’s 

final questions of “Does that make sense?” But closer inspection shows that the first 

description employs the term “how much,” while the second employs “over time.” I 

concluded that these two small terms signal a significant difference in meaning for Justin. 

While both may be used to communicate a change in volume, Justin uses “how much” to 

describe an instantaneous rate of change of volume, and “over time” to describe gradual 

change in water level over a period of time. Just as in clip 260, “how much” was coded as 

rate of change in volume. “Water level change over time,” became the flagship member 

of the newly formed code: change in volume over time. 

Clip 666 

 In clip 666, Justin reads the directions for part (b) of the Quabbin Reservoir task, 

including his own interpretation of the directions. 

666 Justin:  [reading] “Explain the changes in the quantity of water,” or in other 
words, our graph that we just sketched, our millions of gallons graph, our 
“volume” graph [making quotation marks in the air with his fingers], “in 
the reservoir in terms of the relationships between outflow and inflow 
during each quarter of the year. How are these changes evident in your 
graph in part (a)?” 

 
 Clip 666 includes four of my hypothesized volume vocabulary words: “gallons,” 

“quantity,” “volume,” and “water.” In this clip, Justin is reading the instructions to the 

task. The wording of the task is “the changes in the quantity of water,” but Justin 

rephrases the task statement, cueing his interpretation or substitute language with “in 

other words.” He offers three sets of “other words,” which are “our graph that we just 

sketched,” “our millions of gallons graph,” and “our volume graph.” “Gallons” was 
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identified as a substitute, in Justin’s case, for “volume,” and vice versa. Both were 

originally coded as volume, as was “quantity of water.” However, the combination of the 

concept of volume and the modifiers “changes in,” or “graph,” resulted in my recoding 

these phrases, and this clip, as change in volume over time. 

Clips 253 and 254 

 Clips 253 and 254 below are an example of Justin’s use of the term 

“displacement.” He says that the graph of “quantity of water” would be “like a 

displacement graph.” Because Justin does not refer to a given displacement at a given 

time, but in the sense of displacement changing (“going up and down”) with respect to 

the horizontal time axis of the graph, the use of “displacement” as an analog for volume 

in clip 254 was coded as change in volume over time rather than simply volume. 

253 Justin: Alright, well, [part] (a) says “sketch a possible graph of the quantity of 
water in the reservoir as a function of time.”  

254 Justin: So that [the graph asked for in part a] would be the dis-, that would be 
like a displacement graph, right? Quantity of water, whether it’s going 
up and down [raising and lowering hand with the palm facing 
downward]. 

 
Clips 253 and 254 also further demonstrate Justin’s use of the term “quantity.” 

When reading aloud the instructions of the task, Justin uses the term “quantity.” His only 

other uses of the term follow immediately after reading the term from the task, and in 

every one of these instances, he offers substitutes or synonyms for quantity. In clip 254, 

he uses “displacement graph” to express his interpretation of “graph of the quantity of 

water.” Justin’s quantity-evasion habit can also be observed in his Justin’s offering of 

“other words” in clip 666 (shown previously).  
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The codes: volume, rate of change in volume, and change in volume over time, 

(shown in Table 2) developed as a result of this comparative search process for terms that 

I anticipated might be related to the concept of “volume.”  

Table 2 
Three Emerging Concept Codes 

Code  Description  Examples 
Volume  The amount of volume in 

the reservoir. Often at a 
given point in time. 

 “the amount of water in the 
reservoir,” “the quantity of 
water,” “millions of 
gallons,” “volume level,” 
“the volume of the water” 

Rate of change in volume  
 

 An instantaneous rate of 
change.  

 “amount of water that is 
coming in,” “how much 
the water level is 
changing”  

Change in volume over 
time  

 Describes a change in 
volume over a period of 
time, but does not attempt 
to quantify a rate. 

 “volume graph,” “changes 
in quantity of water,” 
“displacement (graph)” 
 

 
 I was surprised to find that “amount,” and “how much” were used by the 

participants to refer to a rate of change in volume in interpreting the information given in 

the inflow and outflow graphs, rather than the amount of water in the reservoir at a given 

time.  I had previously anticipated that the frequently used terms of “rate of flow,” 

“derivative,” and “velocity,” would be more likely candidates to fill the “rate of change” 

role. My next step was to investigate the role of those terms. I searched the transcript for 

clips that included two or more of the following terms: change, flow, gallons per day, 

inflow, outflow, rate, rate of change, rate of flow, and velocity. As before, I analyzed the 

clips containing two or more of these terms to compare and contrast their use. I found 

that some of these terms were used to describe two separate rates of change while others 

described a net rate of change. When terms were used to describe rate of change as a net 
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rate of change they were coded, as before, as rate of change in volume. I also found that, 

similar to the code change in volume over time, the participants also described a changing 

rate of change without attempting to quantify the rate at which the rate was changing. 

These instances were coded as change in rate of change over time. At times the 

participants also spoke of an instantaneous rate of change of rate of change in terms of 

“acceleration.”  

The lengthier of the transcript segments described earlier (Segments 3, 4, 9, and 

14) all involved interval-by-interval descriptions of one or more of three specific graphs. 

First, there was the original graph of inflow and outflow that was given in the task. The 

participants used the graph given in the task to create two new graphs. One was a created 

graph of the net rate of change for the reservoir. The other created graph was a volume 

graph. I coded the participants’ references to each of these graphs as either original 

graph, rate of change graph, or volume graph, respectively. Specific points on these 

graphs also became the subject of much discussion. I coded references to these points as 

rate of change = 0, rate of rate of change = 0, and extrema. For navigational purposes (to 

help me know when the participants were pointing out or referring to specific parts of the 

graph), I also coded references to specific points and parts on the graphs as well as signs 

which were adjectives that appeared in contrasting pairs that seemed to play important 

roles in the negotiation of meaning.  

Refining the Concept Codes 

 A table with descriptions and examples of the concept codes can be found in 

Appendix E. After creating this table, I then collaborated with other members of the 

research team to verify my concept codes. We were not only able to refine these codes, 
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but also were able to define relationships between many of the concept codes and 

vocabulary codes.  The three concept codes of separate rates of change, rate of change in 

volume, and volume, and the corresponding references to the original graph, rate of 

change graph, and volume graph came to represent three frames of references for 

categorizing vocabulary that the participants used to interpret the different intervals of the 

Quabbin Reservoir Graph. For example, the concept of net rate of change=0 from the 

frame of rate of change was concurrently interpreted as either no change in volume in the 

frame of volume or inflow=outflow in the frame of separate rates of change. These 

corresponding interpretations, along with related codes (in italicized text) and student 

language (in quotation marks) are shown in Table 3. These frames of reference eventually 

became a powerful explanatory factor for another set of emergent codes, the Language 

Awareness Codes. 

Table 3 
Organization of Concept Codes and Vocabulary to Reflect Frames of Reference 
  Frames of Reference 

Separate rates of change  
Original graph 

Rate of change  
 Rate of change graph 

Volume  
Volume graph 

Inflow = outflow 
“Where they (inflow and 
outflow) meet” 

Net rate of change = 0 
“Zero points” 

No change in volume/Extrema
“Top and bottom points on 
volume,” “leveling off” 

“The inflow is greater than 
the outflow” 

“Positive velocity” Change in volume over time 
“Increasing in volume” 

“The inflow is less than the 
outflow” 

“Negative velocity” Change in volume over time 
“Decreasing in volume” 

 

Language Awareness Codes  

 As mentioned earlier, I also coded clips in which there appeared to be strong 

evidence of the participants’ own awareness of the choices of language and 

representation that they were making in discourse. I originally used one code, “language 
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awareness,” but this code gradually developed into six other codes. One of these codes is 

Justin’s use of “airquotes” (described as “making quotation marks in the air with his 

fingers” in clips 281, 339, and 666 shown above). I couldn’t explain why Justin was 

making these “airquotes” at the time, or even see a pattern in their use. However, I 

considered them an important element of describing the negotiation of meaning in my 

data because they seemed to represent an underlying commentary by Justin in respect to 

his choice of, and others’ preferences for, specific words and phrases. Justin and the other 

participants’ hesitations in speech, requests for definitions and clarifications, and verbal 

cues such as “in other words” and “so that would be” led to the eventual development of 

the Language Awareness Codes shown in Table 4.   

Example of Building Narratives through Codes 

It was initially difficult to explain the presence of these language awareness 

codes, and I knew that explaining the choices made in discourse would involve a 

complex synthesis of differing variables present in the context of the discourse. For the 

purpose of analysis, I narrowed my focus to the occurrences of language awareness codes 

in the language of Justin in Segment 9: The Gospel According to Justin. Each occurrence 

of a language awareness code pointed me to the surrounding discourse via the relevant 

concept codes and vocabulary codes. This analysis then allowed me to draw conclusions 

about Justin’s choices in discourse as essentially choices between social, mathematical, 

and experiential factors.  

Segment 9: The Gospel According to Justin, begins as Justin and Daniel ask Julie 

“how she is doing” and Julie admits that she is not sure “where [they’re] going.” In the 

following portion of transcript, various pronoun codes can be identified. Justin and 
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Table 4 
Descriptions and Examples of Language Awareness Codes 

Language 
Awareness Code 

Description Examples (Justin is the speaker for 
each example.) 

“airquotes” Justin’s practice of making 
quotation marks in the air 
with his fingers. 

386: And so you know your slope 
of your [making quotation marks 
in air with fingers] “volume 
graph,” the slope is going to be 
negative, right?  
  

value judgment Using language to comment 
on language as good, bad, 
appropriate, or inappropriate 

413: . . . it’s a really bad way to 
say it but that’s the only thing I 
can think of. 
  

hesitation Hesitation in speech that 
includes pauses or repetition 
but no change in vocabulary. 

351: So, this is, this is what I 
came up with [Justin’s net rate 
graph in his notebook]. 
  

substitutes and 
synonyms 

Providing elaboration, 
definitions, examples or 
alternative language to 
communicate meaning for 
precise vocabulary. Usually 
involves parallel structure or 
verbal cues. 
  

264:  This is inflow, so this is how 
much water is coming in . . . 
 
666: “Explain the changes in the 
quantity of water,” or in other 
words, our graph that we just 
sketched . . .  
 

labeling Providing a precise name for 
a concept. Generally follows 
the form X would be Y. May 
be considered the “inverse” 
of substitutes and synonyms 
because labeling generally 
involves a progression from 
more descriptive to more 
precise language, while 
substitutes and synonyms  
generally describes or 
interprets precise language. 
  

327: . . . how fast you’re 
changing your volume would be 
the rate of flow, right? 
 
649: -and so it’d [the anti-
derivative] be your distance 
graph [touching his volume 
graph]. So this [anti-derivative] 
would be considered our volume 
graph [Justin’s volume graph]. 

word search A middle category between 
hesitation and substitutes and 
synonyms, word search 
involves language that 
communicates dissatisfaction 
with the original language, 
and offers different language, 
as though the speaker is 
correcting himself. 

355: And so the water, volume of 
the water is gonna stay the same 
 
254: So that [the graph asked for 
in part a] would be the dis-, that 
would be like a displacement 
graph, right? 
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Daniel exhibit a literal use of “you” (330, 331) in referring to Julie’s personal progress on 

the task. Julie uses “I” and “we” (332) in the literal sense as she admits that she does not 

understand where the collective group is metaphorically “going.” Justin shifts between 

“we” and “I” (333) to indicate that he is giving his personal perspective on the direction 

of group activity. Justin also uses “you” in the general sense as he explains a process for 

combining the inflow graph and the outflow graph (338, 339).  

 From this point in the text on, portions of transcript are presented in five columns. 

The columns show, from left to right, (1) the clip number, (2) the video time code, (3) the 

speaker, (4)  spoken text (with my interpretive annotations in [italic text])  and (5) the 

speaker’s concurrent physical gestures and pointing to graphs and inscriptions.  The fifth 

column of transcript is eliminated in portions of transcript in which physical gestures and 

pointing were not noted. 

330 (0:31:22.4) Daniel: Julie where you at?  
331 (0:31:23.5) Justin: How you doing Julie?  
332 (0:31:25.5) Julie:  Um, I don’t I don’t know. I, I 

still don’t understand where 
we’re going. 

 

333 (0:31:32.9) Justin: What we’re gonna do, let’s see, 
is, this is the way I see it, 
alright? This is the gospel 
according to Justin. 

 

334 (0:31:40.7) Jamie: [laughs]  
335 (0:31:41.4) Justin: Kay, so we’re given this, this 

graph right here right?  
[Justin indicates 
the original graph 
on Julie’s page. It 
is right side up for 
Julie, but upside 
down from his 
point of view] 

   It gives us an outflow graph  [tracing outflow 
graph roughly 
from left to right 
with pencil tip] 
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   and an inflow graph.  [tracing inflow 
graph from right 
to left with pencil 
tip] 

336 (0:31:48.0) Julie: Right.  
337 (0:31:48.5) Justin: Now, to me, you can’t really do 

much when you want to know 
how, what the volume of the 
water is, with those two graphs 
separate. 

 

338 (0:31:54.2) Justin: So, what I’m thinking to do is to 
add them [inflow and outflow] 
together, so you take the 
difference between the two 
points, right? 

 

339 (0:32:03.3) Justin: So like, so you take the, you 
start, start with the income, uh, 
inflow I’m sorry, the inflow and 
you subtract the outflow from 
that part right, that’s gonna give 
you the amount of water that’s  

[tracing the 
vertical axis on the 
original graph 
between the 
inflow and the 
horizontal axis] 

   either “coming in” or “leaving,”  [airquotes] 
   if it’s negative it’s leaving if it’s 

positive it’s, it’s coming in. 
 

340 (0:32:23.7) Justin: Does that make sense?  
 
 Of particular interest in this first portion of “the gospel” is Justin’s use of what I 

have labeled “airquotes.” I think of these “airquotes” as a way of qualifying one’s choice 

of words. An example in written text would be my use of quotation marks around the 

phrase “the gospel” in this paragraph. In the strictest sense of the term “gospel,” I would 

not consider Justin’s explanation of his work on the Quabbin Reservoir Task a “gospel.” I 

have observed that the term “gospel,” generally applies to religious texts, specifically, the 

first four books of the New Testament. Justin’s explanation is not one of the first four 

books in the New Testament. However, Justin’s explanation does share some qualities of 

the four Gospels in the New Testament. For example, Justin’s explanation is a first 

person narrative of an event. Also, Justin’s narrative, like the first four books of the Old 
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Testament, is not meant to be a synopsis or summary. Rather, it is a detailed account. In 

other words, it is long. I quote Justin when I call his explanation “the gospel,” but my use 

of quotation marks has a purpose beyond avoiding plagiarism. I also use quotation marks 

to imply that I do not necessarily agree that “the gospel” is the most correct term for what 

I am describing, but that I believe it is a term that efficiently communicates an idea that 

might otherwise require an ambiguous label such as “Justin’s Explanation,” or a lengthy 

label such as “Justin’s explanation of his work on the Quabbin Reservoir Task.” Simply 

referring to this portion of transcript as “the gospel,” is more efficient (although later on I 

began referring to this segment simply as Segment 9). 

 The reader may have noticed that I also placed quotation marks around the term 

“airquotes.” Similar to “the gospel,” I use these quotation marks to qualify my choice of 

vocabulary. I originally coded Justin’s uses of “airquotes” as “making quotation marks in 

the air with his fingers.” I found this label to also be lengthy, and not necessarily an 

accurate description of what I was trying to describe. While working with other members 

of the research team, we began to refer to Justin’s gesture as “airquotes.” Therefore, I use 

quotation marks to qualify language that has been effective in my past attempts to 

communicate an idea, yet is language that doesn’t necessarily seem academically 

appropriate. 

 I have just given two examples of how my use of quotations marks in this written 

text is a way of implicitly admitting that I do not believe that I am necessarily using the 

most precise language, but am pragmatically using language that has proven to be 

effective in my past efforts to communicate. The data suggest that Justin’s use of 

airquotes in “the gospel” is also a sign of his conscious choices of effective language that 
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he perhaps recognizes as not completely appropriate. Returning to the transcript, Justin 

demonstrates his use of airquotes in clip 339: 

339 (0:32:03.3) Justin: So like, so you take the, you 
start, start with the income, uh, 
inflow I’m sorry, the inflow and 
you subtract the outflow from 
that part right, that’s gonna give 
you the amount of water that’s 

[tracing the 
vertical axis on the 
original graph 
between the 
inflow and the 
horizontal axis] 

   either “coming in” or “leaving,”  [airquotes] 
   if it’s negative it’s leaving if it’s 

positive it’s, it’s coming in. 
 

 
It was not initially apparent why Justin would need to qualify his use of “coming 

in,” or “leaving.” These are common terms that appear appropriate for the situation. 

These terms had also been used previously in the mathematical discourse with little 

resistance or question. Confused as to why Justin had now began to qualify his use of 

“coming in” and “leaving,” I viewed this moment of confusion as an opportunity for me 

to learn something new about my participants’ reasons for their choices (Leatham, 2006). 

Guided by an assumption that there was a reason for Justin’s use of airquotes I embarked 

on a process of data-guided analysis to develop an explanation for Justin’s choice. 

 Having used my language awareness code of “airquotes” to identify “coming in” 

and “leaving” as vocabulary of interest, I next used my vocabulary codes to investigate 

portions of transcript where Justin and the other participants had used similar vocabulary.  

I then compared the concept codes associated with the portions of transcript and found 

that the participants had used similar vocabulary to communicate slightly different 

concepts. Different language awareness codes and events helped me to understand subtle 

shifts in language that corresponded to these differences in use. These subtle shifts in 
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language became the basis of narratives of the negotiation of meaning for a term that 

Daniel had originally referred to as “zero points.”   

I followed a similar process of investigating Justin’s use of language awareness 

codes in Segment 9: The Gospel Accoring to Justin by tracing the interaction of the 

relevant vocabulary and concept codes to unravel the negotiation of meaning in 

mathematical discourse. The result is three connected narratives of the negotiation of 

meaning and language for (1) points of inflection and concavity, (2) “zero points” 

(critical points), and (3) the analogical problem solving process that related the language 

of “velocity” and “displacement” to “rate of flow” and “volume.” These three narratives 

are presented in the next chapter. 
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CHAPTER 6: RESULTS AND FINDINGS 

 My analysis of “The Gospel According to Justin,” revealed, in Justin’s language, 

echoes of previous segments of discourse. In tracing these echoes back to their sources, I 

uncovered in my data the negotiation of meaning for three conceptually important ideas 

that may be characterized in the conventional language as (1) hypercritical points, (2) 

critical points, and (3) the analogical mappings between contextualized examples of a 

derivative. In the language of our participants, the negotiation of meaning involved the 

terms (1) “inflection” and “concavity,” (2) “zero points,” and (3) “velocity” and 

“volume.” The negotiation of meaning for these three conceptually important ideas was 

interwoven, all finding root in Daniel’s language in Segment 3, and all being echoed in 

Justin’s language in Segment 9. Between Segments 3 and 9, Jamie, Julie, and the 

instructor, Dr. Walter, drive the negotiation of meaning with questions and comments 

about language. In this section, I provide three narratives for the negotiation of meaning 

for these three conceptually important ideas, describing my findings in terms of the three 

agentive explanatory factors of personal experience, mathematical understanding, and 

social roles; as well as social and egocentric speech; and conventional and ordinary 

language.  

