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ABSTRACT

HOMOMORPHISMS INTO THE FUNDAMENTAL GROUP OF

ONE-DIMENSIONAL AND PLANAR PEANO CONTINUA

Curtis A. Kent

Department of Mathematics

Master of Science

Let X be a planar or one-dimensional Peano continuum. Let E be a Hawaiian

Earring with fundamental group H. We show that every homomorphism φ : H →

π1(X, x0) has the property that there exists a continuous function f : E → X and

a path T : I → X such that φ = T̂ f∗.
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1 Introduction and Acknowledgements

A Hawaiian Earring group, which we will denote by H, is the fundamental group of

the one-point compactification of a sequences of disjoint arcs, {ai}. This space can

be realized in the plane as the union of circles centered at (0, 1
n
) with radius 1

n
. We

will use E to denote this subspace of the plane and an to denote the circle centered

at (0, 1
n
) with radius 1

n
.

Cannon and Conner have shown that H is generated in the sense of infinite

products by a countable sequence of loops corresponding to the disjoint arcs, where

an infinite product is legal if each loop is transversed only finitely many times.

(See [1],[2].) When there is no chance of confusion, we will refer to this infinite

generating set for the fundamental group of E as {ai}, i.e. ai represents the loop

which transverses counterclockwise one time the circle of radius 1
i

centered at (0, 1
i
).

A Peano continuum is a compact, connected, locally path connected, metric

space. We will prove the following two theorems.

Theorem 2.17 Let φ : H → π1(X, x0) be a homomorphism from the Hawaiian

Earring group into the fundamental group of a one-dimensional Peano continuum

X. Then there exists a continuous function f : (E, 0) → (X, x) and a path T :

(I, 0, 1) → (X, x0, x) with the property that f∗ = T̂ φ.

Theorem 3.9 Let φ : H → π1(X, x0) a homomorphism into the fundamental

group of a planar Peano continuum X. Then there exists a continuous function

f : (E, 0) → (X, x) and a path α : (I, 0, 1) → (X, x0, x), with the property that

f∗ = α̂φ.

Greg Conner and Erin Summers in Summer’s Masters thesis showed that ho-

momorphisms between Hawaiian Earring groups are conjugate to homomorphisms
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induced by continuous maps. (See [5].) They did this by using the combinatorial

word structure of the Hawaiian Earring. Katsuya Eda has shown this is still true

in the case of homomorphisms for a Hawaiian Earring group into the fundamental

group of a one-dimensional space in [7]. Our proof of the one-dimensional case is

similarly to that of Eda.

1.1 Definitions

A path f : I → X into a one-dimensional space is reduced if ever nondegenerate

closed subpath is essential. By definition, constant paths are reduced.

We will use fr to denote the path where every nullhomotopic subpath of f is

replaced by a constant path. Then fr is a reduced representative of [f ]. James

Cannon and Greg Conner proved the existence and uniqueness (up to reparame-

terization) of reduced representatives of path class for one-dimensional spaces in

[2].

Definition 1.1. Let X be one-dimensional space. Let g : I → X be a reduced

representative for the path class [g]. Then we say that a : I → X is a head for g if

there exists b : I → X such that g = a ∗ b, up to reparameterization, where a ∗ b is

a reduced path. We write a
h→ g. Additionally, we say that b : I → X is a tail for

g if there exist c : I → X such that g = c ∗ b, up to reparameterization, where c ∗ b

is a reduced path and b is the path b traversed backwards. We write b
t→ g.

Since g is a reduced path; the paths a, b, and c are necessarily reduced paths.

Definition 1.2. We say that t : I → X is a head-tail for a reduced path g : I → X

if t is a head and a tail for g and is written t
h−t−→ g. We say that t is an almost
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head-tail for a set W of reduced paths if t is a head-tail for all but finitely many

elements of W .

Definition 1.3. A path T is the head limit of an increasing sequence of heads {ti}

(i.e. ti
h→ ti+1) if ti

h→ T for all i and if whenever ti
h→ S for all i, then T

h→ S. We

will say that T is the head-tail limit of an increasing sequence of almost head-tails

{ti} for a set W , if T is the head limit of ti.

If both T1 and T2 are head limits of an single increasing sequence of heads, then

T1
h→ T2 and T2

h→ T1 and hence T1 = T2 up to reparametrization. Thus we are

justified in saying the head limit and the head-tail limit.

For a path f : I → X, we will use f̂ to represent the standard change of base

point isomorphism, f̂([g]) = [f ] ∗ [g] ∗ [f ]. To prove Theorem 2.17, we will show

that for a homomorphism φ : H → π1(X, x0), where X is one dimensional Peano

continuum, there exists a path T (possibly trivial) such {T̂ φ(ai)r} has no almost

head-tail. We then use show that T̂ φ is induced by a continuous function.

For Theorem 3.9, we will use an upper semicontinuous decomposition of the

planar Peano continuum to get a continuous map into a one-dimensional Peano

continuum which is injective on fundamental groups. If πk is the decomposition

map, we show that we can lift the path T such that T̂ πk∗φ is induced be a continuous

map. Then for α the lift of T , we show that α̂φ is induced by a continuous function.

2 One-Dimensional Peano Continuum

For this section, we will fix X a one-dimensional Peano continuum and φ : H →

π1(X, x0) a homomorphism. If φ(ai) is eventually nullhomotopic, then Theorem
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2.17 follows trivially by letting T be the constant path and sending the i-th circle

of E to any representative of φ(ai). Thus with no loss of generally, we will assume

that φ(ai) is not eventually trivial.

2.1 Head-tail limit

We will begin, by showing that given an increasing sequence {ti} of almost head-

tails for {φ(ai)r}, there exists a head-tail limit T which is a path in X. To do this we

will define the weight of a function with respect to two sets with disjoint closures.

For a path f : I → X and U, V disjoint open subsets of X, let rf : f−1(U∪V ) →

{−1, 1} by rf (b) = 1 if f(b) ∈ U and rf (b) = −1 if f(b) ∈ V . Let wV
U (f) =

sup
( ∑

i

−rf (bi) ·rf (bi+1)
)

taken over all increasing countable subsets of f−1(U ∪V ).

For any collection consisting of 0 or 1 point, we will consider the sum to be 0.

If the image of two consecutive points in our countable subset of f−1(U ∪ V )

are contained in the same open set, then the sum would increase by deleting one.

