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ABSTRACT

Rational Schur Rings over Abelian Groups

Brent Kerby

Department of Mathematics

Master of Science

In 1993, Muzychuk showed that the rational S-rings over a cyclic group Zn are in

one-to-one correspondence with sublattices of the divisor lattice of n, or equivalently,

with sublattices of the lattice of subgroups of Zn. This idea is easily extended to show

that for any finite group G, sublattices of the lattice of characteristic subgroups of G

give rise to rational S-rings over G in a natural way. Our main result is that any finite

group may be represented as the automorphism group of such a rational S-ring over

an abelian p-group. In order to show this, we first give a complete description of the

automorphism classes and characteristic subgroups of finite abelian groups. We show

that for a large class of abelian groups, including all those of odd order, the lattice of

characteristic subgroups is distributive. We also prove a converse to the well-known

result of Muzychuk that two S-rings over a cyclic group are isomorphic if and only if

they coincide; namely, we show that over a group which is not cyclic, there always

exist distinct isomorphic S-rings. Finally, we show that the automorphism group of

any S-ring over a cyclic group is abelian.
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1 Basic definitions and elementary results

In this section, fix a commutative ring R with unity. Except where stated otherwise,

all groups considered will be finite.

If G is a group, the group algebra of G with coefficients in R is denoted RG. If

C is a subset of G, then we define C ∈ RG by C =
∑

g∈C g, and call C a simple

quantity of the group algebra RG. Given a subset C ⊆ G and an integer m, we

define C(m) = {gm : g ∈ C}. For any x ∈ RG, where x =
∑

g∈G rgg, we define

x(m) =
∑

g∈G rgg
m. Given a subset X ⊆ RG, we denote the R-submodule generated

by X as RX, i.e.,

RX = {
k
∑

i=1

rixi : k ∈ N, ri ∈ R, xi ∈ X}.

Definition 1.1. Let G be a finite group. An R-submodule S of the group algebra

RG is called a Schur ring (or S-ring) over G if there are disjoint nonempty subsets

T1, . . . , Tn ofG such that S = R{T 1, . . . , T n} (i.e., T 1, . . . , T n span S as anR-module),

with the following properties,

(i) T iT j ∈ S for all i, j ∈ {1, . . . , n}.

(ii) For every i there is some j such that T
(−1)
i = Tj.

(iii) T1 = {1}, and G = T1 ∪ T2 ∪ · · · ∪ Tn.

The sets T1, . . . , Tn are called basic sets of S and are said to form a Schur partition

of G. The corresponding T 1, . . . , T n are called basic quantities of S. If S satisfies

condition (i) and (ii) but perhaps not (iii) then S is called a pseudo S-ring (or PS-

ring).

Note that condition (i) ensures that S is closed under multiplication, so that S is

in fact a subalgebra of RG. It is easy to see that if S is a PS-ring, then the collection
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of basic sets T1, . . . , Tn (and corresponding basic quantities T 1, . . . , T n) is uniquely

determined by S, so that there is no ambiguity in referring to them as the basic sets

of S (and the basic quantities). Since T 1, . . . , T n are clearly linearly independent, an

S-ring is a free R-module; as such we may refer to the rank of an S-ring (or dimension,

in case R is a field), which is simply the number of basic sets it possesses.

Example 1.2. Let G = Z6 = 〈t〉 be the cyclic group of order 6 and let S =

R{1, t2, t4, t + t3 + t5}. It is straightforward to check that S is an S-ring (of rank

4) over G. Its basic sets are {1}, {t2}, {t4}, and {t, t3, t5}. On the other hand, the

R-module M = R{1, t+ t2, t3 + t4 + t5} is not an S-ring because it is not closed under

multiplication, e.g., t+ t2 ∈M but (t+ t2)2 = t2 +2t3 + t4 /∈M . Moreover, condition

(ii) of an S-ring does not hold for M .

Example 1.3. Over any group G, the whole group algebra RG is an S-ring, with

basic sets {g}, g ∈ G. The R-module R{1, G} = R{1, G− 1} is also an S-ring, called

the trivial S-ring over G, with basic sets {1} and G− {1}.

We observe that the most tedious part of checking that a moduleM = R{T 1, T 2, . . . , T n}

is an S-ring is verifying that M is closed under multiplication (condition (i)); in gen-

eral one must check that T iT j is in M for all basic quantities T i, T j. The following

theorem simplifies this task slightly for small S-rings by showing that it is not neces-

sary to check multiplication with the last basic quantity T n.

Theorem 1.4. Let T1, . . . , Tn be disjoint nonempty subsets of a group G satisfying

conditions (ii) and (iii) of Definition 1.1, and let S = R{T 1, T 2, . . . , T n}. If T iT j ∈ S

for all i, j ∈ {2, . . . , n− 1}, then S is an S-ring over G.

Proof. We have T 1T j = T jT 1 = T j ∈ M for all j (since T 1 = 1). And, since
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G = ∪n
j=1Ti, we have T n = G−

∑n−1
j=1 T j. Thus for any i ∈ {1, . . . , n− 1},

T iT n = T i(G−
n−1
∑

j=1

T j)

= T iG−
n−1
∑

j=1

T iT j

= |Ti|G−
n−1
∑

j=1

T iT j ∈M,

since G =
∑n

j=1 T j ∈ M and by hypothesis each T iT j ∈ M for i, j ∈ {1, . . . , n− 1}.

Similarly T nT i ∈ M . Now it follows that T nT n ∈ M by taking i = n in the above

argument.

It is evident that, given a group G of order n, there are only finitely many S-rings

over G, no more than the number of partitions of the non-identity elements of G.

Enumerating the S-rings over a group in general appears to be a difficult problem. In

the special case of cyclic groups Zn, there is a classification which enables one to list

all S-rings for small values of n; this classification is described below in §8. For large,

highly-composite values of n, enumeration again becomes difficult because of the

large number of S-rings (see Table 1). There is apparently no known classification

for S-rings over noncyclic groups, even over, say, elementary abelian p-groups (see

Question 8.6 and Example 8.5); for very small groups we are able to list all S-rings

using a brute-force algorithm (see Table 2). This computation, and all other computer

calculations referred to in this thesis, were carried out using MAGMA [3]; the code

we used is given in §A.

In the case where R is a field, there is an alternative purely algebraic description of

S-rings and PS-rings which avoids reference to the combinatorial notion of basic sets.

This description, given below in Theorem 1.7 and Corollary 1.8, will be fundamental

to the remainder of our discussion. In the rest of this section, F will denote an

3



Table 1: Number of S-rings over Zn, n < 192, for coefficient ring R of characteristic 0
Z2 1
Z3 2
Z4 3
Z5 3
Z6 7
Z7 4
Z8 10
Z9 7
Z10 10
Z11 4
Z12 32
Z13 6
Z14 13
Z15 21
Z16 37
Z17 5
Z18 42
Z19 6
Z20 47
Z21 27
Z22 13
Z23 4
Z24 172
Z25 13
Z26 19
Z27 25
Z28 61
Z29 6
Z30 147
Z31 8
Z32 151
Z33 27
Z34 16
Z35 41
Z36 284
Z37 9
Z38 19
Z39 41

Z40 262
Z41 8
Z42 188
Z43 8
Z44 61
Z45 140
Z46 13
Z47 4
Z48 1033
Z49 21
Z50 79
Z51 35
Z52 91
Z53 6
Z54 232
Z55 41
Z56 334
Z57 40
Z58 19
Z59 4
Z60 1103
Z61 12
Z62 25
Z63 187
Z64 657
Z65 67
Z66 188
Z67 8
Z68 77
Z69 27
Z70 281
Z71 8
Z72 2311
Z73 12
Z74 28
Z75 185
Z76 90
Z77 53

Z78 284
Z79 8
Z80 1646
Z81 92
Z82 25
Z83 4
Z84 1397
Z85 60
Z86 25
Z87 41
Z88 334
Z89 8
Z90 1581
Z91 97
Z92 61
Z93 53
Z94 13
Z95 61
Z96 6719
Z97 12
Z98 128
Z99 177
Z100 563
Z101 9
Z102 243
Z103 8
Z104 514
Z105 670
Z106 19
Z107 4
Z108 2219
Z109 12
Z110 281
Z111 61
Z112 2030
Z113 10
Z114 277
Z115 41

Z116 91
Z117 291
Z118 13
Z119 69
Z120 10130
Z121 21
Z122 37
Z123 55
Z124 119
Z125 58
Z126 2099
Z127 12
Z128 2989
Z129 53
Z130 457
Z131 8
Z132 1397
Z133 99
Z134 25
Z135 854
Z136 442
Z137 8
Z138 188
Z139 8
Z140 2142
Z141 27
Z142 25
Z143 81
Z144 21451
Z145 67
Z146 37
Z147 289
Z148 135
Z149 6
Z150 2124
Z151 12
Z152 496
Z153 238

Z154 360
Z155 81
Z156 2157
Z157 12
Z158 25
Z159 41
Z160 11256
Z161 53
Z162 1224
Z163 10
Z164 121
Z165 670
Z166 13
Z167 4
Z168 12494
Z169 43
Z170 411
Z171 283
Z172 119
Z173 6
Z174 284
Z175 363
Z176 2030
Z177 27
Z178 25
Z179 4
Z180 17888
Z181 18
Z182 658
Z183 81
Z184 334
Z185 100
Z186 366
Z187 69
Z188 61
Z189 1225
Z190 415
Z191 8
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Table 2: Number of S-rings over non-cyclic groups of order ≤ 20 for coefficient ring
R of characteristic 0

Z2 × Z2 5
S3 10

Z2 × Z2 × Z2 100
Z2 × Z4 28

D8 34
Q8 26

Z3 × Z3 40
D10 25

Z2 × Z6 76
D12 120
A4 52

Z3 o Z4 54
D14 55

Z2 × Z2 × Z2 × Z2 12537
Z2 × Z2 × Z4 1121

Z2 × Z8 163
Z4 × Z4 537

D16 247

Z8

3
o Z2 287

Z8

5
o Z2 205

Z4 o Z4 401
K4 o Z4 649

Q8 o Z2 607
Q16 271

Z2 ×D8 1557
Z2 ×Q8 797
Z3 × Z6 297

D18 122
S3 × Z3 233

(Z3 × Z3) o S2 1004
Z2 × Z10 109

D20 313

Z5

−1
o Z4 139

AGL(1,5) 154

arbitrary field.

Definition 1.5. Given x, y ∈ FG, where x =
∑

g∈G agg, y =
∑

g∈G bgg, the Hadamard

product is defined by

x ◦ y =
∑

g∈G

agbgg.

We will use x◦n = x ◦ x ◦ · · · ◦ x to denote the n-fold Hadamard product of x with

itself.

Any element x ∈ FG may be uniquely written in the form x = a1C1 + · · ·+anCn,

where C1, . . . , Cn are disjoint nonempty subsets of G and the coefficients a1, . . . , an

are distinct and non-zero. We will call this the standard decomposition of x. It is

easy to verify that if x ∈ S, where S is an S-ring over G, then also C1, . . . , Cn ∈ S.

The following lemma is a variation of this result which we will need in a moment.

Lemma 1.6. Let V be a subspace of FG closed under ◦, and let x = a1C1+· · ·+anCn

be the standard decomposition of an element x ∈ V . Then C1, . . . , Cn ∈ V .

Proof. Since V is closed under the Hadamard product, the elements x◦i = ai
1C1 +
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· · · + ai
nCn are in V for all integers i ≥ 1. Consider the matrix

A =



















a1 a2
1 . . . an

1

a2 a2
2 . . . an

2

. . . . . . . . . . . .

an a2
n . . . an

n



















.

We have

detA =

(

n
∏

i=1

ai

)

det



















1 a1 a2
1 . . . an−1

1

1 a2 a2
2 . . . an−1

2

. . . . . . . . . . . .

1 an a2
n . . . an−1

n



















.

Each ai is nonzero, so
∏n

i=1 ai 6= 0. The determinant of the Vandermonde matrix

on the right is
∏

i>j(ai − aj), which is also non-zero since a1, . . . , an are distinct. It

follows that A is invertible, so that any standard basis vector ei may be written as a

linear combination of the columns a1, . . . , an of A, say ei = b1a1 + b2a2 + · · · + bnan.

Now define a vector space isomorphism φ : Qn → Span{C1, . . . , Cn} by φ(ei) = Ci.

Then

φ(ai) = φ(ai
1e1 + · · · + ai

nen) = ai
1C1 + · · · + ai

nCn = x◦i,

so that φ maps ai to x◦i. Then, applying φ to the equation ei = b1a1+b2a2+· · ·+bnan

yields Ci = b1x+ b2x
◦2 + · · · + bnx

◦n ∈ V , as desired.

Versions of the following theorem and corollary may be found in [15, Proposition

3.1] and [16, Lemma 1.3] with simple proofs. We give a more elementary proof which

does not depend on any results about semisimple algebras.

Theorem 1.7. Let A be a subalgebra of FG. Then A is an PS-ring if and only if A

is closed under ◦ and (−1).

Proof. First assume A is a PS-ring. Given any two basic quantities T i, T j of A, the

6



disjointness of basic sets implies T i ◦ T j = 0 unless i = j, in which case T i ◦ T j =

T i ◦ T i = T i, so in either case we have T i ◦ T j ∈ A. Since any element of A may be

written as a linear combination of basic quantities, this implies A is closed under ◦.

Given any basic quantity T i, we have T
(−1)

i = T
(−1)
i = T j ∈ A for some j. From the

linearity of (−1), it follows that A is closed under (−1).

Now assume A is closed under ∗, ◦, and (−1). Define a subset C ⊆ G to be a A-set

if C ∈ A, and call a nonempty A-set C a minimal A-set if no proper nonempty subset

D ⊂ C is an A-set. Let T1, . . . , Tn be the minimal A-sets of A. We claim that A is

an S-ring with basic sets T1, . . . , Tn.

First we must show that T1, . . . , Tn are disjoint. Suppose Ti ∩ Tj 6= ∅ for some

i 6= j. Then since A is closed under ◦ we have Ti ∩ Tj = T i ◦ T j ∈ A, so that Ti ∩ Tj

is an A-set. But since Ti ∩ Tj is a proper subset of Ti this contradicts the minimality

of Ti.

Now we must show that {T 1, . . . , T n} is a basis for A as a vector space (so that

condition (i) of a PS-ring is satisfied). So, letting V be the vector space spanned by

T 1, . . . , T n, given any x ∈ A, we want to show x ∈ V . First consider the case that

x is a basic quantity, so that x = C for some C ⊆ G. If there is such an x which is

not in V , choose x with |C| minimal. But then C is an A-set, so there is a minimal

A-set Ti contained in C. But then we have x − T i = C \ Ti /∈ V , contradicting the

minimality of |C|. So x ∈ V if x is a basic quantity. Now, given an arbitrary x ∈ A,

let x = a1C1 + · · · + anCn be the standard decomposition of x. By Lemma 1.6 we

have C1, . . . , Cn ∈ A, hence C1, . . . , Cn ∈ V , from which it immediately follows that

x ∈ V . Thus T 1, . . . , T n span A.

To prove condition (ii) we must show that for every i there is some j such that

T
(−1)
i = Tj. Since A is closed under (−1), we have that T

(−1)
i = T

(−1)

i ∈ A, so that

T
(−1)
i is an A-set. If T

(−1)
i is not a minimal A-set, then there is a proper nonempty

subset D ⊂ T
(−1)
i which is an A-set. Again since A is closed under inverses, we have

7



D(−1) = D
(−1)

∈ A, so D(−1) is an A-set. But since D(−1) is a proper nonempty

subset of Ti, this contradicts the minimality of Ti. Hence T
(−1)
i is a minimal A-set,

so T
(−1)
i = Tj for some j. This proves that A is an S-ring.

Corollary 1.8. Let A be a subalgebra of FG. Then A is an S-ring if and only if A

is closed under the operations ◦ and (−1) and contains 1 and G.

Proof. Assume first that A is an S-ring with basic sets T1, . . . , Tn. Then A contains

T 1 = 1 and
∑n

i=1 T i = ∪n
i=1Ti = G. A is closed under ◦ and (−1) by Theorem 1.7.

Conversely, assume A contains 1 and G and is closed under ◦ and (−1). By the

theorem, A is a PS-ring; let T1, . . . , Tn be its basic sets. Since 1 ∈ A, {1} is an A-set,

and, considering that it has no nonempty proper subsets, {1} is a minimal A-set, so

{1} = Ti for some i ; without loss of generality, T1 = {1}. Since G ∈ A, we have

G =
∑n

i=1 aiT i for some a1, . . . , an ∈ Q; so every element g ∈ G must be contained

in some Ti, otherwise the coefficient of g in G and
∑n

i=1 aiT i would not agree. Thus

∪n
i=1Ti = G. This proves that condition (iii) holds for A.

The notion of a minimal A-set introduced in the proof of Theorem 1.7 will be

useful to us again later on; for reference, we state here a fact which was proven above:

Theorem 1.9. Let S be a PS-ring. Then the minimal S-sets are precisely the basic

sets of S.

The following example shows that the above theorem and corollary are false if F

is replaced by a ring R which is not a field.

Example 1.10. Let R be a ring which is not a field, and let r ∈ R be a nonzero

element which is not invertible. Let G = Z3 = 〈t〉. Then A = R{1, t + t2, r · t} is a

subalgebra of RG which is closed under ◦ and (−1) and contains 1 and G but A is not

a PS-ring.