Inflection Points: Personal Experience and Personal Pronouns 

 Two different definitions for the conventional term inflection points are 

negotiated, one of inflection point as extrema of the rate of change and another of 

inflection point as the point between concave down and concave up intervals. Daniel 

introduces the idea of inflection points as extrema (Segment 3), and, as a response to 

questions from Jamie (Segment 4) and Julie (Segment 5), uses pronouns and the ordinary 
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language of personal experience to demonstrate how extrema in the original graphs of 

inflow and outflow and his created rate of change graph are reflected in the shape of the 

volume graph. Julie asks how the inflection points are related to “the concave,” another 

term that she has heard in previous discourse, and Justin builds on Daniel’s definition, 

using Daniel’s words and inscriptions, to connect meaning for “inflection point” to 

meaning for “concave.” We gain insight into Justin’s visual meaning for “concave” from 

a question he asks the instructor, and then observe Justin use the terms “concave” and 

“inflection” in “the gospel” (Segment 9) 

Daniel Identifies an “Inflection Point” (Segment 3) 

 When Daniel introduces the term “inflection point,” he speaks of inflection points 

as extrema, saying that an inflection point is where the slope is the greatest.  Daniel 

identifies an inflection point on the original graph, and then on the volume graph. While 

Justin’s choice was to first construct a net rate of change graph from the original graph, 

and then construct a volume graph, Daniel’s gestures reflect how he originally 

constructed his volume graph directly from the original graphs of rates of inflow and 

outflow. Later, upon noticing how the other participants created net rate graphs as an 

intermediate graph between the original graph and the volume graph, Daniel also 

constructed a net rate (or “velocity”) graph of his own (Figure 8).  

58b (0:13:50.1) Daniel: And it has, its greatest slope 
is right here,

[point F, October, on 
the original graph]

   so that’s its inflection point [point F, October, on 
the volume graph].
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Original Graph 

Volume Graph 

                         
Rate Graph 

 

Figure 8. Daniel’s graphs. 

A “Normal” Inflection Point (Segment 4) 

 When Daniel describes the shape of the volume graph to Jamie, his description of 

an inflection point changes. He formerly described an inflection point as the point of 

“greatest slope,” but now he identifies an inflection point as “when it has the most 

outflow,” terminology that reflects the idea of separate rates of change. Looking to the 

volume graph as a representation of water level, Daniel also describes an inflection point 

as where the volume graph “comes down and starts to level off.” 

106 (0:17:05.3) Daniel: It goes negative  [tracing the rate graph 
from E to F] 

   and then that point up there  [point F on the original 
graph] 

   is when it has the most 
outflow, I believe.

 

107  Jamie: Um hmm.  
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108 (0:17:14.9) Daniel: That’s your inflection parts. 
That’s when it goes like 
whoop.  

[Daniel draws a line 
with negative slope 
which first becomes 
more negative and 
then more positive]

   Hmm. Like that part right 
there. So that’s, like, then it 
comes down 

[the volume graph 
from E to F] 

   and starts to level off, kind 
of, like the water level.

[the volume graph 
from F to G] 

 
Although Daniel has just described what a point of inflection looks like on a 

volume graph, Jamie asks Daniel why she can’t see the point of inflection on his volume 

graph.  

109 (0:17:29.1) Jamie: Okay so why isn’t this 
inflection point 

[point F on the 
original graph]

   really reflected anywhere on 
this part of the graph? 

[circling the area 
around point F on the 
volume graph]

 
 A point of highest velocity, or highest rate, is a salient feature as the maximum on 

a rate graph. To the untrained eye, however, a point of inflection is not a particularly 

salient feature on the graph of a function. Daniel recognizes that inflection points are 

“hard to draw,” and emphasizes the shape of an inflection point by drawing a prototypical 

inflection point (Figure 9). Although Daniel has been speaking primarily in the third 

person “it” to refer to the graph, he now personifies the graph, using the first person “I.” 

Daniel, as if speaking for the graph, says, “I’m going down down down” and then “I’m 

leveling off.” Daniel’s falling intonation dramatically recreates the sensation of falling 

down.  

110 (0:17:34.6) Daniel: It, this is hard to draw, like, a 
normal inflection would be 
like, “I’m going down, 
down, down.”[falling 
intonation]

[drawing a line with 
a negative slope that 
becomes more 
negative (Figure 9)] 
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111  Jamie: [laughs]  
112 (0:17:40.3) Daniel: And then it goes, “I’m 

leveling off.” 
[continuing the line 
with the negative 
slope becoming less 
negative] 

 

Figure 9. Reproduction of Daniel’s drawing of a “normal” inflection point. 

 Daniel summarizes his example by circling the point of inflection (Figure 9), 

describing the point as “where it just goes down and then starts to level off,” and then 

describing of a point of inflection in the language of extrema as “the highest velocity that 

you’ll have.” 

113 (0:17:43.3) Daniel: So it’d be like that. Like, that 
would be the inflection point.

[drawing a circle 
(Figure 9) where the 
slope stops 
decreasing and 
begins increasing]

114  Jamie: Kay.  
115 (0:17:46.3) Daniel: Like the point where it just 

goes down and then starts to 
level off.

[drawing another line 
and circling the 
inflection point]

116 (0:17:50.8) Daniel: This is the highest velocity 
that you’ll have.

 

 
 It is not until Jamie attempts to identify the same inflection point on the rate 

graph that Daniel admits that an inflection point can also be where the velocity is the 
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lowest, demonstrating a more complete view of inflection points of a function as extrema 

of the derivative of the function. 

124 (0:18:17.8) Jamie: So is this inflection point  [F on the original 
graph] 

   [inaudible]? [pointing to the 
corresponding 
portion of Daniel’s 
volume graph]

125 (0:18:20.0) Daniel: Oh yeah. so I guess that it 
should be the most negative 
here, be like that, and then it 
starts, like that’s the lowest 
velocity it ever gets.

[drawing a 
minimum at 
October on the rate 
graph] 

 

The Slide Example (Segment 5) 

Julie, who generally works patiently on her own, but often asks important 

clarifying questions about the group’s approach to the task, asks Daniel to clarify what he 

means by point of inflection. Daniel hesitates at first as to how he should structure his 

explanation, but then refers to the common human experience of riding on a playground 

slide to help Julie see what he means by an inflection point being “where the velocity is 

the highest.” 

141 (0:19:13.7) Julie: I don’t think I understand the 
inflection idea. 

 

142 (0:19:19.1) Daniel: Okay, so if you’re, like, 
here’s kind of an, idea, okay. 
So if you’re drawing, a 
curve. Um, like, you just. 
Ah. 

 

143 (0:19:32.9) Daniel: Okay, so the inflection point 
is where the velocity is the 
highest, 

 

144 (0:19:37.3) Daniel: so, like, if it, if you were like 
going on a slide and if 
you’re falling down on it, 
your speed would be 

[Drawing a curve 
similar to Figure 9, 
shown in Figure 10] 

   



 92

increasing, you’d be going 
like down really really 
quick- 

145  Julie: Um hm.  
146 (0:19:48.3) Daniel: Then at some point you’d 

start to level off. And where 
would your velocity be 
highest? 

 

147 (0:19:53.4) Julie: Right there. Before you 
[inaudible] 

[pointing with pencil]

148 (0:19:55.7) Daniel: Yeah, like, before you start 
to slope off. 

[pointing with his 
pencil, Figure 10] 

149 (0:19:59.2) Daniel: Yeah, that’s just the 
inflection point. Like where 
the velocity is highest. 

 

150  Julie: Okay.  
 

 

Figure 10. Identifying “the point where you start to level off.” 

 In a process of linguistic invention (Walter & Johnson, 2007), Daniel skillfully 

combines his meaning for the mathematical concept of a point of inflection as extrema of 

the derivative or “velocity” graph with a common human experience in which “highest 

velocity” can be pinpointed in the form of a kinesthetic sensation. There is an element of 

iconic interpretation (Leinhardt, Zaslavsky & Stein, 1990), as the shape of the inflection 
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point that Daniel draws also looks like the shape of a playground slide. I do not consider 

this a negative form of iconic interpretation, as it is not so much the shape of the curve, 

but Daniel’s definition of an inflection point as where “the velocity is the highest” that 

justifies the location of the inflection point. 

Daniel’s use of the second person pronoun “you” (144-146) may be interpreted as 

a general form of “you” that is replaceable with the general “one” as in “if one were 

going on a slide.” However, the sense of the pronoun is not entirely general, because 

Daniel also holds Julie as the responsible referent of “you” when he asks her, “where 

would your velocity be the highest?” Because of the personal nature of the embodied 

sensation of maximum, I view this use of “you” as a more personal use, intended to invite 

Julie to participate in recalling her own personal experience. In doing so, Daniel 

demonstrates his awareness of Julie as a participant in such an experience.  

Drawing a Curve (Segment 5) 

Daniel offers another example to help Julie recognize how the point of inflection 

as an extreme value of rate or slope (velocity) is reflected in the shape of a function. He 

invites her to draw a curve and “feel the point where you start to curve off,” offering Julie 

an additional opportunity to “feel” a point of inflection within the convenience of the 

mathematics classroom. Again, Daniel’s use of “you” may be in a general sense, as if 

anyone can draw the curve and feel the inflection point, but in the context of an invitation 

to act, his use of “you” takes on a slightly more personal sense. Once again, Daniel 

animates his action, speaking in the first person as if he were the curve, or riding down 

the curve as a slide.  
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151 (0:20:05.0) Daniel: Like if you were to draw, like 
a line, like you can kind of feel 
the point where you start to 
curve off.

[drawing more 
decreasing curves 
similar to Figures 9 
and 10.] 

152  Julie: Right.  
153 (0:20:13.0) Daniel: Cause you’re like drawing and 

AHHH!
 

154  Julie: [laughs]  
155 (0:20:14.4) Daniel: Like “I’m falling” and then 

“whew!”
 

 
Connecting Inflection to Concavity (Segment 5) 

 Julie uses Daniel’s description of inflection point to attempt to connect it to 

“concave,” another term that has emerged in conjunction with the term “point of 

inflection” in a recent whole-class discussion. Julie asks, “And so, when you were talking 

before, the inflection point did, did the concave, right? Did it start the concave or was that 

the point of . . .” Julie’s speech fades off, and Daniel admits that he does not remember 

“the concave thing.” Jamie chimes in with a rhyme about concavity, “concave down like 

a frown, concave up like a cup.” Laughing at Jamie’s rhyme, possibly because he may 

have learned a similar pneumonic device in his own previous calculus class, Justin helps 

Daniel to understand the idea of concavity in terms of points of inflection. 

165 (0:20:41.0) Justin: [laughing at Jamie’s rhyme] 
So concave down, like that, 

[drawing a parabolic 
curve opening down 
on the curve Daniel 
has drawn (Figure 
11)] 

   that’s concave down.  
166  Daniel: Um hm.  
167 (0:20:44.3) Justin: -and this is concave up,  [drawing a parabolic 

curve opening up on 
the curve that Daniel 
has drawn] 

   and so they [concave down 
and concave up]-

 

168  Daniel: Ohh!  
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169 (0:20:46.3) Justin: -change at that point of 
inflection.

 

170  Daniel: Ohhh! That’s smart.  
171 (0:20:48.6) Justin: So that’s what you’re try-, 

that’s what you’re saying, the 
point, that’s, the veloc-, the 
velocity’s the highest at that 
point of inflection on a 
displacement graph.

 

172  Daniel: Oh, okay.  
173 (0:20:58.0) Julie: So it’s where they change.  

 

 

Figure 11. Justin’s addition of concave up and concave down “parabolas”  
to Daniel’s point of inflection. 

 The most remarkable portion of this section of transcript is the way that Justin 

builds on Daniel’s previously stated ideas on inflection. Rather than create a new diagram 

to demonstrate concavity, Justin highlights the concave down and concave up portions 

that already exist in the representation created by Daniel (Figure 11). Furthermore, 

although Justin adds the idea that concave down and concave up “change at that point of 

inflection,” he also returns Daniel’s words to him in his explanation, saying “that’s what 

you’re saying . . . the velocity’s the highest at that point of inflection on a displacement 
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graph.” Justin’s use of “you” is literal, because Daniel literally has been saying that a 

point of inflection is where “the velocity’s the highest.” Although Justin does not always 

identify whose language he is repeating in further discussion as he does here, he does 

continue to echo his peer’s language in the negotiation of meaning many times in this 

study as evidence of his awareness of, and meaning for, his peers.  

Justin’s Question: Concave Right? (Segment 5) 

 Justin provides additional insight into his understanding of concavity when he 

turns to his instructor and asks about the correct way to characterize the concavity of a 

parabola opening to the right. 

182 (0:21:22.6) Justin: Just out of curiosity Dr. 
Walter, if they had a, if you 
have a curve like this, would 
it be concave right? 

[shows Dr. Walter a 
curve he has drawn 
that looks like a 
parabola opening to 
the right] 

   Or is it still concave down  [the top half of the 
curve] 

   and concave up? [the bottom half of 
the curve] 

 
 The instructor explains that, although the curve that Justin has drawn does not 

represent a function, the concavity of the curve would most likely be described as 

concave down and concave up. Justin thanks the instructor and says no more on the 

subject. His question, however, is interesting in that the idea of “concave right” portrays 

concavity as a physical characteristic of a curve, with no explicit connection to slope or 

rate of change. Had the participants attempted to interpret concavity in terms of velocity 

or rate of change, the notion of “concave right” for a parabola opening to the right may 

have led to an interesting discussion. As this discussion did not happen, I can only say 
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that Justin’s meaning for concavity was related to the visual shape of a parabolic curve 

opening in a certain direction. 

 Clip 182 demonstrates another unique use of pronouns in Justin’s language. He 

speaks of “they” when he says, if “they had a curve,” but corrects his language, replacing 

“they” with “you.” Analysis of others instances of Justin’s use of “they” and “you” 

reveals that Justin generally uses the animate “they” to refer to the creators of the 

Quabbin Reservoir Task, as in “they’ve given us this graph.” Justin most often uses 

“you” in the general sense in explaining mathematical activity as in “you subtract this 

distance.” This instance of “you” may be an exception to his general use, as Justin 

specifically replaces “they” with “you.” A possible interpretation may be that Justin 

identifies Dr. Walter with the creators of the task and so the referent of “they” becomes 

“you” as Justin realizes that the person to whom he was addressing his question may be 

the literal referent of “they.” Another possible interpretation is that Justin uses “they” to 

refer to the community of mathematicians, and recognizes Dr. Walter as a member of that 

community. Although there is not sufficient data to draw a firm conclusion as to why 

Justin substitutes “you” for “they,” this may be an example of an instructor playing the 

role of the more experienced participant in mathematical discourse who is better able to 

inform Justin as to how conventional language of mathematics is used (Lampert, 1990). 

Inflection and Concavity in “the Gospel” (Segment 9) 

 Later, as Justin is using the net rate graph to explain the shape of the volume 

graph to Julie in Segment 9, he interweaves the two definitions for points of inflection, 

referring to Daniel’s idea of extrema in rate of change (velocity) when looking at the rate 
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graph, and building on his own idea of switching back and forth between concave up and 

concave down intervals on the volume graph (displacement graph) (Figure 12). 

399 (0:36:39.4) Justin: So it’s [the volume graph] 
going concave up right here  

[after the first 
minimum on the 
volume graph 
(Figure 12)]

   because it [the rate graph] 
keeps on getting higher and 
higher and higher 

[after first x-intercept 
on net rate graph] 

   and so it [the volume graph] 
keeps on raising faster and 
faster and faster 

[approaching the first 
point of inflection on 
the volume graph]

   until it [the volume graph] 
gets to that inflection point, 
this point right here. 

[first inflection point 
on volume graph, 
first maximum on 
rate graph] 

400 (0:36:49.6) Julie: Okay.  
401 (0:36:50.6) Justin: And then all of the sudden, 

it’s [the volume graph] still 
rising, 

[right after the first 
maximum on the rate 
graph] 

   but it’s going, it’s rising 
gradually slower and so it 
[the volume graph] starts 
concaving down, right?

[right after the first 
inflection point on 
the volume graph] 

402 (0:36:58.6) Julie: Okay.  
 

 Just as Daniel used the repetition of “down, down, down” to emphasize the idea 

of increasing speed in his earlier description of an inflection point in the context of a 

playground slide, Justin repeats, “higher and higher and higher” to portray increasing 

values on the rate graph, and correspondingly, “faster and faster and faster” to convey the 

idea of increasing rate of change, or slope, on the volume graph. Justin describes this 

interval of “concaving up” on the volume graph as leading up to the inflection point, 

which he identifies as extrema on the rate graph. Following the inflection point, 

decreasing rate, observed as a decreasing interval on the rate graph, is described as 

“concaving down” on the volume graph. More examples of Justin’s descriptions of the 
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shape of the volume graph1 can be observed in the full transcript of Segment 9, found in 

Appendix F. 

 

     

Figure 12. Justin’s “velocity” (rate) graph (left) and “displacement” (volume) graph 
(right). 

 Zero Points: Shifting Frames of Reference to Reflect Experience 

 In Chapter 5, I described how my initial investigation of Segment 9 drew my 

attention to Justin’s use of airquotes in the phrase “the amount of water that’s either 

‘coming in’ or ‘leaving’” (339). I followed my vocabulary codes, tracing Justin’s use of 

“coming in” to Daniel’s use of similar vocabulary in the negotiation of meaning for the 

                                                 
1 Justin’s explanation of the second inflection point is not as smoothly navigated, and at the end of his 
explanation, Justin comments that his language “is a really bad way to say it.” This final portion of the 
graph may be one of the more difficult portions to describe because the volume is decreasing while the rate 
is increasing. If the volume were increasing and the rate increasing, one could say that the volume is 
increasing at an increasing rate. Here, however, it is difficult to determine whether one should say that the 
volume is decreasing at an increasing rate or decreasing at a decreasing rate. In the sense of becoming more 
positive, the rate is increasing. In the sense of directionless rate, or speed, one might say that the rate is 
decreasing because it is getting closer and closer to a rate of zero. (For example, one may be driving their 
car in reverse slower and slower and slower). Similar student reactions to the concept of signed velocity are 
reported in Johnson (2005) and Nemirovsky (1994). 
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term “zero points” (Segment 6). This comparison of vocabulary and concept codes 

revealed that the frames of reference of separate rates of change, rate of change in 

volume, and volume played a role in how this vocabulary was interpreted by the 

participants. Here, I tell the story of negotiation of meaning in chronological order, 

beginning with Daniel’s initial recognition of the importance of “zero” (Segments 3 and 

4) and offering the sequence of data that led me to an eventual interpretation of Justin’s 

use of airquotes in “the gospel.”  

Daniel Identifies a Zero (Segments 3 and 4) 

Returning again to Segment 3, we first see Daniel speak of zero in his statement 

that the volume graph “levels off at zero.”  

58a (0:13:50.1) Daniel: So, it has a negative slope. 
And then it starts going 
positive up to that point.  

[point E, July, on the 
rate graph] 

   And so it levels off at zero. 
  

[point E, July, on the 
volume graph] 

   Cause the v-, the v- [1 sec]  
   I don’t know what you call 

that. The velocity of the flow 
of the water or something? 
The velocity of this is zero. 
[2 sec]  

[point E on the 
volume graph] 

   Which is correct on our 
velocity chart. 

[point E on the rate 
graph] 

 
 Although he has difficulty explaining exactly what is zero, Daniel recognizes that 

the zeros of the rate graph play an important role in the shape of the volume graph. The 

idea of leveling off at zero reoccurs often in Daniel’s language, accompanied by various 

conventional terms that might be associated with the idea of rate of change (Zandieh, 

2000), such as “tangent” and “slope,” and some less conventional language such as “rate 

of positivity.” 
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Original Graph 

Volume Graph 

                         
Rate Graph 

Figure 13. Daniel’s graphs. 