Thus the supremum is obtained by choosing an increasing sequence of points from

f−1(U ∪ V ) whose image alternates between U and V . Therefore w counts the

number of times that the image of f alternates between U and V . If f is continuous

and U , V have disjoint closures, then its image is compact and can only alternate

between sets with disjoint closures finitely many times. So the supremum is actually

realized for some finite set of points. If U ′ ⊂ U and V ′ ⊂ V , then wV ′

U ′(f) ≤ wV
U (f).

Definition 2.1. The weight of f with respect to subsets A and B of X with disjoint

closures is wA
B(f) = inf wV

U (f) taken over all possible separations U and V of A and

B. If [f ] is a homotopy equivalence class of functions, then wA
B([f ]) = inf

f∼f ′
{wA

B(f ′)}.

If f is the reduced representative for [g], f = g
∣∣
I−(∪iJi)

, up to reparametrization,
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where Ji are open subintervals of I such that g
∣∣
Ji

is nullhomotopic rel endpoints.[2]

Hence, wU
V ([f ]) = wU

V (fr).

The set {wU
V (f) | U, V are a separation of A,B} is a subset of the natural num-

bers and hence has a minimum. Thus we may chose an open separation U , V such

that wA
B(f) = wV

U (f). For continuous f , f−1(U ∪ V ) is a finite collection of disjoint

open sets, Ii, in I with a natural ordering (Ii ≤ Ij if x ≤ y for all x ∈ Ii and y ∈ IJ)

such that f(Ii) ⊂ U or f(Ii) ⊂ V . If for some i, f(Ii) did not intersect the corre-

sponding A or B, then there would exist an open set containing the A or B which did

not intersect f(Ii) and thus alternate fewer times. Therefore, f(Ii) must intersect A

or B. So points which realize the weight can be chosen in the closures of A and B.

Thus there exists a finite increasing set of points {bi} which can be chosen to have

image in the closures of A and B such that wA
B(f) = wV

U (f) =
∑
i

−rf (bi) · rf (bi+1).

We will sometimes write wA
B(f) =

∑
i

−rf (bi) · rf (bi+1). This implicitly implies a

choice of U and V to define rf . However; if the points are chosen to have image in

the closure of A and B, rf (bi) is the same for every choice of U and V . Thus we

will ignore this choice at times.

This weight function is similar to Cannon and Conner’s oscillation function in

[4]; except, this function is discrete and A and B are allowed to be any two sets

with disjoint closures. This method of defining the weight, using open separations,

allows us to maintain the weight of a function under nerve approximations. Lemma

2.2 is the precise statement of how weight is preserved.

We will now fix a sequence {Oi} of finite order one covers such that mesh(Oi) <
1
i

and Oi+1 refines Oi. It is well known that X = lim
←
N (Oi). We will give an explicit

partition of unity for each Oi. Define θi
j : X → [0, 1] by θi

j(x) =
d(x,Oc

j)∑
Ok∈Oi

d(x,Oc
k)

.
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Let ρi be the map from X to N (Oi) obtained by using {θi
j(x)} as barycentric

coordinates for ρi(x) (see [9], p.119). Then a sequence of points (ρi(xn)) ⊂ N (Oi)

converges if and only if (θi
j(xn)) converges for every j.

Then for any two sets A, B in X with disjoint closures, their images in N (Oi)

under ρi eventually have disjoint closures by Lemma A1 and the compactness of X.

The weight of a homotopy class and the weight of its image under ρi∗ : π1(X, x0) →

π1(N (Oi), ρi(x0)) should eventually be the same. Lemma 2.1 is the first step in

showing the weight of a homotopy class is maintained.

Lemma 2.1. Let A, B be two subsets of X with disjoint closures. Let Ai and Bi

be the image of A and B in N (Oi), and f : [0, 1] → X continuous. Then for i

sufficiently large such that Ai and Bi are disjoint, wAi
Bi

(ρif) = w
ρ−1

i (Ai)

ρ−1
i (Bi)

(f).

Proof. Let As = ρ−1
i (Ai) and Bs = ρ−1

i (Bi)

If f(b) ∈ As (or Bs), then ρif(b) ∈ Ai (or Bi). Hence for some {bi}i ⊂ As ∪Bs,

wAs
Bs

(f) =
∑
i

−rf (bi) · rf (bi+1) =
∑
i

−rρif (bi) · rρif (bi+1) ≤ wAi
Bi

(ρif).

If ρif(b) ∈ Ai (or Bi), then f(b) ∈ As (or Bs). Hence for some {bi}i ⊂ Ai ∪ Bi,

wAi
Bi

(ρif) =
∑
i

−rρif (bi) · rρif (bi+1) =
∑
i

−rf (bi) · rf (bi+1) ≤ wAs
Bs

(f).

Lemma 2.2. Let A, B be two subsets of X with disjoint closures. Let Ai and Bi be

the image of A and B in N (Oi), and f : [0, 1] → X continuous. Then there exists

a k such that, for all i > k, wA
B(f) = wAi

Bi
(ρif). Even more, the same points in the

domain which realize wA
B(f) will also realize wAi

Bi
(ρif).

Proof. There exist disjoint open sets U , V such that wA
B(f) = wU

V (f). Since X is

compact, d(A, (X −U)), d(B, (X −V )) > 0. Let ε = min{d(A, (X −U)), d(B, (X −
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V ))}. For i > 1/ε, the mesh(Oi) < ε. Then by Lemma A1, ρ−1
i (Ai) ⊂ B1/i(A) ⊂ U

and ρ−1
i (Bi) ⊂ B1/i(B) ⊂ V .

By Lemma 2.1, there exists a k such that for i > k, wAi
Bi

(ρif) = w
ρ−1

i (Ai)

ρ−1
i (Bi)

(f).

For i > max{1/ε, k}; wA
B(f) = wU

V (f) ≥ w
ρ−1

i (Ai)

ρ−1
i (Bi)

(f) = wAi
Bi

(ρif), since U and

V are open sets containing ρ−1
i (Ai) and ρ−1

i (Bi) respectively. The other inequality,

wA
B(f) ≤ wAi

Bi
(ρif), follows since if f(a) ∈ A (or B) then ρif(a) ∈ Ai (or Bi).

