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ABSTRACT  

INVESTIGATING THE DOMAIN OF GEOMETRIC INDUCTIVE REASONING 

PROBLEMS: A STRUCTURAL EQUATION MODELING ANALYSIS 

Kairong Wang 

Department of Instructional Psychology and Technology 

Doctor of Philosophy 

 
Matrix inductive reasoning has been a popular research topic due to its claimed 

relationship with the general factor of intelligence. In this research, four subabilities were 

identified: working memory, rule induction, rule application, and figure detection. This 

quantitative study examined the relationship between these four subabilites and students’ 

general ability to solve Matrix Reasoning problems.  Using tests developed for this 

research to measure the identified subabilities, the data were collected from 334 Chinese 

students aged from 12 to 15. Structural equation modeling method was used to analyze 

the collected data and to evaluate the hypothesized models. 

Results from the analysis showed that a valid model existed to represent the 

construct of matrix inductive reasoning. Except for figural detection ability, the other 

three subabilities had significant direct effects on matrix inductive reasoning ability. 

Readers should interpret from this result with caution due to the unsatisfactory reliability 

of the Figure Detection scores.  



 

 To improve the validity of the interpretation, a new model without the latent 

variable of figure detection was reexamined. In this analysis, significant relationships still 

existed from the three subablities to matrix inductive reasoning ability. The strongest 

relationship existed from working memory ability to matrix reasoning ability, with a 

standardized coefficient of .52. Effects from rule induction and rule application ability to 

matrix reasoning dropped to .36 and .34 respectively. These results suggested the 

important role of working memory on solving inductive reasoning problems. In addition, 

a significant and substantial indirect path was found that lead from working memory  

rule induction  rule application  matrix reasoning. The indirect path indicated that a 

process existed when students solved Matrix Reasoning tasks.  
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Chapter 1: Introduction 

 

Need for Research on Matrix Inductive Reasoning 

Human intelligence studies show that human abilities are strongly correlated. Of 

these abilities, a dominant factor which Spearman (1904) labels as g for general 

intelligence exist; the g factor influences the performance of all cognitive tasks. Lohman 

(2001) suggests that “. . . to understand essential aspects of what g might be and measure 

it clearly, we can start by understanding and measuring inductive reasoning abilities” (p. 

220). After reviewing literature concerning cognitive tasks, Sternberg (1986) also 

concludes that “reasoning ability appears to be central to intelligence” (pp. 309-310). The 

fundamental position of reasoning ability has also been confirmed by a set of tests that 

were developed to examine inductive reasoning ability; these tests are known as Raven’s 

Progressive Matrices Tests. In a summary scaling of several ability tests and learning 

tasks, Raven’s test ranked directly in the center (Marshalek, Lohman & Snow, 1983).  

Inductive reasoning, therefore, could be the starting point for intelligence research.  

Studies on inductive reasoning help researchers gain a deeper understanding of human 

intelligence, which in turn may be used to find practical ways to improve human learning 

performance. 

  Matrix inductive reasoning is a form of analogical reasoning that involves 

inducing the rule or rules which govern the arrangement of geometric figures organized 

in rows and columns according to some predictable pattern.  One cell of the matrix is 

deliberately left blank.  The task of the examinee is to make an inference about which 

figure should be placed in the blank cell to best complete the observed pattern. .Matrix 
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inductive reasoning tests are popular instruments for conducting research because of their 

nonverbal and culture-free characteristics studies on matrix inductive reasoning are 

primarily based upon Raven’s Progressive Matrices. Many of these studies have focused 

on the structure and psychometric characteristics of the matrix tasks or on cross-cultural 

comparisons (Arendasy, 2005; Carpenter, Just & Shell, 1990; Mulholland, Pellegrino & 

Glaser, 1980; Primi, 2002; Sternberg, 1986). However, for educational purposes, in 

addition to research on item and test analysis, practical methods to improve performance 

in solving reasoning problems such as what abilities are required and how these abilities 

are related must be addressed. These questions involve investigations of the domain 

theory of inductive reasoning.  

The term domain theory, as applied in educational measurement, was first used by 

Messick (1995). He claimed that “A major goal of domain theory is to understand the 

construct-relevant source of task difficulty, which will then serve as a guide to the 

rational development and scoring of performance tasks and other assessment formats”  

(p. 112).  Bunderson (2002) extended the concept of domain theory by stressing the 

importance of developing theory simultaneously with assessment instruments and 

procedures.  In Bunderson’s (2003) description, he points out that “a domain theory gives 

an account of both sides of the person/item map–the substantive processes employed by 

the persons, and the construct-relevant sources of task difficulty” (p. 1). Bunderson 

addressed the need for studies on the person side of a person/item map to develop a 

domain theory.  

Since the majority of previous research studies have mainly focused on the 

test/item characteristics, this research will examine the personal side that Bunderson 
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addressed in domain theory. This study will further investigate the nature of the abilities 

required to solve Matrix Reasoning problems and the relationships among these abilities.  

Background 

In general, inductive reasoning is a process of drawing conclusions based on 

observations and a hypothesis. It may involve applying existing knowledge to predict a 

new instance in real life. Among the various tests which measure inductive reasoning 

ability, Raven’s Progressive Matrices are consensually accepted as the quintessential test 

of inductive reasoning (Alderton & Larson, 1990).  

The format of items in Raven’s test is a geometric reasoning problem.  Matrix 

tasks are visual analogy puzzles; each matrix task usually consists of several figures 

arranged in rows and columns with the last part missing. Corresponding figures or figural 

parts are organized according to a certain rule. The dimensions of each matrix can be 2 

by 2, 2 by 3, 2 by 4, 3 by 3, or larger. In these entries, geometric shapes, lines, and 

background textures vary in form, number, orientation, and color.  More than one rule 

may be used in the figures.  Students must identify the existing relationship in the 

complete rows or columns, and then use that relationship to infer the missing entry in a 

new row. Using a variety of shapes, figure combinations, or rules, items with different 

difficulties can be created. Figure 1 is an example of Matrix Inductive Reasoning task. 

The Raven’s test was developed to measure two complementary components of 

general intelligence. Raven’s two components include (a) the ability to think clearly and 

make sense of complex data, which is known as eductive ability, and (b) the ability to 

store and reproduce information, known as reproductive ability. Researchers have 

identified that Raven’s tests are the most g-loaded of existing intelligence tests. Since  
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Figure 1. Example of a Matrix Inductive Reasoning task 
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Spearman has defined general intelligence as a unidimensional construct, and Raven’s 

tests have been used to measure g, many have made the assumption that Raven’s tests are 

unidimensional, meaning that they measure only one kind of ability. However, if there is 

only one kind of ability, what is this ability? How may one achieve it? Carpenter, Just, 

and Shell’ (1990) research provided an alternative answer. In their research, Carpenter et 

al. found the following process is required to solve Raven’s test problems: visual 

encoding, finding the rule, and goal management (managing problem-solving goals in the 

working memory).  Based on an accumulation of data, the aforementioned Matrix 

Reasoning problems, and literature reviews, colleagues at the Edumetrics Institute 

identified four abilities that are needed to solve Matrix Inductive Reasoning problems. 

These include the ability to (a) decompose the figure into parts, (b) find the rules, (c) 

apply the rules, and (d) remember previous steps.  The question of how these specific 

component abilities work in combination with each other to produce matrix inductive 

reasoning is the focal issue of this research.  

Rationale for This Study 

Although Raven’s test has received more attention than other matrix reasoning 

tests (Arendasy, 2005; Carpenter et al., 1990; Embretson, 1995; Green et al., 2001; 

Hornke & Habon, 1986; Mulholland et al., 1980), scholars have still not obtained 

consistent results on important issues of its component constructs.  

Most scholars have used factor analysis to explore the underlying structure of 

Raven’s test. There is widespread disagreement over its constructs; some scholars 

conclude that it is a unidimensional test, and that the only ability it measures is the 

intelligence factor of g. Other scholars, on the other hand, claim that two or three factors 
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have been found either by exploratory factor analysis or by confirmatory factor analysis 

techniques. These factors include (a) Pattern Addition/Subtraction and Detection of 

Pattern Progression, and (b) Verbal-Analytic and Visuospatial abilities (some rules need 

to be found by verbal analysis and others need to be induced by visuospatial analysis).  

However, using factor analysis method to explore the structure of Raven’s test 

should be cautioned because the collected dichotomous data can create a difficulty factor.  

As Gorsuch (1983) pointed out, categorical data with similar splits will necessary tend to 

correlate with each other, regardless of their content.  The correlation reflect similarity of 

item difficulty. Hence the factor is called a difficulty factor. Because Raven’s items are 

dichotomously scored and ranked across a wide range of difficulty levels, the items in 

similar difficulty level tend to cluster together. These factors are the dimensionality of the 

tasks difficulty but not the dimension of cognitive traits. Therefore, Rost and Gebert 

(1980) concluded that Raven’s test items clustered according to their item difficulty but 

not due to additional relevant cognitive factors that influence performance on these items.  

An investigation of the personal aspect of matrix reasoning domain theory would 

be helpful in answering the following questions: What abilities are required to solve a 

Matrix Reasoning problem? What are the interrelationships among these subabilities? 

Does a valid model exist that can explain one’s performance in solving Matrix Reasoning 

problems? 

A possible methodology to answer these questions is to first identify the abilities 

used to solve the Matrix Reasoning problem and then to conduct a CFA to test the results. 

From a synthesis of previous research on the cognitive analysis of Raven’s test 

(Carpenter et al., 1990; Embretson, 1995; Hunt, 1974; and Jacobs & Vandeventer, 1972) 
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and practical experience by a research team at the EduMetrics Institute, four ability 

factors which affect individual differences in Matrix Reasoning problems have been 

identified (a) figural decomposition ability, (b) rule induction ability, (c) deduction ability, 

and (d) working memory capacity. A series of hypotheses on the relationship of these 

will be proposed and empirically tested. The structural equation modeling (SEM) method 

will be used to test these hypothesized models.  

Purpose and Research Questions 

Based on this review, the main purpose of this project was to further investigate 

the process used to solve Matrix Reasoning problems. This research addressed the 

following questions:  

1.  Which of several alternative models is the best representation of the domain of 

Matrix Reasoning problem solving? 

2.  What modifications can be made to improve the model? 

3.  What are the significant direct and indirect effects of latent variables? 

The predicted results of these questions indicate the existence of a valid model of 

matrix inductive reasoning ability. This model can help designers design better ways to 

assess progress and improvement in this sort of thinking, which can in turn help students 

to diagnosis problems they experienced when given a matrix problem.  

The significance of this research lies in the investigation of the domain theory of 

matrix inductive reasoning from a cognitive process view, which will clarify which 

abilities are needed to solve these matrix tasks. It will further assist in developing 

instruments to improve performance in solving Matrix Inductive Reasoning problems.  
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Chapter 2: Review of the Literature 

 

This study is an effort to understand the domain theory of matrix inductive 

reasoning from an empirical study. Literature review on previous studies will address 

how the domain of matrix inductive reasoning has been studied and what the connections 

are between past studies and the questions raised in this research.  

Issues Pertaining to a Domain Theory 

To understand the concept of domain theory, we must first define the concept 

domain. According to McShane (1991), a domain denotes “a collection of tasks that share 

a common representation system and a common set of procedures for operating on these 

representations to perform tasks” (p. 256). Thus, tasks which share common 

representation systems and common problem solving processes may be considered a 

domain. For example, number series completion is a domain of inductive reasoning, as 

are verbal analogies and geometric analogies. In this work, when we speak of the domain 

of matrix inductive reasoning we are referring to a broad collection of reasoning tasks, 

that spans a variety of stimulus formats and difficulty levels that all involve drawing 

inferences about the characteristics of a missing geometric figure in the context of a 

particular pattern that the examinee is expected to observe. 

The concept of domain theory was first used by Messick (1995) to define 

construct validity: 

A major goal of domain theory is to understand the construct-relevant 

sources of task difficulty, which then serves as guide to the rational 

development and scoring of performance tasks and other assessment 
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formats. At whatever stage of its development, the domain theory is a 

primary basis for specifying the boundaries and structure of the construct 

to be assessed. (p. 745) 

Bunderson (2003) has broadened the concept of domain theory in the realm of 

human learning and instruction: 

Domain Theory (or learning theory of progressive attainments) is a 

descriptive theory of the contents, substantive processes, dimensional 

structure, and boundaries of a domain of human learning or growth that 

give an account of construct-relevant sources of task difficulty, and 

conjointly, an account of the substantive processes operative in persons at 

different levels of learning or growth along the scale(s) that span the 

domain. (p. 1) 

This definition expands Messick’s notion of domain theory as the boundaries and 

structure of a construct set by adding multiple dimensions and thinking processes. It also 

requires the assessment instrument to be associated with learning by stage (progressive 

attainments). At this point, a domain theory has connected tasks, processes, and learning 

locations along one or more measurement the same scales. Literature on aspects of the 

matrix inductive reasoning domain theory will be reviewed in the following sections. 

