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Abstract: It is well recognized that ecological systems generate a spectrum of diverse 
benefits that are vital to humankind. Sustainable environmental management requires an 
adequate consideration of ecosystem goods and services. The problem, however, is that 
many of the ecological and social amenities are not currently incorporated into the 
decision-making process. A fundamental issue is getting at the quantitative characteristics 
of the ecosystem services.  Publications on this matter note that simulation models of the 
phenomena in question have to be used for this purpose. In fact, a whole family of 
simulation models is required. Such models should represent the main components of an 
ecosystem, their interrelationships and linkages to the system’s environment at the 
appropriate time and space scales. They should also model physical, chemical and 
biological processes pertaining to the ecosystem being studied. Any planned activity will 
substantially affect the ecosystem components and their ability to generate goods and 
services. It is therefore necessary to understand and measure the changes – sometimes 
irreversible ones – which may occur in the ecosystems and their services under various 
management interventions and compare the expected benefits with possible losses. This 
knowledge should be incorporated into the process of decision-making. The paper deals 
with the quantitative assessment of ecosystem services as a key issue in sustainable 
environmental management. A model-based framework for the quantifying of the 
ecosystem services is presented. Forest ecosystems are considered in the case study. 
 
Keywords: Ecosystem service; environmental management; anthropogenic dynamics; 
simulation modelling; quantitative assessment.   
 
 
1. INTRODUCTION 

 
Ecosystems generate a multitude of useful and even crutial for the human well-being 
benefits, collectivelly called ecosystem services. The UN-led Millennium Ecosystem 
Assessment Report (MEA [2004]) has categorized ecosystem services into four broad 
groups: provisioning, such as the production of food and water; regulating, such as the 
control of climate and disease; supporting, such as nutrient cycles and crop pollination; and 
cultural, such as spiritual and recreational benefits. 
 
The very idea of sustainable environmental management can be discussed in a practical 
sense only if all the goods and services generated by the ecosystems are properly 
quantified, valuated, and incorporated into the decision-making process at its early stages.  
 
The main methodological problem is that the measuring of the ecosystem benefits is a non-
trivial task. In most of the cases, the corresponding values can only be obtained by building 
simulation models of the phenomena in question. As Costanza and Folke [1997] put it, one 
way to get at these values would be to employ systems-simulation models that incorporate 
the major linkages in the system at the appropriate time and space scales. The importance 
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of modelling in environmental management is hard to overestimate since, for a number of 
reasons, experiments on real world objects are extremely limited.  
 
Human society and a chosen type of the socio-economic development produce tremendous 
pressure upon the global biosphere and its various components. Thus, according to the 
recent estimates by the World Wildlife Fund (WWF [2006]), the demand on the planet’s 
ecosystems (“the ecological footprint index”) has more than tripled since 1961 and now 
exceeds the world’s ability to regenerate by about 25 per cent. The other measure from the 
Report, the living planet index, shows a rapid and continuing loss of biodiversity. 
 
The environmental impacts of anthropogenic actions are becoming more apparent – air and 
water quality are increasingly compromised, oceans are being overfished, pests and 
diseases are extending beyond their historical boundaries, and deforestation is exacerbating 
flooding downstream. According to Vitousek et al. [1997], approximately 40-50% of 
Earth’s ice-free land surface has been heavily transformed or degraded by anthropogenic 
activities, 66% of marine fisheries are either overexploited or at their limit, atmospheric 
CO2 has increased more than 30% since the advent of industrialization, and nearly 25% of 
Earth’s bird species have gone extinct in the last two thousand years. 
 
Given the annual American per capita wood consumption of 1.3 ha of forest (Pimental et 
al. [1994]) and the world’s probable population of 11 billion in 2065 (UN median estimate, 
UNDIEA [1992]), 14.3 billion ha of forest would be required, which is 3.5 times the total 
world forested area, and more than all land on the planet (Rees [1992]).  
 
Obviously, human activities and anthropogenic impacts affect the ability of the ecosystems 
to generate services as well as the absolute quantities of the services being delivered.   
 