We will now extend Lemma 2.2 to homotopy classes of paths, i.e. wA
B([f ]) is

eventually equal to wAi
Bi

(ρi∗([f ])). We will use a well know fact that the fundamental

group of a one-dimensional space embeds in the inverse limit of free groups. Curtis

and Fort showed this is true for the Menger curve in [6]. Cannon and Conner later

showed that this is still true in the case of compact one-dimensional metric spaces

in [2].

Lemma 2.3. Let f : [0, 1] → X be a reduced path. If (c, d) ⊂ I such that f
∣∣
(c,d)

is

not constant, then there exists a k such that for all i > k, ρif
∣∣
(c,d)

is not contained

in a nullhomotopic subpath of ρif ; consequently, the image of (ρif)r contains some

point of ρif
∣∣
(c,d)

.

Proof. Suppose there exists a subsequence (in) ⊂ N such that ρinf
∣∣
(c,d)

is contained

in a nullhomotpic subpath of ρinf for all n. Then there exists cn ≤ c < d ≤ dn

such that ρinf
∣∣
(cn,dn)

is nullhomotopic closed loop. By passing to subsequences, we

may assume that cn → c′ and dn → d′. Then d(f(c′), f(d′)) ≤ d(f(c′), f(cn)) +

d(f(cn), f(dn)) + d(f(dn), f(d′)). The first and last term go to zero since f is con-

tinuous and the middle term goes to zero by Lemma A1. Thus f
∣∣
[c′,d′]

is a closed

subpath of f . We will now show that this loop is nullhomotopic.
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By standard dimension theory, we may assume that X is embedded in R3 as

the intersection of handlebodies, H1 ⊃ H2 ⊃ · · · ⊃ ∩Hi = X. Then there exists

embeddings en : N (On) → Hkn such that enρn converge uniformly to the identity

function on X. [8]

Then Cannon and Conner showed that if a path is nullhomotopic in Hk for every

k, then it is nullhomotopic in X (Theorem 5.11 in [2]). Thus it is sufficient to show

that f
∣∣
[c′,d′]

is nullhomotopic in Hk for any k.

We may choose, in sufficiently large such that the straight line homotopy from

einρinf
∣∣
[cn,dn]

to f
∣∣
[c′,d′]

is contained in Hk. Hence, f
∣∣
[c′,d′]

is freely homotopic to a

nullhomotopic loop in Hk.

Then since Hk deformation retracts to a one-dimensional skeleton, f
∣∣
[c′,d′]

is

nullhomotopic in Hk. (If a loop is freely nullhomotopic in a one-dimensional space,

it is nullhomotopic. See [2])

Proposition 2.4. Let A, B be two subsets of X with disjoint closures, Ai and Bi

be the image of A and B in N (Oi), and f : [0, 1] → X continuous. Then there

exists a k such wA
B([f ]) = wAi

Bi
(ρi∗([f ])) for all i > k.

Proof. By Lemma 2.2 there exists a k′ such that wA
B([f ]) = wA

B(fr) = wAi
Bi

(ρifr) ≥

wAi
Bi

(ρi∗([f ])) for all i > k′.

There exist points {b0, · · · , bn} such that f(bi) ∈ A∪B and wA
B(fr) =

n∑
j=0

−rf (bj)·

rf (bj+1). Then for i > k′, wAi
Bi

(ρifr) =
n−1∑
j=0

−rρifr(bj) · rρifr(bj+1).

Then we may choose U ′, V ′, Ui, and Vi such that wA
B(fr) = wU ′

V ′(fr) and

wAi
Bi

(ρifr)) = wUi
Vi

(ρifr).

U = U ′ ∩ ρ−1
i (Ui) and V = V ′ ∩ ρ−1

i (Vi) are open sets which contain A and B
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and are contained inside of U ′ and V ′ respectively. Hence wA
B(fr) = wU

V (fr)

Let f−1
r (U ∪ V ) =

⋃
Im where Im are disjoint open subintervals of [0, 1] with

there natural ordering. Then there exists Imj
such that bj ∈ Imj

. Let cmj
and dmj

be the right and left end points of the open interval Imj
.

Then by a repeated application of Lemma 2.3 there exists a k such that for i > k

the image of (ρif)r contains some point of ρif
∣∣
(cmj ,dmj )

. Thus wA
B([f ]) = wA

B(fr) ≤

wAi
Bi

(ρi∗([f ])) for all i > max{k, k′}.

Lemma 2.5. If g is an essential closed curve, there exist sets O′, O′′ with disjoint

closures such that, for all r, wO′

O′′([g]r) ≥ r.

Proof. With no loss of generality, we may assume g is a reduced path since the

weight of the reduced path is less than the weight of all paths in its homotopy class.

Since the set of head-tails for g has a natural ordering which is bounded there

exists a maximal head-tail, t for g where g = t∗f ∗t such that f ∗f is reduced. Hence

wA
B([g]r) ≥ wA

B([f ]r) = r(wA
B([f ])) for all A and B. Since g is essential, f is essential.

Hence there exists O′ and O′′ with disjoint closures such that wO′

O′′([f ]) 6= 0. Then

wO′

O′′([g]r) ≥ r(wO′

O′′([f ])) ≥ r, for any r.

We will call f the core of g.

Lemma 2.6. If t is a head-tail for an essential reduced loop g based at x0 and h is

any loop also based at x0, then there exists an r such that [h ∗ gr] still has t as a

tail.

Proof. Let f be the core of g, with s the maximal head-tail of g so that g =

s ∗ f ∗ s . Since g is essential, f is essential. Then there exists O′ and O′′ such

that wO′

O′′([f ]r−1) > wO′

O′′(h ∗ s). Thus h ∗ s cannot contain an inverse for [f ]r−1 and

t
t→ h ∗ gr.
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Lemma 2.7. If t is a head-tail for an essential reduced loop g based at x0 and h is

any loop also based at x0, then there exists an r such that [gr ∗ h] still has h as a

head.

The proof is the same as for Lemma 2.6.

We will denote the continuous map which retracts E onto the outermost i circles

of E by Pi. We will frequently use the following theorem of Cannon and Conner.

Theorem 2.8. For ψ : H → F a homomorphism where F is a free group, there

exists an i such that ψ factors through Pi∗.

The main idea for this theorem is contained in Theorem 4.4 of [2] and a proof

can be found in [5].