General Introduction to Matrix Inductive Reasoning 

 Matrix inductive reasoning is a task type used to measure inductive reasoning 

ability. It is designed by following the central idea of inductive reasoning: reaching a 

general conclusion or overall rule based on limited observations.  Raven’s series 

progressive matrices are the most prominent examples of this type of test and are the 
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most widely used non-verbal intelligence tests. Due to the high loading of its items on the 

general g factor, the Raven’s test is considered to be one of the most g-loaded tests in 

existence. 

 Matrix Inductive Reasoning items are composed of figures. Subjects are asked to 

determine the patterns shown in these figures and infer the missing figure by applying the 

pattern to a new situation. Items are organized as 2 by 2, 3 by 3, 2 by 3, or 2 by 4 

matrices. Generally the last entry of the matrix is generally empty, requiring the subject 

to deduce the answer. The components of figures in each entry include geometric shapes, 

shade, lines, and backgrounds. For the colored Raven’s test, color is another component 

of the figures. These components vary in amount, form, color, position, and orientation in 

entries along the same row or column.  Figure 1 is an example of a 3 by 3 inductive 

reasoning matrix. 

In this example, there are 9 cells in the matrix with the last cell is empty. The 

subject is required to select an answer from the options provided. The subject must 

determine the relationship of components in the rows (or columns). For this example, we 

can see that there are different shapes—triangle, circle, and hexagon—distributed in the 

first two rows and the first two columns. The last entry is missing. From this observation, 

we can hypothesize that rule governed in each line or column is a distribution of three 

different shapes. Based on this hypothesized rule, the last entry should be one among the 

three shapes which is different from the other two shapes in the last row and the last 

column. Thus, the only option for the last entry is the circle. Therefore, option 1 is the 

correct answer.  
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 As we go through the process of solving a matrix problem, we notice that one of 

the most important steps is finding the relationships or rules that govern the item. 

Researchers have done substantial work in exploring possible rules to develop these 

matrix questions (Arendasy, 2005; Carpenter et al., 1997; Hornke & Habon, 1986; Jacobs 

& Vandeventer, 1972; Primi, 2002; Ward & Fitapatrick, 1973). A list of selected rules 

which has been used in the past by researchers is listed in Table 1. 

Item Difficulty Resources of Matrix Inductive Reasoning Problems 

In order to design and develop different sources and levels of difficulty, the first 

task is to discover complexity factors underlying tasks. Studies on what characteristic of 

the items determines the item difficulty have been widely conducted. Matrix Inductive 

Reasoning item difficulty has been studied from the views of the problem solving process, 

the design experiment, and psychometric model analysis.  

As Lohman (2002) points out that “Understanding what makes a task difficult is 

not the same as understanding how participants solve items on the task, but it is a useful 

place to start” (p. 225). The following researchers analyzed task difficulty by starting 

from an analysis of the inductive reasoning problem solving process.  

According to an analysis by Carpenter et al. (1990) of the process of problem 

solving, the processes that distinguish individuals are primarily the ability of goal 

management and the ability of rule inducing. Goal management is the management of a 

large set of information in working memory. Rule inducing ability refers to discovering the 

rules that correspond to the figures and it is influenced by the rule type. Carpenter et al. 

also found that the error rate on a given problem was related to the types of rules and the 

number of rules involved. A simple conclusion based on the work of Carpenter et al. is that   
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Table 1.  
 
Rules for the Solutions of Solving Matrix Inductive Reasoning Problems 
 
Rule Taxonomy Example 

Constant in a 
row 

The same value occurs throughout a 
row, but changes down a column. 

 
 

Distribution of 
three values 

Three values from a categorical 
attribute (such as figure type) are 
distributed through a row 

 
 

Quantitative 
pairwise 
progression 

A quantitative increment or 
decrement occurs between adjacent 
entries in an attribute such as size, 
position, or number 
 

 

Figure addition 
or subtraction 

A figure from one column is added to 
(juxtaposed or superimposed ) or 
subtracted from another figure to 
produce the third 
 

 

Distribution of 
two plus one 

Two same values and one different 
from a categorical attribute are 
distributed through a row (or column) 

 
 
 

Distribution of 
two values 

Two values from a categorical 
attribute are distributed through a row 
(or column); the third value is null. 
  

 
Shading Change may be complete or partial 

  
 

Size Proportionate change, as in 
photographic enlargement 
 

 

Movement in a  
plane 
 

Figure moves as if slid along surface 
  

Flip-over Figure moves as if lifted up and 
replaced face down  

  (table continues)
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Table 1 (continued) 

Rule Taxonomy Example 

 
Reversal 

 
Two elements exchange some feature, 
such as size, shading , or position 
  

 
Unique addition Unique elements are treated 

differently from common elements, 
e.g., they are added while common 
elements cancel each other out 
 

  
 

figure decomposition ability, rule induction ability, and the hierarchy of goals 

management ability account for individual differences in performance in solving 

geometric problems in the Raven’s test. 

Mulholland, Pellegrino, and Glaser (1980) constructed 460 true-false analogies 

with varying numbers of elements and transformations. The number of elements per item 

varied between one and three; the number of transformations was between zero and three. 

They found that the solution time is a direct function of the number of elements and the 

number of transformations. This indicates that individuals decompose the patterns of an 

analogy item sequentially by isolating the constituent elements one by one, as well as by 

performing the transformations in a serial manner. It also shows that not the number of 

elements, but only the number of transformations influences the percentage of errors. 

Mulholland (1980) concluded that with an increasing number of elements and 

transformations, it becomes more difficult to keep all of the performed steps in working 

memory, whereby the number of required transformations contributes more to item 

difficulty than the number of basic elements involved. An individual difference in the 
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ability to solve matrix analogy problems is then related to differences in working memory 

capacity.  

Green and Kluever (2001) conducted a components analysis of item difficulty in 

Raven’s Matrices. She first identified 15 item components that might contribute to item 

difficulty. They were (a) vertical or horizontal orientation versus other orientation (coded 

as zero-1), (b) symmetrical versus asymmetrical (coded as zero-1), (c) progression versus 

non-progression (coded as zero-1), (d) the number of dimensions in the pattern (coded as 

zero-3), (e) straight lines versus curved lines (coded as zero-1), (f) the number of lines or 

solids (coded as zero-1), (g) the density of design (coded as zero-1), and (h) color versus 

black and white (coded as zero-1). Based on these characteristics, 60 items were 

developed. Regression analysis was carried out with item difficulties as the dependent 

variable and all of the 15 item characteristics were entered into a regression equation as 

both forced entry and stepwise entry. We can see that most of the 15 characteristics are 

figural characteristics. Another item difficulty was predicted based on the four 

characteristics that were identified as significant predictors of item difficulty. The 

multiple R2 was .69. However, there are some limitations to this research. For example, 

this component analysis does not describe any elementary mental processes that may be 

necessary for problem solutions; only very obvious and observable features have been 

included in the analysis. However, the analysis of figural characteristics has provided 

some information which can be used in test design and in item difficulty judgment. The 

regression model used to predict new item difficulties has activated our concern that 

using a regression model based on existing data to predict new item difficulties can only 

provide fairly straightforward predictions.  
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Primi (2002) in his study synthesized four main factors from the literature (a) an 

increase in the number of figures, (b) the perceptual complexity of stimuli, (c) the 

complexity of the rules, and (d) an increase in the number of rules relating these figures. 

The main purpose of Primi’s study was to identify the relative importance of the factors 

listed above. By manipulating these four sources of complexity, the author created two 

matrix tests to study the relative importance of these factors and their significant effect on 

item complexity. Using ANOVA and regression analysis methods, the author identified 

perceptual organization and the amount of information as the two variables which 

contributed significantly to an increase in item complexity. Furthermore, perceptual 

organization is the most important element, explaining 53.4% of the variance in item 

complexity.  

 If the number of figures and the number of rules relating these figures are grouped 

as one factor, we can see that there are three factors affecting the Matrix Inductive 

Reasoning item difficulties. Named by Primi (2002), these three factors are (a) Amount 

of Information Number of Elements and Rules, (b) the Nature of Relationships-type of 

rules, and (c) Perceptual Organization. 

 Amount of information includes the number of attributes and the number of rules 

involved in each figure; this is related to working memory capacity. When solving a 

matrix problem, one needs to keep in mind how many elements there are in the figure and 

what their relationships are. The more elements and rules the figure has, the larger 

working memory capacity will be needed.  

Rule type is another source which affects item difficulties. Easier rules such as 

constants in a row (column) and a distribution of 3 can be easily identified with 
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perceptual identification. However, for the more difficult rules such as quantitative pair-

wise progression and figure addition, subjects need mental or conceptual operation in 

addition to visual perceptual identification. Among these rules, the first six in Table 1 

have received more attention than the others. However, the rule of distribution of two 

values and the rule of figure addition/subtraction are in fact the same. As we can see in 

the examples of these two rules, they both have two same values and a third non-value. 

Therefore, in this research, we consider the distribution of two values and the figure 

addition/subtraction rules as one: the distribution of two plus zero. Studies on the 

difficulty of the rule found that the order of the five rules from easiest to hardest is 

constant in a row (column), quantitative pair-wise progression, figure addition, 

distribution of 3, and distribution of 2 plus 1 (Carpenter et al., 1990).  These rules are 

used in the Raven’s progressive matrices. In this research, we have also used these five 

well-studied rules to design and develop Matrix Reasoning Tests. 

 Perceptual organization refers to how the figure is organized. The spatial order of 

elements can include proximity, similarity, continuity, and with common region (Mack, 

Tang, Tuman, & Rock, 1992), which add to the effect of the figure overlay distortion and 

fusion (Embretson, 1998). If one object is on the top of another, the drawing feature is 

called overlay; if two objects are put side by side with a common region in the same array 

location, the drawing feature is called fusion; if an ordinary shape is perceptually altered, 

bended, twisted, or stretched, etc., the drawing feature is called distortion. These features 

will distort the clues and make the items more difficult.  

By balancing the three sources of difficulty, Matrix Reasoning Tests with range of 

difficulty distribution may be easily designed and developed.  
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Constructs of Matrix Inductive Reasoning 

Dimensionality studies on Matrix Inductive Reasoning tasks are mostly 

conducted on Raven’s Progressive Matrices tests (RPM), which use matrix problems to 

measure a person’s ability to form perceptual relations and to reason by analogy 

independent of language and formal schooling. These tests are used widely to measure a 

person’s intellectual ability in many studies and applied settings. The Standard 

Progressive Matrices (SPM) was the first series of tests developed for adolescents. It 

includes five sets, with a total of 60 items ordered from easy to difficult.  The Colored 

Progressive Matrices (CPM) reformatted SPM into colors; this series is used for young 

children and special groups. The Advanced Progressive Matrices (APM) is a more 

difficult version of SPM. It is used for above-average adolescents and adults.  

Although the Raven’s test was designed to be a pure measure of g and was 

accepted as such by Spearman (1946) and Burke (1958), the contention of 

unidimensional nature of ability measured by either the SPM or APM has been 

challenged by other researchers (Dillion, 1981; Gustaffon, 1984, 1988). 

Emmett (1949) conducted a factor analysis on the 60 items based on data 

collected from a sample of 11 year old children. Results show that SPM is a pure 

measure of g. Jensen (1998) has contended that “the total variance of Raven scores in 

fact comprises virtually nothing besides g and random measurement error” (p. 135). 

Raven, Raven and Court (2000) state that “The Progressive Matrices has been described 

as one of the purest and best measures of g or general intellectual functioning” (p. 34). 

However, different results have been generated by other scholars (Adcock, 1948; 

Banks, 1949; Gabriel, 1954) who have contended that besides g, the Progressive 
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Matrices also measure a small factor of Visualization or Space. Gustaffson (1984, 1988) 

concludes that SPM contains a reasoning factor and a figural related cognition factor. 

Hertzog and Carter (1988) insist that SPM contains two factors: Verbal Intelligence and 

Spatial Visualization. Van der Ven and Ellis (2000) hold that SPM contains two 

significant factors which they identify as Gestalt Continuation and Analogical 

Reasoning. Lynn, Allik, and Irwing (2004) find that the three-factor solution for SPM 

can get the best fit of the data by using both exploratory factor analysis and 

confirmatory analysis method. The three factors are Gestalt Continuation, Verbal-

Analytic reasoning, and Visuospatial Ability. 

The same conflicting conclusions have been shown in the studies of APM. 

Alderton and Larson (1990) and Arthur and Woehr (1993) have claimed that a single-

factor solution seems to be the best representation of the APM’s structure, which means 

that APM is solely a measure of g.  However, Dillon, Pohlmann, and Lohman (1981) 

have identified two factors in their study of APM; they named the two factors Pattern 

Addition/Subtraction and Detection of Pattern Progression. When Lim (1994) studied 

gender differences in performing APM, he concluded that APM is a pure measure of 

reasoning ability for boys, but that it also measures spatial ability for girls. Deshon, 

Chan, and Weissbein (1995) found two factors that they identified as Verbal-Analytic 

and Visuospatial abilities. Colom and Garcia-Lopez (2002) also conclude that the APM 

test measures both reasoning and spatial abilities. 

