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ABSTRACT

Fusions of Character Tables and Schur Rings of Dihedral Groups

Long Bao Nguyen

Department of Mathematics

Master of Science

A finite group H is said to fuse to a finite group G if the class algebra of G is

isomorphic to an S-ring over H which is a subalgebra of the class algebra of H . We

will also say that G fuses from H . In this case, the classes and characters of H can

fuse to give the character table of G. We investigate the case where H is the dihedral

group. In many cases, G can be completely determined. In general, G can be proven to

have many interesting properties. The theory is developed in terms of S-ring of Schur

and Wielandt.



ACKNOWLEDGMENTS

I would like to publicly thank Dr. Humphries for his invaluable help, guidance and

patience in the writing of this thesis.



Contents

1 Introduction 1

2 Main Results 2

3 Preliminaries 5

3.1 The Group Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Magic Rectangle Condition . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Groups which fuse from D2n 14

4.1 The Dihedral Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 D2n fuses to G where n is odd . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 D2n fuses to G where n is even . . . . . . . . . . . . . . . . . . . . . . 20

4.4 D2n fuses to G where |G| = 8p . . . . . . . . . . . . . . . . . . . . . . . 29

5 Schur Rings over Cyclic Groups 30

5.1 Classification of S-rings over Cyclic Groups . . . . . . . . . . . . . . . . 30

5.2 Application to Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 D2n fuses to G where |G| = 8p2 . . . . . . . . . . . . . . . . . . . . . . 42

vii



Chapter 1

Introduction

We investigate S-rings as developed by Schur and Wielandt and the fusion of groups.

We begin Chapter Two by stating the definitions of S-rings and fusion of groups. A

finite group H is said to fuse to a finite group G if the class algebra of G is isomorphic

to an S-ring over H which is a subalgebra of the class algebra of H . We will also say

that G fuses from H . In this case, the classes and characters of H can fuse to give

the character table of G. We investigate the case where H is the dihedral group. We

cover some necessary preliminaries, which include a discussion of the group algebra,

the Magic Rectangle Condition and some relevant basic results in Chapter Three. In

Chapter Four, we discuss the main problem of which groups fuse from D2n and look

at both the odd and even cases for n. We end the chapter by solving the 2n = 8p case.

Finally, in the Chapter Five, we dicuss the classification of Schur rings over cyclic

groups and apply it to our problem in the 2n = 8p2 case.
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Chapter 2

Main Results

Let G be a finite group and CG be its group ring over C. Suppose W ⊂ G, define

W :=
∑

w∈W

w ∈ CG and W (−1) := {w−1|w ∈ W}. In general, for n ∈ Z, define

W (n) := {wn|w ∈ W}.

Definition 2.0.1. Suppose {Si}m
i=1 is a partition of a finite group G satisfying three

conditions:

(1) S1 = {1}.

(2) If Si = {g1, · · ·, gs} then S
(−1)
i = {g−1

1 , · · ·, g−1
s } = Sj for some j.

(3) If i, j ≤ m, then S̄iS̄j =
∑

k aijkS̄k where aijk is a non-negative integer for all

i, j, k. These aijk’s are called the structure constants of the group G.

An S-ring S over G is the subalgebra of CG generated by S̄1, ..., S̄m.

We call each Si a S-principal subset of G. The set of all S-principal subsets will be

denoted by D(S). A subgroup H of G is an S-subgroup if H ∈ S.

Example 2.0.2. Suppose G is a finite group. Let S1 = {1} and S2 = G \ {1}. We can

easily check that this forms an S-ring over G. This is called the trivial S-ring.

Example 2.0.3. Let the S-principal subsets be the conjugacy classes of G. It can
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easily be checked that this partition also satisfies the S-ring conditions. This S-ring is

the class algebra of G.

Example 2.0.4. If N is a normal subgroup of G, then the conjugacy classes of G

contained in N form an S-ring over N . Denote this S-ring FG(N).

Definition 2.0.5. A finite group H is said to fuse to a finite group G if the class algebra

of G is isomorphic to an S-ring over H which is a subalgebra of the class algebra of H.

We will also say that G fuses from H. If G fuses from H, then under the isomorphism,

each class C of G corresponds to a subset C∗ ⊂ H, where C∗ is a union of conjugacy

classes of H. In this situation, we will say that C and C∗ correspond.

If X is a set, then |X| will denote the cardinality of X. Suppose n = 2m. Let

Dic2n = 〈a, b|am = b2, b4 = 1, b−1ab = a−1〉.

We call Dic2n the dicyclic group of order 2n.

Our main theorem is:

Theorem 2.0.6. Suppose G fuses from D2n.

i) If n is odd, then G ∼= D2n.

ii) If n = 2m, and m is odd, then G ∼= D2n.

iii) If 2n = 8p, then G ∼= D2n or G ∼= Dic2n.

iv) If 2n = 8p2, p an odd prime, then we have either, i) G is dihedral or dicyclic;

or ii) p=3 and G is the Frobenius group of order 72.

In the case where |G| = 4m, m is even with Z(G) = {1}, we can deduce the

following important properties for G:

1. G has at least two classes of size m.

3



2. G/G′ ∼= Z2
2.

3. G has a unique non-trivial class of odd size, which is a class of involutions.

4. Each non-linear irreducible complex character of G is of even degree.

5. G has a degree 2 irreducible character.

6. Each character of G is real;

7. Each element of G is conjugate to its inverse.

8. G is 2-nilpotent, that is, the Sylow 2-subgroup of G has a normal complement in

G.

9. G is solvable.

10. The Sylow 2-subgroup of G is dihedral, dicyclic or quasidihedral.

11. Let M be the normal subgroup of G which corresponds to 〈x〉 ≤ D2n. Then

(G, M, G′) is a Camina triple, that is, conjugacy classes of G in G \M are union

of cosets of G′.

12. G is not a direct product.

13. G has at most d(n) + 3 normal subgroups, where d(n) is the number of divisors

of n. Furthermore, for each divisor d < n of n, G has unique normal subgroup

of order d.

We will hereafter refer to these properties as Property n, 1 ≤ n ≤ 13.

4



Chapter 3

Preliminaries

We introduce the group algebra, the Magic Rectangle Condition and state some basic

results.

3.1 The Group Algebra

Suppose G is a finite group with elements {g1, ..., gn}. We define a vector space over C

with basis elements {g1, ..., gn} and denote it by CG. The elements of CG are formal

sums of the form,

λ1g1 + ... + λngn (λi ∈ C).

The rules for addition and scalar multiplication are the usual ones, that is, if

x =
n
∑

i=1

λigi and y =
n
∑

i=1

µigi,

are elements of CG, λ ∈ C, then,

x + y =

n
∑

i=1

(λi + µi)gi and λx =

n
∑

i=1

(λλi)gi.

We now define a product on CG to make it into an algebra:

5



(

∑

g∈G

λgg

)(

∑

h∈H

µhh

)

=
∑

g,h∈G

λgµhgh,

where λg, µh ∈ C. With these operations, CG is an algebra over C of dimension n. We

call this algebra the group algebra. An important vector subspace of CG is the center

of the group algebra, denoted Z(CG), which is defined as,

Z(CG) = {z ∈ CG : zr = rz for all r ∈ CG}.

It is a standard result that Z(CG) is generated by C1, ..., Cs, where the Ci’s are the

conjugacy classes of G. We also call Z(CG) the class algebra of G.

6



3.2 Magic Rectangle Condition

Suppose H fuses to G. Let B1 = {e}, B2 = {C21, ..., C2r2}, ..., Bf = {Cf 1, ..., Cf rf
}

denote the partition of the classes of H determined by the fusion. Then the charac-

ter table of H satisfies the Magic Rectangle Condition[Smith], that is, there exists a

partition of the irreducible characters of H ,

Φ1 = {χ1}, Φ2 = {χ21, ..., χ2s2}, ..., Φf = {χf 1, ..., χf sf
},

so that for each Φi, Bj the number

τij =

rj
∑

m=1

|Cjm|χit(Cjm)

(

rj
∑

m=1

|Cjm|)di

(3.1)

is independent of χit ∈ Φi, for 1 ≤ t ≤ si, and is equal to the value

si
∑

m=1

dimχim(Cjk)

si
∑

m=1

di
2
m

, (3.2)

which is independent of Cjk ∈ Bj for 1 ≤ k ≤ rj. Thus we have

τij =

rj
∑

m=1

|Cjm|χit(Cjm)

(

rj
∑

m=1

|Cjm|)di

=

si
∑

m=1

dimχim(Cjk)

si
∑

m=1

di
2
m

. (3.3)

Because of the well defined value of τij above, we obtain an f × f fused table with the

rows indexed by the Φi’s and columns indexed by the Bj’s where the value of the ijth

7



entry is ηiτij where ηi is

ηi =

√

√

√

√

si
∑

m=1

di
2
m. (3.4)

This f × f fused table is the character table for the fused group G. The irreducible

characters in each Φi is said to fuse to give an irreducible character of G.