8



It is natural to ask whether the choice of coefficient ring R will make any essential

difference at all; namely, given a group G, is it possible for a partition of G to be a

Schur partition with respect to one coefficient ring but not to another. The following

example shows that this is indeed possible:

Example 1.11. Let G = Z8 = 〈t〉. Then {1}, {t2 + t6}, {t + t3 + t4 + t5 + t7} is a

Schur partition of G with respect to the coefficient ring F2 but not with respect to Z

or Q. For, considering S = F2{1, t
2 + t6, t+ t3 + t4 + t5 + t7}, we have

(t2 + t6)2 = 2 + 2t4 = 0 ∈ S,

so S is an S-ring by Theorem 1.4. On the other hand, S ′ = Q{1, t2 + t6, t+ t3 + t4 +

t5 + t7} is not an S-ring since 2 + 2t4 /∈ S ′.

However, the only property of R which makes a difference in this regard is its

characteristic, as the following shows:

Theorem 1.12. Let T1, . . . , Tr be a partition of a group G. Let R1 and R2 be com-

mutative rings with unity of characteristic m and n respectively. If n divides m and

T1, . . . , Tr is a Schur partition with respect to the coefficient ring R1 then T1, . . . , Tr is

also a Schur partition with respect to R2. In particular, if R1 and R2 have the same

characteristic, then T1, . . . , Tr is a Schur partition with respect to R1 if and only if it

is a Schur partition with respect to R2.

Proof. Let S1 = R1{T 1, . . . , T r} and S2 = R2{T 1, . . . , T r}. (In the first equation,

the T 1, . . . , T r are to be taken as elements of R1G while in the second equation, they

are taken as elements of R2G. This slight ambiguity of notation should not lead to

confusion.) To show that S2 is an S-ring, we only need to show that T iT j ∈ S2 for

all i, j ∈ {1, . . . , r}. Since S1 is an S-ring, in R1G we may write T iT j =
∑r

k=1 λijkT k

for some λijk ∈ R1. In fact, it is clear that the coefficients λijk lie in the subring

9



of R1 generated by 1, namely λijk ∈ Z/mZ. Since n divides m, there is a natural

homomorphism π : Z/mZ → Z/nZ, and π extends to an algebra homomorphism

from (Z/mZ)G to (Z/nZ)G. Under this map, we have π(T i) = T i for all i, so that

in R2G,

T 1T 2 = π(T 1T 2) = π(
n
∑

k=1

λijkT k) =
r
∑

k=1

π(λijk)T k,

which proves S2 is an S-ring.

The following shows that in one sense we do not lose any generality by restricting

R to be a field, or even a prime field (i.e., Fp or Q):

Theorem 1.13. If {T1, . . . , Tn} is a Schur partition of a group G with respect to a

coefficient ring R, then there is a prime field F with respect to which {T1, . . . , Tn} is

also a Schur partition.

Proof. Let m be the characteristic of R. Then take n to be any prime dividing m

and apply Theorem 1.12 with R2 = Fn.

However, given a group G and coefficient ring R, there is not necessarily a field

F such that the set of Schur partitions of G is precisely the same with respect to R

and F , as the following example shows:

Example 1.14. Let G = Z12. By computer, we find that with respect to Z/4Z

there are 34 Schur partitions of G. With respect to F2 and F3 there are 62 and 37

respectively. With respect to any other prime field (i.e., Q, F5, F7, etc.) there are 32

Schur partitions of G. A specific example of a partition which is a Schur partition

over Z/4Z but over no prime field except F2 is

{1}, {t2, t4, t8, t10}, {t, t3, t5, t6, t7, t9, t11},

while, on the other hand, there are many Schur partitions over F2 which are not Schur
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partitions over Z/4Z, for instance,

{1}, {t3, t9}, {t, t2, t4, t5, t6, t7, t8, t10, t11}.

2 Central and rational S-rings

From now on, fix F to be any field.

Definition 2.1. A PS-ring S over a group G is central if S ⊆ Z(FG), i.e., S is

contained in the center of the group algebra.

Remark. It is not difficult to check that this is equivalent to requiring that every basic

set Ti be a union of conjugacy classes of G. See, for instance, [17, 12.2.19] or [7, p.

861].

Of course, over an abelian group every S-ring is central. We will primarily be

interested in a special class of central S-rings known as rational S-rings:

Definition 2.2. A PS-ring S over a group G is rational if for every x ∈ S and

φ ∈ Aut(G), we have φ(x) = x.

Remark. It is likewise not difficult to check that this is equivalent to requiring that

every basic set Ti be a union of automorphism classes of G, where the automorphism

classes of G are the orbits of Aut(G) acting on G in the natural way.

For us, the most important use of Theorem 1.7 and its corollary is that it leads

to the construction of many interesting central and rational S-rings:

Theorem 2.3. Let G be any finite group, and let L be any sublattice of the lattice of

normal subgroups of G. Then the vector space F (L) = F{H : H ∈ L} is a central

PS-ring over G with the following properties, for all H,K ∈ L:

(i) H
(−1)

= H
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(ii) H ◦K = H ∩K

(iii) H K = |H ∩K|HK

(iv) F (L) is an S-ring if and only if 1, G ∈ L.

(v) F (L) is rational if and only if L consists entirely of characteristic subgroups.

Proof. (i) is clear since H, as a subgroup, is closed under inverses. (ii) is immediate

from the definition of the Hadamard product. (iii) is clear since, by elementary group

theory, every element of HK can be written in |H ∩ K| ways as a product of an

element in H with an element in K. Now, since the subgroups H and K are normal,

HK is also a subgroup of G; since L is a lattice, we have H ∩K,HK ∈ L. Thus, (i)–

(iii) show that F (L) is closed under (−1), multiplication, and the Hadamard product,

so by Theorem 1.7, F (L) is a PS-ring. Since each subgroup H is normal, we have

gHg−1 = gHg−1 = H for all g ∈ G and H ∈ L, so that H ∈ Z(FG). It follows that

F (L) is a central PS-ring.

Now, if 1, G ∈ L then 1, G ∈ F (L), so by Corollary 1.8, F (L) is an S-ring.

Suppose, conversely, that F (L) is an S-ring. Let L =
⋂

H∈LH, so that L ∈ L.

If |L| > 1, then since L ⊆ H for every basis element H of F (L), it follows that

every element of S(L) with a non-zero coefficient of 1 ∈ G also has other non-zero

coefficients (namely, the other elements of L have non-zero coefficients), so that 1 /∈

F (L), contrary (by Corollary 1.8) to the assumption that F (L) is an S-ring. So we

must have L = 1, hence 1 ∈ L, as desired. Now define M =
∏

H∈LH. If M 6= G,

then since H ⊆ M for every basis element H of F (L), it follows that the nonzero

coefficients of every element x ∈ F (L) are contained in M , so that G /∈ F (L), again

contradicting (by Corollary 1.8) that F (L) is an S-ring. So G ∈ L as desired.

Finally, F (L) is rational if and only if φ(H) = H for every φ ∈ Aut(G) and each

basis element H of F (L); this holds if and only if φ(H) = H for each H ∈ L, i.e. if

and only if each H ∈ L is characteristic.
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If G is a cyclic group, then every subgroup of G is characteristic; consequently,

the construction of Theorem 2.3 only produces rational S-rings. In this context, we

may state the main theorem of [15]:

Theorem 2.4. (Muzychuk) Every rational S-ring over a finite cyclic group may be

constructed as in Theorem 2.3.

We will soon see that there are rational S-rings over abelian groups which cannot

be constructed as in Theorem 2.3 (see Example 5.8). However, there are other types of

groups for which Theorem 2.3 produces the complete set of rational S-rings; Theorem

2.6 below gives one example. Before proving it, we need an elementary lemma (a

version of which may be found in [20, Proposition 23.6]):

Lemma 2.5. Let S be an S-ring over a group G, and let D1, . . . , Dk be S-sets, i.e.,

assume Di ∈ S for all i. Then 〈D1, . . . , Dk〉 ∈ S.

Proof. Since D = D1∪· · ·∪Dk is also an S-set and 〈D1, . . . , Dk〉 = 〈D〉, it is sufficient

to prove that 〈D〉 ∈ S. Now, for a sufficiently large choice of n, every element of 〈D〉

is a product of no more than n elements of D, hence every element of 〈D〉 has

nonzero coefficient in D
n
. Let D

n
=
∑r

i=1 aiCi be the standard decomposition of

D
n
, so that C1, . . . , Cr form a partition of 〈D〉. By Lemma 1.6, each Ci ∈ S, hence

〈D〉 =
∑r

i=1Ci ∈ S.

Theorem 2.6. Every rational S-ring over a finite dihedral group may be constructed

as in Theorem 2.3.

Proof. Suppose S is a rational S-ring over the dihedral group G = 〈r, s | s2 = rn =

(sr)2 = 1}. Let T1, . . . , Tr be the basic sets of S, where T1 = {1}. Note that all the

reflections of G are automorphic (since the map determined by s 7→ rs and r 7→ r is an

automorphism, although it is only inner if n is odd). Thus all the reflections of G lie in

a single basic set, say T2. So the remaining basic sets T3, . . . , Tr all lie in Zn = 〈r〉. If
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we let Zd be the subgroup generated by T3, . . . , Tr, then it follows by Lemma 2.5 that

Zd ∈ S. Thus S ′ = F{1, T 3, . . . , T r} is an S-ring over Zd. By Theorem 2.4, S ′ = F (L)

for some sublattice L of the lattice of subgroups of Zd. We claim S = F (L ∪ {G}).

Clearly L ∪ {G} is a sublattice of the lattice of characteristic subgroups of G. For

i 6= 2, we have T i ∈ S ′ = F (L) ⊆ F (L ∪ {G}), while T 2 = G − Zd ∈ F (L ∪ {G}),

hence S ⊆ F (L ∪ {G}). Since F (L) = S ′ ⊆ S and G ∈ S, we also have the reverse

inclusion F (L ∪ {G}) ⊆ S.

3 Isomorphisms and Automorphisms of S-rings

Definition 3.1. Let S1 and S2 be S-rings over groups G1 and G2 respectively. An

algebra isomorphism φ : S1 → S2 is called an S-ring isomorphism if φ maps basic

quantities to basic quantities, i.e., if for every basic set C of S1 there is some basic

set D of S2 such that φ(C) = D.

Example 3.2. Let G1 = Z6 = 〈t〉 and let G2 be the symmetric group of degree 3.

Let S1 = R{1, t2, t4, t+ t3 + t5} and S2 = R{1, (123), (132), (12) + (13) + (23)}. It is

straightforward to verify that the R-module map φ : S1 → S2 determined by

1 7→ 1,

t2 7→ (123),

t4 7→ (132),

t+ t3 + t5 7→ (12) + (13) + (23),

is an S-ring isomorphism. Thus it is possible for S-rings over nonisomorphic groups

to be isomorphic.

Example 3.3. Let G = Z6 = 〈t〉. The S-rings C{1, t + t2 + t4 + t5, t3} and C{1, t +

t3 + t5, t2 + t4} are isomorphic as C-algebras, since by Wedderburn’s Theorem both
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are isomorphic to C3, but they are not isomorphic as S-rings, since, e.g., the former

has a basic quantity t3 whose square is 1 while the latter does not.

The following theorem gives a purely algebraic characterization of S-ring isomor-

phisms.

Theorem 3.4. Let S1 and S2 be S-rings over groups G1 and G2 respectively. Then an

F -algebra isomorphism φ : S1 → S2 is an S-ring isomorphism if and only if φ respects

the Hadamard product, i.e., if and only if φ(x ◦ y) = φ(x) ◦ φ(y) for all x, y ∈ S1.

Proof. First assume φ is an S-ring isomorphism. Let T1, . . . , Tn be the basic sets of

S1 and let U1, . . . , Un be the basic sets of S2. Relabeling the U1, . . . , Un if necessary,

we may assume φ(T i) = U i. For any i, j ∈ {1, . . . , n}, if i 6= j we have

φ(T i ◦ T j) = φ(0) = 0 = U i ◦ U j = φ(T i) ◦ φ(T j),

while if i = j, we have

φ(T i ◦ T i) = φ(T i) = U i = U i ◦ U i = φ(T i) ◦ φ(T i),

so in either case φ(T i ◦ T j) = φ(T i) ◦ φ(T j), proving that φ respects the Hadamard

product.

Suppose conversely that φ respects the Hadamard product. If T is any basic set of

S1, then we have φ(T ) = φ(T ◦T ) = φ(T )◦φ(T ). If we write φ(T ) =
∑

g∈G2
agg, then

the equation φ(T ) = φ(T ) ◦ φ(T ) gives ag = a2
g for all g ∈ G2. So each coefficient ag

is either 0 or 1, i.e. φ(T ) is a nonzero simple quantity U , for some U ⊆ G2. We wish

to show that φ(T ) is a basic quantity. By Theorem 1.9 this is equivalent to showing

that U is a minimal S2-set. So suppose there is a nonempty proper subset D ⊂ U

with D ∈ S2. We may write φ(T ) = D + U −D, hence T = φ−1(D) + φ−1(U −D).

Since φ−1, together with φ, respects the Hadamard product and hence maps simple
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quantities to simple quantities, we have expressed the basic quantity T as the sum of

two nonzero simple quantities, which is impossible. Hence φ(T ) is a basic quantity,

so φ maps basic quantities to basic quantities, i.e. φ is an S-ring isomorphism.

An isomorphism from an S-ring onto itself is called an automorphism. The set of

automorphisms of an S-ring S clearly forms a group, which we denote Aut(S).

Example 3.5. Let G = Z7 = 〈t〉. Then S = F{1, t+ t6, t2 + t5, t3 + t4} is an S-ring

with Aut(S) ∼= Z3. A generator for Aut(S) is determined by

1 7→ 1,

t+ t6 7→ t2 + t5,

t2 + t5 7→ t3 + t4,

t3 + t4 7→ t+ t6.

A natural question arises: Which groups can occur as the automorphism group

of an S-ring? If we take S to be the full group ring FG, then it is easy to see that

Aut(S) ∼= Aut(G). Thus, any group which may be represented as the automorphism

group of a group may also be represented as the automorphism group of an S-ring (in

a rather trivial way). However, Example 3.5 shows that Z3 may also be represented

as the automorphism group of a S-ring, whereas it is known that Z3 cannot be repre-

sented as the automorphism group of any group (see Theorem 3.6 below). Our main

result (Theorem 6.1) is that any finite group may be represented as the automorphism

group of an S-ring, even of an S-ring of a rather restricted type, namely a rational S-

ring over an abelian p-group; so, in particular, any finite group may be represented as

the automorphism group of a commutative S-ring. Theorem 8.7 shows that a similar

result cannot be obtained by considering only S-rings over cyclic groups.
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Theorem 3.6. Let n be an odd integer, n ≥ 3. Then there is no group G (finite or

infinite) with Aut(G) ∼= Zn.

Proof. Suppose G is a group with Aut(G) ∼= Zn. Then Inn(G) ∼= G/Z(G) is isomor-

phic to a subgroup of Zn, hence is cyclic, which implies G is abelian. Now the map

φ : G → G given by φ(g) = g−1 is an automorphism of G. Since Aut(G) does not

have an element of order 2, φ must be trivial. So G has exponent 2. It follows that

G is the direct sum of a cardinal number α copies of Z2 [17, 5.1.9]. If α ≥ 2, then

there would be an automorphism of G of order 2 which interchanges the first two

components of G. Thus α ≤ 1, i.e. G = Z2 or G = 1, but in both these cases Aut(G)

is trivial.

For further information on the types of groups which occur as automorphism

groups of groups, see [19].

The task of determining Aut(S) is often made easier by the following theorem,

which shows that S-ring isomorphisms map basic sets to basic sets of the same size.

Theorem 3.7. Let S1 and S2 be isomorphic S-rings over groups G1 and G2 respec-

tively, and let φ : S1 → S2 be an isomorphism. Then φ(G1) = G2, and if C ⊆ G1 is

any S1-set, then φ(C) = D for some subset D ⊆ G2, and we will write φ(C) = D.

Moreover, |C| = |D|. In particular, |G1| = |G2|.

Proof. Let T1, . . . , Tn and U1, . . . , Un be the basic sets of S1 and S2 respectively. Then,

for some permutation σ ∈ Symn, we have

φ(G1) = φ(
n
∑

i=1

T i) =
n
∑

i=1

φ(T i) =
n
∑

i=1

Uσ(i) = G2.

Now, since any simple quantity C may be written as a sum of distinct basic

quantities, and φ maps distinct basic quantities to distinct basic quantities, it follows

that φ(C) is a sum of distinct basic quantities, i.e., φ(C) is a simple quantity D.
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Further, we have on the one hand,

φ(C G1) = φ(C)φ(G1) = D G2 = |D|G2,

while on the other hand,

φ(C G1) = φ(|C|G1) = |C|φ(G1) = |C|G2,

hence |C| = |D|.

If S is an S-ring over G, then every automorphism φ ∈ Aut(G) induces an injective

F -algebra homomorphism φ : S → FG by defining φ(
∑

g∈G agg) =
∑

g∈G agφ(g). It is

entirely straightforward to check that φ(S) is an S-ring with basic sets φ(T1), . . . , φ(Tn)

if T1, . . . , Tn are the basic sets of S. Thus φ : S → φ(S) is in fact an S-ring isomor-

phism. We call such an isomorphism a strong isomorphism of S-rings. A strong

isomorphism from an S-ring S onto itself is called a strong automorphism. We denote

the set of all strong automorphisms of S by Aut∗(S). In Example 3.5 the generating

automorphism of Aut(S) was in fact a strong automorphism, induced by the auto-

morphism φ : t 7→ t2 of G , so in this case Aut(S) = Aut∗(S). The following example

shows that the automorphism group and strong automorphism group of an S-ring do

not generally coincide, even over cyclic groups.