The above studies on factors of the Raven’s test have used factor analysis 

statistical techniques. The factors from the results of factor analysis are items clustered in 

groups according to their item difficulty. Difficulty factors are produced by the 
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distributional properties of the dichotomous scores, but not the additional relevant 

cognitive factors that influence performance on the items (Rost & Gebert, 1980). The 

identified factors can be explained as characteristics of a group of items with the same 

level of difficulty but not the ability factors that the test measured. When the question of 

“what ability does the test measure?” is asked, it is not enough to simply conduct factor 

analysis on student item scores.  

Problem Solving Process Analysis of Matrix Inductive Reasoning 

Information processing analysis can aid in understanding the mental process of 

problem solving. Such analysis can tell what abilities accounts for the individual 

difference in problem solving and what item characteristics accounts for the different 

difficulties of item difficulty.  

Researchers investigating the problem solving process of Matrix Inductive 

Reasoning tasks have focused primarily on the study of Raven’s Progressive Matrices Test 

(Carpenter et al., 1990; Embretson, 1995; Hunt, 1974; Jacobs & Vandeventer, 1972).  

Carpenter et al. (1990) used a variety of methods to analyze the cognitive 

processes used in solving problems presented in the Raven Progressive Matrices Test. 

Based on the detailed performance characteristics of verbal protocols, eye-fixation 

patterns, and errors, they describe the process as follows: In the first row, people encode 

and compare the figures with other entries to find corresponding figure parts. Next, they 

find that patterns emerge as rules from the pairwise comparisons as rules. People induce 

the rules one at a time until sufficient rules that account for all the variation among the 

entries in the first row have been found. A similar process occurs in the second row; in 

addition, there is a need to map the counterparts between the first row and the second row. 
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These rules are stored in the memory in a generalized form. The discovered rules are then 

applied to the third row to generate the missing entry. 

Beginning with a task analysis of Raven’s Progressive Matrices Test, Carpenter et 

al. (1990) found that five different types of rules govern the variation of the entries. These 

rules are always interchangeable in the same task. For a single rule, the difficulty order of 

the five types is (a) constant in a row where the same value occurs throughout a row but 

changes down a column, (b) quantitative pairwise progression where a quantitative 

increment or decrement occurs between adjacent entries in an attribute such as size, 

position, or number, (c) figure addition or subtraction where a figure from one column is 

added to (juxtaposed or superimposed) or subtracted from another figure to produce the 

third, (d) distribution of three values where three values from a categorical attribute are 

distributed through a row, and (e) distribution of two values where two values from a 

categorical attribute are distributed through a row; the third value is null. 

If a problem involves multiple rules, subjects use a correspondence finding method 

to discover which elements in three entries in a row are governed by the same rule. Since 

cues for finding rules are ambiguous in some of the Raven’s problems which are 

constructed by conjoining figures governed by several rules, the correspondence finding 

process is thus a source of difficulty. 

Carpenter et al. (1990) furthermore claimed that Raven’s item difficulty also varies 

with the number of rules. However, a large number of rules do not have a large effect on 

the process of inducing rules. Instead, the number of rules affects the goal-management 

processes that are required to construct, execute, and maintain a mental plan of action 

during the solution of the multiple rule problems. Carpenter et al. used two experiments to 
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test this hypothesis.  The purpose of Experiment 1 was to reveal the process and the content 

of thought when subjects were solving each Raven problem. Think aloud and eye fixations 

methods were applied to some subjects. Other subjects were asked to work silently and 

then describe the rules that stimulated their response.  The results from both groups showed 

the incremental nature of the processing: the subjects solved a problem by decomposing it 

into successively smaller sub-problems and then proceeded to solve each sub-problem one 

at a time. 

Based on this result, the authors put forward the other hypothesis that a major 

source of individual differences “is the ability to generate sub-goals in working memory, to 

monitor progress toward attaining them, and to set new sub-goals as others are attained” (p. 

413).  The whole process of generating sub-goals, monitoring progress, and setting up new 

goals is called goal management. In Experiment 2, subjects were first administered the 

Raven Progressive Matrices Test; they were then trained with the goal-recursion strategy to 

solve the Tower of Hanoi puzzle task, a cognitive task involving extensive goal 

management. Significant correlation between the two tasks leads to the conclusion that a 

major source of individual difference in the Raven test derives from the generation and 

maintenance of goals in working memory. 

To specify the process required to solve the Raven problems, two simulation 

programs were developed: FAIRAVEN performed at the level of the median college 

student in the sample, and BETTERAVEN performed at the level of the best subjects in 

the sample. These two models verified the results of Experiments 1 and 2. The authors 

conclude that “what one intelligence test measures, according to the current theory, is the 

common ability to decompose problems into manageable segments and iterate through 
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them, the differential ability to manage the hierarchy of goals and sub-goals generated by 

this decomposition, and the differential ability to form higher level abstractions” (p. 429). 

Another investigation on the information process of matrix problem solving was 

conducted by Embretson (1995). Her study examined student performance on 150 matrix 

items generated based on a cognitive theory of abstract inductive reasoning. The goal of 

Embretson’s study was to estimate the relative contributions of individual differences in 

general control processing and in working memory capacity to individual differences in 

performance on these matrix items. Embretson (1995) attempted to distinguish the relative 

importance of executive functions (Belmont & Butterfield, 1990) and the role of working 

memory (Carpenter et al., 1990) by using a multi-component latent-trait model. Two latent 

variables which were responsible for individual differences in the task were posited: 

working memory capacity and control processing results showed that control process latent 

variable accounting for more variance than the working memory latent variable.  

While control processes played an important role for high levels of performance on 

difficult reasoning tasks, Embretson’s (1995) also found that working memory or attention 

resources also play important roles.  

In conclusion, goal management process and working memory are important 

aspects of the process of solving Matrix Reasoning problems.   

Working Memory and Inductive Reasoning 

The important role of working memory in solving inductive reasoning tasks has 

been strongly claimed by many researchers (Carpenter et al., 1990; Marshalek et al. 

1983). Buehner, Krumm, and Pick (2005) even proposed that reasoning is equal to 
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working memory. In this section, we will review studies on the relationship between 

working memory and inductive reasoning. 

Although it was first referred to as short-term memory, scholars now emphasize 

the manipulative function of working memory. Researchers have proposed many 

different models to explain the structure and function of working memory. Of them, 

Baddeley’s (1992) model was taken as the most important influential one. Baddeley’s 

(1992) model included three elements: (a) the visuospatial sketch pad which is a 

visuospatial storage system, (b) the phonological loop which stores verbal based 

information, and (c) the central executive system which is an attention-controlling system 

and coordinator for the two storage components and their interactions. Working memory 

is an important indicator of reasoning ability.  

Kyllonen and Christal (1990) designed some working memory tasks specifically 

used to measure Baddely’s concept of working memory. They found structural 

coefficients of .80 through .88 in four large studies between working memory and 

reasoning ability. Although Keyllonen’s et al. (1990) work was criticized that some of the 

tasks for working memory test and reasoning test are the same thus increased the 

correlation, the overall high correlation coefficients showed the strong relationship 

between working memory and reasoning ability. Kyllonen and Christal (1990) argue that 

all reliable variation in reasoning can be explained by limitations on working memory 

capacity. 

Conflicting results existed in other research. These researches emphasized the 

important function of executive attention. Researchers argued that the shared variance 

among measures of working memory span and complex cognition reflects primarily dues 
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to the contribution of executive function, rather than specific storage capacity (Engle & 

Kane, 2004). As Kane, Hambrick, et al. (2004) pointed out, 

  correlations between WM [Working Memory] span and complex cognition are 

jointly determined by general executive-attention and domain-specific storage but 

primarily by executive attention. Thus, a WMC [Working Memory Capacity] 

measure should be quite general in predicting cognitive function. That is, the 

memory span test could be embedded in a secondary processing task that is 

unrelated to any particular skill or ability and still predict success in a higher level 

task. Evidence supporting this view comes from three sources: (a) manipulating 

the processing demands of verbal WM [Working Memory] pan tasks and noting 

their relations to comprehension, (b) examining the between verbal WM span and 

measures of general fluid intelligence, and (c) examining the link between verbal 

WM span and low-level attention capabilities. (p. 190) 

Relationship between Raven’s Advanced Progressive Matrices in conjunction 

with working memory was also examined by some researches. Jurden (1995) reported the 

correlation of WM performance to the Raven reading span and computation span of .20 

and .43 respectively. Babcock (1994) found a higher relationship of .55 between working 

memory and Raven performance.  Although these studies differed in the degree of 

relationship reported, they both agree that working memory is positively correlated with 

performance on the Raven’s test.  

As a result, the author concluded that working memory should be tested by using 

multiple facets. When solving Matrix Reasoning problems, people need to store the 

identified rules governing the corresponding figure parts in their working memory. This 
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memory is related to the observed patterns and shapes. The goal management process is 

also needed to control what information should be stored in the working memory and 

what information should be released from memory. Considering that Matrix Reasoning 

tasks are composed of figures, we chose two types of working memory tests that are 

similar in regard to the memory functions discussed above. The two tests include the 

Binary Number Working Memory Test (BNWMT) and the Shape Memory Test (SMT). 

In the BNWMT, each item is a number containing a series of ones and zeroes such as 

110110110 or 01100110. The task of the examinee is to identify and remember the 

pattern of the digits. In the SMT, the memory tasks are a number of shapes that 

examinees are expected to remember. 

Above is a review of research related to the domain of matrix inductive reasoning. 

These studies have provided the fundamental theories and raised questions for the further 

research.  
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Chapter 3: Method 

 

Chapter 3 discusses the methods used to conduct this research. It introduces how 

the instrument was developed to measure the matrix reasoning abilities and the 

subabilities. The process of obtaining samples and collecting data are also elaborated.  

Procedures for analysis the data is then laid out. The chapter also includes the methods 

used to address each research question. 

Instrument Development 

Five tests were developed to measure the subablities identified from the previous 

discussion.  Each of them is described in detail below. 

Matrix Reasoning Test   

 A 16-item Matrix Reasoning Test was constructed to measure the matrix 

inductive reasoning ability. It was patterned after Raven’s series of tests. The format and 

content of this new test is described in the following sections. 

Item format. Each matrix item consisted of nine entries arranged in three rows and 

three columns. The last entry on the lower right contained a question mark; all other 

squares were figures. There were six answer options for each matrix item.  Subjects were 

asked to choose one correct answer from the six options to complete the blank entry. An 

example of such a matrix item is shown in Figure 1. 

Item content specifications. The matrix items were constructed by varying the 

four aspects which affected the difficulty of the items (a) the number of elements, (b) 

number of rules, (c) rule types, and (d) figural complexity. The five rules used in the tests 

included (a) constant in a row (column), (b) distribution of two values plus zero, (c) 



 27

distribution of two values plus one, (d) quantitative progression, and (e) distribution of 

three. The constant in a row rule was that the same attribute occurs throughout a row (or a 

column); the rule of distribution of two values plus zero was that two identical values are 

distributed through a row while the third value is none; the rule of distribution of two 

values plus one was that three values from a category attribute distributed through a row 

with two of the three values are identical while the third one was different from the other 

two; the quantitative progression rule was that a quantitative increment or decrement of a 

value occurs between the two adjacent entries. To further understand these rules in the 

items, refer to Table 2 for content specification. In this table, rules were listed in the first 

row while items were listed in the first column. The number 1 in the cross cells means 

that the rule in this column has been used once in the item. If more than one number 1 

appears in the cell, it shows that the rule in this column has been used more than once. 

Rule Induction Test  

The purpose of the Rule Induction Test was to determine how well the examinees 

discover or recognize a particular rule.  Without the interaction of other factors such as 

complex figural or multiple elements, could the subjects figure out what the rule was?  

At the top of the page, two rows of simple figures were given to the subjects. 

Figures in these two rows were governed by the same rule.  Four options were listed after 

the instruction. One or more of the options shared the same rule as the previous two. The 

subjects were asked to choose the one or more options which shared the same rule as the 

previous two rows. Refer to Figure 2 for an example of the Rule Induction task. In this 

test, each items used a different single rule.  

 

 



 28

Table 2.  

 

Rule Types and Number of Rules Used in Matrix Reasoning Test 

 

Rule Type* Constant 2+0 2+1 Quantitative D3 

Rules in Each 

Item 

  1    1  1 

  2     1 1 

  3 1     1 

  4  2    2 

  5 1    1 2 

  6   1  1 2 

  7 1 2    3 

  8 1    2 3 

  9  2    2 

11 1    1 2 

12     2 2 

13 1 1 1   3 

14   1 2 2 4 

13  3    3 

16  3    3 

*constant: constant in a row (or column); 2+0: distribution of two plus zero (figure 

addition); 2+1: distribution of two plus 1. Quantitative: quantitative progression.D3: 

distribution of three. 
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Figure 2.  Example for a Rule Induction Test item. 
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Rule Application Test 

The Rule Application Test was used to examine subjects’ ability to apply a rule to 

a new situation. In this test, the researcher first decomposed the figures. A clear rule 

description for a particular part of the figure was then was provided.  Two figures were 

given; the subjects were asked to find out what the third one should be by applying the 

rules provided. Figure 3 is an example of a Rule Application item. 

