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ABSTRACT

AN ADAPTIVE BAYESIAN APPROACH

TO BERNOULLI-RESPONSE CLINICAL TRIALS

Andrew W. Stacey

Department of Statistics

Master of Science

Traditional clinical trials have been inefficient in their methods of dose find-

ing and dose allocation. In this paper a four-parameter logistic equation is used to

model the outcome of Bernoulli-response clinical trials. A Bayesian adaptive design

is used to fit the logistic equation to the dose-response curve of Phase II and Phase

III clinical trials. Because of inherent restrictions in the logistic model, symmetric

candidate densities cannot be used, thereby creating asymmetric jumping rules inside

the Markov chain Monte Carlo algorithm. An order restricted Metropolis-Hastings

algorithm is implemented to account for these limitations.

Modeling clinical trials in a Bayesian framework allows the experiment to be

adaptive. In this adaptive design batches of subjects are assigned to doses based on

the posterior probability of success for each dose, thereby increasing the probability

of receiving advantageous doses. Good posterior fitting is demonstrated for typical

dose-response curves and the Bayesian design is shown to properly stop drug trials

for clinical futility or clinical success. In this paper we demonstrate that an adap-

tive Bayesian approach to dose-response studies increases both the statistical and

medicinal effectiveness of clinical research.
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1. INTRODUCTION

Inherent in a traditional clinical trial is the necessity to randomly allocate

an equal number of subjects to each dose in question. While an experiment of this

design will provide adequate power to reject a null hypothesis, it may not be the most

efficient or medically beneficial way to conduct clinical research. In order to under-

stand why the traditional methodology is inefficient it is important to understand the

characteristics of an ordinary dose-response curve.
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Figure 1.1: Ordinary Dose-Response Curve

In most clinical studies there is a positive, nonlinear relationship between dose

and response. Figure 1.1 demonstrates this relationship as a sigmoid with a shallow

slope at the ends of the dose range and a steep curve in the middle.

The dose-response relationship is well understood but often ignored in clinical

studies because the dose-response curve for a drug is never known until after hundreds

of subjects have been tested. In order for the curve to be approximated, subjects are

allocated to a broad range of doses. Every part of the dose-response curve must

be tested in order to understand its characteristics and dynamics. Consequently,

traditional clinical trials only provide good medicine to a fraction of the patients
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involved.

In this paper a four-parameter logistic equation is proposed to model the dose-

response relationship of a drug during clinical trials. Researchers will then have the

ability to assign a large percentage of subjects to beneficial doses on the dose-response

curve. Logistic models have been used in biological studies since 1941. They are

praised for their ease of use and straightforward interpretability. The four-parameter

logistic equation used in this paper,

β +
δ

1 + e
θ−xi

τ

, (1.1)

contains parameters that can be easily interpreted and understood as charac-

teristics of the dose-response curve. The parameters, β, δ, θ, and τ each control a

different dynamic of the sigmoid and can be used to provide good posterior fit in most

dose-response studies.

Markov chain Monte Carlo (MCMC) techniques are used to estimate the values

of the four parameters in our model. Inherent conditions in the model prevent the

MCMC process from being carried out in the conventional manner. To adjust for these

conditions, the Metropolis-Hastings algorithm is implemented with an asymmetric

jumping rule. The simulation methodology allows posterior distributions to be fluid

and shift appropriately to describe most dose-response curves.

The Bayesian clinical design produces a drug trial that is completely adaptive.

Rather than lumping all subjects into one clinical trial, subjects are divided into

batches of 20 individuals. After the data from the first batch are recorded, the

Metropolis-Hastings algorithm is used to approximate the probability of success at

each dose. We can then allocate the next 20 subjects to the doses that demonstrate the

best success rates. The process of simulation, patient allocation, and data recording

is repeated until the trial is stopped due to clinical success or clinical futility. The

goal of the Bayesian adaptive design is to quickly identify and terminate clinically

2



futile dose-response studies.

This paper demonstrates how the four-parameter logistic model and an adap-

tive Bayesian design provide more precision and more success to clinical research.

Implementing these methods in clinical trials can increase the proportion of success-

ful treatments during clinical trials and can decrease the time and resources necessary

to make statistical inference about a dose-response curve.
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2. LITERATURE REVIEW

2.1 Dose-Response Experiments

Dose-response clinical research is a long-standing and well understood field. The

dose-response curve is well documented and is used in a wide variety of research areas.

There have been different approaches attempting to interpret and analyze the dose-

response relationship. In 1941, DeBeer (1941) proposed a method of graphical analysis

and possible calculation of these relationships. Today, we use software and graphical

tools to understand dose-response curves, but the ideas behind the characteristics of

each graph are the same as those DeBeer studied.

A general overview of modern statistical methods used in dose-response research

is given by Kodell and Chen (1991). A broad range of topics are promoted in their

paper. This review will only discuss those arguments that specifically relate to this

model. An important debate in current dose-response research is not how to un-

derstand the data, as in DeBeer’s day, but how to model it. The first question an

experimenter needs to ask when modeling a clinical study is whether the response

will be continuous or quantal in nature. This turns out to be an important question

because it can change the entire makeup of a study.

2.1.1 Continuous Versus Binary Response

Sand and Rosen (2003) state that if a study only deals with the presence or

absence of a particular response, it should be modeled in a binary manner. Most other

forms of data will be continuous; that is, there will be varying levels of response. There

is, however, a natural desire to model response as binary data because continuous

data are more difficult to model. In fact, there is an abundance of research currently

devoted to creating workable models for continuous data. Crump (2002) discussed

4



the best methods to use while conducting dose-response studies with continuous data.

Interestingly, one of the examples in this study is a method of converting a continuous

response into binary data. This is done by setting a threshold on the response; if the

subject is beyond the threshold he or she is considered part of the study, if below the

threshold the subject is not considered.

The gains from using binary data are numerous. Modeling and interpretation

in binary dose-response studies is straightforward. In addition, with binary data the

response can be represented as a probability. This is a feature that makes both prior

specification and posterior interpretation more clear-cut.

Sometimes an optimal dose is better explored using two variables. Whitehead

et al. (2004) conducted a series of experiments using models similar to those used in

this paper but collected two binary responses for each subject. Multiple variables,

when used correctly, can provide more information than univariate models. However,

multivariate modeling is not relevant to all studies. In addition, the analysis of

multivariate models may become intense and difficult to explain. Karen Han’s work

(Han et al., 2004) offers some interesting insights into binary, multivariate analysis in

biological assays.

This paper focuses on models that only relate to one-variable, binary, dose-

response studies. It is believed that these data can be both better represented and

better understood than multivariate or continuous models. The equation used in

this study, however, can be used to model continuous data if the guidelines set out by

Crump (2002) are followed. In addition, following the format proposed by Whitehead

(2004), these methods could also be used in bivariate studies.

2.1.2 Experimentation

Perhaps the most important question in modern dose-response studies is how to

carry out the experiment. Traditional studies use a cohort of numerous subjects and

5



a broad range of doses. In Phase I clinical studies the dose given to the patients is

escalated until the response either levels off or begins to decrease. The ineffectiveness

of these studies is widely known but little has been done to change their methods.

Specific improvements to these trials are proposed by Whitehead et al. (2006). Their

work focuses on proper dose escalation techniques and stopping rules. Another so-

lution has been proposed by Kalish (1990). This paper focuses on using tolerance

experimentation to more quickly find effective drugs and doses. While Kalish also

attempts to resolve the problem of inefficient dose finding, the methods in this paper

will rely more heavily on simulation and Bayesian prior distributions. These methods

are discussed in the Bayesian methods portion of this chapter.

One of the most important issues with the ineffectiveness of traditional dose-

response clinical studies is the well-being of the subject. In the traditional method

described above, many patients will not be assigned to a dose that will benefit them;

only a small proportion of subjects will actually receive a beneficial dose.

It has been suggested (Simon, 1999) that generic dose-response studies are un-

ethical, especially in the case of patients who have life threatening illnesses. The

suggested solution to this issue is called “Active Control.” In such a study, experi-

menters test a new treatment by only comparing it to another treatment that has

already been proven effective. This answers the question of whether the person re-

ceives a good drug, but does not answer the issue of whether a person receives a good

dose. There is not much literature exploring beneficial dose allocation in clinical

studies.

2.2 Logistic Models

The previous section suggests that an important step in designing better dose-

response studies is a better understanding of the underlying characteristics of dose-

response data. The current understanding of dose-response data has lead to a number

6



of proposed models to represent the data. Whitehead et al. (2004), as well as many

current researchers and most of Whitehead’s collaborators, use logistic models to

represent these types of data. While their approach is successful, it is not new.

2.2.1 Breadth of Logistic Models

Logistic models have been used in biological studies for almost one hundred

years; one of the benchmark papers was published by C. W. Emmens (1941). He

proposed a variety of three- and four-parameter logistic models that could be used

to represent bioassay data from the pituitary gland. Though he was not the first to

use these models in the literature, he began using such models in specific biological

studies.

Today, logistic models and corresponding logistic regression are widely used

tools in binary data analysis. The breadth of the current research using logistic models

in biological and dose-response studies is enormous. While this paper will focus more

on the Bayesian side of the issue, there is not a lack of Frequentist literature on logistic

dose-response research. Some recent applications include a modified χ2 analysis using

logistic models (Tang, 2000), a method of splining the dose-response curve to obtain

better fit (Li and Hunt, 2004), and the use of logistic models to build better confidence

intervals for estimating effective doses (Huang et al., 2002).

The breadth of these applications is partially due to the abundance of func-

tional logistic models. In the early part of the nineteenth century, Pierre Francois

Verhulst proposed the first logistic model for use in studying human populations (Ver-

hulst, 1838). His original equation, where m0 is the Malthusian parameter (maximum

growth rate) and k is the maximum capacity parameter, is written as follows:

m = m0(1−
n

k
). (2.1)

While the theory behind this model is still used, it has been modified so that it

7



can be applied to many different fields of study. As is seen in Verhulst’s early equation,

one of the benefits of using logistic models is the ease of parameter interpretation.

This interpretability has lead to a plethora of logistic parameterizations.

2.2.2 The Four-Parameter Model

Aage Volund (1978) showed the relationship between a number of different

logistic models used in biological studies. He proposed the use of a four-parameter

model to decide whether a slope ratio or parallel line method should be used to

interpret biological data. The use of the four-parameter logistic model is not new,

but has exploded into the literature in recent years. In a dose-escalation paper by

Whitehead et al. (2006), a clue is offered as to why this model has become so widely

used. They state that the four parameters allowed an informative evaluation of dose

ranges while at the same time minimizing the consequences from using too many

parameters in the model.