Example 3.8. Let G = Z9 = 〈t〉. Then S = F{1, t3, t6, t+ t4 + t7, t2 + t5 + t8} is an

S-ring with Aut(S) ∼= Z2 × Z2 but Aut∗(S) ∼= Z2.

Clearly, if S1 and S2 are isomorphic S-rings, then their automorphism groups are

isomorphic. On the other hand, the following example shows that this is not the case

for their strong automorphism groups.

Example 3.9. LetG = Z2×Z4 = 〈a〉×〈b〉, and let S1 = F{1, a, b2, ab2, b+b3, ab+ab3}
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and S2 = F{1, a, b2, ab2, b+ab3, ab+b3}. Then S1
∼= S2 but Aut∗(S1) ∼= Z2×Z2 while

Aut∗(S2) ∼= Z2.

Example 3.10. Over the same group, let S1 = F{1, b2, a + b + ab+ ab2 + b3 + ab3}

and S2 = F{1, a, b+ ab+ b2 + ab2 + b+ ab3}. Then S1
∼= S2 in spite of the fact that

S1 is a rational S-ring while S2 is not.

The preceding examples show that in one sense, S-ring isomorphism is a fairly

weak condition, as it fails to preserve many of the properties that we ordinarily think

of as being associated with an S-ring.

A remarkable theorem of Muzychuk states:

Theorem 3.11 ([16]). Two S-rings over a cyclic group Zn are isomorphic if and only

if they are identical.

Below we will prove a converse to this result, but first we need the following

lemma:

Lemma 3.12. Let G be a finite group which is not cyclic. Then G has a subgroup

which is not characteristic.

Proof. By way of contradiction, suppose every subgroup of G is characteristic. Then

in particular every subgroup of G is normal. If G is non-abelian, then G is a Hamilto-

nian group (i.e., a nonabelian group in which every subgroup is normal) and we may

write G = Q × A where Q is an 8-element quaternion group 〈i, j〉 and A is abelian

[17, 9.7.4]. But in this case 〈i〉 is a subgroup of G which is not characteristic, since

there is an automorphism of Q mapping 〈i〉 to 〈j〉 and this automorphism extends to

an automorphism of G. Therefore G must be abelian.

Since G is not cyclic, some Sylow p-subgroup of G is not cyclic and, by the

Fundamental Theorem of finitely-generated abelian groups, we may write G = 〈t〉 ×

〈s〉×A where |t| = pa and |s| = pb for some a and b where 1 ≤ a ≤ b. Then 〈s〉 is not

19



characteristic, since an automorphism φ is determined by setting φ(s) = ts, φ(t) = t,

and φ(a) = a for all a ∈ A.

We remark that, by a similar method of proof, Lemma 3.12 may be extended

to infinite non-abelian groups and to finitely generated abelian groups. However,

there are non-cyclic infinitely generated abelian groups in which every subgroup is

characteristic, an example being the direct sum
∑

p prime

Zp.

Theorem 3.13. Let G be a group which is not cyclic. Then there exist distinct

strongly isomorphic S-rings S1 and S2 over G.

Proof. By Lemma 3.12, let H be a subgroup of G which is not characteristic. Choose

some φ ∈ Aut(G) such that φ(H) 6= H. Then S1 = F{1, H,G} and S2 = F{1, φ(H), G}

are S-rings over G which are strongly isomorphic. We only need to verify that they are

distinct. The basic quantities of S1 are {1, H−1, G−H} while the basic quantities of

S2 are {1, φ(H)−1, G−φ(H)}. If S1 = S2 then the basic quantities of the two S-rings

must be the same (in some order), so either H − 1 = φ(H)− 1 or H − 1 = G−φ(H).

The former is impossible since H 6= φ(H). The latter would imply G = H ∪ φ(H),

which is impossible, since no group is the union of two proper subgroups.

4 Automorphism Classes of Abelian Groups

In this and the following section, we give a complete description of the automorphism

classes and characteristic subgroups of finite abelian groups. This topic was consid-

ered already in 1934 by Baer for the more general case of periodic abelian groups, and

some of the results below were obtained in one form or another in [1]. Our method,

however, differs greatly from that of [1]. We recently discovered that this topic was

considered even earlier in 1905 by G. A. Miller [13] (see also [14, pp. 109-112]) and

that Miller’s treatment is similar to that which we developed below. Miller, however,
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did not always offer proofs of his claims, and this led him to an incorrect description

of the characteristic subgroups of abelian 2-groups in [13, p. 23, “there are as many

additional C’s which correspond to the conjugates of such a t as there are combina-

tions of k things taken 2, 3, . . . , k at a time”]. A correct version (necessarily more

complicated) of the formula described by Miller is given in Theorems 5.16 and 5.20

below.

It is well known that any finite abelian group G may be written as the direct

product of its Sylow subgroups:

G = Gp1 ×Gp2 × · · · ×Gpn
.

Since the Sylow subgroups of an abelian group are characteristic, it follows that every

automorphism φ ∈ Aut(G) may be written

φ = φ1 × φ2 × · · · × φn, where φi ∈ Aut(Gpi
).

From this it follows that the automorphism classes of G are precisely the sets

O1 ×O2 × · · · ×On, where Oi is an automorphism class of Gpi
,

while the characteristic subgroups of G are

H1 ×H2 × · · · ×Hn, where Hi is a characteristic subgroup of Gpi
.

Using these facts, the problem of determining the automorphism classes and charac-

teristic subgroups of G is completely reduced to the case in which G is a p-group. So

for the remainder of this section and the next we will assume G is a p-group.
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Up to isomorphism, we may write

G = Zpλ1 × Zpλ2 × · · · × Zpλn ,

where λ1 ≤ λ2 ≤ · · · ≤ λn. We define λ(G) to be the tuple (λ1, . . . , λn). As we will

be working extensively with such tuples of integers, it will be convenient to introduce

some notation for dealing with them:

Definition 4.1. Given tuples a = (a1, . . . , an) and b = (b1, . . . , bn) with integer

entries, define

a ≤ b if ai ≤ bi for all i ∈ {1, . . . , n}

a ∧ b = (min{a1, b1},min{a2, b2}, . . . ,min{an, bn})

a ∨ b = (max{a1, b1},max{a2, b2}, . . . ,max{an, bn})

Define Λ(G) to be the set of tuples

Λ(G) = {a : 0 ≤ a ≤ λ(G)}.

It is evident that Λ(G), under the partial order ≤, forms a finite lattice in which ∧

and ∨ are the greatest lower bound and least upper bound operators respectively.

Given a tuple a ∈ Λ(G), we define T (a) to be the set of elements g ∈ G for which

the ith component of g has order pai :

T (a) = {(g1, g2, . . . , gn) ∈ G : |gi| = pai for all i = 1, . . . , n}.

Note that the sets T (a) partition the group G. If g ∈ T (a), we say that T (a) is the

type of g.

Before proceeding further, we need a couple of elementary lemmas:
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Lemma 4.2. In a finite cyclic p-group H, if two elements h1 and h2 have the same

order then h1 and h2 are automorphic, i.e., there is an automorphism φ ∈ Aut(H)

such that φ(h1) = h2.

Remark. This result immediately extends to all finite cyclic groups, but we will not

need this.

Proof. Write H = Zpm = 〈t〉. Then we may write h1 = tapi

for some integers a

and i where a is relatively prime to p and i = m− |h1|. It is clear then that defining

φ1 : H → H by φ1(t) = ta determines an automorphism of H with φ1(t
pi

) = tapi

= th1 .

Similarly, there is an automorphism φ2 with φ2(t
pi

) = th2 . Then φ2 ◦ φ−1
1 is an

automorphism mapping h1 to h2.

Lemma 4.3. If g, h ∈ G have the same type T (a), then g and h are automorphic.

Proof. Write g = (g1, . . . , gn) and h = (h1, . . . , hn). Since g and h have the same type,

we have |gi| = |hi| for each i ∈ {1, . . . , n}. So by Lemma 4.2, there are automorphisms

φi ∈ Aut(Zpλi ) with φi(gi) = hi. Then φ = φ1 × φ2 × · · · × φn is an automorphism of

G with φ(g) = h.

Note that Lemma 4.3 is equivalent to saying that each automorphism class of G

is a union of types. From this it follows that given two types T (a) and T (b), if some

element of T (a) is automorphic to some element of T (b), then all elements of T (a)

are automorphic to all elements of T (b), and we will say in this case that T (a) and

T (b) are automorphic.

Definition 4.4. Given a type T (a), the automorphism class of G containing T (a) is

denoted O(a).

Definition 4.5. A type T (a) is canonical if for all i ∈ {1, . . . , n− 1},

(i) ai ≤ ai+1 and
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(ii) ai+1 − ai ≤ λi+1 − λi.

This says that a1, . . . , an is a (weakly) increasing sequence but that at each step

it increases by “not too much”, namely, by no more than the difference between the

corresponding λ’s. In this case we will also say that the tuple a itself is canonical.

The set of canonical tuples will be denoted C(G).

For what follows, it will be helpful to introduce some additional notation. Let

t1, t2, . . . , tn be generators for the respective cyclic factors in G = Zpλ1 ×Zpλ2 × · · · ×

Zpλn . Also, for 0 ≤ a ≤ λi, define ti,a = ti
pλi−a

, so that ti,a is an element of order pa

in 〈ti〉, with ti,λi
= ti.

The definition of “canonical” is justified by the following theorem.

Theorem 4.6. Every type is automorphic to a unique canonical type. Moreover,

every canonical type is the maximum type in its automorphism class, i.e., if a type

T (a) is canonical then a is the maximum element of {b : T (b) ⊆ O(a)}.

Before proving this, we will need the following lemma.

Lemma 4.7. Let T (a) be a noncanonical type, and let i ∈ {1, . . . , n − 1} be such

that either ai > ai+1 or ai+1 − ai > λi+1 − λi. (Such an i exists by the definition of

noncanonical). In the former case, define a′ by a′j = aj for all j 6= i+1 and a′i+1 = ai;

in the latter case, define a′ by a′j = aj for all j 6= i and a′i = ai+1 − (λi+1 − λi). Then

in either case, T (a′) is automorphic to T (a).

Remark. In other words, if a type is noncanonical because there are two consecutive

entries ai and ai+1 with a decrease from ai to ai+1, then we may increase ai+1 to

match ai, and the resulting type will be automorphic to the original (and will be

“closer” to being canonical, since it no longer has this decrease). Likewise, if a type is

noncanonical because there are two consecutive entries ai and ai+1 with a difference

which is too large, then we may increase ai just enough to make the difference not
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too large (namely, to make the difference precisely λi+1 −λi), and again the resulting

type will be automorphic to the original.

Proof. One element of type T (a) is g =
∏n

j=1 tj,aj
, so it is enough to show that there

is an automorphism φ with φ(g) ∈ T (a′).

First consider the case ai+1 < ai. Define a homomorphism φ : G → G by setting

φ(ti) = titi+1,λi
and φ(tj) = tj for all j 6= i. This is well-defined since |φ(tj)| divides

|tj| for all j, because in fact equality holds: For j 6= i this is trivial, while for j = i

we have

|φ(ti)| = |titi+1,λi
| = lcm(|ti|, |ti+1,λi

|) = lcm(pλi , pλi) = pλi = |ti|.

The image of φ contains each generator tj where j 6= i, and since φ(tit
−1
i+1,λi

) = ti, the

image of φ also contains ti. Thus φ is onto, which, since G is finite, implies φ is an

automorphism. Now,

φ(ti,ai
) = φ(ti)

pλi−ai = (titi+1,λi
)pλi−ai = ti,ai

ti+1,ai
,

hence

φ(g) = ti+1,ai

n
∏

j=1

tj,aj
= ti+1,ai+1

ti+1,ai

∏

j 6=i

tj,aj
.

Since |ti+1,ai+1
| = pai+1 and |ti+1,ai

| = pai and ai+1 < ai, it follows that |ti+1,ai+1
ti+1,ai

| =

pai , so that φ(g) has type a′, as desired.

Now consider the case ai+1 − ai > λi+1 − λi. In this case, define a′ by a′j = aj for

all j 6= i and a′i = ai+1 − (λi+1 − λi), so that a′ > a. Now define φ by φ(ti+1) = titi+1

and φ(tj) = tj for j 6= i. Again, this is well-defined since

|φ(ti+1)| = |titi+1| = lcm(|ti|, |ti+1|) = lcm(pλi , pλi+1) = pλi+1 = |ti+1|.
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Since φ is clearly surjective, it is an automorphism of G. We have

φ(ti+1,ai+1
) = φ(ti+1)

pλi+1−ai+1
= (titi+1)

pλi+1−ai+1
= ti,ai+1−(λi+1−λi)ti+1,ai+1

,

hence

φ(g) = ti,ai+1−(λi+1−λi)

n
∏

j=1

tj,aj
= ti,ai+1−(λi+1−λi)ti,ai

∏

j 6=i

tj,aj
.

Since ai+1−(λi+1−λi) > ai it follows that |ti,ai+1−(λi+1−λi)ti,ai
| = pai+1−(λi+1−λi) = pa′

i+1 ,

so that φ(g) has type a′, as desired.

Proof of Theorem 4.6. Let T (a) be a type which is non-canonical. Lemma 4.7 implies

that T (a) is automorphic to another type T (a′) where a′ > a. If a′ is non-canonical,

then we may again apply Lemma 4.7 to obtain another automorphic type T (a′′) where

a′′ > a′. This process may be continued but must eventually terminate since there are

no infinite increasing sequences in Λ. Hence T (a) is automorphic to a canonical type

T (b). Since b ≥ a, this also shows that b is the maximum type in its automorphism

class, assuming the uniqueness of b which we now prove.

So let a and a′ be distinct canonical types. We will show that T (a) is not automor-

phic to T (a′). Let g =
∏n

j=1 tj,aj
and g′ =

∏n
j=1 tj,a′

j
, so g and g′ are elements of type a

and a′ respectively. Let i be the least positive integer such that ai 6= a′i. Without loss

of generality, assume ai < a′i. Consider the elements h = gpai and h′ = (g′)pai . Let b

and b′ be the types of h and h′ respectively. By condition (i) of a being canonical,

we have aj ≤ ai for all j < i, hence bj = 0 for all j ≤ i, while b′j = 0 for all j < i but

b′i 6= 0. We have bj = aj − ai for all j ≥ i. By condition (ii) of a being canonical, we

have λj − aj ≥ λi − ai for all j > i, hence λj − bj ≥ λi for all j ≥ i. It follows that h

has a pλith root while h′ does not, so h and h′ are not automorphic. Consequently, g

and g′ cannot be automorphic, hence T (a) and T (a′) are not automorphic.

We now obtain an important corollary, which was already discovered by Miller
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[13, p. 23] and (apparently independently) by Baer [1, Corollary 2]:

Corollary 4.8 (Miller-Baer). For any prime p, the number of automorphism classes

of Zpλ1 × Zpλ2 × · · · × Zpλn (where λ1 ≤ λ2 ≤ · · · ≤ λn) is

n
∏

i=1

(λi − λi−1 + 1),

where by convention we let λ0 = 0.

Remark. This count includes the trivial automorphism class (containing only the

identity element of the group), in spite of Miller’s curious statement to the contrary

in [13, p. 23].

Proof. Theorem 4.6 shows that the automorphism classes of G are in one-to-one

correspondence with the canonical tuples of Λ(G). The canonical tuples a are precisely

those which satisfy ai−1 ≤ ai ≤ ai−1 +λi−λi−1 for each i ∈ {1, . . . , n} (by convention,

setting a0 = 0). Thus there are λi − λi−1 + 1 choices for each coordinate ai, and the

result follows.

Example 4.9. Let G = Z2 × Z8 = Z2 × Z23 = 〈s〉 × 〈t〉. Then there are (1 − 0 +

1)(3 − 1 + 1) = 6 automorphism classes of G, namely:

O(0, 0) = T (0, 0) = {1},

O(0, 1) = T (0, 1) = {t4},

O(0, 2) = T (0, 2) = {t2, t6},

O(1, 1) = T (1, 1) ∪ T (1, 0) = {s, st4},

O(1, 2) = T (1, 2) = {st2, st6},

O(1, 3) = T (1, 3) ∪ T (0, 3) = {t, st, t3, st3, t5, st5, t7, st7}.
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5 Characteristic Subgroups of Abelian Groups

We let Char(G) denote the lattice of characteristic subgroups of G.

Definition 5.1. Given an n-tuple a ∈ Λ(G), we define the subgroup R(a) = ∪
b≤a

T (b)

and call R(a) the regular subgroup below a.

Remark. We use the term “regular”, following Baer ([1]). But this concept of regular

should not be confused with the notion of a regular permutation group, nor of a

regular p-group.

Theorem 5.2. R(a) is a characteristic subgroup if and only if T (a) is a canonical

type.

Proof. Suppose first that a is noncanonical. Then by Lemma 4.7, there is another

tuple a′ > a with O(a′) = O(a). Then R(a) contains T (a) but not T (a′); this means

that R(a) contains some but not all of the automorphism class O(a), so R(a) is not

characteristic.