For {ti} an increasing sequence of almost head-tails, we will write ti − ti−1 for

the subpath of ti such that ti = ti−1 ∗ (ti − ti−1). We now have sufficient tools to

be able to show that the existence of a head-tail limit of an increasing sequence of

almost head-tails.

Proposition 2.9. Let {ti} be an increasing sequence of almost head-tails for the

set {φ(ai)r}. Then {ti} has a head limit T , which is a path.

Proof. By passing to a subsequence of {ai}, we may assume that ti
h−t→ φ(ai)r. Let

xi be the terminal point of ti. Since X is compact, we may choose a subsequence

(xik) which converges to x ∈ X.

If {tik − tik−1
} is eventually contained in every open neighborhood of x, then the

ray T ′ = tk1 ∗ (tk2 − tk1) ∗ · · · has a single limit point and can be completed to a

10



continuous path T . For any i ∈ N there exists ks > i, therefore ti
h→ tks

h→ T for all

i. Then ti
h→ T for all i and T is independent of the subsequence chosen.

Suppose ti
h→ S for all i. Then {xi} ⊂ S, hence x ∈ S. Thus T

h→ S and T is

the head limit for {ti}.

If there exists an ε > 0 such that {ti− ti−1} is not eventually contained in Bε(x).

By passing to a subsequence of {ti}, we may assume that, for all i, ti − ti−1 is not

contained in Bε(x). Let A = Bε/2(x) and B = (Bε(x))
c. There exists an N such

that for all i ≥ N , xi ∈ Bε/2(x).

Let i1 = N and n1 = 1. By Proposition 2.4, we can choose an s1 such that, for

l ≥ s1, w
A
B(φ(ai1)) = wAl

Bl
(ρl∗φ(ai1)). By Theorem 2.8, we choose r1 such that, for

all l ≥ r1, ρs1∗φ = ρs1∗φPl∗.

Then by induction, suppose that ik−1, sk−1, rk−1, and nk−1 have been chosen.

Choose ik > max{rk−1, ik−1}. Hence ik is a strictly increasing sequence and

am is in the kernel of ρsk−1∗φ for all m ≥ ik. By Lemma 2.6, we may choose nk

such that tik
t→ φ(ai1 · · · a

nk
ik

)r. Then wA
B(φ(ai1 · · · a

nk
ik

)) ≥ ik − N for all ik, since

wA
B(tik) ≥ ik − N for ik ≥ N . There exists an sk > k such that, for l ≥ sk,

wA
B(φ(ai1 · · · a

nk
ik

)) = wAl
Bl

(ρl∗φ(ai1 · · · a
nk
ik

)). Choose rk such that ρsk∗φ = ρsk∗φPl∗ for

all l ≥ rk. Let a = ai1a
n2
i2
· · · . Then choose s such that, for l ≥ s, wA

B(φ(a)) =

wAl
Bl

(ρl∗φ(a)).

For k ∈ N such that sk ≥ s,

11



ik −N ≤ wA
B(φ(ai1 · · · a

nk
ik

))

= w
Ask
Bsk

(ρsk∗φ(ai1 · · · a
nk
ik

))

= w
Ask
Bsk

(ρsk∗φ(a))

= wA
B(φ(a)),

which is a contradiction since φ(a) must have a finite weight and ik diverges.

Let S = {tk| tk is an almost head-tail for {φ(ai)r}}. We will use the total oscil-

lation function T defined by Cannon, Conner, and Zastrow in [4] to show that S

has a countable cofinal sequence.

Theorem 2.10. There exists a maximal head-tail limit T for the set {φ(ai)r} such

that {(T̂ φ(ai))r} has no non-constant almost head-tail.

Proof. Let S = {tk| tk is an almost head-tail for {φ(ai)r}}. S is nonempty since

the constant path is a head-tail for all φ(ai). Given ti, tj ∈ S there exist φ(ak) such

that ti
h−t−→ φ(ak) and tj

h−t−→ φ(ak). Therefore, ti
h→ tj or tj

h→ ti. So S is totally

ordered by set inclusion.

The set {T (ti) | ti ∈ S} is a subset of the real numbers bounded by one where T is

the total oscillation function. Since S is totally ordered, T (ti) ≤ T (tj) if ti
h→ tj with

equality if and only if ti = tj (see [4], Theorem 2.3). Let C = sup{T (ti) | ti ∈ S}.

Then there exists a sequence {ti} ⊂ S such that T (ti) > C − 1
i
. Let T be the head

limit of {ti}. For any t ∈ S there exists a ti such that T (t) ≤ T (ti). Thus t
h→ ti.

Hence t
h→ T for any k and T is a maximal head-tail limit.

12



Suppose that {(T ∗ φ(ai) ∗ T )r} had an almost head-tail z. Let y path T ∗ z.

Then y is an almost head-tail for {φ(ai)r}. Hence z must be degenerate since T was

maximal.

2.2 Induced by a continuous function

Now, we will show that T̂ φ is induced by a continuous map.

Definition 2.2. Let f : I → X be continuous. Then the A-head of f is the maximal

head of f contained in the closure of A. Similarly the A-tail of f is the maximal

tail of f contained in the closure of A.

Lemma 2.11. Let f, g : I → X be reduced paths such that f(1) = g(0) ∈ A. If the

A-head of g is not an inverse for the A-tail of f , then wA
B([f ∗ g]) = wA

B(f)+wA
B(g).

Proof. Let f = a ∗ t and g = h ∗ b with t the A-tail of g and h the A-head of g.

Then the lemma follows trivially from the fact that the reduced loop for f ∗ g still

contains the paths a and b and also contains some point of the path t.

Lemma 2.12. Let fi : I → X be a reduced path such that the image of fi is not

contained in A and fi(1) = fi+1(0) ∈ A. If, for each i, the A-tail of fi is not a

inverse for the A-head of fi+1, then wA
B([f1 ∗ · · · ∗ fn]) =

n∑
i=1

wA
B(fi).

This follows by repeated use of the argument in the proof of Lemma 2.11.

Lemma 2.13. If t : I → X is a reduced path and {i ∈ N | t t9 φ(ai)r and t
h9

φ(ai)r} is finite, then there exists a head of t which is a almost head-tail for {φ(ai)r}.