We show that Z6 = 〈x〉 fuses to D6. The conjugacy classes of D6 are

{{1}, {(12), (13), (23)}, {(123), (132)}}.

We can easily check that the following correspondence gives the required fusion:

{1} 7→ {1},

{x2, x4} 7→ {(123), (132)},

{x, x3, x5} 7→ {(12), (13), (23)}.

The character table for the cyclic group C6 is:

e x2 x4 x3 x x5

χ0 1 1 1 1 1 1

χ3 1 1 1 −1 −1 −1

χ2 1 ρ4 ρ2 1 ρ2 ρ4

χ4 1 ρ2 ρ4 1 ρ4 ρ2

χ1 1 ρ2 ρ4 −1 ρ ρ−1

χ5 1 ρ4 ρ2 −1 ρ−1 ρ

where ρ = e2πi/6 and χi(x) = ρi. If we partition the columns according to the fusion

as {e}, {x2, x4}, {x3, x, x5} and the rows as {χ0}, {χ3}, {χ2, χ4, χ1, χ5}, we can easily

8



check that the magic rectangle condition is satisfied. The fused table is:

e {(1, 2, 3)} {(1, 2)}

χ0 1 1 1

χ1 1 1 -1

χ2 2 -1 0

The fused table is the character table for D6.

9



3.3 Basic Results

We now prove some basic results concerning fusions of groups.

Lemma 3.3.1. Suppose H fuses to G, where the classes of G are C1, .., Ct and the

corresponding subsets of H are H1, ..., Ht. Then |Ci| = |Hi| for all i ≤ t. In particular,

we have |H| = |G|.

Proof. Consider Ci and Hi for some i. We have

C̄iḠ = |Ci|Ḡ,

and

H̄iH̄ = |Hi|H̄.

Since Ci and Hi correspond, we must have |Ci| = |Hi| as required.

We then have this easy corollary.

Corollary 3.3.2. If B is an abelian group and if A fuses to B, then A and B are

isomorphic.

Proof. By Lemma 3.3.1, we see that |A| = |B| and all the principal subsets of A are of

size 1. Since B is an abelian group, the correspondence under the isomorphism of S-

rings is a one-to-one map of singletons. Moreover, the multiplication tables of the two

groups are the same since the structure constants are the same under the fusion.

The following result will be useful in proving the subsequent three lemmas, of which

we will make constant use.

Lemma 3.3.3. [LMa] Let S be an S-ring over the group G. Suppose there is a normal

subgroup H of G such that H ∈ S. Let ρ : G → G/H be the natural epimorphism.

10



i) If D = g1A1∪· · ·∪gkAk is an S-principal subset of G where the A′

is are nonempty

subsets of H and g1H, ..., gkH are distinct cosets of H, then |A1| = · · · = |Ak|.

ii) If D1, D2 are S-principal subsets of G, then either ρD1∩ρD2 = ∅ or ρD1 = ρD2.

Proof. i) Since, Ai ⊂ H for all i, we have,

D̄H̄ = |A1|g1H̄ + · · · + |Ak|gkH̄

= λD̄ +
∑

λiD̄i

= λ(g1Ā1 + g2Ā2 + · · · + gkĀk) +
∑

λiD̄i,

for integers λ, λi and where the Di’s are principal subsets. But clearly, by comparing

coefficients, we must have that λ = |A1| = · · · = |Ak|.

ii) Suppose D1 = g1B1 ∪ · · · ∪ gkBk and D2 = g1C1 ∪ · · · ∪ gkCk where Bi, Ci ⊂ H

with Bi, Ci not necessarily nonempty and g1H, ..., gkH distinct cosets of H . Assume,

ρD1 ∩ ρD2 6= ∅. Then there is some j such that Bj 6= ∅ and Cj 6= ∅ and we have,

D̄1H̄ = λ1D̄1 + λ2D̄2 + · · ·

where λ1, λ2 are positive integers since gjH̄ must be in the product above. Suppose

giCi 6= ∅. But this can happen only if the corresponding giBi isn’t empty in the

decomposition of D1 else giH is an empty set and giC̄i can’t appear on the right side

of the equation. Similarly, if Bi 6= ∅, we consider D̄2H̄ and conclude that Ci 6= ∅. Thus

the map either sent principal subsets to disjoint sets of cosets or to the same set.

Now we state a useful result due to Humphries and Johnson[HumphriesJohnson].

Definition 3.3.4. Let G, H be groups and let A be an S-ring on G. We say that H

fuses to A if there is a subalgebra of Z(CH) which is isomorphic to A.

11



Lemma 3.3.5. [HumphriesJohnson] Suppose that H fuses to G. Let N be a normal

subgroup of G. Then there is a normal subgroup M of H such that M fuses to FG(N)

and H/M fuses to G/N .

Proof. Since N is normal in G, N = C1 ∪ · · · ∪ Ct, where the Ci’s are conjugacy

classes of G. Let H1, ..., Ht be the corresponding subsets of H under the fusion and

M = H1∪· · ·∪Ht. We first prove that M is a subgroup. Since the structure constants of

products of the H̄i’s and C̄i’s are the same, we see that M is closed under multiplication

and thus is a subgroup. It is normal, being a union of conjugacy classes.

To prove the second part, let π : G → G/N be the quotient map and G/N =

{w1, ..., wu}. Let Di = {wi1 , ..., wiki
}, i ≤ s, be the conjugacy classes of G/N. Let

Ei = π−1(Di), i ≤ s, which is a union of cosets of N . If π(vi) = wi, for vi ∈ G,

then Ei = {vi1N, ..., viki
N}. If wiwj = wk, then we have (viN)(vjN) = vkN so that

viNvjN = |N |vkN . Thus if D̄iD̄j =
∑

k λijkD̄k, then ĒiĒj = |N |∑k λijkĒk and the

structural constants for the Di’s and Ei’s differ by a factor of |N |.

Now to simplify notation, we write the conjugacy class Di, a set of cosets of N , as

Di = {N1, ..., Nt}. Then by Lemma 3.3.3, Ei = π−1(Di) is a union of conjugacy classes

of G, say J1, ..., Jn where each Jj is evenly spread out over the Nk’s as defined by that

lemma. More precisely, Jj = g1A1∪· · ·∪gtAt, where the Ai’s are nonempty subsets of N

of equal size and giAi ⊂ Ni, 1 ≤ i ≤ t. In other words, the Jj ’s partition Ei’s. Consider

J1 = g1A1 ∪ · · · ∪ gtAt. Since H fuses to G, let K1 denotes the corresponding set in H .

We note that K1 is a union of classes of H . By the same lemma, K1 is evenly spread

out over the t cosets of M , say, M1, ..., Mt. To see this, consider J1N = |A1|
t
∑

i=1

Ni.

Since H fuses to G, this implies K1M = |A1|
t
∑

i=1

Mi, where the Mi’s are cosets of M .

Let Bi denote this set of cosets.

We claim that the correspondence between such Bi’s and Di’s will be our required

12



fusion of H/M to G/N . Now, Fi = (π
′

)−1(Bi) is a union of conjugacy classes of H .

We now show that just as Ei was partitioned into Jj’s above, Fi can be partitioned

into K1, ..., Kn such that Kj correspond to Jj under the fusion of H to G. Consider

Jk, for some k. Suppose Jk corresponds to J ′

k in H . Then J̄kN̄ is a linear combination

of N1, ..., Ns, a set of cosets which contain J1. By looking at structure constants, we

see that J̄ ′

kM̄ must be a linear combination of cosets which contain K1, i.e., the set

M1, ..., Mt. Thus J ′

k must be one of K1, ..., Kn. Similarly we can switch the role of

H and G to get the correspondence Kj → Jj , j ≤ n. Similar to the above analysis,

the structure constants for the Bi’s and the Fi’s differ by a factor of |N | and thus the

structure constants for the Bi’s and Di’s are the same as required.

Corollary 3.3.6. If H fuses to G, then there is a subgroup N containing H ′ such that

H/N ∼= G/G′.

Proof. By Lemma 3.3.5, there is a normal subgroup N ⊂ H corresponding to G′ ⊂ G.