Table 3 presents the rule types and the number of rules used in each item of the 

Rule Application Test. 

Working Memory Test 

 This test focused on working memory capacity. It included two parts: the 

BNWMT and the SWMT. 

Binary Number Working Memory Test. This test asked subjects to remember 

several binary numbers ranging from 3 to 12 digits.  The ratio of number length/display 

time was 1:1. For example, for a 3-digit number, the display time is 3 seconds; for a 4-

digit number, the display time is 4 seconds, and so on.  The binary number was shown in 

the first page, then automatically went to the answer page after the display time expired. 

In the answer page, the subjects needed to type in the number they saw on the previous 

page. There were 10 items. One example of an 8-digit binary number was 10010101. 

Shape Working Memory Test. SWMT asked subjects to remember the shapes they 

saw on a previous page. These shapes were regular geometric shapes. The number of 

different shapes in each item ranged from three to nine. The shapes were displayed for a 

fixed time interval; then an answer page was displayed. The subjects were asked to  
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rule1: For the outside part: two shapes are the same, 

the third one is none. 

rule2: For the inside part: two shapes are the same, 

the third one is none. 

  

Figure 3. Example of a Rule Application Test item. 
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Table 3.  

Rule Types and Numbers Used for Each Item in Rule Application Test 

Rule Type* Constant 2+0 2+1 Quantitative 
 

D3 
  1    1  

  2    1 1 

  3 Bad item    1 

  4  2    

  5 1 1    

  6  1    

  7  3    

  8     3 

  9  1   1 

10   1  1 

11 1 1     1 

* constant: constant in a row (or column); 2+0: distribution of two plus zero (figure 

addition); 2+1: distribution of two plus 1. Quantitative: quantitative progression.D3: 

distribution of three. 

 

choose figures they saw from a list of 20 shape options. The ratio between the numbers of 

shapes and the display time was 1:1.5. The following is an example of a three SWMT 

item:  

Figure Detection Test 

The Figure Detection Test was used to measure figural decomposition ability.  

For complex figures in the Matrix Reasoning tasks, subjects were asked to decompose 
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them to independent parts and find the correspondence rule among the figures. The 

Figure Detection Test used the format of Hidden Figure tasks. In this test, subjects were 

asked to find a given shape which was embedded in a complex one. Figure 4 shows an 

example of a Figure Detection item that was used in this research. 

Sampling 

Structural equation modeling is sensitive to sample size and requires relatively 

large sample sizes. The sample should consist of a minimum of 100 subjects and should 

be at least five times larger that the number of variables being analyzed (Bantler & Chou, 

1987).  Because the number of test items developed in this research was 52, at least 260 

subjects should be included according to the minimal sample size rule.  

Students from grade 6 through grade 8 participated in this study. These students 

were from Beijing and Shanghai. Items in this research were developed from Colored 

Progressive Matrices and the Advanced Progressive Matrices, being more difficult than 

the Colored Progressive Matrices, yet easier than the Advanced Progressive Matrices. 

According to Raven’s test, Colored Progressed Matrices are used with younger children  

And special groups and the Advanced Progressive Matrices are used with above teachers, 

and students. The four principals, ten teachers, and each student in the selected classes 

who agreed to participate in the research were asked to sign an agreement form. 

Data Collection 

 To collect the data, a database was developed by using the PHP and MySql 

computer languages. The five tests were then connected to the database. The database 

was stored in the computer lab servers in the two participating schools in Beijing and  
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Figure 4. Example of a Figure Detection Test item. 
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Shanghai. The five tests were administered to whole group of students over the internet 

on each campus to one classroom at a time. Trained graduate students were in the 

computer lab on each campus to assist the students in completing the tests. No time limit 

was imposed. Students completed the test during the last class period of the school day 

and were able to respond to each test at their own pace. All the collected data were stored 

on the computer lab servers of participating schools.   

Pilot Study Data Collection 

A pilot study was conducted with a small group of students before the tests were 

administered to the full sample of students. The purpose of this pilot study was to 

examine item characteristics. Further actions including modifying, deleting, and adding 

items to the test were adopted based on pilot study analysis results. One hundred and 

eleven students from grade 7 participated in the pilot study. Of the 111 students, 53 

(47.7%) were female, 54 (48.6%) were male. Four students (4.3%) did not report their 

gender. Seventy eight (70.3%) of the 114 students were age 12, 27 (24.3%) were age 13, 

and 6 (5.4%) students did not report their age. 

Items were deleted and added based on the item difficulties from the pilot study. 

Table 4 illustrates the item changes for each individual test. 

Formal Data Collection  

The revised tests were administrated to a sample of 352 students in China from 

grades 6 to 8. Students who participated in the pilot study were not included in the data 

collection. The same data collection procedure that was used in the pilot study was 

adopted for use in the general sample data collection.  Table 5 shows student 

participation numbers and rates by grade and gender. 
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Table 4.  

Item Changes in the New Test 

Tests 
Number of 

Items Deleted 
Number of 

Items Added 
Number of Items 
in the New Test 

Binary Number Working 
Memory Test 4 2 5 

Shape Working Memory Test 1 0 4 

Figure Detection Test 4 0 4 

Rule Induction Test 0 0 6 

Rule Application Test 0 0 12 

Matrix Reasoning Test 2 0 14 
 

Upon receipt, the data was inputted into Microsoft Excel. Under the supervision 

of a graduate student, the inputted data was carefully checked for errors to ensure 

accuracy. After the data was considered clean, analyses were conducted.  

Data Analysis  

Scoring and Data Cleaning 

Through the use of Microsoft Excel logical functions, the initial answers of 

students were scored with either a 1 (correct) or a 0 (incorrect) and saved in a different 

data file. In the data collection process, instances of missing data were encountered. If 

any of the items in one or more of the five tests were not completed, the case was directly 

eliminated from the analysis. Of the 352 participants, 18 cases were eliminated. The 

analysis of this study is based upon the remaining 334 complete effective cases. 
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Table 5.  
 
 
Student Participation Numbers and Rates by Grade Enrollment and Gender 
 
Data input   
 
 

   Gender  
Grade 

Number of 
participants Males  Females Unkown 

6 117 (35.03%) 49 (14.67%) 65 (19.46%) 3 (.90%) 

7 116 (34.73%) 52 (15.57%) 58 (17.37%) 6 (1.80%) 

8 100 (29.94%) 39 (11.68%) 59 (17.66%) 2 (.60%) 

Null     1 (.30%) 0 (0.00%) 0 (0.00%) 1 (.30%) 

Total 334 140 (41.92%) 182 (54.49%) 12 (3.59 %) 
 

Software Selection 

 Many software packages were available for the modeling analysis. The most 

commonly used are AMOS (Arbuckle, 2003; Arbuckle & Wothke, 1999; SPSS, Inc., 

2005), LISREL (Jöreskog & Sörbom, 1996; Jöreskog, Sörbom, Du Toit, & Du Toit, 

2001), and MPLUS (Muthen & Muthen, 2001). Of these software packages, MPLUS is 

the most well known for its capacity to deal with complicated models, handling both 

continuous and categorical data. Using proper estimation methods such as analyzing 

tetrachoric correlations and using a robust unweighted or weighted least-squares 

estimator, MPLUS can conduct both EFA and CFA with dichotomous data. Since the 

data used in this research is dichotomous, MPLUS was used in this research.                     
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Reliability and Validity 

Cronbach’s alpha coefficient was computed to estimate the internal consistency 

reliability of the scores obtained from each test. Evidence of convergent validity was 

obtained by examining the factor coefficients (Anderson & Gerbing, 1988).  Convergent 

validity is demonstrated if the items which are associated have significant high 

coefficients (greater than twice its standard error) on the same factor and if the factor 

loading is relatively high (greater than .06). Evidence of discriminant validity was 

confirmed by showing that the confidence intervals (± two standard errors) around the 

estimated correlation coefficients for a given pair of factors contained the value of 1.0. 

Measurement of Construct for each Test 

 To explore the constructs of the developed tests, CFA models based on related 

literature and theories were tested. Three models were specified for each test (a) a 

unidimensional model in which all of the items using different type and number of rules 

and figures were represented by a single factor; (b) a first-order oblique model that 

included separate factors for items in different difficulty levels; and (c) a second-order 

factor model used to account for covariation among factors. For each test, the 

unidimensional model was first tested. Only if this unidimensional model did not fit the 

data acceptably would the other two models be tested. Otherwise, this unidimensional 

model would be applied to the following structural equation modeling analysis.  

The CFA analysis was conducted using MPLUS. As mentioned in the preliminary 

research by Muthén, DuToit, and Spisic (1997), an optimal estimation method for 

categorical outcomes was weighted least-squares with mean and variance adjustment 
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(WLSMV). Since the data in this research was dichotomous, the WLSMV estimation 

method was the best choice. 

To evaluate the fit of each model, a combination of criteria consisting of chi-

square tests and several descriptive fit indices were adopted. The chi-square test is a basic 

statistical procedure to test for model fit. A nonsignificant chi-square value indicates 

good model fit. The chi-square test is sensitive to sample size, being particularly hard to 

obtain with a large sample size. Besides the chi-square test, MPLUS also provided the fit 

indices of the comparative fit index (CFI), the Tucker-Lewis index (TLI), the 

Standardized Root-Mean-Square Residual (SRMR), the Weighted Root Mean Square 

Residual (WRMR), and the Root Mean Square Error of Approximation (RMSEA). Of 

these indices, SRMR is not recommended for dichotomous data (Yu, 2002). Therefore, 

CFI, TLI, RMSEA, and WRMR were chosen for the construct analysis for each 

individual test. For the model test which using continuous data, SRMR is adopted instead 

of WRMR. CFI measured the improvement of the fit by comparing the hypothesized 

model with a null model in which the measured variables were assumed to be unrelated 

(Bentler & Bonett, 1980). Hu and Bentler (1999) recommended a CFI cutoff value of 

around .95. RMSEA shows the average difference between observed and expected 

covariance; a RMSEA value below .05 indicates a good model fit (Browne & Cudeck, 

1993).WRMR was proposed by Muthén and Muthén (1998-2001) as being suitable with 

non-normal outcomes. A model is accepted when the WRMR value is equal to or less 

than 1.0 for the model (Yu, 2002). Cut off values equal or less than .08 was recommend 

by Yu (2002) in her research.  In summary, joint criteria for a good fit of indices 

according to this study are CFI ≥ .95, RMSEA ≤ .05, and WRMR ≤ 1.00 or SRMR ≤ .08. 
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Research Questions and Methods 

Research questions and the corresponding methodologies are addressed in this 

section.  

Research Question 1:  Which of the Alternative Models is the Most Valid Representation 

of the Domain of Matrix Reasoning Problem Solving?  

In line with the three theoretical hypotheses regarding the domain of Matrix 

Reasoning problem solving referred to earlier, three alternative models (Figures 5 to 7) 

were defined. The common part of the three models was that the four predictor variables, 

working memory, figural decomposition, rule induction, and rule application, had direct 

effects on matrix reasoning.  

The first model (Figure 5) is a component model. In this model, in addition to its 

direct effect on matrix reasoning, working memory also directly affects figure detection, 

rule induction, and rule application. Each of these three variables also predicts matrix 

reasoning. 

All other variables in the second model (Figure 6) directly affect the matrix 

reasoning variable. Also, working memory, rule induction, and figure detection indirectly 

affect matrix reasoning through the mediator variable rule application. There are no 

relationships specified among the latent variables figure detection, working memory, and 

rule induction. 

The third model (Figure 7) tests the problem solving process theory. Working 

memory directly affects all other variables. Simultaneously, a step-by-step process is 

required from figure detection to rule induction, rule induction to rule application, and 

finally from rule application to matrix reasoning.   
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Figure 5. Hypothesized model 1: component model. 
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Figure 6. Hypothesized model 2: rule application as mediator model. 
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Figure 7. Hypothesized model 3: problem solving process model. 
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The three models were combined into a full model in which all latent variables 

were intercorrelated with each other. The model which fits the actual data with the 

greatest degree of accuracy would be preferred.  

Data preparation for the model analysis.  Structural equation modeling (SEM) 

was used to evaluate the three hypothesized models. SEM is a family of statistical 

techniques that includes path analysis and factor analysis. It can be used to test the 

plausibility of hypothesized patterns of causal effects involving latent variables. There are 

two ways to prepare the data for SEM analysis. One way is to export the chosen 

constructs with the original items to the model. The second way is to create scales by 

adding up item scores under the same factor.  For tests with unidimensional construct, a 

parcel was used to create two or more observed variables. Because the second method is 

parsimonious and has fewer errors, the second method was adopted. 

Procedure to test the models.  To test the structural equation models, a two-step 

modeling method introduced by Anderson and Gerbing (1988) was adopted.  

The first step is to respecify the structural equation models to a CFA measurement 

model. Testing the validity of the measurement model before evaluating the structural 

model allows the research to distinguish rejections of the proposed model because of 

problems stemming from measurement inadequacies from problems related to the actual 

proposed theory (Mueller, 1996).  Since all SEM models share the same latent variables, 

only one CFA model will be addressed. This measurement model expresses all possible 

associations among the latent variables. It considers each observed indicator as a linear 

combination of a latent unobserved factor plus random measurement error. Testing the 

validity of the measurement model before evaluating the structural model allows the 
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research to identify problems stemming from measurement inadequacies (Mueller, 1996). 