Proof. Fix N such that, for all i ≥ N , t is a head or a tail of φ(ai)r. Let Mt = {i ≥

N | t t→ φ(ai)r and t
h9 φ(ai)r} and Mh = {i ≥ N | t h→ φ(ai)r and t

t9 φ(ai)r}.

13



Let A be a neighborhood of the initial point of t which does not contain the

image of t. Choose t′ to be the maximal head of t contained in A. Then t = t′ ∗ g

and t′
t→ φ(aj)r for j ∈ Mt. Choose B an open set in X such that A ∩ B = ∅ and

wA
B(g) 6= 0.

Claim: t′ is an almost head-tail for Mt

Suppose not, then there an infinite subset M ′ of Mt such that t′
h9 φ(aj)r for

all j ∈ M ′. Let i1 = min{j ∈ M ′} . There exists an s1 such that, for l ≥ s1,

wA
B(φ(ai1)) = wAl

Bl
(ρl∗φ(ai1)). Choose r1 such that ρs1∗φ = ρs1∗φPr1∗.

Then by induction, suppose that ik−1, sk−1, and rk−1 have been chosen.

Choose ik = min{j ∈ M ′ | j > max{rk−1, ik−1}}. Since φ(ais)r has t′ as

a tail and φ(ais+1)r does not have t′ as a head for each s; Lemma 2.12 implies

wA
B(φ(ai1 · · · aik)) ≥ k.

There exists an sk > k such that, for l ≥ sk, w
A
B(φ(ai1 · · · aik)) = wAl

Bl
(ρl∗φ(ai1 · · · aik)).

Choose rk such that ρsk∗φ = ρsk∗φPrk∗. Let a = ai1ai2 · · · . Then choose s such that,

for l ≥ s, wA
B(φ(a)) = wAl

Bl
(ρl∗φ(a)).

For k ∈ N such that sk ≥ s,

k ≤ wA
B(φ(ai1 · · · aik))

= w
Ask
Bsk

(ρsk∗φ(ai1 · · · aik))

= w
Ask
Bsk

(ρsk∗φ(a))

= wA
B(φ(a)),

which completes the proof of Claim 1 since φ(a) must have a finite weight.

Similarly, there exists t′′ an almost head-tail for Mh. Both t′ and t′′ are heads

of t. Thus t′
h→ t′′ or t′′

h→ t′.

14



Hence, t′ or t′′ is an almost head-tail for {φ(ai)r}.

Corollary 2.14. If a reduced path t : I → X is a head or a tail for an infinite

subset of {φ(ai)r}, then exists a head of t which is a almost head-tail for an infinite

subset of {φ(ai)r}.

If t is not itself a head or a tail for an infinite subset of {φ(ai)r}, then this is

actually just the claim from the proof of Lemma 2.13.

Lemma 2.15. Let t be a nondegenerate reduced path in X. If {φ(an)r} has no

almost head-tail, t can only be a head or a tail of finitely many of {φ(an)r}.

Proof. Let t : I → X be a nondegenerate reduced path. Proceeding by contradic-

tion, we will assume that t is a tail for infinitely many of {φ(an)r}.

Then by Lemma 2.14; there exists t̃, a head of t, such that t̃ is a head and a tail

for an infinite subset of {φ(an)r}.

Let M be the maximal subset of N such that t̃ is a head and a tail of φ(ai)r for

all i ∈M .

Let A be a neighborhood of the initial point of t which does not contain the

image of t̃. Choose t′ to be the maximal head of t contained in A. Then t̃ = t′ ∗ g

and t′
t→ φ(aj)r for j ∈ M . Choose B an open set in X such that A ∩ B = ∅ and

wA
B(g) 6= 0. By Lemma 2.13, there exists N an infinite subset of N such that, for

i ∈ N , t′ is neither a head nor a tail of φ(ai)r. We will now consider two cases.

1. There exists infinitely many i ∈ N such that φ(ai)r is not contained in A.

2. There exists only finitely many i ∈ N such that φ(ai)r is not contained in A.

15



Case 1: By passing to an infinite subset of N , we may assume that φ(ai)r is

not contained in A, for all i ∈ N .

Let m1 = min{j ∈M}. Let n1 = min{j ∈ N}. There exists an s1 such that, for

l ≥ s1, w
A
B(φ(am1an1) = wAl

Bl
(ρl∗φ(am1an1)r). Choose r1 such that ρs1∗φ = ρs1∗φPr1∗.

Then by induction, suppose that nk−1, mk−1, rk−1 and sk−1 have been chosen.

Choose mk = min{j ∈ M | j > max{rk−1,mk−1}} and nk = min{j ∈ N | j >

max{rk−1, nk−1}}.

For all j ≤ k, t′
h9 φ(anj

)r, t
′ t9 φ(anj

)r, and t′
h−t−→ φ(amj

)r. Hence, Lemma

2.12 implies that

wA
B(φ(am1an1 · · · amk

ank
)) =

k∑
j=1

wA
B(φ(amj

)) + wA
B(φ(anj

))

≥
k∑

j=1

wA
B(φ(amj

)) ≥ k

Choose an sk > k such that wA
B(φ(am1an1 · · · amk

ank
)) = wAl

Bl
(ρl∗φ(am1an1 · · · amk

ank
)),

for l ≥ sk. Choose rk such that ρsk∗φ = ρsk∗φPrk∗.

Let a = am1an1am2an2 · · · . Then choose s such that, for l ≥ s, wA
B(φ(a)) =

wAl
Bl

(ρl∗φ(a)).

For k ∈ N such that sk ≥ s,

k ≤ wA
B(φ(am1an1 · · · amk

ank
))

= w
Ask
Bsk

(ρsk∗φ(am1an1 · · · amk
ank

))

= w
Ask
Bsk

(ρsk∗φ(a))

= wA
B(φ(a)),
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which is a contradiction since φ(a) must have a finite weight.

Case 2: By passing to an infinite subset of N , we may assume that φ(ai)r is

contained in A, for all i ∈ N .

Let m1 = min{j ∈ M}. Let n1 = min{j ∈ N}. Choose p1 > 0 such that, for

some A1 and B1, w
A1
B1

(φ(ap1
n1

)) > 2wA1
B1

(t′).

There exists an s1 such that, for l ≥ s1, w
A
B(φ(am1a

p1
n1

) = wAl
Bl

(ρl∗φ(am1a
p1
n1

)r).

Choose r1 such that ρs1∗φ = ρs1∗φPr1∗.

