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Abstract: Machine learning (ML) and genetic algorithm (GA) are well known techniques 
which can be used to calibrate environmental models. This paper investigates the calibration of 
the 2-D horizontal, vertically mixed lake models OneLay and PolTra using ML and GA 
routines. A GA was used jointly with the Open Modelling Interface (OpenMI) wrapper 
approach on a single powerful server. Explicit and implicit gridded approaches with the 
Probably Approximately Correct (PAC) learning were used as ML techniques. Monte Carlo 
simulations were used to generate the model input parameters for explicit and implicit gridding. 
Parallel computing using Shared Hierarchical Academic Computing Network (SHARCNET) 
was used for explicit and implicit gridded approach calibration. 
 
Keywords: Machine learning, genetic algorithm, Monte Carlo simulation, OpenMI, parallel 
computing, MPI, SHARCNET. 
 
 
1. INTRODUCTION 
 
The growing understanding of environmental mechanics combined with dramatic increases in 
computing power has allowed for more realistic representation and simulation of lake dynamics 
and solving prediction problems using environmental modelling. These advantages have, 
however, increased the need for improved model calibration in order for models to make better 
predictions.  In this paper we will be looking into calibrating OneLay and PolTra (Simons and 
Lam, 1986), as an integrated 2-D horizontal, vertically mixed lake model.  
 
The Lake Winnipeg Basin Initiative has been set up to reduce the loadings of nutrients to Lake 
Winnipeg to improve lake water quality. This requires the integration of watershed and lake 
models to optimize the reductions to meet water quality guidelines and protect the overall lake 
ecosystem. With the Lake Winnipeg Basin covering almost 1 million square kilometers, there is 
the obvious problem of sparse data, scaling issues and extensive spatial modelling. OneLay and 
PolTra are water quality models that are being integrated into the overall modelling system. In 
order for the system to operate efficiently, the models must be calibrated as efficiently as 
possible (Booty et al., 2009). We describe attempts to calibrate the integrated OneLay and 
PolTra models against the available observed data from July 26 to October 28 of 2002 as 
preliminary experiments before carrying out the fully integrated watershed and lake modelling 
process. 
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In this paper three different calibration techniques were used and compared to calibrate OneLay 
and PolTra. The first technique uses a GA and OpenMI wrapper. The second and third 
techniques use ML with the “gridded” approach. One is an explicit gridded approach (Sloboda 
et al., 2009) with an application of PAC learning (Russell et al., 2003) with 95% and 99% 
accuracy and the other one is an implicit gridded approach. 
 
For implementation tests of our techniques and for algorithm implementation and analysis, 
PEAS terminology (Performance measure, Environment, Actuators, Sensors) analysis will be 
used. Performance measure is characterized by finding an acceptable calibration parameter set, 
according to one or more appropriate statistical measures, with a significant speed gain over 
conventional methods. The Environment consists of the parameter space as described by the 
model developers, the physical process models and the outputs.  The Actuators are the model’s 
input parameters themselves and the Sensors are the measures of the output parameters 
(calibration parameters) by which the solution’s acceptability is determined (Russell et al., 
2003). 
 
 
2. PROBLEM STATEMENT, DEFINITIONS AND METHODOLOGY 
 
The main objective was to calibrate models based on the available observed data. A number of 
parameters have measurements for spring, summer and fall for 2002 in Lake Winnipeg. 
Observed values used for calibration were recorded at different time stamps and spatially 
distinguished locations. Figure 1 (a) shows a map with the stations locations for 2002, where 
observed data was measured and (b) shows the contoured TSS concentrations for fall 2002. 
 

     
                                              (a)                                                (b) 

Figure 1. Lake Winnipeg 2002 stations locations and contoured TSS concentrations fall 2002 
 
Calibration was done using the GA with OpenMI (www.openmi.org) wrappers for OneLay and 
PolTra as well as the explicit gridded approach for summer to fall of 2002 for TSS and using 5 
calibration parameters: OneLay – DRAG and BFRIC; PolTra – WSET, UCR and KR. OneLay 
and PolTra were set to produce output every 1.5 minutes. 
 