Since the variables in this model are continuous variables (scales), the Maximum 

Likelihood (ML) estimation method was used for the model testing. 

Given an acceptable CFA model, the second step is to test and compare the 

proposed SEM models. The three SEM models were tested under the same available data 

as used in the first step. Results from the MPLUS software for the three models were then 

compared to the newly identified CFA model. As the method applied in the measurement 

model analysis, Chi-square values and joint criteria for a good fit of indices of CFI & TLI 

≥ .95, RMSEA ≤ .05, and WRMR ≤ 1.0 were obtained to evaluate whether the 

hypothesized structural model is a valid representation of the domain constructs.  

Research Question 2: What modifications can be made to improve the preferred SEM 

model? 

The model preferred in question 1 was theoretically specified. The MPLUS 

program also provides a MODINDICES index which suggests empirical modifications to 

improve the best model fit based on the actual data. The MODINDICES indices were 

examined to see whether some reasonable suggestions could be made to the model in 

question 1. If any modifications could be adopted, new modified models should be 

retested.  

Research Question 3: What Are the Significant Direct and Indirect Effects of the Latent 

Variables? 

Direct and indirect effects can be specified using the MPLUS program. All path 

coefficients from the final model in question 2 were examined. These coefficients were 

reported from MPLUS results. The outputs from MPLUS included the Estimates (the 
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model-estimated values for each parameter), the standard errors of the parameter 

estimates, the values of the parameter estimates divided by the standard error, and two 

types of standardized parameter estimates. MPLUS outputs did not provide p-values for 

each estimated parameter. The ratio of the estimate divided by the standard error was 

used to indicate the significance of the parameters. The ratio statistical test is an 

approximately normally distributed quantity (z-score) in large samples. Values that 

exceed +1.96 or fall below -1.96 are significant below p = .05 for a two-tailed test. 

Conclusions were drawn based on these ratio values.  

The relative strength of associations across latent variables can be reflected from 

standardized parameter estimates. Of the two types of standardized parameter estimates, 

the first type of coefficients are standardized using latent variable variance while the 

second type of coefficients use the latent variables as well as the observed variable 

variances.  In this question, the two types of coefficients were the same because the 

parameter estimates involved only latent variables.  
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Chapter 4: Results 

 

Chapter 4 presents the findings of the study based on the data analysis. In this 

chapter, the descriptive statistics for each test used in this study are reported followed by 

detailed analysis on each of the research questions. 

Test Score Reliability   

Item internal consistency reliability estimates were calculated using SPSS. The 

Cronbach’s alpha for each of the five tests is reported in Table 6. The Figure Detection 

test had the lowest alpha value of .53. The alpha coefficient of .62 for the shape Working 

Memory test was moderately low too. One reason for the low reliability estimates for 

these two tests is that each of them included only four items. The lower reliability 

estimates for these two tests indicate that interpretations about examinees based on scores 

from these tests should be made with caution. In general, the Cronbach’s alpha in other 

tests indicated acceptable internal consistency reliability because all the coefficients were 

above the recommend level of .70 (Nunnally & Bernstein, 1994).  

 

Table 6.  

Descriptive Statistics for Each Test 

 

Test 
Number 
of Items Mean 

Standard 
Deviation 

Coefficient 
Alpha 

Matrix Reasoning 14 .64 .07 .85 
Rule Application 12 .51 .17 .88 
Rule Induction   6 .81 .07 .89 
Figure Detection   4 .50 .11 .53 
Binary Working Memory   5 .76 .07 .70 
Shape Working Memory   4 .41 .03 .62 
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Confirmatory Factor Analyses  

Since multiple indicators were used to measure the constructs investigated in this 

research, analyses were required to demonstrate that the items within each test all 

measured the same trait. That is, each set of alternate indicators has only one underlying 

trait or construct in common (Hattie, 1985). This test of unidimensionality was 

accomplished by conducting a separate confirmatory factor analysis for each test 

Construct Analysis for Matrix Reasoning 

From literature reviews on the dimensionality of the Raven’s tests that used 

matrix reasoning tasks, three different measurement models were proposed: (a) a 

unidimensional model in which all of the items were represented by a single factor, (b) a 

first-order three factors oblique model, and (c) a second-order factor model in which a 

higher order factor accounted for the covariation among the three first order factors.  

The standardized pattern coefficients in the three substantive alternative models 

are reported in Table 7. The standardized factor loadings for the three models were 

significant at the .001 level. The significant loadings of the related variables on the same 

factor indicate a common construct and hence support the convergent validity of scores 

on the test. 

Table 8 reports the correlation coefficients for each pair of factors based on the 

results of the three-factor oblique model. The estimated correlations between the factors 

ranged from .71 to .79. For all correlation coefficients, the confidence interval did not 

include the value of 1.0. This finding suggests acceptable discriminant validity for scores 

obtained from the Matrix Reasoning test.  
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Table 7.  

Standardized Factor Coefficients on Matrix Reasoning Items for Each Identified Factor  

across Alternative Factor Models    

 

    Items Unidimensional
Three-factor 

Oblique 
Second order 
Hierarchical 

Factor 1    
      2 .51** .58** .58** 
      3 .74** .84** .84** 
      4 .53** .61** .61** 
      5 .71** .80** .80** 

Factor 2    
      7 .46** .49** .49** 
      8 .55** .59** .59** 
      9 .72** .77** .77** 
    11 .68** .72** .72** 
    12 .50** .53** .53** 

Factor 3    
      6 .59** .64** .64** 
    13 .36** .40** .40** 
    14 .26** .30** .30** 
    15 .70** .78** .78** 
    16 .47** .52** .52** 

**p < .001 

 

Table 8.  

Estimates of Intercorrelations among Three Factors on Matrix Reasoning Tests 

Factors 1 2 3 
1 1   
2 .72 (.05) 1  
3 .71 (.05) .79(.06) 1 

 
Note. Figures in parentheses are standard errors. Example: 95% confidence interval of 

estimate correlation between factor 1and factor 2 is calculated as .72 ± 1.96 x (.05). 
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Chi-square tests and goodness of fit measures (CFI, RMSEA, and WRMR) for the 

three models as obtained from MPLUS 3.0 (Muthén & Muthén, 2003) are reported in 

Table 9.  As can be seen in Table 9 the chi-square value of 64.34 with 51 degrees of 

freedom for the three factor oblique model and the second-order hierarchical model was 

not statistically significant (.13) at the .01 level.  The chi-square test showed a significant 

result for the unidimensional model with a p-value less than .01. This suggests that while 

the three factor oblique model and the second-order hierarchical model fit the data 

acceptably, the unidimensional model does not. Corroborating evidence can be provided 

by using the goodness-of-fit index. Although the goodness-of-fit indices for all three of 

the models meet standard requirements (CFI > .95 and RMSEA < .05); however, when 

compared to the unidimensional model, the three factor oblique model and the second-

order hierarchical model had higher CFI but lower RMSEA. We can conclude that the 

three-factor oblique model and the second-order hierarchical model each have better 

model fit.  

 

Table 9.  

 

Goodness-of-Fit Indices for Null and Alternative Factor Models of Matrix Reasoning 

 
Factor Model df χ2 p-value CFI RMSEA WRMR

Baseline model 47 561.90 .00    

Unidimensional model 52 79.50 .009 .947 .040 .098 

Three-factor oblique model 51 64.34 .133 .978 .026 .086 

Second-order hierarchical model 51 64.34 .133 .978 .026 .086 
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The second-order hierarchical model appears to be equivalent to the oblique 

model due to identical chi-square test results and fit indices. This is most likely due to the 

fact that the two models involve the same number of parameters. However, the second-

order model, which explains the high correlations among the lower-order factors, is more 

theoretically desirable as far as this research is concerned. The model also provides a 

good reason that there is a general higher order factor which is measured by all of the 

observed variables. This higher order factor may be the g factor that has been studied 

thoroughly by previous researchers.   

Further exploration of the data shows that the items associated with each of the 

three factors are clustered in groups ordered by the item difficulties. Factor 1 consists of 

the easy items; Factor 2 is related to items of intermediate difficulty; and Factor 3 

includes the most difficult items. Apparently, when these three factors are added to an 

oblique model, it is not able to provide a good interpretation of what the Matrix 

Reasoning items have measured. Therefore, the second-order model will be used in the 

SEM analysis in the rest of this study.  

Construct Analysis for Rule Application Test 

Rule Application items are different than Matrix Reasoning items in that the rule 

used in each figure item is stated in the item stem. The same three measurement 

models—the unidimensional model, the first-order two-factor oblique model, and the 

second-order factor model—were also tested for the Rule Application Test. Since there 

are only two first-order factors for the second order factor, this second order factor model 

was underidentified. The standardized factor coefficients of the two identified models are 

provided in Table 10.  Since there are two or more items are associated with significant 
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coefficients on the same factor, it reflects that these items are under a common construct 

(Anderson & Gerbing, 1988). The significant coefficients hence are evidence of 

convergent validity of scores on this test. 

The intercorrelation estimate of the two factors based on the results of the two-

factor oblique model is .80 with standard error of .04. The confidence interval for 

correlation value of .80 is from .72 to .88, which did not contain the value of 1.0. 

 

Table 10.  

Standardized Factor Coefficients on Rule Application Items for Each Identified Factor  

across Alternative Factor Models 

 
    Items Unidimensional Two-factor Oblique  

Factor 1    
      1 .37** .38**  
      2 .76** .77**  
      3 .48** .48**  
      4 .76** .76**  
      5 .44** .45**  
      6 .80** .80**  
      7 .78** .79**  
      8 .92** .93**  

Factor 2    

      9 
 

.53** .59**  
    10 .87** .40**  
    11 .26** .30**  
    12 .45** .52**  
**p < .001 
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Conclusion can be drawn that there is an acceptable discriminant validity of the 

Rule Application Test scores. 

The model test results for the Rule Application Test are reported in Table 11. 

Although the model fit indices for CFI, RMSEA, and WRMR meet the standard 

requirement, the overall model test for the unidimensional model yielded a χ2 = 65.14 (N 

= 41), p < .05, indicating that this model generally fit poorly. The chi-square value of 

47.04 with 40 degrees of freedom for the two-factor oblique model has a corresponding 

p-value of .21, suggesting that this model fits the overall data well. From a close-fit 

perspective, the fit indices CFI = .994, RMSEA = .023, and WRMR = .764 also meet 

standards. As discussed in the Matrix Reasoning model test, the items associated with 

each these two factors were clustered in terms of item difficulty.  

 

Table 11. 

 

Goodness-of-Fit Indices for Null and Alternative Factor Models of Rule Application Test 

 
Factor Model df χ2 p-value CFI RMSEA WRMR 

Baseline 30 1199.01 .00    

Unidimensional model 41    65.14 .010 .979 .042 .895 

Two-factor oblique model 40    47.04 .206 .994 .023 .764 

 

Construct Analysis for Rule Induction Test 

Single rule reasoning was used in the Rule Induction Test. Consequently, students 

were not required to decompose figures. Neither were they required to memorize 

reasoning facts. Therefore, the structure of this test was built first as only a 
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unidimensional model.  As shown in Table 12, the chi-square value of 10.93 which was 

evaluated with four degrees of freedom yielded a corresponding p-value of .28. This p-

value is too high to reject the null of a good fit. Corroborating evidence is provided by 

CFI and RMSEA fit statistics. The fit indices for the three statistics are .995, .025 

and .062, respectively which all meet the standard requirement. Generally speaking, the 

unidimensional model fits the data in an acceptable manner.  Therefore, no further model 

was estimated for construct analysis of the Rule Induction Test. 

 

Table 12.  

 

Goodness-of-Fit Indices for Null and Alternative Factor Models of Rule Induction Test 

 
 
Factor Model df χ2 p-value CFI RMSEA WRMR 

Baseline model 15 397.13 .000  

Unidimensional model   9   10.93 .280 .995 .025 — 

 

Standardized factor coefficients of the item loadings on the factor are presented in 

Table 13.  All of the coefficients are significant at .01 levels, showing good convergent 

validity in the test scores.    

Construct Analysis for Figure Detection Test 

A Figure Detection Test was used to assess students’ visual spatial ability. In this 

test, students were asked to segregate simple pictures embedded in a complex visual 

configuration. Since no argument was found in the literature about the dimensionality of 

Figure Detection Test, we hypothesized that this test is a unidimensional visual spatial 
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ability test. The model test results for the unidimensional analysis are reported in Table 

14. 

As can be seen from Table 14, the chi-square obtained for the unidimensional 

model yielded a value of 1.14 with two degrees of freedom. The p-value for this test 

is .56, indicating an adequate fit of the data. The CFI value is 1.00, which is above the 

standard of .95; the values for RMSEA are not available. On the whole, the fit indices 

suggest very good model fit.  

 

Table 13.  

Standardized Coefficients of Rule Application Items under the Same Factor 

    Items Coefficients  

    1 .83**  

    2 .87**  

    3 .83**  

    4 .78**  

    5 .79**  

    6 .65**  

**p < .001 

 

Table 14.  