 
2. METHODOLOGY 
  
In order to quantitatively assess the ecosystem services in the scenarios of environmental 
management, a framework is required incorporating at the very minimum the following 
elements: (1) an adequate theoretical understanding of an ecosystem and its various 
services; (2) an adequate model of an ecosystem describing internal physical, chemical, and 
biological processes and their interrelationships, structure and components of the 
ecosystem, laws of its functioning and generation of the services under natural conditions; 
(3) understanding of the principles governing responses/reactions of the ecosystems to 
exogenously caused stresses including the ability to produce services; and (4) a model 
predicting the ecosystem behaviour under the anthropogenic impacts and the quantities of 
the services (Figure 1). 
 

 
 

Figure 1. A framework for the quantifying the ecosystem services. 
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The elements of the framework are interrelated and influence each other. They are 
discussed in the subsequent sections of the paper. 
  
 
3. METHODS 
 
3.1 Understanding an ecosystem 
 
The term “ecosystem” was introduced by Tansley [1935] which he defined as the system 
resulting from the integration of all the living and nonliving factors of the environment. In 
general systems theory, any system is characterized by: (1) the structure (i.e., parts and 
their composition); (2) behaviour (i.e., inputs, internal processing and outputs of material, 
energy or information); (3) interconnectivity (i.e., functional as well as structural 
relationships between the various parts of a system); and (4) emergentness (i.e., properties 
and functions arising out of combining the ecosystem components within a single whole 
structure. 
 
In accordance with the general systemology, a natural ecosystem can be defined as an 
independent spatiotemporal unit of interrelated living (biotic) components interacting with 
non-living (abiotic) factors and the processes governing functioning and structure of the 
ecosystem components (e.g., Muller [1997]; Odum [1983]). 
 
Abiotic factors are broadly classified under the three categories: (1) climatic factors which 
include the climatic regime and physical factors of the environment like solar radiation, 
humidity, atmospheric temperature, wind speed and direction, precipitation, current , 
salinity, etc.; (2) edaphic factors which are related to the structure and composition of soil 
including its physical and chemical properties, like soil and its types, soil profile, minerals, 
organic matter, soil water, soil organisms; and (3) inorganic substances (like water, carbon, 
sulphur, nitrogen, phosphorus, potassium, calcium and so on) and organic substances like 
proteins, lipids, carbohydrates, humic substances etc.). 
 
A biotic part of an ecosystem (plants, animals and micro-organisms) is organized in 
hierarchical structures according to their role in the energetic and metabolic processes 
called trophic levels. Since 80 to 90% of potential energy is lost as heat at each trophic 
level, there are usually 4 or 5 trophic levels in an ecosystem.  
 
The basis of any trophic structure is formed by the autotrophs, i.e., plants producing high-
energy complex organic compounds from inorganic raw materials by means of 
photosynthesis. The upper trophic levels are called heterotrophs (or consumers), i.e., 
generally animals which feed directly on the autotrophic plants or prey upon other 
organisms at the lower heterotrophic levels. Saprotrophs (or decomposers), i.e., generally 
micro-organisms (bacteria and fungi) represent a special kind of heterotrophs which break 
down the complex organic compounds of dead or decaying matter, converting them to a 
form of nutrients usable to autotrophs. 
 
Biologically, biotic components of an ecosystem are assembled into populations of a 
particular species whereas two or more populations occupying the same geographical area 
form a community. 
 
The ecosystem processes (like production, destruction, respiration, transformation, etc.) as 
well as intro- and interspecific interactions (e.g., competition, predation, parasitism, 
mutualisms, etc.) are characterized by the quantitative values of the corresponding 
parameters.   
 
Therefore, an adequate description of an ecosystem (E) is a three-compartment tuple which 
includes a set {C} of biotic and abiotic components and factors (i.e., ecosystem 
composition), a set {S} of their particular assemblages and interrelationships (i.e., 
ecosystem structure) and a set {P} of ecosystem parameters designating quantitative values 
of the ecological processes involving components and interactions between them:  
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     PC  ,S ,  E  .                                                                                                                (1) 

 
 3.2 A model of an ecosystem 
 

At any given time instant t , the components (or sub-systems) of  an ecological system can 
be represented by a non-negative n-dimensional state vector 