Now assume a is canonical. We need to show that R(a) is a union of automorphism

classes. Suppose by way of contradiction that there is a type T (b) with T (b) ⊆ R(a)

but not O(b) ⊆ R(a). Take b to be a maximal such tuple. If b is canonical, then for

every type T (c) contained in O(b), we have c ≤ b since b is the maximum type of

its automorphism class by Theorem 4.6. Hence c ≤ a, so T (c) ⊆ R(a). This implies

O(b) ⊆ R(a), contrary to assumption. So b must be noncanonical. So there is some

i ∈ {1, . . . , n− 1} such that either bi+1 < bi or bi+1 − bi > λi+1 − λi. In the first case,

define b′ by b′j = bj for j 6= i + 1 and b′i+1 = bi. By Lemma 4.7, T (b) and T (b′) are

automorphic types, i.e. O(b) = O(b′). Since a is canonical, we have ai ≤ ai+1, hence

b′i+1 = bi ≤ ai ≤ ai+1, so that b′ ≤ a. Then T (b′) ⊆ R(b) but not O(b′) ⊆ R(a).

Since b′ > b, this contradicts the maximality of b.

In the second case, i.e., if bi+1 − bi > λi+1 − λi, define b′ by b′j = bj for j 6= i and

b′i = bi+1 − (λi+1 −λi). Again by Lemma 4.7, T (b) and T (b′) are automorphic types.
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Since a is canonical, we have ai+1 − (λi+1 − λi) ≤ ai. Hence b′i = bi+1 − (λi+1 − λi) ≤

ai+1 − (λi+1 − λi) ≤ ai, so b′ ≤ a. Then, as in the previous case, T (b′) ⊆ R(b) but

not O(b′) ⊆ R(a), which this contradicts the maximality of b, since b′ > b,

The following is easily verified by direct calculation:

Theorem 5.3. For any a,b ∈ Λ(G),

(i) R(a) ∩R(b) = R(a ∧ b)

(ii) 〈R(a), R(b)〉 = R(a ∨ b)

(iii) |R(a)| = p
Pn

i=1 ai

From (i) and (ii) and the fact that the meet and join of characteristic subgroups

is characteristic, it follows that the regular characteristic subgroups form a sublattice

of Char(G). Using Theorem 5.2, this then implies that if a and b are canonical tuples

then so are a ∧ b and a ∨ b. (This is also not difficult to verify directly.)

The following theorem shows that irregular characteristic subgroups can only exist

in the case p = 2.

Theorem 5.4 (Miller-Baer). Let G be an abelian p-group where p 6= 2. Then every

characteristic subgroup of G is regular.

Remark. This theorem was shown by Baer in [1, Theorem 9]. It was known to Miller

although it is, at the very least, questionable whether his footnote in [13, p. 21]

constitutes a complete proof.

Proof. Let H be any characteristic subgroup of G. Define the n-tuple m by mi =

max{ai : a ∈ Λ(G), T (a) ⊆ H}. It is clear then that H ≤ R(m). We will show that

on the other hand R(m) ≤ H, from which the result immediately follows.

For any i, by our definition of m there is a type a such that T (a) ⊆ H and

ai = mi. Then g =
∏n

j=1 tj,aj
and g′ = ti,mi

∏

j 6=i t
−1
j,aj

are two elements of T (a). Since
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H is a subgroup, gg′ = t2i,mi
∈ H. Since p 6= 2, we have 〈t2i,mi

〉 = 〈ti,mi
〉, so ti,mi

∈ H.

Since the elements ti,mi
generate R(m), it follows that R(m) ≤ H, as desired.

Corollary 5.5. Let G be an abelian p-group where p 6= 2. Then the lattice of char-

acteristic subgroups of G is distributive.

Proof. From Theorem 5.3 it is clear that the lattice of regular characteristic subgroups

of G is isomorphic to the lattice C(G), which is a sublattice of Λ(G). The latter

lattice is distributive since it is a direct product of chains. Since in our case every

characteristic subgroup is regular, the result follows.

Corollary 5.6. Let G = Zpλ1 × Zpλ2 × · · · × Zpλn be an abelian p-group with p 6= 2.

Let q 6= 2 be any other odd prime, and set G′ = Zqλ1 × Zqλ2 × · · · × Zqλn . Then

Char(G) ∼= Char(G′).

Proof. This is immediate since Char(G) ∼= C(G) ∼= C(G′) ∼= Char(G′).

Corollary 5.7. Let G be an abelian p-group where p 6= 2. Then the set {H : H ∈

Char(G)} forms a basis for the discrete rational S-ring W(G).

Proof. The S-ring W(G) is spanned by {O(a) : a ∈ C(G)}. Given any characteristic

subgroup R(a), we can write R(a) =
∑

b∈C(G)O(b), so that {H : H ∈ Char(G)} ⊆

W(G). On the other hand, we can write

O(a) = R(a) −
∑

b∈C(G)
b<a

O(b),

so that by induction each O(a) is in the span of {H : H ∈ Char(G)}.

Example 5.8. Let G = Zp × Zp3 for an odd prime p. Let H1, . . . , H6 be the charac-

teristic subgroups of G, in the order shown in Table 3. Using Theorem 1.7, it is easy

to check that S = F{1, H2, H3 + H4, H5, G} is a rational S-ring. We show that S
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Table 3: Characteristic subgroups of G = Zp × Zp3 for odd prime p

H1 R(0,0)
H2 R(0,1)
H3 R(0,2)
H4 R(1,1)
H5 R(1,2)
H6 R(1,3)

H1

H2

H3 H4

H5

H6

cannot be constructed as in Theorem 2.3. Suppose S = F (L) for some lattice L. By

Corollary 5.7, the elements {H : H ∈ L} are linearly independent, hence form a basis

for S. So dimS = |L|. Now dimS = 5, yet, by applying Corollary 5.7 again, it is

easy to see that 1, H2, H5, and G are the only four subgroups of G which are S-sets,

hence |L| ≤ 4, a contradiction.

Example 5.9. Let G = Zp × Zp3 × Zp5 for an odd prime p. Let H1, . . . , H18 be the

characteristic subgroups of G, in the order shown in Table 4. Note that the sublattice

of Char(G) between R(0, 1, 2) and R(1, 2, 3) forms a cube; i.e., this sublattice is

isomorphic to the boolean lattice P(X) of subsets of a set X of cardinality 3.

The following theorem gives a generalization of preceding two examples which will

be important to us later on.

Theorem 5.10. Let X be a (finite) set containing n elements. There is an embedding

ψ of the boolean lattice P(X) into Char(Zp × Zp3 × · · · × Zp2n−1). Further, ψ has the

property that for all subsets Y1, Y2 of X, |Y1| = |Y2| ⇐⇒ |ψ(Y1)| = |ψ(Y2)|.

Proof. We will map P(X) into the lattice of characteristic subgroups contained in

R(1, 2, 3, . . . , n) and containing R(0, 1, 2, . . . , n− 1). Write X = {x1, . . . , xn}. Define
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Table 4: Characteristic subgroups of G = Zp × Zp3 × Zp5 for odd prime p

H1 R(0,0,0)
H2 R(0,0,1)
H3 R(0,0,2)
H4 R(0,1,1)
H5 R(0,1,2)
H6 R(0,1,3)
H7 R(0,2,2)
H8 R(0,2,3)
H9 R(0,2,4)
H10 R(1,1,1)
H11 R(1,1,2)
H12 R(1,1,3)
H13 R(1,2,2)
H14 R(1,2,3)
H15 R(1,2,4)
H16 R(1,3,3)
H17 R(1,3,4)
H18 R(1,3,5) H1

H2

H3 H4

H5 H10

H6 H7 H11

H8 H12 H13

H9 H14

H15 H16

H17

H18
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ψ(Y ) = R(a(Y )) where the ith component of the n-tuple a(Y ) is defined to be i− 1

if xi /∈ Y and i if xi ∈ Y ; note that ψ is well-defined since each such tuple a(Y ) is

canonical, as the difference between two consecutive coordinates of a(Y ) is either 0,

1, or 2. We have

ψ(Y1 ∩ Y2) = R(a(Y1 ∩ Y2)) = R(a(Y1) ∧ a(Y2))

= R(a(Y1)) ∩R(a(Y2)) = ψ(Y1) ∩ ψ(Y2)

and

ψ(Y1 ∪ Y2) = R(a(Y1 ∪ Y2)) = R(a(Y1) ∨ a(Y2))

= 〈R(a(Y1)), R(a(Y2))〉 = 〈ψ(Y1), ψ(Y2)〉,

so that φ is a lattice homomorphism. By construction φ is injective, so φ is an

embedding. Theorem 5.3(iii) shows that |φ(Y )| = p
n(n−1)

2
+|Y |, which proves the last

claim.

The following theorem shows that adding a duplicate factor in the direct decom-

position of G does not change its lattice of characteristic subgroups.

Theorem 5.11. Let G = Zpλ1 × Zpλ2 × · · · × Zpλn be an abelian p-group with p 6= 2.

Then for any i ∈ {1, . . . , n}, Char(G) ∼= Char(G× Zpλi ).

Proof. Let G′ = Zpλ1 ×Zpλ2 × · · ·×Zpλi−1 ×Zpλi ×Zpλi ×Zpλi+1 × · · ·×Zpλn , so G′ ∼=

G×Zpλi . Every canonical tuple of G′ has the form (a1, a2, . . . , ai−1, ai, ai, ai+1, . . . , an),

i.e., the ith and (i + 1)th coordinates are forced to be equal. It follows that the

correspondence

R(a1, . . . , an) 7→ R(a1, . . . , ai−1, ai, ai, ai+1, . . . , an)
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is an isomorphism of Char(G) onto Char(G′).

The case p = 2

In this section fix G to be an abelian 2-group.

Given any characteristic subgroup H of G, as in the proof of Theorem 5.4 we

can define the n-tuple m by mi = max{ai : a ∈ Λ(G), T (a) ⊆ H}. We say then

that H is a characteristic subgroup below m. For a canonical tuple m, an example

of a characteristic subgroup below m is R(m); when p 6= 2, this is the unique such

subgroup, as Theorem 5.4 shows. When p = 2, there may be several characteristic

subgroups below a given canonical tuple m. The set of such subgroups will be denoted

Charm(G). Our goal in this section is to give a description of these subgroups.

Definition 5.12. A subgroup H of a direct product K1×K2×· · ·×Kl is projection-

surjective if πi(H) = Ki for each i ∈ {1, . . . , l}, where πi is the natural projection map

onto the ith component of the product. (In other words, H is a subdirect product of

K1, K2, . . . , Kl.)

Definition 5.13. A coordinate i of a canonical tuple a ∈ C(G) is degenerate if

(i) ai = ai−1, or

(ii) ai+1 − ai = λi+1 − λi,

where by convention a0 = 0. Otherwise, i is nondegenerate.

Recall that in a canonical tuple, each coordinate must increase by between 0 and

λi+1 − λi. So, a coordinate is degenerate if it has increased the least possible from

the previous coordinate (namely, not at all) or if it is followed by a greatest possible

increase.

Definition 5.14. For i ∈ {1, . . . , n}, we define ei ∈ Λ(G) to be the tuple with zeros

in each coordinate except with a 1 in the ith component.
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We observe that if ai = 0, then condition (i) of a canonical tuple implies ai−1 = 0,

so that the coordinate i of a is degenerate (of type (i)). The following Lemma, on

the other hand, gives a characterization of when i is degenerate, provided ai 6= 0:

Lemma 5.15. Let a ∈ C(G) be a canonical type, and let i ∈ {1, . . . , n} be given with

ai 6= 0. Define a′ = a − ei (where the subtraction is defined componentwise so a′ is

identical to a except the ith coordinate has been decreased by 1). Then i is a degenerate

coordinate of a if and only if a′ is noncanonical. Moreover, if i is degenerate then

O(a′) = O(a).

Proof. The first claim follows directly from the definition of degenerate. The last

claim follows from Lemma 4.7.

Theorem 5.16. Given m ∈ C(G), the characteristic subgroups below m are in one-

to-one correspondence with the projection-surjective subgroups of Zr
2 , where r is the

number of non-degenerate coordinates of m.

Proof. Let H be any characteristic subgroup below m. By the definition of m, for

each i there is some type T (a) ⊆ H with ai = mi. Then g =
∏n

j=1 tj,aj
and g′ =

ti,mi

∏

j 6=i t
−1
j,aj

are two elements of T (a). Since H is a subgroup, gg′ = t2i,mi
= ti,mi−1 ∈

H, where x is the “clipping” function defined by

x =















x, if x ≥ 0,

0, if x < 0.

If we define m′ by m′
i = mi − 1, then it is clear that R(m′) ⊆ H, since the set

{ti,mi−1 : i = 1, . . . , n} generates R(m′). Clearly R(m′) ⊆ R(m) and R(m)/R(m′) ∼=

Z l
2 where l is the number of nonzero entries of m. To be more specific, let π : R(m) →

R(m)/R(m′) be the natural projection map, and set Ki = π(〈ti,mi
〉); then Ki

∼= Z2

if mi 6= 0, while Ki is trivial if mi = 0. Let ki be the generator for Ki (so |ki| = 2
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unless mi = 0, in which case ki = 1). The lattice isomorphism theorem implies that

the subgroups of R(m) containing R(m′) (among which are all the subgroups H in

Charm(G)) are in one-to-one correspondence with subgroups of π(R(m)) ∼= Z l
2. Now,

note that by definition, for any i, if mi = 0 then i is a degenerate coordinate. If

i is a nonzero degenerate coordinate of m, define a′ by a′j = aj for all j 6= i and

a′i = ai − 1. Then observe that the degeneracy of i ensures O(a′) = O(a) by Lemma

5.15. Thus T (a′) ⊆ H, and so ĝ =
∏n

i=1 t1,a′
i
∈ H. If we write π(g) =

∏n
j=1 k

εj

j , where

each εj ∈ {0, 1}, then π(ĝ) =
∏

j 6=i k
εj

j . Since ai = mi, we have εi = 1, and it follows

that π(gĝ) = kεi

i

∏

j 6=i k
2εj

j = ki, so that Ki ≤ π(H). Thus, if D is the set of nonzero

degenerate coordinates of m, we may write

π(H) = K ×
∏

j∈D

Kj,

where K is a projection-surjective subgroup of
∏

j∈D′ Kj, where D′ is the set of non-

degenerate coordinates of m. This gives us an injective map H 7→ K from Charm(G)

into the set of projection-surjective subgroups of
∏

j∈D′ Kj
∼= Zr

2 . It remains only to

show that this correspondence is surjective.

So let K be an arbitrary projection-surjective subgroup of
∏

j∈D′ Kj. Set K ′ =

K ×
∏

j∈D Kj and let H = π−1(K ′). The projection-surjectivity of K ensures that

H is a subgroup below m. We only need to show that H is characteristic. To

do this, it is enough to show that if T (a) is a noncanonical type contained in H

then there is another type T (a′) contained in H with a′ > a. Since H contains the

characteristic subgroup R(m′), it is sufficient to consider the case where T (a) is not

contained in R(m′), namely a > m′. Since T (a) is noncanonical, there is some i

such that either ai−1 > ai or ai+1 − ai > λi+1 − λi. In the former case, we have

ai < ai−1 ≤ mi−1 ≤ mi since by condition (i) of m being canonical, while in the latter

case, we have ai < ai+1 − (λi+1 −λi) ≤ ai+1 − (mi+1 −mi) ≤ ai+1 − (ai+1 −mi) = mi.
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So in either case we have ai < mi, which implies ai = mi − 1, since a ≥ m′. Now

if every such coordinate i was nondegenerate in m, then by repeated application of

Lemma 5.15, a would be canonical, contrary to assumption. So there must be some

such i which is a degenerate coordinate of m. Define a′ by a′j = aj for j 6= i and

a′i = mi. Let g be an element of type T (a) and write k = π(g) =
∏n

j=1 k
εj

j with

εj ∈ {0, 1} (namely, we will have εj = 1 if and only if aj = mj). Then k′ = ki

∏

j 6=i k
εj

j

is also in π(H) (since ki ∈
∏

j∈D Kj ⊆ K ′), and the set π−1(k′) includes elements of

type a′, so T (a′) ⊆ H, as desired.

A statement equivalent to the following is stated (without proof) in [13, p. 23]:

Corollary 5.17. Irregular characteristic subgroups below a canonical tuple a ∈ C(G)

exist if and only if a has at least two nondegenerate coordinates.

Proof. Since Zk
2 has proper projection-surjective subgroups if and only if k ≥ 2, this

follows from Theorem 5.16.

Example 5.18. Let G = Z2 × Z8. Let H1, . . . , H6 be the regular characteristic

subgroups of G, as shown in Table 5. We note that (1,2) is the only canonical tuple

with two nondegenerate coordinates; consequently, there is an irregular characteristic

subgroup K below (1,2) and this is the only irregular characteristic subgroup of G.

Note that the lattice of characteristic subgroups of G is not distributive, in contrast

to Theorem 5.5; see Theorem 5.25 below.