Goodness-of-Fit Indices for Null and Alternative Factor Models of Figure Detection Test 

Factor Model df χ2 p-value CFI RMSEA WRMR 

Baseline model 6 28.91 .000    

Unidimensional model 2 1.14 .563 1.000 — — 
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Standardized factor coefficients of each item were significant at .01 levels (see 

Table 15). However, the standardized item loadings on this factor were relatively low, 

indicating that the convergent validity of the test scores was not good.    

 

Table 15.  

Standardized Coefficients of Figure Detection Items under the Same Factor 

    Items Coefficients   

    1         .36**   

    2 .43**   

    3 .55**   

    4 .57**   

**p < .001 

 

Construct Analysis for Working Memory Test 

Two formats of Short Term Working Memory items were used in the test; namely, 

Binary Number Working Memory items and Shape Working Memory items. Two 

measurement models were tested for this test; namely, a unidimensional model with the 

two formats of items represented by a single factor and a first-order oblique model with 

two separate factors. Since a second-order CFA with two first-order factors and one 

second-order factor is always under-identified due to the absence of a constraint on the 

higher-order loadings, the second-order factor model was not tested here. Table 16 shows 

the fit statistics for the models. 
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Table 16.  

 

Goodness-of-Fit Indices for Null and Alternative Factor Models of Working Memory Test 

Factor Model df χ2 p-value CFI RMSEA WRMR 

Baseline 24 359.813 .000  

Unidimensional model 22 51.868 .000 .911 .064 1.144

Two-factor oblique model 21 20.667 .480 1.000 — .726

 

The results of the unidimensional model do not show a good fit. The chi-square 

value of the unidimensional model is 51.86 with 22 degrees of freedom. The low p-value 

< .0001 shows that the data did not fit the model well. The two-factor oblique model had 

an overall good fit with chi-square value of 20.667 (df = 21) and p = .480. This model 

was also found to have excellent goodness-of-fit indices: CFI = 1.000 and WRMR=.726.  

Table 17 illustrates the standardized factor coefficients of the Working Memory 

test. Convergent validity is shown by the significant loadings of items on the underlying 

factors.  

The intercorrelation between the factors of Binary and Shape is .59 with standard 

error of .04. The confidence interval for this correlation ranges from .51 to .67, which 

suggests acceptable discriminant validity for the Working Memory test scores. 

Results for Each Research Question 

Research Question 1:  Which of the Alternative Models is the Most Valid Representation 

of the Domain of Matrix Reasoning Problem Solving? 

Construct analysis results for each test were applied to prepare for the data used to 

conduct the SEM analysis. For tests with multiple factors (e.g., the Matrix Reasoning 
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Table 17.  

Standardized Factor Coefficients on Working Memory Test for Each Identified Factor 

across Alternative Factor Models 

    Items Unidimensional Two-factor Oblique 
Binary   

    1 .45** .53** 

    2 .38** .44** 

    3 .46** .57** 

    4 .57** .66** 

    5 .56** .68** 

Shape   

    1 .58** .61** 

    2 .67** .71** 

    3 .77** .83** 

    4 .61** .66** 

 
**p < .001 

 

Test, the Rule Application Test, and the Working Memory Test), scales were created by 

adding up items scores that measure a common underlying factor. To increase the 

stability of the parameter estimates, a parceling method was applied for tests with only 

one dimension (e.g., the Rule Induction Test and Figure Detection Test). Holt (2004) 

recommended that binary items can be parceled by combining items with opposite item 

difficulties. Since the data in this research are dichotomous, Holt’s suggestion was 
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adopted. For example, In Figure Detection Test, item 1 (mean = .40) and item 4 (mean 

= .66) were combined and item 2 (mean = .47) and item 3 (mean = .49) were combined. 

There were two parcels for each unidimensional test. 

Overall measurement model examination. The first step of the SEM analysis was 

to test the measurement model. This measurement model includes five latent variables as 

in Figure 8, with 11 variances for measurement errors, 11 factor loadings, and 10 factor 

correlations. Because there were at least two indicators for each factor, this model was 

treated as identified.  

There is adequate evidence that the measurement model is a good fit. Therefore, 

the causal model may be tested through SEM modeling. Using the WLSMV estimation 

method, the measurement model was tested against the data.  

As shown in Table 18, the chi-square test for the overall measurement model fit 

produced a value of 41.168 with 34 degree of freedom. The corresponding p-value of the 

chi-square test was .186. Goodness-of-fit indices for the measurement model yielded a 

CFI of .991, RMSEA of .025, and SRMR of .032. These indices meet the joint criteria of 

fitness evaluation, and indicated a reasonable model fit.  

Mode comparisons. A key feature of SEM is the ability to explore causal 

relationships among latent variables. The hypothesized causal relationships of the latent 

variables are demonstrated in Figures 5 to 7. All of the three models were tested using the 

ML estimation method. Results of the model testing are shown in Table 18. None of the 

three hypothesized models had a reasonable fit with the actual data. Rule application as a 

mediator model yielded a chi-square value of 79.382 with 37 degrees of freedom,  

 



 60

 

Figure 8. CFA measurement model of Matrix Reasoning problem solving. 
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producing a p-value less than .0001. Goodness-of-fit indices and CFI values for the three 

models were .950, the SRMR was .091, and the RMSEA was .59, offering further 

evidence that these models did not fit the data well. Although the goodness-of-fit indices 

for the other two models were acceptable, the chi-square p-values (< .05) showed poor 

model fit against the actual data.  In conclusion, the three specified models were not valid 

representations of the domain constructs.  

Compared with the three unreasonable hypothesized models, the measurement 

model generated better model fit, suggesting that more relationships among the latent 

variables should be specified in the model.    

 

Table 18.   

Hypothesized Model Comparison 

Factor Model df χ2 p-value CFI RMSEA SRMR

Baseline 55 895.2 .000    

Components model 37 67.91 .001 .963 .05 .045 

Measurement model 34 41.168 .186 .991 .025 .032 

Process model 37 68.21 .001 .963 .05 .044 

Rule application as mediator model 37 79.38 .000 .950 .06 .091 

 

Research Question 2:  What Modifications Can Be Made to Improve the Preferred Model? 

As concluded from the results of question 1, all three models should be 

respecified. The MODINDICES function from MPLUS OUTPUT suggests what 

additional paths, means, intercepts, or variance components estimated in the model need 
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to be freed in order to improve the model fit. The three models were respecified based on 

these suggestions. 

Modification suggestions for the latent variables in the components model are 

listed in Table 19.  The ON STATEMENT suggests that a path should be added from rule 

application to matrix reasoning. Since matrix reasoning is an endogenous variable, this 

suggestion does not satisfy the theory. Regardless, no further actions were taken to 

respecify the component model. 

 

Table 19.  

Modification Suggestions from MPLUS for Component Model 

Statements M.I. E.P.C.  S Std E.P.C. StdYX E.P.C 

ON Statement     

RAPPLY ON MATRIX    11.13 -5.56 -1.22 -1.22 

 

MODINDICE function suggestions for the process model are listed in Table 20. 

Among these suggestions, only the path from figure detection to rule application was 

theoretically acceptable. The respecified model was estimated with the same data. It 

yielded a chi-square value of 50.718 with a degree of freedom of 36. The corresponding 

p- value was .053, which was too high (>.05) to reject the null hypothesis that the model 

was a perfect model. Respectively, the goodness-of-fit indices are: CFI = .982, SRMR 

= .034 and RMSEA = .035, with a 90% confidence interval from 0 to .056. These index 

values are all favorable, indicating that the respecified model is acceptable. 
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Table 20.  

Modification Suggestions from MPLUS for Process Model  

Statements M.I. E.P.C.  S Std E.P.C. Std YX E.P.C 

ON Statements     

    RID ON RAPPLY    17.22  -.50 -1.64 -1.64 

    RID ON MATRIX   27.16 -4.57 -3.32 -3.32 

    FD ON RAPPLY    17.22    .16     .61     .61 

    FD ON  MATRIX  15.41 1.31 1.13   1.13 

    RAPPLY ON HID      17.22 1.23     .32     .32 

WITH Statements     

    RAPPLY   WITH RID 17.23 -1.05  -.83   -.83 

    RAPPLY   WITH HID 17.22     .33     .31     .31 

 

For the rule application as mediator model, modification suggestions are shown in 

Table 21. Besides the paths of Rule induction on working memory and rule induction on 

figure detection, adding all other paths in the table would cause the model to have 

feedback loops. Since the original model was hypothesized as recursive, all paths which 

will lead to reciprocal direct effects would be omitted. Thus, only two paths, from 

working memory to rule induction and from figure detection to rule induction, were 

added back to the model. Estimation for the respecified model showed adequate model fit:  

Chi-square was 43.726 with 35 degrees of freedom, p = .148, CFI = .990, SRMR = .036 

and RMSEA = .027, with a 90% confidence interval of 0 to .050.  
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Table 21.  

Modification Suggestions from MPLUS for the Rule Application as Mediator Model 

Statements M.I. E.P.C.  S Std E.P.C. StdYX E.P.C 

ON Statements     

    MEMORY ON RID       24.17 .42   .41   .41 

    MEMORY ON RAPPLY   26.62 .21   .67   .67 

    MEMORY ON MATRIX   26.21 .86   .59   .59 

    RID ON MEMORY    24.17 .39   .41   .41 

    RID ON FD       11.13 .24   .24   .24 

    RID ON RAPPLY    29.72 .32 1.07 1.07 

    RID ON MATRIX    30.55 .98   .70   .70 

    FD ON RID       11.13 .24   .24   .24 

    FD ON RAPPLY    13.58 .13   .44   .44 

    FD ON MATRIX    13.68 .43   .31   .31 

WITH Statements     

    RID WITH MEMORY 24.17 .15   .40   .40 

    FD WITH RID 11.12 .08   .24   .24 

 

Values of selected fit indices for the two acceptable respecified models both met 

the goodness-of-fit criteria. To choose the better model, the Akaike information criterion 

(AIC) was used. AIC was developed by Hirotsugu Akaike (1974). It can be used to 

compare nonhierarchical models from the same data set. AIC indicates model fit and 

model parsimony. One of the ways to calculate AIC is AIC = χ 2 +2q, where q is the 
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number of free model parameters. Respectively, the q value for process model and rule 

application as mediator model is 30 and 31. The model with the smaller AIC will 

generally have a better model fit and will be most likely to replicate. For the respecified 

process model, AIC = 50.718 + 2 * 30 = 110.718; and for the respecified rule application 

as mediator variable model, AIC = 43.726 + 2 * 31 = 105.73. The latter model was kept 

due to its lower AIC value. This decision was confirmed by comparing other Goodness-

of-fit indices of the two models (see Table 22).  The final model and its coefficients were 

demonstrated in Figure 9. 

It is notable that a satisfactory model was found that fits the data according to the 

standards set in advance. The model fits with no pathway from working memory to figure 

detection, which is consistent with other literature that some matrix items require a 

separate visuospatial factor. The model shows a modest pathway from figure detection to 

rule application, which makes theoretical sense. The pathway from figure detection to 

matrix reasoning, however, is close to zero, showing that the hypothesized construct 

relevance of figural decomposition to matrix reasoning was not demonstrated by this 

otherwise well-fitting model.   

 

Table 22.  

Goodness-of-Fit Indices for the Respecified Models  

Factor Model df χ2 p-value CFI RMSEA SRMR

Respecified process model 36 50.718 0.053 0.982 0.035 0.034 

Respecified rule application as 
mediator model 

35 43.726 0.148 0.99 0.027 0.036 
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Figure 9. The standardized estimation of the respecified model that empirically fits the 

actual data. 
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Analysis of the data and reflection on what it means led to some grave concerns 

regarding the Figure Detection Test, and thus about the latent variable it is supposed to 

measure. These concerns deal with score reliability and convergent validity and should be 

discussed in more detail. 

The first concern focused on reliability and validity issues. As reported at the 

beginning of the results analysis, the Cronbach’s alpha coefficient for the Figure 

Detection Test score was .53, which is lower than the acceptable value of .70. The lower 

coefficient indicates the inconsistency among the individual items in this scale. Although 

the CFA analysis showed a valid unidimensional construct, the relatively low alpha 

demonstrated a high degree of random error in item scores. Evidence of convergent 

validity was also unsatisfactory for this test because item loadings on the same factor 

were relatively low, showing that the items were not theoretically intercorrelated in an 

acceptable manner. The low reliability and unsatisfactory convergent validity results of 

the Figure Detection Test make its further application in the study unwise.  

The second concern about Figure Detection Test relates to its low correlation with 

other latent variables. The correlation matrix is reported in Table 23.  As shown in the 

table, when compared with other correlation coefficients, figure detection has the lowest 

correlation of any variable.  This suggests the construct irrelevance between figure 

detection and other latent variables in the same model.   

The third reason for concern about the Figure Detection Test is construct 

relevance to the constructs in play within this entire test battery. The Figure Detection 

Test was selected for this research to test students’ figure decomposition ability. A  
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Table 23.  