That same results shows that H/N fuses to G/G′. But the latter is an abelian group

and by Corollary 3.3.1, we have H/N ∼= G/G′. That N contains H ′ follows since H/N

is abelian.

Lemma 3.3.7. Suppose that H fuses to G and let N be a normal subgroup of H such

that N̄ is in the S-ring over H. Then there is a normal subgroup M of G such that

H/N fuses to G/M.

Proof. Let the conjugacy classes of G be C1, ..., Ct and the corresponding subsets in H

be H1, ..., Ht. By hypothesis, we have N̄ =
∑

k µkH̄k, µk ∈ {0, 1}. Let M be the union

of the Ck’s where µk 6= 0. Then M is closed under multiplication and is normal as it

is a union of conjugacy classes. By 3.3.5, we have that H/N fuses to G/M .

13



Chapter 4

Groups which fuse from D2n

In this chapter, we begin our investigation of groups G which fuse from a dihedral

group.

4.1 The Dihedral Group

Recall that the dihedral group, D2n, has the following presentation:

D2n = 〈x, y : xn = 1, y2 = 1, y−1xy = x−1〉.

Here are some properties of this group that will prove useful:

The subgroup 〈x〉 is cyclic of size n and index 2, and thus is normal in D2n.

If n = 2m + 1, then the n+3
2

= m + 2 conjugacy classes of D2n are:

Ci = {xi, x−i}(0 ≤ i ≤ m), Cm+1 = {xjy|1 ≤ j ≤ n}.

Moreover, Z(D2n) = {1}.

14



If n = 2m, the n
2

+ 3 = m + 3 classes of D2n are:

Ci = {xi, x−i}(0 ≤ i ≤ m), Cm+1 = {x2jy|1 ≤ j ≤ m}, Cm+2 = {x2j−1y|1 ≤ j ≤ m}.

In this case, Z(D2n) = 〈xn/2〉 ∼= Z2.

The question that we want to investigate is: which groups fuse from dihedral

groups?

15



4.2 D2n fuses to G where n is odd

In this section, we investigate the case when n is odd and prove that G must be the

dihedral group.

Lemma 4.2.1. Let G be a finite group. Suppose G fuses from the dihedral group D2n,

where n is odd. Then G has a class C with n elements and all elements of C have

order 2.

Proof. Since D2n has a class of size n, G has a class C of size at least n. And since

|C| divides |G| and C clearly doesn’t contain the identity, we have that |C| = n. Let

x ∈ C. Since G acts transitively on C by conjugation, we have

|G| = 2n = |C||StabG(x)| = n|StabG(x)|.

So the subgroup StabG(x) has size 2. But x and e are in StabG(x) and so we must

have x2 = e. Thus all elements of C have order 2.

Next, we prove a result of Mann[Mann] which we will need later. If G is a finite

group, we denote by k = k(G) the number of conjugacy classes of G. Let d1, · · ·, dk

be the degrees of the irreducible characters of G, and write T (G) for the sum of these

degrees, that is,

T (G) =

k
∑

i=1

di.

Then we also have

|G| =
k
∑

i=1

d2
i .

Lemma 4.2.2. [Mann] For k and T (G) defined above, we have

√

|G| ≤ T (G) ≤
√

|G|k.

16



Proof. The left-hand inequality is clear as

√

d2
1 + · · · + d2

k ≤
√

(d1 + · · · + dk)2 ≤ d1 + · · · + dk.

Let d = (d1, ..., dk) and v = (1, ..., 1). By the Cauchy Schwartz Inequality, we have:

|〈d, v〉|2 ≤ 〈d, d〉 · 〈v, v〉,

which gives

T (G)2 ≤ |G|k,

and so

T (G) ≤
√

|G|k,

as required.

Lemma 4.2.3. [Mann] Let t(G) be the number of elements of G whose square is 1.

Then there exist numbers vi = 1, 0, or − 1 for i = 1, · · ·, k, such that

t(G) =
k
∑

i=1

vidi.

Proof. See [Mann].

Corollary 4.2.4. [Mann] t(G) ≤ T (G).

Proof. From Lemma 4.2.3, we have

t(G) =
k
∑

i=1

vidi ≤
k
∑

i=1

di = T (G),

as required.

17



We apply these results to G. Since the class C of G has n involutions, we see that

t(G) ≥ n + 1 and using Lemma 4.2.2, we have

n + 1 ≤ t(G) ≤ T (G) ≤
√

2nk.

This gives

(n + 1)2 ≤ 2nk,

and so

(n2 + 2n + 1)/(2n) ≤ k,

and finally,

[n/2 + 1 + 1/(2n)] ≤ k. (4.1)

By (4.1) and the fact that k is bounded above by the number of conjugacy classes

of D2n we have

n/2 + 1 + 1/(2n) ≤ k ≤ n/2 + 3/2.

As n is odd, k = n/2 + 3/2, which is the number of conjugacy classes for D2n. Thus G

has the same number of classes as D2n. We have just proved:

Proposition 4.2.5. Suppose G fuses from the dihedral group, D2n, where n is odd.

Then G has a class, C, of size n and every other conjugacy class of G has size 1 or

2. Further, the fusion of D2n to G determines an isomorphism of the class algebras of

D2n and G.

We will take advantage of the following three equivalent statements:

1) H fuses to G and G fuses to H .

2) Z(CG) ∼= Z(CH).

3) G and H have the same character table.
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The equivalence of 1) and 2) is trivial. The equivalence of 2) and 3) can be found

in [Feit, pg 42]. Now we prove Theorem 2.0.6 part i).

Theorem 4.2.6. With the same hypotheses as Proposition 4.2.5, G is isomorphic to

D2n.

Proof: By Proposition 4.2.5, we have Z(CG) ∼= Z(CD2n). Thus the character tables

for the two groups are the same. By a result of [Cel], stated below, G is isomorphic to

D2n.

Proposition 4.2.7. [Cel] If G is a finite group with the same character table as D2n

or Dic2n then G is isomorphic to D2n or Dic2n. Moreoever, D2n and Dic2n have the

same character table if and only if n ≡ 0(4).

Proof. See [Cel].
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4.3 D2n fuses to G where n is even

Proposition 4.3.1. Suppose D2n fuses to G where n is even. Then G does not have

a class of size n.

Proof. Suppose G does have a class C of size n. Let k be the number of classes of G.

As in the case when n is odd, each element in C is an involution. By Lemma 4.2.2 and

4.2.4, we have

n + 1 ≤ t(G) ≤ T (G) ≤
√

(2nk).

By the same argument, we conclude that

k ≥ [n/2 + 1 + 1/(2n)].

Since n is even, we have

k ≥ n/2 + 2. (4.2)

If n is even, the center of D2n has size 2 and thus by the fusion, the center of G must

have size at most 2. Suppose first that Z(G) is trivial. Since G has a class of size n, it

also has k − 2 classes each with at least two elements so that

1 + 2(k − 2) ≤ n.

Solving for k and using (4.2), we obtain

n

2
+ 2 ≤ k ≤ n

2
+

3

2
,

which is a contradiction. Thus Z(G) has order 2, that is, Z(G) = {1, z}, z2 = 1, z 6= 1.

But this implies that for any g ∈ C, StabG(g) contains {1, g, z, zg}, which is also a
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contradiction since this implies by the Orbit-Stabilizer Theorem that |G| = 4n.

As a consequence of this proposition, we have Property 1.

We now prove Property 2.

Lemma 4.3.2. If D2n fuses to G, n = 2m and Z(G) = {1}, then the normal subgroups

D′

2n and G′ correspond under the fusion. Thus, G/G′ is isomorphic to Z2
2.

Proof. The dihedral group D2n has two classes C1, C2 of involutions, each of size m.

By Proposition 4.3.1, these two classes do not fuse. Thus G has two classes of size m.

Let E1, E2 be classes of G corresponding to C1, C2 and hi ∈ Ci, gi ∈ Ei, i = 1, 2. In this

case, we have C̄i = hiD′

2n, i = 1, 2, which implies C̄i
2

= mD′

2n, i = 1, 2. Thus, because

of the fusion, there is a normal subgroup N ⊂ G corresponding to D′

2n such that

Ēi
2

= mN̄, i = 1, 2. By Lemma 3.3.5, D2n/D′

2n fuses to G/N . Since [D2n : D′

2n] = 4,

we have [G : N ] = 4.