The four-parameter model optimizes the amount of information that can be

inferred from an equation. In the case of dose-response studies, fewer parameters

would provide less information, and more parameters are only needed if the data

do not conform to hypotheses of symmetry (Streibig and Kudsk, 1993). However,

even when the four-parameter model is chosen, there still needs to be a decision

of parameterization. Because of the model’s flexibility, there are innumerable ways

to parameterize the four-parameter logistic model. The one used in this paper was

chosen because of its interpretability and ease of implementation. The model is similar

to many models in the literature, but has not been used explicitly in dose-response

research. A more in-depth analysis of the parameterization choice will follow in the

next section.

Ratkowsky and Reedy have studied which of the infinite number of four-parameter

models should be used in research (Ratkowsky and Reedy, 1986). In their paper they

8



directly study six of the most commonly used parameterizations. The parameteriza-

tion used in this thesis is not directly found in their article, but is one algebraic step

away from one of their parameterizations. Interestingly, this model was found to be

stable and the authors suggested that it can be very useful in biological studies.

2.2.3 Interpretation of the Model

As mentioned earlier, one of the most convincing reasons to incorporate logistic

models into biological studies is their inherent interpretability. Most of the literature

already cited contains an explanation of the specific interpretation for each model.

In order to understand how one model can be applied to so many different fields, it

is important to understand the generic interpretations. In Streibig’s 1993 book on

bioassays (Streibig and Kudsk, 1993), he explains the interpretation of each parameter

in detail. Because the interpretations used in this study are similar to his, parameter

explanations are limited to those used in our model. Definitions from both Streibig

and Ratkowsky will be used to explain each variable. These explanations can be

found in the methods section of this thesis, Chapter 3.

Yi = β +
δ

1 + e
θ−xi

τ

(2.2)

In equation 2.2, Yi represents the proportion of successes and xi represents the

dose for all possible doses in the study. The parameter, β, represents the minimum

possible value of efficacy. The maximum efficacy value is represented by β+δ. There-

fore, δ is the possible change from the minimum to the maximum efficacy. From this

interpretation, two things are evident. First, when β = 0, δ alone is the maximum

possible efficacy. Second, because β is the minimum efficacy we know that β ≤ δ.

This relationship, which will become very interesting during MCMC simulation, is

discussed further in the section on Bayesian methods.
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The other parameters can be interpreted as well. The parameter θ is understood

in many papers as a halfway point between the minimum and maximum parameters

(Streibig and Kudsk, 1993). It can also be thought of as the point of inflection in the

dose-response curve. For our purposes, we understand θ as the value of the ith dose,

(xi), that achieves 50% of the change from the minimum dose (β) to the maximum

dose (β + δ). The parameter τ is a scaling factor that can change the characteristics

of the dose-response curve.

2.3 Bayesian Approach to Clinical Trials

2.3.1 Why a Bayesian Approach?

It must be understood that the Bayesian paradigm includes a few things that

other statistical approaches do not include. Firstly, the incorporation of prior infor-

mation is important in dose-response studies because as more is known about the

drug, the prior information can become more and more precise. Secondly, a point

estimate of dose efficacy is not logical; there is too much inherent variation in mod-

ern drugs to report a point estimate. A probability distribution would be a more

reasonable summary of a dose’s effectiveness. Thirdly, the variation from drugs and

subjects can be more adequately summarized using distributions on an interpretable

model such as the logistic model. Lastly, Bayesian modeling provides the possibility

of simulation that can be used to fully understand the distribution of the response

(Dodds and Vicini, 2004); (Whitehead et al., 2006).

2.3.2 History

The Bayesian approach to experimental design is a relatively new field. In 1995

Chaloner and Verdinelli published a Bayesian stepwise design process that could be

applied to multiple fields of study (Chaloner and Verdinelli, 1995). This was an
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attempt to convince the experimental world of the benefits of Bayesian methods in

research.

For years, researchers have attempted to find the most effective way of analyz-

ing dose-response data. Although a Bayesian approach to this problem is relatively

new, the literature is full of evidence that it is highly preferred to other methods.

D. A. Jones (1996) was the first proponent of Bayesian modeling in clinical dose-

response studies. Since then there has been an explosion of such models in the medi-

cal literature. One widely accepted benefit of Bayesian modeling in clinical studies is

the insight it gives into dose-efficient experimentation. O’Hagan and Stevens (2002)

published a review of the breakthrough Bayesian models in medical experimentation.

Although their goal was to show how Bayesian methods can save money in experimen-

tation, the research they cite also reveals how these methods can be used to improve

modeling, interpretation, and experimentation itself. The advantages of Bayesian

methods mentioned by O’Hagan and Stevens include intuitive and meaningful infer-

ences, powerful computational tools, and the use of genuine prior information.

2.3.3 Two Schools of Bayesian Thought

There are two main schools of thought in Bayesian experimental design (Mukhopad-

hyay, 2000). In the first, the nonparametric approach, a prior distribution is used to

represent the full space of the response variable. The second recognizes a trend in

the relationship between response and dose. This relationship can then be modeled

in terms of explanatory equations, like the four-parameter logistic equations. The

parameters of these equations are represented by prior distributions and are used to

predict a posterior distribution. This paper will follow the standards of the second

methodology. While most of the literature recommends the use of the second ap-

proach, Mukhopadhyay suggests that a parametric approach may be too sensitive for

dose-response studies (Mukhopadhyay, 2000). This may be a valid concern, but we
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believe the benefits of the model used in this paper, such as interpretation and ease

of simulation, far outweigh the possibiility of over-sensitivity.

The parameter-based Bayesian approach to dose-response modeling is widely

used in dose-response studies. The earliest such methods involved Dirichlet prior

distributions (Ramsey, 1972), but were not very informative. Sun and Tsutakawa

researched the inherent variability that arises when prior knowledge is used in dose-

response studies (Sun and Tsutakawa, 1997). In 1998 the Bayesian bootstrap was

applied to dose-response bioassays (Bowman, 1998). While these results are still used,

most current dose-response research relies heavily computer simulation, something

that was not the focus of earlier papers.

2.3.4 Methods of Simulation

Bayesian statistics is the practice of finding the posterior distribution of a pa-

rameter. An important tool in accomplishing this task is the Markov chain Monte

Carlo (MCMC) technique used in computer simulation. This type of simulation gives

the researcher the ability to find the posterior distribution by finding the convergence

point of a long Markov chain. These techniques have been shown to be useful in

recent dose-response studies (Dodds and Vicini, 2004). One specific form of MCMC

uses the Metropolis-Hastings algorithm published in 1970 by W. K. Hastings (Hast-

ings, 1970). Hastings refers to two characteristics that will be very important to this

thesis. First, MCMC can draw samples from any probability distribution. This is im-

perative when the distribution in question cannot be written in closed form. Second,

the Metropolis-Hastings algorithm, unlike its predecessor, the Metropolis algorithm,

does not require a symmetric jumping rule. In other words, given state a and state b;

the probability of going from state a to state b does not have to equal the probability

of going from state b to state a.

P (a, b) 6= P (b, a)
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Because the jumping rule in this paper is asymmetrical, this feature will prove

to be invaluable. Englehardt and Swartout (2006) have recently published research on

a dose-response model in which the Metropolis-Hastings algorithm was lightly used,

but the literature relating the Metropolis-Hastings algorithm to dose-response data

is relatively sparse.

The four-parameter logistic model proposed in this paper contains restrictions

that will make the MCMC process interesting. As stated earlier, we know that β ≤ δ

and β, δ > 0. Because the Metropolis-Hastings algorithm uses random draws from a

candidate distribution, this inequality will make a traditional distribution to be very

inefficient. To overcome this inefficiency the use of a truncated normal distribution is

used as the candidate distribution for β and δ in our Markov chain. Random truncated

normal generation can be done in a number of different ways. The documentation

for the random truncated normal generator can be found in the R documentation

(R Development Core Team, 2003).

2.4 Adaptive Clinical Trial Design

A number of advantages have already been demonstrated when using a Bayesian

approach and a logistic model in dose-response studies. The most convincing argu-

ment for the use of this model, however, lies in its ability to change and adapt to new

information. The motivating force behind the model presented in this thesis is that

it allows a researcher to create a clinically sound adaptive trial.

Thall and Russell (Thall and Russell, 1998) attempted one of the first Bayesian

adaptive trial designs. The goals listed in their paper are now a standard for adaptive

Bayesian trial design. These goals are:

(1) To find a dose of a new agent that satisfies specific safety and
efficacy requirements, (2) to stop the trial early if it is likely that
no dose is both safe and efficacious, and otherwise (3) to treat as
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many subjects as possible at the optimal doses, so participants receive
maximal benefit.

These three goals have been the aim of many recent clinical studies (Biswas

et al., 2006); (Chang and Chow, 2005); (Cheng and Shen, 2006). Each of these papers,

published in the last year, establishes new techniques that can aid in achieving the

goals listed by Thall and Russel.

In this thesis, an adaptive model will utilize logistic models and Bayesian design

in order to find an optimal dose. Unlike other designs that use the proportion odds

model (Thall and Russell, 1998) or the continuation-ration model (Zhang et al., 2005),

the model in this study will apply prior distributions to a simple binomial response

variable. In this way, the design can be straighforward and can investigate each dose

individually while applying the same prior information to all doses. This is possible

using logistic regression methods and the Metropolis-Hastings algorithm previously

mentioned.

In this way, every time data are collected, the priors can be updated and the

model can be used to predict the response for each dose in the trial. Then, as in the

trials cited above, the subjects can be assigned to those doses that have simulated

the best responses. The trial will continue until an optimal dose is agreed upon.

The decision of when a trial should stop is an interesting one. The Bayesian

adaptive design will return probability distributions on the response to each dose in a

trial. It will not, however, tell a researcher when a dose is found to be optimal. This

is done at the discretion of the researcher. Many papers have been written about the

best stopping rules. Some interesting ideas are recommended by Zhou and Whitehead.

One idea is to “never use a dose for which the probability of toxicity exceeds η, for

some value η < γ.” Zhou and Whitehead also mention that very pessimistic prior

distributions can be used to overestimate the harmful effects of a drug. This may

slow down the process of dose-finding, but it will ensure that the harmful effects of a
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drug are never overlooked (Zhou and Whitehead, 2003).