Correlation Matrix for the Latent Variables in the Model  

  Working Rule Figure  Rule  Matrix  
  Memory Induction Detection Application Reasoning 

Working Memory 1.00     

Rule Induction .43 1.00    

Figure Detection .16 .25 1.00   

Rule Application .44 .65 .43 1.00  

Matrix Reasoning .83 .80 0.30 .81 1.00 

 

well known existing test, Hidden Figure Test, was selected. In this test, the students were 

asked to find a picture in a very complicated background that matched one of the listed 

pictures in the answer options. A further investigation on each item in this test showed 

that student mean score for every item was relatively low, indicating that the items were 

difficult for the sample of students who participated in the research. An additional source 

of grave concern about the construct match between hidden figures and matrix reasoning 

is that not all of the Matrix Reasoning items require students to possess even a moderate 

level of figure decomposition ability. More than half of the items had low visual 

complexity. Therefore, the overly difficult Figure Detection items were not strongly 

relevant to overly easy Matrix Reasoning problems.    

Based on the analysis above, a model without the figure detection variable in the 

analysis should be examined. The following analyses were redone by dropping the figure 

detection variable from the model. 
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In the respecified measurement model without the variable of figure detection, 

there were only four Latent variables: (a) matrix reasoning, (b) rule application, (c) rule 

induction, and (d) working memory. The same estimation method was used as the 

measurement model in research question 1. The model testing results are shown in Table 

24. 

 

Table 24.  

Goodness-of-Fit for Measurement Model with Figure Detection Omitted  

Factor Model df χ2 p-value CFI RMSEA SRMR 

Baseline 36 799.51 .000    

Measurement model 21   27.65 .150 .992 .031 .031 

Structural equation model 21   27.65 .150 .992 .031 .031 

 

Measurement model and SEM for this analysis yield the same results. The results 

show satisfactory model fit. The chi-square test for the overall measurement model fit 

produced a value of 27.65 with 21 degrees of freedom. The corresponding p-value for the 

chi-square test was .150. Goodness-of-fit indices yielded a CFI of .992, RMSEA of .031, 

and SRMR of .031. Even though the model fit with figure detection was not bad, this one 

fits even better. Estimations are given in Figure 10. 

Research Question 3:  What Are the Significant Direct and Indirect Effects of the Latent 

Variables? 

Direct and indirect path effects from Figure 10 are reported as follows. 
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Figure 10. The standardized estimation for the respecified model with the figure 

detection variable omitted. 
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Direct effects. The direct and indirect effects of the acceptable model respecified 

in question 2 are delineated in Table 25.  The unstandardized path coefficients, standard 

error, ratio of estimation to standard error, and the standardized coefficients are reported 

column by column. The unstandardized estimate represents the amount of change in the 

outcome variable as a function of a single unit change in the variable causing it.  The 

estimate divided by the standard error, which indicates a significant effect when it is 

larger than 1.96, tests the significance of the parameter estimation.  As shown table 25, 

besides the paths from figure detection ability to matrix reasoning and from working 

memory ability to rule application ability, all other paths in the model have significant 

direct effects (ratio values are larger than 1.96).  

To examine the relative strengths of association across these latent variables that 

are measured using different scales, the standardized coefficients were compared. 

Standardized coefficients represent the amount of change in an outcome variable per 

standard deviation unit of a predictor variable. For example, the standardized path 

coefficient from working memory to matrix reasoning is .52. This means that if working 

memory ability increases by one standard deviation from its mean, matrix reasoning 

ability would be expected to increase by .52 of its own standard deviations from its own 

mean while holding all other relevant connections in the region constant. 

Clearly, the relationship of the three latent variables to matrix reasoning in 

descending order of magnitude of the standardized coefficients are working memory 

ability (.52), rule induction ability (.34), and rule application ability (.36). This finding 

demonstrates that the working memory ability is more effective at explaining the shared 

variance of matrix reasoning than other latent variables. 
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Table 25.  

Results of Standardized Direct and Indirect Effects of the Respecified Model  

 

Effects Estimates S.E. Est./S.E. Std 
 
Direct Effects of the Latent Variables     

working memory  matrix reasoning .38 .09 4.12 .52

rule induction  matrix reasoning .27 .08 3.50 .36

rule application  matrix reasoning .08 .02 3.14 .34

working memory  rule application .62 .30 2.07 .18

rule induction  rule application 1.96 .27 7.38 .57

working memory  rule induction .42 .10 4.08 .43
 
Indirect Effects from working memory to 
matrix reasoning 

    

 

working memory  rule induction  
matrix  reasoning 

.11 .04 3.14 .15

 
working memory  rule application     
matrix reasoning 

.05 .02 2.02 .06

 
working memory  rule induction  
rule application  matrix reasoning 

.06 .03 2.46 .08

 
Indirect Effects from rule induction to matrix 
reasoning 
 

    

rule induction  rule application  
matrix reasoning 

.15 .05 2.82 .20
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Significant effects also exist in the paths from rule induction ability to rule application 

ability, from working memory ability to rule application ability, and from working 

memory ability to rule induction ability.   

Indirect effects. Indirect effects were investigated from the two exogenous 

variables working memory and rule induction to the predicted variable of matrix 

reasoning. Results from Table 25 show significant indirect effects of working memory 

through mediating variables. These three significant paths listed below. 

1. working memory  rule induction  matrix reasoning  

2. working memory  rule induction  rule application  matrix reasoning       

3. working memory  rule induction  rule application  matrix reasoning  

 The significant indirect effects partially indicate the flow path of Matrix 

Reasoning problem solving. Also, there is a significant indirect path from rule induction 

to matrix reasoning through rule application.   
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Chapter 5: Conclusion and Discussion 

 

The purpose of this research was to gain a deeper insight into the domain of 

matrix reasoning. An attempt was made to develop a valid model to understand the 

construct of matrix reasoning. In this SEM model, subabilities involved in solving Matrix 

Reasoning tasks were postulated and the relationships among the subabilities were 

sufficiently hypothesized. The results explain how typical students in this sample solve 

Matrix Reasoning problems.  This model provides an explanation supported by empirical 

data. The results have implications for designing Matrix Reasoning Tests and instruction. 

 Before discussing the results, the issue of how the results of SEM are to be 

understood must be addressed. As mentioned in the methodology section of this work, 

the SEM technique is used to examine hypothesized causal relationships among variables 

with a linear equation system and to test whether or not the actual data is consistent with 

the model. However, the SEM technique can not prove the causal model.  When the 

hypothesized model is accepted, the model fit data only support the argument that the 

model is a valid representation of the relationships among variables. However, there may 

be several alternative models that could fit the data equally well. When the hypothesized 

model is rejected, the model is demonstrated as definitely not fitting the data.  

Issues Regarding the Figure Detection Test 

The Figure Detection Test studied in this research was designed to measure a 

hypothesized construct, figural decomposition ability, which refers to find corresponding 

figures embedded in complex figures.  After reviewing the literature, I found that the 

hidden figure task can function as the instrument to measure figure decomposition ability 



 75
because hidden figure task involve figure-ground segregation. This task requires observers 

to identify the given simple figures hidden in a complex visual configuration. Hidden figure 

tasks also require visual decomposition ability.  

However, according to the results of the analysis, figure detection had no 

significant direct effect on matrix reasoning, nor did it show any significant indirect 

effects through mediator variables. This seems to demonstrate that the figure 

decomposition ability does not play a crucial role in matrix reasoning. This result rejected 

the hypothesis that figure decomposition ability has a significant effect on matrix 

reasoning. This result is consisted with Tsakanikos and Reed’s research (2003). In their 

study, Tsakanikos and Reed found that although there was a correlation between the 

number of correct responses on Raven’s Progressive Matrices and Hidden Figures Test, 

they maintained a substantial amount (> 95%) of non-shared variance.  Even so, any 

interpretation of this result should consider the following issues. 

First, this finding is suspect because the score reliability and validity of the Figure 

Detection Test were less than satisfactory. As previously discussed, Cronbach’s alpha 

coefficient for the Figure Detection Test was .53, revealing a less than acceptable level of 

consistency of the items in this test. In addition, the standardized factor loadings for each 

item were too low to demonstrate satisfactory discriminant validity. Also, more than half 

of the 14 Matrix Reasoning items did not require figural decomposition ability. The two 

reasons listed above are both due to the insufficiently construct-sensitive test design. 

Consequently, all results related to the figure detection variable should be interpreted 

with caution. 
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Second, the results prompted the researcher to reflect on whether or not the 

Hidden Figure task was a good format to measure figure decomposition ability. While the 

Hidden Figure task requires subjects to visually encode and parse the figures so that one 

can find the correct figure in a complicated figural background, it cannot test the process 

of finding correspondence elements which requires subjects to ascertain which figure 

elements in the three entries in a row are related. Therefore, a conservative conclusion 

may be drawn from the results; namely, that whatever construct was measured by the 

Figure Detection Test has no direct or indirect effects on whatever constructs are 

measured by the Matrix Reasoning Test. This result does not constitute proof that visual 

encoding and parsing, appropriately measured, are not important parts of Matrix 

Reasoning problems. Also, we must keep in mind that this conclusion is reached based on 

the finding that the reliability and validity of Figure Detection Test scores. There is also 

evidence that even with its unsatisfactory psychometric properties, figure detection did 

relate to rule application ability. 

Which tasks in what test format would be effective for assessing the figural 

detection construct and its relationship to correspondence finding?  This is a question for 

future research, informed perhaps by the off-target construct-relevance of part of this 

study. Theoretically, correctly testing figure decomposition ability can help future 

researchers to answer the remaining questions in this research.  

Finding or developing better measures of figural decomposition ability may have 

practical benefits worth pursuing.  Some learners who can not successfully finish the 

Matrix Reasoning tasks may need deeper diagnosis involving figural decomposition 

ability and accurate correspondence finding.  
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Discussion  

As discussed above, figure detection is not a satisfactory variable in this research. 

More than half the Matrix Reasoning problems did not require the figure decomposition 

ability. Therefore, it was reasonable and appropriate to drop the figure detection variable 

from the analysis of the final model.  

The three questions addressed in Chapter 4 can be condensed into two to facilitate 

discussion. First, is there a valid model representation to demonstrate the relationships 

between identified abilities that are applied to solve Matrix Reasoning problems? 

Secondly, if there is a valid model representation, what are the significant direct and 

indirect relationships between the variables in this model? 

In regards to the first question, SEM analysis shows that there is a valid model 

which can demonstrate the relationships between latent variables. However, this valid 

model is not one of the three hypothesized models. Rather, it is a combination of the three 

models. In the first hypothesized model, working memory was the basic variable. In 

addition to its direct effect on matrix reasoning, it also had indirect effects through rule 

application and rule induction. However, there was no relationship specified between rule 

induction and rule application. The second model was the rule application as the mediator 

variable model. In this model, all of the variables had a direct effect on matrix reasoning. 

Also, rule induction and working memory had indirect effects on matrix reasoning 

through rule application. The third model specified the path of working memory rule 

induction rule application matrix reasoning. It also set paths from working memory to 

rule induction and rule application. Results show that none of the three models were a 

sufficient fit to the data. Paths should be set among all the predicted variables.  
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The second question will be answered by examining the relationships among the 

variables. 

The Relationship between Matrix Reasoning and the Other Three Subabilities 

 In this study, paths from working memory, rule induction, and rule application to 

matrix reasoning ability were defined in the model. All three paths showed significant 

effects. The relative strength of the relationships can be evaluated by examining the 

standardized coefficients.  The strongest relationship existed between working memory 

and matrix reasoning ability, with a standardized coefficient of .52. The relationships 

between matrix reasoning ability and rule induction ability and between matrix reasoning 

ability and rule application ability dropped to .36 and .34 respectively. These results 

provide evidence that working memory is the most important factor which affects 

subjects’ performance in solving Matrix Reasoning problems. This result is consistent 

with Lohman’s (2001) study of the relationship between working memory and reasoning 

in which he discussed that “although many different processes may be executed in the 

solution of a task, individual differences in them may primarily reflect individual 

differences in working memory resources” (p. 223). The relationship between working 

memory and matrix reasoning will be further examined. 

The Path from Working Memory to Matrix Reasoning 

As mentioned above, a significant and substantial causal path was found from 

working memory to matrix reasoning. The matrix reasoning ability increased .52 of its 

own standard deviations from its own mean. Working memory ability increased by one 

standard deviation from its mean while holding all other relevant regional connections 

constant. Moreover, indirect effects were also established from working memory to 
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matrix reasoning. Two variables emerged as significant mediators between working 

Memory and matrix reasoning. Subjects who have more working memory ability are 

likely to perform better on Rule Induction Test; this in turn increases the likelihood they 

will perform better on the Rule Application Test, which leads to an increase in their 

scores on the Matrix Reasoning Test. This is an important process.  The ability at the 

lower order of the path will not only affect performance on solving Matrix reasoning 

problems, it will also affect other subablities in the higher order of the path.   Although 

the majority of the effect is explained by the direct effect, the indirect effects lead to the 

interpretation that working memory ability is a component that improves performance on 

both rule induction and rule application, and thus on matrix reasoning. 