91 (0:16:09.4) Daniel: And then it hits zero, so like 
your tangent there would be 
zero. 

[volume graph at B] 

   And then it starts going to 
positive to this point.   

[volume graph from 
B to E] 

   Like it stops going positive 
here.  

[rate graph at E, 
July] 

   Like this is the rate of 
positivity . . . 

[rate graph from B 
to E] 

 
 
 

97 (0:16:37.7) Daniel: -then it starts to go to a zero in 
positivity in its growth. 

[rate graph from D 
to E] 

98  Jamie: Okay.  
99 (0:16:43.0) Daniel: So it, it slopes out. [volume graph at E] 

 

Coining and Clarifying “Zero Points” (Segment 6) 

 Daniel coins the term “zero points,” as he helps Julie identify the intercepts of her 

rate graph. Daniel is much more detailed, focusing the negotiation of meaning, as he 

helps Julie to recognize what a zero point looks like. Using the original graph as a guide 
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in creating the volume graph, Daniel identifies the points where the inflow and outflow 

meet as zero points. The equality of inflow and outflow results in the water level 

remaining constant. “So,” reasons Daniel, “where the inflow and the outflow meet are . . . 

zero points.”  

201 (0:22:49.3) Daniel: . . . Okay, this [point E on the original graph] is 
where the inflow equals the outflow, right? 

202  Julie: Um hm. 
203 (0:23:00.0) Daniel: And so the velocity there equals zero, right? 

Cause like, there’s neither inflow, there’s not 
water coming in, nor is there water coming out.

204 (0:23:15.6) Julie: Right. 
205 (0:23:15.7) Daniel: I mean, like there is, but they’re equal, so the 

water level isn’t actually changing. 
206 (0:23:20.5) Julie: Okay. So how’s this gonna look? 
207 (0:23:25.0) Daniel: So like where the, where the outflow and the 

inflow meet, are gonna be our zero points. 
 
 Although Daniel is being much more explicit about the correlation of the original 

graph and the volume graph, he still has not explicitly identified what the zero points 

have to do with “zero.” At one point (203) he states that the “velocity” is zero, but then 

corrects himself, saying that zero velocity does not necessarily imply zero outflow and 

zero inflow (203, 205). Dr. Walter, who, with the exception of answering Justin’s 

question about concavity (182), has been a silent observer of the conversation, enters the 

conversation by revoicing Daniel’s statement and asking Daniel to clarify what is zero at 

a “zero point.” 

208 (0:23:34.3) Dr. Walter: I don’t understand what you mean, where the 
inflow and the outflow meet you’re gonna 
have zero points. Zero points of what? 

 
 In overlapping speech, Daniel and Justin offer different language for describing 

zero points. Daniel appears to offer “velocity” as a synonym for “the level of water 

overall,” but then stops to think (209). Justin (210) revoices Daniel’s previous language 
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(203, 205) of “where the inflow and outflow meet” to say “where the inflow and outflow 

are the same,” and draws the same conclusion as Daniel, that such a relationship in 

separate rates of change  will be reflected in the frame of change in volume over time as  

“no change in water level.” Justin and Daniel verbally co-construct the idea (215-216) 

that the “velocity,” or net rate graph, demonstrates “zero” because the graph crosses the 

horizontal “x-axis.” This co-constructed idea is justified in two different ways. Justin 

takes a local approach, saying that “the water level won’t change at that point” (217). 

Daniel makes a more holistic statement about the sign of the velocity (rate) graph and the 

resultant increasing and decreasing shapes of the water level (volume) graph (216-220). 

Using a form of case elimination, Daniel explains that if positive rate means that the 

water level is increasing, and negative rate means that the water level is decreasing, then 

no change in water level must fall in between negative and positive rate, giving a zero 

rate. 

209 (0:23:42.7) Daniel: The level of water overall. 
So the velocity. I think, let’s 
see. 

 

210 (0:23:52.1) Justin: Well it’d [a zero point] be 
where the inflow and the 
outflow are the same, so 
there is no change in water 
level. 

 

211  Daniel: Yeah.  
212 (0:23:57.2) Justin: So,    
213 (0:23:59.0) Daniel: Like where they meet, 

though. 
 

214  Justin: you don’t change your 
veloc- 

 

215 (0:24:00.3) Justin: -yeah where they [inflow 
and outflow] meet, yeah, 
cause they’d be the same. So 
in a velocity graph it’d be 
where they would, it would 
cross the x-axis. 
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216  Daniel: x-axis, yeah, cause like the, 
uh 

 

217 (0:24:07.3) Justin: Cause the water level won’t 
change at that point. 

 

218 (0:24:11.9) Daniel: -velocity of the water, if the 
velocity is positive,  

 

   it will be increasing in water 
level. 

[sweeping hand to the 
right and upward] 

219 (0:24:18.5) Daniel: And if the velocity is 
negative,  

 

   it will be decreasing in 
water level. 

[sweeping hand 
downward and to the 
right] 

220 (0:24:22.5) Daniel: And so, when the, when 
there is no change in the 
water level for a certain 
time,  

[holding both hands 
at the same level] 

   the velocity will be zero of 
water coming in or water 
coming out. 

[moving right hand 
away and then toward 
himself] 

 
 To describe what is zero about a zero point (220), Daniel uses the language of 

water “coming in” and water “coming out.” This language is problematic for Jamie 

because it seems to imply that both inflow and outflow, or separate rates of change, are 

also zero at a zero point. Jamie tells Daniel that she doesn’t agree that the separate rates 

of change have to be zero at a zero point.  

221 (0:24:36.0) Jamie: [3 sec] I don’t agree with 
that. The velocity could be 
equal. 

 

222 (0:24:42.9) Daniel: Kay, like how so?  
223 (0:24:46.2) Jamie: The velocity of the water 

coming in equals the  
[moving right hand 
toward herself] 

   velocity of the water going 
out. 

[moving left hand 
away from herself] 

   So your [3 sec] your, your 
water level in your reservoir 
is going to stay the same. 

[raising and lowering 
hands with palms 
down] 

224  Daniel: Yeah.  
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225 (0:25:01.0) Jamie: Whereas, if you had a 
higher velocity coming in 
than going out, your water 
level is going to rise. 

[raising hand with 
palm down] 

   If you have a lower velocity 
going in than going out, 
your water level is going to 
drop. 

[lowering hand with 
palm down] 

226 (0:25:12.7) Daniel: So if the velocity of coming 
in and going out were the 
same, what would the total 
velocity equal? 

 

227 (0:25:18.8) Jamie: They would be equal.  
228 (0:25:20.8) Daniel: Wouldn’t it be zero? Like if 

you have a negative 
velocity, of like, five,  that’s 
coming out  

[sweeping right hand 
away from self and to 
the right] 

   and a positive velocity of 
five that’s coming in - 

[bringing left hand 
toward right hand in 
front of self] 

229 (0:25:30.5) Jamie: Going in. That’s true.  
230 (0:25:32.7) Daniel: -wouldn’t that be zero?  
231 (0:25:33.9) Daniel: But we could also like draw 

these two different 
functions as separate, like 
we’ve been drawing 
velocity together- 

 

  
 Daniel and Jamie seem to agree that a zero point (a net rate of zero) does not 

necessarily imply that no water is entering or exiting the reservoir. (In fact, in clips 203 

and 205, Daniel recognized the same fact that Jamie is working to help him understand 

here.) The negotiation of meaning taking place stems from a difference in frames of 

reference revealed by language. Daniel’s statement in line 220 that “the velocity will be 

zero of water coming in or water coming out,” immediately follows his reference to zero 

on the velocity (or net rate graph) which would be in the frame of a net rate of change in 

volume, later referred to as “total velocity” (226). Jamie, however, interpreted Daniel’s 

statement as a claim about the separate rates of change, and found the claim of zero 
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velocity to be false. This difference in frames of reference is further evidence by Jamie’s 

use of the plural pronoun “they” for separate rates of change (227) and Daniel’s use of 

the singular pronoun “it” for a net rate of change in volume  (228). At the end of this 

exchange, Daniel suggests that their difference in opinion might be resolved by drawing 

the two functions separately, in accordance with Jamie’s idea of separate rates of change 

rather than “drawing velocity together” as a net rate of change. 

Language for Separate Rates of Change (Segment 7) 

 The negotiation between Jamie and Daniel resulted from Daniel’s description of 

net rate of change with the words “water coming in” and “water coming out.” Before 

creating an explanation for Justin’s later use of airquotes with the words “coming in” and 

“leaving” in Segment 9, I first examine Justin’s use of similar vocabulary. As Justin 

reiterates the goals of the task in Segment 7, he uses the term “how much water is coming 

in” to describe the inflow graph. He and Jamie then construct a direct interpretation 

between the frames of separate rates of change and change in volume over time, stating 

that “if the inflow is smaller than the outflow . . . the reservoir is going down.” 

 
264 (0:26:52.5) Justin: Yeah, well this is, this is, 

yeah,  
 

   this  [inflow on the original 
graph] 

   is the inflow right here. This 
is inflow, so this is how 
much water is coming in- 

 

265 (0:26:58.1) Jamie: Uh-huh.  
266 (0:26:58.3) Justin: -right here. [tracing the inflow 

line on the original 
graph] 

267 (0:26:59.9) Justin: So  
268  Jamie: So-  
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269  Justin: -if the inflow is greater 
than, is smaller than the 
outflow, that means that the 
reservoir is- 

 

270 (0:27:04.5) Jamie: going down.  
271 (0:27:05.4) Justin: -going down. [bringing right hand 

down to meet left 
hand] 

 
Explaining the Airquotes (Segment 9) 

In the previous transcript, (264-271), Justin shifted from the separate rates of 

change language (“how much water is coming in,” 264) to language from the frame of 

change in volume over time (“the reservoir is going down,” 269, 271), in order to explain 

the combined effects of inflow and outflow. Later, in the opening lines of “the gospel,” 

we see Justin’s first recorded attempt (339) at describing the combined effects of inflow 

and outflow in terms of rate of change language. He uses airquotes to qualify his 

language choice. 

339 (0:32:03.3) Justin: So like, so you take the, you 
start, start with the income, uh, 
inflow I’m sorry, the inflow and 
you subtract the outflow from 
that part right, that’s gonna give 
you the amount of water that’s 

[tracing the 
vertical axis on the 
original graph 
between the 
inflow and the 
horizontal axis] 

   either “coming in” or “leaving,”  [airquotes] 
   if it’s negative it’s leaving if it’s 

positive it’s, it’s coming in. 
 

 
 Based on the discussion between Jamie and Daniel in Segment 6, a possible 

reason for qualifying the use of “amount of water coming in” for a positive net rate may 

be the fact that such language does not tell the entire story. A positive net rate may be, 

and in the case of the Quabbin Reservoir, is, a way of summarizing that there is more 

inflow than outflow. However, speaking of a positive net rate as merely “how much 

water’s coming in” may imply that there is only inflow, or that outflow is zero. Speaking 
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of negative net rate as “how much water is leaving” also only tells half the story, and 

would be more appropriately interpreted as “how much more water is leaving than is 

coming in.” The mathematical practice of taking the difference in inflow and outflow and 

interpreting that difference as a net rate results in the loss of information about outflow 

and inflow. 

Furthermore, Justin’s failure to find ordinary language that would express a net 

rate of change more appropriately in terms of the reservoir suggests that “net rate of 

change” is not something that is often encountered in his experiential history with bodies 

of water. This is an example of Justin’s language reflecting a choice between correctly 

communicating his understanding of the mathematics and correctly representing his 

personal experience. The mathematical reality of combining two functions (inflow and 

outflow with respect to time) and interpreting the result as a net rate of change is at odds 

with experience, because the inflow and outflow of a reservoir happen at two different 

locations in the reservoir. Inflow is a measure of the rate of water entering the reservoir, 

which may be observed where the water source for the reservoir meets the reservoir. At 

another location on the reservoir, a mechanism of sorts is constructed to moderate the 

amount of water that is permitted to leave the reservoir, either for a designated use or to 

avoid an overflow. It would be impractical, however, to build a reservoir so that water 

enters and exits the reservoir at the same location. Therefore, while one can observe the 

amount of water “coming in” to a reservoir (inflow) and the amount of water “leaving” a 

reservoir (outflow), one does not observe the combined effects of these two rates as a net 

rate in any physical location. 
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However, one can observe the combined effects of inflow and outflow in terms of 

the change in volume over time as the level of water rises and falls. Justin’s language 

reflects this phenomenon as he moves to the frame of change in volume over time in his 

next attempt to interpret the combined effects of inflow and outflow. 

342 (0:32:25.4) Justin: So, if you did that 
[subtraction of outflow from 
inflow] just over, you know, 
just did that for every single 
part, this would be that part 
that’s leaving,  

[shading the area 
between inflow and 
outflow from A to B 
(Figure 14)] 

   this is the, uh, water coming 
in, this is the, when the, um, 
water,  

[the area between 
inflow and outflow 
from B to E] 

   “volume” level is rising. [airquotes] 
   This is when it’s [the volume 

level] going down again. 
[the area between 
inflow and outflow 
from E to G] 

 

 

Figure 14. Justin shades the area between the inflow and outflow graphs. 

 In clip 342, Justin appears to have found a compromise between his experience of 

viewing inflow and outflow in separate locations and the mathematically accepted 

practice of combining inflow and outflow to find a net rate of flow by shifting his frame 
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of reference to one where a net rate, interpreted as net change over time, can be more 

easily and accurately mapped to human experience.2 

 In summary, Justin’s choice to refer to a positive net rate of change as “the 

amount of water that’s either ‘coming in’ or ‘leaving,’” is his response to a situation 

where the ordinary language that has been used to describe the mathematical idea of a net 

rate of change does not fit well with common human experience.3 He uses airquotes to 

qualify his choice of language, and eventually, through a shift in frames of reference 

(from rate of change in volume to change in volume over time), is able to find language 

that fits both his experience and the mathematics. In clip 349, we see Justin again 

interpret a signed net rate in terms of change in volume over time, demonstrating that he 

has not abandoned the frame of net rate of change, but has merely abandoned the practice 

of interpreting a net rate in terms of water “coming in” or “leaving.” 

349 (0:33:09.9) Justin: And so it’s [the result of the 
subtraction] gonna give you 
a negative flow rate.  

 

   Or in other words, the water, 
the, the “volume” of the 
water is lowering, right? 

 
[airquotes] 

 

                                                 
2 While Justin appears more comfortable with his new interpretation, it should be noted that he has not lost 
his practice of using airquotes. He now qualifies his use of the word “volume” as a substitute for “water 
[level].” I address Justin’s continued use of airquotes with “volume” in the third narrative, “Velocity vs. 
Volume,” which begins on page 112. 
3 In a related note, the participants demonstrated a tendency to speak of zero points as points of “no change 
in water level” for a given period of time even though the term “zero point” implies that no time is passing. 
I view this as yet another example of the explanatory factor of experience clashing with the explanatory 
factor of mathematical understanding. Experientially, very few entities undergo instantaneous change. It is 
even difficult to think of something “staying the same” for one point in time, as the word “stay” implies the 
passage of time. However, the mathematical limiting process allows the creation of abstract constructs such 
as “instantaneous rates of change” which imply that something can “be changing” (or in this case, not 
changing) at a point. Rather than interpret zero points as “points of no change,” which experientially may 
be a viable description of every point in time, the participants often referred to zero points as “periods of no 
change” as in lines 220 and 223. The limiting process of a derivative involves exchanging a series of 
periods for a point. While the linguistic exchange of a point for a period may be counter-productive from 
this limiting perspective, it seems quite acceptable in the present discourse for its loyalty to human 
experience.  
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In a final example, we see Justin coordinate the three frames of reference as he 

describes a zero point. Rather than immediately connecting the frame of separate rates of 

change to rate of change in volume, in a way that would represent his original solution 

process (Figure 15), Justin’s language again follows the course of separate rates of 

change interpretation (“the same amount of water is coming in as it is leaving”), which 

leads into a change in volume over time interpretation (“the volume of the water is gonna 

stay the same”).  Finally, Justin uses his change in volume over time interpretation to 

make a claim about net rate of change (“the rate of change will be zero”).  

 

Original graph of 
inflow and outflow 

 

Net rate of 
change graph 

Volume graph 

 

Separate 
rates of 
change 

Rate of 
change in 
volume 

Volume 

“the same amount of water is 
coming in as is leaving” 

“volume of the water is 
gonna stay the same” 

“the rate of 
change will 
be zero” 

“and so” 

“and so” 

Solution Process 
Frames of 
Reference 

Interpretive Language 
Process (353-355) 

Figure 15. Comparing Justin’s language with his solution process. 

 

353 (0:33:37.7) Justin: So at that point,  [first x-intercept on 
rate graph] 

   this point right here, and at 
this point right here,  

[the two points 
where the inflow 
and outflow 
intersect on the 
original graph] 
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   the same amount of water is 
coming in as it is leaving, 
right? 

[moving both hands 
across the table at 
the same rate] 

354 (0:33:45.9) Julie: Right.  
355 (0:33:46.5) Justin: And so the water, volume of 

the water is gonna stay the 
same.  

[holding arms out 
wide with palms in 
as if running them 
along the surface of 
a giant sphere] 

   And so, it’s um, the rate of 
change will be zero, does that 
make sense? 

 

 
 Justin appears to have found a reasoning sequence that not only fits his 

understanding of the mathematical relationships between separate rates of change, net 

rate of change, and change in volume over time at the zero points, but also one that fits 

into his experiential frame, allowing him to offer a semantic warrant (Walter & Johnson, 

2007) of a physical interpretation for his claims about the mathematical relationships. 

Velocity vs. Volume: Analogical Reasoning Revealed 

I have previously noted how Daniel, Jamie, and Justin speak of rate of change as 

“velocity,” and Justin uses airquotes with the term “volume.” My analysis suggests that 

these two phenomena are related in that they are evidence of the participants’ analogical 

reasoning about the Quabbin Reservoir Task. In the terminology of analogical problem 

solving, the participants applied the ideas of their previous work in which they have used 

velocity graphs to create displacement graphs (base problem) in order to complete the 

Quabbin Reservoir Task (target problem). Having solved the problem of relating the 

graph of a function to the graph of the function’s derivative in the velocity-displacement 

context, a next step would be mapping the velocity-displacement context to the Quabbin 

Reservoir Context. This would include mapping a velocity function to a net rate (or “rate 

of flow”) function and a displacement function to a quantity function. If the two problems 

   



 113

are isomorphic, the next step in analogical problem solving could be to apply the solution 

of using slope to relate a function to its derivative in the new context, thereby completing 

the problem.  

However, the Quabbin Reservoir Task was not completely isomorphic to previous 

velocity-displacement tasks, and two modifications were required in order to apply the 

solution of the base problem to the target problem. First, the direction of the solution is 

reversed as the Quabbin Reservoir provides information about the derivative function and 

requires students to reconstruct the anti-derivative. Second, the information about the 

derivative, or rate of change, is not given directly. Rather than supply a net rate of change 

graph, the designers of the task supplied graphs of inflow and outflow, requiring the 

participants to produce a graph of net rate before isomorphic mapping, and an eventual 

solution, could be reached. A possible analogical solution process for the participants’ 

work on the Quabbin Reservoir Task is shown in Figure 16. Vertical lines represent 

mathematical relationships that were used in the solution process. Horizontal lines 

represent the mapping of one context to another. For the participants in this study, this 

mapping was never entirely explicit, but was revealed in the participants’ ongoing search 

for labels for their various graphs. 