 
2.2. OneLay and PolTra 
 
OneLay is the hydrodynamic program that uses lake depths, river inflow/outflow, and wind 
vector to simulate horizontal currents and water level surges.  PolTra is the pollutant transport 
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model that uses the bathymetry and water transport computed by OneLay to simulate water and 
sediment concentrations. Originally the hydrodynamic computations were completed before the 
water quality model started.  The models are based on a rectangular grid representation of a 
lake. These programs were written in FORTRAN and designed to run in the DOS environment. 
 
Using OpenMI techniques, wrappers were written in C# for OneLay and PolTra. This enabled 
programs to exchange data at each time step, as opposed to running them in sequence, which 
improved model integration and allowed integration with other models and data sources to 
potentially form a whole catchment modelling system. For example, a river or watershed model 
that empties into Lake Winnipeg can provide their output to OneLay and PolTra as input on the 
fly as opposed to running the models independently, reformatting the river model output as 
OneLay input then running OneLay etc. 
 
Parameters that were adjusted for calibrations and their ranges are: 
 
OneLay: 

 DRAG (drag coefficient for wind stress); [0.005, 0.005] dimensionless 
 BFRIC (bottom friction), [0.01,0.1] cm/s 

 
PolTra: 

 WSET (settling coefficient); [1E-08,1E-03] cm/s  
 UCR (critical shear velocity for re-suspension); [0,2] cm/s 
 KR (re-suspension coefficient);[1E-15, 1E-08] dimensionless 

 
 
2.3. Genetic algorithm 
 
The GA used for this study is an open source algorithm written by David L. Carroll 
(www.cuaerospace.com/carroll/ga.html). This program is a FORTRAN version of a genetic 
algorithm driver. His code initializes a random sample of individuals with different parameters 
to be optimized using the genetic algorithm approach, i.e. evolution via survival of the fittest.  
The selection scheme used is tournament selection with a shuffling technique for choosing 
random pairs for mating.   
 
 
2.4. Machine learning  
 
One possible alternative to a GA studied in more detail in this paper, is an application of 
machine learning using a “gridded” approach. If the input parameter space is gridded, it is 
possible to perform several simulations which are independent of any fitness function or 
observation. Initial consideration of this approach would rule it out on the grounds of the 
impossibly large numbers of simulations. For example, for 5 parameters, each uniformly 
distributed on [0,1], the numbers of simulations that would blanket the whole space, to a single 
decimal digit, is 105.  To overcome this problem, we used a machine learning approach with the 
PAC learning, and accepted that we might miss a solution. 
 
Using the PAC learning, it can be shown that with only 300 simulations we are 95% certain that 
we have a solution on the discretized space that is at most 5% in error. The total number of 
examples E required to approximately represent a hypothesis H with probability 1- δ to within a 
small positive ε has been shown to satisfy 
 
  /))ln()(ln(  HE  (1) 

 
The proof of the theorem concerning this lower bound can be found in (Sloboda et al., 2009). 
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2.5. Explicit gridded approach 
 
In general, the explicit algorithm starts from a gridded set of actuators to generate, in the space 
of calibration sensors, point-sets of values. It differs from sensitivity analysis and from GA 
approaches in that it decouples calibration from validation and production runs.  Using the 
gridding approach combined with the PAC learning it should be possible to autocalibrate the 
hydrological model using minimum run time.  Monte Carlo simulations are used in this 
approach to generate the space of actuators, which are used by the model and produced the 
space of sensors. 
 
The grid of actuators was generated with both 95% and 99% accuracy using PAC learning 
results. To achieve 95% accuracy it was necessary to run 300 simulations and 99% - 1650 
simulations. Five actuators (DRAG, BFRIC, UCR, KR and WSET) were used for calibration. 
Table 1 displays range and step for each actuator used in the calibration. Figure 2 schematically 
represents the grid with all the possible values of actuators that can be used for calibration 
based on the ranges and steps defined in Table 1. 
 