Study Contributions 

This study yields a deeper insight into the domain of matrix reasoning. Previous 

research has focused more on the item (task) side than on the thinking person side in 

attempts to understand the domain of matrix reasoning. Starting from the process of how 

a thinking person solves a matrix reasoning problem, this research identified four 

subablities which were hypothesized to significantly contribute to matrix problem solving. 

By applying the technique of structural equation modeling, variable relationships which 

were hypothesized in the models were tested and respecified.  The final respecified model 

with Figure Detection Test omitted was demonstrated to be a valid representation of the 

domain; this model was able to fit well with actual data. This research provided evidence 

that working memory ability is the most important resource that can be used to explain 

individual differences in Matrix Reasoning problem solving. The rule induction ability 

and rule application ability are also significantly and directly connected to matrix 
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reasoning. Furthermore, significant indirect effects from working memory to matrix 

reasoning through variables of rule induction and rule application indicted that there was 

a valid problem solving process path that existed, although the indirect effect was much 

smaller than the direct effects. These results provide a different and personal view to the 

understanding of the domain of matrix reasoning. By and large, matrix reasoning cannot 

be explained by any process independently; it is a combination of working memory, rule 

induction, and rule application, and perhaps of other processes not demonstrated in this 

study.  

This research did not definitively rule out figural decomposition as an important 

part of the process. When matrix problems are used with a strong requirement for figural 

decomposition ability, it is still possible that more figurally demanding matrix problems 

and a valid and reliable figural decomposition test would show an important relationship. 

Implications for Training 

Inductive reasoning is considered to be the central part of fluid intelligence. Kauer 

(2002) stated, “Inductive reasoning enables one to detect regularities, rules, or 

generalizations and, conversely, to detect irregularities. This is one way in which we 

structure our world” (p. 1). Obviously, improving inductive reasoning ability will allow 

for better learning and living in the real world. Studies have shown that fluid ability can 

be enhanced with training (e.g., Deeny & Heidrich, 1990; Welko & Johannes, 1997). A 

large-scale study by Csapo (1997) has confirmed that inductive reasoning correlates 

substantially with school achievement. Training significantly improves performance. For 

students, training on inductive reasoning will not only foster their competencies in 

intelligence, but also will help them improve their academic learning.  
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 Previous training methods for Matrix Reasoning problems included demonstrating 

the problem solving process to subjects and then asking them to repeat the process by 

using the same strategy (Deeny & Heidrich, 1990). This study provides a potential 

method for individualized training. Students may be evaluated by the three tests 

developed in this research to diagnose the problems they may encounter as they try to 

improve their fluid intelligence. (If the Figure Decomposition ability is counted, then 

there are four tests; however, this fourth test requires more development and research.) 

Training should ideally be provided based on individual need. After training on 

subablities, a problem solving process then will be demonstrated.  The learning process is 

a circle; diagnosis, training, and evaluation should be combined.  

Limitations of the Research 

Perhaps the most serious limitation of this research is that the measurement error 

from the Figure Detection Test put a brake on our theoretical interpretation and empirical 

inference. This is especially true for those Matrix Reasoning questions which have 

complex figure combinations. It is confirmed that figure complexity was an important 

resource to explain item difficulty differences. Figure decomposition ability therefore 

should play an important role in solving Matrix Reasoning problems. Unfortunately, our 

Figure Detection Test was not able to provide strong evidence to either reject or accept 

this hypothesis.   

An issue worthy of consideration is that the Figure Detection Test does not solely 

test the Figure Decomposition ability. We were not able to find an appropriate task 

format to test the ability of both parsing complex figures and finding corresponding 

elements. Also, as shown from the research, typical hidden figure tasks proved to be an 
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unsatisfactory task format to test the ability of parsing figures. These limitations 

prevented the further understanding of how the figure decomposition construct should 

affect matrix reasoning problem solving.  

Another limitation of this study is related to external validity. Although the two 

schools that participated in this research were randomly selected, they cannot represent 

the entire population of either city or rural area. The homogeneity of the sample also 

brought further potential limitations to generalizability. Our samples were groups of 

students of ages 13 to 15 solely of Chinese nationality. Similar findings and results may 

not be guaranteed from a sample more diverse with regard to age or ethnic identity. 

Future Research 

  A continued discussion of the limitations of this research, future research, and 

data collection efforts will require refinements in current theories; a number of practical 

and theoretical questions will be addressed. 

 Theoretically, future research should further explore whether a valid test is 

available to measure figure decomposition ability. Results from the present research 

showed that the Hidden Figures Test can not measure figure decomposition appropriately. 

In addition to figural recognition, figure decomposition ability also requires the ability to 

find correspondence elements from these figures. A valid Rule Decomposition Ability 

Test should measure these two components.  Furthermore, if such a valid test exists, how 

would the new model including this test differ from the one estimated in this research?  

The sample in this research consisted of students from China between the ages of 

12 to 15 inclusively. How would the model change to if responses from a larger and more 
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diverse sample were investigated? Would a different model fit better for other age levels 

or cultural groups?  These questions need to be investigated in future studies. 

Future research on practical considerations could include the following.  

1. How well do the tests developed in this research function when used for 

diagnostic and training purposes?  

2. Would training in matrix reasoning that focused on using the subability tests 

developed in this study be more or less effective than  using the training method 

consisting of demonstrating the problem solving procedure, as done in previous 

research?  
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Participants 

Informed Consent Form 
(For principals and teachers) 

 
Introduction 
This research is being conducted by Kairong Wang under the help of Dr. Richard 
Sudweeks. Kairong Wang is a graduate doctoral student in Department of Instructional 
Psychology and Technology of Brigham Young University. The purpose of this research 
is to investigate how people solve the Matrix Inductive Reasoning problems. Your 
students are invited to participate in this study. 
 
Procedure 
The students in your school from grade 6 to grade 8 will invited to complete a test online. 
The test is used to assess general intelligence. It includes five parts. Individually, they are 
Working Memory test, Rule Induction test, Rule Application test, Hidden Figure test, and 
Matrix Inductive Reasoning test. The test consists of 46 items and will take 
approximately 45 minutes.  
 
Risk/Benefits 
There are minimal risks for participation in this study. However, the students may feel 
frustrated when they are not able to complete some of the items. 
 
The benefits to the subjects will be that they have a chance to have a brain exercise. It is 
hoped that through the students response researcher will be able to learn more about the 
structure of matrix reasoning ability. It will also bring ideas about how to help the 
students to improve their reasoning ability. 
 
Confidentiality 
The test is online. Students’ response will be saved in the database directly. Other than 
those who directly involved with the research, nobody else will be able to access the data. 
The students’ identities such as name, date of birth, school achievement are not required. 
The results will only be reported as group data with no identifying information.    
 
Compensation 
Compensation to the students will be the report of results from this research. Further help 
will be provided under the class teachers’ request. 
 
Participation 
Participation in this research is voluntary. You and the students have the right to 
withdraw at anytime or refuse to participate for any reason without penalty and without 
affecting their school standing..  
 
Questions about the Research 
If you have any questions regarding this study, please contact Kairong Wang at 1-858-
566-6475, kairong_wang2003@yahoo.com or Professor Richard Sudweeks, (801) 422-
7078, Richard_Sudweeks@byu.edu . 

mailto:kairong_wang2003@yahoo.com
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Questions about your Rights as Research Participants 

1. If you have any questions regarding the rights as a participant in this research 
project, please contact the ORCA office in Brigham Young University. 
Christopher Dromey, PhD, IRB Chair; 422-6461; 133 LRB; 
christopher_dromey@byu.edu . 

 
I have read, understood, and received a copy of the abvove consent and desire of my own 
free will to participate in this study.  
 
Signature: __________________________          Date: __________________________    
School: __________________________           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:christopher_dromey@byu.edu
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Participants 

Informed Consent Form 
(For students or parents) 

 
Introduction 
This research is being conducted by Kairong Wang under the help of Dr. Richard 
Sudweeks. Kairong Wang is a graduate doctoral student in Department of Instructional 
Psychology and Technology of Brigham Young University. The purpose of this research 
is to investigate how people solve the Matrix Inductive Reasoning problems. Your 
students are invited to participate in this study. 
 
Procedure 
You will be invited to complete a test online. The test is used to assess general 
intelligence. It includes five parts. Individually, they are Working Memory test, Rule 
Induction test, Rule Application test, Hidden Fgure test, and Matrix Inductive Reasoning 
test. The test consists of 46 items and will take approximately 45 minutes.  
 
Risk/Benefits 
There are minimal risks for participation in this study. However, the students may feel 
frustrated when they are not able to complete some of the items. 
 
The benefits to the subjects will be that they have a chance to have a brain exercise. It is 
hoped that through the students response researcher will be able to learn more about the 
structure of matrix reasoning ability. It will also bring ideas about how to help the 
students to improve their reasoning ability. 
 
Confidentiality 
The test is online. Your response will be saved in the database directly. Other than those 
who directly involved with the research, nobody else will be able to access the data. Your 
identities such as name, date of birth, school achievement are not required. The results 
will only be reported as group data with no identifying information.    
 
Compensation 
Compensation will be the report of results from this research. Further help will be 
provided your request. 
 
Participation 
Participation in this research is voluntary. You have the right to withdraw at anytime or 
refuse to participate for any reason without penalty and without affecting their school 
standing..  
 
Questions about the Research 
If you have any questions regarding this study, please contact Kairong Wang at 1-858-
566-6475, kairong_wang2003@yahoo.com or Professor Richard Sudweeks, (801) 422-
7078, Richard_Sudweeks@byu.edu . 
 

mailto:kairong_wang2003@yahoo.com
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Questions about your Rights as Research Participants 
If you have any questions regarding the rights as a participant in this research project, 
please contact the ORCA office in Brigham Young University. Christopher Dromey, PhD, 
IRB Chair; 422-6461; 133 LRB; christopher_dromey@byu.edu . 
 
I have read, understood, and received a copy of the abvove consent and desire of my own 
free will to participate in this study.  
 
Signature: __________________________          Date: __________________________    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:christopher_dromey@byu.edu
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Letter of Statement from Principal 
 
This is a letter to state that as a principal of Wangjing Middle School in Beijing, I have 
the legal guardianship of the students on participating in educational research while they 
are in the school. 
 
I have read, understood, signed and received a copy of the consent form of the study from 
the researcher. The research of “Exploring the Domain of Geometric Inductive Reasoning 
Problems: A Structural Equation Modeling Analysis” by Kairong Wang is approved to be 
administrated in our school.  
 
 
兹证明作为望京中学的校长, 我对我校学生参加在校教育科研有合法的监护权. 
我校已经审查并通过王凯荣在我校进行“Exploring the Domain of Geometric Inductive 
Reasoning Problems: A Structural Equation Modeling Analysis”的研究申请. 
 
 
 
签名: __________________________    时间 __________________________ 
学校    __________________________ 
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Appendix B 

Statistics for Each Item in the Tests 

 
 

Tests 

 
 

Items Mean Sd 

Item-total 
Correlation 
Coffiecient 

Alpha if Item 
Deleted 

Matrix 
Reasoning Test 

 
  1 .84 .36 

 
.45 0.84 

   2 .92 .28 .62 0.83 
   3 .84 .37 .47 0.84 
   4 .90 .31 .63 0.83 
   5 .41 .49 .56 0.83 
   6 .82 .39 .42 0.84 
   7 .72 .45 .47 .84 
   8 .70 .46 .62 .83 
   9 .74 .44 .62 .83 
 10 .74 .44 .46 .84 
 11 .42 .49 .35 .85 
 12 .24 .42 .23 .85 
 13 .23 .42 .66 .83 
 14 .49 .50 .44 .84 
Rule    1 .60 .49 .36 .88 
Application    2 .72 .45 .70 .86 
Test   3 .43 .50 .48 .87 
   4 .42 .49 .45 .87 
   5 .67 .47 .69 .86 
   6 .44 .50 .41 .88 
   7 .69 .47 .74 .86 
   8 .69 .47 .69 .86 
   9 .57 .50 .85 .85 
 10 .33 .47 .83 .85 
 11 .33 .47 .24 .88 
 12 .23 .42 .42 .87 
Rule Induction   1 .78 .41 .75 .86 
Test  2 .89 .31 .78 .86 
  3 .85 .35 .75 .86 
  4 .72 .45 .70 .87 
  5 .77 .42 .73 .86 
  6 .86 .35 .55 .89 
Figure 
Detection  

 
1 .40 .49 

 
.30 .25 

Test  2 .47 .50 .44 .29 
  3 .49 .50 .49 .37 
  4 .66 .47 .40 .37 

(Table continues) 
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Table 7 (continued) 
 
 

Tests 

 
 

Items Mean Sd 

Item-total 
Correlation 
Coffiecient 

Alpha if Item 
Deleted 

Binary 
Working  

  
1 .84 .37 

 
43 .67 

Memory Test  2 .75 .43 35 .70 
  3 .73 .44 51 .63 
  4 .82 .38 49 .65 
  5 .67 .47 51 .62 
Shape Working   1 .66 .47 .34 .63 
Memory Test  2 .40 .49 .40 .53 
  3 .30 .46 .49 .49 
  4 .27 .44 .40 .55 
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