 A large portion of the participant’s negotiation of meaning and language can be 

explained in terms of this model of analogical problem solving.  Near the beginning of 

the transcript (Segment 2), Justin quickly summarizes the solution process for the 

Quabbin Reservoir Task.  
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Displacement Function Quantity 

Rate of Flow Derivative Velocity 

Solution: Velocity 
as instantaneous rate 
of change of 
displacement. 

Solution: Derivative as 
instantaneous rate of 
change of the function. 

Modification 1: 
The direction of 
the solution is 
reversed. 

Modification 2: 
Net rate of change 
is not directly 
given. 

Inflow / Outflow 

 

Figure 16. An analogical solution mapping for the Quabbin Reservoir Task 

 
42 (0:12:48.0) Justin: Okay.  [turns to Daniel] 

   Kay so cause I, I was 
thinking about what you did 
is that you took, you worked 
backwards. 

 

43  Daniel: Yeah.  
44 (0:12:55.5) Justin: Cause this  [the original graph] 

   is the rate of flow.   
   So this is what the derivative 

will look like when you add 
those [inflow and outflow] 
together. Kind of like what I 
did. 

[the original graph] 

45  Daniel: Yeah, that’s what-  
46 (0:13:02.0) Justin: But then you guys worked 

backwards and decided what 
the, what the flow, what the 
water level would look like, 
the distance. 

[raising and lowering 
pencil held 
horizontally in the 
air] 

47  Daniel: Yeah.  
48  Justin: So.  
49 (0:13:11.0) Daniel: Does everyone understand 

that? Because I didn’t 
explain very well. 

 

50  Julie: You just added, er-  
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 Justin combines the conventional term “derivative” with the ordinary language 

“work backwards” to describe the first modification required to complete the Quabbin 

Reservoir Task. Justin also refers to the second modification, saying that they can see 

what the derivative looks like by combining the inflow and outflow graphs. Although 

Daniel seems to understand Justin’s abstraction of the analogical solution process, there 

still remains much to be negotiated. In fact, the bulk of the content of Segment 9: The 

Gospel According to Justin, is an explanation of the two modifications shown in Figure 

16. Having already described in detail how he combined the inflow and outflow graphs to 

create a net rate graph, Justin explains his idea of “working backwards.” 

389 (0:35:45.4) Justin: There’s gonna be some 
point, ‘cause, we’re working 
backwards.  

 

   Instead of finding the 
derivative,  

[pointing to volume 
graph and sliding 
pencil up to the net 
rate graph] 

   we’re going from the 
derivative  

[net rate graph] 

   backwards.  [sliding pencil to 
volume graph] 

   Trying to, trying to figure 
out how to go backwards, 
right? 

[pointing first at the 
net rate graph and 
then sliding the point 
of the pencil to point 
at the volume graph 
again] 

390 (0:35:54.9) Justin: And so if we have that point, 
zero on the derivative,  

[first x-intercept on 
the net rate graph] 

   that means that on the 
original graph, that point is 
level, the tangent line is 
zero. There is no slope. 
Make sense? 

[first minimum on the 
volume graph] 

391 (0:36:07.3) Julie: Yeah.  
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What is interesting about this portion of transcript is that it is the only time that 

Justin uses the term “derivative” in Segment 9: The Gospel According to Justin. This 

introduction of the conventional term “derivative,” juxtaposed with the ordinary language 

of “working backwards,” may function to allow Justin to introduce a new procedure as 

mathematically appropriate. The participants have worked on numerous tasks and 

exercises in which they “found the derivative,” and, in that sense, have negotiated 

procedural and conceptual meaning for the term derivative. Here, Justin refers to the 

familiar process of “finding the derivative” to create meaning for the new process of 

“going from the derivative backwards.”  

 The details of relating a function to its derivative have been partially explained in 

terms of critical points (zero points) and hypercritical points (inflection). While inflection 

points were described primarily in the language of “highest velocity,” from the base 

context of velocity and displacement, reasoning about zero points mixed the language of 

“velocity” and “inflow and outflow.” In this section, I trace the progression of language 

from “velocity” to “volume” as the participants negotiate the mapping of language in the 

analogical solution process. 

 “The Velocity of the Flow of the Water or Something” (Segment 3) 

Once again, I return to the clip from Segment 3 in which Daniel expresses doubt 

about his use of the term velocity. He not only hesitates, but explicitly acknowledges that 

he is not sure what to call the analog of velocity in the Quabbin Reservoir context. 

58a (0:13:50.1) Daniel: So, it has a negative slope. 
And then it starts going 
positive up to that point.  

[point E, July, on the 
rate graph] 

   And so it levels off at zero. 
  

[point E, July, on the 
volume graph] 

   Cause the v-, the v- [1 sec]  
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   I don’t know what you call 
that. The velocity of the 
flow of the water or 
something? The velocity of 
this is zero. [2 sec]  

[point E, July, on the 
volume graph] 

   Which is correct on our 
velocity chart. 

[point E, July, on the 
rate graph] 

 

 

Volume Graph 

                     
Rate Graph 

Figure 17. Daniel’s graphs. 

It is apparent from Daniel’s gestures that when he says, “velocity chart,” Daniel is 

referring to his net rate graph. Although Daniel qualifies his use of “velocity” here, he, 

Jamie, and Justin soon begin speaking metaphorically, using “velocity” to refer to net rate 

of flow and “displacement” to refer to quantity or volume. 

Why Velocity? (Segment 7) 

As Justin, Jamie, and Daniel offer interpretations for zero points (Segment 6), 

they continue to speak of their rate graph as their “velocity” graph. During a brief pause, 

Julie, who has not spoken the word “velocity” in respect to the Quabbin Reservoir Task 

thus far, remarks, “I think I’m still confused with the idea that it’s velocity.” Jamie admits 

that she is also confused about the velocity idea. Justin and Daniel suggest that they 

should call what they have been calling velocity “rate of flow.” Julie’s response reveals 

that her confusion about velocity will not be cleared up by a simple change in language, 

“But we’re not trying to find the rate of flow, aren’t we trying to find quantity?”  
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234 (0:25:44.9) Julie: [3 sec] I think I’m still confused with the idea that 
it’s velocity. 

235 (0:25:50.8) Jamie: Yeah, me too. 
236 (0:25:51.9) Justin: Kay just call it [what they have been calling 

velocity] rate of flow then. 
237 (0:25:53.3) Daniel: Yeah. Rate of flow. 
238 (0:25:54.0) Justin: We should call it [velocity] rate of flow. 
239 (0:25:55.1) Julie: But we’re not trying to- 
240 (0:25:55.3) Daniel: Rate of flow’s easier. 
241 (0:25:56.1) Julie: -find the rate of flow- 
242 (0:25:56.2) Justin: I know we’re tryin- 
243 (0:25:56.9) Julie: -aren’t we just, trying to find quantity? 
244 (0:25:58.2) Jamie: Yeah. 
245 (0:25:58.9) Daniel: Yeah. 
246 (0:25:59.1) Justin: Umhm. 
247 (0:26:00.1) Daniel: But like here- 
248 (0:26:02.2) Justin: But this graph right here gives us the rate of flow, 

and so we- 
249 (0:26:04.4) Jamie: [to Julie, laughing] That was a good face! 
250 (0:26:05.4) Julie: [sighs] 
251 (0:26:07.7) Daniel: Like [pause] 
252 (0:26:09.6) Jamie: Hmm. I think we should find what we’re trying 

to, trying to get at here. 
 
Justin’s response to Jamie’s suggestion (252) is to re-read the instructions as 

stated in the task. He then offers his interpretation of the given instructions, referring to 

the quantity of water as being “like a displacement graph.” He makes his analogical 

language more explicit, correcting his metaphorical statement that a graph of quantity 

would be displacement by adding the word “like,” thus converting his metaphor to a 

simile (254).  

253 (0:26:18.4) Justin: Alright, well, (a) says “sketch a 
possible graph of the quantity 
of water in the reservoir as a 
function of time.” 

 

254 (0:26:24.7) Justin: So that [the graph asked for in 
part a] would be the dis-, that 
would be like a displacement 
graph, right?  
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   Quantity of water, whether it’s 
going up and down. 

[raising and 
lowering hand with 
the palm facing 
downward] 

255  Jamie: Um huh.  
256 (0:26:31.1) Justin: Displacement. [raises and lowers 

hand again] 
 
 It is uncertain whether Julie’s concerns stem from a lack of recognition of the 

language mapping of “velocity” to refer to a rate of flow graph (the horizontal lines in 

Figure 16) or a deeper question concerning the rationale of the group’s solution process 

thus far (the vertical lines in Figure 16).4 Having expressed themselves that velocity is 

not exactly the most appropriate term for the Quabbin Reservoir Task, Justin and Daniel 

initially treat Julie’s confusion as a language issue, and are more careful to show their 

consciousness of the possible confusion caused by the use of “velocity” and 

“displacement.”  Justin begins to use airquotes with the term “velocity,” implying his 

recognition of the fact that the graph does not literally show “velocity” (the rate of 

change of displacement) and also that the use of the term is not necessarily accepted by 

all of the participants in discourse.  

277 (0:27:11.1) Justin: So the, this  [the original graph] 
   would be our rate of flow or 

“velocity” if you will, right? 
 
[airquotes] 

 
Even though Justin has addressed the fact that “velocity” is not the most 

appropriate language Julie continues to press the issue that velocity, or rate of change, is 

“not what [they’re] trying to find.” Again, Justin rephrases the point of the task, which is 

to take the given information about the rate of change and describe the resultant changes 

in quantity, or water level, by creating a graph of quantity with respect to time. 

                                                 
4 My follow up interview with Julie suggested that her confusion may have involved a combination of both 
vertical and horizontal factors. 
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280 (0:27:19.8) Julie: That’s not what we’re trying 
to find. 

 

281 (0:27:20.7) Justin: No, we’re trying to find,   
   we’re trying to take this 

graph,  
[points to the 
original graph] 

   they’re telling us how much 
the water level is changing  

[moving hands 
together and apart 
vertically with palms 
facing] 

   and make uh, our “best 
guess” 

[airquotes] 

   at what the water level looks 
like,  

[holding two hands 
with palms facing as 
before] 

   a graph of how, the water 
level change over time. Does 
that make sense? 

[drops the left hand 
and just moves the 
right hand slowly up 
and down with palm 
facing downward] 

 

Units of Measure for Quantity (Segment 8) 

Julie and Jamie appear to be more comfortable with the restated goals of the task. 

However, the normally silent observer Dr. Walter asks Justin to clarify the hand motions 

that he uses to accompany his statements about the change in water level over time (284).  

284 (0:27:36.4) Dr. 
Walter: 

So you’re thinking of 
measuring the quantity of 
water in the reservoir by the 
height [1 sec] of water in the 
reservoir?  

 

   When you’re doing this I’m 
imagining you’re talking 
about the height? 

[raising and 
lowering flat hand] 

 
Justin justifies his use of height as a matter of preference: height has fewer 

dimensions than volume to worry about (286).  
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286 (0:27:48.2) Justin: That’s [measuring volume by 
height] how I, that’s how I 
think about it, cause I don’t 
know how else, I guess you 
could measure it [quantity of 
water] in, like volume, but,  

 

   I don’t know, height, just, to 
me, seems more, one, two 
dimensional. 

[raising and lowering 
hand with palm 
down] 

 
Although height may be more natural to work with, and a better fit for the 

graphical method of representing quantity, Daniel suggests that “volume” may be 

“better,” or more appropriate for the situation. Dr. Walter suggests that the participants 

look at the units of measure associated with the original graph given with the task. Upon 

reading “millions of gallons per day,” Justin concludes that volume is more appropriate 

than height for measuring the quantity of water in the reservoir. 

292 (0:28:36.3) Dr. Walter: What’s your, what’s your rate measured in? 
293 (0:28:38.0) Justin: Rate is measured in- 
294 (0:28:39.1) Jamie: Millions of gallons per day. 
295 (0:28:39.8) Justin: Millions of gallons per day, so it would be 

volume. 
 
 

“What Would the Derivative of Volume Be?” (Segment 8) 

Having been reminded that “velocity” may not be the most appropriate term for 

the present discussion, Daniel poses a question about the correct language for referring to 

the derivative of volume. He uses analogy to reason about language, noting that there is a 

special name for the derivative of displacement (velocity) and a special name for the 

derivative of velocity (acceleration). Daniel asks if there is a special name for the 

derivative of volume. Justin reasons that velocity is really just “how fast you’re changing 

your displacement,” and so “how fast you’re changing your volume,” should be “rate of 

flow.”  

   



 122

318 (0:30:31.5) Daniel: [4 sec] So, cause like when you take the 
derivative of displacement, it’s velocity. 

319 (0:30:43.6) Justin: Velocity. 
320 (0:30:46.4) Daniel: When you take that derivative it’s um- 
321 (0:30:47.8) Justin: Acceleration. 
322 (0:30:48.2) Daniel: -acceleration, but what would the derivative of 

volume be? 
323 (0:30:51.2) Justin: I would imagine it [the derivative of volume] 

would be rate of change, rate of flow, change. 
324 (0:30:54.6) Daniel: Rate of change, yeah. [4 sec] Rate of flow 

change. 
325 (0:31:03.3) Justin: Cause your velocity is just your rate of change 

of your displacement- 
326 (0:31:05.1) Daniel: Yeah. 
327 (0:31:06.1) Justin: -like how fast you’re changing your 

displacement, so how fast you’re changing 
your volume would be the rate of flow, right? 

 
Although Daniel does not disagree with Justin’s label for the derivative of 

volume, he also does not seem satisfied. For a major portion of Segment 9, Daniel 

searches the textbook, and eventually presents the idea that perhaps the derivative of 

volume can be represented as “surface area.” This idea does not seem particularly 

applicable, and, concluding that his idea “doesn’t really make much sense,” Daniel says 

that perhaps the current language of “inflow” and “outflow” will suffice. 

Shifting Gestures for Volume (Segment 9) 

 Despite Justin’s statements that volume is a more appropriate term for describing 

the quantity of water in the reservoir, he nevertheless continues to use airquotes and other 

gestures with the term “volume” throughout “the gospel.” This can be observed by 

revisiting clips from the previous discussion of zero points. 

342 (0:32:25.4) Justin: So, if you did that 
[subtraction of outflow from 
inflow] just over, you know, 
just did that for every single 
part, this would be that part 
that’s leaving,  

[shading the area 
between inflow and 
outflow from A to B] 
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   this is the, uh, water coming 
in, this is the, when the, um, 
water,  

[the area between 
inflow and outflow 
from B to E] 

   “volume” level is rising. [airquotes] 
   This is when it’s [the 

volume level] going down 
again. 

[the area between 
inflow and outflow 
from E to G] 

 
 

 
349 (0:33:09.9) Justin: And so it’s [the result of the 

subtraction] gonna give you 
a negative flow rate.  

 

   Or in other words, the water, 
the, the “volume” of the 
water is lowering, right? 

 
[airquotes] 

 
 A second look at these clips suggests that Justin uses “volume” as a replacement 

for “water.” Subsequent uses suggest that “water” may be a cut-off version of “water 

level,” as Justin leaves his airquotes to incorporate a palm down gesture similar to the one 

that he previously used to accompany the term “water level.”  

352 (0:33:20.9) Justin: they’re [inflow and outflow] 
gradually becoming equal,  

 

   so it’s the water level, the 
volume level is staying the 
same. Right? 

[holding hand flat 
with palm down at 
eye level] 

 
 The last time that Justin used this palm down “water level” gesture, Dr. Walter 

questioned the gesture as demonstrating Justin’s measuring of the amount of water in the 

reservoir by height (284), which led to Justin’s eventual conclusion that “volume” would 

be a more appropriate means for measuring the amount of water (295).  Justin’s next use 

of volume (355) is accompanied by a gesture that is much more three-dimensional, 

possibly reflecting Justin’s statement that height has fewer dimensions than volume, and 

his emerging recognition that the multi-dimensional “volume” may be more appropriate 
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than height for measuring the quantity of water in the reservoir. Once again, he offers 

“volume” as a replacement for “water,” which may or may not be a truncated version of 

“water level.”  

353 (0:33:37.7) Justin: . . . the same amount of water 
is coming in as it is leaving, 
right? 

[moving both hands 
across the table at 
the same rate] 

354 (0:33:45.9) Julie: Right.  
355 (0:33:46.5) Justin: And so the water, volume of 

the water is gonna stay the 
same.  

[holding arms out 
wide with palms in 
as if running them 
along the surface of 
a giant sphere] 

 
 Justin summarizes how he combined the inflow and outflow graphs, and his 

purpose in doing so, in clip 366, stating that a graph of net rate will help one to 

understand the shape of the “displacement graph.” However, he quickly inserts the 

substitute term, “volume graph,” as though guilty of misspeaking, yet qualifies the term 

“volume” with airquotes, reflecting his consciousness, and possible qualification, of this 

alternative choice in language. 

366 (0:34:22.7) Justin: . . . and so that kind of helps 
to combine the two graphs, 
like that, cause now you can 
see what the rate of flow, 
what the change of, in the 
flow rate, is, over time, and 
that kind of helps ya 
understand what’s going on 
with the displacement graph. 

[Justin traces his 
rate graph from 
right to left and then 
left to right three 
times as he speaks, 
finishing on the 
word “understand”] 

   “Volume” graph  [airquotes] 
 
 

Labeling the Volume Graph (Segment 9) 

 The Gospel According to Justin ends with a short discussion of units of measure 

for volume and a final identification of the important points that help to correlate the 
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three graphs. Justin and Daniel have previously commented that the initial value of the 

volume graph is arbitrary. Although the rate graph gives enough information to sketch the 

correct shape of the volume graph, the actual values of the rate graph will differ by a 

constant from the true values for volume. Justin resurrects this previous conversation 

with Daniel as he explains this idea to Julie as “the thing you don’t know.” 

429 (0:38:25.2) Justin: Now the thing you don’t 
know, which is like kind of 
what Daniel said,  

[pointing toward 
Daniel with his 
pencil] 

   ‘cause I had that line right 
here.  

[a horizontal line that 
Justin previously 
erased from his 
volume graph] 

   You don’t know where to 
start this graph at. 

[touching points on 
the vertical axis of 
the volume graph] 

430 (0:38:31.8) Justin: I mean, this graph, you 
know, this could be one 
thousand, um, cubic gallons, 
or whatever I don’t know 
you say that. 

[the y-intercept of the 
volume graph] 

431 (0:38:38.2) Justin: Or it [the initial value of the 
volume graph] could be, you 
know, you don’t know how, 
where to start this graph at. 

[holding pencil 
parallel to the 
horizontal axis of the 
volume graph and 
sliding it back and 
forth in the “vertical” 
direction] 

 
  This transcript raises a question about Justin’s meaning for the word “gallons.” 

Here, and later, he modifies the term “gallons” to say “cubic gallons.” The term “cubic 

gallons” may seem redundant to the listener, and Justin admits his doubts about his term 

by saying that he doesn’t “know how to say that.”  

Although the other participants do not question the term “cubic gallons,” Justin’s 

hesitation associated with “cubic gallons” may imply an underlying process of Justin’s 

negotiation of meaning with himself. Justin has modified his former one-dimensional 
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gestures for volume as “water level” to three-dimensional gestures to accompany the term 

“volume level.” It may be that Justin’s use of “cubic gallons” is his way of verbally 

modifying a given unit of measure to create a unit of measure for volume. Just as “feet” 

become “cubic feet” and “meters” become “cubic meters” when speaking of volume, 

Justin applies this pattern to gallons to say “cubic gallons” for his volume graph, 

neglecting the fact that gallons by nature are a unit of volume. Justin continues to work to 

negotiate a relationship between the terms “volume” and “gallons.” In the next transcript 

(437-443), Justin re-labels his volume graph, which was formerly labeled “water level,” 

as “volume.” When Julie asks if volume really is the correct term for the graph of 

quantity, Justin refers to the fact that the given graph measures rate in gallons per day, 

and so keeping “the same kind of units,” the quantity graph would have to be a volume 

graph.  