The Bayesian design used in this thesis effectively answers each of the points

made by Thall and Russel. In particular, the model focuses on ensuring that subjects

will be given doses that have the greatest probability of success. The stopping rules

and mechanics of this study will be discussed in the methods chapter of this paper.
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3. METHODS

3.1 The Model

This study uses a fully interpretable, four-parameter logistic model as a means

of representing Bernoulli-response clinical trial data. The model is not well known,

but it has many strengths: its mathematical stability (Ratkowsky and Reedy, 1986),

breadth of explanatory mechanisms, and ease of interpretation make it an excellent

choice for dose-response data. The logistic model,

β +
δ

1 + e
θ−xi

τ

, (3.1)

contains four parameters (β, δ, θ, τ), which are constant for all possible doses in a

trial and one variable (xi) that indicates which dose is being considered. Choosing

this type of model facilitates the use of logistic regression to analyze each dose in a

trial. By varying only the dose indication variable, drug performance can be properly

compared across dose ranges.

3.1.1 Parameter Interpretability

The four parameters in our model are interpretable and well documented in

the literature. Parameter interpretability is essential when applying mathematical

models to biological systems; without it, models would be meaningless and it would

be impossible to make biological conclusions about the data.

Because our model has not been used before in a clinical trial setting, our

parameter interpretations are derivations of other biological interpretations, especially

those used by Ratkowsky and Reedy (1986). Converting our model into a simple

equation, we have
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Yi = β +
δ

1 + e
θ−xi

τ

, (3.2)

where Yi represents the probability that the ith dose, denoted as xi, will be successful.

In the model, β represents the minimum response to a given dose, reported as a

proportion. The function β + δ represents the maximum response, which means

that δ represents the range of the response. Or, if β = 0, then δ would represent the

maximum possible response to the drug dose. These explanations reveal an interesting

relationship between β and δ, as they relate to clinical trials.

The parameter θ can be thought of as the point of inflection on the dose response

curve; if θ is increased, the curve’s concavity will change later in the dose range and

vice versa. In addition, θ can be thought of as the dose at which 50% of the change

from minimum to maximum dose is achieved; if the curve is steep early in the dose

range and then levels off, the value of θ will be relatively small. τ changes the peak

dynamics of the curve; as τ increases the curve is less peaked and begins to have very

sharp angles.

A graphical representation may aid in understanding the influence of each of

these parameters. In the following graphs (Figure 3.1), the logistic model is presented

in black using constant but generic parameter estimates. The influence of each pa-

rameter on the dose-response curve is shown by either increasing or decreasing the

value of the parameter in question and plotting those lines on the same graph as the

model with constant parameters.

The change in parameter values shown in these graphs is never more than 20%

of the original value, demonstrating how distinct and important each parameter is to

the logistic model. The characteristics of these variables allow the model to adapt

and mimic most dose response curves in medicine.
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3.1.2 Model Restrictions

In this study we are interested in later-phase (II and III) clinical trials in which

initial success rates are low and drug intervention has a positive effect. If drugs are

not effective or minimally effective, the issue is not statistical, but pharmaceutical and

the drug effect should be explained to the drug company. Under these assumptions,

all clinical trials will follow the restriction that β ≤ δ. In other words, the effect of a

drug is larger than the effect of a placebo. This restriction can be thought of as an

indicator function placed at the end of the original logistic equation,

(
β +

δ

1 + e
θ−xi

τ

)
∗ I(β ≤ δ).

3.2 Likelihood and Priors

For notational purposes, it is important to note that in a Bayesian computa-

tional setting we represent a posterior density as

Π(Θ|y) =
f(y|Θ)p(Θ)∫
f(y|Θ)p(Θ)dΘ

,

where y represents the data and Θ represents the parameters of the model, in this

case β, δ, θ, τ . Π(·) represents the posterior distribution, f(·) represents the likeli-

hood function, and p(·) represents the prior distribution. This notation will be used

throughout the remainder of the text.

3.2.1 Derivation of the Likelihood

A typical Bernoulli-response clinical trial will allocate n number of subjects to

drug dose xi. Of these subjects, there will be m number of successes. Therefore, a

Bernoulli trial can be represented by a binomial variable, Λ, where

Λ ∼ BIN(n,
m

n
).
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The response variable in the logistic equation, Yi, is the probability that a drug

dose, xi, is successful. Because this study models Bernoulli clinical trials, Λ can be

written as a function of the response variable,

Λ ∼ BIN(n, Yi).

The four-parameter logistic equation can now be substituted in the place of Yi in

the equation for Λ. Because the logistic model represents the proportion of successes

for a particular dose, subscripts must be placed on all the variables to denote that

the equation for Λi only refers to the ith dose:

Λi ∼ BIN(ni,

(
β +

δ

1 + e
θ−xi

τ

)
).

This function can also be represented by the corresponding binomial density

function, demonstrated below. Additionally, it was mentioned that the likelihood

under a Bayesian framework can be represented by f(Data|Parameters), or f(y|Θ).

This notation will be substituted in as follows:

f(y|Θ) =

(
ni

mi

)(
β +

δ

1 + e
θ−xi

τ

)mi
(

1− β − δ

1 + e
θ−xi

τ

)(ni−mi)

.

The MCMC algorithm that we will use is invariant to proportionality constants

in the likelihood. Thus, it is possible to drop those expressions that are not func-

tions of the four parameters in the model. The density can then be written as a

proportional,

f(y|Θ) ∝
(
β +

δ

1 + e
θ−xi

τ

)mi
(

1− β − δ

1 + e
θ−xi

τ

)(ni−mi)

.

The likelihood is calculated from the binomial density, where r is the total number

of doses,

L(y|Θ) ∝
r∏

i=1


(
β +

δ

1 + e
θ−xi

τ

)mi
(

1− β − δ

1 + e
θ−xi

τ

)(ni−mi)
 ,
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And the log-likelihood follows simply,

log(L(y|Θ)) ∝
r∑

i=1

(
mi log

(
β +

δ

1 + e
θ−xi

τ

)
+ (ni −mi) log

(
1− β − δ

1 + e
θ−xi

τ

))
.

(3.3)

The log likelihood function contains three variables whose values will be known

through experimentation: xi represents each individual dose, mi represents the num-

ber of successes for each dose, and ni represents the total number of subjects for each

dose. The other four parameters will be estimated using prior distributions and cal-

culated using MCMC techniques. Prior distributions for the four parameters in the

model are chosen based on each parameter’s inherent interpretation from the model.

3.2.2 Prior Specification

It has been stated that β is the minimum success rate of a Bernoulli-response

clinical trial and that δ is the change in minimum to maximum response. Therefore,

it can be deduced that both β and δ must be between 0 and 1. This relationship

indicates that both β and δ are distributed as Beta random variables.

The parameter θ can be any value between the minimum and maximum dose

range. Therefore, θ is symmetrical around the values of β and β +δ and can easily be

represented by a Normal prior distribution because of its symmetric characteristics.

The parameter τ is a scaling factor that must be positive in order for the function

to be increasing. A negative value of τ describes a decreasing sigmoid, which is not

a characteristic of dose-response studies. To ensure an increasing sigmoid function, τ

is represented by a Gamma prior distribution.

In summary, the prior distributions for our model and their notation are,

β ∼ Beta(aβ, bβ),

δ ∼ Beta(aδ, bδ),

θ ∼ Normal(µ, σ2),
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τ ∼ Gamma(α, κ).

In the initial stages of the research, these prior distributions will be less informa-

tive in nature, ensuring that the MCMC algorithm can converge. As a trial proceeds

through time, information about a drug will periodically be added to the priors in the

form of dose allocation probabilities, or the percentage of patients allocated to each

drug dose. This process, explained thoroughly in the Adaptive Trial section of the

text (Chapter 4), will update priors until they become informative enough to assist

in making conclusions about a drug.

3.3 Simulation Techniques

3.3.1 Complete Conditionals

In order to simulate posterior distributions of each parameter, complete con-

ditional densities for each variable must be used in the Markov chain Monte Carlo

process. Complete conditionals are found by combining the prior density functions

for the parameters and the likelihood function. In the interest of simulation and

computation speed, the density functions for each of the prior distributions, along

with the likelihood function listed above, will be used only in their log forms. The

complete conditionals that are used in this study are listed below. Let log(f(y|Θ))

be denoted by l(y|Θ);

β ∝ l(y|Θ) + (aβ − 1) log β + (bβ − 1) log(1− β),

δ ∝ l(y|Θ) + (aδ − 1) log δ + (bδ − 1) log(1− δ),

θ ∝ l(y|Θ) +
(−1

2σ2
(θ − µ)2

)
,

τ ∝ l(y|Θ) + (α− 1) log(τ)−
(

τ

κ

)
.

The conditional distributions allow draws to be generated from the posterior dis-

tribution for each of the four unknown parameters. This is done using the Metropolis-
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Hastings algorithm. Using this algorithm, the value of each parameter will be updated

using only the most recent value of each of the other parameters in the likelihood

equation. One loop of the Metropolis-Hastings algorithm is complete when each of

the unknown parameters has been updated and properly saved. The looping proce-

dure can be repeated until the posterior density of each parameter has been properly

explored and demonstrates convergence.

3.3.2 Candidate Densities

Inherent in the Metropolis-Hastings algorithm is the use of a candidate density.

Each parameter is updated randomly using a density, usually the Normal density,

centered around the previous value of that parameter. Therefore, a model with re-

strictions on the parameters will present an interesting problem. In order to properly

cycle through the Markov chain, the generated value of each parameter must strictly

follow the constraints on the model. In this case, the issue of constrained parameters

applies directly to the parameters β and δ. Remember the constraints on the model,

β < δ,

0 < β < 1,

0 < δ < 1.

Furthermore, we know that β + δ is the maximum response value, which implies

β + δ < 1.

These inequalities lead to a fourth restriction on the model,

β < 0.5.

We can algebraically restructure this information into two sets of formulas. The

first set is true when δ > 0.5 and the second set is true when δ < 0.5.

1 : 0 < β < 1− δ,
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β < δ < 1− β.

2 : 0 < β < δ,

β < δ < 1− β.

Using a traditional candidate density, like the Normal density, will not ensure that

these constraints are met. In order to efficiently generate numbers while still con-

forming to these constraints, the algorithm will make use of a Truncated Normal

Distribution as a candidate density in the Metropolis-Hastings algorithm. This will

ensure, even when there is only a small region of possible values, that values for both

β and δ will be properly and efficiently simulated to follow these constraints.