By Lemma 3.3.6, there is a subgroup M of D2n containing D′

2n which corresponds

to G′ with D2n/M ∼= G/G′. We claim that M = D′

2n and N = G′. The quotient G/N

has size 4. Thus G/N is abelian and therefore N contains G′. We then have the natural

onto homomorphism G/G′ → G/N . And because D′

2n ⊂ M , we also have the natural

homomorphism D2n/D′

2n → D2n/M . Since these homomorphisms are onto, we must

have |G/G′| ≥ 4 and |D2n/M | ≤ 4. We have

4 = |D2n/D′

2n| ≥ |D2n/M | = |G/G′| ≥ |G/N | = 4.

Thus, M = D′

2n and N = G′.

Lemma 4.3.3. Suppose n = 2m, m ≥ 2. Then the dihedral group D2n = 〈x, y|xn, y2, y−1xy =

x−1〉 has three subgroups of index 2. They are:

M1 = 〈x〉; M2 = 〈x2, y〉; M3 = 〈x2, xy〉.
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Here, M1 is cyclic and M2, M3 are dihedral groups of order n = 2m. In addition, for

1 ≤ i 6= j ≤ 3, Mi ∩ Mj = 〈x2〉 = D′

2n. If C1, C2 are classes of D2n of size m, we can

reindex M2, M3 so that C1 is a class in M2 and C2 is a class in M3.

Proof. Clearly, Mi, i = 1, 2, 3 has index 2. Conversely, any subgroup of index 2 is

normal and contains the commutator subgroup, D′

2n with D2n/D′

2n
∼= Z2

2. Since Z2
2 has

three subgroups of index 2, by the Correspondence Isomorphism Theorem, there are

three subgroups of D2n of index 2 containing the commutator subgroup. The rest is

obvious.

Lemma 4.3.4. Let N be a subgroup of G of index 2. Let x 6∈ N such that G = 〈N, x〉.

Suppose g ∈ N and denote by C the class of g in N and C ′ the class of g in G. Then,

either C ′ = C or C ′ = C ∪Cx with C ∩Cx = ∅. Thus either |C ′| = |C| or |C ′| = 2|C|.

Proof. Since N has index 2 in G, N is normal in G. Let {1, a} be the transversal for

N . Thus, G = 〈N, a〉. For each h ∈ G \N , we can write h = h0a, with h0 ∈ N . Then,

Ch = Ch0a = Ca. We now show that either C = Ca or C ∩ Ca = ∅, or equivalently, if

their intersection is nonempty, then C = Ca. Suppose u ∈ C ∩ Ca. Then u ∈ C and

u = wa, with w ∈ C. We pick any v ∈ C. Since C contains both u, v, there is a y ∈ N

such that v = uy. We have,

v = uy = (wa)y = way = wyy−1ay.

But y−1ay = za for some z ∈ N . Thus,

v = wy(za) = (wyz)a ∈ Ca.

Thus, C ⊂ Ca and C = Ca since they have the same size.
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Theorem 4.3.5. Suppose D2n fuses to G, with n = 2m, where m is odd. Then

G ∼= D2n.

Proof. By Lemma 4.3.2, G/G′ ∼= Z2
2. Now, Z2

2 has three subgroups of index 2, all

of which are normal. We denote their complete preimages in G by N1, N2, N3. By

Lemma 3.3.5, let M1, M2, M3 be the corresponding subgroups in D2n. We can rename

these groups to coincide with those in Lemma 4.3.3. Now consider the two dihedral

subgroups of D2n, M2 and M3. As m is odd, M2, M3 each has a class of size m. Thus

C1 and C2 are also classes in M2 and M3, respectively. Under the fusion, N2, N3 must

each have a class of size at least m. Denote these classes by E2, E3. But since Ni has

order 2m and Ei ⊂ Ni, we have that |Ei| = m, i = 2, 3. It is then clear that E2, E3

must correspond to C1, C2 ⊂ D2n. Consider any element gi ∈ Ei. By Lemma 4.3.4,

the conjugacy class of gi in Ni has size m or m/2. As m is odd, we see that Ei must

also be a class in Ni, i = 2, 3. This implies that each element in Ei must have order 2.

Hence, the Ei’s are classes of involutions.

Let E = G\(N2∪N3). Then E is a union of classes of G. Let E ′ be the corresponding

union of classes of D2n. Since E ′ is the complement of M2 ∪ M3 in D2n, we have

E ′ = {x, x3, ..., x2m−1}.

E ′ has m elements and is its own inverse. Since x has order 2m and m is odd, E ′ has

an involution. Thus, E also has an involution. We then have t(G) ≥ 2m+2. As before,

we have,

2m + 2 ≤ t(G) ≤
√

4mk,

where k is the number of classes of G. Thus, k ≥ m+2+1/m. But k, being an integer,

implies k ≥ m + 3. But for n = 2m, D2n has m + 3 classes. Thus the centers of the

two group algebras are isomorphic. By Proposition 4.2.7, G ∼= D2n or G ∼= Dic2n.
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Now we prove that G can’t be isomorphic to the dicyclic group. Since m is odd, by

Proposition 4.2.7, the character tables of the dihedral and dicyclic groups are different

and hence Z(CD2n) ≇ Z(CDic2n). Thus, G ∼= D2n.

We prove Property 3.

Proposition 4.3.6. Suppose that D2n fuses to G, with n = 2m, m is even and Z(G) =

{1}. Then G has a unique class C of odd size. Moreoever, C is contained in G′ and is

a class of involutions.

Proof. Since n is even, D2n has nontrival center of size 2, say Z(D2n) = {1, z}. Let

C1, C2 be the two classes of size m. By assumption, we have Z(G) = {1}, so that the

class {z} of D2n must fuse with some of the other classes of D2n. By order consideration,

since classes have orders dividing the group, it can’t fuse with C1 or C2. Thus the class

{z} must fuse with a nonzero number of classes of D2n all of which have size 2. The

other fusions will consist of classes of order 2 and thus have even size. Moreover, C

is contained in the subgroup, N1, of G corresponding to the full rotational subgroup

of D2n. But since {1} and C are the only classes of odd size contained in N1, we

must have that C ⊂ G′. Since |C| is the only nontrivial class of odd size, we have

that C−1 = C and thus there must be at least one element in C which is its own

inverse, i.e an involution. Since all elements in C have the same order, C is a class of

involutions.

Now we prove Properties 4-7.

Proposition 4.3.7. Suppose that D2n fuses to G, where n is even. Then the character

degrees of G are

1, 1, 1, 1, d5, ..., dk,
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where d5, ..., dk are even. Also, r, the number of non-linear characters of D2n which

fuse to give a character of G, is a square.

Proof. Since G/G′ has size 4, G has 4 linear characters. By the Magic Rectangle Con-

dition, the non-linear characters of G are formed by fusing r of the degree 2 characters

of D2n. By using the first column, i.e. the column of the identity class, the degree of

any non-linear character of G is

si
∑

m=1

dimχim(Cjk)

si
∑

m=1

di
2
m

·

√

√

√

√

si
∑

m=1

di
2
m =

r
∑

i=1

2(2)

r
∑

i=1

22

·

√

√

√

√

r
∑

i=1

22 = 2
√

r,

which is even as required.

Lemma 4.3.8. Suppose that D4m fuses to G where Z(G) = {1}. Then G′ is not

abelian.

Proof. Suppose that G′ is abelian. Let x ∈ G′. Then G′ ⊂ CG(x). Since G/G′ ∼= Z2
2,

the conjugacy class containing x must have 2 or 4 elements. But this is a contradiction

as we have proven that there is a class of odd size in G′.

Lemma 4.3.9. Suppose that D4m fuses to G where Z(G) = {1}. Then f = min{χ(1)|χ ∈

Irr(G), χ(1) > 1} = 2.

Proof. By Proposition 4.3.7, f is even. Suppose f ≥ 4. Then 4 = |G/G′| ≤ f and thus

by [Isaacs(5.14)(b); pg 75], we have G′ is abelian, which is a contradiction to Lemma

4.3.8.

Lemma 4.3.10. If D2n fuses to G, then each character of G is real.

Proof. Since each element of D2n is conjugate to its inverse, the entries in the character

table for D2n are real. But the character table of G can be obtained from the character
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table of D2n by fusing using the Magic Rectangle Condition. Thus each character of

G is real.

Proposition 4.3.11. Suppose that D4m fuses to G. Then every g ∈ G is conjugate to

its inverse.

Proof. Since each character of G is real by Lemma 4.3.10, each element of G is conjugate

to its inverse.

We prove Properties 8-9.

Proposition 4.3.12. Suppose that D4m fuses to G. Then G is 2-nilpotent and solvable.