Definition 5.19. Given a canonical tuple a with k ≥ 2 nondegenerate coordinates, we

define I(a) to be the characteristic subgroup corresponding (under the correspondence

of Theorem 5.16) to the unique projection-surjective subgroup of Zk
2 of order 2. (This

is simply the diagonal subgroup of Zk
2 ). Explicitly, I(a) = R(b) ∪ T (a), where b is

given by bj = aj if j is a degenerate coordinate, while bj = aj − 1 otherwise.
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Table 5: Characteristic subgroups of Z2 × Z8

H1 R(0,0)
H2 R(0,1)
H3 R(0,2)
H4 R(1,1)
K R(0, 1) ∪ T(1, 2)
H5 R(1,2)
H6 R(1,3)

H1

H2

H3 H4K

H5

H6

Note that I(a) is then an irregular characteristic subgroup below a. If every

canonical tuple of C(G) has at most 2 nondegenerate coordinates, then every irregular

characteristic subgroup of G may be written I(a) for some a. For instance, in Table 5,

the irregular characteristic subgroup K may be written I(1, 2).

Theorem 5.16 leads to a method of enumerating the characteristic subgroups of

abelian 2-groups, and hence the characteristic subgroups of arbitrary finite abelian

groups. More specifically, Theorem 5.16 reduces this problem to the problems of

1. Enumerating the projection-surjective subgroups of Zk
2 , and

2. Enumerating the tuples a ∈ C(G) with k non-degenerate coordinates.

A solution to the the first of these two problems is provided by the following

theorem:

Theorem 5.20. The number of projection-surjective subgroups of Zk
2 is

nk =
k
∑

i=0

(−1)i+k

(

k

i

) i
∑

j=0

(

i

j

)

2

,
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where
(

i
j

)

2
are the Gaussian binomial coefficients given by

(

i

j

)

2

=

j−1
∏

l=0

(

2i−l − 1
)

j
∏

l=1

(

2l − 1
)

.

Remark. The sequence nk begins 1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, . . .

for k = 0, 1, 2, . . . and may be found as A135922 of Sloane’s on-line encyclopedia

of integer sequences [18].

Proof. Let X = {1, . . . , k}. For any subgroup H of Zk
2 , set ρ(H) denote the set of

integers i ∈ X such that πi(H) = Z2. So H is projection-surjective if and only if

ρ(H) = X. For any subset Y ⊆ X, let n(Y ) be the number of subgroups H of Zk
2

such that ρ(H) = Y . We would like to compute nk = n(X). Now define m(Y ) to be

the number of subgroups H of Zk
2 with ρ(H) ⊆ Y . So

m(Y ) =
∑

Z⊆Y

n(Z).

Now m(Y ) is simply the total number of subgroups of Z
|Y |
2 ; this is the same as the

number of subspaces of a |Y |-dimensional vector space over F2. Since the number of

j-dimensional subspaces of such a vector space is known to be

j−1
∏

l=0

(

2|Y | − 2l
)

j−1
∏

l=0

(

2j − 2l
)

=

j−1
∏

l=0

(

2|Y |−l − 1
)

j−1
∏

l=0

(

2j−l − 1
)

=

j−1
∏

l=0

(

2|Y |−l − 1
)

j
∏

l=1

(

2l − 1
)

=

(

|Y |

j

)

2
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(see, e.g., [7, p. 412]), it follows that

m(Y ) =

|Y |
∑

j=0

(

|Y |

j

)

2

.

We note, in particular, that m(Y ) only depends on the size of Y . By the inclusion-

exclusion principle (see, e.g., [4, p. 185]) we have

n(X) =
∑

Y ⊆X

(−1)|Y |+|X|m(Y )

=
k
∑

i=0

∑

Y ⊆X

|Y |=i

(−1)i+km(Y )

=
k
∑

i=0

(

k

i

)

(−1)i+km({1, . . . , i− 1})

=
k
∑

i=0

(−1)i+k

(

k

i

) i
∑

j=0

(

i

j

)

2

,

as desired.

As to the second problem, that of enumerating the tuples a ∈ Λ(G) with a given

number of non-degenerate coordinates, we are not aware of a simple formula for

counting the number of such tuples. However, it is nevertheless possible to enumerate

them recursively without having to list each tuple; using such an approach we can

easily enumerate the characteristic subgroups of an arbitrary finite abelian group. In

Table 6, for example, we have listed the total number of characteristic subgroups of

Z2 × Z22 × Z23 × · · · × Z2n for n ≤ 40.

A further application of the notion of degenerate coordinates is an explicit de-

scription, in a certain situation, of how an automorphism class splits up as a union

of types:

Theorem 5.21. Let G be an abelian p-group (for any prime p) with no repeated
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Table 6: Number of characteristic subgroups of Z2 × Z22 × Z23 × · · · × Z2n

1 2
2 4
3 9
4 21
5 52
6 134
7 363
8 1027
9 3054
10 9516
11 31229
12 107745
13 392792
14 1511010
15 6167551
16 26670383
17 122982386
18 603221064
19 3172965937
20 17817816493
21 107984192188
22 700497542494
23 4939837336979
24 37315530126171
25 309078760337078
26 2736173394567076
27 26852600855758373
28 279765993533235769
29 3279737127172518880
30 40284238921560357658
31 568574087799302502375
32 8225663800386744379975
33 140886928953442040025658
34 2392158426272284053385152
35 50137841812585275382579929
36 993099669210856047011613573
37 25701228868609248542152214980
38 589013066872810742690824633750
39 19005348215516204077748683286267
40 498993627095578092364760281155059
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factors (i.e., 0 < λ1 < λ2 < · · · < λn), and let a ∈ C(G) be a canonical tuple. Then

O(a) =
⋃

{T (b) : b ≤ a and, for each nondegenerate coordinate i of a, bi = ai}

Proof. Let

A =
⋃

{T (b) : b ≤ a and, for each nondegenerate coordinate i of a, bi = ai}.

We first show O(a) ⊆ A. Given any T (b) ⊆ O(a), we have b ≤ a since T (a) is the

maximum type in O(a) by Theorem 4.6. Now let i be a nondegenerate coordinate

of a and suppose bi < ai. Then a′ = a − ei is canonical by Theorem 5.2, hence

R(a′) is a characteristic subgroup with b ≤ a′, so O(a) = O(b) ⊆ R(a′), which is a

contradiction since a � a′. Consequently bi = ai, which proves O(a) ⊆ A.

Now we must show A ⊆ O(a). Suppose there is some T (b) ⊆ A with T (b) * O(a),

i.e. O(b) 6= O(a). Take a maximal such b. We must then have b < a. Let i

be the first coordinate for which bi < ai. Then, by the definition of A, i must

be a degenerate coordinate of a. If i is degenerate because ai = ai−1, then we

have bi < ai = ai−1 = bi−1, so by Lemma 4.7, if we define b′ by b′k = bk for all

k 6= i and b′i = bi−1, then O(b′) = O(b) 6= O(a), while b′ > b, contradicting the

maximality of b. On the other hand, if i is degenerate because ai + λi+1 − λi = ai+1,

then let j be the first coordinate greater than i such that bj = aj; such a j must

exist since otherwise all the coordinates i, . . . , n of a would be degenerate and we

would have an = an−1 = · · · = ai+1 = ai, contradicting ai + λi+1 − λi = ai+1

since λi+1 6= λi. Thus all of the coordinates i, . . . , j − 1 of a are degenerate. We

find that each coordinate k ∈ {i, . . . , j − 1} is degenerate of the second type, i.e.

we find that ak + λk+1 − λk = ak+1: For k = i this holds by assumption, while

for k > i, if k were degenerate of the first type, i.e. ak = ak−1, we would have a
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contradiction since by induction, ak−1 + λk − λk−1 = ak and λk 6= λk−1. So we have

bj−1 + λj − λj−1 < aj−1 + λj − λj−1 = aj = bj, so by Lemma 4.7, if we again obtain a

b′ > b with O(b′) = O(b) 6= O(a), contradicting the maximality of b.

Example 5.22. Let G = Zp ×Zp3 ×Zp5 . The first and third coordinates of the tuple

(1, 3, 3) are degenerate. So we have

O(1, 3, 3) = T (0, 3, 0) ∪ T (0, 3, 1) ∪ T (0, 3, 2) ∪ T (0, 3, 3)

∪ T (1, 3, 0) ∪ T (1, 3, 1) ∪ T (1, 3, 2) ∪ T (1, 3, 3).

Theorem 5.23. The lattice of characteristic subgroups of a finite abelian group G is

a chain if and only if G ∼= Zµ1

pk × Zµ2

pk+1 for some natural numbers k, µ1, µ2 ≥ 0 and

some prime p.

Proof. First assume the lattice of characteristic subgroups of G is a chain. If |G|

were not a prime power, it would have distinct prime divisors p and q, and the Sylow

p-subgroup and Sylow q-subgroup of G would be incomparable. So G must be an

abelian p-group, and without loss of generality we may write G = Zpλ1 × · · · × Zpλn ,

where 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. Note that the claim that G has the form Zµ1

pk × Zµ2

pk+1

is equivalent to the claim that λn − λ1 ≤ 1. So suppose λn − λ1 ≥ 2. Define tuples a

and a′ by

ai = 1

a′i = λi − λ1.

for all i = 1, . . . , n. Then it is easy to see that a and a′ are canonical tuples. Since

a1 = 1 > 0 = a′1 we have a ≮ a′, while since an = 1 < 2 ≤ λn − λ1 = a′n, we

have a ≯ a′. The characteristic subgroups R(a) and R(a′) are then incomparable,

contradicting the hypothesis. Hence λn − λ1 ≤ 1, as desired.

43



Conversely, suppose λn − λ1 ≤ 1. Then every canonical tuple a ∈ C(G) then has

the form

ai =















0, if i < j

1, if i ≥ j

for some natural number j ≥ 0. In the case p = 2, since such a tuple has at most

one nondegenerate coordinate, it follows from Theorem 5.16 that every characteristic

subgroup of G is regular. (Since Zk
2 has only one projection-surjective subgroup if

k ∈ {0, 1}, there is a unique characteristic subgroup below each canonical tuple a,

namely R(a).) Since any two such tuples a and a′ are clearly comparable, it follows

that R(a) and R(a′) are comparable, so Char(G) is a chain.

One may ask the general question: When do two finite abelian p-groups have

isomorphic lattices of characteristic subgroups? Corollary 5.6 and Theorems 5.11 and

5.23 provide examples where this occurs. Another example is given by the following

theorem, which may be verified by examining Tables 7 and 8:

Theorem 5.24. For any prime p, Char(Zp2 × Zp5) ∼= Char(Zp × Zp2 × Zp4).

As yet, we have not been able to give a complete answer to the question of when

two abelian p-groups have isomorphic lattices of characteristic subgroups. But we are

optimistic that with some work this question could be fully resolved. In particular,

we know that no additional isomorphisms occur between the lattices of characteristic

subgroups of two abelian p-groups of odd order, only those which can be derived from

Corollary 5.6 and Theorems 5.11, 5.23, and 5.24. (Thus the isomorphism of Theorem

5.24 is truly exceptional.) The proof of this fact is, however, somewhat complicated

and will not be given here.

Theorem 5.25. The lattice of characteristic subgroups of an abelian 2-group G is

distributive if and only if all of its characteristic subgroups are regular.
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Table 7: Characteristic subgroups of Char(Zp2 ×Zp5) and Char(Zp×Zp2 ×Zp4), p 6= 2

H1 R(0,0)
H2 R(0,1)
H3 R(0,2)
H4 R(0,3)
H5 R(1,1)
H6 R(1,2)
H7 R(1,3)
H8 R(1,4)
H9 R(2,2)
H10 R(2,3)
H11 R(2,4)
H12 R(2,5)

H1

H2

H3 H4

H5 H6

H7 H8

H9 H10

H11

H12

H ′
1 R(0,0,0)

H ′
2 R(0,0,1)

H ′
3 R(0,0,2)

H ′
4 R(0,1,1)

H ′
5 R(0,1,2)

H ′
6 R(0,1,3)

H ′
7 R(1,1,1)

H ′
8 R(1,1,2)

H ′
9 R(1,1,3)

H ′
10 R(1,2,2)

H ′
11 R(1,2,3)

H ′
12 R(1,2,4)

H ′
1

H ′
2

H ′
4 H ′

3

H ′
7 H ′

5

H ′
8 H ′

6

H ′
10 H ′

9

H ′
11

H ′
12

Table 8: Characteristic subgroups of Char(Zp2 ×Zp5) and Char(Zp×Zp2 ×Zp4), p = 2

H1 R(0,0)
H2 R(0,1)
H3 R(0,2)
H4 R(0,3)
H5 R(1,1)
H6 R(1,2)
H7 R(1,3)
H8 R(1,4)
H9 R(2,2)
H10 R(2,3)
H11 R(2,4)
H12 R(2,5)
K1 I(1,2)
K2 I(1,3)
K3 I(2,3)
K4 I(2,4)

H1

H2

H3 H4K1

H5 H6K2

H7 H8K3

H9 H10K4

H11

H12

H ′
1 R(0,0,0)

H ′
2 R(0,0,1)

H ′
3 R(0,0,2)

H ′
4 R(0,1,1)

H ′
5 R(0,1,2)

H ′
6 R(0,1,3)

H ′
7 R(1,1,1)

H ′
8 R(1,1,2)

H ′
9 R(1,1,3)

H ′
10 R(1,2,2)

H ′
11 R(1,2,3)

H ′
12 R(1,2,4)

K ′
1 I(0,1,2)

K ′
2 I(1,1,2)

K ′
3 I(1,1,3)

K ′
4 I(1,2,3)

H ′
1

H ′
2

H ′
4 H ′

3K1

H ′
7 H ′

5K ′
2

H ′
8 H ′

6K ′
3

H ′
10 H ′

9K ′
4

H ′
11

H ′
12
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Proof. The “if” part is trivial, since the lattice of regular characteristic subgroups is

clearly distributive. So suppose there is an irregular characteristic subgroup K below

a tuple m. By Corollary 5.17, there must be at least two distinct nondegenerate

coordinates i and j of m. Define a = m−ei, a′ = m−ej, and b = m−ei−ej, where

the subtraction is defined component-wise. Then m, a, a′, and b are all canonical.

Then define K ′ = R(b) ∪ T (m), so K ′ is another irregular characteristic subgroup

below m. Since R(a), K ′, and R(a′) are distinct index 2 subgroups of R(m) and

each contains R(b) as an index 2 subgroup, it follows that R(b), R(a), K ′, R(a′), and

R(m) form a diamond:

R(b)

K ′R(a) R(a′)

R(m)

Thus, Char(G) is not distributive.

The following example shows that it is possible for an abelian 2-group not to have

any irregular characteristic subgroups, even if its lattice of characteristic subgroups

is not a chain:

Example 5.26. Let G = Z2 × Z2 × Z8. Then every canonical tuple a ∈ C(G)

can be written (a1, a1, a3), i.e., the first two coordinates are forced to be identical.

Consequently both the first and second coordinates are degenerate. So a has at most

one nondegenerate coordinate, which by Corollary 5.17 implies that there are no

irregular characteristic subgroups in G. The lattice of characteristic subgroups of G

is then isomorphic to that of Zp × Zp3 for an odd prime p, shown in Table 3. This

example shows that Theorem 5.11 does not hold for p = 2.
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Table 9: Characteristic subgroups of G = Z4 × Z64

H1 R(0, 0)
H2 R(0, 1)
H3 R(0, 2)
H4 R(0, 3)
H5 R(0, 4)
H6 R(1, 1)
H7 R(1, 2)
H8 R(1, 3)
H9 R(1, 4)
H10 R(1, 5)
H11 R(2, 2)
H12 R(2, 3)
H13 R(2, 4)
H14 R(2, 5)
H15 R(2, 6)
K1 R(0, 1) ∪ T (1, 2)
K2 R(0, 2) ∪ T (1, 3)
K3 R(0, 3) ∪ T (1, 4)
K4 R(1, 2) ∪ T (2, 3)
K5 R(1, 3) ∪ T (2, 4)
K6 R(1, 4) ∪ T (2, 5)

H1

H2

H3 K1 H6

H4 K2 H7

H5 K3 H8 K4 H11

H9 K5 H12

H10 K6 H13

H14

H15

Example 5.27. Let G = Z4 × Z64. Let H1, . . . , H15 be the regular characteristic

subgroups of G as shown in Table 9, and let O1 . . . , O15 be the corresponding auto-

morphism classes. The S-ring S = F{1,O2 +O3,O4 +O5 +O6 +O7 +O11 +O13,O8 +

O9 +O12,O10 +O14 +O15}, of dimension five, contains only four subgroups quantities

(i.e., simple quantities H where H is a subgroup of G), namely, 1, H3, H13, and G.

Consequently S cannot be constructed as in Theorem 2.3.

Note that in the preceding example, |G| = 28. An exhaustive computer search

reveals that over any abelian 2-group of order ≤ 27 every rational S-ring can be

constructed as in Theorem 2.3. The smallest order for which an abelian 2-group can

have three regular characteristic subgroups of the same order is 28 (and there are two

such groups of this order: Z4 × Z64 and Z2 × Z4 × Z32). It seems probable that this

fact has something to do with example just given. One problem would be to explain
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and generalize the constructions given in Examples 5.8 and 5.27 with the goal of, if

possible, classifying all rational S-rings over abelian p-groups.