Then by induction, suppose that nk−1, mk−1, pk−1, rk−1 and sk−1 have been

chosen.

Choose mk = min{j ∈ M | j > max{rk−1,mk−1}} and nk = min{j ∈ N | j >

max{rk−1, nk−1}}. Choose pk > 0 such that, for some Ak and Bk, w
Ak
Bk

(φ(apk
nk

)) >

2wAk
Bk

(t′).

Note that the weight requirement on φ(apk
nk

) implies that t̃ ∗ φ(apk
nk

)r ∗ t̃ cannot

be homotoped off of A.

wA
B(φ(am1a

p1
n1
· · · amk

apk
nk

)) =
k∑

j=1

wA
B(φ(amj

)) ≥ k

Choose an sk > k such that wA
B(φ(am1a

p1
n1
· · · amk

apk
nk

)) = wAl
Bl

(ρl∗φ(am1a
p1
n1
· · · amk

apk
nk

)),

for l ≥ sk. Choose rk such that ρsk∗φ = ρsk∗φPrk∗. Let a = am1a
p1
n1
am2a

p2
n2
· · · . Then

choose s such that, for l ≥ s, wA
B(φ(a)) = wAl

Bl
(ρl∗φ(a)).

For k ∈ N such that sk ≥ s,
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k ≤ wA
B(φ(am1a

p1
n1
· · · amk

apk
nk

))

= w
Ask
Bsk

(ρsk∗φ(am1a
p1
n1
· · · amk

apk
nk

))

= w
Ask
Bsk

(ρsk∗φ(a))

= wA
B(φ(a)),

which is a contradiction since φ(a) must have a finite weight.

Thus t can only be a tail of finitely many of {φ(an)r}. A symmetric argument

shows that t can only be a head of finitely many of {φ(an)r}, which completes the

proof.

Lemma 2.16. Suppose that {φ(an)} has no almost head-tail, then for all ε > 0

there exists an N such that {φ(an)r | n ≥ N} ⊂ i∗(π1(Bε(x0), x0)) where i∗ is the

inclusion induced homomorphism.

Proof. Proceeding by contradiction we will assume that there exist an ε > 0 such

that φ(aj)r * i∗(π1(Bε(x0), x0)) for all j ∈ J , where i∗ is the homomorphism induced

by the inclusion map and J is an infinite subset of N.

Let A = Bε/2(x0) ⊂ X and B = (Bε(x0))
c ⊂ X. Let be ti the maximal tail of

φ(ai)r contained in the closure of A.

Let i1 = min{j | j ∈ J}.

There exists an s1 such that for l ≥ s1 w
A
B(φ(ai1)) = wAl

Bl
(ρl∗φ(ai1)). Choose r1

such that ρs1∗φ = ρs1∗φPr1∗.

Then by induction, suppose that ik−1, sk−1, and rk−1 have been chosen.

By Lemma 2.15 there exists an Nk such that tik−1

h9 φ(aj)r for all j > Nk.

Choose ik = min{j ∈ J | j > max{rk−1, ik−1, Nk}}. There exists an sk > k
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such that for l ≥ sk w
A
B(φ(ai1 · · · aik)) = wAl

Bl
(ρl∗φ(ai1 · · · aik)). Choose rk such that

ρsk∗φ = ρs∗φPrk∗. Let a = ai1ai2 · · · . Then choose s such that, for l ≥ s, wA
B(φ(a)) =

wAl
Bl

(ρl∗φ(a)).

The wA
B([φ(aik)]) ≥ 2. Then by Lemma 2.12, wA

B([φ(ai1 · · · ain)]) ≥ 2n.

For k ∈ N such that sk ≥ s,

2k ≤ wA
B(φ(ai1 · · · aik))

= w
Ask
Bsk

(ρsk∗φ(ai1 · · · aik))

= w
Ask
Bsk

(ρsk∗φ(a))

= wA
B(φ(a)),

which is a contradiction since φ(a) must have a finite weight.

Theorem 2.17. Let φ : H → π1(X, x0) be a homomorphism from the Hawaiian

Earring group into the fundamental group of a one-dimensional Peano continuum

X. Then there exists a continuous function f : (E, 0) → (X, x) and a path T :

(I, 0, 1) → (X, x0, x) with the property that f∗ = T̂ φ.

Proof. By Theorem 2.10, there exists a path T such that {T̂ φ(ai)} has not almost

head-tail.

It is sufficient to show that for any ε > 0, there exists an N such that T̂ φ(Hk) ⊂

i∗(π1(Bε(x0), x0)) for all k ≥ N .

Proceeding by contradiction, suppose that there exists an ε > 0 such that

T̂ φ(Hk) 6⊂ i∗(π1(Bε(x0), x0)) for k ∈ J where J is some infinite subset of N.

By Lemma 2.16, there exists anN such that {T̂ φ(ak)r | k ≥ N} ⊂ i∗(π1(Bε/2(xo), x0))

where i∗ is the inclusion induced homomorphism. Choose m such that m ∈ J and
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m > N . Let b ∈ Hm such that T̂ φ(b)r 6∈ i∗(π1(Bε(x0), x0)). Then let A = Bε/2(x0)

and B = (Bε(x0))
c. Then wA

B(T̂ φ(b)r) > 0. Then there exists a k such that

wAk
Bk

(ρk∗T̂ φ(b)) > 0. By Theorem 2.8, there exists an s such that ρk∗T̂ φ = ρk∗T̂ φPs∗.

Then
(
ρk∗T̂ φPs∗(b)

)
r

is the a finite product of elements with image exterior to Bk.

Hence wAk
Bk

(
(
ρk∗T̂ φ(b)

)
r
) = 0, a contradiction.

3 Planar Peano Continuum

3.1 Delineation

We will now define a decomposition map from a planar Peano continuum into a

one-dimensional Peano continuum.

Definition 3.1. Let k a line in the plane and X a planar Peano continuum. Let πk :

X → X/G be a decomposition map where the nontrivial decomposition elements

of G are the maximal line segments in X which are parallel to k.

We will use Xk to denote the decomposition space corresponding to πk. Cannon

and Conner have shown that this is actually an upper semicontinuous decomposi-

tion, that Xk is a one-dimensional Peano continuum, and that the induced homo-

morphism on fundamental groups is injective (Theorem 1.4 in [3]).