1( )  ( ( ),..., ( ))    .n
nt x t x t    x  The coordinates of vector ( )tx  quantitatively designate 

elements of the set {S}, i.e. both biotic and abiotic constituencies of the ecosystem and 
their properties, such as richness and density of species or their assemblages, 
concentrations of organic and inorganic matters and polluting substances, etc. The system 
is influenced by exogenous perturbations denoted as an r-dimensional vector 

r
1( )  ( ( ),  ..., ( ))  U  rt u t u t   u . Parameters of the ecosystem, i.e., elements of the set 

{P}, are represented by an m-dimensional vector 1( )  ( ( ), ..., ( ))  P  m
mt p t p t   p . In general 

case, each coordinate of  )(tx  will depend on all coordinates, inputs u and parameters p; 

each parameter )(tp j
 also depends on external disturbances. Then, a model for the 

evolution of the ecosystem is governed by an equation:  

[ ,  ( ), ( ), ( )]  0M t t t t x u p                                                                                             (2) 

 
with the initial conditions 0( )  t  0x x . Here M  is the model dynamics operator. 

Admissible states of the model ( ,  , )  U P  n r m     x u p . Depending on the aim 

of research, a particular ecosystem being modelled and observation data available, the 
operator M  may be in a form of an algebraic expression, differential or integral operator. 
Often in ecological applications, M  characterizes ecosystem dynamics in terms of 
ordinary differential equations, in which case (2) can be rewritten as: 
 

   ( ,  ( ),  ( ), ( ,  ( ))).
d

t t t t t
dt


x

F x u p u                                                                                  (3) 

 
The structure of the modelled real-world ecosystem {S} is expressed through the values of 
the state variables and parameters and a particular structure of model (3), i.e., mathematical 

form of functions  (   1, )if i n  and the parameter values.   

 
 
3.3 Anthropogenic dynamics of an ecosystem 
 
 
Exogenous perturbations caused by anthropogenic impacts may affect and change different 
components of the real-world ecosystem as represented by its mathematical models like (2) 
or (3), including: (1) initial conditions; (2) environmental abiotic factors; (3) biological 
populations in biotic assemblages and the corresponding values of the model variables; (3) 
parameter values; and (4) ecosystem structure.  The two latter kinds of stresses may alter 
the strength and qualitative nature of inter- and intraspecific community interactions 
whereby, for example, initially noninteracting species may begin competing or exhibiting 
other non-neutral interactions, and vice versa (Justus [2006]).  
 
An ecosystem with stress impacting its structure (S-type) can cross a critical point, shift to 
a new structural quality and get from one basis of homeostasis to another one. In this case, 
the perturbed dynamics of an ecosystem is a sequence of critical time instants 

1 2,  ,...,  ,crit crit crit
lt t t  at which structural transformations occur. An ecosystem passing over a 

critical point must be studied and modelled as a new system, though a new model can, to a 
different extent, inherit certain features of the old one (Pusachenko [1989]). In terms of a 
generalized ecosystem model (2), critical transformations appear as a sequence of models, 
each one suitable only for a certain “stability” domain where the ecosystem maintains its 
structure: 
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1 2

0 1       ...    .
crit crit crit

l

S -stress S -stress S -stress

l
t t t

M M M                                                                    (4) 

 
Consequently, a new model has to be built and analyzed once the ecosystem crossed a 
critical point and fell within a new domain of structural stability. Several important 
questions require answers: 
 

 what change in the ecosystem should be considered as a critical transformation 
leading to a new structural domain?  

 will one species extinction mark a critical transformation? 
 is the critical transformation reversible or irreversible?  

 
An ecosystem can be viewed in terms of its dominant species. A switch from one group of 
dominant species to another one is an example of structural transformation. Myster [2001] 
suggested that the ecosystem structural pattern must be tied to the functions that are critical 
for the continued operation of the ecosystem. Primary plant-based functions of 
productivity/ respiration/decomposition (Watt [1947]) as well as nutrient cycling and 
energy transfer/loss are the most important ecosystem functions. These characteristics can 
be used as indicators of critical transitions leading the ecosystem to a new structural 
domain. 
 
Therefore, ecosystem services have to be quantitatively assessed only from a model 
suitable for a given domain of structural stability.   
 