Proof. Since all the non-linear characters of G are even, then by [Huppert, page 313],

G is 2-nilpotent, that is, the Sylow 2-group of G has a normal complement. Let N be

the normal subgroup of odd order and index a power of 2. By Feit-Thompson, N is

solvable. And since G/N is a 2-group, it is solvable. Thus G is solvable.

We call G a p-group of maximal class if G has order pn and nilpotent class n − 1.

We state two theorems from Finite Groups by Huppert[Hup]. First, a quasidihedral

group is the group with the following presentation,

〈r, s | r2n−1

= s2 = 1, srs = r2n−2
−1〉.

Theorem 4.3.13. If G = 2n and of maximal class, then G is dihedral, dicyclic or

quasidihedral.

Theorem 4.3.14. Let G be a p-group of order pn, n ≥ 3. G is a p-group of maximal

class iff there exists an element in G whose conjugacy class size is pn−2.

Lemma 4.3.15. If G possesses an element x with |CG(x)| = 4, then the Sylow 2-group,

P , of G is dihedral, dicyclic or quasidihedral. In particular, |P/P ′| = 4 and P has a

cyclic group of order |P |/2.
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Proof. Let P be a Sylow 2-group of G of order 2n. Since |CG(x)| = 4, CG(x) is

a 2-group. Without loss of generality, we may assume CG(x) ⊂ P . By definition,

CP (x) = P ∩CG(x), thus |CP (x)| = 4. The class of x in P then has size 2n−2 and thus

by Theorem 4.3.14, P is a 2-group of maximal class and P is a dihedral, dicyclic or

quasidihedral by Theorem 4.3.13. The rest follows.

Now, we prove Properties 10-13.

Corollary 4.3.16. Suppose that D4m fuses to G, where m is even and Z(G) = {1}.

The Sylow 2-group of G is dihedral, dicyclic or quasidihedral.

Proof. Consider C1, the class of size m in G. Pick any x ∈ C1. Since |CG(x)| = 4, the

result follows from Lemma 4.3.15.

Definition 4.3.17. Suppose G is a finite group and M, N are proper normal subgroups

with N ≤ M . We say that (G,M,N) is a Camina triple if the conjugacy classes in G\M

are union of cosets of N . If M = N , (G,N) is a Camina pair.

Proposition 4.3.18. Suppose H fuses to G. Suppose that (H,M,N) is a Camina triple

and suppose that there are normal subgroups M ′, N ′ of G which correspond to M and

N , respectively. Then (G, M ′, N ′) is a Camina triple.

Proof. Consider a conjugacy class C ′ ⊂ G \ M ′. We prove that C ′ is a union of cosets

of N ′. Let C ′ corresponds to C ⊂ H \M under the fusion. Notice that C is a union of

cosets of N . By Lemma 3.3.5, H/N fuses to G/N ′. By the proof of the same lemma,

this fusion of quotient groups is determined by the fusion of H to G and since C is a

union of cosets of N , C ′ must be also.

Corollary 4.3.19. Suppose that D4m fuses to G, where m is even and Z(G) = {1}.

Let M be the normal subgroup of G corresponding to 〈x〉 ≤ D4m under the fusion.

Then (G, M, G′) is a Camina triple.
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Proof. Since (D4m, 〈x〉, D′

4m) is a Camina triple, by Proposition 4.3.18, (G, M, G′) is a

Camina triple as required.

Proposition 4.3.20. Suppose that D4m fuses to G, where m is even. G is not a direct

product.

Proof. Suppose that G is a direct product of nontrivial subgroups, H and K. Then

D2n is also a direct product of nontrivial subgroups. But this is only true if m is odd,

contradicting our hypothesis.

Proposition 4.3.21. Suppose that D2n fuses to G where n = 2m. Then G has at most

d(n) + 3 normal subgroups, where d(n) is the number of divisors of n. Furthermore,

for each divisor d < n of n, G has unique normal subgroup of order d.

Proof. By Lemma 3.3.5, each normal subgroup N of G corresponds to a normal sub-

group in D2n. Thus the number of normal subgroups of G is no more than the number

of normal subgroups of D2n, which is d(n)+3. The rest follows since with the exception

of M2 and M3 of Lemma 4.3.3, the only other normal subgroups of D2n are the cyclic

subgroups.
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4.4 D2n fuses to G where |G| = 8p

Now we prove our main theorem part iii).

Theorem 4.4.1. Suppose that D2n fuses to G where |G| = 8p. Then G ∼= D2n or

G ∼= Dic2n.

Proof. We use the classification of groups of order 8p by [Western]. There are 15 iso-

morphism classes. We can eliminate types 1)-3) since they are abelian. By Proposition

4.3.20, we can also eliminate types 4), 5),7)-9) and 14). The commutator subgroup of

types 6), 13) and 15) has index at least 8 and hence can also be eliminated by Prop-

erty 2, Proposition 4.3.2. Type 11) violates Properties 6 and 7 and hence can also be

eliminated. We have eliminated all but types 10) and 12) which are the dihedral and

dicyclic groups.
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Chapter 5

Schur Rings over Cyclic Groups

5.1 Classification of S-rings over Cyclic Groups

In this section, we introduce three types of S-ring and note a result of [LMan] which

says that an S-ring over Zn is one of these three types.

Suppose S is an S-ring over a cyclic group Zm for some m. Then S is one of the

following three types:

Type 1: A given S-ring S over G is of this type if we can find H ≤ Aut(Zm) such

that principal subsets of S are orbits of H .

Type 2: Suppose a cyclic group Zm is a direct product of two subgroups, H and K.

Let H ′ and K ′ be S-ring over H and K, respectively. Let {D1, ..., Dt} and {E1, ..., Es}

be the principal subsets of these S-ring. Then the S-ring of this type is generated by

the following principal subsets: {Di × Ej : 1 ≤ i ≤ t, 1 ≤ j ≤ s}. We call S the dot

product of H ′ and K ′.

Lemma 5.1.1. [LMan] Let H, K be subgroups of G with H a normal subgroup and

H ⊂ K. Let S be an S-ring over K. Suppose H is an S-subgroup and ρ : G → G/H is
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the natural mapping. Then D(ρ∗(S)) = {ρ(D) : D ∈ D(S)} generates an S-ring over

K/H.

Proof. This is a direct consequence of parts i) and ii) of Lemma 3.3.3.

Reversing this process, suppose SG/H is a S-ring over G/H with D(SG/H) = {E1, ..., Er}

where E1 = {H}. We define D0 = {e}, D1 = H \ {e} and Di = ρ−1(Ei) for i = 2, ..., r.

Then {D0, D1, ..., Dr} generates an S-ring over G. Moreover, ρ∗(ρ−1(SG/H)) = SG/H .

Type 3: To describe our next construction, we’ll restate Lemma 3.3.3.

Lemma 5.1.2. [LMa] Suppose there is a normal subgroup H of G such that H ∈ S.

Let ρ : G → G/H be the natural epimorphism.

i) If D = g1A1∪· · ·∪gkAk is an S-principal subset of G where the A′

is are nonempty

subsets of H and g1H, ..., gkH are distinct cosets of H, then |A1| = · · · = |Ak|.

ii) If D1, D2 are S-principal subsets of G, then either ρD1∩ρD2 = ∅ or ρD1 = ρD2.

Proposition 5.1.3. [LMan] Using the notation defined above, suppose K ⊃ H is

a subgroup in G with K/H being an SG/H-subgroup. For any S-ring SK of K with

H ∈ SK and ρ∗SK = (Z[K/H ]) ∩ SG/H , there is an S-ring S over G such that

D(S) = D(SK) ∪ {ρ−1(E) : E ∈ D(SG/H) with E * K/H}.

Furthermore, S ∩ Z[K] = SK and ρ∗S = SG/H .

Proof. See [LMan, Proposition 1.4].

The S-ring S constructed above is the wedge product of SK and SG/H and will be

denoted as SK ∧ SG/H .

Thus for any given S-ring S over G = Zm of this type, there exist cyclic subgroups

H and K satisfying the above proposition with S = SK ∧ SG/H .
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Example 5.1.4.

Suppose G = A4. Let

H = K = A′

4 = {1, (12)(34), (13)(24), (14)(23)}

be subgroups of G. Let

D(SG/H) = {{A′

4}, {(123)A′

4}, {(132)A′

4}}.

Trivially, K/H is an SG/H-subgroup. Let

D(SK) = {{1}, {(12)(34), (13)(24), (14)(23)}}

be the principal subsets which generate the S-ring over K. Clearly, we have that

H ∈ SK and ρ∗SK = (Z[K/H ])∩SG/H . Then the principal subsets which generate the

wedge product over G are

{{1}, {(12)(34), (13)(24), (14)(23)}, {(123)A′

4}, {(132)A′

4}}.