The truncation bounds for β and δ can be understood from the above inequali-

ties. It should be noted that correct truncation bounds depend on whether δ is greater

than or less than 0.05. If δ is greater than 0.05, a new value of β must be drawn from

a Truncated Normal Distribution centered at the previous value of β with bounds of 0

and 1− δ and a new value of δ must be drawn from a Truncated Normal Distribution

centered at the previous value of δ with bounds of β and 1− β. If δ is less than 0.05,

the bound for β change to 0 < β < δ and the bound for δ remain the same. The two

candidate densities, assuming δ < 0.05, can be represented as follows:

β ∼ TN(µβ, σ2
β, 0, 1− δ),

where 0 is the lower bound and (1− δ) is the upper bound, and

δ ∼ TN(µδ, σ
2
δ , β, 1− β),

where β is the lower bound and (1− β) is the upper bound.

Because there are no restrictions on the parameters θ and τ , we can utilize

the simple normal density as a candidate density for these two parameters. Defining

our candidate densities in this way, the indicator function in our likelihood, I(β ≤

δ), is always true. Because this inequality is guaranteed to be true, the indicator
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function can be disregaurded as being part of the likelihood function. A likelihood

free of indicator functions provides the opportunity to simulate without worrying

about constraints on the model. Therefore, the candidate density for β and δ allows

the simulation process to be carried out as if it used a traditional likelihood with no

restrictions.

3.4 Asymmetric Jumping Rule

3.4.1 Implications of Using Truncated Normal Density

Random number generation from a Truncated Normal Distribution can be done

in a number of different ways. This study uses the rtnorm function in the msm

package for R. Documentation for this generator can be found in the R Documentation

(R Development Core Team, 2003). Distributions from random, doubly truncated

Normal Distributions look just like Normal Distributions without the tails. Figure

3.1, generated using the rtnorm function, shows how a truncated Normal generator

can produce very different distributions using the same mean and variance. Two

different truncations of the standard normal density are contrasted with the simple

standard normal density.

Figure 3.2 demonstrates an important characteristic of the truncated Normal

Density when it is used as a candidate density. If the densities are truncated differently

for two different parameters, or even if the truncation changes for a single parameter,

the jumping probability for the Metropolis-Hastings algorithm is asymmetrical. In

other words, the probability of going from state a to state b is not the same as going

from state b to state a;

P (a, b) 6= P (b, a).
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3.4.2 Acceptance Probabilities

The defining characteristic of the Metropolis-Hastings algorithm, however, is

that these asymmetrical jumping rules will not necessary confound the Markov chain

Monte Carlo process. In order to create an algorithm that still converges to the

posterior distribution, the probability of accepting a newly generated value for β and

δ must be changed.

The acceptance probability of going from a to b, denoted as α(a, b), is a simple

ratio,

α(a, b) =
f(y|b) ∗ p(b) ∗ P (b, a)

f(y|a) ∗ p(a) ∗ P (a, b)
, (3.4)

where f(y|b) is the likelihood using the new value, p(b) is the prior density using

the new value and P (b, a) is the probability of moving from b to a, and vice-versa for

the denominator.

When the jumping probabilities are symmetric, this equation simplifies to be a

ratio of the likelihood times the prior of the new value divided by the likelihood times

the prior of the old value. In this study, the equation becomes more involved.

In order to find the probability of moving from one Truncated Normal state to

another, P (b, a), the density of the Truncated Normal Distribution must be known.

When a distribution is truncated the new density is just the old density divided by

that part of the density that has been left off. The denominator in this equation is

known as the normalizing constant. Because the density is doubly truncated, both

deleted segments must added to the original density in order to divide by the correct

normalizing constant. Accordingly, the density of a Normal Distribution truncated

between a and b where a < b can be written as

f(xa,b) =
(2πσ2)

−1
2 e(

−1

2σ2 (x−µ)2)∫ b
−∞ f(x)dx +

∫∞
a f(x)dx

=
N(µ, σ2)

1−
∫ a
b f(x)dx
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=
N(µ, σ2)

1− {(1− Φ
(

b−µ
σ

)
) + Φ

(
a−µ

σ

)
}

=
N(µ, σ2)

Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) .

Applying this result to our two parameters, the density of both truncated dis-

tributions can be represented:

t(β) =
N(µβ, σ2

β)

Φ
(

1−δ−β
σ

)
− Φ

(
0−β

σ

) , (3.5)

t(δ) =
N(µδ, σ

2
δ )

Φ
(

1−β−δ
σ

)
− Φ

(
β−δ

σ

) . (3.6)

3.4.3 Application in Simulation

A proper acceptance probability equation can now be constructed for simulation

purposes. Because the derivation for the acceptance probability of β is similar to

the derivation for δ, we will simply list the result for δ after the derivation for β.

Note that because the distribution of β depends on δ, the prior density for δ is

necessary for the acceptance probability of βnew. However, this probability is constant

in the equation, and will therefore cancel from the numerator and denominator. The

notation, g(·) represents the likelihood function multiplied by the prior function for

a given parameter. The probability of accepting a move from βold to βnew, denoted

by α(βold, βnew), can be derived in a number of steps:

α(βold, βnew) =
f(y|βnew) ∗ p(βnew) ∗ P (βnew, βold)

f(y|βold) ∗ p(βold) ∗ P (βold, βnew)

=
g(βnew) ∗ t(βnew)

g(βold) ∗ t(βold)

=
g(βnew) ∗N(µβ, σ2

β)/
(
Φ
(

1−δ−βnew

σ

)
− Φ

(
0−βnew

σ

))
g(βold) ∗N(µβ, σ2

β)/
(
Φ
(

1−δ−βold

σ

)
− Φ

(
0−βold

σ

))
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=
g(βnew)) ∗

(
Φ
(

1−δ−βold

σ

)
− Φ

(
0−βold

σ

))
g(βold) ∗

(
Φ
(

1−δ−βnew

σ

)
− Φ

(
0−βnew

σ

)) .

Because calculations are done on the log scale, the acceptance probability for

β must also be on the log scale. Thus,

log α(βold, βnew) = l(y|βnew) + log p(βnew) + log

[
Φ

(
1− δ − βold

σ

)
− Φ

(
−βold

σ

)]

−
{

l(y|βold) + log p(βold) + log

[
Φ

(
1− δ − βnew

σ

)
− Φ

(
−βnew

σ

)]}
.

The log of the acceptance probability for δ follows the same pattern,

log α(δold, δnew) = l(y|δnew) + log p(δnew) + log

[
Φ

(
1− β − δold

σ

)
− Φ

(
β − δold

σ

)]

−
{

l(y|δold) + log p(δold) + log

[
Φ

(
1− β − δnew

σ

)
− Φ

(
β − δnew

σ

)]}
.

The acceptance probabilities, together with the conditional distributions of

the likelihood for each parameter, provide all the information needed to run the

Metropolis-Hastings algorithm. Values for each parameter are drawn from the ap-

propriate candidate density; the likelihood will be calculated and the value will be

accepted or denied based on correct acceptance probabilities. This process will con-

tinue for as many times as the MCMC simulation is told to run. Once the parameters

are simulated, the values are used in an improved clinical trial which utilizes a clever

adaptive design.

3.5 Adaptive Trial Design

3.5.1 Purpose of an Adaptive Trial

Through proper simulation, each piece of data from a trial provides a better

understanding of the dose-response characteristics of a drug. The intent of modeling

29



the data as demonstrated and creating effective simulation methods is to be able to

predict a drug’s most effective dose range. This range can be effectively achieved by

applying an adaptive dose-allocation system in the proposed model.

The aim of the adaptive section of this study is to find the minimum dose in

a clinical trial that obtains a 95% level of effectiveness. This level of precision is

referred to as ED95, or Effective Dose 95. In this study, the ED95 level is a function

of dose effectiveness and dose variability. It is important to note that some models

include the effects of toxicity in assigning the ED95 level. While other factors can

help in better assessing the ED95 level, drug effectiveness and drug variability provide

enough information to make proper inference. Developing a protocol that will ensure

that the best doses (those in the ED95 range) are allocated to subjects is the focus

of the adaptive trial design portion of our research.

3.5.2 Methods of Calculation ED95

Creating a trial that determines which doses fall in the ED95 range hinges on

the ability to correctly find the ED95 range. The definition of ED95 can lead to two

possible methods of understanding and calculating the value. The two methodologies

are labeled ED95? and ED95†, respectively.

The first method of finding ED95 uses the theoretical interpretation of the

logistic model. It is assumed that β + δ is the maximum effectiveness of a drug.

Because ED95 is 95% of the maximum efficiency, the relationship is simple;

ED95? = .95(β + δ).

However, estimating ED95 in this way may result in an invalid estimate. Because of

its theoretical nature, it is possible that the ED95∗ result represents a dose range that

is not part of the study. If the trial was focused on one small range of all possible

doses, this may be a valid possibility. However, in a study that includes all doses
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under consideration, the ED95 level must be part of the study. This is a simple

corollary from the definition of ED95.

Though it may be more mechanical, the second method of finding ED95 does

not have this problem. The second method is a more conservative, less theoretical ap-

proach to finding ED95. The four-parameter logistic model is an increasing function.

If a trial utilizes n doses, then the effectiveness of the nth dose will be the maximum

value for the trial, and the lowest dose, usually a placebo, will be the relative noise

level of the trial. ED95 can be calculated as a function of these two levels, where p(0)

represents the efficacy of the lowest dose and p(n) represents the efficacy of the nth

dose,

ED95† = p(0) + .95 (p(n)− p(0)) .

Theoretical ED95 levels are not useful when identifying the ED95 dose among

all those under experimentation. Therefore, the second method, ED95†, will be the

used to calculate the ED95 level in this study.

3.5.3 Design: Allocation by Batch

Unlike traditional clinical trials, subjects are processed as batches, not all at

once or one at a time. After the data from the initial batch come in, the MCMC

loop is simulated and the posterior predictive distribution for the parameters in the

logistic model are collected. From these distributions, the effectiveness of each dose

in the trial can be calculated. By calculating an overall ED95 level for the trial, it is

possible to calculate the probability that each dose is the true ED95 dose (the lowest

dose that achieves 95% efficacy). This probability is used to randomly allocate the

next batch of subjects to doses. In other words,

P (Allocation to Xi) = P (Xi = ED95),
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where Xi is the ith dose in the trial. In this way, those doses that perform better

will have a greater probability of receiving new subjects, allowing more subjects to

be assigned to doses that have a large probability of success.

When the data from the second batch are complete, their results are augmented

to the results of the first batch and the adaptive process will be repeated in the same

way. In other words, if the placebo received 15 patients during the first dose, 3 of

which reported successful results, and if the placebo received 5 patients with the

second batch, none of which reported success, the numbers n=20 and m=3 would

be reported. In essence, augmenting the data is another way of updating the prior

information; with each additional batch of subjects the prior information will become

more and more informative. The adaptive process continues until the ED95 range is

agreed upon and an optimal dose is found.