437 (0:38:52.9) Justin: . . . does that make sense?   
   how I went from, how I 

combined the two graphs  
[pointing to the rate 
graph] 

   and then how I went, how I 
looked at this graph  

[rate graph] 

   and then tried to make a, um 
volume. 

[volume graph] 

   Take away my “water level,” [erasing a mark on 
the volume graph] 

   that’s right this [the label on 
the vertical axis of the 
volume graph] should be 
“volume.” 

 

438 (0:39:08.1) Julie: [5 sec] Is it volume?  
439 (0:39:13.4) Justin: Yeah, ‘cause we’re working, 

it’ll [the volume graph] be 
the volume of the water. 

[pointing to the 
volume graph] 

440 (0:39:16.8) Justin: ‘Cause this, the rate is in 
gallons, gallons per day. 

[the rate graph] 
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441 (0:39:21.1) Justin: [3 sec] And so you just want 
to keep the same kind of 
units so it’d [the units of the 
vertical axis of the volume 
graph] be gallons, cubic 
gallons, I guess is what it 
would be. 

[pointing to the 
volume graph] 

442 (0:39:28.9) Julie: Oh. Oh, okay, yeah.  
443 (0:39:31.5) Justin: So volume.  

 
 Julie makes one last summary of the critical points on the graph with Justin’s 

help. Together, Justin and Julie demonstrate the dialogic phenomenon of exchanging 

discourse habits that at one time may have seemed unnatural to them (Lewis & Ketter, 

2004). While Julie initially had doubts about the term “velocity,” in clip 449 she uses it 

comfortably to communicate with Justin.  

447 (0:39:38.4) Julie: No, I think that’s, just like, 
the top and the bottom 
points are your zero points? 

[pointing to points on 
her page] 

448 (0:39:45.7) Justin: On, top and your bottom 
points for what graph? 

 

449 (0:39:49.6) Julie: Like these points  on your 
volume graph 

[minimum and 
maximum on her 
volume graph] 

   are your zero points on your 
velocity? 

[touching her rate 
graph] 

450 (0:39:56.2) Justin: Yes. [nodding] 
 
 Justin then points out the inflection points on both graphs. Like an instructor 

revoicing (Forman & Ansell, 2001) the words of his students, Justin replaces Julie’s 

ambiguous ordinary language of “the top and the bottom points” with the more 

conventional terms “maximums” and “minimums.” Although he applies his airquotes 

now to the term “velocity,” he continues to use the equally questionable term 

“displacement” to talk about a volume graph.  
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452 (0:40:01.2) Justin: And then your maximums 
and your minimums on your 
veloc-,  

[Julie’s rate graph] 

   your, we’ll call “velocity”  [airquotes] 
   graph are going to be your 

points of inflection on your 
displacement graph. 

[pointing to Julie’s 
volume graph] 

 
 

Re-Labeling (Segment 12) 

 Thus far, Justin has used gestures to place airquotes around “velocity” and 

“volume,” has repeatedly replaced the terms “water” and “displacement” with “volume,” 

and hesitated to speak of “cubic gallons.” This hesitation and shifting language in for the 

concept of volume began when Dr. Walter asked Justin if he was thinking of measuring 

the volume of the water in the reservoir by the height (284). The process of verbal re-

labeling has also been reflected in Justin’s inscriptions, as Justin has replaced the original 

label of the vertical axis of his quantity graph, which read “water level,” with the word 

“volume.”  Figure 18 shows Justin’s attempts thus far to map “displacement” to an 

appropriate term in the Quabbin Reservoir Context. The dotted arrows in the figure 

indicate language that Justin has spoken but either abandoned or recognized as not 

completely appropriate. The solid arrows indicate language that Justin continues to use. 

 Justin’s process of re-labeling continues as he again reads the instructions for part 

(a) of the Quabbin Reservoir Task. 

622 (0:48:04.1) Justin: Kay, so, um, [part] (a) was, 
sketch our little graph, of 
the quantity of water in the 
reservoir as a function of 
time.  

 

   So it’d be volume,  [begins to erase the 
label on the vertical 
axis of his volume 
graph] 
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   so it’d [the label of the 
vertical axis of the volume 
graph] be gallons, cubic 
gallons, what is it, what is 
it, millions of gallons yeah, 
millions of gallons. 

 

623  Daniel: It’d be millions of gallons, 
per day. 

 

624 (0:48:23.6) Justin: millions, well it’d [the label 
of the vertical axis of the 
volume graph] just be 
millions of gallons, yeah 
per- 

[writing “millions of 
gallons” on the 
vertical axis of his 
volume graph] 

625 (0:48:28.2) Daniel: Per day.  
626 (0:48:28.8) Justin: -per, per day or time.  

 

Derivative 

 
 
 
 
 

Function

“Displacement” 

“Rate of Flow” “Velocity” 

“Water Level Height” 

“Volume” 

“Cubic Gallons?” 

“Millions of Gallons” 

 

Figure 18. Justin’s attempts to map “velocity” and “displacement” to  
vocabulary in the Quabbin Reservoir context. 

 At this point (clip 622) Justin erases his second written label for the volume 

graph, “volume,” and writes “millions of gallons.” He does this with hesitation, verbally 

inserting the term “cubic gallons” as he searches for the correct label. Both Daniel and 

Justin verbally add the term “per day,” although Justin does not write the incorrect “per 

day” on his volume graph. Daniel, on the other hand, may have correctly added the “per 
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day” term, because his next statement seems to indicate that he is actually looking at the 

rate graph. 

627 (0:48:29.9) Daniel: Then our, or that’s the uh derivative, that’s the 
volume, yeah, that’s the, what’d we call that?  

628 (0:48:40.5) Daniel: What do we call the rate of change of the 
volume? Is that what we’re calling our 
derivative? 

629 (0:48:46.8) Justin: No it’d [the derivative] just be the rate of 
change of, it wouldn’t be rate of change of the 
volume, um, it would just be- 

630  Daniel: Rate of, of flow? 
631  Justin: -it [the derivative] would be rate of, it would 

be rate of change of the- 
633 (0:48:58.0) Daniel: Of water? 
634 (0:48:58.5) Justin: Yeah of the millions of gallons. 

 
 Surprisingly, Justin says that the derivative wouldn’t be the rate of change of 

volume, but that the derivative would be the rate of change of the millions of gallons. 

Justin has previously recognized that “millions of gallons” implies a volume 

measurement, and so it is not immediately apparent why he feels that one term would be 

more appropriate than the other. Figure 19 shows Justin’s process of determining a name 

for the derivative of volume. Where he has accepted the terms “volume” and “millions of 

gallons” as analogs for “displacement,” Justin has also just stated that the derivative 

would not represent “change in volume,” but “change in millions of gallons” instead.  

 Upon hearing Justin’s comment, Jamie contradicts Justin’s statement that it 

“wouldn’t be the rate of change of volume,” by stating that the rate of change of volume 

is the same thing as the rate of change of the millions of gallons. Daniel (after some 

hesitation) and Justin agree. Justin goes on to justify Jamie’s statement by referring to a 

familiar context for studying derivatives, the context of motion. 
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Derivative 

 
 
 
 
 

Function

“Displacement” 

“Change in millions of 
gallons” 

“Velocity” 

“Water Level Height” 

“Volume” 

“Cubic Gallons?” 

“Millions of Gallons” 

“Change in volume” 

Figure 19. Determining a name for the derivative of volume. 

635 (0:49:00.4) Jamie: The same thing as rate of 
change of, our volume. 

 

636  Justin: Huh?  
637 (0:49:03.6) Jamie: That’s [the rate of change of 

the millions of gallons] the 
same thing as the rate of 
change of our volume. 

 

638 (0:49:05.7) Justin: Yeah.  
639 (0:49:09.1) Daniel: Would it? [short pause] Yeah it 

should be- 
 

640 (0:49:12.2) Jamie: Yeah.  
641  Justin: Yeah.  
642 (0:49:12.5) Daniel: -because if you’re taking dy dx 

it’s the rate of- 
[writing on his 
paper] 

643 (0:49:14.4) Justin: ‘Cause it’d be like using 
meters and saying your rate, 
your change in distance. So 
it’d be change in volume. 

 

644 (0:49:19.4) Daniel: [sighs] [writing on his 
paper] 

645  Justin: We’re working gallons and so 
it’d [our derivative] be change 
in volume. 

 

646  Jamie: Yeah.  
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647 (0:49:22.6) Justin: If you were working in meters 
it’d [the derivative] be your 
change in distance. 

 

648 (0:49:24.6) Jamie: Uh huh.  [writing on her 
paper] 

649 (0:49:24.9) Justin: And so it’d be your distance 
graph.  

[touching his 
volume graph] 

   So this would be considered 
our volume graph. 

[Justin’s volume 
graph] 

650 (0:49:28.1) Jamie: Yeah.  
651 (0:49:28.4) Daniel: Yeah. I like that. The change 

of [3 sec] the change of [1 sec] 
VOLUME with respect to 
time. 

 

 
 In this final portion of transcript, Justin lays out an additional element of his 

analogical language framework: the units that are used to label a function and its 

derivative in the velocity and volume contexts (Figure 20).  

 Figure 20. Justin’s fitting of units of measure into the analogical language structure. 

Function “Distance Graph” 

“Change in 
Volume” 

“Change in 
Distance” 

“Volume Graph” 

“Working in 
Gallons” 

“Working in 
Meters” 

Derivative 

Units of 
Measure 

 Justin speaks of “using” and “working in” specific units of measure. In the 

velocity and displacement context, he speaks of “using” meters as a unit to measure 

distance. In such a case, the derivative would be more naturally described as 

representative of “change in distance” rather than “change in meters.” For volume, he 
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speaks of “using” gallons to measure volume. Reasoning analogically, Justin concludes 

that the derivative would be said to show “change in volume” rather than “change in 

millions of gallons.” This further settles Justin’s hesitation as to what to actually write as 

a label for his graph of quantity. He reasons that in a situation where “you were working 

in meters . . . it’d be your distance graph,” and therefore, in their situation of “working in 

gallons” they would name their graph a “volume graph.”  

 Having sorted out subtle differences in the meaning of “volume” and “gallons,” 

Justin finally labels his graph with both terms. He places “volume” as a general title for 

the graph, and “millions of gallons” next to the vertical axis, indicating the units in which 

values on the vertical axis are measured (Figure 21). Daniel also seems content with the 

title they have found for the “derivative of volume,” which is “the change of volume with 

respect to time” (651). With a resounding “Woohoo” from Daniel, the group moves on to 

tackle part (b) of the Quabbin Reservoir Task. 

 

Figure 21. Justin’s volume graph with “volume” as a title and “millions of gallons” as 
units for the vertical axis. 
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This last except of transcript may help to illustrate a possible weakness of viewing 

the learning of mathematics strictly from the perspective of becoming a participant in 

discourse. This weakness has to do with how discourse as a social practice may serve to 

mask the contributions, or even existence, of individual cognition. As Justin has played a 

definite role in his group as one who listens, explains, organizes, and justifies, the result 

has been that I, as an observer, can say very little about how he has come to believe that 

what he is saying is true. For the most part, the analysis here may suggest that vocal 

egocentric speech does not exist in the language of university students. However, this 

final portion of transcript (643-651) appears to be an exception that suggests that 

egocentric speech does exist and may, in fact, be viewed as a means for evaluating 

individual cognition. 

Although his analogical argument (643-651) may serve as a response to the 

questions of his peers, Justin’s language also suggests that the primary question that he is 

answering may be his own. With considerably less hesitation than in previous portions of 

transcript, Justin now speaks as though resolute. While his earlier explanations, 

specifically in Segment 9: The Gospel According to Justin, were constantly interrupted 

by his characteristic, “Does that make sense?” Justin does not stop to check for 

understanding or agreement. This may be because Justin, in clips 643-651, is either 

negotiating language with himself, or using language to express relationships that he has 

recently come to know. He is answering his own questions about the analogical 

relationships and language that are central to his mathematical understanding. Because 

Justin’s language does not include the cues that generally reflect his efforts to place 

himself at the point of view of the hearers of his speech, I view this portion of transcript 
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as an example of more egocentric speech that allows me as an observer, to make 

conjectures about the structure of Justin’s individual thoughts. As has been explained 

earlier, due to the concern that the participants often expressed for one another’s 

mathematical understandings, egocentric speech as evidence to support such conjectures 

is relatively rare to this data. Therefore, while I have said much about the social 

negotiation of mathematical meaning and language, it is quite possible that the role of 

individual cognition may have taken a secondary role in this analysis. The resulting 

implications are discussed in the next chapter. 

 In this chapter, I have presented three narrative strands of the negotiation of 

meaning and language in mathematical discourse. To negotiate meaning for the 

conventional terms “point of inflection” and “concavity,” Daniel used personal pronouns 

and personal experience to convey his meaning for “point of inflection,” which was later 

connected to Justin’s meaning for “concavity,” resulting in a view of inflection points 

that functioned to help Justin to relate the graphs of a function and its derivative. In the 

negotiation of language for Daniel’s construct of “zero points,” Jamie, Daniel, and Justin 

purposefully chose language that consistently reflected their personal experience to assist 

their interpretation of mathematical concepts. Finally, Justin’s analogical reasoning 

process was revealed as the participants pursued answers to each others’ questions and 

comments about “velocity,” “volume,” and “the derivative of volume.” 
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CHAPTER 7: DISCUSSION 

 In defining human agency, Inden (1990) stated that when making a choice, human 

agents “may consider different courses of action possible and desirable, though not 

necessarily from the same point of view” (p. 23). The analysis of three processes of 

negotiation of meaning presented here highlights how different points of view, or 

different explanatory factors, may be reflected in the participants’ choice of language. In 

this chapter, I discuss situations in which the explanatory factors of one’s experience and 

one’s understanding of the mathematics can lead to improvisation or compromise in 

mathematical discourse. Looking at conventional mathematical language as an 

abstraction of the analogous features of various contexts and personal experiences, I 

suggest a Mathematical Language Matrix as a way to characterize mathematical 

language. I also suggest implications for the teaching of mathematics “in context.” 

 The participants in this study have displayed more than just a variety of 

mathematical language. Their choices have also demonstrated how mathematical 

discourse truly is a social practice. Each participant had different experiences and 

expectations to contribute to mathematical discourse, and each exhibited a “mindful 

awareness of the impact one’s actions and choices may have on others” (Walter & 

Gerson, 2007, p. 209). The third explanatory variable for choices made in mathematical 

discourse, that of the social situation in which the discourse occurs, was reflected in 

Justin’s and Daniel’s use of social speech that may be said to epitomize Piaget’s 

description of “attempting to place himself at the point of view of his hearer” (1997/1896, 

p. 9). As this type of speech may be used to increase students’ access to mathematical 

discourse, instructors would be wise to, after Lampert (1990), model, describe, and 
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negotiate (Cobb, Wood & Yackel, 1993) similar types of speech in their mathematics 

classroom. 

Finally, it should also be noted that the mathematical discourse described here 

emerged as a result of the participants’ choices as they developed their own solution to 

the Quabbin Reservoir Task. Their participation in mathematical discourse wasn’t just a 

process of taking on roles in some pre-existing conversation, and stands in drastic 

contrast to notions of scripted mathematical discourse. In a sense, the term 

“participation,” may not completely capture the contributions that Daniel, Jamie, Justin, 

and Julie made. Through the exercise of personal agency, they were the creators, 

moderators, and evaluators of personally and socially meaningful mathematical 

discourse. Indeed, the viewpoint of “becoming a participant in mathematical discourse” 

may be limited not only by traditional views of mathematical discourse, but also 

traditional views of participation. In the sections that follow, I synthesize my 

observations and analyses of the mathematical discourse of these participants to define 

mathematical discourse from the perspective of personal agency. This definition may 

help researchers to broaden and refine their notions of mathematical discourse, and help 

teachers to appreciate the value of student language and thought. 

Mathematics and Experience 

 In choosing his mathematical language, we have seen how Justin was careful to 

not only be mathematically correct, but also experientially correct. That is, Justin avoided 

making interpretations of the mathematics that couldn’t be mapped to personal 

experience. His avoidance of a net rate interpretation of a zero point in terms of physical 

phenomena reminds me of the choice of a practicing elementary school teacher named 

   



 138

Matt when he was completing a similar task about water in a reservoir (Johnson, 2005; 

Walter & Johnson, 2007). This teacher relocated the context of the task to a bathtub, 

where the bather specifically controlled inflow and outflow, either by turning on the 

faucet, turning off the faucet, opening the drain, or closing the drain. Simplifying the task 

by not allowing water to be entering and exiting the bathtub simultaneously, Matt’s 

consequential interpretation of a point where the net rate graph crossed from the upper 

half plane to the lower half plane was as follows:   

Then we think, ‘you know what, I’ve got enough water,’ so we start turning the 

knob off at this point . . . as we’re turning we’re decreasing the gallons a minute 

from one and half gallons per minute to one gallon per minute to zero gallons per 

minute right here. Then we notice we’ve got too much, so immediately, no time 

between when we turn it off and when we start turning the other knob to let 

the water out, we notice we have too much, so we start to turn the knob at this 

point to let the water out, and we’re slowly turning that knob, or slowly opening 

the drain . . . (Johnson, 2005, p. 56, emphasis added)  

This elementary school teacher, in inventing a situation that may be explained by the 

given graph of rate, presented a situation that may be slightly unrealistic. With absolutely 

no time passing, the bather turns off the inflow at the very moment that he turns on the 

outflow, resulting in a virtual “point” at which the net rate of change is zero. This may be 

considered a case where personal experience is momentarily improvised in order to 

correctly reflect the mathematics of the situation.  

 In the current data, the opposite phenomenon might be observed, in which the 

mathematics is momentarily compromised in order to allow for language that fits 
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personal experience. When the participants spoke of a zero point as a “period of no 

change,” and found alternatives to describing net rates of change as physical 

combinations of inflow and outflow, they may have danced around some of the more 

technical details of the mathematics in favor of preserving the semantic nature of their 

argument. In both cases, however, the momentary compromises were acceptable to the 

listeners. This suggests that there may be an underlying unspoken assumption that 

relationships between mathematical events and personal experience are not to be 

interpreted in a strictly literal sense. Rather, the participants play “the believing game” 

(Elbow, 1973) in order to extract the more general sense of the comparison rather than 

get caught up in little details.  

Organizing Conventional and Ordinary Language 

At the beginning of this study, I described a continuum of conventional and 

mathematical vocabulary, characterizing conventional mathematics language as language 

having precise and abstract meanings in mathematical discourse, such as “derivative.” I 

hypothesized that every conventional mathematics term could also be described in 

ordinary language, such as Justin’s description of velocity as the derivative of 

displacement as “how fast you’re changing your distance.” Figure 22 represents my 

initial ideas about the placement of the term “derivative” and the phrase “how fast you’re 

changing your distance” on this continuum of mathematical language. 

Ordinary Conventional 

derivative “how fast you’re 
changing your distance”  

Figure 22. A continuum for mathematical language. 
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The data were also rich with mathematical language that I could not characterize 

as completely conventional mathematical language, nor completely ordinary. Some 

examples would be “instantaneous rate of change,” and “velocity.” I imagined these two 

terms as located at some point along the mathematical language continuum between the 

extremes of conventional and ordinary (Figure 23). The curved arrows cycling between 

“instantaneous rate of change” and “velocity” in Figure 23 represent my confusion about 

which I considered to be “more” conventional. I considered “velocity” a precise 

conventional term, but not a strictly mathematical term because of its importance in 

physics. “Instantaneous rate of change” didn’t seem to belong to any specific application 

of mathematics, and was therefore very abstract, yet not exactly as precise as “derivative” 

or even “velocity.” In fact, “instantaneous rate of change was more of a description or 

interpretation of a derivative. 