 
4. CASE STUDY: FOREST ECOSYSTEMS 
 
4.1 Forest services 
 
 A unique role of forests among other ecosystems is determined by the fact that few 
ecosystems can generate as many services as forests. They provide overall ecosystem 
health and sustainability, protect water and air quality, support biodiversity and wildlife 
habitats, supply recreation and aesthetic enjoyment, etc. 
 

Table 1. Three categories of forest-generated benefits 
 
Economic amenities Ecological amenities Social amenities 
Wood products (timber and 
fuel wood)  
Non-timber products:  

 wild food (honey, 
mushrooms, wild 
fruits and latex, 
berries, fibers, nuts, 
hunting meat from 
wild animals, birds, 
and fish)  

 raw material (cork, 
resin, mastic gum) 

 medicinal plants 
 plant genetic 

resources 

Landscape stabilization 
Soil protection from 
erosion 
Soil moisturizing 
Soil enrichment by 
nutrients (fertilization) 
Pest control 
Water quantity regulation 
(hydrological function)  
Water purification 
(hydrochemical function)  
Flood control 
Climate regulation 
Carbon sequestration 
Oxygen generation 
Global warming mitigation 
Fisheries protection  
Wildlife habitat

Human habitat function 
Recreation opportunities 
Tourist opportunities 
Aesthetic function 
Sanitary functions: 

 Disease buffering 
 Therapeutic 
 Dust sequestration 
 Noise reduction  

Educational function 

 
According to the concept of a forest ecological-economic-social (FEES) system (Khaiter 
[1993]), the set of possible forest-related benefits can be classified into three main 
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categories: (1) ecological amenities that combine protective and conservational influences 
on the environment; (2) economic amenities related to the generation of food, fodder, and 
industrial raw materials that are used or that can be potentially used by an economy; and 
(3) social amenities that include the creation of comfortable conditions for humans from 
sanitary, cultural, aesthetical, recreational, and environmental points-of-view. A sample list 
of forest benefits in each of these three categories is shown in Table 1.  
 
Environmentally sustainable management and utilization of forests in the interests of 
today’s and future generations is only possible if there is a means by which the decision 
makers can adequately quantified all the goods and services being produced by forest 
ecosystems. 

Let vector bE denote quantitative values of economic amenities, vector bL  – quantitative 
values of ecological amenities, and vector bS  – quantitative values of social amenities. 
Each of the vectors bj (j = E, L, S) can be considered as the output of the forest ecosystem 
model like M in (7).  
 
 
4.2 Mutually possible services 
 
It is assumed that all the goods and services generated by the ecosystems are equally 
important to the society and should be included in the valuation and decision-making 
process. However, a competitive or even mutually exclusive nature of the benefits has to be 
taken into the consideration. For example, the usage of the social amenities of a forest park 
as a source of cultural, spiritual or recreational joys will negatively affect and reduce its 
ecological services and make it practically impossible to utilize most of the economic 
goods. Therefore, in practical terms, a full set of all the ecosystem goods and services is not 
an attainable value but rather an ideal one. If B denotes the full set of all the ecosystem 

goods and services (B =  E L Sb b b ), at every moment of time, t, and for each planned 
scenario of exploitation, uk(t)u(t), there will be the subset of mutually compatible 
benefits, Bu(t)  B. 
 
The only way to determine Bu(t) is to rely on the expert knowledge on the behaviour of a 
particular ecosystem being then converted into the formal heuristic or production rules.  
 
 
4.3 Forest hydrology 
 
The regulation of water flows (i.e., the hydrological role) is one of the most prominent 
ecological services supplied by a forest. In order to quantify it, it is necessary to compare 
the components of the water balance in an experimental watershed with and without forest 
cover. It is obvious that the availability of such “paired” watersheds is extremely limited 
since the watershed without timber stand could be obtained only after the trees in the 
forested watershed are cut down. Using two physically different watersheds would limit the 
comparability of the results due to the uniqueness of each watershed in terms of local 
topology, geology, and vegetation. Subsequently, the results registered in an experimental 
watershed are not always applicable to other watersheds, even if they are within the same 
geographical area and of approximately the same size. 
 