3.6 Computational Implementation

3.6.1 Starting Values

This thesis uses 8 total doses (0,1,...,7). The simulation begins by assigning

success probabilities to each dose in the trial. Section 3.8 describes more fully the

probabilities assigned to each dose in this thesis.

An initial batch of 96 subjects is then equally allocated to all doses in the

study. This provides a large enough sample size, ni=12, at each dose to begin to

make conclusions. The number of successes at each dose, mi, is calculated using the

probability of success assigned to each dose and a random binomial number generator.

The data are then placed in the MCMC loop to find posterior densities for each of the

four parameters in the logistic model. The MCMC algorithm contains a total length

of 5,500 iterations with a burn-in period of 500 iterations.
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The parameter values for the prior densities used in simulation are listed below;

β ∼ Beta(1, 1),

δ ∼ Beta(1, 1),

θ ∼ Normal(3.2, sd = 1),

τ ∼ Gamma(1, scale = 1).

While these are very broad prior densities, it is important to remember that with the

addition of data from each successive batch, the variability of the Metropolis-Hastings

algorithm will decrease.

3.6.2 Logistic Regression and ED95 Threshold

The Metropolis-Hastings algorithm outputs posterior densities for the unknown

parameters. Each iteration of the MCMC loop provides one value for each of the four

parameters in the logistic model. However, the logistic model contains one other

variable, xi, the ith dose in the trial. The binomial nature of the likelihood allows

the incorporation of logistic regression into the analysis. Therefore, the posterior

predictive density of the success probability of each dose can be found by simply

imputing the values of each dose, (0,1,....,7), into the logistic model in place of xi.

At the end of a simulation, the logistic model can be uniquely calculated for as

many iterations as the loop cycled; in this thesis, the model can be calculated 5,000

times. Through logistic regression, this provides the success probability for each dose

(0,1,..,7) a total of 5,000 times.

Under the assumptions of the second method of ED95 calculation each iteration

provides enough information to calculate a unique ED95 level. The inherent stochas-

ticity of the MCMC allows the possibility of calculating thousands of vastly different

ED95 values after simulation. Consequently, in order to compare the data from each

iteration simultaneously it is necessary to calculate an overall ED95 threshold for the
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whole simulation. This is done by taking the success probabilities from the logistic

regression and calculating the mean probability of success for maximum and mini-

mum doses in the trial, over all iterations. These mean values can be used in in the

ED95 equation in order to find an overall ED95 threshold for the data. This value

can be described in equation format;

ED95Thsld = µx0 + .95(µx7 − µx0),

where µx0 is the mean of all values for the minimum dose and µx7 is the mean of all

values for the maximum dose.

3.6.3 ED95 Probabilities

The ED95 threshold can be compared to each MCMC iteration. At each itera-

tion, the minimum dose that is larger than the ED95 threshold is designated the ED95

dose for that iteration. At each dose, the proportion of ED95 designations is divided

by the total number of MCMC iterations. In essence, this computes the probability

that each dose in the trial is the ED95 dose. It is important to note that because the

algorithm that calculates the ED95 threshold is an average over all iterations, it is

possible that one iteration does not contain any success probability greater than the

threshold. Therefore, it is also possible that the sum of all the ED95 probabilities

does not equal 1.

ED95 probabilities are used for two calculations. First, they are used to deter-

mine if the drug trial will proceed or if it will stop. These guidelines are commonly

known as stopping rules. If the algorithm proceeds to the next batch of patients, the

ED95 dose probabilities are used in dose allocation.

3.6.4 Stopping Rules

All drug trials need firm stopping rules. In this study there are three ways to

stop a trail: Cap Limit, Success, and Failure.
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Federal regulations and financial restrictions keep a drug trial from going on

forever. At some point, if no decision has been made, the trial must be stopped and

reassessed before more patients are used or wasted. In this study, a cap limit of 600

individuals has been set. As soon as the total number of subjects reaches 580 or

above, the trial is stopped so that the next batch of 20 individuals does not exceed

the 600-individual limit.

In order to stop a trial for success, there must be convincing evidence that

there exists a dose that can be labeled the ED95 dose. In the case of trial success,

the adaptive model is interested in the success rates of each dose relative to the other

doses in the trial. Consequently, the ED95 probabilities calculated for each dose are

normalized so that the sum of all probabilities equals one. The trial will stop for

success when a dose obtains an ED95 probability greater than 0.90.

Stopping the trial for failure can be interpreted to mean that the model finds

no dose in the trail that achieves the ED95 level. In this case, the adaptive model is

interested in the true non-normalized ED95 probabilities for each dose in the trial. In

this study there must be at least one dose with an non-normalized ED95 probability

greater than 0.25 in order to proceed through the trial; otherwise the trial stops for

failure.

3.6.5 Reasons for Failure

Failure can occur for two reasons. First, the stochasticity of patient responses

does not always allow researchers to see the true dose-response curve. There is always

a possibility that, through chance alone, the data may demonstrate a curve very

different from the theoretical curve. Precautions, such as large sample sizes and

controlled experiments, can be taken to limit the possibility of such an event, but it

can never be ruled out. The second cause of a failed experiment can be the choice of

doses in the study. The graphs below demonstrate three possible instances where the
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choice of doses will not allow our algorithm to properly find the ED95 dose.

In clinical research it is important that the dose-response curve is well repre-

sented by the dose range under investigation. The ED95 dose, remember, is the lowest

dose that achieves 95% efficacy. Figure 3.3 below demonstrates one instance where

the true high and low values of the curve are not explored. In this case, the algorithm

will not be able to locate an ED95 dose because all doses have equal responses.
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Figure 3.3: Situation 1

Figure 3.4 represents a curve that is completely represented by the range of doses

in the study. However, there is only a small change from the lowest dose to the highest

dose. With a cap size of 600 subjects, this small difference will be virtually impossible

to see. While the parameters in the logistic model will be properly calculated under

these circumstances, the algorithm will fail to find the ED95 dose because of the

similarity among all doses in the trial.

Figure 3.5 represents a possible and frequent circumstance in clinical research.

The dose range captures the correct high and low values on the curve and there is

good representation of doses in the sigmoidal section of the curve. However, the
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doses around the true ED95 range are very close together. The MCMC iterations are

random and will not be able to distinguish between the three doses in the middle of

the curve. The ED95 probabilities will be distributed among each of these doses and

could easily cause the algorithm to fail.

3.6.6 Dose Allocation

After each batch, if the trial meets none of the stopping criteria it can proceed

to the next batch. Once the algorithm has determined to proceed to the next batch,

the next step is to allocate the next batch of subjects to doses. Two variables are

used in the allocation, the ED95 probability and the variability of each dose. In this

study, the variation statistic of interest is the variability of the next subject at each

dose in the trial. To calculate this value, the draws from the MCMC are used and the

variance calculated is multiplied by ni

ni+1
, providing the variance of the next subject.

It should be mentioned that a number of other variables can and have been

used to allocate subjects to doses. One of the most obvious deletions from this model

is a toxicity variable. Many studies will allocate fewer subjects to a dose that exhibits

a high toxicity rating. For simulation purposes, it is not in the best interest of the

adaptive design to randomly assign toxicity levels to the doses in the trial. In a true

clinical trial, this parameter could be easily added to the model without too much

modification.

The probability of allocating one subject to each dose is calculated by multiply-

ing the ED95 probability of each dose by the variability of the next subject at each

dose. The allocation probabilities are normalized for sampling purposes;

P (allocation to xi) =
P (xi = ED95) · ni

ni+1
V ar(xi)∑r

i=1 P (xi = ED95) · ni

ni+1
V ar(xi)

.

The next batch of 20 subjects is then allocated to doses based on the probabil-

ities calculated, with one small restriction. The FDA requires drug trials to maintain
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a placebo effect throughout a trial. In order to comply with FDA regulations, the

Bayesian adaptive design automatically allocates one-fourth of the subjects to the

placebo, or dose zero. Therefore, a batch of 20 randomly allocated subjects be-

comes a batch of 15 randomly allocated subjects with 5 automatically assigned to the

placebo.

Data from the new batch is augmented to the previous data. In a clinical

trial, this would take anywhere from days to months. In this study, these numbers

are generated using a random binomial number generator and a true probability of

success for each dose included at the beginning of the simulation.

The augmented data is then inserted into the beginning of the algorithm and

the process continues until one of the stopping criteria is reached. The augmented

data can be thought of as an update to the apriori information that was used at the

beginning of the simulation. With each update of the data, the MCMC will become

more and more precise until it either pinpoints the ED95 dose or determines that no

such dose exists.

3.7 Model Assessment, Operating Characteristics of Bayesian Adaptive Design

Clinical trials are inherently stochastic. In this thesis the a Binomial number

generator allows the algorithm to capture that stochasticity. Every time a new subject

is allocated to a dose a binomial number generator is applied, using the true success

probability for that dose, to determine if the treatment is successful. A binomial

generator, like human trials, contains a variance and the possibility of a wide range

of outcomes.

Because of the inherent variance in the study, it is entirely possible that the

Bayesian model returns a false answer. Both Type I and Type II errors are possible

in our study. For example, if it is known that the true ED95 dose is the 4th dose

in the trial, the model could report that there is no ED95 dose (Type II) or that
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the ED95 dose is a different dose (Type I). Consequently, it is necessary to observe

the model’s performance many times in order to understand how it is functioning.

Observing just one simulated clinical trial can only provide a small amount of insight

into model performance.

The entire simulated clinical trial, then, will be replicated enough times to

obtain the probabilities of success, error, and cap realization. This process allows

us to identify the operating characteristics of the Bayesian adaptive design when

applied to clinical trials. The simulated clinical trials will provide insight into how

the adaptive design performs when used for a variety of clinical situations.

3.8 Situations under Consideration and Simulation

In this study the performance of the adaptive model is tested using data from

simulated clinical trials under 7 different clinical situations. Each situation will simu-

late a different curve dynamic to show how the model responds. In order to minimize

the number of variables in the study the parameter values of β and δ are kept constant,

which will produce sigmoid curves that range between 0.05 and 0.85.

The curves under consideration are plotted below. Each graph represents the

dose-response curve from the placebo dose (0) to the maximum dose (7). The value

of each dose is represented by a red dot while the value of the theoretical ED95 dose

is represented by a blue dot. The first curve (Figure 3.6) can be considered the basic

sigmoid; it is a dose-response curve centered in the middle of the dose range (between

doses 3 and 4, or θ = 3.5) with a modest slope (τ just under 1).

The next two curves (Figure 3.7) are similar to the first curve but are shifted

to the right and to the left. These two simulations help determine the ability of the

model to detect curve dynamics both early and late in the dose range.