 

Conventional Ordinary 

derivative 
velocity 

“how fast you’re 
changing your 
distance” 

Abstract 
Precision 

Contextualized 
Precision 

Contextualized 
Descriptive 

instantaneous 
rate of change 

Abstract 
Descriptive 

Figure 23. Completing the continuum for mathematical language. 

As I attempted to place various types of language along my continuum, I 

continued to encounter the same phenomena. Some language was very conventional in 

that it was abstract and precise; other language was abstract, but more descriptive than 
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precise; and other language was precise, but less abstract because it was strongly 

associated with a particular science or context other than mathematics. I concluded that I 

would either have to make a choice between abstraction and precision as the more salient 

feature of conventional mathematics vocabulary, or change the structure of my 

continuum. I decided to change the structure of my continuum, creating a two 

dimensional array for characterizing mathematical language. This array, which I named a 

Matrix for Mathematical Language, essentially combined two continua, one represented 

by the extremes of precision and description, and the other by the extremes of abstraction 

and contextualization (Figure 24). Precise and abstract mathematical language could now 

be found in the upper left hand corner of the matrix. Descriptive but abstract terminology, 

such as mathematical definitions, descriptions and abstract interpretations, was located in 

the upper right hand corner. Contextualized analogs or examples of precise mathematical 

terms found a place in the lower left hand corner of matrix, and contextualized 

descriptions found place in the lower right hand corner. 

          Precise                                           Descriptive 
 
 

 
Abstracted 
 
 
 

 
Derivative 

 
Instantaneous rate of change 

Contextualized Velocity “how fast you’re changing your 
displacement” 

 
 

Figure 24. Matrix for mathematical language 

I realized that this matrix could be extended indefinitely, as new contexts, such as 

the Quabbin Reservoir context, could be added. I didn’t know if I could claim that one 
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context was more “contextualized” than another. Furthermore, I reasoned that 

mathematics itself was a context, the context of abstraction. I changed my representation 

once again, replacing the continuum of more or less contextualized language, with a list 

of different contexts. I then added the Quabbin Reservoir Context to this list (Figure 25). 

Context  
 

         Precise                                           Descriptive 
 
 

Mathematics  Derivative Instantaneous rate of change 
 

Kinematics Velocity “how fast you’re changing 
your displacement” 

Quabbin Reservoir Rate of flow “how fast you’re changing 
your volume” 

Figure 25. Extended matrix for mathematical language. 

Learning to Think Mathematically 

Although the participants may not have literally organized the language of their 

mathematical discourse in a matrix as I have, the data suggest that they did demonstrate 

an inclination to organize language by identifying analogs for mathematical concepts in 

different contexts and interchanging precise and descriptive language for the purposes of 

explanation and justification. These organizational habits may be reflective of an ongoing 

process of learning to think mathematically that takes place as students engage in 

discourse with the goals of solving mathematical problems and advancing their own 

mathematical understanding. Not only did the participants find and agree upon a solution 

to the given task, but they engaged in the mathematical processes of property noticing, 

interpretation, conceptualization, abstraction, and generalization.  

Like Daniel, I was not entirely satisfied with the analog of derivative in the 

Quabbin Reservoir Context as “rate of flow.” As mentioned by Zandieh (2002), the 
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language of derivatives in the field of kinematics is highly developed, as “velocity,” 

“acceleration,” and even “jerk” (the time derivative of acceleration) are quantities that are 

measured and studied independently. Zandieh suggested that the precise language 

structure is a motivation for studying derivatives in kinematic contexts. Attempting to fill 

in the matrix for derivative in the context of the Quabbin Reservoir reveals that there is 

no commonly known “special name” for “the derivative of volume.” As mentioned in 

Chapter 6, the net rate of change of volume, or derivative of volume, is not generally 

measured in a reservoir. Inflow and outflow, on the other hand, not only exist in the 

world of mathematics, but are also observed and measured as quantities in fields such as 

engineering, agriculture, and, as reported by Walter and Johnson (2007), the more 

common human experience of filling up a bathtub. The design of the Quabbin Reservoir 

Task (Hughes-Hallett et al., 1994) accurately reflects this fact by providing information 

about inflow and outflow, rather than combining the data as a net flow. 

Sfard (1997) suggested that metaphors are used for conceptualizing, while, 

analogies are used for reasoning. The matrix of mathematical language may provide an 

example of Sfard’s notion of metaphor. When Daniel asks, “What would the derivative of 

volume be?” his demonstrated meaning for mathematical language may be represented 

by Figure 26. Reasoning that the derivative of displacement, velocity, is a quantity that 

can also be measured, Daniel conceptualizes the idea of a derivative of volume. Although 

he has not been told that a derivative of volume exists, and does not know what such a 

derivative would be named, he reasons a derivative of volume into existence. This 

derivative of volume, which did not previously exist in Daniel’s language matrix, comes 

into existence through the vehicle of metaphor. 

   



 144

Context  
 

         Precise                                           Descriptive 
 
 

Mathematics  Derivative Instantaneous rate of change 
 

Kinematics Velocity “how fast you’re changing your 
displacement” 

Quabbin Reservoir “What would the 
derivative of volume be?” 

“how fast you’re changing your 
volume” 

 

Figure 26. Daniel’s matrix for mathematical language for the concept of derivative. 

One possible argument for contextualized mathematics instruction can be formed 

by considering the impact of adding additional contexts to the language matrix in Figure 

25. Each time a new context is added, more language becomes relevant to the study of 

mathematics, giving students opportunity to build upon and refine their meaning for new 

types of language as they learn to engage in the mathematical activity of identifying and 

abstracting patterns from a variety of contexts. A completely abstract approach to 

mathematics limits students’ opportunities to build meaning and language, especially 

when the abstract language of mathematics does not intersect often or well with students’ 

ordinary language. The addition of contexts to mathematics instruction implies an 

addition of language, and if the language of these contexts intersects appropriately with 

students’ experience, this language offers additional pathways for students to access 

mathematical discourse. Furthermore, students are then given rich opportunities to 

participate in the process of abstraction as well as operate on the results this process. If, 

however, additional contexts are not reflective of, or closely related to, student 

experience, the addition of these inappropriate contexts may further impede students’ 

access to both the discourse and the mathematics (Zevenbergen, 2000). 
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Another possible danger in contextualizing mathematics activity is that teachers 

may take the extreme stance of completely eliminating the abstract language of the 

mathematical context because it may seem irrelevant or impractical. However, Brown 

(2001) recognized the teaching and modeling of conventional terminology as a necessary 

role of the mathematics teacher, along with providing students opportunities to use 

language that symbolizes their own experience. Sfard (2000) also suggests that what 

some may call the premature introduction of language may in fact be a necessary step in 

the process of learning about mathematical concepts. When Daniel introduced the term 

“inflection point” to discourse, Julie and Jamie’s questions revealed that they had not 

previously engaged in extensive negotiation of meaning for the term. Although Jamie 

could recognize an inflection point as a maximum or minimum on a derivative graph, she 

had not yet noticed how points of inflection were also represented in the shape of the 

original function. Daniel’s introduction of the conventional language of inflection point 

motivated the development of descriptive language from a variety of contexts to create 

and negotiate meaning for a mathematical idea that may not have been naturally 

encountered in the contextualized realm (Figure 27). As a result, the participants learned 

to notice new mathematical properties of mathematical objects. 

Figure 28 represents a possible mathematical language matrix for the concept of 

”zero points.” The term, “zero points” is not a conventional mathematics term, nor does it 

suggest the context of velocity or water in a reservoir. To represent the nature of Daniel’s 

coined term “zero points,” I introduce a new context for language that is descriptive of 

the shape of a graph, with “zero points” being a more precise description of “where the 

graph crosses the horizontal axis.” As in Figure 27, the matrix for inflection points, it is 
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useful to identify individual frames of reference that may be represented by different 

graphs within the various contexts. In this matrix, I have also included the name of the 

participant who introduced the various descriptive terms to discourse. Each of the 

participants offered different ways of describing zero points, thus creating a richer 

definition and interpretation for Daniel’s coined term. In doing so, they developed ways 

to apply the shape of an abstract graph towards the purpose of interpretation of physical 

phenomena in the rich context of water in a reservoir. 

Context  
(Frame of Reference  

within a context) 

         Precise                                           Descriptive 
 
 

Mathematics  
(Function) 

“Inflection Point” “Where concave down changes to 
concave up” 

Mathematics  
(Derivative) 

Extrema “Where the slope is the highest” 
 

Kinematics  “Where the velocity is the highest on a 
displacement graph” 

“A Slide”  “The point where you start to level off” 

Figure 27. A co-constructed mathematical language matrix for “inflection point.” 

The findings of this study suggest that, to assist students in learning to think 

mathematically, the purpose of studying mathematics in context should be made explicit. 

Situated cognition views of learning (Brown, Collins, & Duguid, 1989) suggest that 

students may compartmentalize their activity according to context. For example, a 

student in a contextualized calculus course may report that they learned about velocity 

one week and rate of flow the next week, but never make the abstract connection between 

the two contexts which a mathematician might refer to as “derivative.” Students may 

need to be explicitly taught that mathematical concepts are intended to be abstract 

concepts that can be applied to and observed in various other contexts. Therefore, the 
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primary purpose of studying mathematics in context is not necessarily to give 

mathematics a more familiar appearance, but to provide opportunities for students to 

learn to identify, compare, and abstract mathematical concepts from these contexts. 

Analogical problem solving may help students to participate in these activities, but if 

mappings and solution processes are not made explicit, students may find themselves 

overwhelmed by a large amount of language with few connections in meaning for that 

language.  

Context  
(Frame of Reference  

within a context) 

         Precise                                           Descriptive 
 
 

Mathematics  
(Function) 

Extrema “Maximums and minimums” 
(Justin) 

Mathematics  
(Derivative) 

Critical Points5 Zeros of the derivative 
 

Shape of a Graph  
(Rate) 

“Zero Points” 
(Daniel) 

“Where [the graph] crosses the x-
axis” (Justin and Daniel) 

Shape of a Graph  
(Original) 

 “Where they meet” (Daniel) 
 

Shape of a Graph  
(Quantity) 

 “Your top and bottom points” 
(Julie) 

Kinematics  “Where the velocity (of the 
water) is zero” (Daniel) 

Quabbin Reservoir  
(Separate Rates of change) 

 “When the inflow equals the 
outflow” (Jamie) 

Quabbin Reservoir  
(Volume) 

 “When the volume of the water 
isn’t changing” (Justin) 

Quabbin Reservoir  
(Net Rate) 

 “When the net flow is zero” 
(Justin) 

Figure 28. Mathematical language matrix for “zero points.” 

 

                                                 
5 In a strict mathematical sense, critical points and extrema do not refer to the same concept. However, for 
the purposes of our participants in completing and explaining the Quabbin Reservoir Task, these concepts 
coincided well. 
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Instructors and students might be encouraged to make their analogical language 

explicit by identifying their analogical language use. To further capitalize on the 

abundance of mathematical language, students and instructors might even create their 

own matrices of mathematical language as they participate in contextualized 

mathematical activity. As demonstrated by the choices of the participants in this study, 

both instructors and students have the potential to ask questions and make comments that 

encourage the negotiation of meaning and language toward making relationships between 

different types of language more explicit.  

The Values of Mathematical Discourse 

If defining types of discourse is to go beyond word choice and content to include 

Gee’s (1996) idea of “ways of behaving, interacting, [and] valuing” (p. viii), the choices 

of the participants in this study may provide a basis on which we may begin to define 

mathematical discourse. Julie leads the way, pressing her peers to make their analogical 

reasoning, solution processes, and language explicit with summarizing statements and 

clarifying questions. These questions encouraged the other group members to share and 

revise their thinking and language through engagement in the negotiation of meaning.  

Jamie exemplified the mathematical value of precision. In originally coding the 

data for pronoun use, I noticed that statements by Daniel, Julie, or Justin, were replete 

with the pronouns such as “this” and “that” and “it.”  Jamie’s language was exceptional 

in this respect. I noticed that I didn’t need to hypothesize about possible referents for her 

pronouns because she rarely used these pronouns at all, and made the referents of the 

pronouns she did use explicit through gestures and pointing. Jamie sought precision in 

her language, and was conscious of the different labels that were being used for different 
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graphs. The transcript below demonstrates Jamie’s refusal to accept Daniel’s misuse of 

the term “midpoint,” which encouraged Daniel to add even more labels to the horizontal 

axis of his graph so that he could be more precise as he referred to different portions of 

the graph. The value of the labels was made apparent to me as I used them to refer to 

different portions of the graphs in my process of analysis. 

825 (0:56:41.9) Daniel: And after February, or after the midpoint, of 
between January and April- 

826 (0:56:45.3) Jamie: What is the midpoint? I don’t think it’s, like 
the middle of February?

827  Daniel: it’s not February, but-
828 (0:56:49.9) Jamie: Okay.
829 (0:56:50.4) Daniel: I’m just saying like-
830  Jamie: The midpoint.
831 (0:56:51.8) Daniel: -the midpoint.
832 (0:56:52.5) Jamie: Okay, I understand.
833  Daniel: I don’t know [inaudible]
834 (0:56:54.1) Daniel: Ooh. We could put like “A” and “B,” and “C” 

[labeling the horizontal axis with the letters A 
through G].

835  Jamie: Yeah.
836 (0:56:57.3) Daniel: Wooh! I ‘m so excited!
837 (0:56:59.4) Jamie: [laughs]
838 (0:57:00.2) Daniel: Yes! I got all the way up to “G”! 

 
Daniel’s tendency to search out and even create labels for important mathematical 

objects suggests a view of the role of personal agency in the hermeneutic cycle of 

mathematical language. Daniel was not afraid to act creatively on language as he coined 

phrases and created examples, but at the same time he exhibited awareness of a larger 

system of conventional language and ideas. Daniel also exemplified the value of sense 

making. Viewing mathematical language and concepts as part of a structured system, he 

built on his knowledge of the relationship between displacement and velocity to 

conceptualize and reason about the relationship between rate of flow and volume. Daniel 

even searched for language to complete his mapping of the two problem solving contexts. 
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Combining creativity with sense making, Daniel melded the idea of maximum velocity 

with his personal experience to develop a kinesthetic description of a point of inflection. 

Daniel also recognized mathematics as a social practice as well as a personal practice, 

and was always the first to check whether his peers felt comfortable with his point of 

view with questions such as, “Is everyone good with that?”  

Justin also developed a habit of checking with his peers, repeatedly asking, “Does 

that make sense?” and waiting for a response before moving on. Justin demonstrated an 

acute awareness of what his peers were, and had been, saying. He based his decisions for 

language not only on his personal experience and understanding of the mathematics, but 

also his best approximation of his peers’ understanding of the mathematics. One of the 

ironies of Segment 9: The Gospel According to Justin is the fact that it cannot be 

classified as strictly “according to Justin.” Analysis has shown how many of Justin’s 

decisions about language reflected the language of his peers in previous discourse. From 

his use of “negativity” after Daniel, to his care to say that the rates are “becoming equal” 

rather than “coming to zero” as suggested by Jamie, to his qualification of the 

metaphorical term “velocity” to show his respect for Julie’s preferences, to his final 

triumph in organizing two different terms for quantity of water as prompted by his 

instructor, Justin’s words provide evidence of one of the most important processes in the 

negotiation of meaning: listening. Although Justin may have been able to correctly 

explain his solution using his own preferred language, his language awareness 

demonstrates an acute awareness of his peers and a level of social speech that goes 

beyond simply acknowledging the presence of his listeners to actually speaking the words 

that they have spoken. 
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New Forms and Functions for Social Speech 

 My application of Piaget’s (1997/1896) notion of social and egocentric speech 

suggests possible characterizations of the roles of social and egocentric speech in 

mathematical discourse. To characterize social speech, I searched for evidence of the 

speaker attempting to place him or herself at the point of view of the hearer, which 

resulted in the identification of some specific uses of pronouns and the dialogic nature of 

my participants’ speech. For example, in the “inflection” narrative, Daniel used the 

second person pronoun “you,” not to accuse or command, but to invite Julie to reflect 

upon her own personal experience. Daniel’s language reflects his purposeful choice based 

on his meaning for point of inflection and his meaning for Julie as one who may relate to 

the experience of riding down a slide.  

142 (0:19:19.1) Daniel: Okay, so if you’re, like, here’s kind of an, idea, 
okay. So if you’re drawing, a curve. Um, like, you 
just. Ah.

143 (0:19:32.9) Daniel: Okay, so the inflection point is where the velocity 
is the highest,

144 (0:19:37.3) Daniel: so, like, if it, if you were like going on a slide and if 
you’re falling down on it . . . 

 
I found that language not only may reveal the choices that the participants make, 

but also the choices that they do not make. For example, Daniel’s hesitation (142) 

demonstrates that, although he considered approaching his explanation from the 

perspective of drawing a curve (an explanation that he does later offer), he opted for an 

experiential example in which his own understanding of inflection as point of “highest 

velocity” can be interpreted quite literally. The three explanatory factors for language in 

mathematical discourse are reflected in Daniel’s choice. Daniel’s language reflects his 

own mathematical understanding of points of inflection as points of highest velocity. The 

   



 152

notion of riding down a slide draws on Daniel’s personal experience. The social 

implications of Daniel’s concern and respect for Julie as a member of their collaborative 

group may have encouraged Daniel to bring in the factor of personal experience as a 

frame for his explanation. 

Another example of social speech as “placing [oneself] at the point of view of the 

hearer” was demonstrated in Justin’s habit of revoicing, which may be viewed as the 

practice of adopting and adapting the language of the hearer. Although he demonstrated 

the capacity to explain the mathematics of the Quabbin Reservoir Task using various 

types of language, Justin chose to demonstrate appropriate use of the language of his 

fellow participants. For example, in Segment 9, we see Justin echo a previous 

conversation of Jamie and Daniel, stating that, instead of talking about net rate “coming 

to zero,” he chooses to say “they’re gradually becoming equal” as was suggested by 

Jamie. We also see that Justin is not merely parroting Jamie’s language, but that he 

appropriately indicates on the original graph the point where the inflow and outflow 

curves intersect.   

352 (0:33:20.9) Justin: So it’s lower right here. [the rate graph at A] 
   Now it’s [the rate graph] 

gradually coming to zero,  
[the first intersection 
of the inflow and 
outflow on the original 
graph] 

   it’s gradually, um, coming to, 
it’s gradually, I don’t want to 
say coming to zero, I wanna 
say, [2 sec]  

[the first x-intercept on 
Justin’s net rate graph] 

   yeah they’re [inflow and 
outflow] gradually becoming 
equal, so it’s the water level, 

[the first intersection 
of the inflow and 
outflow on the original 
graph] 

   the volume level is staying the 
same. Right? 

[holding hand flat with 
palm down at eye 
level] 
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Figure 29. The original graph (left) and Justin’s rate graph (right). 

 Speiser (2002) demonstrated how even young students are capable of “trying on” 

the thinking of others, and inviting others to do the same. These invitations to participate 

in discourse are structured in the present data by Daniel’s use of examples and pronouns 

and Justin’s revoicings. The result is a type of social speech that goes beyond Piaget’s 

categories for young children. Like O’Connor and Michael’s (1996) characterization of 

revoicing, this social speech functioned to invite and allow all participants access to 

mathematical discourse. A fellow researcher pointed out that, without this form of social 

speech as a norm in mathematical discourse, Julie’s important contributions to the 

negotiation of meaning may never have entered the social discursive stage. 