This is the class algebra of A4 which we have shown to be a wedge product. We now

state some important results from [LMan] about S-ring over cyclic groups.

Throughout this section, we assume G is cyclic and |G| is not prime. Let S be

the S-ring over G. Assume S is nontrivial and imprimitive. Since S is nontrivial, we

can consider all the proper S-subgroups of G, partially order them and pick H the

minimal, nontrivial subgroup. Then S∩Z[H ] is a primitive S-ring over H by choice of

H . Suppose further that |H| is not prime. Then S ∩Z[H ] must be trivial by Corollary

5.2.4. Thus H \ {e} is a principal subset. Let p be a divisor of |H| and the unique

subgroup of H of order p be denoted P1.
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With this setup, we have the following consequences.

Theorem 5.1.5. [LMan, Thm 3.4] Suppose H \ {e} is a principal subset of S and the

order of H is not prime. For any principal subset D which is not a union of H-cosets,

D = E or D = E · (H \ {e}), where E is a principal subset such that 〈E〉 ∩ H = {e}.

Proof. See [LMan, Theorem 3.4].

We now prove a theorem which describes S using smaller subgroups. Consider

{K|K is an S-subgroup with K ∩ H = {e}}.

This set is nonempty as {e} is in it. Pick K with the property that |K| has the largest

order.

Theorem 5.1.6. [LMan, Thm 3.5] Suppose |H| is not a prime and H \ {e} is a

principal subset. Let K be as above. Then S(KH) = S(K) · S(H). In particular, if

G = KH, then S = S(K) · S(H). And if HK 6= G, and ρ : G → G/H is the natural

homomorphism, then S = S(HK) ∧ ρ∗S.

Proof. Clearly, |H|, |K| are relatively prime. If D ⊂ K, we’re done since D = D · {e}.

If D is any principal subset in KH \K, then D can’t be a union of H-cosets since KH

is precisely the union of kH-cosets. By Theorem 5.1.5, D = E · (H \ {e}) or E, where

E is a principal subset whose generated group intersects H trivially. Since E ⊂ HK,

〈E〉 ⊂ K. Thus S(KH) = S(K) · S(H).

To show the last part of the theorem, we need only show that D is a union of

H-cosets if D is not in HK. Suppose not, then by 5.1.5, D = E · (H \ {e}) or E.

Since D * HK, we have that E * K. But this implies 〈E〉K is a S-subgroup properly

containing K, which also intersects H trivially, contradicting our choice of K. Thus D

must be a union of H-cosets.
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Example 5.1.7.

Suppose G = Z12 = 〈x〉. Suppose the S-ring S over G is generated by the following

principal subsets:

{{e}, {x4, x8}, {x3, x6, x9}, {x, x2, x5, x7, x10, x11}}.

Let H = 〈x3〉. Clearly, H satisfies the conditions of the theorem. In this case, K = 〈x4〉.

We then see that S = S(K) · S(H), where S(K) = {{e}, {x4, x8}} and S(H) =

{{e}, {x3, x6, x9}}.

Example 5.1.8.

Let G be as above. Let S be the S-ring generated by

{{e}, {x3, x6, x9}, {x, x4, x7, x10}, {x2, x5, x8, x11}}.

Let H = 〈x3〉 so that H satisfies the conditions of the theorem. In this case, K is the

trivial subgroup. Clearly, HK 6= G. Let ρ : G → G/H be the natural homomorphism.

We see then that S = S(HK) ∧ ρ∗S, where S(HK) = S(H) = {{e}, {x3, x6, x9}}.

We now state the two main results of [LMan]. As before, G is cyclic and S is the

nontrivial S-ring over G. The first result [LMan, Cor. 4.3 and Thm 4.5] states that

if G has at least one Sylow subgroup which is not an S-subgroup then S is a dot or

wedge product of smaller subgroups.

The second and main result of [LMan] is that if there is a subgroup H which is not

an S-subgroup, then S is a dot product or a wedge product of smaller subgroups. It is

the second result which we wish to be precise.

Suppose S is a nontrivial S-ring over a cyclic group G. Suppose there exists a

subgroup H which is not an S-subgroup. By Corollary 4.3 and Theorem 4.5 of [LMan],

we assume H is not a p-Sylow subgroup and that every p-Sylow subgroup is an S-

subgroup. Suppose |H| = pr1
1 pr2

2 · · ·prk

k , where each pi is prime and ri ≥ 1. Let Hi
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denote the unique subgroup of order pri

i . Since H is not an S-subgroup, not all Hi are

S-subgroups. Without loss of generality, assume H1 is not an S-subgroup. To simplify

our notation, we write p for p1, r for r1 and Pr for the p-Sylow subgroup of G. Suppose

{e} ≤ Pa1 ≤ · · · ≤ Pak
= Pr are all S-subgroups in Pr, where 0 = a0 < a1 < a2 · · · <

ak = r. Since H1 is a p-group and H1 is not an S-subgroup, ai+1 − ai 6= 1 for some i.

Let i be the smallest integer such that ai+1 − ai 6= 1. Set ai = s and ai+1 = t. We then

have the following lemma.

Lemma 5.1.9. [LMan, Lemma 5.1] Suppose all Sylow-subgroups of G are S-subgroups

and there exists a nontrivial subgroup H which is not an S-subgroup. Then there exists

a prime divisor of G, integers s, t with s + 2 ≤ t such that Pt \Ps is a principal subset.

We assume the conditions of the previous lemma. Let |G| = prm, where p doesn’t

divide m. Let M be the subgroup of order m. Since every Sylow subgroup of G is an

S-subgroup and M is a product of Sylow subgroups, M is also an S-subgroup.

Theorem 5.1.10. [LMan, Thm 5.2] With the same assumptions and notation of the

previous lemma, we have,

i)If s = 0, t = r, then S = S(Pr) · S(M).

ii)If r > t, s = 0, then S = S(PtM) ∧ ρ∗S, where ρ : G → G/Pt is the natural

homomorphism.

iii)If s ≥ 1, then S = S(PsM)∧ ρ∗S, where ρ : G → G/Ps is the natural homomor-

phism.

Proof. Part i) and ii) follows directly from 5.1.6.
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5.2 Application to Fusion

Now we apply the results from the previous section to our problem.

Proposition 5.2.1. Suppose that D4m, m = 2k fuses to G where Z(G) = {1}. Let S

denote the S-ring on Z2m = 〈x〉 ≤ D4m which fuses to FG(M1) and T the S-ring on

Zm = 〈x2〉 = D′

4m that fuses to FG(G′). Then Zm has a nontrivial subgroup H such

that H̄ 6∈ S and H̄ 6∈ T .

Proof. Since m is even, there is an element in Zm of order 2. Let H be the subgroup

generated by this element. Suppose H̄ ∈ T , then H̄ − 1 is an element of T , implying

that the S-ring on D4m has a non-identity class with one element. As Z(G) is trivial,

this is a contradiction.

Proposition 5.2.2. Suppose that D4m, m = 2k fuses to G where Z(G) = {1}. Let S

denote the S-ring on Z2m = 〈x〉 ≤ D4m which fuses to FG(M1) and T the S-ring on

Zm = 〈x2〉 = D′

4m that fuses to FG(G′). Then S and T are either dot products or wedge

products of strictly smaller rings.

Proof. By Theorem 5.2.4, since 2m and m are not primes and 2m − 1 and m − 1 do

not divide 4m, S and T must be imprimitive. By Proposition 5.2.1, Lemma 5.1.9, and

Theorem 5.1.10, the result follows.

An S-ring S on G is primitive if for every S-principal set D, 〈D〉 = G or 〈D〉 =

{1}. If S is not primitive, S is imprimitive. The followimg lemma will lead us to a

fundamental result of Wielandt.

Lemma 5.2.3. Let H be an abelian group and let p be a prime dividing |H|. Then

G = 〈xp|x ∈ H〉 is a proper subgroup of H.
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Proof. Define ρ : H → H by ρ(x) = xp. Since H is abelian, ρ is a homomorphism and

G = Im ρ. By Cauchy’s theorem, there is at least one element of order p and thus

Kerρ 6= {e}. Then |G| = |Imρ| < |H|.

Theorem 5.2.4. [Scott] If H is a finite Abelian group not of prime order, and P 6= E

is a cyclic Sylow p-subgroup, then there is no nontrivial, primitive S-ring R over H.