Lemma 3.1. If g : I → X is a path and πkg has reduced representative α then

there exists g̃ : I → X such that πk g̃ = α up to reparameterizations.

Proof. If πkg is reduced, we are done. Otherwise there exists an interval [c, d] such

that πkg
∣∣
[c,d]

is nullhomotopic rel endpoints. Then πkg(c) = πkg(d) which implies

that the line segment g(c)g(d) is in contained in X. Then the loop g
∣∣
[c,d]
∗g(d)g(c)
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maps to πkg
∣∣
[c,d]

and hence must be nullhomotopic since πk∗ is injective. Therefore

g is homotopic to g′ where the subpath g
∣∣
[c,d]

is replaced by g(c)g(d).

If f is the reduced representative for [πkg], then f = πkg
∣∣
I−(∪iJi)

, up to reparametriza-

tion, where Ji = (ci, di) are disjoint open subintervals of I such that πkg
∣∣
Ji

is null-

homotopic rel endpoints. Let li be a parametrization of the line segment from g(di)

to g(ci).

Since g is uniformly continuous, diameter of {g
∣∣
[ci,di]

} must converge to zero.

Claim: There exists homotopies Hi : I × [ci, di] → X with the property that

Hi

∣∣
{0}×[ci,di]

= g
∣∣
[ci,di]

, Hi

∣∣
{1}×[ci,di]

= li, and Hi(I × [ci, di]) → 0.

Then Lemma A2 would imply that g is homotopic to g̃, the path where each sub-

path of g with nullhomotopic image is replaced by the corresponding line segment.

This would then complete the proof of the lemma.

The claim is actually just a corollary of Cannon and Conner’s proof that πk∗

is injective. They show that if h : S1 → X ⊂ R2 maps to a nullhomotopic loop

under πk, then h bounds a disk contained in the bounded component of R2− h(S1)

(see [3], p. 60-65). Hence we may choose Hi such that diam(Hi(I × [ci, di])) =

diam(g
∣∣
[ci,di]

∗ li) = diam(g
∣∣
[ci,di]

).

Lemma 3.2. Let A and B be disjoint closed saturated sets and Ak,BK their respec-

tive images under πk. Then wA
B(g) = wAk

Bk
(πkg).

This follows directly from the fact that the weight can be realized by a finite set

of points.

Lemma 3.3. The delineation map, πk, preserve weights of homotopy classes on

disjoint closed saturated sets, i.e. wA
B([g]) = wAk

Bk
([πkg]).
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Proof. Let g̃ be the path homotopic to g such that πk g̃ is reduced. Then wAk
Bk

([πkg]) =

wAk
Bk

(πk g̃) = wA
B(g̃) ≥ wA

B([g]). For g′ homotopic to g wA
B(g′) = wAk

Bk
(πkg

′) ≥

wAk
Bk

(πk g̃) = wAk
Bk

([πkg]). Then wA
B([g]) ≥ wAk

Bk
([πkg]).

Thus wA
B([g]) = wAk

Bk
([πkg]).

Definition 3.2. If g maps to a reduced path under πk, we will say that g is reduced

with respect to k or g is k-reduced. For any path g, if g̃ is reduced and homotopic

to g where g̃ is obtained by replacing subpaths of g by lines in X, then we will say

that g̃ is obtained by reducing g with respect to k.

Let k1 and k2 be disjoint lines in R2 which are parallel to k. If we choose

A = A′ ∩ X where A′ is the half-space with boundary k1 which does not contain

k2 and B = B′ ∩ X where B′ is the half-space with boundary k2 which does not

contain k1, then we can see that Lemma 3.3 implies that πk∗ preserves oscillation

with respect to all lines parallel to k.

Then it is easy to see that for g to be k reduced, a necessary condition is that it

have minimal weight in its path class with respect to all disjoint half-planes A and

B with boundaries parallel to k.

In fact this condition is also sufficient. Suppose g has minimal weight in its

path class with respect to all subsets A and B (as above). If πkg is not reduced,

then there exists g(c) and g(d) such that g(c)g(d) is in contained in X and πkg
∣∣
[c,d]

is nullhomotopic but not constant. Then g
∣∣
[c,d]

must not be contained in the line

segment g(c)g(d). However, then g is homotopic to g̃ where g
∣∣
[c,d]

is replace by

g(c)g(d) and the weight of g̃ is strictly less than the weight of g for some disjoint

half-planes with boundaries parallel to k.
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Thus we can see that if g is k-reduced and g̃ is obtained by reducing g with

respect to l, then g̃ is reduced with respect to l and k.

3.2 Induced by a continuous map

Fix a homomorphism φ : H → π1(X, x0) into the fundamental group of a planar

Peano continuum. We will show that φ is conjugate to a homomorphism induced

by a continuous map. For each line k in the plane, we will use Tk to denote the

path such that T̂k(πk∗φ) is induced by a continuous map where T̂k is the change of

base isomorphism induced by Tk.

Then the real key to being able to reduced the planar case to the one-dimensional

case is the following proposition.

Proposition 3.4. For k a line in the plane, there exists αk a path in X such that

πk(αk) = Tk .

To prove this proposition we will construct a single word a ∈ H such that

Tk
t→ (πkφ(a))r. The main idea is contained in the following lemma.

Lemma 3.5. Let f : E → X be a continuous function enjoying the property

f∗ = T̂kφ for some path Tk. Then there exists a ∈ H such that no nondegener-

ate terminal segment of Tk is a tail for f∗(a); i.e. for each s ∈ [0, 1], such that

T k|[0,s] is nondegenerate, T k|[0,s] is not a tail for f∗(a).

Proof. Since f is continuous, we may choose an increasing subsequence (in) ⊂ N

such that f∗(Hn) contains no inverse for f∗(ain−1). Additionally; we may choose

rin sufficiently large such that, for some Ai and Bi, w
Ai
Bi

(Tk) < wAi
Bi

(f∗(a
rin
in

)). Let

a =
∞∏

n=1

a
rin+1
in

.

23



Suppose that T k|[0,s] is a nondegenerate tail for f∗(a). Fix N > 0 such that

diam(f∗(
∞∏

n=N

a
rin+1
in

)r) <
1
2
diam(T k|[0,s]). Then f∗(

∞∏
n=N

a
rin+1
in

)r ⊂ T k([0, s]), which is

a contradiction since wAi
Bi

(Tk) < wAi
Bi

(f∗(a
rin
in

)) ≤ wAi
Bi

(f∗(
∞∏

n=N

a
rin+1
in

)).