Egocentric Speech and Implications 

 As mentioned earlier, a possible weakness in the methodology and analysis of this 

study may be the way in which individual cognition may be obscured or ignored when 

mathematical activity is viewed through the lens of the social practice of mathematical 

discourse. If social speech, as discussed earlier, may be viewed as the participants’ efforts 

to adopt and understand one another’s language and points of view for the purpose of 
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negotiating mathematical language and meaning, egocentric speech may continue to 

represent the other end of the continuum. That is, egocentric speech would be speech in 

which the participants do not make an effort to adopt one another’s language or point of 

view, and therefore, the participants use their own language for their own purposes. They 

vocalize their inner thoughts, not for the purpose of explaining or even communicating 

with others, but towards the ends of developing, clarifying, or solidifying their own 

mathematical understandings.  

 Piaget (1997/1896) noted that egocentric speech is not intended to serve social 

functions, and as a result is often not observed in the language of adults in social 

situations. Therefore, a researcher or mathematics teacher who is interested in accessing 

the individual cognition dimension of mathematics learning with as little interference as 

possible may choose to ask learners of mathematics to directly explain their mathematical 

understandings, or perhaps less directly, to explain why they made the decisions that they 

did when solving mathematical problems. If such questions are interpreted by learners as 

invitations to participate in egocentric speech, it may be possible to achieve a better 

approximation of how those individuals’ mathematical understandings are developing. 

After listening carefully to egocentric explanations, the researcher or teacher may 

participate more genuinely in social speech for the negotiation of meaning.  

 As an example, the instructor-participant in this study exhibited sincere questions 

as she asked the participants to explain the intended meanings for their language 

(Daniel’s “zero points”) and gestures (Justin’s rising and falling palm for “water level”), 

as shown in the transcripts below. In response to the instructor’s questions, the 

participants reflected on and eventually expressed their reasons for their choice in 
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language and gestures, providing further evidence that allowed me as a researcher to 

provide more convincing interpretations of the participants’ individual thoughts. 

208 (0:23:34.3) Dr. Walter: I don’t understand what you 
mean, where the inflow and the 
outflow meet you’re gonna have 
zero points. Zero points of what? 

 

209 (0:23:42.7) Daniel: The level of water overall. So the 
velocity. I think, let’s see. 

 

 
220 (0:24:22.5) Daniel: And so, when the, when there is 

no change in the water level for a 
certain time, the velocity will be 
zero . . . 

[holding both 
hands at the 
same level] 

 

 
 
284 (0:27:36.4) Dr. Walter: So you’re thinking of measuring 

the quantity of water in the 
reservoir by the height [1 sec] of 
water in the reservoir?  

 

   When you’re doing this I’m 
imagining you’re talking about 
the height? 

[raising and 
lowering flat 
hand] 

 
286 (0:27:48.2) Justin: That’s how I, that’s how I think 

about it, cause I don’t know how 
else, I guess you could measure it 
in, like volume, but,  

 

   I don’t know, height, just, to me, 
seems more, one, two 
dimensional. 

[raising and 
lowering hand 
with palm down] 

 
 The egocentric reflection and speech that resulted from such questions not only 

helped Daniel and Justin to clarify and better their own mathematical understandings, but 

these questions were also seen as initiatory to extended processes of social negotiations 

of meaning. As has been demonstrated by the findings of this study, an in-depth analysis 

of the negotiation of meaning and language in mathematical discourse can suggest new 

and complex ways of viewing the process of learning mathematics. However, as 

recognized by Sfard (2001), such findings are to be viewed as interpretations of the 
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participants’ intentions, and are not to be viewed as absolute truth or facts. Here I suggest 

an additional limitation to such studies, being that, without specific invitations for the 

participants to participate in egocentric speech, the continuous influence of the 

participants’ concern for how their choices may affect one another, may obscure and 

possibly even eliminate the importance of individual mathematical thought. However, 

just as students and teachers can use revoicing and other forms of social speech to 

emphasize the role of collective understanding mathematical discourse, I would suggest 

the participants in discourse also have the capacity to ask questions and make other 

decisions that shape discourse in a way that also emphasizes the existence and 

importance of individual thought in social practices. 

Defining Mathematical Discourse via Agency 

 Finally, it should be noted that the perspective of learning mathematics as 

becoming a participant in discourse also has the potential of obscuring the characteristics 

that make mathematical discourse mathematical. In this study, I have demonstrated how 

three factors might be viewed as explanatory for choices made in mathematical discourse. 

Applying Walter and Gerson’s (2007) definition of personal agency as the “requirement, 

responsibility and freedom to choose based on prior experiences and imagination, with 

concern not only for one’s own understandings of mathematics, but with mindful 

awareness of the impact one’s actions and choices may have on others” (p. 209), I have 

discussed how “prior experiences and imagination” are reflected in students’ decisions to 

use analogy and analogical language as vehicles for mathematical conceptualization and 

reasoning. While relating mathematics to personal experience, the students have carefully 

negotiated meaning that not only matches previous experience, but also reflects their own 
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efforts to communicate and improve their own mathematical understandings. The 

participants in this study have also exhibited “mindful awareness of the impact one’s 

actions and choices may have on others,” by developing forms of social speech that may 

increase participants’ access to discourse. 

 At the beginning of Chapter 2, I cited Goodwin’s (2000) suggestion that the ideal 

context for the study of human cognition, language, and action is a situation where 

participants carry out action through talk. Goodwin stated that these participants should 

not, however, be placed in sterile clinical environments for such studies, but be 

simultaneously attending to “larger activities that their current actions are embedded 

within,” and “relevant phenomena in their surround.”  I now suggest an analogical 

language mapping of my own. I view “larger activities that their current actions 

embedded within,” as analogous to the social sphere in which mathematical discourse 

takes place. I also view “relevant phenomena” as analogous to the experiences, linguistic 

and otherwise, which the participants bring to mathematical discourse.  

 The third explanatory factor for human choice in mathematical discourse, 

“concern for one’s own understanding of the mathematics,” does not have an analog in 

Goodwin’s description. This is not entirely surprising, as Goodwin was not specifying his 

work to mathematics education. My resulting suggestion, then, is that the third 

explanatory factor may be what makes mathematical discourse mathematical. While the 

exercise of personal agency in all forms of discourse may reflect the social and 

experiential explanatory factors, not all discourse reflects the participants’ concern for 

their understanding of the relevant mathematics. At the moment that the participants’ 

concern for their understanding of the mathematical concepts involved begins to play a 
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role in explaining choices made in discourse, then, I suggest, mathematical discourse may 

be said to exist. If we look at the various examples of discourse that may have originally 

been characterized as mathematical simply because they occurred in a mathematics 

classroom, included the use of mathematical vocabulary, or included mathematical 

content, we may find that the participants’ concern for their own understanding of the 

mathematics is not always reflected in participants’ discursive choices. In such a case, I 

would suggest that these types of discourse should not be considered mathematical.  

 Richards’ (1991) four types of mathematical discourse may also be united by the 

factor of concern for one’s own mathematical understanding, in terms of how the 

participants take care to either advance or correctly represent such understandings. In the 

discourse of research mathematicians, the advancement of mathematical understanding 

may be said to be the unifying goal of mathematical discourse. In the discourse of 

mathematical journals, it is not so much the development of understanding, but the 

communication of understanding in a clear and concise manner that determines 

organization, word choice, and other relevant decisions for discourse. While advancing 

mathematical understanding may not be a goal of the inquiry discourse of adults, efforts 

are made to correctly represent and apply mathematical understandings in ways that will 

solve problems. Ideally, the discourse of the mathematics classroom would be centered 

on the goal of advancing learners’ mathematical understandings through instruction, and 

correctly representing that mathematical understanding for the purposes of assessment. 

 I suggest that mathematics educators define and study mathematical discourse as 

discourse in which the three explanatory factors of (1) experience and imagination, (2) 

social roles and responsibilities, and (3) concern for one’s own understanding of the 
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mathematics are reflected in participant choices. I believe that such a definition may 

assist both teachers and researchers in identifying why simply “having students talk to 

one another” while doing mathematics may not be a sufficient characterization of 

mathematics learning. For example, one may observe a mathematics classroom where the 

participants may (1) draw upon their experiences and imaginations, and (2) attend to their 

social roles and responsibilities as co-operative participants in discourse, but (3) lack in 

their efforts to either advance or express their own mathematical understandings. 

Classroom mathematical discourse must, by definition, be guided by the learners’ 

concern for their own mathematical understanding. On the other hand, mathematical 

discourse may fall short for the purposes of learning mathematics if the participants (1) 

fail to connect their mathematical understanding to the relevant areas of personal 

experience or (2) fail to co-operatively attend to their social roles and responsibilities.  

 This suggested definition of mathematical discourse sets high standards for those 

who view mathematical discourse as central to mathematics learning. It implies that 

instructors should not only encourage students to draw upon their own experiences and 

engage in the social practices of questioning, explaining, and justifying, but should also 

seek to encourage these students to act based upon a concern for their own mathematical 

understanding. Determining how students may reach this point was not the focus of this 

study, although I believe that reviewing the data suggests that particular classroom norms 

enacted in the classroom in this study (for example, extended time to allow the 

negotiation of meaning to occur and the instructors’ modeling of sincere questions about 

the intended meaning of the learners’ language and gestures) and approaches to learning 

mathematics (such as the inclusion of contexts that allow participants multiple avenues to 
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access discourse) certainly do not inhibit, and may be said to encourage, the exercise of 

personal agency in this way. Defining mathematical discourse has already entered a 

hermeneutic cycle of defining, applying, and redefining, and will likely continue in such 

a cycle as long as researchers are concerned with discourse in mathematics education. At 

present, though, I choose to define mathematical discourse as discourse in which the 

factors of personal experience, social awareness, and each individual’s concern for their 

own understanding of the mathematics can be viewed as explanatory of human choice. 

This view of mathematical discourse invites researchers and practitioners to make 

choices that may increase the productive exercise of personal agency by learners of 

mathematics. 
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APPENDIX A: THE QUABBIN RESERVOIR TASK 
 

Quabbin Reservoir Task* 
 
 

Name____________________________________________ 
 
Please use additional paper as needed to provide complete answers. 
 

 
 
(b) Explain the changes in the quantity of water in the reservoir in terms of the 
relationships between outflow and inflow during each quarter of the year. How are these 
changes evident in your graph in part (a)? 
 
 
(c) How does the quantity of water in the reservoir in Jan 1993 compare with the quantity 
of water in the reservoir in Jan 1994? How do you know? 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Adapted from Hughes-Hallett, et al. (1994). Calculus. New York, NY: John Wiley & Sons, Inc. 
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APPENDIX B: PARTICIPATION IN DISCOURSE 
 
 
Participant Number of clips for which the participant was the speaker 
 
Daniel 284 
Dr. Walter 33 
Jamie 173 
Julie 82 
Justin 276 

   



 168

APPENDIX C: PRONOUN CODES 
 
 
Pronouns Number of Clips 
 
Impersonal  
It 183 
That 120 
This 63 
Those 3 
These 4 
Them-inanimate 5 
They-inanimate 12 
 
 
Personal  
He 2 
I-personal 148 
I-personifying 3 
If you 22 
She 2 
They 7 
We/us 110 
You-one 87 
You-plural 17 
You-the hearer 70 
You-personified 2 
Possessive 80 
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APPENDIX D: VOCABULARY CODES  
 
 
Code Number of Clips  Code Number of Clips 

 
April 12  difference             3 
February 5  different               6 
January 9  dimensional         2 
July 1  direction              1 
acceleration 2  displacement        10 
add        7  distance               6 
after                      5  down                    22 
again                    5  drop                     2 
all                       3  dy                        1 
amount           4  end                      1 
anti-derivative      13  enter                     1 
apex                     4  equal                    13 
area                   1  equation               1 
around                  1  f of x                   1 
backwards            6  f prime of x          1 
be                        84  fall                       2 
become            2  fast                       5 
below                   1  fill                        1 
between                11  first              18 
both                   4  five 5                   1 
bottom              2  flow                     8 
certain                2  formula              1 
change                  28  fourth 4             3 
chart                 2  frown                1 
combine          4  full                    1 
come              21  function            11 
concave          13  gallons             13 
cone                 3  gallons per day  6 
consolidate           1  go                         68 
correspond           1  gradually            3 
cross                     1  graph                  48 
cubic                    3  great                     10 
cup                       1  gross                   2 
curve                 5  growth                 1 
cylinder                7  half                     1 
d-graph                 13  height                 5 
dam                 2  high                   11 
day               3  hit                   3 
decrease               12  how much            5 
derivative             29  idea                     1 
derive                   1  important             1 
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inflow                   28  positivity              2 
integral                 3  problem               3 
irrelevant              1  process                 1 
keep                     5  quantity                16 
language               4  quarter                 14 
lateral                   1  quick                    1 
leave                    6  rate                       14 
left                      1  rate of change      22 
less                    7  rate of flow          15 
level                  15  reflect                  1 
line                   7  relationship          1 
little                      5  remain                  1 
low                       5  reservoir             10 
magic                   1  result                    1 
mark                     1  right                     61 
maximum             5  rise                       6 
measurement        6  same                    21 
meet                     4  second 2               23 
meter                    2  separate                6 
middle                  2  shape                    3 
midpoint               6  side                      3 
minimum             1  slide                    1 
minus                   1  slope                    9 
monkey wrench   2  slow                     3 
more                     7  small                   2 
most                     3  speed                   1 
negative               26  sphere                 5 
negativity             3  start                    35 
net                        2  stay                  3 
no                         24  still                    11 
no change             3  stop                      4 
normal                  1  subtract                5 
off                        8  surface area          14 
original                 1  table                     1 
out                        14  tangent                 4 
outflow                 25  thickness              1 
over time              4  third 3                  1 
overall                  1  time                      11 
part                       11  together                8 
past                       1  top                        5 
peak                     1  total                     7 
period                   2  unit                      4 
pertinent               1  up                         18 
point                     50  velocity                37 
position                1  volume                57 
positive                16  water                    45 
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water level           19    
weird                    3    
wording                1    
x-axis                   1    
year                      3    
zero                      29    
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APPENDIX E: CONCEPT CODES 
 

 
Code Description Examples 

Change in rate 
of change over 
time 

Describes a change in 
the rate of change but 
does not quantify a 
rate. 

“the negative slope starts going positive” 
“the slope starts becoming negative” “your 
speed would be increasing” “it [the water 
level] keeps rising faster and faster and 
faster” “increasing and increasing even less” 

Change in 
volume over 
time 

Describes a change in 
volume over a period 
of time, but does not 
attempt to quantify a 
rate. 

“volume graph,” “changes in quantity of 
water,” “the quantity of water is increasing,”  

Extrema Extrema in either 
volume, rate of change, 
separate rates of 
change, or rate of rate 
of change  

“highest velocity that you’ll have,” “lowest,” 
“most outflow,” “greatest slope is right 
here,” “highest point of flow rate,” 
“inflection point,” “top and bottom points,” 
“maximums and minimums,” “apex,” “peak” 

Inflow = 
Outflow 

Where the inflow is 
equal to the outflow 

“where the outflow and the inflow meet,” 

Net rate of 
change = 0 

When the rate of 
change is zero/slope of 
the tangent line is zero 

“the velocity hits zero,” “zero point,” “in a 
velocity graph it would be where it would 
cross the x-axis,” “the rate of change would 
be zero,” “where the tangent is zero” 

no change in 
volume 

When the volume is 
staying the same 

“Leveling off” “no change in the water level 
for a certain time,” “the velocity of the water 
coming in equals the velocity of the water 
going out,” 

Original graph Verbal references or 
gestures that indicate 
all or parts of the given 
graph 
 

“the inflow,” “Hector,” “these two functions 
as separate,” “we’re given this graph 
[pointing to the original graph] right here,” 
“those two graphs, adding them together,” 
“where they [inflow and outflow] meet,” 
“this [graph] is separate change” 

Points and 
parts 

References to specific 
points or periods, the 
horizontal axis or the 
vertical axis of a graph  

Horizontal Axis:  “time” “between,” 
“quarter,” “from here to here,” “April,” 
“parts,” “per day” 
Vertical Axis: “gallons,” “that point up 
there” and all references to extrema  
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Rate of change 
graph 

Verbal references or 
gestures that indicate 
all or parts of the rate 
of change graph 
 

“our velocity [graph],” “d-graph,” “our rate 
graph,” “what the derivative will look like” 
“the happy flow chart of our velocity” 

Rate of change 
in volume 

An instantaneous rate 
of change. 

“how much the water level is changing,” “the 
velocity of the flow of the water,” “rate of 
flow” 

Rate of change 
of rate of 
change 

An attempt to quantify 
(as positive or 
negative) or label the 
rate of change of the 
rate of change.  

“increasing much much faster positively” 
“the derivative of velocity is acceleration,” 
“your rate of change of your rate of change” 
“concavity,” “concave down,” “concave up” 

Rate of rate of 
change = 0 

Points at which the 
concavity changes 
(down to up or vice 
versa) or extrema of 
the rate of change 

“inflection point,” “it starts concaving 
down,” “the velocity is the highest” 

Separate rates 
of change 

Speaking of rate of 
change in terms of 
inflow or outflow 

“velocity coming in,” “velocity going out,” 
“inflow,” “outflow,” “they’re gradually 
becoming equal” “the same amount of water 
is coming in as it is leaving” “amount of 
water that is coming in”  

Signs Quantitative adjectives 
that come in opposite 
pairs that signify 
contrast within the task 
 

“positive,” “negative,” “up,” “down,” 
“coming,” “going” 

Volume The amount of volume 
in the reservoir, often 
at a specified point in 
time. 

“the amount of water in the reservoir,” “the 
quantity of water,” “millions of gallons,” 
“volume level,” “the volume of the water,” 
“displacement” 

Volume graph References to parts or 
all of the volume graph 

“a displacement graph,” “quantity of water 
going up or down,” “volume graph,” “this 
[graph] is kind of like our total inflow or 
outflow” 
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APPENDIX F: FULL TRANSCRIPT OF “THE GOSPEL ACCORDING TO JUSTIN” 
 
330 (0:31:22.4) Daniel: Julie where you at?  
331 (0:31:23.5) Justin: How you doing Julie?  
332 (0:31:25.5) Julie:  Um, I don’t I don’t know. I, I 

still don’t understand where 
we’re going. 

 

333 (0:31:32.9) Justin: What we’re gonna do, let’s 
see, is, this is the way I see it, 
alright? This is the gospel 
according to Justin. 

 

334 (0:31:40.7) Jamie: [laughs]  
335 (0:31:41.4) Justin: Kay, so we’re given this, this 

graph right here right?  
[Justin indicates the 
original graph on 
Julie’s page. It is right 
side up for Julie, but 
upside down from his 
point of view] 

   It gives us an outflow graph  [tracing outflow graph 
roughly from left to 
right with pencil tip] 

   and an inflow graph.  [tracing inflow graph 
from right to left with 
pencil tip] 

336 (0:31:48.0) Julie: Right.  
337 (0:31:48.5) Justin: Now, to me, you can’t really 

do much when you want to 
know how, what the volume 
of the water is, with those two 
graphs separate. 

 

338 (0:31:54.2) Justin: So, what I’m thinking to do is 
to add them [inflow and 
outflow] together, so you take 
the difference between the 
two points, right? 