Proof. By Cauchy’s theorem, there exists a subgroup K of H of order p. By Sylow’s

Theorem, K lies in some conjugate of P and hence in P as P is the unique Sylow

p-subgroup. Since P is cyclic, K is unique. Suppose R is a nontrivial, primitive S-ring

over H , and let t̄ =
∑

xi 6= 1, xi ∈ H, be a basis element of R. By the Binomial

Theorem, t̄p ≡ ∑

xp
i (mod p). Suppose t̄p 6≡ je(mod p), for some integer j and e the

identity of H . But this implies Q = {xp
i } generates a nontrivial subgroup of H , a

contradiction since Q̄ ∈ R.

Thus, t̄p ≡ ∑

xp
i ≡ je(mod p). For all h ∈ H , either h has no pth roots in H

or an entire xK coset of them. To see this, suppose h = xp some x ∈ H . Then

(xk)p = xpkp = h, for any k ∈ K. Conversely, if xp = yp = h, then (xy−1)p = 1 and

xy−1 ∈ K. Thus, xK = yK.

For all i, either xp
i = e or xp

i = g for some g 6= e. In the first case, xi ∈ K, else K is

not the unique subgroup of order p. In the latter case, there must be p − 1 other xi’s

with xp
i = g else

∑

xp
i 6= je(mod p). Thus we can divide up the elements of t into two

groups: elements in K and xK cosets of pth roots. Hence,

t̄ = a + bK̄, a ∈ ZK, b ∈ ZH.

And since < t >= H and H 6= K, we see that b 6= 0.

Claim: There is a basis element of the form t̄ = bK̄. Suppose not, pick a basis

element t̄1 = a1 + b1K̄ such that L(b1)/L(a1) is a maximum and another basis element
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t̄2 = a2 + b2K̄ 6= t∗1, possibly t2 = t1. We then have

t̄1t̄2 = a1a2 + (a1b2 + b1a2 + b1b2|K|)K̄,

where the identity is not in the right term (since t2 6= t∗1) and thus

L(a1b2 + b1a2 + b1b2|K|)
L(a1a2)

>
L(b1a2)

L(a1a2)
=

L(b1)

L(a1)
.

But this is a contradiction since t̄1t̄2, being a linear combination of tj 6= e, means

t̄1t̄2 = λ3t̄3 + · · · + λkt̄k

= λ3(a3 + b3K̄) + · · · + λk(ak + bkK̄)

= (λ3a3 + · · ·+ λkak) + (λ3b3 + · · · + λkbk)K̄

And,

L(λ3b3 + · · ·+ λkbk)

L(λ3a3 + · · ·+ λkak)
≤

L(λ3b1a3)
L(a1)

+ · · ·+ L(λkakb1)
L(a1)

λ3L(a3) + · · ·+ λkL(ak)
=

L(b1)

L(a1)
,

since L(bn)
L(an)

≤ L(b1)
L(a1)

for all n. Thus, t̄ = bK̄ is a basis element.

Let

M = {h|h ∈ H, th = t}

and

N={h ∈ H|h occurs with coefficient L(t) in t∗t}.

Then, as proven in Lemma 5.2.5 , M = N. Clearly, K ⊂ M , and M is a proper

subgroup of H , else H = K. But M̄ ∈ R, contradicting the assumption that R is

primitive.
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Lemma 5.2.5. Suppose

M = {h|h ∈ H, th = t}

and

N={h ∈ H|h occurs with coefficient L(t) in t∗t}

as above. Then M = N.

Proof. Suppose t =
∑r

i=1 xi, so that L(t) = r. Let n ∈ N. Then,

t∗t = L(t)n + · · · = rn + · · ·

So for all x−1
i ∈ t∗, there exists a unique xji

∈ t such that x−1
i xji

= n. Hence,

tn = (x1 + · · · + xr)n

= x1n + · · ·+ xrn

= x1x
−1
1 xj1 + · · ·+ xrx

−1
r xjr

= xj1 + · · · + xjr

= t.

Thus n ∈ M and N ⊂ M . Conversely, let m ∈ M . Then

mt = m(x1 + · · · + xr)

= (x1 + · · ·+ xr).

Thus, for all j, there exists a unique ij , such that mxij = xj , that is, m = xjx
−1
ij

. And
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so,

t∗t = (x−1
1 + · · ·+ x−1

r )(x1 + · · · + xr)

= x1x
−1
j1

+ · · ·+ xrx
−1
jr

+ · · ·

= m + · · ·+ m + · · ·

= rm + · · · .

Hence, M ⊂ N.

The following corollary is thus trivial.

Corollary 5.2.6. Any S-ring S on a cyclic group satisfies one of:

1. dim(S) = 1,2;

2. S is imprimitive;

3. |G| is prime.

Proposition 5.2.7. Suppose that D4m fuses to G. Then there is a non-trivial normal

subgroup H of G which corresponds to a subgroup N ∼= Zh of Zn ⊂ D2n such that

D2n/N ∼= D2n/h fuses to G/H.

Proof. By Lemma 4.3.2, D′

2n
∼= Zm fuses to FG(G′). Let S be the S-ring on D′

2n

determined by this fusion. We claim S is imprimitive. Suppose not, then by Corollary

5.2.6, our only case is (1). Clearly, dim(S) 6= 1. If dim(S) = 2, we have two classes of

sizes 1 and m − 1. This means G has a class of size m − 1. But (m − 1)||G| implies

m − 1 ≤ 4, contrary to hypothesis. Thus S is imprimitive as claimed.

Hence there is some principal set E ⊂ Zm, such that N = 〈E〉 6= {1}, Zm. By

[Wielandt, Proposition 23.6], N ∈ S. Let H ≤ G′ be the corresponding subgroup
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promised by Lemma 3.3.7. Thus we have N = Zh cyclic and

D4m/N = D4m/Zh
∼= D4(m/h)

is the dihedral group which fuses to G/H by Lemma 3.3.5.

Proposition 5.2.8. Suppose that D4m fuses to G with m even and Z(G) = {1}. Let

S = FG(D1) be the S-ring for the dihedral group D1
∼= D2m. Then S is not a direct

product of S-rings.

Proof. If S is a dot product of S-rings, S = SHSK , then D2m = HK, for nontrivial

subgroups H, K, where m = 2k, with k odd. In fact, H and K must be Z2 and D2k,

respectively. But this implies e 6= x ∈ H must be a principal subset, contradicting the

fact that Z(G) is trivial.
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5.3 D2n fuses to G where |G| = 8p2

Proposition 5.3.1. Suppose that D4m, m even, fuses to G and let C ′ be a class in

G with corresponding subset C ⊂ Zm ⊂ D4m. Suppose that |C| is odd and that C is

invariant under the action of Aut(Zm) so that C is a union C = O1∪...∪Ot of Aut(Zm)

orbits. Since C is odd, we may assume that O1 = {xm}. Let ζ be a primitive 2mth

root of unity and let χ(h) be the character of D4m such that,

χ(h)(xu) = ζhu + ζ−hu, χ(h)(yxu) = 0.

Let nv be the order of an element in Ov and let µ denote the Mobius function, φ the

Euler function. Let the index i correspond to the partition of the characters containing

χ(h) and the index j to C. Then for τij defined in the Magic Rectangle Section, we

have,

τij =
1

|C|((−1)h +
t
∑

v=2

φ(nv)

φ( nv

gcd(h,nv)
)
µ(

nv

gcd(h, nv)
)). (5.1)

The character value of G is τij(2
√

w) where w is the number of characters in that part

of the partition which contains χ(h), in this case w is a square and is an integer.

Proof. If Y = Yn is the set of all primitive nth roots of unity, then Ȳ = µ(n).[NivenZuckerman,

page 197] If m ∈ N, we have,

Ȳ (m) =
φ(n)

φ( n
gcd(n,m)

)
Ȳn/gcd(n,m).

Since C ⊂ Zm, each conjugacy class not equal to O1 has 2 elements. From the Magic
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Rectangle Condition, Equation 3.1,

τij =

trj
∑

m=t1

|Cm|Xwk
(Cm)

[

trj
∑

m=t1

|Cm|]di

,

we see that the denominator is 2|C|. From the character table of the dihedral group,

we have χ(h)(xm) = 2(−1)h. Each orbit Ov, v > 1, is a union of elements of order nv.

It is also a union of classes of D4m. The character value for each class {xu, x−u} is

ζhu + ζ−hu, 1 ≤ h ≤ m − 1. Since Ov is a union of elements of order nv, the value of

Equation 3.1 on Ov is,

2
∑

(ζhu + ζ−uh) = 2Ȳ (h)
nv

.