In connection with this, another example which should be considered is the fol-

lowing:

Example 5.28. Let G = Zp × Zp3 × Zp5 where p is any prime. Let H1, . . . , H18 be

the regular characteristic subgroups of G, as in Table 4. By direct computation, one

can show using Corollary 1.8 that

S = F{1, H5, H6 +H7 +H12 +H13, H8 +H11 +H12 +H13, H14, G}

is an S-ring over G if and only if p = 3. It is of course also possible to present S in

terms of its basic elements:

S = F{1, O2+O3+O4+O5, O6+O7+O14, O12+O13, O8+O10+O11, O9+O15+O16+O17+O18}

This example shows that choice of prime p can make a difference in determining

whether a partition of automorphism classes of G is a Schur partition or not, and

that it is not merely a question of whether p = 2. It seems that this G is the unique

smallest group for which such behavior occurs; namely, we have checked that given

an abelian p-group G1 and an abelian q-group G2, where |G1| ≤ p9 and |G2| ≤ q9 and

λ(G1) = λ(G2), if neither λ(G1) nor λ(G2) are (1,3,5) and neither p nor q are 2, then

the rational S-rings of G1 and G2 are in one-to-one correspondence, at least if p, q ≤

11. In contrast, over this group G, there are 7281 rational S-rings if p = 3 but only

7089 if p > 3. There are 7281 − 7089 = 192 examples of partitions which correspond

to S-rings if and only if p = 3, and they can all be derived from the example S given

above by applying some combination of the following two modifications, (1) by adding

some subset of {H2, H3, H4, H3 +H4, H15, H16, H15 +H16, H17} to the basis given for
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S (there are 64 possible ways of doing this: 8 subsets of {H2, H3, H4, H3 +H4} are

possible, and, independently, 8 subsets of {H15, H16, H15 + H16, H17} are possible),

or (2) by permuting the basis elements according to the permutation,

(H8, H12, H13)(H11, H7, H6)

consisting of two disjoint 3-cycles (This corresponds to a symmetry of the sublattice

Char(G)− {H9, H10}). When p = 2, there are 22797 rational S-rings over G; 7089 of

the corresponding Schur partitions are in common with those obtained when p = 3,

precisely the ones which are Schur partitions for p = 5.

G is also the smallest abelian p-group with a cube in its lattice of characteristic

subgroups. It would seem that this has something to do with the occurrence of these

seemingly “exceptional” rational S-rings whose general construction we do not fully

understand.

6 Main Theorem

We now turn to our main result:

Theorem 6.1. (Main Theorem) Let p be an odd prime. Every finite group can be

represented as the automorphism group of a rational S-ring over an abelian p-group.

The proof relies on three key ideas:

(1) Every group can be represented as the automorphism group of a distributive

lattice,

(2) Every distributive lattice can be embedded in a boolean lattice, and

(3) The lattice of characteristic subgroups of the group Zp × Zp3 × · · · × Zp2n−1

contains a boolean sublattice of order 2n.
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The proof of the Main Theorem, in outline, goes as follows: Given a groupG, using

(1) we are able to find a distributive lattice with automorphism group isomorphic to

G. By (2), this lattice may be embedded in a boolean lattice, which by (3) may

in turn be embedded as a sublattice of the lattice of characteristic subgroups of an

appropriate abelian p-group P . Finally, using Theorem 2.3, we construct the rational

S-ring over P associated with this lattice and show that the automorphism group of

this S-ring is isomorphic to G.

(1) was shown by Birkhoff in [2]; alternative proofs are given in [9, 10] (see also

[8]). (2) is a standard result in lattice theory (also first proven by Birkhoff; see also

Theorem 5.12 in [6], 20.1 in [11], or 11.3 in [5]). We have already shown (3) in

Theorem 5.10 above.

Since the proof of the Main Theorem will require some knowledge of the construc-

tion used in (2), we include a proof of (2) below (Theorem 6.6). For completeness,

we also include a proof of (1) in Theorem 7.5.

In the following theorem we gather together some standard facts about lattices

which we will need; the proof is entirely straightforward and will be omitted.

Theorem 6.2. Let x, y, and z be elements of a lattice L. Then

(i) x ∧ x = x and x ∨ x = x (Idempotence)

(ii) x ∧ y = y ∧ x and x ∨ y = y ∨ x (Commutativity)

(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (Associativity)

(iv) x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y

The following elementary fact will also be useful:

Lemma 6.3. Let x,y,z, and w be elements of a lattice L where x ≤ y and z ≤ w.

Then
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(i) x ∧ z ≤ y ∧ w

(ii) x ∨ z ≤ y ∨ w

Proof. By Theorem 6.2(ii,iii,iv) we have

(x ∧ z) ∧ (y ∧ w) = (x ∧ y) ∧ (z ∧ w) = x ∧ z

which, by another application of Theorem 6.2(iv), proves (i). (ii) is proved dually.

Definition 6.4. An element j of a lattice L is said to be join-reducible if there exist

x < j and y < j with j = x ∨ y. Otherwise j is said to be join-irreducible.

Note that if j is join-irreducible and j = x∨y for some x, y ∈ L, then either j = x

or j = y, since certainly x ≤ x∨ y = j and y ≤ x∨ y = j and strict inequality cannot

occur in both places.

Lemma 6.5. Let x, y, and j be elements of a distributive lattice L and let j be

join-irreducible. Then

j ≤ x ∧ y ⇐⇒ j ≤ x and j ≤ y

j ≤ x ∨ y ⇐⇒ j ≤ x or j ≤ y

Proof. Since x∧y ≤ x and x∧y ≤ y, it is clear that if j ≤ x∧y then j ≤ x and j ≤ y.

Conversely, if j ≤ x and j ≤ y then by Lemma 6.3, j ∧ j ≤ x ∧ y, i.e., j ≤ x ∧ y.

Since x ≤ x∨y and y ≤ x∨y, it is clear that if j ≤ x or j ≤ y then j ≤ x∨y. (Note,

to this point we have used neither the join-irreducibility of j nor the distributivity of

L.) Suppose conversely that j ≤ x ∨ y. Then

j = j ∧ (x ∨ y) = (j ∧ x) ∨ (j ∧ y).
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The join-irreducibility of j then implies either j = j ∧x or j = j ∧ y, i.e. either j ≤ x

or j ≤ y, as desired.

Theorem 6.6. Let L be a finite distributive lattice and let J ⊆ L be the set of join-

irreducible elements. Then the map φ(x) = {j ∈ J : j ≤ x} is a embedding of L into

P(J). Moreover, |φ(α(x))| = |φ(x)| for all α ∈ Aut(L) and x ∈ L.

Proof. Let x, y ∈ L be given. By Lemma 6.5 we have

φ(x ∧ y) = {j : j ∈ J, j ≤ x ∧ y}

= {j ∈ J : j ≤ x and j ≤ y}

= {j ∈ J : j ≤ x} ∩ {j ∈ J : j ≤ y}

= φ(x) ∩ φ(y)

and similarly φ(x∨ y) = φ(x)∪φ(y), which proves that φ is a lattice homomorphism.

It only remains to show that φ is injective.

So assume x 6= y and we will show that φ(x) 6= φ(y). Since x 6= y, either x � y or

y � x; without loss of generality, assume x � y. Let S = {z ∈ L : z ≤ x and z � y}.

Note that S is nonempty since x ∈ S. So S has a minimal element j. We will show

that j is join-irreducible. For suppose j = a ∨ b but a < j and b < j. By the

minimality of j, a, b /∈ S. However, a < j ≤ x and b < j ≤ x, so we must have a ≤ y

and b ≤ y. But then j = a ∨ b ≤ y ∨ y = y by Lemma 6.3(ii), contradicting j ∈ S.

Thus j is join-irreducible. By construction j ∈ φ(x) but j /∈ φ(y). So, as desired,

φ(x) 6= φ(y).

To prove the last statement, note that lattice automorphisms map join-irreducible
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elements to join-irreducible elements, i.e., α(J) = J , so that

φ(α(x)) = {j ∈ J : j ≤ α(x)}

= {α(j) ∈ J : α(j) ≤ α(x)}

= {α(j) ∈ J : j ≤ x}

= α(φ(x)),

hence |φ(α(x))| = |φ(x)|.

A version of the following lemma appears in [15, Lemma 3.3].

Lemma 6.7. Let G be a group and let x ∈ FG be a nonzero element of the group

algebra. Then x = H for some subgroup H ∈ G if and only if x ◦ x = x and x2 = cx

for some c ∈ F . In this case, c = |H|.

Proof. The necessity is obvious, so assume conversely that x ◦ x = x and x2 = cx.

Write x =
∑

g∈G cgg. By comparing the coefficients of g in x ◦x = x we have cg
2 = cg

for all g ∈ G, so that each cg is either 0 or 1. Thus x = H for some subset H ⊆ G.

The condition x2 = cx ensures that H is closed under multiplication. Since x 6= 0

implies H 6= ∅, it follows that H is a subgroup of G.

Corollary 6.8. Let S1 and S2 be S-rings over groups G1 and G2 respectively, let H

be a subgroup of G1, and let φ : S1 → S2 be an S-ring isomorphism. Then

(i) φ(H) = K for some subgroup K ≤ G2. Moreover |H| = |K|.

(ii) If G1 = G2 = Zn, then φ(H) = H.

Proof. We have H ◦H = H and H
2

= cH where c = |H|. Thus

φ(H) ◦ φ(H) = φ(H ◦H) = φ(H)
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and

φ(H)φ(H) = φ(H
2
) = φ(cH) = cφ(H),

so by Lemma 6.7, we may write φ(H) = K where K is a subgroup of G2 of order

c = |H|. Claim (ii) follows since in Zn, H is the unique subgroup of order |H|.

Now we are able to prove the Main Theorem. Given a finite group G, by Birkhoff’s

theorem (Theorem 7.5 below) there is a finite distributive lattice D with Aut(D) ∼= G.

By Theorem 6.6, there is an embedding φ of D into the boolean lattice P(J), where

J is the set of join-irreducible elements of D. In turn, by Theorem 5.10, there is

an embedding ψ of P(J) into the lattice of characteristic subgroups Char(P ) of an

appropriate abelian p-group P . Let L = ψ(φ(D)) ∪ {1} ∪ {P}. We claim that

Aut(F (L)) ∼= G.

It suffices to show Aut(D) ∼= Aut(F (L)). Let α be any automorphism of the

lattice D. Then α corresponds to an automorphism β of the lattice L where β =

ψ ◦ φ ◦ α ◦ φ−1 ◦ ψ−1 on ψ(φ(D)) and β(1) = 1 and β(P ) = P . The proof will be

complete once we show that β induces a (strong) automorphism of F (L) and that

every automorphism of F (L) arises in this way.

Certainly β induces an F -linear map β′ from F (L) into the group algebra FP , by

defining β′(H) = β(H) and extending linearly (i.e., β′(
∑

H∈L cHH) =
∑

H∈L cHβ(H)).

Since β′ then permutes the basis elements H of F (L) it follows that β′ is a vector

space isomorphism of F (L) onto itself. For any H,K ∈ L, we have

β′(H ◦K) = β′(H ∩K) = β(H ∩K)

= β(H) ∩ β(K) = β(H) ◦ β(K) = β′(H) ◦ β′(K)

so β′ preserves the Hadamard product.

Now we show that for all H ∈ L, |β(H)| = |H|. For H = 1 or H = P this is
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trivially true since in these cases β(H) = H by definition. For any other H, we have

β(H) = (ψ ◦ φ ◦ α ◦ φ−1 ◦ ψ−1)(H). Let x = (φ−1 ◦ ψ−1)(H), so x ∈ D. Showing

|β(H)| = |H| then amounts to showing |ψ(φ(α(x)))| = |ψ(φ(x))|. By Theorem 5.10

this equation is equivalent to |φ(α(x))| = |φ(x)|, which in turn holds by Theorem 6.6.

So we have proven |β(H)| = |H| for all H ∈ L. In particular, for any H,K ∈ L, we

have |H ∩K| = |β(H ∩K)| = |β(H) ∩ β(K)|. Thus,

β′(H K) = β′(|H ∩K|〈H,K〉) = |H ∩K|β(〈H,K〉) = |H ∩K|〈β(H), β(K)〉

= |β(H) ∩ β(K)|〈β(H), β(K)〉 = β(H) β(K) = β′(H)β′(K)

so that β′ is an S-ring automorphism of F (L), as desired.

Conversely, suppose β′ is any S-ring automorphism of S(L). For any H ∈ L,

we have β′(H) = K for some subgroup K ≤ G by Corollary 6.8(i). Since F (L)

is a rational S-ring, K is necessarily characteristic. By the linear independence of

characteristic subgroups (Corollary 5.7), we must have K ∈ L. Thus β′ permutes the

basis elements {H : H ∈ L} of F (L). We can then define a bijection β : L → L

by setting β(H) = K where K is the subgroup of G such that β′(H) = K, so that

β(H) = β′(H) for all H ∈ L. Theorem 2.3 then implies

β(H ∩K) = β′(H ∩K) = β′(H ◦K)

= β′(H) ◦ β′(K) = β(H) ◦ β(K) = β(H) ∩ β(K)

so that β(H ∩K) = β(H) ∩ β(K). Since Corollary 6.8(i) implies |H ∩K| = |β(H ∩

K)| = |β(H) ∩ β(K)|, Theorem 2.3 similarly implies

β(〈H,K〉) = β′(〈H,K〉) = β′

(

1

|H ∩K|
H K

)

=
1

|H ∩K|
β′(H)β′(K)

=
1

|H ∩K|
β(H) β(K) =

1

|β(H) ∩ β(K)|
β(H) β(K) = 〈β(H), β(K)〉

55



so that β(〈H,K〉) = 〈β(H), β(K)〉. This proves that β is a lattice automorphism

of L. It is then clear that β corresponds to a lattice automorphism α of D where

α = φ−1 ◦ ψ−1 ◦ β ◦ ψ ◦ φ, and that β′ is the S-ring automorphism induced by α in

the manner described above. This completes the proof.

7 Proof of Birkhoff’s Theorem

In this section, we prove that every group G may be represented as the automorphism

group of a distributive lattice. We essentially follow Birkhoff’s original construction

(as in [2]), albeit in somewhat different terms. We follow Birkhoff’s proof because it

is more elementary than the other proofs and because, to our knowledge, Birkhoff’s

construction has never before appeared in English. Although we are concerned only

with the finite case, the interested reader will find the proofs not difficult to generalize

to the infinite case, using the well-ordering principle.

Given a group G, the idea is to first find a poset with automorphism group iso-

morphic to G. We then show that every poset gives rise to a related distributive

lattice with automorphism group isomorphic to that of the poset.

Theorem 7.1. Let G be a group of order n. Then there is a partially ordered set X

of order n2 + n such that Aut(X) ∼= G.

Proof. Write G = {g1, . . . , gn}, where g1 = 1. Define X to be the disjoint union

X = G ∪ (G×G). Define the partial order on X by the following covering relation:

g > (hg, h), for all g, h ∈ G (1)

(g, gi) > (g, gi+1), for all g ∈ G, i ∈ {1, . . . , n− 1} (2)

It is easy to see that this determines a well-defined partial order in which the elements
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(g, g1) and (h, g2) are comparable if and only if g = h. It is easy to see that the maps

φa : g 7→ ga, (g, gi) 7→ (ga, gi)

are bijections on X which preserve (1) and (2), hence are automorphisms of X. The

map a 7→ φa is an injective homomorphism of G into Aut(X). If we can show that

this map is surjective, the proof will be complete. This amounts to showing that

every automorphism of X has the form φa for some a. So let φ be an arbitrary

automorphism of X. For every g ∈ G, we have a chain in X of the maximum length

possible (namely, n):

g > (g, g1) > (g, g2) > · · · > (g, gn) (3)

hence

φ(g) > φ(g, g1) > φ(g, g2) > · · · > φ(g, gn)

is another maximum-length chain of X. Since every maximum-length chain has the

form (3), it follows that φ(g, gi) = (φ(g), gi) for all g ∈ G and i ∈ {1, . . . , n}. Now,

set a = φ(1). If we can show φ(g) = ga for all g ∈ G, it will follow that φ = φa,

completing the proof. To do this, we note that, among the elements of the chain

{(1, gi) : i ∈ {1, . . . , n}}, the greatest element which is below g is (1, g−1) (by (1),

taking h = g−1). It follows that, among the elements of the chain {φ(1, gi) : i ∈

{1, . . . , n}} = {(a, gi) : i ∈ {1, . . . , n}}, the greatest element which is below φ(g) is

φ(1, g−1) = (a, g−1). But by (1) the greatest element below φ(g) in the chain {(a, gi) :

i ∈ {1, . . . , n}} is (a, aφ(g)−1). Thus we have g−1 = aφ(g)−1, hence φ(g) = ga, as

desired.

Definition 7.2. A subset D of a poset X is called a down-set if for every d ∈ D and

x ∈ X, x ≤ d implies x ∈ D. The set of down-sets of a poset X is denoted O(X).
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Clearly, the set of down-sets O(X) of a poset forms a lattice, with meet and join

given by set intersection and union respectively. O(X) is distributive since it is a

sublattice of P(X).

Definition 7.3. Given an element y of a poset X, the set {x ∈ X : x ≤ y} is called

the principal down-set below y and is denoted y↓.

Theorem 7.4. Let X be any finite poset. Then Aut(O(X)) ∼= Aut(X).