 

339 (0:32:03.3) Justin: So like, so you take the, you 
start, start with the income, 
uh, inflow I’m sorry, the 
inflow and you subtract the 
outflow from that part right, 
That’s gonna give you the 
amount of water that’s either 

[tracing the vertical 
axis on the original 
graph between the 
inflow and the 
horizontal axis] 

    “coming in” or “leaving,”  [airquotes] 
   if it’s negative it’s leaving if 

it’s positive it’s, it’s coming 
in. 
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340 (0:32:23.7) Justin: Does that make sense?  
341 (0:32:24.3) Julie: Okay, yeah.  
342 (0:32:25.4) Justin: So, if you did that 

[subtraction of outflow from 
inflow] just over, you know, 
just did that for every single 
part, this would be that part 
that’s leaving,  

[shading the area 
between inflow and 
outflow from A to B] 

   this is the, uh, water coming 
in, this is the, when the, um, 
water,  

[the area between 
inflow and outflow 
from B to E] 

   “volume” level is rising. [airquotes] 
   This is when it’s [the volume 

level] going down again. 
[the area between 
inflow and outflow 
from E to G] 

343 (0:32:41.6) Justin: So basically, this  [Justin’s rate graph in 
his notebook] 

   is kind of what I did last time 
in class, it is, I kind of tried to 
sketch those two graphs 
adding them [inflow and 
outflow] together, so, go 
ahead. 

 

344 (0:32:49.8) Julie: So, like this minus this 
[inflow minus outflow value 
between A and B], wouldn’t 
that make it [the result of the 
subtraction, the value of the 
rate graph] zero? 

 

345 (0:32:54.7) Justin: It [the subtraction of inflow 
and outflow values indicated 
by Julie in 344] would make 
it, well, it would make it 
negative, it would go below 
here, right? Cause if you take 
this distance right here, and 
you subtract this distance 
from that. 

 

346 (0:33:05.7) Julie: Oh, kay.  
347 (0:33:06.4) Justin: It’s gonna put it [the result of 

the subtraction in 344 as a 
value on the rate graph]. 
down here someplace. Does 
that make sense? 

 

348 (0:33:08.8) Julie: Yeah.  
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349 (0:33:09.9) Justin: And so it’s [the result of the 
subtraction in 344] gonna 
give you a negative flow rate.  

 

   Or in other words, the water, 
the, the “volume” of the water 
is lowering, right? 

 
[airquotes] 

350 (0:33:17.3) Julie: Okay.  
351 (0:33:18.3) Justin: So, this is, this is what I came 

up with. 
[Justin’s net rate graph 
in his notebook] 

352 (0:33:20.9) Justin: So it’s  [the rate graph at A] 
   lower right here. Now it’s [the 

rate graph] gradually coming 
to zero,  

[the first intersection of 
the inflow and outflow 
on the original graph] 

   it’s gradually, um, coming to, 
it’s gradually, I don’t want to 
say coming to zero, I wanna 
say, [2 sec]  

[the first x-intercept on 
Justin’s net rate graph] 

   yeah they’re [inflow and 
outflow] gradually becoming 
equal, so it’s the water level, 

[the first intersection of 
the inflow and outflow 
on the original graph] 

   the volume level is staying the 
same. Right? 

[holding hand flat with 
palm down at eye level] 

353 (0:33:37.7) Justin: So at that point,  [first x-intercept on rate 
graph] 

   this point right here, and at 
this point right here,  

[the two points where 
the inflow and outflow 
intersect on the original 
graph] 

   the same amount of water is 
coming in as it is leaving, 
right? 

[moving both hands 
across the table at the 
same rate] 

   is leaving, right? [moving both hands 
across the table at the 
same rate] 

354 (0:33:45.9) Julie: Right.  
355 (0:33:46.5) Justin: And so the water, volume of 

the water is gonna stay the 
same.  

[holding arms out wide 
with palms in as if 
running them along the 
surface of a giant 
sphere] 

   And so, it’s um, the rate of 
change will be zero, does that 
make sense? 

 

356 (0:33:55.8) Julie: Cause if you subtracted this 
from this- 

[pointing to the original 
graph at B] 

357 (0:33:57.9) Justin: from this-  
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358 (0:33:58.1) Julie: -it would be zero. [touching horizontal 
axis of original graph at 
B] 

359 (0:33:58.3) Justin: -it [the result of the 
subtraction, the value of the 
rate graph] would be zero, 
yeah. 

[touching horizontal 
axis of original graph at 
B] 

360 (0:33:59.8) Justin: And so, and then I just, I just 
kind of guess-timated the 
same thing. What’s the 
distance between these, these 
two lines right here, like that. 

[pointing to 
corresponding points on 
the inflow and outflow 
graphs between April 
and July] 

361 (0:34:07.8) Julie: Uh-huh. So you’re just taking 
this  

[a point on the inflow 
graph between April 
and July] 

   and subtracting this one,  [corresponding point on 
the outflow graph 
between April and July]

   which would put it like there-
ish. 

[a point in space on the 
original graph that is 
about the same distance 
above the x-axis as the 
difference between 
inflow and outflow for 
that same x value] 

362 (0:34:12.2) Justin: Yeah, uh-huh.  
363 (0:34:13.8) Julie: Okay.  
364 (0:34:14.4) Justin: And then, um, doing the same 

thing from here,  
[after the second 
intersection of inflow 
and outflow] 

   but, sticking with the same 
one, taking the inflow  

[inflow curve] 

   and subtracting the outflow,  [outflow curve] 
   even though the outflow is 

higher. 
 

365 (0:34:21.7) Julie: Okay.  
366 (0:34:22.7) Justin: And so, that's kind of, how 

I'm looking at it, and so that 
kind of helps to combine the 
two graphs, like that, cause 
now you can see what the rate 
of flow, what the change of, 
in the flow rate, is, over time, 
and that kind of helps ya 
understand what's going on 
with the displacement graph. 

[Justin traces his rate 
graph from right to left 
and then left to right 
three times as he 
speaks, finishing on the 
word “understand”] 
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   “Volume” graph.  [airquotes] 
   Does that make sense?  

367 (0:34:40.1) Julie: Yeah.  
368 (0:34:40.8) Justin: Does that all make sense to 

you guys? Am I lying? 
 

369 (0:34:42.7) Jamie: So that’s, that’s your rate 
graph. 

 

370 (0:34:44.8) Justin: That’s that’s what I, 
“imagine- “ 

 
[airquotes] 

371 (0:34:46.7) Jamie: Okay. [mimicking Justin’s 
airquotes] 

372 (0:34:47.4) Justin: -picture it as.  
373 (0:34:49.0) Jamie: Yeah, it makes sense now.  
374 (0:34:50.3) Justin: And so, with this, is this kind 

of what your, your volume 
graph looks like?  

[showing Daniel] 

   Kind of, something kind of 
like that? 

[Justin‘s volume graph] 

375 (0:34:58.2) Daniel: Um, yeah.  
376 (0:35:01.1) Justin: Okay.  
377 (0:35:01.4) Daniel: You mean like this is the top 

of the dam?  
[the horizontal axis on 
Justin’s volume graph] 

378 (0:35:02.8) Justin: I don’t, that’s just uh, 
arbitrary [inaudible]. 

[traces the horizontal 
axis but then erases it] 

379 (0:35:05.6) Daniel: Oh. Okay. Like it’s like that-
ish. 

[Daniel shows Justin 
his volume graph] 

380 (0:35:09.8) Justin: It just all depends on where 
you start your water level at, 
yeah. 

 

381 (0:35:12.5) Daniel: Start at some m.  
382 (0:35:13.6) Justin: Yeah. So the same thing.  
383 (0:35:15.4) Daniel: Which stands for water level.  
384 (0:35:17.7) Justin: And so here  [Justin’s net rate graph 

before the first x-
intercept] 

   you know that your rate of 
change is negative, right? 

 

385 (0:35:21.3) Daniel: Yeah, so you’re going “doop, 
doop, doop, doop” 

[falling intonation] 

386 (0:35:23.6) Justin: And so you know your slope 
of your “volume graph,”  

[airquotes] [Justin’s 
volume graph before 
the first minimum] 

   the slope is going to be 
negative, right? Cause this 
part is negative. 

[Justin’s net rate graph 
before the first x-
intercept] 

387 (0:35:30.2) Justin: And then you’re going to get [first x-intercept on 
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to this point of your, that it’s 
[the rate graph] zero,  

Justin’s net rate graph] 

   and so it’s [the volume graph] 
going to level off right there, 
right?  

[drawing a horizontal 
line at the first 
minimum on Justin’s 
volume graph] 

   There’s going to be some 
point there where the tangent 
is zero.  

[retracing the short 
horizontal line] 

   Right? Does that make sense?  
388 (0:35:42.6) Julie: Yeah. [really quiet, even for 

Julie] 
389 (0:35:45.4) Justin: There’s gonna be some point, 

‘cause, we’re working 
backwards. Instead of finding 
the derivative,  

[pointing to volume 
graph and sliding pencil 
up to the net rate graph] 

   we’re going from the 
derivative  

[net rate graph] 

   backwards.  [sliding pencil to 
volume graph] 

   Trying to, trying to figure out 
how to go backwards, right? 

[pointing first at the net 
rate graph and then 
sliding the point of the 
pencil to point at the 
volume graph again] 

   And so if we have that point, 
zero on the derivative, 

[first x-intercept on the 
net rate graph] 

390 (0:35:54.9) Justin: that means that on the original 
graph,  

[first minimum on the 
volume graph] 

   that point is level, the tangent 
line is zero. There is no slope. 
Make sense? 

 

391 (0:36:07.3) Julie: Yeah.  
392 (0:36:08.3) Justin: So now, what’s going to 

happen is the slope of this line 
[volume graph after the 
first minimum] 

   is gonna start being positive.  
393 (0:36:13.2) Justin: Alright so it’s [the volume 

graph] going to be concave 
up, like that,  

[tracing the shape of the 
volume graph directly 
after the first minimum]

   until it [the rate graph] gets to 
its highest point of,  

[first maximum on the 
net rate graph] 

   um, flow rate.  
394 (0:36:21.9) Justin: And then it’s [the rate] gonna 

gradually still go, it’s gonna 
gradually get, less positive.  

[net rate graph as it 
decreases back to zero 
after the first 
maximum] 
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   It’s [the rate] still positive 
see?  

[lining up the length of 
the pencil with the 
horizontal axis and 
sliding it away from the 
axis in the positive 
vertical direction] 

   The water level is still rising,  [pointing quickly to the 
volume graph after the 
first point of inflection 
and then quickly to the 
net rate graph after the 
first maximum] 

   but it’s [the water level] rising 
at a smaller rate. Does make 
sense? 

 

395 (0:36:31.5) Jamie: Yes.  
396 (0:36:32.5) Daniel: It’s like our inflection point?  
397 (0:36:34.1) Justin: So. [1 sec] Let me finish 

explaining and then we’ll go 
back. 

[Julie looks at Daniel 
but then away]  

398 (0:36:39.0) Daniel: Kay.  
399 (0:36:39.4) Justin: So it’s [the volume graph] 

going concave up right here  
[after the first minimum 
on the volume graph] 

   because it [the rate graph] 
keeps on getting higher and 
higher and higher  

[after first x-intercept 
on net rate graph] 

   and so it [the volume graph] 
keeps on raising faster and 
faster and faster  

[approaching the first 
point of inflection on 
the volume graph] 

   until it [the volume graph] 
gets to that inflection point, 
this point right here. 

[first inflection point on 
volume graph, first 
maximum on rate 
graph] 

400 (0:36:49.6) Julie: Okay.  
401 (0:36:50.6) Justin: And then all of the sudden, 

it’s [the volume graph] still 
rising,  

[right after the first 
maximum on the rate 
graph] 

   but it’s going, its rising 
gradually slower and so it [the 
volume graph] starts 
concaving down, right? 

[right after the first 
inflection point on the 
volume graph] 

402 (0:36:58.6) Julie: Okay.  
403 (0:36:59.0) Justin: And so, the water level is still 

rising,  
[pointing pencil 
“upward” and pulling it 
quickly “upward”] 

   it’s just rising slower until it [tracing concave down 
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gets to that point right here,  area before maximum 
on volume graph] 

   right here  [second x-intercept on 
rate graph] 

   where it’s [the rate] zero.  
404 (0:37:06.9) Julie: Kay so here  [first minimum on 

volume graph] 
   and here  [first maximum on 

volume graph] 
   correspond with-  

405 (0:37:10.6) Justin: With this point  [first x-intercept on rate 
graph] 

   and that point  [second x-intercept on 
rate graph]. 

406  Julie: -here  [pointing with Justin to 
the first x-intercept on 
rate graph] 

   and here. [pointing with Justin to 
the second x-intercept 
on rate graph] 

407 (0:37:12.2) Justin: And this, um, point of 
inflection,  

[first inflection point on 
the volume graph] 

   what we’re calling the point 
of inflection is this point right 
here. 

[first maximum on rate 
graph] 

   Does that make sense?  
408 (0:37:20.0) Julie: [2 sec] Yes.  
409 (0:37:22.9) Justin: Okay. So, then what happens? 

We come, start coming, we’re 
going negative,  

[tracing pencil point 
along rate curve after 
the second x-intercept] 

   right? Increasing the 
negativity of that. 

[Justin’s rate graph 
from second intercept 
to the minimum, E-F] 

410 (0:37:32.6) Justin: So it [water level/the volume 
graph] keeps going down, 
faster and faster  

[tracing volume graph 
after the first maximum 
towards second 
minimum] 

   and faster because the 
velocity is getting lower and 
lower and lower right? 

[tracing rate graph from 
second x-intercept to 
the minimum] 

411 (0:37:38.2) Justin: So it keeps going down  [tracing volume graph 
from first maximum 
toward second 
minimum] 

   until it gets to some point 
right here  

[minimum on rate 
graph] 
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   where it’s still gonna be 
negative,  

[tracing back and forth 
on rate graph after the 
minimum] 

   but it’s gonna start coming, be 
less negative,  

[lowering hand in the 
air] 

   if that makes sense.  
412 (0:37:47.7) Julie: Yeah.  
413 (0:37:48.0) Justin: It’s kind, it’s [411] a really 

bad way to say it [the negative 
rate is increasing on F to G], 
but that’s the only thing I can 
think of. 

 

414 (0:37:50.4) Julie: Okay.  
415 (0:37:50.4) Justin: And that’s [point F on the 

volume graph] where your 
point of inflection is. 

[pointing to the volume 
graph, although the 
exact point is not clear] 

416 (0:37:52.3) Julie: Okay.  
417 (0:37:53.7) Justin: Right? Because it’s still, it’s 

going negative really fast, 
really fast, really fast, really 
fast  

[rate graph and volume 
graph approaching the 
inflection point] 

   until gets to this point where 
it [the rate] starts, where it 
stops 

 

418 (0:38:01.7) Julie: [inaudible, “Increasing?”]  
419 (0:38:02.3) Justin: increasing, um- [moving hand toward 

Julie] 
420 (0:38:04.5) Julie: [inaudible, “negative, so it’s 

decreasing?”] 
 

421 (0:38:05.4) Justin: -it stops decreasing  [pointing to the rate 
graph] 

   and it starts, the velocity starts 
being,  

[pulling hand toward 
self along the table top] 

   yeah, and so it [volume graph] 
kind of starts leveling out.  

[volume graph after the 
inflection point] 

   Does that make sense?  
422 (0:38:12.5) Justin: So if this line were to keep 

going up here to zero,  
[rate graph after the 
minimum] 

   it’d [volume graph] keep 
going around like this until- 

[continuing the concave 
up curve on the volume 
graph after the 
inflection point] 

423 (0:38:17.0) Julie: Oh, okay.  
424 (0:38:17.4) Justin: -you get that point. [pointing the minimum 

that he has just drawn 
on the volume graph] 
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425 (0:38:18.5) Justin: Does that make sense?  [erasing the curve that 
he just extended] 

426 (0:38:19.6) Julie: Yeah.  
427 (0:38:20.3) Justin: So that’s kind of how I’ve 

been looking at it [the 
Quabbin Reservoir Task]. 

 

428 (0:38:22.2) Julie: Kay.  
429 (0:38:25.2) Justin: Now the thing you don’t 

know, which is like kind of 
what Daniel said,  

[pointing toward Daniel 
with his pencil] 

   cause I had that line right 
here.  

[the horizontal line that 
Justin previously erased 
from his volume graph] 

   You don’t know where to 
start this graph at. 

[touching points on the 
vertical axis of the 
volume graph] 

430 (0:38:31.8) Justin: I mean, this graph, you know, 
this could be one thousand, 
um, cubic gallons, or 
whatever I don’t know you 
say that. 

[the y-intercept of the 
volume graph] 

431 (0:38:38.2) Justin: Or it [the initial value of the 
volume graph] could be, you 
know, you don’t know how, 
where to start this graph at. 

[holding pencil parallel 
to the horizontal axis of 
the volume graph and 
sliding it back and forth 
in the “vertical” 
direction] 

432  Jamie: Okay.  
433 (0:38:42.3) Justin: Does that make sense?  
434 (0:38:43.5) Julie: Mmhmm.  
435 (0:38:46.1) Justin: But you can kind of get the 

general idea, that, from 
working backwards.  

[pointing to the rate 
graph and sliding the 
point of the pencil 
down the page to point 
at the volume graph] 

   Of what it’s [the volume 
graph] gonna look like. 

 

436 (0:38:51.3) Julie: Okay.  
437 (0:38:52.9) Justin: But does that actually, before 

we get to that, does that make 
sense?  

 

   how I went from, how I 
combined the two graphs  

[pointing to the rate 
graph] 

   and then how I went, how I 
looked at this graph  

[rate graph] 

   and then tried to make a,  [volume graph] 
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   um volume. Take away my 
“water level,”  

[erasing a mark on the 
volume graph] 

   that’s right this [the label on 
the vertical axis of the volume 
graph] should be “volume.” 

 

438 (0:39:08.1) Julie: [5 sec] Is it volume?  
439 (0:39:13.4) Justin: Yeah, ‘cause we’re working, 

it’ll [the volume graph] be the 
volume of the water. 

[pointing to the volume 
graph] 

440 (0:39:16.8) Justin: ‘Cause this, the rate  [the rate graph] 
   is in gallons, gallons per day.  

441 (0:39:21.1) Justin: [3 sec] And so you just want 
to keep the same kind of units 

[pointing to the volume 
graph] 

   so it’d be gallons, cubic 
gallons, I guess is what it 
would be. 

 

442 (0:39:28.9) Julie: Oh. Oh, okay, yeah.  
443 (0:39:31.5) Justin: So volume.  
444 (0:39:32.7) Justin: So does that make sense? [circling the page with 

the rate and volume 
graphs with the pencil 
tip] 

445 (0:39:36.3) Julie: Yeah.  
446 (0:39:37.4) Justin: Do you have any questions?  
447 (0:39:38.4) Julie: No, I think that’s, just like, 

the top and the bottom points 
are your zero points? 

[pointing to points on 
her page] 

448 (0:39:45.7) Justin: On, top and your bottom 
points for what graph? 

 

449 (0:39:49.6) Julie: Like these points on your 
volume graph  

[minimum and 
maximum on her 
volume graph] 

   are your zero points on your 
velocity? 

[touching her rate 
graph] 

450 (0:39:56.2) Justin: Yes. [nodding] 
451 (0:39:56.9) Daniel: volume of a sphere 

[inaudible]  
 

452 (0:40:01.2) Justin: And then your maximums and 
your minimums on your  

[Julie’s rate graph] 

   veloc-, your, we’ll call 
“velocity”  

 
[airquotes]  

   graph are going to be your 
points of inflection on your 
displacement graph. 

[pointing to Julie’s 
volume graph] 
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