The next curves under discussion (Figures 3.8) display few sigmoidal character-

istics because the dose range does not capture all the curve dynamics. The first curve
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Figure 3.9: Control Curves. Curve ‘G’ has no true ED95 dose
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displays an immediate jump in success probabilities, while the second graph displays

a very late jump in success probabilities. These graphs test the ability of the model

to find the ED95 dose even when the curve is not properly represented in the dose

range.

The next two curves (Figures 3.9) are used as control groups. The first graph

has some sigmoidal characteristics but is basically a linearly increasing function from

the first dose to the last. The second graph can be thought of as the null case. Here

there is essentially no change from the first dose to the last. These curves test how

the model responds to functions that do not readily fall into the sigmoid category.

While these functions are not probable outcomes of a Phase II or Phase III clinical

trial, they are necessary to test.

The parameter values for the seven curves in question are displayed in the fol-

lowing table. For a more detailed explanation of the interpretation and the curvature

dynamic effect of each of these parameters, refer to Section 3.1 of the text.

Table 3.1: Summary of parameter values used in each of the 7 clinical situations
tested in this study.

β δ θ τ
Curve A 0.05 0.80 3.5 0.8
Curve B 0.05 0.80 2.5 0.6
Curve C 0.05 0.80 4.3 0.4
Curve D 0.05 0.80 1.5 0.6
Curve E 0.05 0.80 5.6 0.7
Curve F 0.05 0.80 3.5 2.0
Curve G 0.40 0.01 3.5 1.0
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4. RESULTS

4.1 Success and Failure Probabilities

Results from simulated clinical trials are inherently dependent on the stopping

rules for each trial. Simulation has shown that the values used to stop a trial for

success, failure, or cap realization can dramatically alter the results from the simulated

clinical trials. Initial simulations have demonstrated that 0.25 is a reasonable value

for the stop-for-failure probability. On average, this value consistently fails in trials

that have no true ED95 dose (Situation “G”) and rarely produces a Type II error.

Federal regulations limit the options in choosing an appropriate cap limit. It was

found, however, that a cap limit of 600 conforms to protocol regulations and generally

provides enough data to make legitimate conclusions.

The stop-for-success probability has been the object of much simulation. This

value ultimately controls the probability of Type I errors and the probability that

a trial will stop for cap realization. We present the results of simulations that vary

the stop-for-success probability between 0.70 and 0.90. Table 4.1 displays the Type

I error rate and cap realization rate for possible stop-for-success values; these values

are plotted graphically in Figure 4.1. In each simulation, the values of stop-for-failure

and cap limit are held constant. Each simulation is averaged over a number of clinical

scenarios.

Choosing the best stop-for-success value is also dependant on FDA regulations.

Federal mandate states that Type I error rates must be below 0.05. Accordingly,

the lowest probability that achieves that regulation, 0.80, was chosen for simulation.

This value will be kept constant throughout the clinical trial simulations, allowing

the model to compare the performance of the Bayesian adaptive design between all

seven clinical situations.
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TYPE I Error Rate % Reaching Cap
Success Probability = 0.70 0.30 0.01

0.75 0.20 0.15
0.80 0.07 0.34
0.85 0.05 0.60
0.90 0.00 0.90

Table 4.1: Type I error rate and cap realization probability of 5 different success
probabilities

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TYPE I ERROR RATE

P
ro

p
o

rt
io

n
 R

e
a

ch
in

g
 C

a
p

●

●

●

●

●

●

●

●

●

●

90%
85%
80%
75%
70%

Figure 4.1: Type I error rates of 5 different success probabilities
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4.2 Examining One Simulated Clinical Trial

To illustrate the Bayesian adaptive methodology, we present the analysis of the

simulated clinical trials of each situation outlined in Section 3.8. For each of the seven

situations the posterior mean dose-response curve is superimposed on the theoretical

dose-response curve (Figures 4.2-4.9). The fitted curve (red dotted line) shows a good

fit to the theoretical curve (black solid line).

The simulated posterior responses demonstrate areas of both good and poor

fitting. In the null case, Situation “G”, the posterior fit to the theoretical response

curve is completely wrong. The likelihood was restricted to produce an increasing

function where β < δ. Because this is not true of the null case, it follows that the

posterior means could not possibly follow the theoretical response curve.

Posterior means fit theoretical response rates better in areas of maximum al-

location. In this sense, maximum allocation can refer to doses that receive more

patients or clinical trials that require more data. In the first case, Bayesian adaptive

design allocates most subjects to the placebo and to doses that are close to the true

ED95 level. As demonstrated in Figures 4.2–4.9 the most precise Bayesian estimates

are seen at the placebo level and the region around the theoretical ED95 level. In

the second case, the data demonstrate that clinical situations that require more data

(Figures 4.2, 4.3) produce more precise Bayesian estimates than situations that do

not require much data (Figure 4.6). A situation like the clinical trial depicted in

Figure 4.6 will not require as much data as other situations because the theoretical

dose-response levels are vastly different from one another.
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Figure 4.2: Final response values of a complete clinical trial simulation of type “A”
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Figure 4.3: Final response values of a complete clinical trial simulation of type “B”
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Figure 4.4: Final response values of a complete clinical trial simulation of type “C”
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Figure 4.5: Final response values of a complete clinical trial simulation of type “D”
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Figure 4.6: Final response values of a complete clinical trial simulation of type “E”

0 1 2 3 4 5 6 7

0
.2

0
.4

0
.6

0
.8

Simulation of Situation 'F'

DOSE

R
E

S
P

O
N

S
E

●
●

●

●

●

●
●

●

●

●

Theoretical Dose Response
Calculated Dose Response

Figure 4.7: Final response values of a complete clinical trial simulation of type “F”
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Figure 4.8: Final response values of a complete clinical trial simulation of type “G”
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4.3 Examining Multiple Simulations for each Situation

4.3.1 Data from Multiple Clinical Simulations

The graphs depicted above (Figures 4.2–4.8) represent one fully simulated clin-

ical trial. We now present the results of 2,500 fully simulated clinical trials for each

of the seven situations identified in Section 3.8. Each simulated clinical trial was

stopped for success, failure, or cap realization, as described in Section 3.6. Because

the theoretical dose-response rates are known, we can calculate the true ED95 dose

(See Figures 3.6–3.9) for each study and calculate Type I error rates. The probability

of each result is recorded in Table 4.2.

Success Type I Error Rate Failure Cap Realization
Situation A 0.114 0.067 0.003 0.816
Situation B 0.209 0.160 0.001 0.630
Situation C 0.711 0.110 0 0.180
Situation D 0.225 0.192 0.021 0.562
Situation E 0.983 0.014 0.001 0.002
Situation F 0.354 0 0.221 0.425
Situation G 0 0 1 0

Table 4.2: Operating characteristics of Bayesian adaptive approach to clinical trials.

In addition, Tables A.2–A.8 in the Appendix report patient allocation data for

each of the seven situations. The tables present the mean number of subjects and the

mean number of successes at each dose with the standard deviations in parenthesis.

They also report the overall mean and standard deviation for the number of subjects

and the number of successes for each situation.

4.3.2 Interpretation of Results

The overall Type I error rate for all simulations was 0.06, slightly higher than

the goal of 0.05. The remaining results are better understood when analyzed in

groups. The data indicate that there are four distinct groups in the study: the null
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case, the linear case, obvious ED95 levels, and ambiguous ED95 levels.

All 2,500 simulated clinical trials for Situation “G” failed, demonstrating the

consistency of a Bayesian adaptive approach in failing to find the ED95 dose in a

situation where no true ED95 dose exists. More importantly, the Bayesian approach

allowed these trials to be stopped immediately; the adaptive design never proceeded

to the second subject batch.

Data for Situation “F”, the linearly increasing control, demonstrate a high

failure rate. These rates are explained by the logistic model, which tends to add

curvature to the data even when it does not exist (Figure 4.7). The large variances

seen in patients allocated to Doses 6 and 7 indicate that a large number of clinical

trials ended early. Stopping for failure is a legitimate possibility when small amounts

of data are available to an equation that adds curvature to a theoretically straight

line.

Situations “A”, “B”, and “D” demonstrate low success rates and high proba-

bilities of cap realization. Such behavior is explained by the proximity of adjacent

doses to the ED95 level. In fact, the difference between the theoretical response rate

of the dose just higher than the theoretical ED95 level and the dose just lower than

the ED95 level is less than 0.05 in each of the Situations “A”, “B”, and “D”. We will

use Situation “A” to illustrate why the Bayesian process arrives at cap realization so

often.

Situation “A” contains a theoretical ED95 level of .8015. Dose 5 has a success

rate of 0.78, while Dose 6 has a success rate of 0.83. On average, Dose 5 was allotted

140 subjects during clinical simulation. According to the binomial distribution, Dose

5 has a standard deviation of
√

(140)(.78)(.22) ≈ 4.9. Theoretically, Dose 5 should

see 109.2 successful cases in each simulation. Adding just one standard deviation of

successful subjects to the theoretical average, Dose 5 would receive 114.1 successes,

a success rate of 0.815. It is noted that within one standard deviation, Dose 5 would
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be designated the ED95 dose because 0.815 > 0.8015.

Stochasticity in the binomial function leads to small deviations from the theo-

retical response values. It can be demonstrated that even small deviations alter the

posterior distribution of the logistic parameters enough to cause a clinical trial to

reach cap limit without stopping for success. Case 1 in the Appendix gives a detailed

report of a simulated clinical trial of this nature.

Data from the final group, Situations “C” and “E”, demonstrate high success

rates and relatively low rates of cap realization. Situations “C” and “E” are char-

acterized, in contrast to Situations “A”, “B”, and “C”, by large distances between

doses surrounding the theoretical ED95 level, 0.11 and 0.19 respectively. Their high

success rates can be explained using the logic described for Situations “A”, “B”, and

“C”.

This study is focused on modeling the dose-response curve and minimizing the

Type I error rates. Though the results have succeeded in accomplishing these goals,

the trade-off is evident in a large proportion of cap realizations. An important feature

of our model is its ability to change stopping criteria to maximize the researcher’s

parameter of choice. In fact, success rates can be increased and the average number of

subjects used in clinical trials can be decreased by a simple alteration in the stopping

rules. Section 6.2 in the Appendix lays out three stopping rules not used in this

study that can be used to maximize success rates at the sacrifice of higher Type I

error rates.
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5. SUMMARY AND CONCLUSIONS

This thesis was focused on two main goals: to model a clinical trial that can

properly estimate the dose-response curve and to create an adaptive trial design that

properly stops trials for clinical futility.