Proof. Every automorphism φ ∈ Aut(X) induces a map φ′ on O(X) by defining

φ′(D) = {φ(d) : d ∈ D}. Given φ(d) ∈ φ′(D) and x ∈ X with x ≤ φ(d), we

have φ−1(x) ≤ d (since φ, hence φ−1, is order-preserving), so φ−1(x) ∈ D, hence

x ∈ φ(D), which shows φ(D) is a down-set, i.e. φ(D) ∈ O(X). Now it is clear

that φ′ : O(x) → O(X) is bijective with inverse given by (φ−1)′. Since φ′ is clearly

order-preserving, it follows that φ′ ∈ Aut(O(X)). The correspondence φ 7→ φ′ is

then an homomorphism of Aut(X) into Aut(O(X)). Since φ′(x↓) = φ(x)↓, it follows

that this correspondence is injective (for if φ′
1 = φ′

2 then for all x ∈ X we have

φ′
1(x

↓) = φ′
2(x

↓), thus φ1(x)
↓ = φ2(x)

↓, from which it follows that φ1(x) = φ2(x) for

all x ∈ X, so φ1 = φ2). The proof will be complete once we show this correspondence

is surjective.

So let φ̂ ∈ Aut(O(X)) be given. We will show there is a φ ∈ Aut(X) such that

φ̂ = φ′. Now φ̂ permutes the principal down-sets of X among themselves (for a

down-set is principal if and only if it has a maximum element, and if down-set D

has a maximum element then its image φ(D) does as well, since D and φ(D) are

isomorphic posets). Hence we have that for any x ∈ X, there is a unique y ∈ X

with φ̂(x↓) = y↓, namely y = max(φ(x↓)). So we may define a bijection φ : X → X

by φ(x) = y, where y is given by φ̂(x↓) = y↓. Now if x ≤ y, then x↓ ⊆ y↓, so

φ̂(x↓) ⊆ φ̂(y↓), hence φ(x) ≤ φ(y). Thus φ is order-preserving, so φ ∈ Aut(X). Since

φ′(x↓) = {φ(z) : z ≤ x} = {φ(z) : φ(z) ≤ φ(x)} = {x : x ≤ y} = y↓, we have that
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φ′(x↓) = φ̂(x↓) for all x ∈ X, so φ′ and φ̂ agree on principal down-sets. Now, since

down-set D ∈ O(X) may be written D = ∪x∈Dx
↓, we have φ̂(D) = φ̂(∪x∈Dx

↓) =

∪x∈Dφ̂(x↓) = ∪x∈Dφ
′(x↓) = φ′(∪x∈Dx

↓) = φ′(D), so φ̂ = φ′, as desired.

Remark. This correspondence between posets and distributive lattices given by X 7→

O(X) is in fact invertible. Given a finite distributive lattice L, the poset X of join-

irreducible elements of L satisfies O(X) ∼= L (This is a strengthening of Theorem 6.6).

This correspondence may be used to show that finite posets and finite distributive lat-

tices (with an appropriate definition of morphisms) are in fact dual categories. Similar

results can be obtained for infinite posets and lattices, although the correspondence

is somewhat more complicated. For details, see [6, Theorem 5.19].

Theorem 7.5. Let G be a finite group. Then there is a distributive lattice L of order

no more than 2n2+n such that Aut(L) ∼= G.

Proof. This follows immediately from Theorem 7.4, taking L = O(X) where X is as

in Theorem 7.1.

Note that in this construction, L = O(X) is already a sublattice of a boolean

lattice P(X), which essentially eliminates our dependence on Theorem 6.6 in the

proof of the Main Theorem.

8 Automorphisms of S-rings over cyclic groups

In this section, we assume F has characteristic zero.

In [12], Leung and Man give a recursive classification of all S-rings over cyclic

groups. We give a brief description of this classification without proof. They give

three basic methods of constructing S-rings over a group G:

(I) Given a subgroup Ω ≤ Aut(G), let T1, . . . , Tn be the orbits of Ω acting on G.

Then T1, . . . , Tn form a Schur partition of G.
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(II) Suppose G = H × K for nontrivial subgroups H,K ≤ G, and suppose SH is

an S-ring over H with basic sets C1, . . . , Ch and SK is an S-ring over K with

basic sets D1, . . . , Dk. Then the product sets CiDj, 1 ≤ i ≤ h, 1 ≤ j ≤ k, form

a Schur partition of G.

(III) Suppose H and K are nontrivial, proper subgroups of G with H ≤ K and

H E G, and let SK be an S-ring over K with basic sets C1, . . . , Ck and SG/H

be an S-ring over G/H with basic sets D1, . . . , Dk, and suppose that π(SK) =

F (K/H) ∩ SG/H , where π : G→ G/H is the natural projection map, extended

to a natural projection map of the group algebra FG onto F (G/H). Then

G = C1 ∪ · · · ∪ Ck ∪ {π−1(Di) : i ∈ {1, . . . , k}, Di * K/H}

forms a Schur partition of G.

The S-ring constructed in (II) is denoted SH · SK and is called the dot product

of SH and SK . The S-ring constructed in (III) is denoted SK ∧ SG/H and is called

the wedge product of SK and SG/H . We call an S-ring type (I), (II), or (III) if it can

be constructed as in (I), (II), or (III), respectively. The main theorem of Leung and

Man ([12, Theorem 3.7]) may then be stated:

Theorem 8.1. Every nontrivial S-ring over a cyclic group G is type (I), (II), or

(III).

We give a couple of examples of these constructions:

Example 8.2. Over G = Z6 = 〈t〉, the S-ring F{1, t+ t5, t2 + t4, t3} is type (I) with

Ω = 〈φ−1〉 where φ−1 ∈ Aut(G) is defined by φ−1 : t 7→ t−1. It is also type (II) with

H = 〈t2〉, K = 〈t3〉, SH = F{1, t2 + t4} and SK = F{1, t3}.

Example 8.3. Over the same group, F{1, t2, t4, t+ t3 + t5} is a type (III) S-ring with

H = K = 〈t2〉, SK = {1, t2, t4} and SG/K = {1, tK}.
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Note that the constructions (I), (II), and (III) can be used to produce S-rings over

an arbitrary group G, but if G is not cyclic then it is not necessarily true that all

S-rings can be constructed using these methods.

Theorem 8.4. Let p be a prime with p ≥ 5. Then there are S-rings over Zp × Zp

which are not type (I), (II), or (III).

Proof. Let H1, . . . , Hp+1 be the subgroups of G = Zp × Zp of order p, and define

Ci = Hi − {1} for i ∈ {1, . . . , p + 1}, so that the sets C1, . . . , Cp+1 partition the

nonidentity elements of the group G. We claim that any partition {1}, T1, . . . , Tr

of G, where each Ti is a union of some Cj’s, forms a Schur partition of G. So let

S = F{1, T 1, . . . , T r}. Conditions (ii) and (iii) of an S-ring are clearly satisfied. To

check condition (i), we observe that since Hi ∩Hj = 1 for i 6= j, we have in this case

H iHj = G. So, if we write Ti =
⋃ni

k=1Cik, where each Cik ∈ {C1, . . . , Cp+1}, applying

Theorem 2.3(iii) we find that for i 6= j

T iT j =

(

ni
∑

k=1

Cik

)(

nj
∑

k=1

Cjk

)

=

(

ni
∑

k=1

H ik − 1

)(

nj
∑

k=1

Hjk − 1

)

=

(

ni
∑

k=1

nj
∑

l=1

H ikHjl

)

− T i − T j + 1

= ninjG− T i − T j + 1 ∈ S,
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while likewise

T iT i =

(

ni
∑

k=1

ni
∑

l=1

H ikH il

)

− 2T i + 1

=

ni
∑

k=1

∑

l 6=k

H ikH il +

ni
∑

k=1

H ikH ik − 2T i + 1

= n1(n1 − 1)G+

ni
∑

k=1

pH ik − 2T i + 1

= n1(n1 − 1)G+ (p− 2)T i + 1 ∈ S,

which proves that S is an S-ring.

Up to this point we have described a general method of constructing certain S-

rings over Zp × Zp for any prime p. We now show that when p ≥ 5, this method can

be used to construct an S-ring which is not type (I), (II), or (III). We will consider

G as a two-dimensional vector space over Fp. Choose a vector x ∈ C1 and a vector

y ∈ C2. Then x + y ∈ G − H1 − H2; without loss of generality, x + y ∈ C3. Now

define an S-ring S on G given by the Schur partition {1}, C1, C2, C3, C4 ∪ · · · ∪ Cp+1.

Suppose S is a type (I) S-ring with Ω ≤ Aut(G). Now we may identify Aut(G)

with invertible Fp-linear transformations on G. Then given any ω ∈ Ω, since C1 and

C2 are orbits of Ω, we must have ω(x) = ax and ω(y) = by for some a, b ∈ F×
p . So

with respect to the basis x, y, the matrix of ω is







a 0

0 b






. Moreover, since C3 is an

orbit of Ω, we must have ω(x + y) = c(x + y) for some c ∈ F×
p . Since we also have

ω(x+ y) = ω(x)+ω(y) = ax+ by, this implies a = b = c. So Ω consists only of scalar

matrices, of which there are only p− 1. This means that each orbit of Ω has size no

greater than p−1. But this is a contradiction since |C4∪· · ·∪Cp+1| = (p−2)(p−1) >

p− 1 for p ≥ 5. So S is not type (I).

Since S has a prime number of basic sets (namely, 5), S cannot be a type (II)

S-ring. Suppose S were a type (III) S-ring for proper,nontrivial subgroups H ≤ K
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of G. We must have |H| = |K| = 5, so in fact H = K. Then every basic set of S

not contained in H must consist of a union of cosets of H, hence must have size a

multiple of 5. Yet there are three basic sets C1, C2, C3 of size 4 (not a multiple of 5);

since it is impossible for all of these to be contained in H, this is a contradiction. So

S is not type (III).

Remark. For p = 2 and p = 3, exhaustive enumeration shows that all S-rings over

Zp × Zp are type (I).

Example 8.5. A computer check shows that every S-ring over Z3×Z3×Z3 is type (I).

However, there are examples of S-rings over G = Z3×Z3×Z3×Z3 = 〈a〉×〈b〉×〈c〉×〈d〉

which are not type (I), (II), or (III). One is the S-ring with the following basic sets:

T1 = {1}

T2 = {bcd2, b, acd2, bd2, d, a2bd2, a2b2c2d, abcd, b2c2d, bcd, ab2, b2c2d2,

b2, a2b2c2d2, b2cd, a2c2d, a2, a, ab2d, b2d, bc2d2, a2b, d2, abcd2}

T3 = G− T1 − T2

This example was found using MAGMA. By considering the sizes of the basic sets (1,

24, and 56), it is easy to see that this S-ring is primitive (i.e., there are no nontrivial

proper subgroups H of G with H in the S-ring) and so is not type (II) or (III). An

exhaustive computer search shows that it is also not type (I).

In general, the S-rings over abelian groups, even elementary abelian p-groups, are

not well understood. One problem would be explain and generalize the construction

given in the preceding example. Another question is the following, an affirmative

answer to which we have verified by computer for Zn
2 , n ≤ 4.

Question 8.6. Is every S-ring over an elementary-abelian 2-group of type (I)?
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We now turn to the main result of this section:

Theorem 8.7. If S is an S-ring over a cyclic group Zn, then Aut(S) is abelian.

Before proving this, we need a few elementary lemmas. A version of Lemma 8.8

can be found in [20, Theorem 23.9], while more general versions of Lemmas 8.9 and

8.10 can be found in [16, Propositions 3.1, 3.4 and the following Theorem 1.1′].

Lemma 8.8. Suppose S is an S-ring over an abelian group G and m is an integer

relatively prime to |G|. If C ∈ S, then also C
(m)

∈ S. Moreover, if C is a basic

element of S then C
(m)

is also a basic element of S.

Proof. Since m may be written as a product of primes m = p1 · · · pk and C
(m)

=

(· · · (C
(p1)

)(p2) · · · )(pk), it is sufficient to prove the lemma in the case m = p is prime.

Now certainly C
p
∈ S. If we write C = {c1, . . . , cn}, then by the binomial theorem

we have

C
p

=

(

n
∑

i=1

ci

)p

=
n
∑

i=1

cpi + px = C
(p)

+ px,

for some x ∈ FG. Now since p is relatively prime to |G|, the pth power map is a

bijection on G, consequently C
(p)

= C(p) is a simple quantity. So C
(p)

has coefficients

only 0 and 1; it particular, it has no nonzero coefficients which are multiples of p.

Thus C
(p)

∈ S by Lemma 1.6.

Now assume C is a basic element of S and suppose C
(p)

is not a basic element.

Then we may write C
(p)

= A + B for some disjoint nonempty subsets A,B ⊆ G

with A,B ∈ S. Let p′ be the multiplicative inverse of p in Z/|G|Z. Then C =

(C
(p)

)(p′) = A
(p′)

+B
(p′)

where A(p′) and B(p′) are disjoint nonempty subsets of G with

A
(p′)
, B

(p′)
∈ S, contradicting that C is a basic element.

Lemma 8.9. Suppose S is an S-ring over an abelian group G and φ ∈ Aut(S). Then

for any simple quantity C ∈ S and any integer m relatively prime to |G|, we have

φ(C(m)) = φ(C)(m).
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Proof. Again, it is sufficient to prove the lemma in the case where m = p is prime.

As above, by the binomial theorem, C
p

= C
(p)

+ px for some x ∈ FG. Hence,

φ(C
(p)

) = φ(C
(p)

+ px− px) = φ(C
p
) − pφ(x)

= φ(C)p − pφ(x) = φ(C)
p
− pφ(x)

= φ(C)
(p)

+ py − pφ(x).

for some y ∈ FG, by a second application of the binomial theorem. As above, C
(p)

is a simple quantity. It follows by Theorem 3.7 that φ(C
(p)

) = φ(C(p)) = φ(C(p))

is a simple quantity. Also, φ(C)
(p)

is a simple quantity. These elements then have

coefficients only 0 and 1 (in particular, no nonzero multiple of p can occur as a

coefficient), it follows that py − pφ(x) = 0, hence φ(C
(p)

) = φ(C)(p), i.e., φ(C(m)) =

φ(C)(m), as desired.

Lemma 8.10. Suppose S is a type (I) S-ring over Zn. Let φ be an automorphism of

S. Then for any basic set T of S, there is an integer m relatively prime to n such

that φ(T ) = T (m).

Remark. This says that in a certain situation, any S-ring automorphism “locally”

looks like a strong automorphism. Note that different values of m may be required

for different basic sets T of S; for instance this occurs in Example 3.8.

Proof. Since all the elements of T are automorphic, they all have the same order d.

If we consider Zd as a subgroup of Zn, then we have Zd ◦ T = T , since T ⊆ Zd. Now,

by Corollary 6.8(ii), φ(Zd) = Zd. So we have

Zd ◦ φ(T ) = φ(Zd) ◦ φ(T ) = φ(Zd ◦ T ) = φ(T ) = φ(T ),

hence φ(T ) ⊆ Zd. This implies φ(T ) ⊆ Zd, so every element of φ(T ) has order dividing
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d. On the other hand, for any k properly dividing d, we have Zk ◦ T = 0, hence

Zk ◦ φ(T ) = φ(Zk) ◦ φ(T ) = φ(Zk ◦ T ) = φ(0) = 0 6= φ(T ),

so that φ(T ) * Zk. So, since all the elements of φ(T ) have the same order (for φ(T )

is a basic set), and this order divides d but not any proper divisor of d, it follows that

all the elements of φ(T ) have order d. So, by Lemma 4.2, there is an automorphism

ψ ∈ Aut(Zn) mapping some element of T to some element of φ(T ), i.e., there is an

m relatively prime to n such that T (m) ∩ φ(T ) 6= ∅. Since, by Lemma 8.8, T (m) and

φ(T ) are both basic sets, it follows that T (m) = φ(T ), as desired.

Proof of Theorem 8.7. If S is a trivial S-ring, then Aut(S) is also trivial, hence

abelian, and we are done. So first consider the case that S is type (I). Each ba-

sic set of S then consists of elements of the same order. Let Td be the collection of

basic sets of S containing elements of order d. We can consider Aut(S) as a permu-

tation group acting on the basic sets of S, and by Lemma 8.10, for each d, Aut(S)

permutes the basic sets of Td among themselves. If we let Ad denote the restriction

of Aut(S) to Td, then Aut(S) is a subdirect product of all the Ad’s, so it suffices to

show that each Ad is abelian. Fix a divisor d of n, and let T be a basic set in Td.

For any k relatively prime to n, T (k) is another basic set of Td by Lemma 8.8. By

Lemma 4.2, every basic set of Td has this form, for if T ′ is any basic set in Td, there

is an integer l relatively prime to n such that T (l) ∩ T ′ 6= ∅, hence T (l) = T ′. Now, by

Lemma 8.10, φ(T ) = T (m) for some m relatively prime to n. It follows by Lemma 8.9

that for any basic set T (k) ∈ Td,

φ(T (k)) = φ(T )(k) = (T (m))(k) = (T (k))(m).

Thus φ(T ′) = (T ′)(m) for any basic set T ′ ∈ Td. From this it is evident that Ad is
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abelian.

Now suppose S = SH · SK is type (II). By induction we may assume Aut(SH)

and Aut(SK) are abelian. Let φ be an element of Aut(S). By Corollary 6.8(ii),

φ(H) = H and φ(K) = K. So φ(SH) is an S-ring over H which is isomorphic to SH .