Thus the numerator of τij is,

2(−1)h + 2

t
∑

v=2

Ȳ (h)
nv

= 2(−1)h + 2

t
∑

v=2

φ(nv)

φ( nv

gcd(nv,h)
)
Ȳ nv

gcd(nv,h)

= 2(−1)h + 2

t
∑

v=2

φ(nv)

φ( nv

gcd(nv,h)
)
µ(

nv

gcd(nv, h)
).

Finally, since the column of the character table of D4m corresponding to the non-

trivial class of size one is (1, 1, 1, 1,±2, ...,±2), the value of τij corresponding to that

class is a sum of 2’s and −2’s. Thus the corresponding entry in the character table of

G from the Magic Rectangle Condition is,

ηiτij = τij

√

√

√

√

si
∑

m=1

d2
im

= τij

√
4w = 2

√
wτij ,
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as required.

Theorem 5.3.2. Suppose that G fuses from a dihedral group and that |G| = 8p2 where

p is an odd prime. Then we have either, i) G is dihedral or dicyclic; or ii) p=3 and G

is the group of order 72.

Proof. Let C ⊂ Z2p2 corresponds to the class C ′ of G which has odd size given by

Property 3, Proposition 4.3.6. Then |C| is p or p2 as these are the only odd divisors

of |G|. We first show that C must be a union of automorphism classes of Z2p2, that

is, we show that if C contains an element of a certain order, it must contain all of the

elements of that order in 〈x2〉 = D′

8p2
∼= Z2p2 .

For every principal subset T , we define T (n) = {gn|g ∈ T}. By [Wielandt, Theorem

23.9], a subset T ⊂ D′

8p2
∼= Z2p2 is a principal subset if and only if T (n) is a principal

subset for n prime to 2p2. Suppose g ∈ C and h ∈ Z2p2 with |g| = |h| = r. We show

h ∈ C. Since |g| = |h| = r, there exists a t with gcd(t, 2p2) = 1 such that gt = h. By

[Wielandt, Thm 23.9], C(t) is also a principal subset. Since t is odd and a = x2p2 ∈ C,

at = x2p2 ∈ C(t). But C(t) is a principal subset implies C(t) = C. Thus gt = h ∈ C.

We first claim that C = C2 ∪ C2p. There are two cases to consider: |C| = p or

|C| = p2.

If |C| = p, then C is either C2∪Cp or C2∪C2p where Ci denotes the set of elements

in D′

2n of order i. We show that the first case yields a contradiction.

Clearly, C is invariant under the action of Aut(Zm) and |C| is odd. We can thus

apply Proposition 5.3.1. The character value of G for the column corresponding to C

and the character corresponding to the fusion of characters containing χh is

1

p

(

(−1)h +
φ(p)

φ(p/gcd(h, p))
µ(p/gcd(h, p))

)

2
√

w.

If we consider the partition containing χh, where h is odd and gcd(h, p2) = p, in the
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character table for D2n, then in the fusion the character table value for G for the rows

of the partition of characters which contain χh and the column of C ′ is 2(p− 2)
√

w/p.

By Proposition 5.3.1, this is an integer, hence w ≥ p2. But 1 ≤ h < 2p2, thus h can

take on exactly p values. Then w ≤ p, which is a contradiction.

If |C| = p2, then we have four cases: i)C = C2 ∪ Cp ∪ Cp2, ii)C = C2 ∪ Cp ∪ C2p2,

iii)C = C2 ∪ C2p ∪ Cp2, iv)C = C2 ∪ C2p ∪ C2p2 .

Case (i): C = C2 ∪ Cp ∪ Cp2; as before the character value is

1

p2

(

(−1)h +
φ(p)

φ(p/gcd(h, p))
µ(p/gcd(h, p)) +

φ(p2)

φ(p2/gcd(h, p2))
µ(p2/gcd(h, p2))

)

2
√

w.

If h is odd and gcd(p2, h) = 1, this equates to −4
√

w/p2. As this value must be an

integer, we have w ≥ p4 but there can only be at most 2p2 − 1 such values of h, which

again is a contradiction.

Case ii): C = C2 ∪ Cp ∪ C2p2; the character value for this case is,

1

p2

(

(−1)h +
φ(p)

φ(p/gcd(h, p))
µ(p/gcd(h, p)) +

φ(2p2)

φ(2p2/gcd(h, 2p2))
µ(2p2/gcd(h, 2p2))

)

2
√

w.

If h is odd and gcd(p2, h) = 1, this equals −4
√

w/p2. Since this value is an integer,

w ≥ p4 but only p such values of h satisfy this condition, which is a contradiction.

Case iii): C = C2 ∪ C2p ∪ Cp2; the character value is

1

p2

(

(−1)h +
φ(2p)

φ(2p/gcd(h, 2p))
µ(2p/gcd(h, 2p)) +

φ(p2)

φ(p2/gcd(h, p2))
µ(p2/gcd(h, p2))

)

2
√

w.

If h is odd and gcd(p2, h) = p, the above value is −4
√

w/p2. But this gives w ≥ p4, a

contradiction.
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Case iv): C = C2 ∪ C2p ∪ C2p2 ; the character value is

1

p2

(

(−1)h +
φ(2p)

φ(2p/gcd(h, 2p))
µ(2p/gcd(h, 2p)) +

φ(2p2)

φ(2p2/gcd(h, 2p2))
µ(2p2/gcd(h, 2p2))

)

2
√

w.

If gcd(h, p2) is not p2, our value is 0 and if gcd(h, p2) = p2, that is, when h = p2, our

value is −2. Thus we see that case iv) is the only possible case. And in this case,

the common value of χh for the columns of the classes making up C by the Magic

Rectangle Condition is 0 for all h except when h = p2 in which case we get −2. Thus

the character χh of D8p2 does not fuse with any other character and is a character of

degree 2. Notice we can also check by using the Magic Rectangle Equation 3.2 directly

to get −2. Moreover, for any h 6= p2, since χh gives the value 0, χh must fuse with at

least one other degree 2 character. Thus G only has one irreducible character of degree

2.

By Property 8, Proposition 4.3.12, the Sylow 2-subgroup of G has a normal comple-

ment, that is, G = NS. Consider the S-ring FG(N) on N determined by the fusion. If

this S-ring is imprimitive, we can find a nontrivial subgroup J of N with J̄ ∈ FG(N).

Then |J | = p and by Lemma 3.3.5, D8p fuses to G/J . Thus G/J is dihedral or dicyclic

by Theorem 4.4.1. But, assuming p > 2, G/J has more than one irreducible represen-

tation of degree 2. By lifting these irreducible characters to those of G, we have that

G also has more than one irreducible character of degree 2 which is a contradiction.

Thus the S-ring on N is primitive and fuses from a cyclic group of order p2. And

by [Wielandt Theorem 25.4], since p2 isn’t prime, FG(N) is trivial. Thus G must have

a class of size p2 − 1. Then we must have that (p2 − 1)|8 and the only prime which

satisfies this divisibility is 3. Thus G is the group of order 72 in this case.

We can now assume that C = C2 ∪ C2p. In [Yuanda, pg. 77-93], Yuanda classified

groups of order 8p2 using 6 lemmas. By Property 10, the Sylow-2 group of G must be
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dihedral, dicyclic or abelian of type [4,2]. We can thus eliminate all the groups from

Lemmas 2 and 4. We can also eliminate groups from Lemma 3 since the index of the

commutator subgroup of these groups is at least 8. Groups from Lemma 1 can also

be eliminated by Property 10 and the requirement that G has trivial center. From the

remaining lemmas, there are only 2 groups with trivial center and |G/G′| = 4. These

two groups can be eliminated since they each have a class of size p2 contradicting

Property 3 in which we proved that G has a unique nontrivial class of odd size.

Now, suppose G has nontrivial center. Then Z(G) ∼= Z2. As before, Property 10

will help us eliminate all the groups from Lemmas 2 and 4. There are three groups

from Lemma 1 with Z(G) ∼= Z2. Two of these groups are dihedral and dicyclic. The

last one has presentation:

G = 〈a, x, y|ap2

= x4 = y2 = 1, xy = x−1, ax = a−1 = ay〉.

But this group violates Property 6 and 7. The element axy, for example, is not

conjugate to its inverse. Finally, there are 5 groups from Lemmas 5 and 6 with Z(G) ∼=

Z2. But all five violates Property 13 since each has at least 2 distinct normal subgroups

of size p.

We have eliminated all groups in the classification except for the two groups listed

on page 79 of [Yuanda], which are the dihedral and dicyclic groups.
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