In the first case, the Bayesian adaptive approach has demonstrated good fitting

characteristics in most Phase II or III clinical scenarios. The Bayesian fit discussed

in this paper is robust to curve changes, dose ranges, and even highly variable results

(Case 1, Appendix). In the second case, the operating characteristics of the Bayesian

adaptive design demonstrate proper protocol in failing clinically futile trials (Situation

“G”).

The operating characteristics of the Bayesian design dealing with success and

cap realization depend on the nature of the dose-response curve. In our simulations

the “success” rate for the Phase II or III clinical situations, not including the con-

trols, was only 45%. This number, however, is dependant on the arbitrarily assigned

stopping rule for success. In fact, the medicinal effectiveness of the Bayesian adaptive

design is not dependant on the percentage of trials that end in success.

The goal of medicine is to provide the best care whenever possible. The adap-

tive trial design described in this paper provides physicians and researchers with the

possibility of providing the best medicine while conducting proper clinical research.

Simulations from Situation “A” are used to demonstrate this fact. Table 5.1 reports

the average number of subjects, successes, and success rates for each dose in Situation

“A”. The subsequent table (Table 5.2) provides the same information for a traditional

trial in which subjects are equally allotted to doses. Theoretical response rates are

used to calculate the success rates of the traditional trial.

The Bayesian adaptive design demonstrated in Table 5.1 reports that 160 of

54



Placebo Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7
Subjects 128 20 20 20.5 56.7 140.7 159.6 46.5
Successes 8.7 2.8 4.2 8.9 37.4 108.9 132.7 38.2

Success Rate .07 0.14 0.21 0.43 0.66 0.77 0.83 0.82

Table 5.1: Average dose allocation and success rates for a simulated clinical trial of
type “A” (n ≈ 590)

the 590 subjects were allocated to the true ED95 dose (Dose 6), and another 140

were allocated to the next closest dose (Dose 5). In all, 342 subjects responded

successfully to the clinical study. The traditional clinical trial displayed in Table

5.2 reports that only 66 subjects were allocated to the true ED95 dose and 66 more

were allocated to the next closest dose. The entire trial only produced 260 success

responses. Comparatively, the adaptive trial allocated 242% more subjects to the

ED95 dose and had an overall success rate 32% higher than the traditional clinical

trial. Similar numbers could be shown for each of the situations under consideration

in this study.

The adaptive Bayesian approach to clinical trials outlined in this paper properly

models the dose-response curve of many clinical situations. It allows more patients

to be allocated to the most beneficial doses and it increases the overall success rate

of patients in clinical studies. The Bayesian adaptive trial design provides better

medicine to patients while at the same time more quickly pinpointing the dynamics

of the dose-response curve.
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Placebo Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7
Subjects 128 66 66 66 66 66 66 66
Successes 8.7 7 12 28 43 51 55 55

Success Rate .07 0.10 0.21 0.43 0.65 0.78 0.83 0.84

Table 5.2: Dose allocation and success rates for a generic, traditional clinical trial of
type “A” with 590 subjects
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A. APPENDIX

A.1 Case 1: Data from Simulated Clinical Trial of Situation “A”

This section presents all information related to a simulated clinical trial that

ended in cap realization. Figure A.1 illustrates the theoretical dose response curve of

Situation “A” (black line). The blue diamonds represent the sampled response rate

of the patients. The red dots represent the Bayesian posterior fit of the theoretical

dose-response curve using the sampled data. The posterior mean results show very

good fit of the theoretical response curve despite less-than-perfect data.
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Figure A.1: Case 1: Posterior fit to theoretical response values

Table A.1 presents the data collected for each dose in the simulated trial. The

total number of patients and the number of successes at each dose appear in the

first two rows. The next row refers to the theoretical response rate of each dose.

The Binomial rate is the actual rate calculated from the patients in the clinical trial.

The Posterior rates are the response values calculated, using the patient data, by the
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Bayesian posterior distributions. The final row refers to the posterior probability that

each dose is the ED95 dose.

Plcbo Dose1 Dose2 Dose3 Dose4 Dose5 Dose6 Dose7
Patients 130 20 20 27 40 171 142 50
Successes 8 1 6 14 23 141 114 41

Theoretical Rate .07 .10 .21 .43 .65 .78 .83 .84
Binomial Rate .06 .05 .30 .52 .58 .82 .80 .82
Posterior Rate .06 .11 .24 .48 .69 .79 .82 .83

ED95 Probability 0 0 0 0 .01 .41 .54 .05

Table A.1: Case 1: Simulated data and results for each dose in a simulated Situation
“A” clinical trial

Table A.1 demonstrates how the Bayesian adaptive approach and the logistic

model correctly fit stochastic, binomial data to the theoretical dose-response curve.

The patient data in Case 1 create posterior responses that are not exactly equal to

theoretical responses. In the theoretical case, the ED95 level is calculated to be .8015,

just below Dose 6 (0.83). However, the posterior response rates calculate the ED95

level to be .7915—just .0015 larger than Dose 5 (0.79). The proximity of the calculated

ED95 level to the posterior response rate of Dose 5 explains why this clinical trial

ended in cap realization. The value, 0.0015, is small enough that Bayesian simulation

will often call Dose 5 the ED95 dose. The calculated ED95 probabilities demonstrate

this fact. Although 95% of all ED95 designations are split between Doses 5 and 6,

the trial stops for cap realization because neither dose has received more than an 80%

probability by itself.

Case 1 demonstrates that if a researcher is interested in maximizing the success

probability, it is necessary to alter the stopping rule of the Bayesian design. Section

A.2 illustrates how such criteria can be changed in the model.
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A.2 Model Variations, Maximizing Success Probabilities

A feature of the Bayesian adaptive design is that it can be altered in order to

maximize different criteria. In this thesis, efforts have been focused on precise dose-

response modeling and on minimizing the Type I Error rate. Because of these goals,

some of the clinical situations have resulted in very low success rates and very high

cap realization probabilities. In this section we demonstrate how simple alterations

of the stopping rules in the Bayesian design can be used to maximize the success rate

of a clinical trial and minimize the number of subjects required by the trial.

In this section, three possible alterations to the stopping rule for success are

presented. The first variation is a simple change in the probability needed to designate

a dose as the ED95 dose; the probability that a dose is ED95 is thus decreased from 0.8

to 0.6. The second variation involves combining the probabilities of adjacent doses.

If the combined ED95 probabilities of any two adjacent doses is greater than 0.9, the

dose with the largest ED95 probability is designated as the ED95 dose. For the third

variation, the algorithm stops for success when less than 10% of the posterior draws

demonstrate no ED95 dose. In other words, if the non-normalized ED95 probabilities

add to a number greater that 0.9, the dose with the highest ED95 probability is

designated as the ED95 dose.

Success Type I Error Futility Cap Realization Subjects / Trial
Variation #1 0.587 0.408 0.005 0 256
Variation #2 0.625 0.363 0.005 0.007 244
Variation #3 0.582 0.213 0.001 0.204 483

Table A.2: Alterations to Bayesian stopping rules: 3 ways to maximize success rates
and minimize cap realization rates

Table 6.2 reports the results of the three variations to the stopping rule for

success. In cases 1 and 2 the algorithm stopped for success more than 99% of the

time, though both cases demonstrated high Type I error rates. The average number
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of subjects required in clinical simulation is 50% of the number used in previous

studies. These simulations successfully demonstrate that the Bayesian design can

be altered to maximize various stopping probabilities. Thus, the Bayesian adaptive

model demonstrates added versatility and can be applied in studies that have differing

clinical objectives.
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A.3 R Code

## msm library needed for random truncated normal generator ##

install.packages ("msm") library ("msm")

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]

# Specifications for Stopping Rules ]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]

cap<-600 success<-.80 failure<-.25

##****************************************************************##

## THE 7 SITUATIONS THAT WILL BE TESTED USING THE ALGORITHM ##

plot(seq(0,7,by=.1),.05+(.8/(1+exp((3.1-seq(0,7,by=.1))/.8)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="A")

a<-round(.05+(.8/(1+exp((3.1-(0:7))/.8))),2)

points(0:7,a,cex=2,col="red",pch=20)

points(6,a[7],cex=4,col="blue",pch=20)

# ED95: Dose 6

plot(seq(0,7,by=.1),.05+(.8/(1+exp((2.5-seq(0,7,by=.1))/.6)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="B")

b<-round(.05+(.8/(1+exp((2.5-(0:7))/.6))),2)

points(0:7,b,cex=2,col="red",pch=20)

points(5,b[6],cex=4,col="blue",pch=20)

# ED95: Dose 5

plot(seq(0,7,by=.1),.05+(.8/(1+exp((4.3-seq(0,7,by=.1))/.4)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="C")

c<-round(.05+(.8/(1+exp((4.3-(0:7))/.4))),2)

points(0:7,c,cex=2,col="red",pch=20)

points(6,c[7],cex=4,col="blue",pch=20)

# ED95: Dose 6

plot(seq(0,7,by=.1),0.05+(.8/(1+exp((1.5-seq(0,7,by=.1))/.6)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="D")

d<-round(0.05+(.8/(1+exp((1.5-(0:7))/.6))),2)

points(0:7,d,cex=2,col="red",pch=20)

points(4,d[5],cex=4,col="blue",pch=20)

# ED95: Dose 4

plot(seq(0,7,by=.1),.05+(.8/(1+exp((5.6-seq(0,7,by=.1))/.7)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="E")
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e<-round(.05+(.8/(1+exp((5.6-(0:7))/.7))),2)

points(0:7,e,cex=2,col="red",pch=20)

points(7,e[8],cex=4,col="blue",pch=20)

# ED95: Dose 7

plot(seq(0,7,by=.1),.05+(.8/(1+exp((3.5-seq(0,7,by=.1))/2)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="F")

f<-round(.05+(.8/(1+exp((3.5-(0:7))/2))),2)

points(0:7,f,cex=2,col="red",pch=20)

points(7,f[8],cex=4,col="blue",pch=20)

# ED95: Dose 7

plot(seq(0,7,by=.1),.4+(.01/(1+exp((3.5-seq(0,7,by=.1))/1)))

,ylim=c(0,.85),type="l",ylab="",xlab="",main="G")

g<-round(.4+(.01/(1+exp((3.5-(0:7))/1))),2)

points(0:7,g,cex=2,col="red",pch=20)

# ED95: DNE

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]

# Assign Success Probabilities to Doses for Entire Simulation ]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]

dose<-c(0,1,2,3,4,5,6,7) dose.value<-c(0,10,20,40,50,60,80,100)

dose.probs<-c(g) #plot(0:7,dose.probs)