Table 1: Actuators values 

 Actuator 
Range 

Step 
Start End 

DRAG 0.0005 0.005 0.00001 
BFRIC 0.01 0.1 0.0001 
UCR 0.0 2.0 0.001 
KR 1E-15 1E-08 0.01 

WSET 1E-08 1E-03 0.01 
 
 

 
 
 
 
 
 

 
 
 
 

Figure 2: Grid of actuators 

In Figure 2 values at each point for DRAG, for example, are: 

DRAG: 0005.01 d , 00051.02 d , …, 00499.01 nd , 005.0nd  

Values for KR and WSET use a log scale and, for example, WSET is calculates as:  

WSET: ;1);081(log 11101  aaEa  0811  Ew ,  

07-02.11010
)01.0()( 11

2 Ew
astepa  

, … , 03110 )*( 1   Ek stepna
n  

 
After the grid of actuators is generated the algorithm picks a value for each actuator using 
uniform distribution. Actuators are not dependent on each other and their values are picked 
from the grid of values randomly and independently. 
 
 
2.6. Implicit gridded approach 
 
The other attempted approach to calibrate OneLay and PolTra is an implicit gridded approach.  
The first step is to generate a large set of actuators and there corresponding simulated values at 
each time stamp. The next step is to store all the actuators and simulated values into the 
database. The final step is to find actuator values that best match sensors space, in other words 
find the input calibration parameters which produce simulated values that best fit the observed 
values. 

 
 
2.7. Shared Hierarchical Academic Computing Network (SHARCNET) 
 
SHARCNET is a consortium of Canadian academic institutions who share a network of high 
performance computers.  SHARCNET provides a wide array of high performance computer 
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systems on a dedicated, private high speed wide area network. In this particular study we used 
“zebra” cluster (Opteron @ 2.2 GHz, RAM 8.0 GB) and “narwhal” (Opteron @ 2.2 GHz, RAM 
8.0 GB) (www.sharcnet.ca). Both clusters support Message Passing Interface (MPI) 
(www.mcs.anl.gov/research/projects/mpi).  
 
 
3. RESULTS 
 
The best calibrated result is achieved when following is satisfied 
 min)( 

stampTime

StampTimeRMSE  (2) 

In this particular time dependent dataset there are 196 time stamps with observed values against 
which simulated data was compared at each time stamp.  These time stamps were collected 
from July 26 to October 28 of 2002. 
 
For every 1.5 minute time step, OneLay calculated results which were then input to PolTra, 
then PolTra calculated TSS, which was then compared to the observed value at a specific time 
stamp. To run simulations for explicit and implicit gridded approaches on the SHARCNET, the 
program had to be modified to support MPI and be fully parallelized, in order to speed up the 
calculation process. 
 
 
3.1. GA Results 
 
A GA was used as one of our calibration techniques. OpenMI wrappers were written to run the 
GA and capture the output for each simulation into the database. The GA runs were run 
sequentially on a server. A previous, similar version of the models was run for over 60 
generations and it was found that to successfully calibrate the model required about 35 
generations.  
 

Observed vs. Genetic algorithm simulated
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Figure 3. Best calibration using GA 

 
Each generation requires 10 runs of the OneLay and PolTra models. To run each generation on 
the server (4 Intel Xeon E7330 (quad core) CPUs (2.4 GHz) 64 GB RAM) takes approximately 
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2 1/3 days. Therefore, to run all 35 generations, requires about 81 days. This speed could 
potentially be improved by running the 10 runs of each generation in parallel but this was not 
done for this study. Table 2 shows actuator values and RMSE produced. Using these previous 
version best GA run coefficients in the new model produces the results shown in Figure 3. 
 

Table 2: Best calibration result using GA* 

DRAG BFRIC KR UCR WSET RMSE ( 3/ mg ) r2 

0.021591558 0.043751699 1.89E-10 0.580905995 3.19E-06 9.69E-06 0.237 
*Using previous model version best GA coefficients in new model version. 
 
 
3.2. Explicit Gridded 
 
Table 3 shows actuator values for the best result from 360 simulations, which, according to 
PAC learning, correspond to the 5% uncertainty. The calibration was done on the SHARCNET 
taking about 9.5 hours using 60 processors. 
 