To overcome these methodological difficulties, an approach has been suggested (Khaiter 
[1993]) that is based on a simulation modelling “Forest hydrology” (SMFH) of the 
processes of moisture transformation in a forested watershed. The SMFH simulates the 
processes of forest hydrology, and calculates crown interception, evaporation from snow 
and water, snowmelt, water release from snow, freezing and thawing of soil-grounds, 
infiltration, formation of all kinds of runoff, and transpiration. The model produces as 
outputs the values of the water balance components, and provides a quantitative assessment 
of the hydrological service of the forest.  
 
The SMFH represents the distribution of precipitation using the following water balance 
equation:     
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PR = EVC + EVF + EVS + QSUR + QSUB + TR + ∆SM + QGR ,                                          (5) 
 
where PR is atmospheric precipitation; EVC, EVF, and EVS are evaporation from canopy, 
floor and soil, respectively; QSUR, QSUB are surface and sub-surface runoffs, respectively; 
TR is transpiration; ∆SM is the variation of soil moisture content; and QGR is inflow to the 
groundwater table.  
 
The modelling of moisture transformation takes place at three levels (or hydrological 
niches): (1) tree crown, (2) forest floor, and (3) soil layer of a given thickness. The balance 
condition should obviously be satisfied for each of the hydrological niches: 
 

j
jj

i k
i k

dW
INC OUT

dt
                                                                                (6) 

 
where j denotes a hydrologic niche (j = 1, 2, 3); Wj is the moisture content in the jth 
hydrological niche; INCi

j,  OUTk
j  are the ith income and kth outcome water balance item, 

respectively, for the jth hydrological niche.   
 
In order to quantitatively assess the hydrological service of forest, it must be formally 
defined. It could be expressed through the positive influence of forest vegetation on both 
the richness of streamflows and the soil moisture content. Given that traditionally in 
hydrology, all items from the water balance are considered as positive (or useful) ones, 
except for losses to evapotranspiration and surface runoff, a formalization of the notion of 
the hydrological service of a forest and its estimation ∆QUSE was proposed (Khaiter 
[1991, 1993]) in the form of the following expression: 
 

 
1

( ) ( ) ( ) ( ) ( ) ( ) ,                     
T

f ff o o o
SUB GRSUB GR

t

QUSE SM t Q t Q t SM t Q t Q t


              (7) 

 
where the superscripts f and o denote forested and open (forestless) watersheds, 
respectively; t is the time variable; T is duration of a specified time interval. 
 
The computer experiments with the SMFH have been carried out for a watershed 
representing boreal forest with a 40-50 year-old spruce tree stand, sandy and sandy loam 
soils, and a plant density of 0.9. The computed estimate of the hydrological service in this 
simulation was 2720 cubic meters per hectare per year. Two extreme situations (i.e., 
forested vs. open watershed) have been modelled and compared in the simulations. In terms 
of the forest-management practices, such a transformation corresponds to complete clear-
cutting. Obviously, anthropogenic activities may lead to any intermediate scenarios. 

Management activities will first affect soil density, SD, and percent of forested area, F% 
(e.g., Khaiter [1991]), i.e., SD = SD(u(t)) and F%  = F% (u(t)). These two factors have 
been used in the building of the response surface, approximating the data generated by 
simulation experiments. As a result, the following response function was obtained: 

   -542.9   31.8396 % - 14.378 %  922.9.QUSE SD F SD F                                 (8) 

Eq. (8) can be recommended as an estimator of the hydrological service of forest. Similar 
simulation models are obviously needed to quantify all other forest ecosystem services and 
goods for sustainable environmental management of a forest watershed. 
 
 
4. CONCLUSIONS 
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A model-based framework for the quantifying of the ecosystem services is presented. The 
main elements of the framework discussed in the paper include: an adequate understanding 
and modelling of the ecosystems, their dynamics and ability to produce various benefits 
under both natural and anthropogenically disturbed conditions. A set of the mutually 
compatible benefits is important for the practical needs of sustainable environmental 
management and has to be properly identified in the decision-making process. 
 
Forest ecosystems are considered as a case study. An application of the framework is 
demonstrated in quantitative assessment of the hydrological service of forest and its 
variation under the scenarios of human activities on a forested watershed. 
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