By Muzychuk’s result cited above in Theorem 3.11, the only such S-ring is SH itself,

so we must have φ(SH) = SH and likewise φ(SK) = SK . So φ|SH
∈ Aut(SH) and

φ|SK
∈ Aut(SK). Given another automorphism ψ ∈ Aut(S), and any basic set CD of

S, where C is a basic set of SH and D is a basic set of SK , we have φ(ψ(C)) = ψ(φ(C))

and φ(ψ(D)) = ψ(φ(D)) since Aut(SH) and Aut(SK) are abelian, hence

φ(ψ(CD)) = φ(ψ(C D)) = φ(ψ(C)ψ(D)) = φ(ψ(C))φ(ψ(D))

= ψ(φ(C))ψ(φ(D)) = ψ(φ(C)φ(D)) = ψ(φ(C D)) = ψ(φ(CD))

which proves that φ and ψ commute, so Aut(S) is abelian.

Finally suppose S = SK ∧ SG/H is type (III). As above, given an automorphism

φ ∈ Aut(S), we have φ|SK
∈ Aut(SK). Now, the natural projection φ∗ of φ to SG/H ,

given by

φ∗(
∑

gH∈G/H

rgH(gH)) =
∑

gH∈G/H

rgH(φ(g)H),

is well-defined since, as above, φ(H) = H. Moreover, by Theorem 3.4, it is easy to

see that φ∗ is an isomorphism of SG/H onto some S-ring over G/H. Since by 3.11 the

only such S-ring is SG/H itself, it follows that φ∗(SG/H) = SG/H , which means φ∗ is

an automorphism of SG/H . Note that if we define π : FG → F (G/H), the natural
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projection map, and π′ : F (G/H) → FG by

π

(

∑

g∈G

agg

)

=
∑

g∈G

ag(gH)

π′





∑

gH∈G/H

ag(gH)



 =
∑

g∈G

ag(gH).

then for all x ∈ F (G/H) we have

π(π′(x)) = |H|x

and an equivalent definition of φ∗ is

φ∗(x) =
1

|H|
(π ◦ φ ◦ π′)(x).

By induction we assume Aut(SK) and Aut(SG/H) are abelian. Then, given another

automorphism ψ ∈ Aut(S) and a basic set C of S, we have two cases: If C ⊆ K, then

φ(ψ(C)) = φ|SK
(ψ|SK

(C)) = ψ|SK
(φ|SK

(C)) = ψ(φ(C))

and we are done. Suppose instead that C * K. Then C is a union of cosets of

H, hence π′(π(C)) = |H|C. Also, φ(C), ψ(C), φ(ψ(C)), and ψ(φ(C)) are unions of

cosets of H, hence

(π′ ◦ π ◦ φ)(C) = π′(π(φ(C))) = |H|φ(C) = |H|φ(C)
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and likewise

(π′ ◦ π ◦ ψ)(C) = |H|ψ(C)

(π′ ◦ π ◦ φ ◦ ψ)(C) = |H|(φ ◦ ψ)(C)

(π′ ◦ π ◦ ψ ◦ φ)(C) = |H|(ψ ◦ φ)(C)

From all of this it follows that

(φ ◦ ψ)(C) =
1

|H|
(π′ ◦ π ◦ φ ◦ ψ)(C) =

1

|H|2
(π′ ◦ π ◦ φ ◦ π′ ◦ π ◦ ψ)(C)

=
1

|H|3
(π′ ◦ π ◦ φ ◦ π′ ◦ π ◦ ψ ◦ π′ ◦ π)(C)

=
1

|H|
(π′ ◦ φ∗ ◦ ψ∗ ◦ π)(C) =

1

|H|
(π′ ◦ ψ∗ ◦ φ∗ ◦ π)(C)

=
1

|H|3
(π′ ◦ π ◦ ψ ◦ π′ ◦ π ◦ φ ◦ π′ ◦ π)(C)

=
1

|H|2
(π′ ◦ π ◦ ψ ◦ π′ ◦ π ◦ φ)(C) =

1

|H|
(π′ ◦ π ◦ ψ ◦ φ)(C) = (ψ ◦ φ)(C),

so that φ and ψ commute, as desired.

We observe that Theorem 8.7 is false if the field F (or more generally, the ring R)

has finite characteristic:

Example 8.11. Let R have characteristic n. Set G = Z4n = 〈t〉 and H = Zn ≤ G.

Define SH to be the S-ring S = SH ∧ SG/H where SH is the trivial S-ring over H and

SG/H is the full group algebra F (G/H). Then S has five basic sets

{1}, Zp − {1}, T1, T2, T3

where Ti = tiZn. Then in RG we have T iT j = nti+jZn = 0 for all i, j ∈ {1, 2, 3}

while (Zn − 1)T i = −T i. Thus Aut(S) ∼= Sym3 is non-abelian. Over a ring with

characteristic zero, the same Schur partition gives an S-ring with automorphism group
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isomorphic to Z2.
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A Appendix: MAGMA code

// Given a subset C of G, returns Aut(G)(C), i.e. the union of

// automorphism classes represented in C.

AutoClass := function(C,G);

repeat

oldC := C;

for g in Generators(AutomorphismGroup(G)) do

C := C join g(C);

end for;

until #oldC eq #C;

return C;

end function;

// Returns a sequence of sets, the automorphism classes of a group G.

AutoClasses := function(G);

classes := [ {G!1} ];

H := Set(G) diff {G!1};

while H ne {} do

class := {Random(H)};

class := AutoClass(class,G);

classes := Append(classes,class);

H := H diff class;

end while;

return classes;

end function;

// Given a collection ‘classes’ of subsets of G, returns the sequence of

// subgroups generated by any subcollection of ‘classes’.

GenSubgroups := function(classes,G);

cgroups := [];

for c in classes do

Include(~cgroups,sub<G | c>);

end for;

newgroups := Set(cgroups);

repeat

oldgroups := Set(cgroups);

for c in newgroups do

for d in cgroups do

Include(~cgroups,sub<G | c,d>);

end for;

end for;

newgroups := Set(cgroups) diff oldgroups;

until newgroups eq {};

return cgroups;

end function;
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// Returns a sequence of all characteristic subgroups of G

CharSubgroups := function(G);

return GenSubgroups(AutoClasses(G),G);

end function;

// Given a subset C of a group, returns the sum of the elements of C

// in the group algebra ’alg’.

Bar := function(C,alg);

return alg ! [(i in C) select 1 else 0 : i in {1 .. Dimension(alg)}];

end function;

// Given an element ’x’ of an algebra ’alg’, returns x^(-1).

// ’inv’ must be a list giving the inverses of the basis elements of ’alg’.

Inv := function(x,alg,inv);

c := Eltseq(x);

for i:=1 to #inv do

if inv[i] gt i then

a:=c[i];

c[i]:=c[inv[i]];

c[inv[i]]:=a;

end if;

end for;

return alg ! c;

end function;

// Given an element ’x’ of an algebra ’alg’, returns the list of coordinates

// of ’x’ with respect to the S-ring ’sring’ (’x’ must actually be in this S-ring

// or an error will be generated), where ’sring’ is represented as a list of

// basic sets, each basic sets being represented as a set of integers

// in the range 1..Dimension(alg).

Coords := function(x,sring,alg);

coords := [];

for i:=1 to #sring do

j := Random(sring[i]);

Append(~coords,x[j]);

x := x-x[j]*Bar(sring[i],alg);

end for;

if x ne alg!0 then

error "x not in S-ring.";

end if;

return coords;

end function;

// Internal routine used in SRings:

// Given a group ’G’, returns the group algebra of G as a structure constant algebra,

// along with several other items:

// inv: list of integers in the range 1..#G giving the inverse of each element of G
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// GG: list of elements of ’G’ (in the order used by the preceding ’inv’)

// GI: associative array giving, for each element ’g’ of G, the integer associated

// with ’g’, so that GG[GI[g]] equals g and GI[GG[i]] equals i.

GroupAlg := function(G);

GG := [G!1] cat Setseq(Set(G) diff {G!1});

if IsCyclic(G) then

GG := [G.1^i : i in {0..#G-1}];

end if;

GI := AssociativeArray(G);

for i:=1 to #GG do

GI[GG[i]] := i;

end for;

alg := [];

inv := [];

for i:=1 to #GG do

for j:=1 to #GG do

Append(~alg,<i,j,GI[GG[i]*GG[j]],1>);

end for;

Append(~inv,GI[GG[i]^-1]);

end for;

return Algebra<RationalField(),#G | alg>,inv,GG,GI;

end function;

// Internal routine used in RationalAlg:

// Given the set of automorphism classes A of a group G, returns

// the discrete rational S-ring over G as a structure constant algebra.

CAlg := function(A,G);

inv := [];

for i:=1 to #A do

g := Random(A[i]);

for j:=1 to #A do

if g in A[j] then

Append(~inv,j);

continue i;

end if;

end for;

error "Problem with inv in RationalAlg.";

end for;

alg := [];

for i:=1 to #A do

for j:=1 to #A do

for k:=1 to #A do

g := Random(A[k]);

S := {g*h : h in A[inv[j]]};

Append(~alg,#(A[i] meet S));

end for;

73



end for;

end for;

return Algebra<RationalField(),#A | alg>,inv;

end function;

// Returns the discrete rational S-ring over G as an algebra.

RationalAlg := function(G);

A := AutoClasses(G);

GA,inv := CAlg(A,G);

return GA,inv,A;

end function;

// Internal routine used by MergeClasses:

JoinClasses := function(classes,mtab,k1,k2);

for i:=1 to #classes do

if i eq k2 then continue; end if;

mtab[i][k1] +:= mtab[i][k2];

mtab[k1][i] +:= mtab[k2][i];

end for;

mtab[k1][k1] +:= mtab[k2][k2];

classes[k1] := classes[k1] join classes[k2];

Remove(~classes,k2);

Remove(~mtab,k2);

for i:=1 to #classes do

Remove(~mtab[i],k2);

end for;

return classes,mtab;

end function;

// Internal routine used by SRingsRec:

// Given a sequence ‘classes’ of disjoint sets of group elements,

// beginning with classes[i] all classes which intersect

// ‘class’ are merged into a single class.

MergeClasses := procedure(class,~mtab,~classes,~j,~j0,~succ);

succ := true;

i := j;

j := 0;

for k:=i to #classes do

if class meet classes[k] ne {} then

if class eq classes[k] then return; end if;

classleft := class diff classes[k];

l:=k+1;

if k eq i then l:=j0; end if;

while l le #classes and classleft ne {} do

if classleft meet classes[l] ne {} then

classleft := classleft diff classes[l];

classes,mtab := JoinClasses(classes,mtab,k,l);
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if l lt j0 then j0 := j0-1; end if;

else

l := l+1;

end if;

end while;

succ := classleft eq {};

j:=k;

return;

end if;

end for;

end procedure;

// Internal routine used in SRings:

forward SRingsRec;

SRingsRec := procedure(classes,mtab,i,j0,alg,inv,~srings);

j := i;

while j ne 0 and j lt #classes do

class := { inv[k] : k in classes[j] };

j := i;

MergeClasses(class,~mtab,~classes,~j,~j0,~succ);

if not succ then return; end if;

if j lt i and j ne 0 then return; end if;

end while;

while i le #classes do

for j:=j0 to #classes do

nclasses,nmtab := JoinClasses(classes,mtab,i,j);

SRingsRec(nclasses,nmtab,i,j,alg,inv,~srings);

end for;

for j:=2 to i do

for k:=2 to i do

try

c:=Coords(mtab[j][k],classes,alg);

catch e

return;

end try;

end for;

end for;

for j:=2 to i do

class := { inv[k] : k in classes[j] };

for k:=2 to #classes do

if classes[k] eq class then continue j; end if;

end for;

return;

end for;
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i := i+1;

j0 := i+1;

end while;

Append(~srings,classes);

end procedure;

// Returns a list of all S-rings over a group G (if pseudo is set to ’true’, then all

// PS-rings are returned). Each S-ring is represented as a list of basic sets

// (beginning with the identity basic set), where each basic set is represented

// as a set of integers in the range 1..#G; these are indices into the list of group

// elements GG also returned.

SRings := function(G : pseudo:=false);

GA,inv,GG,GI := GroupAlg(G);

classes := [ {i} : i in {1 .. #inv} ];

srings := [];

a := pseudo select 1 else 2;

SRingsRec(classes,BasisProducts(GA),a,a+1,GA,inv,~srings);

return srings,GG;

end function;

// Returns a list of all rational S-rings over a group G. Each S-ring is represented

// as a list of basic sets (beginning with the identity basic set), where each basic

// set is represented as a set of integers which are indices into the list of

// automorphism classes A of G which is also returned.

RationalSRings := function(G);

GA,inv,A := RationalAlg(G);

classes := [ {i} : i in {1 .. #inv} ];

srings := [];

SRingsRec(classes,BasisProducts(GA),2,3,GA,inv,~srings,false);

return srings,A;

end function;

// Given an S-ring ’sring’ over a group G, returns the list of S-rings over G which

// are strongly isomorphic to ’sring’.

AutoSRings := function(sring,G : A:=AutomorphismGroup(G));

srings := {sring};

repeat

n := #srings;

newsrings := {};

for S in srings do

newsrings join:= {{{(A.i)(g) : g in C} : C in S} : i in

{1..NumberOfGenerators(A)}};

end for;

srings join:= newsrings;

until n eq #srings;

return srings;
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end function;

// Given a list ’srings’ of S-rings over a group G, returns a set of representatives

// from each strong isomorphism class occuring in ’srings’.

AutoReps := function(srings,G);

reps := {};

A := AutomorphismGroup(G);

while #srings gt 0 do

print #srings;

sring := Random(srings);

srings := srings diff AutoSRings(sring,G : A:=A);

reps join:= {sring};

end while;

return reps;

end function;

// ------------------------------------------------------------------------------

// The remaining routines deal with S-rings which may be constructed using

// type (I), (II), and (III) constructions. In these routines, the S-rings are

// represented as lists of basic sets, where the basic sets are subsets of the

// group (instead of sets of integer indices into the group as above).

// ------------------------------------------------------------------------------

// Given an S-ring ’S’, returns whether a subset H of the underlying group is

// an S-set.

IsSSet := function(S,H);

for C in S do

if #(C meet H) gt 0 then

if not C subset H then return false; end if;

H := H diff C;

end if;

end for;

return true;

end function;

forward SRing0;

forward SRings1;

forward SRings2;

forward SRings3;

// Returns the set of S-rings over a group G which may constructed recursively using

// type (I), (II), and (III) constructions.

SRings123 := procedure(G,~tab,~ans);

CG := CyclicGroup(#G);

b,iso := IsIsomorphic(CG,G);

t := iso(CG.1);

if IsDefined(tab,#G) then
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ans := {{{t^i : i in C} : C in S} : S in tab[#G]};

return;

end if;

S0:={SRing0(G)};

S1:=SRings1(G);

SRings2(G,~tab,~S2);

SRings3(G,~tab,~S3);

ans := S0 join S1 join S2 join S3;

GI := AssociativeArray();

for i:=0 to #G-1 do GI[t^i]:=i; end for;

tab[#G] := {{{GI[g] : g in C} : C in S} : S in ans};

end procedure;

// Returns the trivial S-ring over a group G.

SRing0 := function(G);

if #G ne 1 then return {{G!1},Set(G) diff {G!1}};

else return {{G!1}}; end if;

end function;

// Returns the type (I) S-rings over a group G.

// (or rather, a complete set of strong automorphism representatives of

// type (I) S-rings, which, in case G is cyclic, is the complete set

// of type (I) S-rings.)

SRings1 := function(G);

A := AutomorphismGroup(G);

map,AA := PermutationRepresentation(A);

srings := {};

SS := Subgroups(AA);

for i:=1 to #SS do

H := (map^-1)(Generators(SS[i]‘subgroup));

sring := {};

elts := Set(G);

while #elts gt 0 do

C := {Random(elts)};

repeat

n := #C;

C join:= {h(c) : h in H, c in C};

until #C eq n;

elts := elts diff C;

sring join:= {C};

end while;

srings join:= {sring};

end for;

return srings;

end function;

// Returns the type (II) S-rings over a group G.
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SRings2 := procedure(G,~tab,~srings);

NN := {N : N in NormalSubgroups(G) | not #N in {1,#G}};

NN1 := {N : N in NN | (#N)^2 le #G};

srings := {};

for N1 in NN1 do

for N2 in NN do

if #(N1 meet N2) eq 1 and sub<G|N1,N2> eq G then

SRings123(N1,~tab,~srings1);

SRings123(N2,~tab,~srings2);

for S1 in srings1 do

for S2 in srings2 do

srings join:= {{{c*d : c in C,d in D} : C in S1, D in S2}};

end for;

end for;

end if;

end for;

end for;

end procedure;

// Returns the type (III) S-rings over a group G.

SRings3 := procedure(G,~tab,~srings);

KK := {K‘subgroup : K in Subgroups(G) | #K‘subgroup ne #G};

HH := {H : H in NormalSubgroups(G) | not #H in {1,#G}};

srings := {};

for K in KK do

for H in HH do

if not H subset K then continue; end if;

SRings123(K,~tab,~srings1);

Q,phi := quo<G|H>;

SRings123(Q,~tab,~srings2);

for S1 in srings1 do

if not IsSSet(S1,Set(H)) then continue; end if;

for S2 in srings2 do

SK1 := {{phi(g) : g in C} : C in S1};

SK2 := {C : C in S2 | C subset phi(K)};

if SK1 eq SK2 then

S := S1 join {{(phi^-1)(g)*h : g in C, h in H} : C in S2 |

not C subset phi(K)};

srings join:= {S};

end if;

end for;

end for;

end for;

end for;

end procedure;
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