Corollary 3.6. The path Tk is a tail for πk∗φ(a).

Proof. Note that (πk∗φ(a))r = (Tk ∗ f∗(a) ∗ T k)r and by the previous lemma (Tk ∗

f∗(a) ∗ T k)r = (Tk ∗ f∗(a))r ∗ T k.

Then Proposition 3.4 follows from Corollary 3.6 and Lemma 3.1.

Proposition 3.7. If k and l are non-parallel lines in the plane, then there exists a

path α in X such that πk(α) = Tk and πl(α) = Tl.

Proof. This is actually a corollary of the proof of Proposition 3.5.

Let f by the continuous map which induces T̂k(πk∗φ) and g the continuous map

which induces T̂l(πl∗φ).

Since f and g are continuous, we may choose an increasing subsequence (in) ⊂ N

such that f∗(Hn) contains no inverse for f∗(ain−1) and g∗(Hn) contains no inverse

for g∗(ain−1). Additionally, we may choose rin sufficiently large such that, for some

Ai, Bi, A
′
i, and B′i; w

Ai
Bi

(Tk) < wAi
Bi

(f∗(a
rin
in

)) and w
A′

i

B′
i
(Tl) < w

A′
i

B′
i
(g∗(a

rin
in

)). Let

a =
∞∏

n=1

a
rin+1
in

.

Fix h ∈ φ(a), a (k, l)-reduced path. Then Tk is at tail for πkf and Tl is a

tail for πlh. Let αk be the subpath of h mapping to Tk and βl the subpath of h

mapping to Tl. Notice that by our choice of ain and rin , πkαk is the maximal tail of

πkh = (πk∗φ(a))r such that no terminal segment of πkαk is a tail for (Tk ∗ f∗(a))r.
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Since no terminal segment of πkβl is a tail for (Tk ∗ f∗(a))r, πkβl is a subpath of

πkαk. A similiar argument applied to πl shows that πlαk is a subpath of πlβl. Thus

βl = αk.

We will now show that α is the path such that α̂φ is induced by a continuous

map.

Lemma 3.8. Let αk : I → X be a path with the property that πkαk = Tk, up to

reparametrization. Let U be a πk-saturated neighborhood of π−1
k (Tk(1)). Then for

sufficiently large n, {α̂kφ(Hn)} is contained in π1(U, α(1)).

Proof. If g is a loop based at a point y ∈ π−1
k (x) and w

π−1
k (x)

Uc (g) = 0, then [g] ∈

π1(U, y).

Let U be a πk-saturated neighborhood of π−1
k (Tk(1)). Let U ′ by an open πk-

saturated neighborhood of π−1
k (Tk(1)) with closure contained in the interior of U .

We must show that, for some sufficiently large n, wA
B(α̂φ(b)) = 0 for all b ∈ Hn

where A = π−1
k (Tk(1)) and B = U ′

c
.

Since T̂kπk∗φ is induced by a continuous map, there exists an N such that, for all

n > N , T̂kπk∗φ(Hn) ⊂ π1(πk(U
′), Tk(1)). Hence wAk

Bk
(T̂kπk∗φ(b)) = 0 for all b ∈ Hn

where n > N .

For b ∈ Hn, where n > N , let f be a k-reduced representative of α̂φ(b). Then

the wA
B(α̂φ(b)) ≤ wA

B(f) = wAk
Bk

(πkf) = wAk
Bk

(T̂kπk∗φ(b)) = 0.

Theorem 3.9. Let φ : H → π1(X, x0) a homomorphism into the fundamental

group of a planar Peano continuum X. Then there exists a continuous function
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f : (E, 0) → (X, x) and a path α : (I, 0, 1) → (X, x0, x), which have the property

that f∗ = α̂φ.

Proof. For k and l nonparallel lines in the plane, there exists a path α in X such

that πk(α) = Tk and πl(α) = Tl, by Lemma 3.7.

It is sufficient to show that for any neighborhood U of α(1) there exists an N

such that α̂φ(Hn) ⊂ π1(U, α(1)). This is done by finding Ul and Uk such that

Uk ∩ Ul ⊂ U and Ul is a πl-saturated neighborhood of π−1
l πl(α(1)) and Uk is a

πk-saturated neighborhood of π−1
k πk(α(1)).

4 APPENDIX

Lemma A1. If A ⊂ X and Ai = ρi(A), then ρ−1
i (Ai) ⊂ B1/i(A).

Proof. Let Oj ∈ Oi. Then Oj = ρ−1
i (ρi(Oj)), since θi

j(x) = 0 if and only if x 6∈ Oj.

If x ∈ ρi(Oj) ∩ Ai, then Oj ∩ A 6= ∅. Thus ρ−1
i (Ai) ⊂ B1/i(A).

Let x ∈ ρ−1
i (Ai) ∩ Oj. Then we must show that Oj ∩ A 6= ∅. There exists a

sequence in Ai which approaches ρi(x). Hence there exists a sequence (xn) ∈ A

such that ρi(xn) → ρi(x). Since x ∈ Oj, θ
i
j(x) > 0. Then (θi

j(xn)) is eventually

greater than zero. Hence (xn) is eventually in Oj. Thus Oj ∩ A 6= ∅.

A lemma due to Greg Conner and Mark Meilstrup.

Lemma A2. Let H be a function from the first-countable space X × Y into Z.

Let {Ci} be a null sequence of closed sets whose union is X. Suppose that {Di =

H(Ci × Y )} is a null sequence of sets in Z and H is continuous on each Ci × Y . If
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for every subsequence Cik → x0 there exists a z0 ∈ Z such that Dik → z0 then H is

continuous on X × Y .

Proof. Consider a sequence (xn, yn) → (x0, y0). For each n, choose an in such

that xn ∈ CiN . If {Cin} is finite then by restricting H to ∪nCin × Y we have

H(xn, yn) → H(x0, y0) be a finite application of the pasting lemma. If {Cin} is

infinite, then since {Ci} is a null sequence and xn ∈ Cni
, we have Cin → x0 and

thus H(xn, yn) ∈ Din → z0 = H(x0, yo). Thus H is continuous on all of X × Y .
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