#lines(0:7,mean(beta)+(mean(delta)/

(1+exp((mean(theta)-(0:7))/mean(tau)))))

# # # # # # # #

# MCMC VALUES #

# # # # # # # #

## Logistic model likelihood Function Declared (used in MCMC)

like<-function(beta.func,delta.func,theta.func,tau.func){

beta.func+(delta.func / (1+ exp((theta.func-dose)/tau.func)))

}

### VALUES ###

length<-3000 burn<-50

###PRIORS###

tau.a<-1 tau.b<-1

theta.mu<-3.2 theta.var<-1
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beta.a<-1 beta.b<-1

delta.a<-1 delta.b<-1

###MCMC SETTINGS###

candsig.tau<-.5 candsig.theta<-.6 candsig.beta<-.1

candsig.delta<-.06

#########################################################

### ###

### OUTER LOOP STARTS HERE ###

### - mmm is number of outer loop iterations ###

### - why.stop records why each iteration was stopped ###

#########################################################

mmm<-2500 why.stop<-matrix(0,ncol=3,nrow<-mmm)

colnames(why.stop)<-c("Success","Failure","Cap")

for(j in 1:mmm){

#Initial batch data found using dose success rates#

n.total<-160 n<-rep(floor(n.total/length(dose)),length(dose))

y<-NULL for(i in 1:length(dose))y<-c(y,rbinom(1,n[i],dose.probs[i]))

#////////////////////////////////////////////////////#

### While loop to stop when a stopping rule is met ###

#////////////////////////////////////////////////////#

while(sum(why.stop[j,]) < 1){

### Initialize and Clear Parameter Values ###

tau<-numeric(length+burn) theta<-numeric(length+burn)

beta<-numeric(length+burn) delta<-numeric(length+burn)

###STARTING VALUES###
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tau[1]<-1 theta[1]<-3.5 beta[1]<-0.05 delta[1]<-0.8

########################

### INNER LOOP: MCMC ###

########################

for (i in 2:(length+burn)){ ###update for beta

beta[i]<-beta[i-1]

old.beta<-beta[i-1]

if(delta[i-1]>=.5)new.beta<-rtnorm(1,old.beta,candsig.beta,0,1-delta[i-1])

else

if(delta[i-1]<.5)new.beta<-rtnorm(1,old.beta,candsig.beta,0,delta[i-1])

## These calculations disregard the priors because they will =0

llo<-sum((y * log(like(old.beta,delta[i-1],theta[i-1],tau[i-1]))) +

((n-y)* log(1-like(old.beta,delta[i-1],theta[i-1],tau[i-1]))))

lln<-sum((y * log(like(new.beta,delta[i-1],theta[i-1],tau[i-1]))) +

((n-y)* log(1-like(new.beta,delta[i-1],theta[i-1],tau[i-1]))))

uu<-runif(1,0,1)

## These if statements done to keep beta< (delta and 0.5)

if(delta[i-1]>=.5) accept<-lln+log(ptnorm(1-delta[i-1],old.beta,candsig.beta)

- ptnorm(0,old.beta,candsig.beta)) - llo -

log(ptnorm(1-delta[i-1],new.beta,candsig.beta)

- ptnorm(0,new.beta,candsig.beta)) else

if(delta[i-1]<.5) accept<-lln + log(ptnorm(delta[i-1],old.beta,candsig.beta)

- ptnorm(0,old.beta,candsig.beta))- llo -

log(ptnorm(delta[i-1],new.beta,candsig.beta)

- ptnorm(0,new.beta,candsig.beta))

if (log(uu) < accept){beta[i]<-new.beta}

###update for delta

delta[i]<-delta[i-1]

old.delta<-delta[i-1]

new.delta<-rtnorm(1,old.delta,candsig.delta,beta[i],1-beta[i])

## These calculations disregard the priors because they will always = 0

llo<-sum((y * log(like(beta[i],old.delta,theta[i-1],tau[i-1])))

+ ((n-y)* log(1-like(beta[i],old.delta,theta[i-1],tau[i-1]))))

lln<-sum((y * log(like(beta[i],new.delta,theta[i-1],tau[i-1])))

+ ((n-y)* log(1-like(beta[i],new.delta,theta[i-1],tau[i-1]))))

uu<-runif(1,0,1)

acceppt<- lln + log(ptnorm(1-beta[i],old.delta,candsig.delta) -

ptnorm(beta[i],old.delta,candsig.delta))- llo -

log(ptnorm(1-beta[i],new.delta,candsig.delta) -
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ptnorm(beta[i],new.delta,candsig.delta))

if(log(uu) < acceppt){delta[i]<-new.delta}

###update for theta

theta[i]<-theta[i-1]

old.theta<-theta[i-1]

new.theta<-rnorm(1,old.theta,candsig.theta)

llo<-sum((y * log(like(beta[i],delta[i],old.theta,tau[i-1])))

+ ((n-y) * log(1-like(beta[i],delta[i],old.theta,tau[i-1]))))

- ((1/(2*theta.var))*((old.theta-theta.mu)^2))

lln<-sum((y * log(like(beta[i],delta[i],new.theta,tau[i-1])))

+ ((n-y) * log(1-like(beta[i],delta[i],new.theta,tau[i-1]))))

- ((1/(2*theta.var))*((new.theta-theta.mu)^2))

uu<-runif(1,0,1)

if(log(uu) < (lln-llo)){theta[i]<-new.theta}

###update for tau

tau[i]<-tau[i-1]

old.tau<-tau[i-1]

new.tau<-rnorm(1,old.tau,candsig.tau)

if(new.tau > 0) {

### Extra loop needed because it is a gamma rvb and must be > 0 ###

## These calculations simplify the prior to be only one variable

llo<-sum((y * log(like(beta[i],delta[i],theta[i],old.tau)))

+ ((n-y) * log(1-like(beta[i],delta[i],theta[i],old.tau))))

- old.tau

lln<-sum((y * log(like(beta[i],delta[i],theta[i],new.tau)))

+ ((n-y) * log(1-like(beta[i],delta[i],theta[i],new.tau))))

- new.tau

uu<-runif(1,0,1)

if(log(uu) < (lln-llo)){tau[i]<-new.tau}

}

}

##plots to help analyze length/burn and candidate sigma choices

#plot(beta[1:400], type=’l’) #plot(beta, type=’l’) #plot(delta,

type=’l’) #plot(theta, type=’l’) #plot(tau, type=’l’)

#mb<-mean(beta) #md<-mean(delta) #mth<-mean(theta) #mt<-mean(tau)

#plot(seq(0,30,.01),(mb+(md/(1+exp((mth-seq(0,30,.01))/mt)))))

#plot(dose.value,dose.probs)
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#plot(0:7,(mb+(md/(1+exp((mth-0:7))/mt))))

#plot(dose,(mb+(md/(1+exp((mth-dose)/mt)))))

#plot(seq(0,20),(.05+(.8/(1+exp((3.1-seq(0,20))/1.1)))),col="red")

#This code means nothing, but my roommate Steve Williams is a really

# cool guy!

#############################

#############################

### ###

### ADAPTIVE TRIAL DESIGN ###

### ###

#############################

#############################

#***********************************************************#

## Allocation Scheme #1 ##

## Calculates the ED95 dose for every iteration ##

#***********************************************************#

#posterior means of lowest/highest doses in the trial

b<-burn+1 L<-length+burn model<-function(dose){

beta[b:L]+(delta[b:L] / (1+ exp((theta[b:L] - dose)/tau[b:L])))}

mean.low<-mean(model(0)) mean.hi<-mean(model(7))

#Overall ED95 Threshold calculated using means of high, low doses

threshold<-mean.low+(.95*(mean.hi-mean.low))

#Iterative ED95 Dose, each column of "lauren" contains the output

# for each iteration from the logistic model for one dose

lauren<-matrix(0,nrow=length,ncol=length(dose))

for (i in1:length(dose)) {

lauren[,i]<-model(i-1)}

#Puts ’1’ in column of the dsgntd ed95 dose for each iteration, if exists

ed95<-matrix(0,nrow=length,ncol=length(dose)) for (i in 1:length){
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if(max(lauren[i,]) < threshold) ed95[i,1:8]<-0

else ed95[i,min(order(lauren[i,])[lauren[i,] >threshold])]<-1}

#Calculates the prob that each dose is ED95

edprob.unnorm<-apply(ed95,2,sum)/length

edprob<-edprob.unnorm/sum(edprob.unnorm)

#~~~~~~~~~~~~~~~~~~~~~~~#################~~~~~~~~~~~~~~~~~~#

# #Stopping Rules:#

# #################

# -puts ’1’ in column indicating why trial was stopped,

# ’0’ in other two colums

# -does this for each iteration in outer loop

# -this assumes that the success of the most probably

# ED95 >= success of placebo

# -cap-20 assures no more than the cap size will be used

# if batches <= 20

# -uses normalized ED95 probs for succuss

# (i.e. p(dose=ED95 | there exists ED95 dose)

# -uses unnormalized ED95 probs for failure

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

if(max(edprob) > success)

why.stop[j,1]<-order(edprob)[length(dose)]-1 else

if(max(edprob.unnorm) < failure) why.stop[j,2]<-1 else

if(sum(n)>(cap-20)) why.stop[j,3]<-1

#if(sum(n)>160) why.stop[j,3]<-1

### Clclts var of one additl data point at each dose in curve ###

vars<-NULL for(i in 1:length(dose)){

vars<-c(vars,var(beta + (delta / (1+ exp((theta - (i-1))/tau)))))}

vars<-(n/(n+1)) * vars

### Calculates probability of allocation ###

prob.allocate<- edprob*vars / (sum(edprob*vars))
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#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Next Batch Allocation, with 25% automatically allocated to placebo #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

sam.new<-sample(dose,15,replace=T,prob=prob.allocate)

n.new<-5 y.new<-NULL

for(i in 2:length(dose))

n.new<-c(n.new,length(sam.new[sam.new==i-1]))

for(i in 1:length(dose))

y.new<-c(y.new,rbinom(1,n.new[i],dose.probs[i]))

n<-n+n.new y<-y+y.new

} #this ends the while loop

cat("Iteration",j,"\n")

} #this ends the outer loop

#write(t(why.stop),"g",ncolumns=3)
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A.4 Tables

The tables in this section represent the average number of subjects allocated to
each dose and the average number of sucesses over all 2,500 clinical trial simulations.
The results of the 2,500 simulations are reported for each of the seven clincial situa-
tions outlined in Section 3. The first number in each cell represents the average and
the second number, in parenthesis, represents the standard deviation of each cell.
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