Table 3: Best calibration result for 360 simulations 
DRAG BFRIC KR UCR WSET RMSE ( 3/ mg ) r2 

0.00476 0.0510 2.04E-10 0.956 2.04E-06 9.74E-06 0.314 
 
Table 4 has actuator values for the best result from 1843 simulations, which, according to PAC 
learning, corresponds to the 1% uncertainty. Calibration was done on the SHARCNET using 
MPI and it took about 25 hours using 97 processors. 
 

Table 4: Best calibration result for 1843 simulations 
DRAG BFRIC KR UCR WSET RMSE ( 3/ mg ) r2 

0.005 0.0244 1.62E-10 0.578 7.41E-07 9.45E-06 0.285 
 
Figure 4 shows calibration results using 5% and 1% uncertainty.   
 

Observed vs. Explicit gridding calibration with 95% and 99% certainty
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Figure 4. Explicit gridded approach 
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3.3. Implicit gridded approach 
 
The total number of simulations that were run for this time period is 10201.  Therefore there are 
10201 distinct actuators which produced a total of 10201 * 196 = 1999396 simulated values, 
since there are 196 distinct observations at different time stamp and locations. Three tables 
(observed values, actuators and simulated values) are stored in the database and they uniformly 
cover the whole space of actuator values. 

 
The first approach that was taken consists of finding the minimum mean square error (MSE) 
value at each time stamp and recording the actuators that produced that result. Then for each set 
of actuators which produced the best result at each time stamp, r2 is calculated for the entire 
run.   
 
Table 5 displays time stamps, actuators, MSE at specific time stamp, RMSE and r2 for the 
whole calibration run using actuators for a specific time stamp using the approach described 
above. Results are sorted in the descending order of r2 values. First column, N, shows at which 
time stamp the actuators set produced the closest value to the observed value. 

 
Table 5: r2 calculated for the entire run using best actuators at each time stamp 

N DRAG BFRIC KR UCR WSET 
MSE at time 

stamp N 
( 3/ mg ) 

RMSE 
( 3/ mg ) r2 

160 0.00498 0.0117 1.74E-10 1.309 2.69E-06 1.49E-18 1.07E-05 0.404423
38 0.00466 0.0426 2.57E-11 0.144 5.01E-06 8.41E-18 9.84E-06 0.326589
… … … … … … … … … 

150 0.00057 0.0159 5.62E-09 1.43 0.000912 2.89E-18 1.62E-05 4.42E-07
 
The best r2 =0.404423 and is shown in Figure 5. However, if we use a different actuator set for  
each time stamp with minimum MSE, r2 = 99.9% and simulated values overlap the observed 
values with only minor differences, which render to virtually identical  graphs. This, however, 
is an extension to OneLay and PolTra which is yet to be explored. 
 

Observed vs. Best R square result & Observed vs. Calibration results using average input 
parameters calculated from the best parameters at each time stamp
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Figure 5. Observed data vs. best calibrated value with r2 =0.404423 and Observed data vs. 

average actuators simulated values 
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The second approach is based on running the models using the average values over all time 
stamps, for each actuator which produced the best MSE at each time stamp. After average 
values were calculated, one simulation of OneLay and PolTra was run with these values as 
input calibration parameters. The average actuators, RMSE and r2 values are displayed in Table 
6. The results are also plotted in Figure 5. This approach produced a negative result (to low a 
value of  r2) 
 

Table 6: Average actuators calculated from the best actuators at each time stamp and results 

DRAG BFRIC KR UCR WSET 
RMSE 
( 3/ mg ) r2 

0.00273617 0.0557107 1.05E-09 1.02745 8.73E-05 1.41E-05 0.060316 
 
 
4. CONCLUSIONS 
 
It was shown that it is possible to calibrate the integrated 2-D lake model using a GA and an 
explicit gridded approach. The drawback of a GA is that it requires a lot of time for calibrating 
the model, and the explicit gridded approach requires a high performance environment or at 
least a network of a few fast computers.  If one compares Figure 3 and Figure 4, it is easy to see 
that results from the explicit gridded approach fit the data better then results from a GA run. 
The implicit gridded approach was not appropriate for this particular model, since observation 
measurement stations are spread all over the lake.  The implicit calibration approach would be 
inapplicable without a large number of observed values within the calibration period at the 
same station location.  
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